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Abstract 

SafeReturn: An Integrated Indoor Backtracking System for Visually Impaired People 

by 

Chia Hsuan Tsai 

Navigating indoors without a map can be challenging, especially for visually 

impaired individuals in unfamiliar settings. Many existing indoor navigation methods 

rely on building maps, pre-deployed infrastructure (like BLE beacons or RFID), or 

visual-based systems that require a clear line of sight to a camera. These requirements 

can make technology less accessible to visually impaired individuals for independent 

navigation. 

To address these challenges, this thesis introduces the SafeReturn app, a new 

smartphone-based technology implemented as an iOS app designed to assist visually 

impaired individuals in returning to their starting point after navigating through indoor 

spaces. SafeReturn is particularly useful in real-life scenarios, such as hospitals, where 

a blind individual may initially navigate from a waiting room to a doctor's office with 

the assistance of a receptionist but subsequently needs to return independently.  This 

technology eliminates the need for pre-deployed infrastructure or a clear camera view, 

enabling visually impaired individuals to navigate independently and confidently. 

The system features a new path-matching algorithm enhanced by a hybrid 

matching approach that integrates magnetic field and inertial data (representing 

steps/turns information) to backtrack paths. When active, it records sensor data and 

provides guidance for users seeking to retrace their route. Additionally, it includes an 
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off-route detection mechanism that alerts users when they deviate from the correct path 

and provides notifications for path recovery to guide them back on track. 

Initial testing was conducted using the WeAllWalk dataset containing inertial 

data from blind walkers. Subsequently, the system was equipped with a watch-based 

user interface and speech-based notifications specifically designed to simplify 

interaction for blind users. A user study involving seven visually impaired participants 

at the University of Santa Cruz’s BE building demonstrated the effectiveness of the 

proposed localization solutions. The results from these tests illustrate the system's 

efficacy in assisting visually impaired individuals with indoor navigation and path 

recovery in real-world settings. 
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Chapter 1  

 

Introduction 

 

Wayfinding in an unfamiliar environment could be challenging and potentially 

unsafe for visually impaired people because it is difficult to recognize landmarks at a 

distance or any other visual information.  Path integration is one of the heavily used 

mechanisms for traversing a route for visually impaired people. While some visually 

impaired people can develop more precise spatial information about the route, others 

may build limited one-dimensional information about the route [1]. Systems that help 

visually impaired people with wayfinding could improve their opportunities for 

learning, employment, independent living, and social engagement. A widely used 

localization technology, GPS, is known for its high accuracy. However, it is relatively 

difficult to use it for indoor navigation because GPS signals are usually blocked 

indoors. 

 Several studies have explored methods to provide reliable indoor wayfinding for 

visually impaired individuals. Traditional techniques like BLE beacon and RFID 

deployment have been used for indoor positioning but require extensive infrastructure 

and environment fingerprinting, which can be time-consuming and costly [2][3][4]. 

Alternatively, smartphone-based systems leveraging the phone's built-in sensors for 
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pedestrian tracking in GPS-denied environments have gained popularity. Studies 

indicate that visually impaired individuals increasingly rely on smartphones in daily 

life [5]. 

The utilization of visual sensors, such as smartphone cameras, along with powerful AI 

systems to extract positional data and provide real-time information to users, including 

blind travelers, has gained significant interest in recent years. Smartphone-based 

approaches like visual-based odometry using Apple's ARKit are specifically designed 

to assist blind individuals [6][7][8]. While this method does not require infrastructure 

like beacons or RFID, it relies on a clear camera view. It may not always be feasible or 

convenient for blind travelers who typically use a long cane or guide dog, leaving one 

hand occupied. It has been commonly observed that navigational aids for blind 

individuals should ideally be hands-free [9][10]. Another hands-free option is Wi-Fi 

based navigation, leveraging existing Wi-Fi access points without additional 

infrastructure installation [11]. However, Wi-Fi based navigation requires a laborious 

fingerprinting operation to capture "signature" features such as the vector of received 

signal strength (RSSI) from Wi-Fi beacons. This process can be time-consuming and 

may pose challenges for widespread adoption in indoor navigation systems for visually 

impaired individuals. 

Another smartphone-based approach is inertial odometry, specifically using Pedestrian 

Dead Reckoning (PDR), which has been studied for providing navigation assistance to 

visually impaired individuals [12][13][14][15]. Additionally, RoNIN is a learning-

based algorithm that processes inertial data using neural network architectures to 
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generate motion vectors referenced to a fixed world frame [16]. One advantage of these 

techniques is that the phone's position on the body is not restricted. However, low-cost 

inertial sensors used in these systems may suffer from bias and noise issues, leading to 

directional and locational inaccuracies once integrated. 

Alternatively, indoor navigation can utilize the magnetic field detected from the 

environment [17], which does not require specific infrastructure installation. The 

magnetic field in different indoor locations has unique signatures that can differentiate 

locations. Studies have explored using magnetic fields for indoor navigation for 

visually impaired individuals [18], some of which combine magnetic field data with 

inertial odometry systems to achieve higher accuracy [19][20].  

Most applications mentioned earlier require access to indoor maps, which are not 

always publicly available. Even when building maps are accessible, certain methods 

like Wi-Fi based and magnetic field-based navigation require laborious fingerprinting 

operations to collect signal maps within the environment. This process can demand 

significant time and resources, particularly in large indoor spaces. As a result, we 

propose a solution that utilizes assisted return, a specific form of wayfinding, to provide 

hands-on indoor navigation for people with visual impairments without relying on pre-

existing maps. 



 

 

 4 

 

Figure 1.1: A hypothetical path of a blind patient for a doctor’s appointment. The 

patient begins at the waiting room (marked by a star) and is guided by the receptionist 

to the doctor’s office (marked by a square). After the appointment, the patient retraces 

the route back to the waiting room (from the square to the star). 

 

The concept of assisted return was introduced by Flore and Manduchi [21], which 

assists visually impaired individuals in retracing their steps back to a starting point after 

navigating along a specific path. Figure 1.1 illustrates this concept with an example 

scenario: a blind patient begins at a waiting room for a doctor’s appointment and is 

guided by a receptionist to the doctor’s office. After the appointment, the same 

receptionist may assist the patient in returning to the waiting room. However, in some 

cases, the receptionist may not be available to help, or the blind patient may attempt to 

navigate back independently by remembering the turns and steps taken. An assisted 

return system is designed to help users retrace their path to return to the starting point. 

This thesis is inspired by Flores and Manduchi's Easy Return system, which relied 

solely on steps/turns information to aid visually impaired individuals in backtracking 
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their routes. However, that approach has its limitations. For instance, inaccuracies in 

step counting could lead to delayed or incorrect directions. In addition, the Easy Return 

system does not provide path recovery guidance when users deviated from the correct 

route. To address these shortcomings, we developed the SafeReturn app, which 

incorporates magnetic field information with a novel path-matching algorithm to 

enhance navigation accuracy and provide robust path recovery guidance. 

Our assisted return system includes the following three tasks: (1) during the “way-in” 

path(walking from a starting point to a destination), tracking the user’s position; (2) 

during the “return” path, matching the current sub-path with the recorded way–in path 

(where the way-in path is time-reversed); (3) providing directions to the user during 

return with an appropriate user interface (including providing an overall description of 

the path). Since the system targets individuals with blindness, prioritizing datasets 

collected from visually impaired walkers over those from sighted individuals is critical. 

We adopted the WeAllWalk dataset [22], gathered previously by a prior PhD researcher 

in our group, consisting of annotated inertial data collected from ten blind individuals 

. Each participant carried two iPhones while they walked through several predefined 

trajectories using a walking cane or a dog guide. This dataset was explicitly used to test 

our system and was designed for visually impaired users. Our system was also tested 

in a user study involving seven visually impaired participants. During the study, 

participants traversed three predefined paths, each containing 4 to 5 turns, to assess the 

system's performance in real-world situations. 



 

 

 6 

This thesis focuses on developing a smartphone-based “assisted return” system, 

SafeReturn, that offers real-time and reliable navigation assistance in mapless indoor 

environments for visually impaired individuals. We proposed a new path-matching 

algorithm that integrates the magnetic field and the inertial data (the input for our 

steps/turns detector developed by other PhD researchers in our group) to provide 

navigation. The system's performance was evaluated in a user study involving seven 

visually impaired participants.  It is structured as follows: 

In Chapter 2, we discuss indoor positioning systems, followed by a focused exploration 

of the "assisted return" system, a specific form of wayfinding. 

Chapter 3 introduced a new path-matching algorithm considering walker orientation 

variations. We also discuss the challenges associated with backtracking a walker's 

position and highlight the necessity for a new matching method, further detailed in 

Chapter 6. 

Chapter 4 discussed calibration techniques for magnetometers and explored how to 

leverage differences in magnetic fields between mapped locations (referred to as the 

"cost of magnetic field") in our path-matching algorithm. 

In Chapter 5, we conducted simulations using the WeAllWalk dataset for assisted 

return, showing that using 90𝑜  turn + steps information in our system provides 

significantly superior results. Additionally, we developed an iOS app to perform on-

site tests, emphasizing the importance of the new hybrid matching algorithm. 
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Chapter 6 proposes a hybrid matching algorithm for determining the reliability of 

mapped positions by identifying the "last reliable position (LRP)." This chapter 

presents and compares two methodologies for identifying LRP. 

In Chapter 7, we present the user study of the SafeReturn system involving seven 

visually impaired participants. This study evaluates the system's performance in real-

life scenarios, covering aspects such as the app's user interface, experiment details, and 

results. The positive feedback from participants indicates increased feelings of safety 

and confidence while using the app, validating the potential of our proposed 

technology. 

Finally, Chapter 8 provides a comprehensive conclusion to the study, summarizing key 

findings and discussing encountered challenges and proposed solutions. 
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Chapter 2  

 

Related work 

 

Indoor navigation systems have diverse applications across multiple scenarios. 

For instance, an indoor navigation system can guide hospital staff and visitors to 

specific departments within large medical buildings, ensuring efficient movement and 

timely access to critical areas. Moreover, indoor navigation enhances visitor 

experiences in museums,  exhibitions, and conferences, enabling them to navigate 

complex layouts and explore exhibits effortlessly. These varied applications highlight 

the significance of indoor navigation systems in enhancing efficiency, safety, and user 

satisfaction across different environments. This chapter will explore various 

positioning methods used in indoor navigation systems. 

 

2.1 Wi-Fi Based Indoor Positioning 

Wi-Fi based indoor positioning employs two main approaches: signal strength-based 

and fingerprint-based positioning[23]. In signal strength-based positioning, the strength 

of the received signal is used to calculate the user’s position using different methods 

(e.g., trilateration). On the other hand, fingerprint-based positioning requires the 

precollection of environment fingerprints in a database. The user’s position is 
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determined by matching the received Wi-Fi signal with the pre-collected database. 

However, this method presents challenges, such as the time-consuming process of 

updating the fingerprint database and signal attenuation when passing through 

obstacles like walls or furniture. 

 

2.2 BLE-Beacon Based Indoor Positioning 

BLE-Beacon (Bluetooth Low Energy Beacon) is a low-cost alternative to traditional 

beacons, consuming less power. Similar to Wi-Fi based indoor positioning, BLE-

Beacon mainly utilizes two positioning methods: strength-based and fingerprint-based. 

However, BLE-Beacon encounters similar challenges, with signal strength affected by 

indoor obstacles and difficulty maintaining the fingerprint database [24].  

 

2.3 Inertial Sensor-Based Indoor Localization 

With the widespread use of smartphones, inertial sensors (gyroscopes, accelerometers) 

have become integral to indoor positioning. One of the main advantages is that it does 

not require pre-deployed infrastructure and works even when smartphones are in users' 

pockets. However, inertial sensors are prone to bias and noise, leading to directional 

and locational inaccuracies [25][26]. Below are methods focused on enhancing its 

localization accuracy. 
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2.3.1 Strapdown Inertial Navigation 

"Strapdown Inertial Navigation" refers to a specific method where inertial sensors are 

rigidly attached ("strapped down") to the moving object, such as a smartphone attached 

to a user. In strapdown inertial navigation, sensor measurements require further 

processing to provide corrections for generating the user's trajectory. The phone’s 

orientation relative to an initial reference frame (with the Z axis pointing down) can be 

calculated by integrating the angular rate. User acceleration can then be determined by 

rotating accelerometer readings to the initial reference frame and subtracting gravity. 

Finally, position estimation is achieved through double integration of acceleration. 

Implementing a Kalman filter in this process can improve accuracy [26].  

 

2.3.2 Pedestrian Dead Reckoning (PDR) 

PDR is one of the simplest ways to track users’ positions based on their steps and 

azimuth at each time step. Azimuth is obtained from post-processing and integrating 

sensor data from gyros and accelerometers [27]. However, PDR error accumulates over 

time due to sensor bias and noise. A solution to this shortcoming was a two-stage 

system consisting of a “straight-walking” detector and a Mixture Kalman Filter (MKF) 

for tracking orientation drift [12]. This system detects steps using an LSTM recurrent 

network [28]. In buildings with a structure represented by a network of corridors, a path 

can usually be described as a sequence of straight segments and turns with discrete 

turning angles (typically, multiples of 90º or 45º). It is called turns/steps representation. 

The robust turns/steps detector effectively reduces accumulated error in PDR[29]. 
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2.4 Learning-Based Odometry 

Neural networks have been widely used in learning-based odometry applications in 

recent years . Among these methods, RoNIN is one of the models that takes the inertial 

data to estimate the user’s position and achieves a good performance [30]. One 

advantage of RoNIN is that it works regardless of smartphone position related to the 

body, producing motion vectors relative to a fixed world frame. However, RoNIN is 

susceptible to drift caused by inaccuracies in the accelerometer and gyroscope.  

 

2.5 Magnetic Field Indoor Positioning 

The utilization of indoor magnetic fields for positioning and navigation leverages the 

distinct characteristics of magnetic anomalies within indoor environments [19][31], 

[32][33]. Typically, these anomalies result from the combination of the Earth's 

magnetic field and the presence of ferromagnetic objects within the indoor space. 

Several methodologies have been explored to leverage indoor magnetic fields for 

navigation purposes: 

• Fingerprint-based Positioning [34][35][36]: This method involves pre-

collecting a map of the magnetic field within the environment. Subsequently, a 

fingerprint-based positioning technique is utilized to determine the user's 

location within this mapped magnetic field, as shown in Figure 2.1. This 
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approach offers precise positioning but requires extensive offline data 

collection and processing. 

• Leader-Follower Model [19][18][15]: In this model, a designated leader 

traverses the intended route, effectively mapping the magnetic field variations 

along the path. The follower then utilizes this mapped information to navigate 

through the environment. A similar concept was implemented by a prior PhD 

researcher in our lab, known as the Easy Return app. However, this app only 

utilized turns/steps data as input, without incorporating magnetic field data. 

This is also the model used in our application. While this approach reduces the 

need for extensive pre-mapping, it still requires a leader to traverse the route 

initially. Some studies have relied solely on the magnitude of the magnetic field 

for navigation [18][15]. However, research has shown that including directional 

information about the magnetic field (such as 2D or 3D magnetic field data) can 

improve navigation accuracy [37]. Magnetic field data can sometimes be 

integrated with other navigation methods to enhance location accuracy further. 

For instance, the FollowUs app [19] integrates inertial-based localization and 

magnetic field data for navigation. However, similar to [18] and [15], FollowUs 

relies on the magnitude of the magnetic field rather than its vectorized form. In 

addition, this app is designed for sighted users who can easily manage system 

errors and accuracies. For visually impaired people, building a system with a 

higher level of direction accuracy is necessary. In contrast, our system employs 

a novel path-matching algorithm that utilizes 2D magnetic field data and 
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incorporates layers of graphs to address orientation differences among mapped 

positions. 

• Landmark Information [38]: Magnetic field measurements can be analyzed 

to extract landmark information; for example, the magnitude of the magnetic 

field may have peaked when the sensor is close to a pillar or another distinctive 

structure. During the map collection phase, one can record the landmark 

information and the corresponding magnetic field. During the navigation phase, 

the system can use the measured magnetic field to provide landmark 

information. This application is beneficial in environments with poor lighting 

conditions, allowing users to receive landmark information even without visual 

cues. This additional data enhances positioning accuracy, particularly when 

combined with other technologies like inertial-based localization. 

• Integration with Other Positioning Technologies [39][19][40]: As 

mentioned earlier, magnetic field data can be combined with other positioning 

technologies, such as visual- or inertial-based localization, to improve overall 

accuracy. Since smartphones can easily gather both magnetic field and inertial 

data, this integration is feasible and enhances the reliability of indoor 

positioning systems. 

 

However, most applications require an offline phase for data collection and processing. 

This process can be time-consuming and resource-intensive, particularly when 

mapping extensive indoor environments. For instance, the magnetic map in Figure 2.1 
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was created by dividing the mapping space into 2D grids with dimensions of 0.5m x 

0.5m, and each grid contains magnetic measurements. In a typical indoor environment, 

such as a 20m x 20m area, there could be thousands of grids, each requiring the 

identification of its location and recording of magnetic field readings. This makes the 

process of building a magnetic map quite intensive [40].  

 

 

Figure 2.1: An example of a magnetic map [40]. The colored area indicates the different 

intensity of the magnetic field. 

 

2.6 Assisted Return System 

Assisted return is one of the particular forms of wayfinding that provides support to 

visually impaired people who, after walking along a certain path, are trying to trace 

their way back to the starting point. The concept is firstly introduced by Flore and 

Manduchi [21] and it is especially useful for navigation when the map of an indoor 

building is unavailable.  The system could also help a person follow a path previously 

taken by another individual. Figure 2.2 shows an example of an indoor path that can be 

traced back by an assisted return system. As mentioned earlier, an assisted return 
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system includes three tasks: (1) during the “way–in” path tracking the user’s 

position;(2) during the “return” path, matching the current sub-path with the recorded 

way–in path; (3) providing directions to the user during return with an appropriate user 

interface.  

 

Figure 2.2: An illustration of an indoor path typical for an assisted return system. This 

path comprises a series of straight segments connected by left or right turns [21]. 

 

Several technologies could be implemented for assisted return. Still, most of them 

require pre-deployed infrastructures in the environment (for example, preinstalled 

BLE-Beacon in the building for navigation to retrace the locations) or require prior 

knowledge of the map of the building. Here, we focus on a more hands-on technology 

that could be easily acquired in daily life to perform assisted return, smartphones. There 

have been studies that use smartphones to accomplish similar tasks. Those technologies 

can be divided into the following two categories. 

 



 

 

 16 

2.6.1 Inertial Sensor-Based Assisted Return 

Flore and Manduchi introduced the concept of assisted return by developing an inertial 

sensor-based app called Easy Return, which involved a study with six visually impaired 

participants navigating a controlled indoor environment. The Easy Return system 

utilizes inertial data to track steps and detect turns as users traverse a path within a 

building. When the user retraces their steps back to the starting point, the system 

compares their current position against the recorded path and provides directions based 

on remaining turns and steps. This system is also designed to handle scenarios such as 

mistaken turns or inaccuracies in step counting to facilitate route correction [21]. 

However, relying solely on inertial sensors can lead to positioning inaccuracies due to 

accumulated bias. To address this issue, we proposed an integrated system that 

combines magnetic field with steps/turns information. 

Another system called FollowUs [19] operates on a peer-to-peer navigation model, 

where a leader (another user) who has previously traveled the route builds a map using 

inertial and magnetic field data for followers to replicate. However, FollowUs is 

primarily designed for sighted users who can manage system errors and accuracy 

effectively. A system tailored for visually impaired individuals requires a higher level 

of directional accuracy and a robust path recovery mechanism to ensure users can 

navigate back along the correct route. 
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2.6.2 Visual Odometry-Based Assisted Return 

Clew [7] is an app based on visual odometry, specifically designed for visually 

impaired users to retrace their routes after exploring their surroundings. This app 

utilizes Apple's ARKit to estimate the user's movements in 3D space with high 

accuracy. However, a drawback of Clew is that it is not hands-free technology, which 

means users may need to hold both the smartphone with the app and another mobility 

aid like a long cane or guided dog simultaneously, potentially creating extra work for 

individuals with visual impairments. 
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Chapter 3  

 

Path-Matching Algorithm 

 

When a map of an indoor environment is not available, an assisted return system 

is designed for a visually impaired walker who has traversed a certain way-in route 

(possibly with the aid of a sighted companion) to traverse the same route in reverse 

(return), as shown in Figure 3.1. At any time instant during return, the system matches 

the current sub-path to a prior acquired (reversed) way-in path. The system's main task 

is matching any spatial information acquired during way-in with that acquired during 

return. In addition, the system offers directional guidance, including distance to the 

next turn and turn-by-turn instructions, and alerts users when they deviate from the 

intended route, facilitating path recovery.  

If the odometry can be accurately recovered, one could simply match the current 

position estimated during return with the closest position in the way-in path. 

Unfortunately, large errors can be expected when relying only on inertial sensors. 

Hence, a more sophisticated strategy is necessary. Similarly to [18], we cast the 

problem as one of sub-sequence alignment, which seeks the best matching of the time 

sequence of measurements up to the current time during return, with an initial sequence 

of measurements during way-in. The measurements considered in this thesis include 
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information on steps/turns and variations in the magnetic field across different locations. 

This alignment task is addressed using a dynamic programming algorithm, 

DTW(dynamic time wrapping) [27]. 

In this chapter, we begin by discussing our approach to reconstructing the way-in path. 

Subsequently, we provide an overview of Dynamic Time Warping (DTW) and 

introduce a novel path-matching algorithm. This algorithm serves as the basis for a 

hybrid-matching system, which will be further explored in Chapter 6. It utilizes 

magnetic field data and steps/turns information to estimate users’ position/orientation 

and detect statuses like off-route or reversed-route, facilitating path recovery. It is noted 

that the details of magnetic field data and its application to the path-matching algorithm 

will be further discussed in the next chapter. 

 

Figure 3.1: An example of assisted return. The blue line is the way-in path, and the red 

line is the return path. The way-in path starts from A to B, and the return path starts 

from B to A. 
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3.1 Path Reconstruction for the Way-in Route 

As previously stated, our system does not rely on map information. However, it is 

essential to track the traveler to reconstruct the path during their way-in. For mapless 

navigation, SLAM (Simultaneous Localization and Mapping) techniques [41] are 

commonly used in robotics to reconstruct paths in real-time. Some pedestrian SLAM 

methods [42][43][44] have been proposed for mapping unfamiliar areas by leveraging 

sensor data collected from users who have traversed the same environment multiple 

times to reconstruct a real-time map. However, this approach isn't applicable to our 

system, as our app is designed to offer navigation for individual travelers who have 

visited a place only once and do not rely on prior knowledge from crowd-sourced data. 

In buildings characterized by networks of corridors, it is conceivable that walkers 

would proceed along relatively straight paths until they turn at a corridor junction. The 

angle made by two intersecting corridors for typical buildings is often equal to ±90𝑜. 

This geometric structural constraint can be leveraged to sidestep orientation drift. 

Following [21][29],we represent both way-in and return paths as a sequence of straight 

segments interleaved with discrete angle turns. We use the robust turn detector 

developed by a prior PhD student in our lab [12], which processes azimuth information 

using a Mixture Kalman Filter [45]. Although this algorithm was shown to work well 

even for multiples of 45𝑜 turns, we constrained detection to multiples of 90𝑜 for the 

purpose of this experiment (this reflects the type of junctions found in the building 

considered for our tests, which were all of ±90𝑜). The way-in path can be depicted as 

a 2-D polygonal chain (polyline), where the length of each segment is equal to the 
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number of steps taken in that segment, and consecutive segments have an angle as 

measured by the turn detector, as shown in Figure 3.2. Steps are detected using a LSTM 

network developed by another PhD student in our lab [46]. 

 

Figure 3.2: Examples of way-in paths depicted as 2-D polylines (thick blue lines) 

plotted on a building floorplan, with start points indicated by squares and endpoints by 

stars. 

 

3.1.1 Path Simplification for the Way-in Route 

In some cases, deviation from the initial way-in path may occur, resulting in additional 

unnecessary routes. These deviations could arise due to unintentional divergences from 

the correct path. Eliminating redundant paths before providing guidance for the return 

route is crucial for efficient navigation. While not all redundant paths can be removed 

without prior map information, some can be identified by examining the overall path, 

referred to as way-in simplification. These redundant paths fall into two categories: 

 

1. Paths with Closed Loops (e.g., Figure 3.3(a)): The redundant paths form closed 

loops and can be identified as the path intersects itself. 
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2. Paths with Open Loops (e.g., Figure 3.3 (b)): These paths may consist of segments 

within the same corridor (in this example, 𝑣2 and 𝑣3 are the same location along the 

corridor but close to different sides of the wall), resembling extra steps, without 

forming closed loops.  

 

(a)                                            (b) 

Figure 3.3: Two examples of additional paths. (a) paths with a closed loop; (b) paths 

with an open loop. 

 

Let the original observed way-in path be represented as a 2D polyline graph, denoted 

as 𝐺𝑖𝑛 = (𝑉𝑖𝑛, 𝐸𝑖𝑛) , where vertices 𝑉𝑖𝑛 correspond to specific turn points along the 

route and edges 𝐸𝑖𝑛 represent the straight segments connecting these points. The graph 

in Figure 3.3 (a) and (b) can both be defined as: 

𝑉𝑖𝑛 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and  

𝐸𝑖𝑛 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5)}, 
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where the way-in path starts from v1 and ends in v5. The purpose of way-in 

simplification is to eliminate redundant loops. The methods to remove these loops, 

whether closed or open, in these cases are detailed as follows: 

 

Paths with Closed Loops 

When encountering a closed loop, such as the one shown in Figure 3.4, an intersection 

is formed. By identifying these intersections, we can create additional vertices or nodes 

at these points. In this example, intersections between segments are identified, resulting 

in the creation of extra vertex v6, as shown in Figure 3.4(b). The graph is updated by 

establishing directional connections between the new vertices and existing ones. The 

new graph representation in this example becomes: 

𝑉𝑖𝑛 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝒗𝟔} 

𝐸𝑖𝑛 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5), (𝒗𝟏, 𝒗𝟔), (𝒗𝟔, 𝒗𝟐), (𝒗𝟒, 𝒗𝟔), (𝒗𝟔, 𝒗𝟓)}  

 

 

(a)                                            (b) 
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(c) 

Figure 3.4: An illustration of simplifying the way-in path by removing a closed loop (a) 

The detected way-in path with a closed loop (b) An intersection 𝑣6  is identified 

between edges (𝑣1, 𝑣2) and(𝑣4, 𝑣5). (c) The shortest path from the start point 𝑣1 to 

endpoint 𝑣5 is shown in blue. 

After updating the graph with additional vertices and edges, such as adding 𝑣6 in 

Figure 3.4(c), algorithms like Dijkstra's Algorithm can be applied to find the shortest 

path. In this example, the shortest path from the starting point 𝑣1 to endpoint 𝑣5 in the 

updated graph is  𝑣1 → 𝑣6 → 𝑣5. 

Additionally, it is crucial to maintain a record of the length and direction of each edge 

whenever the graph is updated. This information ensures the consistency of the relative 

positions between the vertices. 

 

Paths with Open Loops 

In the scenario depicted in Figure 3.5, the walker misses the turning point 𝑣4 and 

continues walking straight. Assuming it happens in the same hallway, in order to go 

back in the right direction, they execute a 90𝑜 turn at 𝑣2, proceed for a few steps, and 

then make another 90𝑜 turn at 𝑣3, resulting in a U-turn within the same area.   



 

 

 25 

Another potential scenario is that a wall blocks the walker from making a right turn, as 

illustrated in Figure 3.6 (the brown area indicates the wall). However, this obstruction 

results in a significantly larger distance D between the edges (𝑣1, 𝑣2) and (𝑣3, 𝑣4). 

Consequently, our method can detect this situation(as discussed in the following 

paragraph), ensuring that such situations are not mistakenly simplified. 

In the case shown in Figure 3.5, where different segments can be created within the 

same corridor. Identifying parallel edges (in this example, (𝑣3, 𝑣4)and part of (𝑣1, 𝑣2)) 

can help us recognize paths within the same corridor. To address this, we first ensure 

that the distance between parallel edges is smaller than a threshold value denoted as 𝑟. 

If this condition is met, we proceed to merge these edges as follows. Taking the parallel 

edges  (𝑣1, 𝑣2) and (𝑣3, 𝑣4) as an example, we then examine whether the vertices of 

these edges can be projected onto each other. As shown in Figure 3.5(b), 𝑣4 can be 

projected onto the line segment (𝑣1, 𝑣2), allowing us to create a new vertex, 𝑣6. 

Additional edges are subsequently formed on this segment, specifically (𝑣1, 𝑣6) and 

(𝑣6, 𝑣2), resulting in the updated graph: 

𝑉𝑖𝑛 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝒗𝟔} 

𝐸𝑖𝑛 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5), (𝒗𝟏, 𝒗𝟔),(𝒗𝟔, 𝒗𝟐)} 
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(a)                                                           (b) 

 

     (c) 

Figure 3.5: An illustration of simplifying the way-in path by removing an open loop 

(a)detected way-in path with an open loop (b) a projected point 𝑣6 is identified from 

𝑣4 to segment (𝑣1, 𝑣2) (c) The shortest path from the start point 𝑣1 to endpoint 𝑣5 is 

shown in blue. The shaded path is the eliminated edges after way-in simplification. 

 

Figure 3.6: A situation where an open loop should not be simplified, the brown area 

represents a wall blocking the direct path from the turning point (black dot). However, 
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this obstruction results in a larger distance D, which will not be simplified by our 

method. 

 

 

Figure 3.7: Another example of a redundant path with an open loop. The nearby 

vertices 𝑣2 and 𝑣6 can be merged. 

 

After checking for parallel edges, we then examine all vertices to identify any close 

pairs, meaning vertices with a distance smaller than the threshold 𝑟. Despite already 

checking for the distance between processed parallel edges, we reevaluate all vertices 

to account for potential scenarios involving other segments (e.g., in Figure 3.7, vertices 

𝑣2 and 𝑣6 are near each other, suggesting they may belong to the same point).  In the 

example in Figure 3.5, vertices 𝑣4 and 𝑣6 are close to each other, indicating they may 

belong to the same location along the corridor. Similarly, vertices 𝑣2 and 𝑣3 are also 

close. Since the indices were labeled in temporal order, with the walker starting their 

path from 𝑣1 and then proceeding to 𝑣2, 𝑣3, and subsequent vertices, we chose to 

merge the vertices by replacing the one with the larger index number with the one 

having the smaller number. This decision is based on the assumption that a walker 
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reaches a smaller vertex index earlier during traversal of the way-in route; thus, likely 

to accumulate fewer mistakes on the path up to that vertex. While this assumption may 

not always hold true, this simplifies the problem without extra calculation on the 

coordinate of the merged vertex. The updated graph for the example in Figure 3.5, 

therefore, becomes: 

𝑉𝑖𝑛 = {𝑣1, 𝑣2, 𝑣5, 𝒗𝟔} 

𝐸𝑖𝑛 = {(𝑣1, 𝑣2), (𝒗𝟐, 𝒗𝟔), (𝒗𝟔, 𝒗𝟓), (𝒗𝟏, 𝒗𝟔),(𝒗𝟔,𝒗𝟐)} 

(Note: duplicated vertices are removed) 

 

We can utilize Dijkstra's Algorithm to find the shortest path from 𝑣1 to 𝑣5, resulting 

in 𝑣1 → 𝑣4 → 𝑣5. Like the closed loop scenario, we consistently record the length and 

direction of each edge during the update process of the polyline graph. This ensures 

that the new polyline maintains the correct relative position between the vertices after 

updating the graph.  

To summarize, for real-time navigation, we propose a systematic method to handle both 

scenarios at the same time by the following procedures: 

 

1.Observing Intersecting Edges: Compare all edges in the graph. If there are 

intersections between edges, create vertices based on these intersections and update the 

edges/vertices in the graph, following the first case described earlier. 
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2.Managing Parallel Edges: Identify parallel edges, and if the distance D between 

them is smaller than a predefined threshold 𝑟, create additional vertices based on the 

second case outlined earlier. Update the edges/vertices in the graph accordingly. 

 

3.Merging Close Vertices: Compare the distance between any two vertices. If the 

distance between them is smaller than a predefined threshold 𝑟, consider the vertices 

as a single vertex and merge them while preserving the one with the smaller index. 

Update the graph accordingly. 

 

4.Finding the Shortest Path: Utilize Dijkstra's Algorithm to determine the shortest 

path from the starting point to the destination. 

 

The threshold 𝑟 in the application is set to 7 steps, corresponding to 3.5 meters, given 

an average step length of 0.504 meters (the value is further discussed in the user study 

in Chapter 7). We expect corridors to generally be less wide than 7 steps to reduce the 

risk of mistakenly simplifying a wall belonging to the same corridor (the minimum 

width of corridors in California's commercial buildings[47] is estimated at around 2.4 

meters, which is equivalent to about 5 steps).   
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3.2 Review: DTW and iDTW 

The main objective of the system is to match the real-time information obtained during 

the return phase with that collected during the way-in phase, thus providing positional 

information to users based on the matched way-in location. This problem can be 

addressed by aligning two time sequences, for example, magnetic field data from the 

way-in and return paths. The goal is to synchronize them even in the presence of 

variations in sampling rates, lengths, or disturbance. Dynamic Time Warping (DTW) 

is a dynamic programming algorithm used for this purpose [27],[28]. DTW creates a 

2-dimensional grid known as the cost matrix, where each cell represents the 

accumulated cost (penalty) of aligning samples up to a specific point in both sequences. 

By iterating through this grid and finding the path with the minimum total cost, we can 

determine the best alignment between the two sequences. Figure 3.8 provides an 

illustrative example of the sequence alignment by DTW. 

In real implementation, given two time sequences 𝑋𝑖𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌𝑟𝑒𝑡 =

{𝑦1, 𝑦2, … , 𝑦𝑚}, we can build a 2-dimensional cost matrix based on the following 

equation. 

𝐶(𝑖, 𝑗) = min(𝐶(𝑖 − 1, 𝑗 − 1), 𝐶(𝑖, 𝑗 − 1), 𝐶(𝑖 − 1, 𝑗)) + |𝑥𝑖 − 𝑦𝑗| 

where 𝐶(𝑖, 𝑗) is the element of cost matrix for 𝑖 − 𝑡ℎ index in  𝑋𝑖𝑛 and 𝑗 − 𝑡ℎ index in  

𝑌𝑟𝑒𝑡. The optimal matched sequence can be determined by inspecting the minimum 

element of the last row in the cost matrix and then tracing back the path to the beginning 

of the matrix 𝐶(1,1). Figure 3.9 is an example of matching the magnitude of magnetic 

field vector by DTW. Note that details of magnetic field are provided in Chapter 4. 
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Figure 3.8: The alignment of two time sequences, blue and red lines. 

 

Figure 3.9: Matching the magnitude of magnetic field before and after DTW. Top: the 

blue line is the magnitude of magnetic field recorded in a path at an earlier time with 

known positioning information, called the “way-in” path. Middle: The red line is the 

magnitude of magnetic field collected later, called the “return” path. Bottom: aligned 

way-in and return sequences after applying DTW (blue: way-in; red: return ). 

 

In our application, we match the return sequence to the way-in sequence. To achieve 

real-time sequence matching, for every time instant on the return path, we have to 

update one column in the cost matrix (the cost matrix has a size of 𝑚 × 𝑛). For example, 



 

 

 32 

at time instant 𝑗, the whole 𝑗 − 𝑡ℎ column of the cost matrix needs to be computed. 

When the length of the way-in sequence (𝑚) is large, this computation can be costly. 

Therefore, a revised DTW method, called incremental DTW (iDTW), was proposed by 

Timothy et al. to reduce the computation complexity [18]. iDTW used a real-time 

approach with a sliding window to determine the current best-matched sample on-the-

fly. At every time instant 𝑗, only a portion of the 𝑗 − 𝑡ℎ column in the cost matrix is 

calculated based on a defined sliding window. The sliding window is defined by the 

starting index of the window, 𝐶𝑗−1 −
𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒

2
, and the last index of the window, 

𝐶𝑗−1 +
𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒

2
, where 𝐶𝑗−1  is the minimum element in the previous column in the 

cost matrix. 

This method does not require computing the overall cost matrix. However, the optimal 

path might be overlooked because it assumes that the best mapping for the current 

sample 𝑦𝑗  is located within a range of the sliding window based on the last best 

mapping on sample 𝑦𝑗−1 . This assumption is not necessarily true in real 

implementation so a proper window size should be selected for iDTW. 

 

3.3 Path-Matching Algorithm 

Our path-matching algorithm utilizes a combination of magnetic field and inertial data, 

specifically steps and turns, as inputs. During return, the user is assumed to start from 

the endpoint of the way-in path and walk the same path in the reverse direction. The 
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goal is to identify the location in the way-in path that best matches the current location 

(during return) of the user so that appropriate directions can be provided. 

 Our strategy for matching the return path with the way-in path is based on the 

coordination of two different algorithms: projected return sequence and sequence 

alignment.  

 

Projected Return Sequence 

This algorithm creates a polyline to represent the return path, as described previously 

for the way-in path. By comparing the current polyline reconstructed during the return 

with the polyline we built during the way-in, it is possible to find the best match to 

where the user is now. For instance, we can identify the closest point on the way-in 

polyline to the user’s current position by calculating their respective distances. This 

process is illustrated in Figure 3.10(a), where the matched positions for the way-in and 

return paths are depicted by blue and red dots, respectively. 

In theory, if accurate odometry data can be stored, one could efficiently match the 

current estimated position during the return phase with the closest position along the 

way-in path by aligning the turns or steps in both phases. However, this method faces 

challenges in real-life situations, as illustrated in Figure 3.10(b) and (c), where the 

length of a segment equals the number of steps. For instance, the user's steps may vary 

in length between the way-in and return journeys (Figure 3.10(b)); there may be 

instances where turns are missed or falsely detected(Figure 3.10(c)). All of these 

situations may be expected, especially when someone walks without visual feedback. 
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These challenges highlight the importance of implementing sequence alignment 

algorithms to improve overall performance. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 3.10: Examples of real-life challenges in the way-in and return paths. Red lines: 

projected return trajectory. Blue line: way-in trajectory. The start and end points for the 

way-in path are indicated by a square and a star, respectively. In this simplified 

representation, the length of each segment is equal to the number of steps (a) In an ideal 

situation, the path can be easily matched by finding the closest positions in the way-in 

and return polylines. The matched positions are shown in blue and red dots, 

respectively. (b) The walker takes a longer step length during return, resulting in fewer 

steps and shorter lengths in each segment of the polyline. (c) The first turn during the 

return was not detected. 
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Sequence Alignment 

When matching the current position during the return journey with the previously 

acquired (reversed) way-in path, as described in [18][29][48], can be approached 

through (sub)sequence alignment, with the concept of a graph formalized as follows. 

Firstly, the sequence of way-in measurements is reversed, which is convenient since 

the route is being backtracked. At each time during return, we aim to determine the 

initial way-in subsequence of measurements that best matches the current sequence of 

return measurements. Symbolically, given the (reversed) way-in sequence 𝑊  of 

measurements (observations) 𝑜𝑖𝑛(𝑡) (i.e., 𝑊 = (𝑜𝑖𝑛(1),… . , 𝑜𝑖𝑛(𝑁)), and the current 

sequence 𝑅 of return measurements 𝑜𝑟𝑒𝑡(𝑡) (i.e., 𝑅 = (𝑜𝑟𝑒𝑡(1), … . , 𝑜𝑟𝑒𝑡(𝐽)), the goal 

is to find a sequence of indices 𝑖1, … . , 𝑖𝐽   such that (𝑜𝑖𝑛(𝑖1),… . , 𝑜𝑖𝑛(𝑖𝐽)) best matches 

𝑅 under an appropriate criterion.  

For real-time guidance, particularly at return time index 𝐽, we are interested in the last 

matching point 𝑖𝐽 during way-in as it represents the best-mapped position computed 

based on the return data up to the current time index. Dynamic Time Warping (DTW), 

as described in section 3.2, can be utilized to find an optimal match. 

Regarding the considered measurements—magnetic field vectors, detected turns, and 

steps—step detection is implicitly accounted for: both in the way-in and return phases, 

the sequences of time indices are structured such that there are three regularly spaced 

time intervals between two consecutive detected steps. This choice provides sufficient 

spatial granularity for magnetic field matching while ensuring efficient sampling, with 

no samples recorded when the user is stationary. As mentioned in the previous section, 
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in theory, if accurate odometry data can be restored, we can easily map the walker’s 

position. For example, if someone walked 100 steps and then turned right during the 

(reversed) way-in, it is expected that in the return path, they will also walk 

approximately 100 steps and then turn right, with the magnetic signatures hopefully 

matching. However, in real-life situations, this may not hold true; for example, the 

walker may take a different number of steps in the same segment in the way-in and 

return paths, or the walker may miss a turn during the return path. As a result, the path-

matching algorithm is proposed to provide better mapping. 

Given these measurements, a directed graph 𝒢 can be constructed with nodes indexed 

as (𝑖, 𝑗), where 𝑖 represents a way-in time index and 𝑗 represents a return time index. 

It's important to highlight that  𝒢  is constantly expanded as the walker progresses along 

the return path. As shown in Figure 3.11, each node (𝑖, 𝑗) in the graph has three edges: 

to (𝑖 + 1, 𝑗),  (𝑖 + 1, 𝑗 + 1), and (𝑖, 𝑗 + 1), respectively. This configuration aligns with 

the assumption that the walker typically moves in the same direction as in the (reversed) 

way-in path but possibly with different step lengths, resulting in steps detected in either 

phase that cannot be matched in the other phase, which is accounted for by the edges 

to (𝑖 + 1, 𝑗) and(𝑖, 𝑗 + 1). The edges to (𝑖 + 1, 𝑗), and (𝑖, 𝑗 + 1) carry an edge cost, 

named non-diagonal cost, indicating a penalty if two time instants are matched to the 

same time instant in the other path. There are different node costs introduced based on 

input observations, which are the cost of magnetic field ( 𝐶𝑀𝐹 ) and the cost of 

unmatched turns, as detailed below:  
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Figure 3.11: The connections of node (𝑖, 𝑗) in graph 𝒢 . x-axis in the sample indices 

during the return and y-axis in the sample indices during the way-in. 

 

3.3.1.1 Node cost of discrepancy in magnetic field (𝑪𝑴𝑭) 

We defined the node costs, cost of magnetic field (𝐶𝑀𝐹) as a function of the discrepancy 

in the magnetic field between measurements 𝑜𝑖𝑛(𝑖) and 𝑜𝑟𝑒𝑡(𝑗) . Given the expectation 

that the same location should exhibit similar magnetic fields, a higher discrepancy in 

magnetic field results in a higher cost of magnetic field 𝐶𝑀𝐹. Figure 3.12 shows an 

example of magnetic field discrepancies for all nodes in the graph 𝒢 . A detailed 

description of 𝐶𝑀𝐹 is provided in Chapter 4.3.  
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Figure 3.12: An example illustrating magnetic field discrepancies (intensity bar 

displayed on the right, unit in 𝜇𝑇) for all nodes in the graph 𝒢. 

 

3.3.1.2 Node cost of unmatched turns (𝑪𝑼𝑻) 

Another node cost 𝐶𝑈𝑇 (cost of unmatched turn) is introduced when the walker makes 

a turn. If, for example, at time index 𝑖, a 90𝑜 turn was taken during way-in traversal, 

one could expect that, at the matching time index 𝑗, a turn by −90𝑜should be observed 

during way-in. A simple way to leverage this intuition is to define, at each way-in turn 

(index 𝑖), a certain node cost 𝐶𝑈𝑇 for all nodes (𝑖, : ) in the graph, except for the nodes 

(𝑖, 𝑗)  in which a turn by the opposite angle was observed during return. Likewise, a 

turn at 𝑗 during return would determine a node cost for all nodes (: , 𝑗)  for which a way-

in turn by the opposite angle was not observed. These node costs could be added to the 

node costs defined for magnetic discrepancies, encouraging the optimal path to include 

matching turns at way-in and return.  
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With this definition of graph 𝒢, the sequence alignment is obtained by finding the 

minimum cost path originating from (0,0),  and terminating at a node (𝑖, 𝐽).  However, 

this simple approach is liable to fail in common situations with short sequences of 

incorrectly detected turns. For example, suppose that during the (reversed) way-in, 

someone walked 100 steps and then turned right (−90𝑜 turn). During the return, it is 

expected to detect approximately 100 steps and a right turn. However, at the turn 

junction, the walker stopped briefly, turned their body to the left (perhaps to respond 

to a greeting from a passerby), then resumed walking and made a right turn. In this case, 

the system may incorrectly detect a left turn (90𝑜  turn) followed by a 180𝑜  turn. 

Correctly matching the way-in and return paths in such cases may result in two 

unmatched turns. Moreover, one of the spurious turns in the return path may 

erroneously match with some other distant turn during the way-in, potentially creating 

a significant path mismatch. 

This example suggests that an unmatched turn should be given a lower penalty when 

preceded shortly by another turn and the accumulated turn angle (in this example,  90𝑜 

+ 180𝑜 = 270𝑜, i.e., −90𝑜 turn during the return phase) is the same as the expected 

turn angle (in this example,  −90𝑜 turn during the way-in phase). However, this cannot 

be implemented by simply assigning costs to edges or nodes in our original graph. To 

address this challenge, we propose a mechanism that considers the orientation of the 

walker at each time, obtained by accumulating detected turns. This idea is described as 

follows. 
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This approach organizes the previously defined graph 𝒢 into a series of layered planar 

graphs, with each layer representing a possible orientation discrepancy between the 

way-in and return paths. By “orientation discrepancy,” we mean the angular difference 

between the walker's measured orientation at some time j during return and the opposite 

of the orientation of the walker measured at some time index 𝑖  during way-in. For 

example, if in the return phase, a walker takes two consecutive 90𝑜 (left) turns followed 

by a −90𝑜 (right) turn,  their orientation at that point will be 90𝑜 + 90𝑜 − 90𝑜 = 90𝑜 

(as defined with respect the starting walking direction). Ideally, the orientation 

discrepancy should be consistently equal to 0𝑜  for a correctly matched sequence, 

though this may not be the case when a turn is missed by the detector, or false turns are 

detected, or the walker takes a detour. 

 A node is now indexed by the triplet (𝑖, 𝑗, 𝑑)   , where layer 𝑑  (for 0 ≤ 𝑑 ≤ 3 ) 

represents an orientation discrepancy of 𝑑 ∙ 90𝑜, as shown in Figure 3.13. In our case, 

since there are only 4 possible orientations (as only turns by multiple of 90𝑜  are 

allowed), there are 4 possible discrepancies (0𝑜 , 90𝑜 , 180𝑜 , −90𝑜). The different graph 

layers have identical topology and edge costs. In particular, a node (𝑖, 𝑗, 𝑑) is connected 

to nodes (𝑖 + 1, 𝑗, 𝑑), (𝑖 + 1, 𝑗 + 1, 𝑑) and (𝑖, 𝑗 + 1, 𝑑) in the same layer.  The node 

costs at layer 𝑑 are the sum of the magnetic discrepancy costs 𝐶𝑀𝐹 (identical across 

layers) and of constant mis-orientation cost 𝐶𝑚𝑜 for layers with non-zero orientation 

(𝑑 ≠ 0). This cost discourages long paths with non-zero orientation discrepancy. If a 

turn by 𝑘 ∙ 90𝑜 is detected during way-in at time 𝑖, additional edges are created between 

(𝑖, 𝑗, 𝑑) and node (𝑖 + 1, 𝑗, (𝑑 − 𝑘) 𝑚𝑜𝑑 4) and (𝑖 + 1, 𝑗 + 1, (𝑑 − 𝑘) 𝑚𝑜𝑑 4) for all 𝑗 
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and 𝑑 except for those 𝑗 in which a turn by −𝑘 ∙ 90𝑜 was detected. These edges account 

for the fact that a way-in turn at 𝑖 that is unmatched with a return turn at 𝑗 modifies the 

walker's orientation discrepancy. The original edges from (𝑖, 𝑗, 𝑑)  to nodes (𝑖 + 1, 𝑗, 𝑑) 

and (𝑖, 𝑗 + 1, 𝑑) (same layer) are maintained, but with a higher associated edge cost 

𝐶𝑈𝑇 ( cost of an unmatched turn). A path in the graph going through either such edge 

indicates that this detected way-in turn has been “rejected” (since the orientation 

discrepancy has not changed), as shown in Figure 3.14. It is noted that the edge between 

(𝑖, 𝑗, 𝑑) and (𝑖 + 1, 𝑗, (𝑑 − 𝑘) 𝑚𝑜𝑑 4) is not created because the same turn by 𝑘 ∙ 90𝑜 

was detected both of these nodes so the walker should not have orientation discrepancy 

between these two nodes. Likewise, as shown in Figure 3.15, a turn by −𝑘 ∙ 90𝑜 

detected at time 𝑗 during return generates new edges from (𝑖, 𝑗, 𝑑) to (𝑖, 𝑗 + 1, (𝑑 −

𝑘) 𝑚𝑜𝑑 4) and to (𝑖 + 1, 𝑗 + 1, (𝑑 − 𝑘) 𝑚𝑜𝑑 4) (unless a turn by the opposite angle 

was detected at 𝑖), while the cost of edges 𝐶𝑈𝑇 from (𝑖, 𝑗, 𝑑) to (𝑖, 𝑗 + 1, 𝑑) and (𝑖 +

1, 𝑗 + 1, 𝑑)  applies. The interplay between orientation discrepancy costs and ”turn 

rejection” costs helps deal with incorrectly detected turns or with situations in which 

the walker, during return, briefly detours from the way-in path.  
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Figure 3.13: The layered graph. The x-axis represents the sample indices in the return 

route, while the y-axis represents the sample indices in the way-in route. 

 

Figure 3.14: Edge connections for node (𝑖, 𝑗, 0)  between layers when a turn (𝑘 = 1) 

occurs during way-in. 
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Figure 3.15: Edge connections for node (𝑖, 𝑗, 0) between layers when a turn (𝑘 = −1) 

occurs during return. 

 

The minimum cost path in the graph 𝒢 is recomputed at each new return sample. We 

use the incremental Dynamic Time Warping (iDTW) [riehle2012indoor], which uses a 

sliding window defined around the endpoint of the previously found optimal path (we 

set the window size equal to 300 samples). Although this algorithm produces a 

suboptimal solution, particularly if the best mapping for the current sample falls outside 

the sliding window range, it still represents a good compromise between precision and 

computational cost. 

 

3.4 Off-Route and Reversed-Route Detection 

While a visually impaired walker tries to transverse their path with the assisted return 

system, there are two challenges in the task. The first challenge arises when the walker 

deviates from the intended route. This deviation may occur due to a missed turn (Figure 

3.16, yellow shaded path) or taking a turn too early (e.g., counting the incorrect number 



 

 

 44 

of steps before the next turn). To address this issue, we propose a modified path-

matching algorithm capable of detecting when users are off-route. The second 

challenge arises when the system must guide the user back onto the correct path after 

they have been identified as off-route.  

For example, in the case shown in Figure 3.16 (a), the users were instructed to make 

the first U-turn at location C and return to a previously detected on-route location. 

Subsequently, they made another U-turn to rejoin the path at location D.  However, 

providing specific step and turn instructions for users to backtrack may lead to 

inaccuracies, as users' step lengths can vary. Consequently, users may remain off-route 

(Figure 3.16(b), location E) despite following the system's directions intended to guide 

them back onto the route.  

To address this, we propose a mechanism to make sure that after the user makes the 

first U-turn from the off-route status, the user is positioned correctly on the path but 

facing the opposite direction. This ensures that the system accurately determines the 

user's position before issuing further guidance. Consequently, we introduce the concept 

of the reversed-route status, depicted by the brown shaded path in Figure 3.16(a). This 

status indicates that the user is on the correct path but facing in the opposite direction, 

typically occurring after the user has been detected as off-route and attempts to retrace 

their steps. The algorithm supporting off-route and reversed-route detection is 

described in the following sections. 
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         (a)                                                             (b) 

Figure 3.16: Path recovery after off-roue is detected. The return path starts from B to 

A. (a) Off-route (yellow path) and the following reversed-route (brown path) are 

properly detected. Path recovery is successfully executed in this scenario. (b) Without 

the mechanism of detecting a reversed-route status, the user makes the second U-turn 

too early and is unable to be back on the correct path.                

 

3.4.1 Off-Route Detection 

When the walker is not on the correct path, the steps/turns data has limited information 

to identify the off-route status. For example, taking extra steps does not necessarily 

mean being off-route because the walker might have different stride lengths between 

the way-in and return paths. Another similar example is that the system might detect a 

spurious turn because the user changes the smartphone’s position. Therefore, the 

magnetic field plays an important role in detecting the off-route status by comparing 

the signature of the magnetic field between the on-route path and the off-route path. In 

other words, when the detected magnetic field on the return path is similar to it on the 

way-in path, the chance that the user is off-route is low and vice versa. To incorporate 

this concept into our algorithm, we introduce a fifth layer into the previously defined 
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graph, specifically designated as the off-route layer. This is achieved by introducing a 

triplet, (𝑖, 𝑗, 𝑑) where 𝑑 = 4, indicating the off-route layer. 

A path through a node (𝑖, 𝑗, 4) in the off-route layer indicates a high chance of the 

walker being off-route. Consequently, less penalty (𝐶𝑀𝐹𝑜𝑓𝑓
, cost of magnetic field for 

off-route layer) should be applied to the node when there is a higher discrepancy in the 

magnetic field between the mapped pair (𝑖, 𝑗). In contrast, for regular nodes (layer 𝑑 ≠

4), the penalty (𝐶𝑀𝐹 , cost of magnetic field) is high when there is a higher discrepancy 

in the magnetic field. Consequently, 𝐶𝑀𝐹𝑜𝑓𝑓
 demonstrates an inverse relationship with 

𝐶𝑀𝐹, such that as 𝐶𝑀𝐹𝑜𝑓𝑓
 increases, 𝐶𝑀𝐹 decreases, and vice versa. This relationship 

allows us to utilize the 𝐶𝑀𝐹 to identify the 𝐶𝑀𝐹𝑜𝑓𝑓
 for the off-route layer.  

The node cost of the off-route node is defined by 𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
. This is computed as:  

𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
= max{(𝑚𝑎𝑔𝑡ℎ𝑟𝑒𝑠 − 𝛼 ∙ 𝐶𝑀𝐹(𝑖,𝑗)), 0} 

Where: 

𝑚𝑎𝑔𝑡ℎ𝑟𝑒𝑠  is the threshold of the cost of magnetic field for the off-route node. 

𝐶𝑀𝐹(𝑖,𝑗) is the cost of magnetic field for the on-route nodes as defined in section 3.3.1.1.  

 𝛼 is a parameter that controls the increasing rate of 𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
 when 𝐶𝑀𝐹(𝑖,𝑗) decreases.   
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Figure 3.17: Relationship between  𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
 and  𝐶𝑀𝐹(𝑖,𝑗) . In this example,  𝑚𝑎𝑔𝑡ℎ𝑟𝑒𝑠  

is set to 40. 

 

As mentioned earlier, when there is a higher discrepancy in the magnetic field between 

the mapped positions (i.e., when 𝐶𝑀𝐹(𝑖,𝑗) is large), it implies that the chance of the user 

being off-route is high. In such case, 𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
 is expected to be small. Figure 3.17 

shows this relationship with different values of 𝛼. 

Extra edges are created for nodes in the off-route layer. The nodes in layers 0 to 3 (on-

route layers) have direct edges to the off-route layer, as shown in Figure 3.18. There 

are two distinct groups of edges: 

The first group of edges starts from the on-route layers. These edges indicate that one 

can be on the correct path but become off-route in the next time instant. Such transitions 

typically occur when 𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
 is small (or large 𝐶𝑀𝐹(𝑖,𝑗) ). However, temporary 

fluctuations in the magnetic field (e.g., due to a running elevator) might erroneously 
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trigger this transition. To mitigate this, a high edge cost is assigned to this group, 

denoted as 𝐶𝑠𝑡𝑠1𝑜𝑓𝑓(𝑖,𝑗)
.  

The second group is associated with the connections from the nodes in the off-route 

layer. Consequently, a smaller penalty, 𝐶𝑠𝑡𝑠2𝑜𝑓𝑓(𝑖,𝑗)
 , is applied to the edges.  

The additional edges for the nodes in the off-route layer are shown in Figure 3.18.  

 

 

Figure 3.18: Additional connections to the node (𝑖, 𝑗, 4) (layer 4) in the off-route layer. 

Blue nodes indicate nodes in the off-route layer (layer 4). 𝐶𝑠𝑡𝑠1𝑜𝑓𝑓(𝑖,𝑗)
 applies to blue 

edges and 𝐶𝑠𝑡𝑠2𝑜𝑓𝑓(𝑖,𝑗)
 applies to the red edges. 

 

3.4.2 Reversed-Route Detection 

The concept of a reversed-route status occurs when the user is back on the correct path 

but facing in the opposite direction, resulting in an orientation discrepancy of 180𝑜. 

Therefore, one of the previously defined layers (specifically layer 2 with 𝑑 = 2, where 

the orientation discrepancy equals 180𝑜) can be utilized to detect reversed routes. In 
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this layer, a smaller cost assigned to a node indicates a higher likelihood that the walker 

was on a reversed route at the corresponding time instants associated with that node. 

Similar to the off-route detection process, the magnetic field contains valuable 

information for determining the reversed-route status. When a reversed-route occurs, 

the sampled sequences of magnetic field in the corresponding way-in and return paths 

resemble mirror images because they essentially represent the same magnetic field 

sampled in reverse order, as depicted in Figure 3.19. 

 

When no turn is detected, a node (𝑖, 𝑗, 2) is connected to two sets of layers (Figure 

3.20) . 

• (𝑖 − 1, 𝑗, 2), (𝑖 − 1, 𝑗 + 1,2), (𝑖, 𝑗 + 1,2)                    

• (𝑖 − 1, 𝑗, 4), (𝑖 − 1, 𝑗 + 1,4), (𝑖, 𝑗 + 1,4)  

The first set of connections assumes that the walker continues walking in reversed-

route and the second set of connections represents the possibility that the user becomes 

off-route from reversed-route. A path with a decreasing time index in way-in and 

increasing time index in return sequence(e.g., (𝑖, 𝑗, 2) → (𝑖 − 1, 𝑗 + 1,2) indicates that 

the incoming sample (on the return path) is mapped to a prior way-in sample (the way-

in sample was already revered) which is similar to mapping the sample in a reversed 

order. Consecutive nodes in a path with a repeated index (e.g., (𝑖, 𝑗, 2) →  (𝑖 − 1, 𝑗, 2)) 

indicate that two time instants (in this example, during way-in) are matched to the same 

time instant in the other path. Note that an extra penalty 𝐶𝑠𝑡𝑠𝑟𝑒𝑣
 is applied to the edges 

that connect the off-route nodes to the reversed-route node. This mechanism can 
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prevent a temporary change in the magnetic field (e.g., running an elevator or walking 

too close to the wall), triggering an unexpected detection on a reversed route.   

 

Figure 3.19: An example of the mirrored magnetic field signatures indicating reversed-

route. Blue: magnetic field detected during the way-in. Red: magnetic field detected 

during the return. The magnetic field of the user being reversed-route is marked by the 

dotted-dashed ellipse, and the corresponding magnetic field in the way-in path is 

marked by the dashed ellipse on the left side of the figure.   

 

Figure 3.20: Extra edges from reversed-route node(𝑖, 𝑗, 2). 𝐶𝑠𝑡𝑠𝑟𝑒𝑣
 applies to the red 

edges. 

 

When a turn by 𝑘 ∙ 90𝑜 is detected at time 𝑗 ,there are extra edges created for node 

(𝑖, 𝑗, 2) connecting to 4 sets of nodes (Figure 3.21): 

• (𝑖 − 1, 𝑗 + 1, (2 − 𝑘) 𝑚𝑜𝑑 4), (𝑖, 𝑗 + 1, (2 − 𝑘) 𝑚𝑜𝑑 4)  

• (𝑖 − 1, 𝑗 + 1,2), (𝑖, 𝑗 + 1,2).  

• (𝑖 − 1, 𝑗, 2)   
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• (𝑖 − 1, 𝑗, 4), (𝑖 − 1, 𝑗 + 1,4) , (𝑖, 𝑗 + 1,4) 

The first two connections are made under the assumption that the turn was correctly 

detected, which causes an update on the difference of the walker’s orientation between 

way-in and return. The second set of connections represent the possibility that the turn 

was incorrectly detected, meaning that the orientation discrepancy should not be 

changed. The “turn suppression” cost 𝐶𝑡𝑠 is applied to the edges. The third connected 

(from (𝑖, 𝑗, 2) to (𝑖 − 1, 𝑗, 2)) indicates that both time instant 𝑖 and 𝑖 − 1 are matched 

to 𝑗. The decision of whether to accept this turn is postponed till node to (𝑖 − 1, 𝑗 + 1,2) 

or (𝑖 − 2, 𝑗 + 1,2), and therefore the turn suppression cost 𝐶𝑡𝑠 is not applied here. The 

fourth set of connections indicates the possibility of going off-route from a reversed-

route. 

 

Figure 3.21: In this example, a 90𝑜 turn was detected at the time instant j, and extra 

edges are created for node (i,j,2). 𝐶𝑠𝑡𝑠𝑟𝑒𝑣
 applies to the red edges. 
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3.5 Error Metrics 

To evaluate the correctness of path matching, it would be necessary to access the 

“ground truth” matches – i.e., the correct sequence of matching time instant pairs of 

(𝑖𝑗 , 𝑗), where 𝑖𝑗 is the mapped index for the return index 𝑗. However, this would require 

recording the user’s position at every time instant during way-in and return routes, 

which requires extra tools, for example, a camera and SLAM (Simultaneous 

Localization and Mapping) algorithm to track the camera's position and orientation in 

real-time as it moves through the corridor.  Instead, we propose an alternative error 

metric in this study that only records the time at which the walker transitioned between 

different segments, as shown in Figure 3.22. We interpolated the time matches between 

these discrete time/location data points by assuming that participants walked at a 

constant speed within each segment. This gives us an approximate location of the 

walker at all times. Based on this information, we can compute the set of nodes {𝑙𝑗 , 𝑗, 𝑑} 

that represent the correct matching of 𝑙𝑗 with 𝑗  (meaning that the walker was at the 

same location at time 𝑙𝑗 during way-in as the walker at time 𝑗). When evaluating the 

correctness of a given node (𝑖𝑗 , 𝑗, 𝑑) in the graph path chosen by the path matching 

algorithm, we record the absolute difference between 𝑖𝑗 and 𝑙𝑗 . This measures the error 

(in time instants) for node (𝑖𝑗 , 𝑗, 𝑑) . It's important to note that the orientation 

discrepancy 𝑑 is not factored into the error calculation. This is because the mapped 

node may temporarily be in different layers even when the walker is in the same 

position due to variations in the timing of turn detection along the way-in and return 
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routes. The path-matching error is computed as the average error over the entire on-

route path, as depicted in the following equation. 

                                                   𝐸𝑃𝑀 =  
∑ ||𝑙𝑗−𝑖𝑗||

𝑀
𝑗=1

𝑀
                                             (3.1) 

where 𝑀 is the number of matched samples on the correct path. 

The error metric 𝐸𝑃𝑀 helps us to determine the parameters of the basic path−matching 

algorithm. The values of the parameters are shown in Appendix A; they are established 

through multiple trials in initial experiments which generate smaller 𝐸𝑃𝑀. 

 

Figure 3.22: An illustration of segments to approximate the walker’s location at each 

time. The start and end points for the path are indicated by a square and a star, 

respectively. There are three segments (blue, pink, and green) in the overall path. To 

approximate the walker’s location at each time, the time that the walker entered/exited 

each segment was recorded and then interpolated by the location of the data points. 

 

3.6 Conclusion 

In this section, we address the challenges associated with leveraging magnetic field 

data and turns/steps information to backtrack a walker's position in situations when the 

map is unavailable. A straightforward approach to simplify the way-in route is 

introduced. Furthermore, a novel graph-based path-matching algorithm is presented, 

which considers variations in the walker's orientation between the way-in and return 
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routes by incorporating penalties into the cost matrix of the graph for different scenarios. 

Additionally, the algorithm addresses situations where the walker deviates from the 

intended path. To evaluate the performance of the algorithm, we defined an error metric 

for this basic path-match graph. Building upon this graph, we will propose a new 

method of hybrid matching in Chapter 6. The new method excludes the off-route layer, 

resulting in fewer parameters, which will be illustrated later. 

 



 

 

 55 

Chapter 4  

 

Path-Matching Algorithm: Magnetic Field 

 

Magnetic field is increasingly used for indoor navigation due to its unique 

characteristics within indoor environments [9][22][23]. This navigation relies on a 

combination of the Earth's magnetic field and the presence of ferromagnetic objects 

indoors, resulting in distinct magnetic signatures that vary across locations. 

Smartphones equipped with magnetometers offer a convenient platform for 

implementing magnetic-based navigation solutions, providing advantages such as 

affordability, ease of use, and no infrastructure requirements. However, despite these 

advantages, challenges exist, including the need to pre-collect a map of the magnetic 

field in indoor spaces and dynamic magnetic interference from sources like running 

elevators and large electric appliances. 

Our goal is to develop a mapless navigation system that utilizes real-time data for 

magnetic field analysis during the user's traversal of the path on their way-in route, thus 

eliminating the need for extensive offline collection of magnetic maps. Additionally, 

by employing a path-matching algorithm based on real-time analysis of the magnetic 

field and step/turn information (as described in Chapter 3), we aim to mitigate the 

effects of dynamic magnetic interference. The following section provides an in-depth 
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investigation of the magnetic field data, enabling the integration of this valuable 

information (specifically, the cost of magnetic field 𝐶𝑀𝐹 ) with the path-matching 

algorithm.   

 

4.1 1D/2D/3D Magnetic Field 

Smartphones are equipped with 3-axis magnetometers that measure the 3D vector of the 

magnetic field, denoted as 𝑀⃑⃑ = {𝑀
𝑥
, 𝑀𝑦 , 𝑀𝑧}. While matching magnetic signatures, it's 

important to note that the reference frames of the magnetometers are not fixed, as they 

are continuously moving with the user's smartphone. One way to handle this changing 

reference frame issue is by using the norm of the magnetic field, also called the 1D 

magnetic field. The norm of the magnetic field represents its magnitude and remains 

independent of the reference frame. This method simplifies the magnetic field into a 

single value that shows how strong it is, no matter how the smartphone is held. 

However, relying solely on the norm of the magnetic field may be insufficient, as 

multiple locations could exhibit the same values in the magnetic field’s norm. To 

address this limitation, we can use the gravity vector 𝑔  obtained from the 

accelerometers. The accelerometer's output combines both gravity and user acceleration, 

requiring the extraction of the gravity vector from the total acceleration. This task 

typically involves two additional sensors: the magnetometer and gyroscope. The 

magnetometer detects the Earth's magnetic field. Although it was influenced by the 

environment, it still can be utilized as a reference for determining the "downward" 

direction. Meanwhile, the gyroscope aids in distinguishing between user-induced 
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movements, and the constant pull of gravity. Through sensor fusion techniques[49], the 

smartphone distinguishes user acceleration from the total reading, isolating the gravity 

vector as a constant downward force. The gravity vector is expressed in the device's 

reference frame, which makes it possible to generate the 2D vector of the magnetic field; 

one is the magnitude of magnetic field’s projection on the horizontal plane, and the other 

is the magnetic field in the gravity direction [37] [50]. The following equation gives the 

2D magnetic field. 

• 𝑀𝑔  =
<𝑀⃑⃑ ,𝑔⃑ >

||𝑔⃑ ||
 

• 𝑀ℎ = (||𝑀⃑⃑ ||
2
−

<𝑀⃑⃑ ,𝑔⃑ >2

||𝑔⃑ ||
2 )

0.5

, 

where 𝑀⃑⃑  is the 3D magnetic field in the device’s reference frame, and 𝑔  is the gravity 

vector in the device’s reference frame. 𝑀𝑔  is the magnetic field in the gravity 

direction, and 𝑀ℎ is the magnitude of magnetic field’s projection on the horizontal 

plane. 

The 3D magnetic field {𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧} can also be used to match the magnetic signatures 

if one can get the accurate rotation matrix of the device with respect to a fixed reference 

frame. Indeed, it can even provide more precise positioning results because it preserves 

the three-dimensional magnetic data. However, an accurate rotation matrix relies 

heavily on inertial sensors. It is commonly known that inertial sensors are highly 

affected by bias, which can lead to drift. Therefore, the 2D magnetic field is mainly used 

in this study. 
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4.2 Magnetic Field’s Characteristics 

Subbu et al. investigated the magnetic field patterns due to the presence of furniture, 

elevators, doors, pillars, etc. [51]. It was discovered that the short-term displacement of 

an object (e.g., table, chair) does not cause a significant effect on the magnetic field. 

Furthermore, when a smartphone collects the magnetic field, the metallic objects in the 

user’s pocket do not significantly affect the magnetic field. They also investigate the 

variance of magnetic field over time (7 months). As shown in Figure 4.1, there are no 

significant variations in the magnetic signatures, which could potentially diminish its 

effectiveness for sequence matching in localization  

While using the magnetic field pattern for navigation, another factor that might 

influence the result is veering, an issue that a walker cannot keep walking straight [52]. 

It can cause variations in a magnetic field. As shown in Figure 4.2, when the user is 

walking in a hallway, the distance between the user and the wall leads to fluctuations in 

the magnetic field.  This topic is further discussed in section 4.3.  
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Figure 4.1: Prior research about the variance of the magnetic field over time [51]. 

 

Figure 4.2: Comparing the variance of magnetic field while walking at a different 

distance from the wall in a hallway. Blue line: 30 cm from the wall. Red line: 60 cm 

from the wall. Purple line: 120 cm from the wall. 

 

4.2.1 Magnetometer Calibration  

The measured magnetic signature ideally reflects Earth's magnetic field along with 

magnetic fields generated by nearby ferromagnetic materials, making it feasible to 

utilize this uniqueness for indoor navigation. However, magnetometers may still have 
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significant drift caused by various distortions [17]. These distortions typically fall into 

two categories: hard iron or soft iron so magnetometer calibration is necessary to ensure 

precise measurements to eliminate these distortions.  

 

Soft Iron Distortion 

In an ideal environment, rotating the magnetometer in all possible directions results in 

a sphere with a radius equal to the magnitude of the magnetic field. However, materials 

with high magnetic permeability, such as nickel and iron, distort the magnetic field, 

causing the sphere to deform into an ellipsoid. Figure 4.3 illustrates this distortion in 

the x-y axis. One approach to mitigating soft iron distortion involves fitting the 

ellipsoidal magnetic data into a sphere to derive the soft iron calibration matrix 𝑪𝒔𝒅 and 

subsequently using 𝑪𝒔𝒅  to recover the magnetic field. Assuming the measured 

magnetic field affected only by soft iron distortion is  𝑀⃑⃑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑠𝑜𝑓𝑡 , the calibrated 

magnetic field 𝑀⃑⃑ 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑_𝑠𝑜𝑓𝑡  can be calculated as:  

𝑀⃑⃑ 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑_𝑠𝑜𝑓𝑡 = 𝑀⃑⃑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑠𝑜𝑓𝑡 × 𝐶𝑠𝑑 
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Figure 4.3: The x-y axis plot depicts soft-iron distortion in magnetometer readings. 

When the magnetometer is rotated along the z-axis, the black-dashed circle represents 

the ideal magnetic field in the x and y directions. However, soft-iron distortion makes 

the uncalibrated data align more closely with an elliptical shape (blue line). 

 

Hard iron Distortion  

On the other hand, hard iron distortion occurs due to permanently magnetized materials 

near the magnetometer sensor. These materials generate their magnetic fields, 

introducing a constant bias to the magnetic field measured by the magnetometer. This 

offset remains consistent regardless of the sensor's orientation and displaces the origin 

of the ideal magnetic measurement sphere mentioned in the previous paragraph. Figure 

4.4 provides an example of hard iron distortion in the x-y axis. Calibrating hard iron 

distortion is straightforward; since it creates a constant bias, we can determine the bias 

𝒃𝒉𝒅 by aligning the measurement sphere with the origin. 
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Figure 4.4: The xy-axis plot depicts hard-iron distortion in magnetometer readings. 

When the magnetometer is rotated along the z-axis, the ideal magnetic field orientation 

in the x and y directions should be centered at the origin (represented by the black 

dashed circle). However, the uncalibrated data may exhibit a significant bias due to 

hard-iron distortion, as indicated by the blue circle. 

 

After acquiring the soft iron calibration matrix and hard iron bias, the calibrated 

magnetic field is represented in the following equation and used in the path-matching 

algorithm. Figure 4.5 shows the magnetic field before and after calibrations. 

𝑀⃑⃑ 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 =  (𝑀⃑⃑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑏ℎ𝑑) × 𝐶𝑠𝑑  

 

 

 



 

 

 63 

 

Figure 4.5: The magnetic field during calibration by rotating 360𝑜 along all three axes. 

Blue: data before calibration. Black: data after calibration. The yellow dot indicates the 

origin point. 

 

4.3 Cost of Magnetic Field 

As mentioned in Chapter 3, our path-matching algorithm is based on sequence 

alignment expressed as a minimum cost route task over a properly defined graph 𝒢. 

The cost matrix defined in 𝒢 can be interpreted as the penalty of aligning corresponding 

elements of the sequences being matched. This penalty reflects the dissimilarity or cost 

of aligning two elements from the sequences, such as magnetic field readings or 

step/turn data.  This section discusses the details of the cost of the magnetic field 𝐶𝑀𝐹 

in the graph. 

Let 𝐷𝑗  as the Euclidian norm of the difference between two magnetic field vectors 

(𝑀𝑔
𝑖𝑛(𝐼𝑗 ),𝑀ℎ

𝑖𝑛(𝐼𝑗 )) and (𝑀𝑔
𝑟𝑒𝑡(𝑗),𝑀ℎ

𝑟𝑒𝑡(𝑗 )) , where 𝑀𝑔
𝑖𝑛(𝐼𝑗 ), 𝑀ℎ

𝑖𝑛(𝐼𝑗 ), 𝑀𝑔
𝑟𝑒𝑡(𝑗), and 

𝑀𝑔
𝑟𝑒𝑡(𝑗) are 2D magnetic fields for the corresponding 𝐼𝑗-th and j-th samples on the way-

in and return paths, respectively. The 𝐷𝑗 value represents difference in magnetic field 
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data at node (𝐼𝑗 , 𝑗, 𝑑𝑗) in the best-matched path in the graph ℊ, where 𝐼𝑗 is the mapped 

index of the way-in for the return time instant 𝑗  and 𝑑𝑗  represents the orientation 

discrepancy between the mapped indices.  

 

In the path-matching algorithm, a matched node implies that at time instant 𝑗 during 

return, the walker is at the same location as they were at time instant 𝐼𝑗 during way-in. 

Therefore, the individual likelihood of observing 𝐷𝑗  given (𝐼𝑗 , 𝑗, 𝑑𝑗)  is the correct 

mapping can be written as: 

 

𝑃(𝐷𝑗 | 𝐼𝑗), 𝑗 = 1, … ,𝑀 

 

As previously mentioned, it is assumed that when the walker is at the same location 

during the way-in and return, they should experience a similar magnetic field (i.e., 𝐷𝑗 

is small). On the other hand, when the magnetic difference 𝐷𝑗  is large, there is a lower 

likelihood that the node represents a correct mapping, so we will assign a higher penalty 

to the node. Therefore, the magnetic cost of a matched pair of indices {𝐼𝑗 , 𝑗} can be 

interpreted as the negative likelihood of magnetic difference observations. For the 

entire optimal matched path, if we assume that the observations are independent, the 

overall likelihood is represented by the product of the individual likelihoods: 

 

∏ 𝑃(𝐷𝑗 | 𝐼𝑗)
𝑀
𝑗=1  , 
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where M is the number of samples in the return path. The overall magnetic cost of the 

path can be defined as the negative logarithm of overall likelihood: 

    

                           −log (∏ 𝑃(𝐷𝑗  | 𝐼𝑗)))
𝑀
𝑗=1 =  −∑ log (𝑃(𝐷𝑗 | 𝐼𝑗))

𝑀
𝑗=1                       (4.1) 

 

To determine 𝑃(𝐷𝑗 | 𝐼𝑗), we need to construct the histogram of the norm of differences 

in the magnetic field. Assuming that during the navigation, the walker does not 

consistently remain in the middle of the corridor due to veering behavior [52]; they can 

be at various distances from the wall. As described in Figure 4.2 the distance between 

the user and the wall affects the magnetic field along the hallway, resulting in different 

𝐷𝑗 values even when mapped into the same position along the corridor. We simplify 

this problem by categorizing these distances into three cases: in the middle of the 

hallway, close to one side of the wall, and close to the other side of the wall, as shown 

in Figure 4.6. In the latter two cases, we assume that the user is positioned 30cm away 

from the nearest wall. This distance was chosen because it falls within the average 

length of an upper arm (average upper arm’s length ranged from 23 to 41cm for 

individuals aged 5 and above [53]). This measurement reflects the scenario where 

walkers might choose to maintain a distance from the wall equivalent to the length of 

their arm for safety and security reasons. 

Denote 𝑃(𝐷𝑗 | 𝑐𝑤, 𝑐𝑟 , 𝐼𝑗) as the likelihood of observing 𝐷𝑗 given 𝑐𝑤 , 𝑐𝑟, and 𝐼𝑗 (i.e., the 

correct mapped index for return index 𝑗 is 𝐼𝑗), where 𝑐𝑤  and 𝑐𝑟 are the distance to the 

wall in way-in and return respectively.  𝑃(𝐷𝑗 | 𝐼𝑗) can be calculated by:   
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𝑃(𝐷𝑗| 𝐼𝑗) =  ∑∑𝑃(𝐷𝑗 | 𝑐𝑤 , 𝑐𝑟 , 𝐼𝑗) × 𝑃( 𝑐𝑤 , 𝑐𝑟| 𝐼𝑗)

𝑐𝑟𝑐𝑤

 

Since we don’t have prior information regarding the user's walking behavior 

(specifically, the distance from the wall), we can consider 𝑃( 𝑐𝑤 , 𝑐𝑟| 𝐼𝑗)  to be a 

constant, denoted as 𝐶. Therefore, 

  
                              𝑃(𝐷𝑗| 𝐼𝑗) = 𝐶 ∙  ∑ ∑ 𝑃(𝐷𝑗 | 𝑐𝑤 , 𝑐𝑟 , 𝐼𝑗)𝑐𝑟𝑐𝑤                               (4.2) 

Although this method simplifies the problem into merely three distance categories, it 

may not fully capture the hallway's variability. However, considering the hallway width 

in our tested buildings typically ranges from 160 cm to 252 cm, we hope that this 

method can provide a reasonable approximation of the distance scenarios observed 

within our tested data. 

 

(a) 
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(b) 

 

(c) 

Figure 4.6 : Magnetic field measurements along the corridor. (a)The shaded areas 

represent the walls. The pink line represents the group of positions in the middle of the 

hallway, while the dashed lines indicate positions closer to the wall. The green 

highlighted area illustrates the same positions along the corridor but at varying 

distances from the wall. (b)  𝑀ℎ  (c) 𝑀𝑔 . For (b) and (c), the solid line is the data 

collected along the middle of the corridor, the dashed line is the data collected along 

the left side of the hallway, and the dotted line is the data collected along the right side 

of the hallway. 
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(a)                                                            (b) 

Figure 4.7: Hallways (red lines) where magnetic field histograms were collected. (a) 

The hallway on the 2nd floor of BE building at UCSC. (b) The hallway in a local office 

building 

We measured the norm of magnetic field differences in two hallways: one in the BE 

building at UCSC and the other in an office building, as depicted in Figure 4.7. The 

measurements were gathered by walking along each hallway in one direction 

(designated as the way-in path) and then retracing the path in the opposite direction (as 

the return path). To address variations in the walker's distance from the wall, the paths 

(for both way-in and return, corresponding to 𝑐𝑤 and 𝑐𝑟 in eq (4.2)) were also traversed 

at a 30 cm distance from both sides of the wall, resulting in a total of six measurements 

of paths. 

For each path, measurements were taken at fixed intervals (0.504 m, corresponding to 

the average step length of our participants in the user study, which will be discussed in 

Chapter 7) to ensure consistent sampling. This approach allowed us to calculate 𝐷𝑗 for 

a given correct mapping (𝑗, 𝐼𝑗),  where at the return sample index 𝑗 and way-in sample 

index 𝐼𝑗 , the walker was at the same location. Subsequently, the corresponding 
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histogram was created for 𝑃(𝐷𝑗 | 𝐼𝑗)  (after simplifying the constant 𝐶 in eq (4.2) to 1)  , 

as shown in Figure 4.8. The distribution appears to be long-tailed. Several potential 

distributions were considered to fit this distribution, including the Exponential 

Distribution, Inverse Gaussian Distribution, and Rayleigh Distribution. After 

examining the residuals of the fitted curves in Figure 4.8, it is evident that the 

Exponential Distribution (as shown in eq (4.3)) provides a superior fit, exhibiting the 

smallest residual value of 0.004, compared to the Inverse Gaussian Distribution 

(residual = 0.016) and the Rayleigh Distribution (residual = 0.041).Thus, the likelihood 

of observing the norm of difference in magnetic field is given by the following fitted 

Exponential Distribution: 

                                                      𝑃(𝐷𝑗 | 𝐼𝑗) ≈  
1

𝜇
𝑒

−
𝐷𝑗
𝜇                                              (4.3) 

where a larger scale parameter μ indicates the more spread out the distribution.      

The negative logarithm of 𝑃(𝐷𝑗 | 𝐼𝑗) can be calculated using the following formula:  

                                                      − log (𝑃(𝐷𝑗 | 𝐼𝑗))  ≈  
𝐷𝑗

𝜇
+ 𝑐                              (4.4) 

where 𝑐 represents a constant. Then, the overall magnetic cost of the path in the graph 

(in eq (4.1)) can be reformulated as: 

−log (∏ 𝑃(𝐷𝑗 | 𝐼𝑗))
𝑀
𝑗=1 =  −∑ (

𝐷𝑗

𝜇
+ 𝑐𝑀

𝑗=1 )  

It implies that the overall magnetic cost for the optimal matched path in 𝒢  is the 

summation of the magnetic field differences 𝐷𝑗  divided by 𝜇 , thus for each node 

(𝐼𝑗 , 𝑗, 𝑑𝑗) in 𝒢, the cost of magnetic field is 
𝐷𝑗

𝜇
. The estimated value of 𝜇 in the tested 
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data is 7.75, suggesting that in our tested buildings, the cost of magnetic field for each 

node is 
𝐷𝑗

7.75
. It is noted that the constant 𝑐 applies to every node in our graph; thus, it 

can be ignored when calculating the cost. 

 

 

Figure 4.8: The histogram of the norm of the difference in magnetic field fitted by 

different PDF functions. Solid line: Exponential distribution. Dotted line: Inversed 

Gaussian. Dashed line: Rayleigh Distribution. (The histogram has been normalized to 

unit area) 

 

A similar analysis was conducted utilizing the public dataset MINLOC [54], which 

includes the magnetic field collected from different corridors. However, unlike our 

dataset, the magnetic field at various distances from the wall was not recorded in 

MINLOC. Consequently, the differences in magnetic field are relatively minor. Figure 

4.9 displays the corresponding histogram of magnetic field differences within the 
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corridors based on the MINLOC dataset. In comparison to our histogram in Figure 4.8, 

Figure 4.9 lacks a long tail in the histogram due to smaller differences in magnetic field.  

As previously mentioned, walkers may not always remain in the middle of the hallway. 

Therefore, incorporating measurements of magnetic differences relative to the wall 

provides additional insights into the characteristics of the magnetic field. 

 

Figure 4.9: Histogram of magnetic field difference in public dataset. (The histogram 

has been normalized to unit area.) 

 

4.4 Conclusion 

This chapter has explored the use of indoor magnetic fields for accurate positioning 

and navigation. We also examined how magnetic fields can be influenced by an 

individual's walking behavior, specifically focusing on veering behavior observed 

through different measurements of the magnetic field relative to various distances from 

the walls. 
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Calibrating magnetometers to correct distortions caused by nearby metals is critical for 

achieving accurate measurements. Two main types of distortions, hard iron and soft 

iron, were discussed along with methods to calibrate magnetometers to mitigate these 

distortions. 

Additionally, we also explored how to leverage differences in magnetic fields between 

mapped locations (referred as the "cost of magnetic field") in the path-matching 

algorithm. This involved studying the likelihood of the observed norm of difference in 

the magnetic field, enhancing our algorithm's capability to manage variations in 

magnetic field data for precise positioning purposes.  
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Chapter 5  

 

Path-matching Algorithm: Experiment with WeAllWalk 

Dataset and On-Site test 

 

In this chapter, we present the experimental results of the path-matching algorithm. The 

experiments are divided into two parts. In the first part, we simulated assisted return 

situations using the WeAllWalk dataset to compare different odometry systems that 

use inertial data (k ⋅ 90o or k ⋅ 45o turn detector w/wo step information, where k is an 

integer). The odometry system exhibiting a smaller path-matching error was selected 

for integration with magnetic field information in the second part of the on-site test 

conducted with the SafeReturn app. This test was conducted in the E2 building at 

UCSC. Additionally, the interface used for evaluation is presented in this chapter. 

 

5.1 Comparing Path Odometry Algorithms for Assisted Return – 

WeAllWalk Experiments 

The WeAllWalk dataset [22] contains inertial sensor data, which was collected from 

six visually impaired participants while they walked through several pre-defined 

trajectories using a walking cane or a dog guide. Our path-matching algorithm 
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leverages both steps/turns and magnetic field data to map the current position during 

the return to a position collected during the way-in phase. While steps/turns information 

for the WeAllWalk dataset can be obtained by processing the inertial data using step 

and turn detectors developed by other PhD researchers in our lab [46][12], the magnetic 

field data in the WeAllWalk dataset was not calibrated. Therefore, we only utilize the 

steps/turns data when evaluating our algorithm in this part of the experiments. 

We simulated an assisted return situation where a certain walker traversed the entire 

path first (as the way-in path), followed by another (or the same) walker traversing the 

same path while incrementally matching their path with that of the first walker (as the 

return path). We considered pairs of traversals for each path, either by two different 

walkers or by the same walker using different mobility tools (cane or dog guide). Figure 

5.1 illustrates an example of these paths.  There were 162 such traversal pairs on which 

our path-matching algorithm was tested. For each of them, the optimal alignment 

matching was computed incrementally for each time instant during return. It is noted 

that the off-route scenarios are not included in this experiment but are included in the 

next section for the on-site tests (section 4.3).  

 

Figure 5.1: One of the six paths from the WeAllWalk dataset. The path begins at the 

square and ends at the star [22]. 
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Table 5.1: Path-matching error 𝐸𝑃𝑀  (in seconds) measured using different path 

odometry systems for the WeAllWalk experiment. The integer ' 𝑘  ' represents the 

system's capability to detect different turn angles. 

 

As mentioned in the previous chapter (section 3.5), we use an approximate location 

(serves as reference data) to calculate the path-matching error 𝐸𝑃𝑀 and 

Table 5.1 shows the recorded average errors using different turns/steps odometry, with 

turns computed either at a multiple of 45o or 90o. (Note that 13% of all turns in 

WeAllWalk are ±45° turns.). It is seen from  

Table 5.1 that the lowest average error was obtained using both the turns (multiple of 

90𝑜turns) and steps representation in the definition of graph costs. 

 

Odometry System k ⋅ 90oturns k ⋅ 45o turns k ⋅ 90o turns + steps k ⋅ 45o turns + steps 

𝐸𝑃𝑀  5.28 6.43 4.17 4.50 
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Figure 5.2: The best matching sequence for two walkers, one using a dog guide and the 

other using a long cane. The colored rectangles represent the entry and exit time of each 

“segment,” as marked in WeAllWalk. The ‘+’ signs represent 90𝑜 turns. Red line: 𝑘 ⋅
90𝑜+ steps (mean error: 0.8 s); Gray line: baseline (mean error: 27.1 s); Green line: 𝑘 ⋅
45𝑜+ steps (mean error: 0.8 s). The horizontal and vertical lines show 90𝑜 (dashed) 

turns detected during way-in and return, respectively. Bottom: the reconstructed paths 

by the 𝑘 ⋅ 90𝑜+ steps odometry (without using the path-matching algorithm to match 

the return samples to way-in samples) plotted on the building map. Solid line: way-in 

path. Dotted line: return path. The way-in path starts from a square and ends in a star. 

 

To provide some insight into the results, examples of path matches for pairs of walkers 

over the same path are shown in Figure 5.2 and Figure 5.3 (top), while the reconstructed 

paths are shown against a map of the building (in the bottom of the figures and the 

reconstructed path was plotted assuming a stride length of 0.567 m.). In the path-

matching plots, the vertical and horizontal axes indicate time instants during way-in 

and return, respectively. The colored rectangles represent contiguous segments in the 
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path. Specifically, the vertical coordinates of each rectangle's top and bottom edges 

correspond to the times when the walker entered and exited the rectangle during the 

way-in (as recorded in WeAllWalk) and similarly for the return path. The diagonal line 

joining each rectangle's top left and bottom right corners (not shown in the figures) 

represents the set of correct nodes {(𝑙𝑗 , 𝑗)}  using the interpolation approximation 

described above. The ‘+’ and ‘*’ signs in the plots represent time instants (for both way-

in and return) in which a 90o or 45o turn was marked in WeAllWalk. For each path-

matching algorithm displayed in the figures, a line represents the set of nodes selected 

by the algorithm. Lines close to each rectangle's diagonals denote satisfactory path 

matches. A “baseline” match of all time instants in way-in with corresponding time 

instants in return {(𝑖, 𝑗)} is also shown, which assumes that the two participants walked 

at the same speed.  

Figure 5.2 compares the path-matching using 𝑘 ⋅ 90𝑜+ steps (red line) and 𝑘 ⋅ 45𝑜+ 

steps (green line) odometry. In the path-matching plot(top), both methods show similar 

results up to return time 𝑡 = 240s. However, after that point, the 𝑘 ⋅ 45𝑜+ steps deviates 

from the rectangle's diagonals. It can be observed that the 𝑘 ⋅ 90𝑜+ steps produces a 

slightly better result than the 𝑘 ⋅ 45𝑜+ steps, while both are substantially better than the 

baseline.  

Figure 5.3 shows an example using the 𝑘 ⋅ 45𝑜+ steps algorithm. In this case, the path 

had one 45𝑜+  turn at the beginning, followed by two 90𝑜 turns. The graph shows 

horizontal and vertical lines corresponding to the time when a 45𝑜  (dotted) or 

90𝑜(dashed) turn was detected during way-in or return, respectively. The algorithm 
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correctly detected the 45𝑜 turn, but the second 90𝑜 turn was mistakenly detected as a 

sequence of two 45𝑜 turns during return. The path-matching algorithm was able to 

manage this situation correctly. However, some “jitter” is noticeable (see segment 

marked in green), which is a consequence of the fact that dynamic programming was 

implemented incrementally (rather than just at the end of the return path).  

 

 

Figure 5.3: The top plot represents the best matching sequence with the 𝑘 ⋅ 45𝑜+ steps 

algorithm for two walkers, both using a long cane. The colored rectangles represent the 

entry and exit time of each “segment,” as marked in WeAllWalk. The ‘+’ sign 

represents 90𝑜  turns, while the ‘*’ sign represents a 45𝑜  turn. Purple line: 𝑘 ⋅
45𝑜+steps (mean error: 2.72 s). The horizontal and vertical lines show the 45𝑜 (dotted), 

and 90𝑜 (dashed) turns detected during way-in and return, respectively.  Bottom: The 
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reconstructed paths are overimposed on the building map. Solid line: way-in path; 

Dotted line: return path. 

 

 

5.2 SafeReturn App - User Interface for Evaluation 

An IOS App was built to evaluate the path-matching algorithms in real-world 

environments. This application was tested extensively on an iPhone XR. The 

application's user interface during the test process is shown in Figure 5.4. There are 

four application views, and the arrows between the views indicate that users can 

navigate directly between them. Figure 5.4(a) is the initial view for users to decide 

whether starting the path-matching task or calibrating the magnetometers. Figure 5.4(b) 

is the calibration view for users to calibrate the magnetometers by rotating the 

smartphone alone on the three axes. This will produce a plotted solid circle representing 

the completion of the calibration (Note that it is recommended to perform calibration 

before starting a way-in path). The primary operation of path-matching is performed in 

Figure 5.4(c). The trajectory and the mapped samples between way-in and return paths 

are plotted in the view.  Figure 5.4(d) is the setup for parameters, and a detailed 

description of the parameters is provided in the Appendix. 
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Figure 5.4: Design of the user interface. (a): entry view (b): calibration view (c): the 

main view for path-matching (d) parameter setup view. 

 

5.3 On-Site Test 

The on-site test was conducted in the E2 building at UCSC to evaluate the system's 

capability to provide path recovery guidance in situations where the walker deviates 

from the correct path. Figure 5.5 illustrates an example of successful path recovery, 

and its corresponding path-matching graph is shown in Figure 5.6. On the return 

journey, the walker was asked to miss the first 90𝑜  turn to simulate an off-route 

situation. In the path-matching plot, the green line indicates the best path-matching 

sequence determined by the algorithm, which is only available at the end of the return 

trip. On the other hand, the black line represents the matching sequence calculated on 

the fly, which is also the data used to provide real-time guidance.  



 

 

 81 

Figure 1.6 shows a significant overlap between the black and green lines, indicating 

that real-time guidance closely approximates the optimal path calculated after 

collecting all return data. This suggests that real-time guidance reflects optimal 

matching. In the sequence, points with non-zero orientation discrepancy (𝑑 ≠ 0) or 

off/reversed-route status (𝑑 = 4 𝑜𝑟 𝑑 = 2)  are highlighted in different colors. The 

yellow dots at the return sample #120 indicate that the system detected an off-route 

status and prompted guidance for the walker to make a U-turn. The walker followed 

the instruction, and then a reversed-route status was detected at return sample #240 

(brown dots in the figure), which is expected because the walker was on the correct 

path but facing the opposite direction. The system provided further instructions to 

prompt another U-turn, eventually guiding the walker back onto the correct path. While 

other false-positive reversed-route points occurred between return samples #131 and 

#183 (brown dots), these were only generated in the best path-matching sequence at 

the end of the return trip.  Therefore, they weren't detected during the real-time 

navigation. 

The system successfully mapped samples on the return path to those on the way-in path 

and provided path recovery to the walker. The corresponding trajectory of the path and 

the path-matching plots on the app are also shown in Figure 5.7.  
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Figure 5.5: Illustration of trajectory with successful path recovery guidance generated 

by the system. The way-in path is from A to B, and the return path is from B to A.  The 

off-route and reversed-route segments are highlighted by the yellow and brown markers. 

 

Figure 5.6: A representation of the best path-matching sequence.  Horizontal lines: 90o 

(red) and -90o (blue) turns detected during way-in. Vertical lines:  180o (brown), 90o 

(red) and -90o turns detected during return. Green line: The best path-matching 

sequence selected by the algorithm at the end of the return. Colored cluster: Points with 

non-zero orientation discrepancy (layer 𝑑 ≠ 0) or off-/reversed-route status in the best 

path-matching sequence. Black line: Path-matching sequence computed from return 

data up to the real-time return sample index. 
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Figure 5.7: The view in the SafeReturn app. Top plot: Best path-matching sequence. 

Bottom: Trajectory of the path. 

 

The previous example shows a scenario where the system provided accurate real-time 

guidance and identified instances when the user went off-route. However, the 

effectiveness of detecting off-route situations has limitations when there is dynamic 

magnetic interference from sources like the running elevators in our tested building, as 

highlighted in another scenario depicted in Figure 5.8 for trajectory and Figure 5.9 for 

the path-matching graph. 
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Similar to the initial example, during the return route, the walker failed to execute a 

90𝑜 turn and continued straight, leading to an off-route situation (highlighted in yellow 

in Figure 5.8). Despite the ability of the graph to identify the walker's off-route status 

upon collecting all return data at the end of the trial (depicted by the green line in Figure 

5.9, representing the optimal graph path), it failed to offer real-time guidance 

(illustrated by the black line in Figure 5.9) when the walker deviated from the route, as 

the green line (with the yellow dots) and the black line start to diverge from same index 

#420. This discrepancy is attributed to the similarity of magnetic field signatures across 

different locations, resulting in incorrect location identification within the system. 

When two distinct locations exhibit similar magnetic field signatures or when the 

magnetic field is temporarily affected by large metallic objects, it can result in incorrect 

mapping. Another drawback of solely relying on the path-matching graph for 

localization is that it always assigns a mapped location to the way-in for every incoming 

return sample. However, this mapping may not always be correct if the walker deviates 

from the correct path. To overcome these challenges, we updated the algorithm to 

incorporate the concept of reliable matching. This enhancement will be further 

elaborated on in the upcoming chapter. 
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Figure 5.8: An illustration of a trajectory where off-route deviations were not 

successfully identified in real-time. The path originates from point A to point B (way-

in path), followed by the return path from point B to point A. Off-route and reversed-

route segments are highlighted by the yellow and brown markers, respectively. 

 

 

Figure 5.9: A representation of the best path-matching sequence where off-route 

deviations were not successfully identified in real-time.  Horizontal lines: 90o (red) and 

-90o (blue) turns detected during way-in. Vertical lines: 180o (brown), 90o (red) and -

90o (blue) turns detected during return. Green line: The best path-matching sequence 

the algorithm selects at the end of the return. Colored cluster: Points with non-zero 

orientation discrepancy (layer 𝑑 ≠ 0) or off-/reversed-route status in the best path-

matching sequence. Black line: Path-matching sequence computed from return data up 

to the real-time return sample index. 
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5.4 Conclusion 

In this chapter, we conducted simulations of assisted return using the WeAllWalk 

dataset to compare the odometry systems based on robust two-stage turn detection and 

step counting. The analysis revealed that the 𝑘 ⋅ 90𝑜+ steps algorithm performs better 

than other methods. Furthermore, we developed an iOS app for our system and 

performed on-site testing to assess its performance. Results indicate that the system 

effectively maps the user's position and offers path recovery assistance when the 

magnetic field is stable. However, certain limitations arise in scenarios where the 

magnetic signature is affected by other sources and becomes unreliable. Therefore, in 

the following chapter, we propose a hybrid matching approach to enhance the system's 

performance and achieve more robust results. 
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Chapter 6  

 

Enhanced Path-Matching Algorithm:  

Hybrid Matching with Last Reliable Position 

 

In the basic path-matching algorithm (Chapter 3), we only utilized the path-matching 

graph ℊ  to generate the mapped position during the return phase. However, as 

discussed in previous chapters, relying solely on the graph ℊ  presents several 

challenges. For instance, temporary disturbances in the magnetic field can lead to 

incorrect matching. The accuracy of the matching process is significantly influenced 

by the stability of the magnetic field. Consequently, this chapter introduces the 

enhanced path-matching algorithm: hybrid matching, which incorporates the concept 

of the "last reliable position (LRP)" to enhance the robustness of the system. Two 

methods for determining LRP are introduced, and the algorithm is evaluated using 

datasets from various buildings at UCSC. 

 

6.1 Last Reliable Position (LRP) 

The idea of identifying “last reliable position (LRP)” or "last known position" is 

commonly employed in some navigation systems. For instance, in GPS navigation, 
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Receiver Autonomous Integrity Monitoring (RAIM) evaluates its integrity by 

analyzing pseudo-ranges between satellites and the receiver. If anomalies or issues are 

detected, RAIM takes corrective action by excluding signals from problematic 

satellites or indicating the current GPS positioning cannot be trusted. When such 

situations arise, alternative solutions, such as integrating with other sensors, can be 

implemented, and the current position can be calculated based on the last known 

position [55]. This concept is not limited to GPS alone but is also applied in Wi-Fi-

based [56] and iBeacon-based [57] indoor positioning systems. In these systems, nodes 

exhibiting anomalies must be eliminated before calculating the last known position, 

particularly before providing input to the Pedestrian Dead Reckoning (PDR) system.  

When backtracking the walker’s position in our application, leveraging the concept of 

the Last Responsible Position (LRP) offers two distinct advantages: preventing 

contradictory guidance and identifying deviations from the correct path.  

 

Preventing Contradictory Guidance: 

When providing real-time navigation for visually impaired individuals, excluding 

unreliable localization information is particularly crucial to prevent contradictory 

guidance, which can confuse the users. Figure 6.1 illustrates such a scenario: the entire 

return path is S3 (straight segment) → "right turn" → S2 (straight segment) → "left 

turn" → S1 (straight segment). At the first junction, the walker correctly makes a right 

turn towards the next left turn. However, due to a temporary disturbance in the 

magnetic field, the graph places the walker back into the previous segment (highlighted 
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in yellow in Figure 6.1 (b)). As a result, the system announces inaccurate guidance, 

such as "At the upcoming junction, make a right turn." As more data is acquired (e.g., 

the walker takes a few more steps), the path-matching graph can accurately locate the 

walker, providing the correct guidance: "At the upcoming junction, make a left turn." 

The inconsistency between these guidance messages (left turn vs. right turn) 

underscores the importance of determining the reliability of positional information to 

avoid providing conflicting information to the user.  

 

                                          (a)                                                        (b) 

Figure 6.1: An illustration of inconsistent guidance without adopting LRP. (a) The 

trajectory of the walker: The way-in path starts from point A to B, and the return path 

starts from point B. (b) The x-y axis of the path-matching graph of the whole sequence 

of paths. Red lines and blue lines indicate 90𝑜  and −90𝑜  turns, respectively. The 

walker makes a correct 90𝑜 turn, but the graph initially misplaces the walker into a 

prior segment for a short period of time and asks the walker to make a 90𝑜 turn again 

(highlighted in yellow in (b) and point C in (a)). Subsequently, it locates the walker to 

the correct position and instructs the walker to make a −90𝑜  turn. However, this 

inconsistency may result in confusion. 
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Identifying Deviations from the Correct Path: 

The original path-matching algorithm consistently assigns a mapped location to the 

way-in for every incoming return sample. However, this mapping may become 

inaccurate if the walker deviates from the correct path. Figure 6.2 (a) shows an example 

of this scenario. The walker missed the 2nd turn junction and continued straight ahead. 

Still, the path-matching algorithm incorrectly assigns a mapped location to the way-in, 

potentially near the destination (point C in Figure 6.2 (a) and the highlighted area in 

Figure 6.2 (b)), misleadingly informing the walker that they are "approaching the 

destination." 

Although we may utilize the off-route layer ( 𝑑 ≠ 0 ) in the graph 𝒢  to identify 

deviations from the intended path, as discussed in Chapter 5.3, the reliability of this 

information can be compromised by external factors affecting the magnetic field (e.g., 

nearby running elevators), making the results unreliable. 

In contrast, in a hypothetical scenario where the last reliable position (LRP) can be 

identified, as shown in  Figure 6.2 (c), if the walker misses a turn and continues walking, 

we can then project their position from the LRP (pink dot). The projected positions 

from LRP can help us to determine whether they have deviated significantly from the 

expected turn junction. This approach allows us to identify deviations from the correct 

path more accurately. 
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(a)                                                   (b) 

 

(c) 

Figure 6.2: (a) and (b) illustrate inconsistent mapping without adopting LRP. (a) is the 

trajectory of the walker: The way-in path starts from point A to B, and the return path 

starts from point B. (b) is the x-y axis of the path-matching graph of the whole sequence. 

Red lines and blue lines indicate 90𝑜 and −90𝑜 turns, respectively. The walker misses 

the turn, but the graph misplaces the walker into a location close to its destination 

(highlighted in yellow in (b) and point C in (a)). (c) shows the projections from LRP 

(pink dot). The green dashed line indicates the walker’s path after LRP was found. 
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6.2 Notation 

Before delving into the details of how LRP works in our design, the notation used 

throughout this chapter is introduced here to ensure clarity and consistency in our 

discussions. 

 

𝑆(𝑗) : The whole sequence for mapped indices at time instant j, i.e., the minimum path 

traced back from the 𝑗 − 𝑡ℎ column of the cost matrix the green line in Figure 6.3(b)). 

At the end of the return path, the optimal mapped sequence is 𝑆(𝑀) where M is the 

number of samples of the return sequence.  

 

(𝑖𝑗 , 𝑗, 𝑑𝑗)  : The triplet of a mapping at time instant j, where 𝑖𝑗  is the corresponding 

mapped index of the way-in and the layer 𝑑𝑗 represents its orientation discrepancy. It 

is noted that (𝑖𝑗 , 𝑗)  is the last element of the mapped indices in the 𝑆(𝑗) and connecting 

(𝑖𝑗 , 𝑗) for all 0 < 𝑗 ≤ 𝑀 , creating the black line in Figure 6.3 (b)) 

 

𝑀ℎ
𝑖𝑛, 𝑀𝑔

𝑖𝑛 : the recorded (in reverse time order) 2-dimensional magnetic field during 

way-in. 

 

𝑀ℎ
𝑟𝑒𝑡, 𝑀𝑔

𝑟𝑒𝑡 : the recorded 2-dimensional magnetic field during return. 
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6.3 LRP in the Path-Matching Graph 

When mapped positions remain consistent and reliable over time, they should not 

contradict each other. For example, assuming the user walks at a constant speed in both 

the way-in and return phase, during the return phase, if the user walks along the same 

path as the way-in path, the mapped indices should be gradually increasing.  This 

scenario is illustrated in the path-matching graph in Figure 1.3 (a). As the user 

progresses along the return path (x-axis), the mapped indices gradually increase (y-

axis). 

However, this consistency is not always guaranteed in real-time navigation scenarios. 

In real-time backtracking navigation, samples from the return path are aligned to the 

original way-in, with the optimal matching computed at each time step denoted as 𝑆(𝐽). 

As the user progresses along the return path, a new optimal matching 𝑆(𝐽 + 1)  is 

generated. This updated matching may not always include the previous one. As 

depicted in Figure 6.3 (b), during the return phase, the mapped index of the way-in path 

shifted significantly from around #110 to approximately #50 after the user made a 90𝑜 

turn near return sample index #130. To assess the reliability of the mapped indices, we 

propose two methodologies to assess whether the current matching is reliable: one is 

based on linear fitting of the matched path in the graph ℊ and the other is based on 

machine learning. They are described in the following sections. 
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                                     (a)                                                                                                                           (b)                                                               

Figure 6.3: An illustration of different optimal matching (green line) in consecutive 

time instants in the x-y axis of the path-matching graph. Green line: the optimal 

matching sequence (i.e., 𝑆(𝑗)) from the most recent time instant. A. Black line: the best 

match indices for every time instant (i.e., (𝑖𝑗 , 𝑗)). Red lines and blue lines indicate 90𝑜 

turns, respectively. (a) The graph at time instant J. (b) The graph at time instant J+1. 

6.3.1 Linearly Defined LRP  

As mentioned earlier, mapped positions should remain consistent over time. In this 

method, we determine LRP by examining whether the mapped position at the current 

time instant contradicts earlier calculated positions.  We use local properties of the 

current minimum cost graph path to decide, at the current time 𝐽, whether the match 

(𝑖𝐽, 𝐽, 𝑑𝐽) can be considered “reliable,” meaning that it is likely to be preserved even 

after later observations are recorded and the mapped points are toward the same 

directions (i.e., 𝑑𝐽 = 0). As illustrated in Figure 6.4 (a) and (b), the mapped positions 

exhibit fluctuations over time in scenario (a), indicating potentially unreliable 

matchings. Conversely, in scenario (b), the samples are matched smoothly over time, 

suggesting that some can be considered reliable. 
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In practice, we look at the last N samples of the minimum cost path in the graph ending 

at (𝑖𝐽, 𝐽, 𝑑𝐽).  

If this path segment aligns well with a line with a unitary slop (indicating that the 

residual of the fitting falls below a predefined threshold) and also it exhibits zero 

orientation differences (𝑑𝐽 = 0, i.e., no orientation discrepancy between the mapped 

way-in and return indices), then we can identify the latest mapped time instant as the 

last reliable mapped point. Its corresponding mapped position is designated as LRP. 

The set of LRPs determined by this method for the entire return path is denoted as 

𝐿𝑅𝑃𝑙𝑜𝑐𝑎𝑙. 

As time progresses, we continuously evaluate the past N samples to determine if a new 

LRP has emerged. Consequently, in Figure 6.4 (b), multiple LRPs may be identified 

over time, but our focus is solely on the most recent LRP for navigation guidance and 

positioning purposes. It is noted that we chose N=21 in our system. The decision is 

based on our initial experiments, where we found that setting N to 21 provided a 

sufficient samples of magnetic field samples to establish a reliable mapping.  
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(a)                                    (b) 

Figure 6.4: Two examples of mappings (with layer d=0 in both plots) from different 

experiments. Black line: the best match indices (𝑖𝐽, 𝐽) for every time instant. Dashed 

line: a line with a unitary slope.  (a) The mapped indices cannot be fitted into a unity 

slope, leading to an undetermined LRP. (b)The LRP is successfully determined and 

indicated by a yellow solid circle.   

 

Figure 6.5: An illustration of determining the LRP in the path-matching graph ℊ. The 

X-axis and Y-axis are mapped indices during return and way-in, respectively. The gray 

solid circles are all the nodes (i, j, 0)  where it is assumed that the orientation 

discrepancy 𝑑 = 0 to simplify the graph. The red nodes are the chosen nodes (𝑖𝐽, 𝐽, 0)  

with a minimum cost at each incoming time instant during return. The black line 

implies that the walker is progressively moving forward, so the node on the lowest right 

corner is considered as the last reliable mapping, and its corresponding mapped position 

is LRP.  
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However, this method merely considers the last mapped indices (𝑖𝑗 , 𝑗) from 𝑗 = 𝐽 −

𝑁 + 1 𝑡𝑜 𝑗 = 𝐽  and their orientation differences 𝑑𝐽 , potentially overlooking features 

extracted from the magnetic field and the knowledge of sequences 𝑆(𝐽), i.e., the green 

lines in Figure 6.3. Therefore, we introduce another method to incorporate this 

information in identifying the last reliable position. 

 

6.3.2 LRP Determined through Machine Learning 

The uniqueness of the magnetic field at a certain location (along with steps/turns 

information) is used in our algorithm to match return samples to their corresponding 

way-in sequences. Theoretically, correctly matched samples should exhibit similar 

magnetic field patterns, indicating reliable mapped positions. However, temporary 

disturbances in the magnetic field can lead to incorrect matching (as shown in the prior 

example in Figure 6.2(b)). To address this, an alternative approach was proposed. We 

incorporate both the path in the segment (the last N samples of the minimum cost path) 

and magnetic field information and utilize a neural network to determine the reliability 

of the match, rather than relying solely on linear fitting and residual thresholding of the 

path segment. Here's our approach:  

For every time instant during return, we have the following information: the mapped 

indices (𝑖𝑗 , 𝑗, 𝑑𝑗), and two-dimensional magnetic field corresponding to both way-in 

and return sequences, (𝑀ℎ
𝑖𝑛(𝑖𝑗),𝑀𝑔

𝑖𝑛(𝑖𝑗)) and (𝑀ℎ
𝑟𝑒𝑡(𝑗),𝑀𝑔

𝑟𝑒𝑡(𝑗)). We focus on the last 

N samples of this information, where j ranges from J-N+1 to J, ensuring a consistent 
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length of N for each set. Additionally, we have the optimal sequence of mapped indices, 

denoted as 𝑆(𝐽), obtained by tracing the minimum path back from the J-th column of 

the cost matrix.  We extract the last N paired elements of 𝑆(𝐽), resulting in a size of 2N. 

Notably, (𝑖𝐽 , 𝐽) represents only the last element of 𝑆(𝐽). Combining all the information 

(size of Nx9), we can employ a neural network to identify the LRP. 

To train the neural network for this task, we must first establish the ground truth of the 

last reliable positions. The optimal path 𝑆(𝑀) generated at the end of the return path 

was utilized to define the ground truth, because this is the most reliable match we can 

find.  While this assumption may not always hold true, it represents the best-calculated 

result achievable after acquiring all of the return data.  

We filter out points in the path (computed at the end of mapped sequence 𝑆(𝑗)) using 

these empirical criteria to ensure their reliability: 

 

1. A reliable point (𝑖𝐽, 𝐽) should not deviate significantly from the optimal path 

𝑆(𝑀). Specifically, the shortest distance between 𝑆(𝑀) and (𝑖𝐽, 𝐽) should be 

smaller than a predefined threshold (dist((𝑖𝐽, 𝐽), 𝑆(𝑀)) <= threshold).  

2. A reliable point (𝑖𝐽, 𝐽) should be mapped to the same straight segment of the 

trajectory determined by the optimal path 𝑆(𝑀), ensuring the coherence of the 

mapping. 

 

3. The consecutive points in a horizontal line in the path-matching graph are 

considered reliable matches because they suggest that the user remains at the 
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same position during the return. However, this contradicts the nature of the 

sequences of time indices, which are defined based on each detected step. Since 

each detected step should ideally represent a change in the user's position 

(assuming the detected step is not taken in the same location), the user's position 

should also change between the time indices. Therefore, (𝑖𝐽 − 𝑖𝐽−1) = 0 or 

(𝑖𝐽+1 − 𝑖𝐽) = 0 , which means a horizontal line in the graph, cannot be 

considered as a reliable match.  

To better illustrate the third criterion, two plots are shown in parallel in Figure 6.6, with 

labeled reliable matches shown in purple (unreliable matches are highlighted in yellow) 

for the same dataset. The walker deviated from the correct path between return time 

index #210 to 290 (points in the circle on both figures). In the right figure, the third 

criterion was not applied, resulting in points within the circle area being incorrectly 

labeled as reliable. After applying the third criterion, those points are indicated as 

unreliable.   

 

Figure 6.6: An example of a graph indicating the importance of taking the 3rd criterion 

while defining the LRP. See the caption of  Figure 6.3. Purple markers: labeled reliable 

matches. Yellow markers: unreliable matches. Right: not taking the 3rd criterion when 
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determining LRP (points in the circle are incorrectly labeled as reliable). Left: adopting 

all three criteria. 

Once all three criteria are satisfied, a point (𝑖𝐽, 𝐽) computed at the end of mapped 

sequence 𝑆(𝑗),  is considered reliable, and we utilize it as ground truth during the neural 

network training. It is noted that if the walker deviates from the correct path (for 

example, the walker missed a turn), the corresponding mapped positions are not 

considered reliable. The set of last reliable positions in the ground truth for the entire 

return path is denoted as 𝐿𝑅𝑃𝑔𝑡. 

Five different types of networks were tested in this study to determine the last reliable 

positions, the output of a generic model is called 𝐿𝑅𝑃𝑁𝑁 : fully-connected network 

(FCN), long short-term memory (LSTM), 1D convolutional network, graph neural 

network (GCN) [58], and graph attention network (GAT) [59]. Each network has a 

similar number of parameters, including one input layer, one output layer, and one 

hidden layer, totaling around 7K parameters. In the case of FCN, the input data with a 

size of 𝑁 × 9 were flattened. For GAT and GCN, we utilized a graph representation of 

the data, dividing it into two groups of nodes: way-in nodes and return nodes. Each 

group contains 5 features, including two-dimensional magnetic field data (𝑀ℎ,𝑀𝑔), 

orientation differences (layer d), mapped indices on-the-fly (𝑖𝐽, 𝐽) (i.e., the black line 

in the graph), and the optimal mapped indices sequences 𝑆(𝑗) (i.e.,  the green line in 

the graph). It's important to highlight that the orientation differences are the same for 

both groups.  
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6.3.3 Projected Positions Based on LRP 

When a reliable match is detected, a projected return sequence is initiated and 

continuously adjusted until a new reliable match is identified. This sequence originates 

from the last reliable match, aligning its initial direction with the walker's current 

orientation determined by its return path. Figure 6.7 illustrates the user’s position based 

on LRP over a period during the return path.  

Utilizing this projected sequence, the system generates guidance notifications based on 

the walker's location. Upon detecting a new reliable match, the projected sequence is 

re-initialized at that point. Visual representations of reliable matches and projected 

paths are provided in Figure 6.8. In these figures, the "way-in route" is depicted with a 

prominent purple line, with segment lengths determined by multiplying the step count 

by the average step length generated by the WayFinding app, which will be further 

discussed in the next section. For this reason, these segments may not perfectly align 

with the corridors depicted in the underlying floor plan. Nonetheless, this discrepancy 

doesn't pose an issue, as the primary objective of the system is to accurately match the 

walker's return location with their initial way-in position, in order to deliver correct 

guidance notifications.  
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Figure 6.7: An example of projecting the user’s position based on the last reliable 

position over a series of times during the return path. The blue line represents the way-

in path from point A to B, while the return path begins at point B. The dotted green line 

is the projected path. The black dot is the projected position, and the yellow dot is the 

last reliable position. (a)In the beginning, the mapped point is also the last reliable 

position, so only one yellow dot is plotted.  (b) The walker’s position was projected 

based on the last reliable position. (c) The user turned right, and the return’s projected 

position deviated from the way-in path. (d) A small mapping error( 𝑒𝑟𝑟𝑚𝑎𝑝  ) was 

observed and the mapped position is considered as the last reliable point.  Eventually, 

the user reconverged back onto the original route.  

 

 

(a)                                                                  (b) 

      

Figure 6.8: Examples of return path-matching using projected sequence(a) and hybrid 

matching(b). The way-in path is shown with a thick purple line, ending at the black 

square. The length of each segment is given by the number of steps recorded, multiplied 

by the step length measured during calibration. A gray line shows the actual path of the 

participant during the return phase. Projected sequences are shown with black lines. In 



 

 

 103 

(b), reliable matches are shown as yellow circles. Note that in (a), the length of the 

initial segment appears to be longer than during the way-in, possibly because the walker 

took shorter steps, or took additional steps while looking for a place where to turn. In 

(b), the trajectory is corrected as soon as a new reliable match is found. 

 

6.4 Dataset Description 

Three categories of datasets are used to train the network for detecting the last reliable 

point. They are listed below, and Table 6.1 provides information on the dataset size in 

each dataset. 

 

1. Actual way-in and return paths:  

The paths were taken on the 3rd floor of the Engineering 2 building During the 

return journey, the walker intentionally made wrong turns. Consequently, 

samples corresponding to these off-route segments in the mapped index plot are 

also labeled as unreliable mappings. Figure 6.9 illustrates an example of such a 

path.  

 

Figure 6.9: An example of dataset category 1. The trajectory of the walker. The blue 

line represents the way-in path from point A to point B, while the red line represents 

the return path from point B to point A.  
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2. Generative dataset created by concatenating segments in the buildings: 

This is done by simulating actual way-in and return paths within Engineering 2 

and Natural Science - Interdisciplinary Science buildings. Initially, we recorded 

magnetic field and steps/turns data in the segments, as illustrated in Figure 6.10. 

By concatenating these segments, we generated scenarios for both the way-in 

and return paths. In all paired paths (way-in and return), intentional off-route 

paths were added to create scenarios where the mapped index is incorrect. 

Figure 6.11 is an example of such a pair of paths in the E2 building; a way-in 

path is formed by concatenating segments S1-S2-S6, and the corresponding 

return path is S6-S2-S5-S5(reversed)-S1. 

 

Although the generated pair paths may not exactly replicate the paths walked 

by individuals, this method still provides our model with sufficient data to learn 

the features necessary for identifying the reliability of the mapped index. 
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Figure 6.10: Segments in E2(top) and Natural Science - Interdisciplinary Science 

building (bottom). The red lines indicate the data (magnetic field and steps/turns) were 

recorded in these segments in the building. 

 

 

 

Figure 6.11: An example of the generative dataset. The way-in route spans from point 

A to B, generated by connecting segments S1, S2, and S6. The return route, from point 

B back to A, includes an additional off-route segment, S5, appended. This return route 

is generated by connecting segments S6, S2, S5, S5 (reversed), and S1. 

 

3. Seven visually impaired participants who used our app to navigate three 

paths in BE:  

This is the dataset collected during the user study on the second floor of the BE 

building. Seven visually impaired participants were recruited for this 
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experiment by traveling three routes once (as the way-in phase).  And then at 

the end of the third route, participants were instructed to retrace each route in 

reverse order (as the return phase). Each path contains 4 to 5 turns, with 

distances of 123m, 97m, and 72m, respectively. The defined routes are depicted 

in Figure 6.12, and the details of the data dataset are further discussed in the 

next chapter.  

 

 

(a)                                                          (b) 

 

(c) 
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Figure 6.12: Floor plan of the building with the tested paths highlighted. (a) R1 path; 

(b) R2 path; (c) R3 path. The tested paths are depicted in gray, with the start and end 

points indicated by a square and a star, respectively. 

 

As previously discussed, the system estimates the user’s location by aligning return 

samples with way-in samples, enabling the calculation of positioning errors based on 

misaligned samples. Consequently, the step length information is unnecessary. 

However, to calculate positioning error in meters, datasets in categories 1 and 2 utilize 

a fixed step length (0.54m, which is the average step length of the tester who collected 

the dataset) for user position calculation. For dataset category 3, tests were conducted 

concurrently with another WayFinding app [48]  (developed by other PhD students in 

our lab, the details of the app will be discussed in Chapter 7) capable of estimating the 

user’s step length in the initial step length calibration stage. Thus, the averaged step 

length measured from this app is applied to dataset category 3. 

 

 

 Dataset # 1 Dataset # 2 Dataset # 3 

# of paired paths 12 44 19 

Size of data 4392 32428 9885 

Number of turns 35 109 13 

Table 6.1:Information of the dataset.  
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6.5 Error Metrics 

Two error metrics are defined for the application: one is based on the generated 

trajectory, and the other is based on the accuracy of the generated LRP. This section 

provides detailed information about both metrics. It is important to highlight that we 

conducted a Leave-one-out cross-validation (LOOCV) methodology to evaluate the 

system’s performance.  The dataset from the user study (category 3) serves primarily 

for testing purposes because it is the actual dataset collected from seven visually 

impaired participants. During testing with LOOCV, the model was tested on the “left-

out” participant while being trained using datasets from the remaining participants 

in category 3 with the entire dataset in categories 1 and 2. 

 

6.5.1 Error Metric Based on the Ground Truth  

The error is calculated based on the reconstructed trajectory by each method. Assuming 

the  actual location of the user of the reconstructed trajectory based on the ground truth 

𝐿𝑅𝑃𝑔𝑡 (defined in section 1.2.2) is represented as (𝑥𝑔𝑡,𝑖 , 𝑦𝑔𝑡,𝑖)  and the calculated 

trajectory based on proposed methods, 𝐿𝑅𝑃𝑙𝑜𝑐𝑎𝑙  and  𝐿𝑅𝑃𝑁𝑁  , are represented as 

(𝑥̂𝑖 , 𝑦̂𝑖) where {𝑖|𝑖 ∈ ℤ, 1 ≤ 𝑖 < 𝑀} }, and 𝑀 is the number of steps in the path.  The 

average error on each user’s step can be calculated as follows. 

 

                                                𝐸𝑔𝑡 =  
∑ ||(𝑥̂𝑖,𝑦̂𝑖)−(𝑥𝑔𝑡,𝑖,𝑦𝑔𝑡,𝑖)||

𝑀
𝑖=1

𝑀
                                   (6.1)  

 



 

 

 109 

6.5.2 Correctness of Predicting LRP  

As mentioned in section 1.2.2, the ground truth 𝐿𝑅𝑃𝑔𝑡  was based on the optimally 

matched sequence 𝑆(𝑀)  generated at the end of the return. 𝐿𝑅𝑃𝑔𝑡  serves as the 

reference for comparing LRP determined by other methods. The accuracy of LRP 

determined by different methods is defined using the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
          , 

Where:  

 𝑇𝑃(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒): The number of correctly identified LRP. 

  

𝑇𝑁(𝑡𝑟𝑢𝑒 𝑛𝑎𝑔𝑎𝑡𝑖𝑣𝑒): The number of correctly identified non reliable positions. 

 

1.3 Estimated position in different methods. 

In this section, we compare different methods of finding the LRP and generating the 

user's estimated positions. The error based on the ground truth data, 𝐸𝑔𝑡 , is shown in 

Table 6.2. As mentioned earlier, the neural network models were trained by the whole 

dataset except for the data from the “left-out participant”. The left-out participant was 

only used for testing and was labeled in the first row of the table. It is important to note 

that in the last row of the table, the "default" method refers to considering all mapped 

points as reliable, which corresponds to the original path-matching algorithm described 

in Chapter 3. This default method is represented as 𝐿𝑅𝑃𝐵𝑎𝑠𝑒𝑑𝑙𝑖𝑛𝑒 =

{𝑎𝑙𝑙 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑖𝑛𝑑𝑖𝑐𝑒𝑠} . Additionally, for the "Linearly defined LRP" and 

"Baseline" methods, since no training is involved, the results for each participant 

column represent the corresponding test outcomes directly generated by the methods. 
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Left-out participant P1 P2 P3 P4 P5 P6 P7 

GAT 0.56 1.6 0.90 0.93 0.74 0.95 0.35 

GCN 0.90 3.13 1.07 3.21 0.85 1.09 5.38 

FCN 0.53 1.05 0.68 0.51 0.62 0.24 0.22 

LSTM 1.15 3.12 0.62 1.12 1.50 1.21 2.65 

CONV_1D 0.67 1.66 0.91 1.52 1.09 0.7 0.76 

Linearly defined LRP  1.63 2.68 0.94 0.85 1.12 0.90 2.63 

Baseline 0.82 3.20 1.52 3.64 1.98 1.6 3.62 

Table 6.2: Error calculation (𝐸𝑔𝑡   in meters) relative to ground truth. The two methods 

exhibiting the lowest errors for each left-out participant are highlighted in gray. 

 
 
Test Path P7, path#1 P2, path#3 

GAT  0.63 0.61 

FCN 0.21 0.64 

Linearly defined LRP 4.98 7.63 

Baseline 6.90 5.31 

Table 6.3: Error calculation (𝐸𝑔𝑡  in meters) relative to ground truth for the aborted cases 

in the user study. 

 
 
As illustrated in Table 6.2, FCN demonstrates the highest performance, followed by 

GAT as the second-best model. Therefore, we have selected these two models for 

further comparison to assess their performance in challenging scenarios encountered 

during the user study, specifically the aborted cases that cannot be resolved simply by 

increasing the iDTW window size in the path-matching algorithm. The results of this 

comparison are presented in Table 6.3, indicating a significant reduction in errors 

achieved by both GAT and FCN in these difficult cases, allowing us to provide correct 

guidance to the user. 



 

 

 111 

Regarding the correctness of predicting the LRP, Table 6.4 shows that the FCN network 

has the highest accuracy in most cases. When processing complicated paths, as shown 

in Table 6.5, both FCN and GAT can generate more accurate labels. However, FCN 

remains the better option across various scenarios. 

 

Table 6.4: The accuracy of predicting the labels of the last reliable positions by different 

methods. Note: for the "Linearly defined LRP" and "Baseline" methods, since no 

training is involved, the results for each participant column represent the corresponding 

test outcomes directly generated by the methods. 

 

Test path P7, path#1 P2, path#3 

Linearly defined LRP 0.86 0.85 

GAT 0.98 0.83 

FCN 0.95 0.86 

Baseline 0.15 0.20 

Table 6.5: The accuracy of predicting the labels of the last reliable positions in the 

aborted cases in the user study. 

 
 

Figure 6.13 illustrates reconstructed trajectories using method #1 (linearly defined LRP) 

or method #2(LRP generated by FCN). Near the coordinate (50,30), the walker made 

additional turns, and the system struggled to establish a reliable mapping in subsequent 

steps due to fluctuated magnetic fields. When reconstructing the path using linearly 

Left-out participant P1 P2 P3 P4 P5 P6 P7 

GAT 0.75 0.76 0.87 0.81 0.82 0.70 0.94 

GCN 0.75 0.77 0.77 0.73 0.70 0.74 0.83 

FCN 0.78 0.84 0.89 0.82 0.86 0.79 0.82 

LSTM 0.72 0.72 0.84 0.82 0.67 0.78 0.74 

CONV_1D 0.74 0.81 0.88 0.79 0.75 0.77 0.79 

Linearly defined LRP 0.63 0.79 0.78 0.81 0.82 0.79 0.83 

Baseline 0.72 0.39 0.62 0.52 0.62 0.48 0.44 
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defined LRPs, several incorrect LRPs (false positive LRPs) were identified over time, 

indicated by the green dots near the coordinate (50,15). The resulting trajectory (the 

green path in the lower part of the plot) shows significant misalignment with the 

expected trajectory (the thicker blue line). 

In contrast, when utilizing LRPs determined by a neural network (FCN), no false 

positive LRPs were detected in Figure 6.13 (no black dot near the coordinate (50,15)). 

The LRPs detected near the destination are true positive LRPs. Additionally, the 

misalignment between the projected trajectory (the black line in the plot) and the 

expected trajectory (the blue line in the plot) is reduced. It is noted that although a few 

false positive LRPs were detected at the beginning of the path (near (50,30)) in both 

methods, they did not significantly affect the result.  

Therefore, using the last reliable position provided by neural networks (particularly by 

FCN) reduces the error on constructed trajectory and increases the accuracy of 

identifying LRP. This approach proves advantageous for navigating complex paths, 

particularly in scenarios characterized by fluctuated magnetic fields.  
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Figure 6.13:  Projected trajectory based on the last reliable position determined by 

different methods. (Participant 7, Path#1 aborted case). The return path starts from a 

square and ends in a star. Thick blue line: expected trajectory. Black line: trajectory by 

method#2 (FCN). Green line: trajectory by method # 1(linearly defined LRP).   Black 

and green solid circles: LRPs calculated by method#2 and method #1, respectively. 

Blue solid circles: ground truth for LRP. 

 

6.6 Conclusion 

In the original path-matching algorithm, the issue of changing the best matching 

sequences as more data becomes available during real-time navigation can lead to 

inconsistent mapping and confusing guidance, especially for users without visual cues. 

To address this, an improved algorithm called hybrid matching was discussed in this 

chapter. 

The hybrid matching algorithm introduces the concept of finding a "last reliable 

position (LRP)" to determine the reliability of current mapped positions. Two 

methodologies for identifying LRP were proposed: one based on linear definitions and 

the other utilizing neural networks including fully-connected network (FCN), long 
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short-term memory (LSTM), 1D convolutional network, and graph neural networks 

(GCN and GAT). 

A dataset consisting of three distinct collections from different buildings at UCSC was 

created to evaluate these methodologies. Three error metrics were defined to compare 

these methods and test the system's performance. The results revealed that using the 

FCN network to determine LRP yielded the best outcomes. It demonstrates the 

effectiveness of using neural network-based methodologies, particularly the FCN 

approach, to improve path-matching accuracy. 
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Chapter 7  

 

Experiments with Backtracking Assistance 

 

Navigating unfamiliar environments without a map presents significant 

challenges, particularly for individuals who need visual cues. Our experiments address 

this issue by implementing assisted return, a specific form of indoor navigation, to 

facilitate wayfinding for individuals with blindness. Introduced by Flores and 

Manduchi [21] assisted return involves providing support to guide blind users back to 

their starting point after traversing a specific path. Building upon this concept, we 

developed the SafeReturn app, utilizing path-matching algorithms to enable users to 

record and navigate routes with automatic guidance using their smartphones. 

This chapter begins by introducing the user interface of the SafeReturn app, followed 

by a detailed explanation of the system's notification and navigation features for users. 

Furthermore, a user study involving seven visually impaired participants was 

conducted to evaluate the app's effectiveness, with the findings discussed in this chapter. 

It is important to note that the system implemented in the user study was based on 

section 6.3.1(Linearly defined LRP), where the user's last reliable position was linearly 

identified and utilized for navigation purposes. 
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7.1 User Interface Design 

The SafeReturn app seamlessly integrates with VoiceOver [60], a gesture-based screen 

reader, to provide visually impaired users with an accessible interface on their iOS 

devices. Through VoiceOver, users can navigate the app's screens (storyboard) using 

sound cues and adjust settings to their preferences. Additionally, the app offers Apple 

Watch-based control, enabling users to interact with it and receive guidance while 

keeping their phone in their pocket. 

Furthermore, the interface of SafeReturn is synchronized with another navigation app 

called "WayFinding[48]," developed by other PhD students in our lab . WayFinding is 

also designed for visually impaired individuals to navigate indoor environments where 

maps are available. By synchronizing the interfaces of these two apps, users can 

seamlessly switch between them based on the availability of building maps and their 

specific navigation requirements. This synchronization enhances the user experience 

by providing continuity in navigation across different environments. 

The app's entry screen is depicted in Figure 7.1. The blue "Run Safe Return” button 

lets users start guidance on the main screen. Additionally, users can customize various 

settings by following steps: 

1. Selecting their preferred guidance unit among foot, meter, or number of steps. 

2. Entering their personalized average step length (it can be obtained by the 

WayFinding app in the initial calibration stage.) 

3. Choosing between a 45𝑜 or 90𝑜 turn detector for navigation assistance. 
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It is recommended that the magnetometer be calibrated before starting the navigation 

task for the first time. This calibration process is initiated by tapping the yellow button 

at the top of the main screen, as detailed in the following section. 

 

 

Figure 7.1 : The entry screen of SafeReturn. 

 

7.2 Calibration of Magnetic Field 

As noted in Chapter 4.2.1, the magnetometer is prone to significant drift due to hard 

iron or soft iron interference. Therefore, it is recommended that a one-time 

magnetometer calibration be performed before the user starts the navigation task. This 

calibration process can be quickly completed by rotating the smartphone along the x-

y-z axes or using the conventional "∞" motion-based magnetometer bias calibration 
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method, as referenced in [17]. After calibration, the system will generate a fitted 

ellipsoid and display the residue of the fitted result, enabling users to determine if 

recalibration of the system is necessary. Figure 7.2 shows an example of the calibration 

screen. 

 

Figure 7.2 : The calibration screen of SafeReturn. 

 

7.2.1 Main Screen of SafeReturn 

The main screen, illustrated in Figure 7.3, includes a "Path Selection" scrollable list 

positioned at the top, presenting users with various path names for selection. Our 

application allows users to choose any path before starting their way-in journey without 

requiring prior knowledge of the selected path. However, during the return phase, users 

must select the same path name as their initial choice to ensure accurate matching with 

the corresponding way-in path within the system.  
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Below the "Path Selection" is the "Route Type" button, where users can specify 

whether the route is for way-in or return before starting the route. Another important 

button is located at the lower left corner to start or end the route.  

Under the "Route Type" button, two figures are provided for real-time path-matching 

graph and trajectories visualization. It's important to note that these figures are solely 

intended for debugging by developers and are not accessible to the user.  

As depicted in Figure 7.3, our design simplification emphasizes four primary interface 

components directly accessible to users via VoiceOver: "Path Selected," "Route Type," 

"Start/End," and "Repeat Notifications." The remaining setups, intended for debugging 

purposes, are configured once, and user intervention is not expected. This approach 

maintains simplicity in our interface, reducing disruptions for users. An example of the 

screen during the return phase is shown in Figure 7.4. 
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Figure 7.3 : The main screen of SafeReturn. Black notations: Primary interface 

components directly accessible to users. Gray notations: Components for debugging 

purposes or configured once in the system. 

 

 

Figure 7.4 : Example of the main screen during the return phase. The path-matching 

graph (upper graph) displays colored lines indicating times when turns were detected 

during way-in (horizontal lines) and return (vertical lines). The visualization of 
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trajectories (lower graph) shows the real-time mapped position marked by a solid black 

circle, and the last reliable position is highlighted in yellow. 

 

7.2.2 Watch Gestures for the System 

As mentioned earlier, our goal is to create intuitive gestures for interacting with the app. 

To achieve this, we have developed an app for the Apple Watch, enabling users to keep 

their smartphones in their pockets while engaging with the system, as shown in Figure 

7.5. Below are the primary gestures available in the Apple Watch app: 

 

• Selecting the path: Users can navigate through the path options by swiping left 

or right on the Watch's face. VoiceOver will audibly announce the name of the 

currently selected item from the list . 

• Starting the route: Initiating the route is as simple as rotating the Watch's crown 

in either direction until a distinctive "ding" sound is heard. This signals the 

starting of the route, accompanied by a notification: “Please start walking.” 

• Ending the route: Similar to starting the route, users can end their journey by 

rotating the Watch's crown in either direction until they hear the familiar "ding" 

sound, indicating the conclusion of the route. 

• Repeating last notification: Users can replay the previous notification issued by 

the app at any point during the path by performing a right swipe on the Watch's 

face. 

• Hearing route description: To obtain a comprehensive description of the 

remaining route segments and turns from their current location to the 
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destination, users can perform a left swipe on the Watch's face at any time 

during their journey. 

 

These gestures are designed to enhance user experience and facilitate easy navigation 

and control of the app while on the move. 

 

Figure 7.5: Supported gestures in the Watch app. Before starting the path, users can 

swipe left or right on the Watch face to select a path. During navigation, swiping right 

will repeat the last notification, while swiping left will provide comprehensive route 

information. 

 

7.2.3 Navigation Notifications - Turn-By-Turn Instructions 

In our application, where map information is not available, the turn-by-turn instructions 

serve as the primary method of navigation assistance for visually impaired people. 

These instructions provide step-by-step guidance, helping users navigate themselves. 

These notifications are generated based on the current route and the user's location. 

Specifically, we calculate the distance of the user's location projected onto the 

associated route segment to the next turn point in the reversed way-in direction. 
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Figure 7.6 illustrates the different navigation states a walker may encounter. These 

states are described as follows: 

 

• S0 state: This is the initial state of the user and serves as an intermediate state 

between notifications generated by other states. No notification is generated in 

this state. 

• S1 state: This state indicates that the user has entered a new route segment. The 

notification generated in this state was originally "Walk straight for about XX 

[meters/feet/steps]. Then, turn left/right/approaching destination." However, 

during the user study from P4 to P7, the second sentence of the notification was 

removed. This adjustment aimed to prevent users from making another turn 

before reaching the actual turn point, enhancing navigation accuracy and user 

experience. 

• S3 state: This indicates that the user is close to the next turn point or the 

destination (when the distance is smaller than Z steps). The notification 

generated in this state is "At the coming junction, turn left/right" or 

"Approaching destination." 

• SW state: This state indicates that the user is walking in the wrong direction at 

a distance of more than Z steps from the way-in path. The path recovery 

notification is generated in this state: "You are walking in the wrong direction. 

Please turn around and start walking again." 
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The distance of Z steps (where Z =16 in our system) for defining the S3 and SW states 

was determined through trial and error in our initial experiments. With 16 steps 

defining the S3 state, the user is positioned approximately 8 meters away from the next 

turn junction, based on an average step length of 0.504 meters acquired during the user 

study. This distance provides sufficient time and distance for the user to prepare for or 

locate the next turn junction. Similarly, the number in the SW states indicates that the 

user has deviated from the correct path for a certain distance (8 meters), allowing the 

system to confirm whether the user is truly deviating from the correct path or if it's a 

temporary diversion. In cases of conflicting notifications, such as when the user enters 

a segment and an S1 notification is generated (while the audio is not finished), but they 

are immediately close to the next junction, an S3 notification will be generated. The 

ongoing notification is never interrupted. Additionally, it's important to note that the 

same notification is never repeated. This approach ensures a smooth and uninterrupted 

navigation experience for users, minimizing confusion and enhancing usability. 
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Figure 7.6: The state diagram for providing notifications. 

 

7.3 Experiment – User Study 

The user study was conducted concurrently for two apps: SafeReturn and WayFinding. 

The WayFinding app was developed by other PhD students in our lab (F. Elyasi and P. 

Ren) and they are also the developers of the step detector and turn detector in the 

SafeReturn app. The details about combining two apps in one user study are described 

in the next section. Seven participants were recruited for this experiment. Their 

characteristics are summarized in Table 7.1. All participants were blind with minimal 

to no light perception and were independent walkers. P6 recently transitioned from 

using a dog guide to a long cane and was still adjusting to it. P5 used hearing aids due 
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to hearing impairment. Everyone used iPhones except P7, who preferred a cell phone 

with a physical keypad. Only P1 wore a smartwatch (Apple Watch) regularly. 

 

 Gender Age Blindness 

Mobility 

aid 

Preferred 

Unit 

Phone 

preference Smartwatch 

P1 F 73 L Dog Steps iPhone Apple Watch 

P2 M 69 B Cane Feet iPhone No 

P3 M 53 B Cane Feet iPhone No 

P4 F 69 B Cane Feet iPhone No 

P5 M 75 L Cane Meters iPhone No 

P6 F 76 L Cane Steps iPhone No 

P7 F 72 L Dog Feet 

Phone with 

keypad 

No 

Table 7.1: Characteristics of the participants in our study. For blindness onset, “B” 

indicates “since birth,” while `L' indicates “later in life.” 

 

7.3.1 Experiment Setting 

The experiment was conducted on the second floor of the Baskin Engineering building. 

Three routes (R1, R2, and R3) were selected, each comprising 4 to 5 turns, with 

distances of 123m, 97m, and 72m, respectively. The defined routes are depicted in 

Figure 7.7. 
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(b)                                                          (b) 

 

(c) 

 

Figure 7.7 : The floor plan of the building with the tested paths is highlighted. (a) R1 

path; (b) R2 path; (c) R3 path. The tested paths are depicted in gray, with the start and 

end points indicated by a square and a star, respectively. 

 

In SafeReturn, a way-in route could be potentially traversed with the assistance of a 

sighted companion. In this study, instead of relying on a sighted companion during the 

way-in, participants used the WayFinding app as their guide. The WayFinding app is 
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specifically designed to assist visually impaired individuals in navigating from a 

starting point to a destination, utilizing map information of the building. It's important 

to note that SafeReturn does not utilize map information during the return phase. 

This approach may introduce another level of difficulty, as participants had to navigate 

the way-in path with the assistance of the WayFinding app instead of relying on a 

sighted companion. This could lead to challenges such as navigating to a dummy route 

due to unfamiliarity with the WayFinding app or making additional turns due to 

swinging movements while attempting to locate a single turn point. However, by 

employing this approach, we demonstrated the system's ability to provide guidance in 

real-life situations, reflecting the complexities and challenges visually impaired 

individuals may encounter during navigation. 

The way to combine two apps is as follows.  First, a participant would use the 

WayFinding app to traverse three routes(R1-R2-R3), where the beginning of each route 

coincided with the end of the previous route. During this way-in phase, the SafeReturn 

app (running on a different iPhone, carried by the participant in a different pocket than 

the iPhone running the WayFinding app) recorded measurements (magnetic field, steps, 

turns) from each route. At the end of the third route, participants were instructed to 

retrace each route in reverse order, starting from R3 in the opposite direction. During 

this phase, participants received notifications from the SafeReturn app. 

A separate building was utilized for the practice trial, where participants were 

introduced to both apps. The practice trial route was simpler, consisting of only two 
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turns with a total length of 63 meters. These two buildings were located close to each 

other. 

 

7.3.2 Modalities  

Experimental Procedure 

The experimental protocol followed the guidelines approved by the University's 

Institutional Review Board, ensuring ethical conduct throughout the study. Prior to 

participation, each participant provided informed consent and received a 

comprehensive explanation of the applications' objectives and functionalities. 

Participants were encouraged to seek clarification on any uncertainties. 

Special emphasis was placed on the notification system, ensuring participants were 

aware of upcoming turn alerts with advance notice. It was explained that upon receiving 

a notification, they were required to identify the nearest available turn, which could be 

in their proximity or a few meters down the way. 

 

Initial Setup and Calibration 

Following the introductory phase, participants underwent a simple calibration process 

outlined in 7.2. Subsequently, they were accompanied to the starting point of the 

practice trial. Each participant carried two iPhones in their pants pocket: one iPhone 12 

running the WayFinding app, and the other an iPhone XR (running the SafeReturn app) 

recording way-in data. Participants also wore a wireless bone conduction headset 
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(Shokz OpenRun) to receive app notifications and an Apple Watch Series 8 to interact 

with the app. 

Before starting the practice trial, settings such as VoiceOver speed and sound volume 

were adjusted to suit participant preferences. Additionally, participants were given the 

option to choose distance units for directions (meters, feet, or steps), with settings 

adjusted accordingly (see Table 7.1). It is important to note that the SafeReturn app 

initially provided distances solely in steps due to implementation oversight for the first 

three participants (from P1 to P3). 

 

Practice Trial and Familiarization 

Participants were guided through familiarization exercises, including practicing left 

and right swipes on the Watch interface. While all participants eventually mastered this, 

P2 initially struggled due to misinterpreting directional cues. 

During the practice trial, the participants traveled a predefined route using the 

WayFinding app, followed by backtracking the path using the SafeReturn app. At the 

end of the practice trial, participants were asked about their preference regarding the 

sound of detected footsteps. All participants opted to retain the footstep sound, with 

some mentioning that it reassured them about the system’s proper functioning. 
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(a)                                          (b) 

Figure 7.8: Participants interact with the Watch to start the test route. 

 

Main Experiment Procedure 

Upon completing practice trials, participants and experimenters relocated to the 

designated experiment site, starting from the initial route (R1) point. The sequential 

trials, detailed in section 7.3.1, were initiated. At the beginning of each trial, 

participants were positioned at the route’s starting location and oriented in the initial 



 

 

 132 

walking direction. They then selected the next route via the Watch interface and 

activated the app by rotating the crown, as shown in Figure 7.8. 

Participants were instructed to swipe left on the Watch to hear a route description 

before navigation. Upon reaching the destination, participants stopped the app by 

rotating the Watch’s crown. Optional rest periods were provided before starting 

subsequent trials, during which participants were repositioned at the next route’s 

starting point (same as the previous route’s endpoint) and correctly oriented. 

Throughout the trials, experimenters maintained a safe distance from participants to 

avoid influencing routing decisions. 

 

Post-Experiment Procedures 

Following the final trial, participants and experimenters returned to the initial building, 

where participants completed a questionnaire comprising the ten System Usability 

Scale (SUS) questions and several open-ended inquiries [61]. 

 

7.3.3 Observation and result 

Successful Trials and Performance 

Figure 7.9 and Figure 7.10 show examples of successful trials with the SafeReturn app 

and Table 7.2 outlines the duration of these successful route traversals. In addition, 

Figure 7.11 demonstrates a situation where the participant took the wrong path. Then, 

the app was able to provide notifications for path recovery, and the participant walked 

back as directed by the app. 
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In these visualizations (Figure 7.9 and Figure 7.10), the way-in route (depicted with a 

thick purple line) consists of segments whose length is determined by multiplying the 

number of steps taken in each segment by the step length calculated during initial 

calibration. Consequently, these segments may not precisely align with the corridors 

depicted in the floor plan. However, this disparity does not affect the app's functionality, 

as the SafeReturn app aims to match the walker's location during the return with their 

location during the way-in, ensuring correct guidance notifications. Therefore, the 

metric consistency with the floor plan is not crucial for our purposes. 

During the study, there were several situations in which the walker took extra loops 

during the way-in phase. Our way-in simplification method, discussed in section 3.1.1, 

effectively removed these loops. Figure 7.12 illustrates the result of the way-in 

simplification. While our method could remove the loops and preserve the path's 

geometry, there were instances where the length of the simplified way-in path differed 

significantly from the actual path length, as explained later in this section, resulting in 

the unsuccessful matching of the return path. Figure 7.12  (a) and (b) show the 

optimized way-in paths for both scenarios. 
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(a) 

 

(b) 

Figure 7.9: Examples of successful backtracking trials (hybrid matching). (a): Route 

R2 for participant P5. (b): R1 for P4. Left panel: The way-in path is shown with a thick 

purple line ending at the black square. The length of each segment is given by the 

number of steps recorded, multiplied by the step length measured during calibration. 

The actual path of the participant during the return phase is shown by a gray line. 

Reliable matches are shown as yellow circles. Projected sequences are shown with 

black lines. Right panel: Magnetic discrepancy for all pairs (𝑖, 𝑗) of samples from way-

in (vertical axis) and return (horizontal axis). Lighter gray indicates a larger 

discrepancy. 

 

 

 

(a) 
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(b) 

Figure 7.10: See caption of Figure 7.9 (a): path R1, participant P2. (b): path R2, 

participant P2. Highlighted are situations in which the participant took a wrong path 

and then walked back as directed by the app. 

 

 

 

(a) 
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(b) 

Figure 7.11 : Path recovery in the highlighted route for Figure 7.10 (a). Top: P2 was 

trapped in alcove path 1; Bottom: After receiving guidance from the system, P2 was 

able to walk back on the correct route.  

 

 

(a) 

(b) 

Figure 7.12 : Examples of successful (a) and unsuccessful (b) way-in path 

simplification. The left panels depict the original way-in path with a thick purple line, 
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ending at the black square, alongside the approximate actual path taken by the walker 

(measured from the video), shown with a gray line. The right panels display the 

simplified way-in paths. 

 

 P1 P2 P3 P4 P5 P6 P7 Length 

R3B 180 x 115 134(E) 136 x x 72m 

R2B 182 (E) 232 x 238 173 154 149 97m 

R1B 187 206 149 167 x,163(E) 184 x, x 123m 

Table 7.2: Summary of the experiment for the WayFinding and SafeReturn routes. For 

successfully completed routes, we report the duration (in seconds). When displayed 

with a grey background, the participant missed one or more turns, or took a wrong turn, 

but was able to walk back and complete the route with guidance from the app. E: the 

route was completed, but verbal input from an experimenter was needed at some point. 

x: The trial had to be aborted due to the app's inability to track the participant. In two 

cases, a second attempt was made after a trial had been aborted. 

 

On the other hand, six trials with the SafeReturn app were aborted due to tracking 

failures during the return route. Here is the analysis in each case: 

 

• Participant P3 in path R2: The system alerted the participant about an upcoming 

turn ahead of time, but the participant made a wrong turn despite this. Although 

the app recognized this mistake and sent a "turnaround" notification to guide 

P3 back on track, he didn't follow it. P3 thought he knew the right way and 

continued walking in the wrong direction, believing he remembered the route. 

As he moved farther from the correct path, the app lost track of his location 
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because it mistakenly mapped P3’s off-route position to an on-route position 

due to the similar magnetic field in different places.  

 

• Participant P7 in path R1: P7, accompanied by a fast and confident dog, missed 

a turn due to her swift pace (Figure 7.14(a)). When she was notified to turn 

around, she was too far down the corridor. Although she attempted to turn 

around and return to the correct path, the system lost track of her due to the 

smaller size of the iDTW search window in the system's setup. Consequently, 

our current system has adopted a larger iDTW searching window setup to 

prevent similar occurrences in the future. 

 

• Participant P5 in path R1: Initially unable to complete R1B, P5 veered off 

course and took multiple incorrect turns in an open space (Figure 7.14 (a)). 

After aborting the trial and starting a new one, P5 successfully completed the 

route by following the initial route description provided via the Watch interface. 

 

• Participant P7 in path R3: P7 took several detours during the initial path, 

creating multiple loops. Figure 7.12(b) shows that our algorithm removed these 

loops and simplified the path while maintaining correct geometry. However, 

the first segment of the simplified path turned out to be significantly shorter 

than in the original path. This difference led to an unsuccessful backtracking 

trial. 
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• Participants P2 in path R3 and P6 in path R3: The main issue was a significant 

difference in the magnetic field readings. This issue is apparent in Figure 7.13, 

where the magnetic field discrepancies between pairs (𝑖, 𝑗) of samples from the 

way-in (vertical axis) and return (horizontal axis) are displayed. A white 

horizontal line around the way-in sample index 120 and nearby samples 

indicates a significant difference in the magnetic field recorded at that location 

compared to any location during the return. 

 

These analyses provide insights into the factors influencing trial outcomes and offer 

suggestions for enhancing the system’s performance, as discussed at the end of this 

chapter. 

 

Figure 7.13: See caption of Figure 7.9. Path R3, participant P6. In this case, the app 

failed to track the participant. The gray star represents the point at which the trial was 

aborted; the black star is the desired destination. 
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                       (a)                                      (b) 

Figure 7.14: Pictures of our participants during the trial. (a): P7 ’s guided dog kept 

walking straight and missed the turn (path R1) (b): P5 veered off course on the first 

attempt in an open space (path R1) 

 

7.3.4 Final Questionnaire and Open-Ended Questions  

Table 7.3 shows the participants' responses to the System Usability Scale (SUS) 

questionnaire [48]. The overall score was 80.36, corresponding to a percentile rank of 

90% based on the distribution of scores reported in [62]. It's noted that participants 

responded to both the SUS questions and open-ended questions for the WayFinding 

and SafeReturn apps rather than providing separate responses for each app. 

 P1 P2 P3 P4 P5 P6 P7 Mean 

1. I think that I would like to use this system frequently. 3 4 1 5 5 5 4 3.86 

2. I found the system unnecessarily complex. 2 1 1 2 2 4 1 1.86 

3. I thought the system was easy to use. 4 4 5 5 5 5 5 4.71 
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4. I think that I would need the support of a technical 

person to be able to use this system. 

1 1 1 1 4 3 1 1.71 

5. I found the various functions in this system were well 

integrated. 

4 2 1 5 4 5 5 3.71 

6. I thought there was too much inconsistency in this 

system. 

3 3 1 1 2 4 1 2.14 

7. I would imagine that most people would learn to use this 

system very quickly. 

3 3 5 4 5 5 5 4.29 

8. I found the system very cumbersome to use. 2 1 1 1 2 1 1 1.29 

9. I felt very confident using the system. 4 4 3 5 4 5 5 4.29 

10. I needed to learn a lot of things before  2 1 1 2 1 4 1 1.71 

Table 7.3 : System Usability Scale (SUS) responses. 

 

Below are the open-ended questions and a summary of the responses: 

Do you think that the system always knew your location?  

Most participants responded affirmatively, stating that the system accurately identified 

their location most of the time. However, both P2 and P3 answered "No." According 

to P2, there were instances when localization was inaccurate. Meanwhile, P3 noted that 

localization seemed to be influenced by individual walking styles. 

 

Do you think that the system gave you the correct directions?  
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The majority of participants thought the system gave the right direction. However, P2 

thought it was mostly accurate, similar to P1, who said it was right about 80% of the 

time. 

 

The system often gives turning directions (such as “At the coming junction, turn 

right”) with some advance notice, which means that you need to find the turn 

using your cane/dog. Was this a problem for you?  

Participants generally stated that this was not a problem with the advance turning 

notifications, but some suggested they could be more consistent and accurate. For 

example, P4 mentioned a problem she had once with making a turn too early. P6 said 

it would be better if the notifications always came at the same distance from the 

junction. However, the system could not support this feature due to localization 

accuracy. P7 pointed out that this was the only part of the system that didn't meet her 

expectations for accuracy. 

 

Were the notifications understandable? Too many notifications? Too few? 

All participants found that the notifications were "fine" or "just right." P2 explained 

that it gave him an approximate distance to the next turn and alerted him just before the 

turn. 

 

Was it easy for you to use the Watch? 
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Most participants found using the Watch easy, though P2 mentioned it required some 

practice to become accustomed to the gestures. 

 

What would you like to have in this app that is not already there?  

P5 mentioned the desire to know their current facing direction, which would be helpful 

when feeling lost. P3 suggested the option to scroll through route descriptions step by 

step, noting that the current implementation only allows a left swipe to view the 

remaining route without pausing to review each step. 

 

Did you notice any difference between the WayFinding system and the 

BackTracking system (SafeReturn)?  

Participants found both WayFinding and SafeReturn apps to be consistent, though P2 

and P3 noted differences in the unit, which was later corrected. 

 

Do you think that using this app would make you feel safer or more confident 

when traveling alone in a new place? 

Participants expressed confidence in using the apps for traveling in unfamiliar places, 

highlighting benefits such as enhanced safety and reduced mental effort. P3, however, 

mentioned considering the SafeReturn app's potential use in navigating busy 

environments like conferences with numerous tables, where it could aid in returning to 

a specific location, such as a table after visiting the restroom. They discussed various 
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scenarios where the apps would improve navigation and boost confidence in diverse 

settings. 

 

Overall, participants found the apps helpful for navigation, with positive feedback on 

providing the right directions and the ability to create mental maps of routes. 

 

7.4 Discussion & Conclusion 

We conducted a user study involving seven blind participants who provided invaluable 

real-world feedback on the system's performance. Overall, our SafeReturn app 

functions effectively when users adhere closely to the way-in path. However, the 

algorithm encounters challenges when users deviate significantly from the original 

route, leading to mismatches. Another issue arises from the spatial variability of the 

magnetic field within large corridors or hallways, which can cause mismatches when 

the user walks on a different trajectory within the same space during the return phase. 

Therefore, improvements are necessary to enhance the system's robustness in practical 

scenarios. 

One essential improvement is to increase the system's iDTW window size. This 

adjustment will enable our path-matching algorithm to identify the mapped points after 

the walker returns to the correct path following significant detours. Additionally, given 

that the system implemented in the user study was based on section 6.3.1(Linearly 

defined LRP), integrating a neural network to detect the LRP could enhance location 

reliability, as discussed in section 6.3.2. 
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Moreover, ensuring that the walker's facing direction aligns correctly in open spaces is 

crucial for accurate navigation, especially at the beginning of the return phase. If the 

facing direction is misaligned with the hallway, the walker may struggle to locate the 

next turn points. One potential solution, which is currently being explored by another 

colleague in our lab (for the WayFinding app), involves using visual data, such as 

automatic landmark recognition [63], for sporadic "fixes" using computer vision 

techniques. In our assisted return application, this concept can be implemented as 

follows: at the end of the way-in path, the walker uses their smartphone camera to 

capture surroundings. Then, at the start of the return path, the system aligns the user's 

orientation by matching current surroundings with the previously captured visual 

information. After that, the user may move the smartphone back to their pocket and be 

tracked by our system. 

Furthermore, during the process of simplifying the way-in path to remove redundant 

loops, it would be beneficial to acquire detailed step-length information for each step 

instead of using a fixed step length for all steps. This approach would result in a more 

realistic, simplified way-in route. Implementing a step-length estimator developed by 

another colleague in our lab can facilitate this enhancement [12]. 

By addressing these areas of improvement, we can enhance the functionality and 

usability of the system, ultimately providing a more reliable and seamless navigation 

experience for blind users in real-world environments. 
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Chapter 8  

 

Conclusion 

  

Wayfinding in an unfamiliar environment could be challenging and potentially 

unsafe for visually impaired people because it is difficult to recognize landmarks at a 

distance or any other visual information.  

This thesis focuses on addressing this issue through the implementation of assisted 

return, a specific form of indoor navigation aimed at facilitating wayfinding for visually 

impaired individuals [21][7]. When a map of an indoor environment is not available, 

an assisted return system is designed for a visually impaired walker who has traversed 

a certain way-in route (possibly with the aid of a sighted companion) to traverse the 

same path in reverse (return).  

We proposed a graph-based algorithm that leverages magnetic field data and inertial 

data (turns/steps) information to backtrack a walker's position when the map is 

unavailable (Chapter 3). Additionally, the algorithm addresses situations where the 

walker deviates from the intended path. Also, a straightforward approach to simplify 

the way-in route is introduced, which is suitable for some real-life scenarios where the 

walker might take extra loops during the way-in phase. We also investigated using the 

differences in magnetic fields between mapped locations (the "cost of magnetic field") 
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in our algorithm by studying the likelihood of the observed magnetic field (Chapter 4). 

Then, we tested the algorithm with the WeAllWalk dataset to compare the odometry 

systems based on steps/turns information. The analysis revealed that the 𝑘 ⋅ 90𝑜+ steps 

odometry provides better results (Chapter 5). 

Furthermore, we developed an iOS app and conducted on-site testing to assess its 

performance. However, certain limitations arise in scenarios where the magnetic 

signature is unreliable. Therefore, we propose a hybrid matching approach by 

introducing the concept of LRP to enhance the system's performance and achieve more 

robust results (Chapter 6). 

To evaluate these methods in real-world scenarios, we developed the SafeReturn app 

(based on the linearly defined LRP), featuring an intuitive interface integrated with the 

Apple Watch. We conducted a user study involving seven visually impaired 

participants (Chapter 7). The positive usability scores from the System Usability Scale 

(SUS) responses indicate overall satisfaction with the design. However, the fact that 6 

out of 21 trials had to be aborted highlights several challenges in the current system. 

Consequently, we have proposed several improvements for the system 

One challenge is to improve the system's ability to accurately track the user's position 

with similar magnetic fields across different locations. Implementing solutions such as 

using neural networks to detect a reliable mapping (i.e., detecting LRP) instead of the 

linearly defined LRP could significantly enhance location reliability, as discussed in 

section 6.3.1. 
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Another challenge is the requirement for users to begin a route from a specific starting 

point and maintain a predefined direction. To address this, a potential solution currently 

under investigation by another PhD student in our lab (for the WayFinding app) 

involves implementing periodic "adjustments" using computer vision techniques. This 

concept involves capturing the surroundings with a smartphone camera at the end of 

the way-in path and then aligning the user's orientation at the start of the return path 

using this visual information. Afterward, the user can put the smartphone back in their 

pocket and continue to be tracked by our system. 

Furthermore, the system assumes that indoor environments consist of networks of 

corridors intersecting at certain angles (e.g., 90𝑜 or 45𝑜). Its performance degrades 

when the intersecting angles deviate from these angles. Moreover, using the system in 

open spaces presents challenges, as magnetic field data is recorded for specific paths 

during the way-in phase, making it difficult to match magnetic sequences during the 

return phase when the walker’s position is not confined to a specific corridor. Potential 

solutions to these challenges include placing a stronger emphasis on steps/turns 

information in open spaces. However, this approach may encounter issues if the 

walker's step length varies significantly. Alternatively, leveraging computer vision 

techniques to periodically adjust the walker's position using the camera can improve 

system performance in this situation. However, this adjustment process should be 

designed to minimize the need for the walker to hold the phone constantly. This 

approach has the potential to enhance the system's performance and usability. 
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Another challenging scenario during the user study was that users took too many extra 

loops in the way-in path. During the process of simplifying the way-in path to remove 

redundant loops, the simplified path sometimes became much shorter than the actual 

path, resulting in inaccurate way-in paths for us to match the return path to. As a result, 

we had to abort some of the tests for this reason. To resolve this issue, it would be 

beneficial to acquire detailed step-length information for each step instead of using a 

fixed step length for all steps. When users take extra loops during the way-in phase, 

this approach can generate more realistic and simplified routes. Adding a step-length 

estimator into the system developed by another PhD student in our lab can facilitate 

this enhancement [12]. 

Despite these challenges, positive feedback and SUS scores indicate that participants 

felt safer and more confident while using the app. It validates the potential of our 

proposed technology for providing assisted return for visually impaired individuals.  
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APPENDIX: PARAMETERS IN PATH-MATCHING ALGORITHM 

Parameter Name Description Default 

Cts (e in app setup) Turn suppression cost. 100 

C𝑚𝑜 (d in app 

setup) 

Mis-orientation cost. 5 

C𝑠𝑡𝑠1−𝑜𝑓𝑓  

(e2 in app setup) 

Cost for changing status from on-route nodes 

to off-route nodes. 

30 

C𝑠𝑡𝑠2−𝑜𝑓𝑓  

(e4 in app setup) 

Cost for changing status from off-route nodes 

to off-route nodes. 

8 

C𝑠𝑡𝑠−𝑟𝑒𝑣  Cost for changing status from off-route nodes 

to reversed-route nodes. 

60 

𝛼  

(alpha in app 

setup) 

For calculating 𝐶𝑀𝐹_𝑜𝑓𝑓(𝑖,𝑗). 2 

𝑚𝑎𝑔_𝑡ℎ𝑟𝑒𝑠 

(mag_bound in app 

setup) 

Threshold of the cost from the magnetic field 

for the off-route nodes. 

40 

Weight  

(Magnetic Field) 

Weight for magnetic field during cost matrix 

calculation for path matching. 

1/7.75 

Path-Matching 

window size 

This is the window size for path matching 

algorithm. 

600 
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