
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
SafeReturn: An Integrated Indoor Backtracking System for Visually Impaired People

Permalink
https://escholarship.org/uc/item/0q6762gt

Author
Tsai, Chia Hsuan

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0q6762gt
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

SAFERETURN: AN INTEGRATED INDOOR BACKTRACKING

SYSTEM FOR VISUALLY IMPAIRED PEOPLE

A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Engineering

by

Chia Hsuan Tsai

June 2024

 The Dissertation of Chia Hsuan Tsai

 is approved:

 Dr. Roberto Manduchi, Chair

 Dr. James Davis

 Dr. Marcella Gomez

Peter Biehl

Vice Provost and Dean of Graduate Studies

Copyright © by

Chia Hsuan Tsai

2024

 iii

Table of Contents

CHAPTER 1 INTRODUCTION... 1

CHAPTER 2 RELATED WORK ... 8

2.1 Wi-Fi Based Indoor Positioning ... 8

2.2 BLE-Beacon Based Indoor Positioning .. 9

2.3 Inertial Sensor-Based Indoor Localization ... 9
2.3.1 Strapdown Inertial Navigation .. 10
2.3.2 Pedestrian Dead Reckoning (PDR) ... 10

2.4 Learning-Based Odometry .. 11

2.5 Magnetic Field Indoor Positioning ... 11

2.6 Assisted Return System .. 14
2.6.1 Inertial Sensor-Based Assisted Return.. 16
2.6.2 Visual Odometry-Based Assisted Return ... 17

CHAPTER 3 PATH MATCHING ALGORITHM ... 18

3.1 Path Reconstruction for the Way-in Route ... 20
3.1.1 Path Simplification for the Way-in Route .. 21

3.2 Review: DTW and iDTW ... 30

3.3 Path-Matching Algorithm ... 32
Projected Return Sequence ... 33
Sequence Alignment ... 35

3.4 Off-Route and Reversed-Route Detection .. 43
3.4.1 Off-Route Detection.. 45
3.4.2 Reversed-Route Detection .. 48

3.5 Error Metrics ... 52

3.6 Conclusion .. 53

 iv

CHAPTER 4 .. 55

PATH-MATCHING ALGORITHM: MAGNETIC FIELD 55

4.1 1D/2D/3D Magnetic Field .. 56

4.2 Magnetic Field’s Characteristics... 58
4.2.1 Magnetometer Calibration .. 59
Soft Iron Distortion ... 60
Hard iron Distortion .. 61

4.3 Cost of Magnetic Field.. 63

4.4 Conclusion .. 71

CHAPTER 5 PATH-MATCHING ALGORITHM: EXPERIMENT WITH

WEALLWALK DATASET AND ON-SITE TEST ... 73

5.1 Comparing Path Odometry Algorithms for Assisted Return – WeAllWalk

Experiments .. 73

5.2 SafeReturn App - User Interface for Evaluation... 79

5.3 On-Site Test .. 80

5.4 Conclusion .. 86

CHAPTER 6 ENHANCED PATH-MATCHING ALGORITHM: HYBRID

MATCHING WITH LAST RELIABLE POSITION .. 87

6.1 Last Reliable Position (LRP) .. 87

6.2 Notation... 92

6.3 LRP in the Path-Matching Graph ... 93
6.3.1 Linearly Defined LRP ... 94
6.3.2 LRP Determined through Machine Learning ... 97
6.3.3 Projected Positions Based on LRP .. 101

6.4 Dataset Description ... 103

6.5 Error Metrics ... 108
6.5.1 Error Metric Based on the Ground Truth .. 108
6.5.2 Correctness of Predicting LRP.. 109

 v

6.6 Conclusion .. 113

CHAPTER 7 EXPERIMENTS WITH BACKTRACKING ASSISTANCE 115

7.1 User Interface Design ... 116

7.2 Calibration of Magnetic Field ... 117
7.2.1 Main Screen of SafeReturn ... 118
7.2.2 Watch Gestures for the System ... 121
7.2.3 Navigation Notifications - Turn-By-Turn Instructions 122

7.3 Experiment – User Study .. 125
7.3.1 Experiment Setting.. 126
7.3.2 Modalities ... 129
7.3.3 Observation and result .. 132
7.3.4 Final Questionnaire and Open-Ended Questions 140

7.4 Discussion & Conclusion .. 144

CHAPTER 8 CONCLUSION ... 146

BIBLIOGRAPHY .. 150

APPENDIX: PARAMETERS IN PATH-MATCHING ALGORITHM 160

 vi

List of Figures

Figure 1.1: A hypothetical path of a blind patient for a doctor’s appointment. The

patient begins at the waiting room (marked by a star) and is guided by the

receptionist to the doctor’s office (marked by a square). After the appointment,

the patient retraces the route back to the waiting room (from the square to the

star). .. 4

Figure 2.1: An example of a magnetic map [40]. The colored area indicates the

different intensity of the magnetic field. ... 14

Figure 2.2: An illustration of an indoor path typical for an assisted return system. This

path comprises a series of straight segments connected by left or right turns [21].

... 15

Figure 3.1: An example of assisted return. The blue line is the way-in path, and the

red line is the return path. The way-in path starts from A to B, and the return

path starts from B to A. ... 19

Figure 3.2: Examples of way-in paths depicted as 2-D polylines (thick blue lines)

plotted on a building floorplan, with start points indicated by squares and

endpoints by stars. ... 21

Figure 3.3: Two examples of additional paths. (a) paths with a closed loop; (b) paths

with an open loop. ... 22

Figure 3.4: An illustration of simplifying the way-in path by removing a closed loop

(a) The detected way-in path with a closed loop (b) An intersection 𝒗𝟔 is

 vii

identified between edges 𝒗𝟏, 𝒗𝟐 and𝒗𝟒, 𝒗𝟓. (c) The shortest path from the start

point 𝒗𝟏 to endpoint 𝒗𝟓 is shown in blue. ... 24

Figure 3.5: An illustration of simplifying the way-in path by removing an open loop

(a)detected way-in path with an open loop (b) a projected point 𝒗𝟔 is identified

from 𝒗𝟒 to segment 𝒗𝟏,𝒗𝟐 (c) The shortest path from the start point 𝒗𝟏 to

endpoint 𝒗𝟓 is shown in blue. The shaded path is the eliminated edges after way-

in simplification. ... 26

Figure 3.6: A situation where an open loop should not be simplified, the brown area

represents a wall blocking the direct path from the turning point (black dot).

However, this obstruction results in a larger distance D, which will not be

simplified by our method. ... 26

Figure 3.7: Another example of a redundant path with an open loop. The nearby

vertices 𝒗𝟐 and 𝒗𝟔 can be merged. .. 27

Figure 3.8: The alignment of two time sequences, blue and red lines. 31

Figure 3.9: Matching the magnitude of magnetic field before and after DTW. Top: the

blue line is the magnitude of magnetic field recorded in a path at an earlier time

with known positioning information, called the “way-in” path. Middle: The red

line is the magnitude of magnetic field collected later, called the “return” path.

Bottom: aligned way-in and return sequences after applying DTW (blue: way-in;

red: return). .. 31

Figure 3.10: Examples of real-life challenges in the way-in and return paths. Red

lines: projected return trajectory. Blue line: way-in trajectory. The start and end

 viii

points for the way-in path are indicated by a square and a star, respectively. In

this simplified representation, the length of each segment is equal to the number

of steps (a) In an ideal situation, the path can be easily matched by finding the

closest positions in the way-in and return polylines. The matched positions are

shown in blue and red dots, respectively. (b) The walker takes a longer step

length during return, resulting in fewer steps and shorter lengths in each segment

of the polyline. (c) The first turn during the return was not detected. 34

Figure 3.11: The connections of node (𝒊, 𝒋) in graph 𝓖 . x-axis in the sample indices

during the return and y-axis in the sample indices during the way-in. 37

Figure 3.12: An example illustrating magnetic field discrepancies (intensity bar

displayed on the right, unit in 𝝁𝑻) for all nodes in the graph 𝓖. 38

Figure 3.13: The layered graph. The x-axis represents the sample indices in the return

route, while the y-axis represents the sample indices in the way-in route. 42

Figure 3.14: Edge connections for node (𝒊, 𝒋, 𝟎) between layers when a turn (𝒌 = 𝟏)

occurs during way-in... 42

Figure 3.15: Edge connections for node (𝒊, 𝒋, 𝟎) between layers when a turn (𝒌 = −𝟏)

occurs during return. ... 43

Figure 3.16: Path recovery after off-roue is detected. The return path starts from B to

A. (a) Off-route (yellow path) and the following reversed-route (brown path) are

properly detected. Path recovery is successfully executed in this scenario. (b)

Without the mechanism of detecting a reversed-route status, the user makes the

second U-turn too early and is unable to be back on the correct path. 45

 ix

Figure 3.17: Relationship between 𝑪𝑴𝑭𝒐𝒇𝒇𝒊, 𝒋 and 𝑪𝑴𝑭𝒊, 𝒋 . In this example,

𝒎𝒂𝒈𝒕𝒉𝒓𝒆𝒔 is set to 40. .. 47

Figure 3.18: Additional connections to the node 𝒊, 𝒋, 𝟒 (layer 4) in the off-route layer.

Blue nodes indicate nodes in the off-route layer (layer 4). 𝑪𝒔𝒕𝒔𝟏𝒐𝒇𝒇𝒊, 𝒋 applies

to blue edges and 𝑪𝒔𝒕𝒔𝟐𝒐𝒇𝒇𝒊, 𝒋 applies to the red edges. 48

Figure 3.19: An example of the mirrored magnetic field signatures indicating

reversed-route. Blue: magnetic field detected during the way-in. Red: magnetic

field detected during the return. The magnetic field of the user being reversed-

route is marked by the dotted-dashed ellipse, and the corresponding magnetic

field in the way-in path is marked by the dashed ellipse on the left side of the

figure. .. 50

Figure 3.20: Extra edges from reversed-route node𝒊, 𝒋, 𝟐. 𝑪𝒔𝒕𝒔𝒓𝒆𝒗 applies to the red

edges. .. 50

Figure 3.21: In this example, a 90-degree turn was detected at the time instant j, and

extra edges are created for node (i,j,2). 𝑪𝒔𝒕𝒔𝒓𝒆𝒗 applies to the red edges. 51

Figure 3.22: An illustration of segments to approximate the walker’s location at each

time. The start and end points for the path are indicated by a square and a star,

respectively. There are three segments (blue, pink, and green) in the overall path.

To approximate the walker’s location at each time, the time that the walker

entered/exited each segment was recorded and then interpolated by the location

of the data points. .. 53

Figure 4.1: Prior research about the variance of the magnetic field over time [51]. .. 59

 x

Figure 4.2: Comparing the variance of magnetic field while walking at a different

distance from the wall in a hallway. Blue line: 30 cm from the wall. Red line: 60

cm from the wall. Purple line: 120 cm from the wall. .. 59

Figure 4.3: The x-y axis plot depicts soft-iron distortion in magnetometer readings.

When the magnetometer is rotated along the z-axis, the black-dashed circle

represents the ideal magnetic field in the x and y directions. However, soft-iron

distortion makes the uncalibrated data align more closely with an elliptical shape

(blue line). ... 61

Figure 4.4: The xy-axis plot depicts hard-iron distortion in magnetometer readings.

When the magnetometer is rotated along the z-axis, the ideal magnetic field

orientation in the x and y directions should be centered at the origin (represented

by the black dashed circle). However, the uncalibrated data may exhibit a

significant bias due to hard-iron distortion, as indicated by the blue circle. 62

Figure 4.5: The magnetic field during calibration by rotating 360 degrees along all

three axes. Blue: data before calibration. Black: data after calibration. The

yellow dot indicates the origin point. .. 63

Figure 4.6 : Magnetic field measurements along the corridor. (a)The shaded areas

represent the walls. The pink line represents the group of positions in the middle

of the hallway, while the dashed lines indicate positions closer to the wall. The

green highlighted area illustrates the same positions along the corridor but at

varying distances from the wall. (b) 𝑴𝒉. (c) Measured 𝑴𝒈. For (b) and (c), the

solid line is the data collected along the middle of the corridor, the dashed line is

 xi

the data collected along the left side of the hallway, and the dotted line is the

data collected along the right side of the hallway. .. 67

Figure 4.7: Hallways (red lines) where magnetic field histograms were collected. (a)

The hallway on the 2nd floor of BE building at UCSC. (b) The hallway in a local

office building ... 68

Figure 4.8: The histogram of the norm of the difference in magnetic field fitted by

different PDF functions. Solid line: Exponential distribution. Dotted line:

Inversed Gaussian. Dashed line: Rayleigh Distribution. (The histogram has been

normalized to unit area) .. 70

Figure 4.9: Histogram of magnetic field difference in public dataset. (The histogram

has been normalized to unit area.) .. 71

Figure 5.1: One of the six paths from the WeAllWalk dataset. The path begins at the

square and ends at the star [22]. .. 74

Figure 5.2: The best matching sequence for two walkers, one using a dog guide and

the other using a long cane. The colored rectangles represent the entry and exit

time of each “segment,” as marked in WeAllWalk. The ‘+’ signs represent 𝟗𝟎𝒐

turns. Red line: 𝒌 ⋅ 𝟗𝟎𝒐+ steps (mean error: 0.8 s); Gray line: baseline (mean

error: 27.1 s); Green line: 𝒌 ⋅ 𝟒𝟓𝒐+ steps (mean error: 0.8 s). The horizontal and

vertical lines show 𝟗𝟎𝒐 (dashed) turns detected during way-in and return,

respectively. Bottom: the reconstructed paths by the 𝒌 ⋅ 𝟗𝟎𝒐+ steps odometry

(without using the path-matching algorithm to match the return samples to way-

in samples) plotted on the building map. Solid line: way-in path. Dotted line:

 xii

return path. The way-in path starts from a square and ends in a star. The actual

path taken by the participants is shown in Figure 5.1. .. 76

Figure 5.3: The top plot represents the best matching sequence with the 𝒌 ⋅ 𝟒𝟓𝒐+

steps algorithm for two walkers, both using a long cane. The colored rectangles

represent the entry and exit time of each “segment,” as marked in WeAllWalk.

The ‘+’ sign represents 𝟗𝟎𝒐 turns, while the ‘*’ sign represents a 𝟒𝟓𝒐 turn.

Purple line: 𝒌 ⋅ 𝟒𝟓𝒐+steps (mean error: 2.72 s). The horizontal and vertical lines

show the 𝟒𝟓𝒐 (dotted), and 𝟗𝟎𝒐 (dashed) turns detected during way-in and

return, respectively. Bottom: The reconstructed paths are overimposed on the

building map. Solid line: way-in path; Dotted line: return path. 78

Figure 5.4: Design of the user interface. (a): entry view (b): calibration view (c): the

main view for path-matching (d) parameter setup view. 80

Figure 5.5: Illustration of trajectory with successful path recovery guidance generated

by the system. The way-in path is from A to B, and the return path is from B to

A. The off-route and reversed-route segments are highlighted by the yellow and

brown markers. ... 82

Figure 5.6: A representation of the best path-matching sequence. Horizontal lines:

90o (red) and -90o (blue) turns detected during way-in. Vertical lines: 180o

(brown), 90o (red) and -90o turns detected during return. Green line: The best

path-matching sequence selected by the algorithm at the end of the return.

Colored cluster: Points with non-zero orientation discrepancy (layer 𝒅 ≠ 𝟎) or

off-/reversed-route status in the best path-matching sequence. Black line: Path-

 xiii

matching sequence computed from return data up to the real-time return sample

index. ... 82

Figure 5.7: The view in the SafeReturn app. Top plot: Best path-matching sequence.

Bottom: Trajectory of the path. ... 83

Figure 5.8: An illustration of a trajectory where off-route deviations were not

successfully identified in real-time. The path originates from point A to point B

(way-in path), followed by the return path from point B to point A. Off-route and

reversed-route segments are highlighted by the yellow and brown markers,

respectively. .. 85

Figure 5.9: A representation of the best path-matching sequence where off-route

deviations were not successfully identified in real-time. Horizontal lines: 90o

(red) and -90o (blue) turns detected during way-in. Vertical lines: 180o (brown),

90o (red) and -90o (blue) turns detected during return. Green line: The best path-

matching sequence the algorithm selects at the end of the return. Colored cluster:

Points with non-zero orientation discrepancy (layer 𝒅 ≠ 𝟎) or off-/reversed-

route status in the best path-matching sequence. Black line: Path-matching

sequence computed from return data up to the real-time return sample index. .. 85

Figure 6.1: An illustration of inconsistent guidance without adopting LRP. (a) The

trajectory of the walker: The way-in path starts from point A to B, and the return

path starts from point B. (b) The x-y axis of the path-matching graph of the

whole sequence of paths. Red lines and blue lines indicate 90-and -90-degree

turns, respectively. The walker makes a correct 90-degree turn, but the graph

 xiv

initially misplaces the walker into a prior segment for a short period of time and

asks the walker to make a 90-degree turn again (highlighted in yellow in (b) and

point C in (a)). Subsequently, it locates the walker to the correct position and

instructs the walker to make a -90-degree turn. However, this inconsistency may

result in confusion. .. 89

Figure 6.2: (a) and (b) illustrate inconsistent mapping without adopting LRP. (a) is

the trajectory of the walker: The way-in path starts from point A to B, and the

return path starts from point B. (b) is the x-y axis of the path-matching graph of

the whole sequence. Red lines and blue lines indicate 90-and -90-degree turns,

respectively. The walker misses the turn, but the graph misplaces the walker into

a location close to its destination (highlighted in yellow in (b) and point C in

(a)). (c) shows the projections from LRP (pink dot). The green dashed line

indicates the walker’s path after LRP was found.. 91

Figure 6.3: An illustration of different optimal matching (green line) in consecutive

time instants in the x-y axis of the path-matching graph. Green line: the optimal

matching sequence (i.e., 𝑺(𝒋)) from the most recent time instant. A. Black line:

the best match indices for every time instant (i.e., (𝒊𝒋, 𝒋)). Red lines and blue

lines indicate 90-degree turns, respectively. (a) The graph at time instant J. (b)

The graph at time instant J+1. .. 94

Figure 6.4: Two examples of mappings (with layer d=0 in both plots) from different

experiments. Black line: the best match indices (𝒊𝑱, 𝑱) for every time instant.

Dashed line: a line with a unitary slope. (a) The mapped indices cannot be fitted

 xv

into a unity slope, leading to an undetermined LRP. (b)The LRP is successfully

determined and indicated by a yellow solid circle. ... 96

Figure 6.5: An illustration of determining the LRP in the path-matching graph 𝓰. The

X-axis and Y-axis are mapped indices during return and way-in, respectively.

The gray solid circles are all the nodes (𝐢, 𝐣, 𝟎) where it is assumed that the

orientation discrepancy 𝒅 = 𝟎 to simplify the graph. The red nodes are the

chosen nodes (𝒊𝑱, 𝑱, 𝟎) with a minimum cost at each incoming time instant

during return. The black line implies that the walker is progressively moving

forward, so the node on the lowest right corner is considered as the last reliable

mapping, and its corresponding mapped position is LRP................................... 96

Figure 6.6: An example of a graph indicating the importance of taking the 3rd

criterion while defining the LRP. See the caption of Figure 6.3. Purple markers:

labeled reliable matches. Yellow markers: unreliable matches. Right: not taking

the 3rd criterion when determining LRP (points in the circle are incorrectly

labeled as reliable). Left: adopting all three criteria. .. 99

Figure 6.7: An example of projecting the user’s position based on the last reliable

position over a series of times during the return path. The blue line represents the

way-in path from point A to B, while the return path begins at point B. The

dotted green line is the projected path. The black dot is the projected position,

and the yellow dot is the last reliable position. (a)In the beginning, the mapped

point is also the last reliable position, so only one yellow dot is plotted. (b) The

walker’s position was projected based on the last reliable position. (c) The user

 xvi

turned right, and the return’s projected position deviated from the way-in path.

(d) A small mapping error(𝒆𝒓𝒓𝒎𝒂𝒑) was observed and the mapped position is

considered as the last reliable point. Eventually, the user reconverged back onto

the original route. .. 102

Figure 6.8: Examples of return path-matching using projected sequence(a) and hybrid

matching(b). The way-in path is shown with a thick purple line, ending at the

black square. The length of each segment is given by the number of steps

recorded, multiplied by the step length measured during calibration. A gray line

shows the actual path of the participant during the return phase. Projected

sequences are shown with black lines. In (b), reliable matches are shown as

yellow circles. Note that in (a), the length of the initial segment appears to be

longer than during the way-in, possibly because the walker took shorter steps, or

took additional steps while looking for a place where to turn. In (b), the

trajectory is corrected as soon as a new reliable match is found. 102

Figure 6.9: An example of dataset category 1. The trajectory of the walker. The blue

line represents the way-in path from point A to point B, while the red line

represents the return path from point B to point A. .. 103

Figure 6.10: Segments in E2(top) and Natural Science - Interdisciplinary Science

building (bottom). The red lines indicate the data (magnetic field and steps/turns)

were recorded in these segments in the building. ... 105

Figure 6.11: An example of the generative dataset. The way-in route spans from point

A to B, generated by connecting segments S1, S2, and S6. The return route, from

 xvii

point B back to A, includes an additional off-route segment, S5, appended. This

return route is generated by connecting segments S6, S2, S5, S5 (reversed), and

S1. ... 105

Figure 6.12: Floor plan of the building with the tested paths highlighted. (a) R1 path;

(b) R2 path; (c) R3 path. The tested paths are depicted in gray, with the start and

end points indicated by a square and a star, respectively. 107

Figure 6.13: Projected trajectory based on the last reliable position determined by

different methods. (Participant 7, Path#1 aborted case). The return path starts

from a square and ends in a star. Thick blue line: expected trajectory. Black line:

trajectory by method#2 (FCN). Green line: trajectory by method # 1(linearly

defined LRP). Black and green solid circles: LRPs calculated by method#2 and

method #1, respectively. Blue solid circles: ground truth for LRP. 113

Figure 7.1 : The entry screen of SafeReturn. .. 117

Figure 7.2 : The calibration screen of SafeReturn. ... 118

Figure 7.3 : The main screen of SafeReturn. Black notations: Primary interface

components directly accessible to users. Gray notations: Components for

debugging purposes or configured once in the system. 120

Figure 7.4 : Example of the main screen during the return phase. The path-matching

graph (upper graph) displays colored lines indicating times when turns were

detected during way-in (horizontal lines) and return (vertical lines). The

visualization of trajectories (lower graph) shows the real-time mapped position

 xviii

marked by a solid black circle, and the last reliable position is highlighted in

yellow. ... 120

Figure 7.5: Supported gestures in the Watch app. Before starting the path, users can

swipe left or right on the Watch face to select a path. During navigation, swiping

right will repeat the last notification, while swiping left will provide

comprehensive route information. .. 122

Figure 7.6: The state diagram for providing notifications. 125

Figure 7.7 : The floor plan of the building with the tested paths is highlighted. (a) R1

path; (b) R2 path; (c) R3 path. The tested paths are depicted in gray, with the

start and end points indicated by a square and a star, respectively. 127

Figure 7.8: Participants interact with the Watch to start the test route. 131

Figure 7.9: Examples of successful backtracking trials (hybrid matching). (a): Route

R2 for participant P5. (b): R1 for P4. Left panel: The way-in path is shown with

a thick purple line ending at the black square. The length of each segment is

given by the number of steps recorded, multiplied by the step length measured

during calibration. The actual path of the participant during the return phase is

shown by a gray line. Reliable matches are shown as yellow circles. Projected

sequences are shown with black lines. Right panel: Magnetic discrepancy for all

pairs 𝒊, 𝒋 of samples from way-in (vertical axis) and return (horizontal axis).

Lighter gray indicates a larger discrepancy. ... 134

 xix

Figure 7.10: See caption of Figure 7.9 (a): path R1, participant P2. (b): path R2,

participant P2. Highlighted are situations in which the participant took a wrong

path and then walked back as directed by the app. ... 135

Figure 7.11 : Path recovery in the highlighted route for Figure 7.10 (a). Top: P2 was

trapped in alcove path 1; Bottom: After receiving guidance from the system, P2

was able to walk back on the correct route. .. 136

Figure 7.12 : Examples of successful (a) and unsuccessful (b) way-in path

simplification. The left panels depict the original way-in path with a thick purple

line, ending at the black square, alongside the approximate actual path taken by

the walker (measured from the video), shown with a gray line. The right panels

display the simplified way-in paths. ... 136

Figure 7.13: See caption of Figure 7.9. Path R3, participant P6. In this case, the app

failed to track the participant. The gray star represents the point at which the trial

was aborted; the black star is the desired destination. 139

Figure 7.14: Pictures of our participants during the trial. (a): P7 ’s guided dog kept

walking straight and missed the turn (path R1) (b): P5 veered off course on the

first attempt in an open space (path R1) ... 140

 xx

List of Tables

Table 5.1: Path-matching error 𝑬𝑷𝑴 (in seconds) measured using different path

odometry systems for the WeAllWalk experiment. The integer ' 𝒌 ' represents

the system's capability to detect different turn angles. 75

Table 6.1:Information of the dataset. .. 107

Table 6.2: Error calculation (𝑬𝒈𝒕 in meters) relative to ground truth. The two

methods exhibiting the lowest errors for each left-out participant are highlighted

in gray. .. 110

Table 6.3: Error calculation (𝑬𝒈𝒕 in meters) relative to ground truth for the aborted

cases in the user study. .. 110

Table 6.4: The accuracy of predicting the labels of the last reliable positions by

different methods. Note: for the "Linearly defined LRP" and "Baseline"

methods, since no training is involved, the results for each participant column

represent the corresponding test outcomes directly generated by the methods. 111

Table 6.5: The accuracy of predicting the labels of the last reliable positions in the

aborted cases in the user study. ... 111

Table 7.1: Characteristics of the participants in our study. For blindness onset, “B”

indicates “since birth,” while `L' indicates “later in life.” 126

Table 7.2: Summary of the experiment for the WayFinding and SafeReturn routes.

For successfully completed routes, we report the duration (in seconds). When

displayed with a grey background, the participant missed one or more turns, or

took a wrong turn, but was able to walk back and complete the route with

 xxi

guidance from the app. E: the route was completed, but verbal input from an

experimenter was needed at some point. x: The trial had to be aborted due to the

app's inability to track the participant. In two cases, a second attempt was made

after a trial had been aborted. .. 137

Table 7.3 : System Usability Scale (SUS) responses. ... 141

 xxii

Abstract

SafeReturn: An Integrated Indoor Backtracking System for Visually Impaired People

by

Chia Hsuan Tsai

Navigating indoors without a map can be challenging, especially for visually

impaired individuals in unfamiliar settings. Many existing indoor navigation methods

rely on building maps, pre-deployed infrastructure (like BLE beacons or RFID), or

visual-based systems that require a clear line of sight to a camera. These requirements

can make technology less accessible to visually impaired individuals for independent

navigation.

To address these challenges, this thesis introduces the SafeReturn app, a new

smartphone-based technology implemented as an iOS app designed to assist visually

impaired individuals in returning to their starting point after navigating through indoor

spaces. SafeReturn is particularly useful in real-life scenarios, such as hospitals, where

a blind individual may initially navigate from a waiting room to a doctor's office with

the assistance of a receptionist but subsequently needs to return independently. This

technology eliminates the need for pre-deployed infrastructure or a clear camera view,

enabling visually impaired individuals to navigate independently and confidently.

The system features a new path-matching algorithm enhanced by a hybrid

matching approach that integrates magnetic field and inertial data (representing

steps/turns information) to backtrack paths. When active, it records sensor data and

provides guidance for users seeking to retrace their route. Additionally, it includes an

 xxiii

off-route detection mechanism that alerts users when they deviate from the correct path

and provides notifications for path recovery to guide them back on track.

Initial testing was conducted using the WeAllWalk dataset containing inertial

data from blind walkers. Subsequently, the system was equipped with a watch-based

user interface and speech-based notifications specifically designed to simplify

interaction for blind users. A user study involving seven visually impaired participants

at the University of Santa Cruz’s BE building demonstrated the effectiveness of the

proposed localization solutions. The results from these tests illustrate the system's

efficacy in assisting visually impaired individuals with indoor navigation and path

recovery in real-world settings.

 xxiv

Acknowledgments

The completion of this thesis could not have been possible without the expertise

and guidance of Dr. Roberto Manduchi. His mentorship has been transformative,

offering not only invaluable academic insights but also giving me one of the most

valuable second chances in my life: back to school to pursue my PhD degree. His belief

in my potential, support, and patient guidance have shaped my research and personal

growth. He always patiently listens to my research ideas during office hours and helps

me refine them. I am deeply grateful for his mentorship, which has empowered me to

navigate the complexities of academia with confidence and clarity.

I also want to express my gratitude to Dr. James Davis and Dr. Marcella Gomez

for their pivotal roles as members of my defense committee. Since my qualification

exam, they have offered invaluable insights, feedback, and encouragement to help me

on my research and career path. Their mentorship has been instrumental in my growth

as a researcher. I am also grateful to collaborate with Fatemeh Elyasi and Peng Ren for

assistive technology. It’s my pleasure working with you two, and this project has been

so meaningful.

I want to thank my parents for believing in my dreams and supporting me

throughout every challenge I faced. Their encouragement and resilience have inspired

me to keep going, even when things get tough. Their sacrifices and guidance have

shaped me into the person I am today, and eternally grateful.

A special deepest appreciation to my husband, Howard Yang. From the moment

I resigned from my job to pursue my dream, he has been there every step of the way.

His selflessness, encouragement, and willingness to shoulder additional responsibilities

have provided me with the stability and motivation needed to overcome challenges and

reach my goals. I am profoundly grateful for his presence, which has been a constant

source of strength and inspiration throughout this journey. Words cannot fully express

my gratitude. Thank you, Howard!

 xxv

To my beloved children, Meya, Euna, and Kyron, thank you for your

understanding and love. Over these past six years, Meya blossomed into a lovely

teenager with a lot of cool ideas, Euna always tries to ease my worries and bring a smile

to my face, and Kyron has grown from an infant into a talkative boy. As I promised

you, Mommy will spend more time with you after graduation!

I also extend my appreciation to my brother and to all the individuals—teachers,

friends, and colleagues—who have supported me along the way. Your encouragement,

and friendship have been invaluable, and I am gratefully meeting/knowing/having each

of you in my life.

 xxvi

 1

Chapter 1

Introduction

Wayfinding in an unfamiliar environment could be challenging and potentially

unsafe for visually impaired people because it is difficult to recognize landmarks at a

distance or any other visual information. Path integration is one of the heavily used

mechanisms for traversing a route for visually impaired people. While some visually

impaired people can develop more precise spatial information about the route, others

may build limited one-dimensional information about the route [1]. Systems that help

visually impaired people with wayfinding could improve their opportunities for

learning, employment, independent living, and social engagement. A widely used

localization technology, GPS, is known for its high accuracy. However, it is relatively

difficult to use it for indoor navigation because GPS signals are usually blocked

indoors.

 Several studies have explored methods to provide reliable indoor wayfinding for

visually impaired individuals. Traditional techniques like BLE beacon and RFID

deployment have been used for indoor positioning but require extensive infrastructure

and environment fingerprinting, which can be time-consuming and costly [2][3][4].

Alternatively, smartphone-based systems leveraging the phone's built-in sensors for

 2

pedestrian tracking in GPS-denied environments have gained popularity. Studies

indicate that visually impaired individuals increasingly rely on smartphones in daily

life [5].

The utilization of visual sensors, such as smartphone cameras, along with powerful AI

systems to extract positional data and provide real-time information to users, including

blind travelers, has gained significant interest in recent years. Smartphone-based

approaches like visual-based odometry using Apple's ARKit are specifically designed

to assist blind individuals [6][7][8]. While this method does not require infrastructure

like beacons or RFID, it relies on a clear camera view. It may not always be feasible or

convenient for blind travelers who typically use a long cane or guide dog, leaving one

hand occupied. It has been commonly observed that navigational aids for blind

individuals should ideally be hands-free [9][10]. Another hands-free option is Wi-Fi

based navigation, leveraging existing Wi-Fi access points without additional

infrastructure installation [11]. However, Wi-Fi based navigation requires a laborious

fingerprinting operation to capture "signature" features such as the vector of received

signal strength (RSSI) from Wi-Fi beacons. This process can be time-consuming and

may pose challenges for widespread adoption in indoor navigation systems for visually

impaired individuals.

Another smartphone-based approach is inertial odometry, specifically using Pedestrian

Dead Reckoning (PDR), which has been studied for providing navigation assistance to

visually impaired individuals [12][13][14][15]. Additionally, RoNIN is a learning-

based algorithm that processes inertial data using neural network architectures to

 3

generate motion vectors referenced to a fixed world frame [16]. One advantage of these

techniques is that the phone's position on the body is not restricted. However, low-cost

inertial sensors used in these systems may suffer from bias and noise issues, leading to

directional and locational inaccuracies once integrated.

Alternatively, indoor navigation can utilize the magnetic field detected from the

environment [17], which does not require specific infrastructure installation. The

magnetic field in different indoor locations has unique signatures that can differentiate

locations. Studies have explored using magnetic fields for indoor navigation for

visually impaired individuals [18], some of which combine magnetic field data with

inertial odometry systems to achieve higher accuracy [19][20].

Most applications mentioned earlier require access to indoor maps, which are not

always publicly available. Even when building maps are accessible, certain methods

like Wi-Fi based and magnetic field-based navigation require laborious fingerprinting

operations to collect signal maps within the environment. This process can demand

significant time and resources, particularly in large indoor spaces. As a result, we

propose a solution that utilizes assisted return, a specific form of wayfinding, to provide

hands-on indoor navigation for people with visual impairments without relying on pre-

existing maps.

 4

Figure 1.1: A hypothetical path of a blind patient for a doctor’s appointment. The

patient begins at the waiting room (marked by a star) and is guided by the receptionist

to the doctor’s office (marked by a square). After the appointment, the patient retraces

the route back to the waiting room (from the square to the star).

The concept of assisted return was introduced by Flore and Manduchi [21], which

assists visually impaired individuals in retracing their steps back to a starting point after

navigating along a specific path. Figure 1.1 illustrates this concept with an example

scenario: a blind patient begins at a waiting room for a doctor’s appointment and is

guided by a receptionist to the doctor’s office. After the appointment, the same

receptionist may assist the patient in returning to the waiting room. However, in some

cases, the receptionist may not be available to help, or the blind patient may attempt to

navigate back independently by remembering the turns and steps taken. An assisted

return system is designed to help users retrace their path to return to the starting point.

This thesis is inspired by Flores and Manduchi's Easy Return system, which relied

solely on steps/turns information to aid visually impaired individuals in backtracking

 5

their routes. However, that approach has its limitations. For instance, inaccuracies in

step counting could lead to delayed or incorrect directions. In addition, the Easy Return

system does not provide path recovery guidance when users deviated from the correct

route. To address these shortcomings, we developed the SafeReturn app, which

incorporates magnetic field information with a novel path-matching algorithm to

enhance navigation accuracy and provide robust path recovery guidance.

Our assisted return system includes the following three tasks: (1) during the “way-in”

path(walking from a starting point to a destination), tracking the user’s position; (2)

during the “return” path, matching the current sub-path with the recorded way–in path

(where the way-in path is time-reversed); (3) providing directions to the user during

return with an appropriate user interface (including providing an overall description of

the path). Since the system targets individuals with blindness, prioritizing datasets

collected from visually impaired walkers over those from sighted individuals is critical.

We adopted the WeAllWalk dataset [22], gathered previously by a prior PhD researcher

in our group, consisting of annotated inertial data collected from ten blind individuals

. Each participant carried two iPhones while they walked through several predefined

trajectories using a walking cane or a dog guide. This dataset was explicitly used to test

our system and was designed for visually impaired users. Our system was also tested

in a user study involving seven visually impaired participants. During the study,

participants traversed three predefined paths, each containing 4 to 5 turns, to assess the

system's performance in real-world situations.

 6

This thesis focuses on developing a smartphone-based “assisted return” system,

SafeReturn, that offers real-time and reliable navigation assistance in mapless indoor

environments for visually impaired individuals. We proposed a new path-matching

algorithm that integrates the magnetic field and the inertial data (the input for our

steps/turns detector developed by other PhD researchers in our group) to provide

navigation. The system's performance was evaluated in a user study involving seven

visually impaired participants. It is structured as follows:

In Chapter 2, we discuss indoor positioning systems, followed by a focused exploration

of the "assisted return" system, a specific form of wayfinding.

Chapter 3 introduced a new path-matching algorithm considering walker orientation

variations. We also discuss the challenges associated with backtracking a walker's

position and highlight the necessity for a new matching method, further detailed in

Chapter 6.

Chapter 4 discussed calibration techniques for magnetometers and explored how to

leverage differences in magnetic fields between mapped locations (referred to as the

"cost of magnetic field") in our path-matching algorithm.

In Chapter 5, we conducted simulations using the WeAllWalk dataset for assisted

return, showing that using 90𝑜 turn + steps information in our system provides

significantly superior results. Additionally, we developed an iOS app to perform on-

site tests, emphasizing the importance of the new hybrid matching algorithm.

 7

Chapter 6 proposes a hybrid matching algorithm for determining the reliability of

mapped positions by identifying the "last reliable position (LRP)." This chapter

presents and compares two methodologies for identifying LRP.

In Chapter 7, we present the user study of the SafeReturn system involving seven

visually impaired participants. This study evaluates the system's performance in real-

life scenarios, covering aspects such as the app's user interface, experiment details, and

results. The positive feedback from participants indicates increased feelings of safety

and confidence while using the app, validating the potential of our proposed

technology.

Finally, Chapter 8 provides a comprehensive conclusion to the study, summarizing key

findings and discussing encountered challenges and proposed solutions.

 8

Chapter 2

Related work

Indoor navigation systems have diverse applications across multiple scenarios.

For instance, an indoor navigation system can guide hospital staff and visitors to

specific departments within large medical buildings, ensuring efficient movement and

timely access to critical areas. Moreover, indoor navigation enhances visitor

experiences in museums, exhibitions, and conferences, enabling them to navigate

complex layouts and explore exhibits effortlessly. These varied applications highlight

the significance of indoor navigation systems in enhancing efficiency, safety, and user

satisfaction across different environments. This chapter will explore various

positioning methods used in indoor navigation systems.

2.1 Wi-Fi Based Indoor Positioning

Wi-Fi based indoor positioning employs two main approaches: signal strength-based

and fingerprint-based positioning[23]. In signal strength-based positioning, the strength

of the received signal is used to calculate the user’s position using different methods

(e.g., trilateration). On the other hand, fingerprint-based positioning requires the

precollection of environment fingerprints in a database. The user’s position is

 9

determined by matching the received Wi-Fi signal with the pre-collected database.

However, this method presents challenges, such as the time-consuming process of

updating the fingerprint database and signal attenuation when passing through

obstacles like walls or furniture.

2.2 BLE-Beacon Based Indoor Positioning

BLE-Beacon (Bluetooth Low Energy Beacon) is a low-cost alternative to traditional

beacons, consuming less power. Similar to Wi-Fi based indoor positioning, BLE-

Beacon mainly utilizes two positioning methods: strength-based and fingerprint-based.

However, BLE-Beacon encounters similar challenges, with signal strength affected by

indoor obstacles and difficulty maintaining the fingerprint database [24].

2.3 Inertial Sensor-Based Indoor Localization

With the widespread use of smartphones, inertial sensors (gyroscopes, accelerometers)

have become integral to indoor positioning. One of the main advantages is that it does

not require pre-deployed infrastructure and works even when smartphones are in users'

pockets. However, inertial sensors are prone to bias and noise, leading to directional

and locational inaccuracies [25][26]. Below are methods focused on enhancing its

localization accuracy.

 10

2.3.1 Strapdown Inertial Navigation

"Strapdown Inertial Navigation" refers to a specific method where inertial sensors are

rigidly attached ("strapped down") to the moving object, such as a smartphone attached

to a user. In strapdown inertial navigation, sensor measurements require further

processing to provide corrections for generating the user's trajectory. The phone’s

orientation relative to an initial reference frame (with the Z axis pointing down) can be

calculated by integrating the angular rate. User acceleration can then be determined by

rotating accelerometer readings to the initial reference frame and subtracting gravity.

Finally, position estimation is achieved through double integration of acceleration.

Implementing a Kalman filter in this process can improve accuracy [26].

2.3.2 Pedestrian Dead Reckoning (PDR)

PDR is one of the simplest ways to track users’ positions based on their steps and

azimuth at each time step. Azimuth is obtained from post-processing and integrating

sensor data from gyros and accelerometers [27]. However, PDR error accumulates over

time due to sensor bias and noise. A solution to this shortcoming was a two-stage

system consisting of a “straight-walking” detector and a Mixture Kalman Filter (MKF)

for tracking orientation drift [12]. This system detects steps using an LSTM recurrent

network [28]. In buildings with a structure represented by a network of corridors, a path

can usually be described as a sequence of straight segments and turns with discrete

turning angles (typically, multiples of 90º or 45º). It is called turns/steps representation.

The robust turns/steps detector effectively reduces accumulated error in PDR[29].

 11

2.4 Learning-Based Odometry

Neural networks have been widely used in learning-based odometry applications in

recent years . Among these methods, RoNIN is one of the models that takes the inertial

data to estimate the user’s position and achieves a good performance [30]. One

advantage of RoNIN is that it works regardless of smartphone position related to the

body, producing motion vectors relative to a fixed world frame. However, RoNIN is

susceptible to drift caused by inaccuracies in the accelerometer and gyroscope.

2.5 Magnetic Field Indoor Positioning

The utilization of indoor magnetic fields for positioning and navigation leverages the

distinct characteristics of magnetic anomalies within indoor environments [19][31],

[32][33]. Typically, these anomalies result from the combination of the Earth's

magnetic field and the presence of ferromagnetic objects within the indoor space.

Several methodologies have been explored to leverage indoor magnetic fields for

navigation purposes:

• Fingerprint-based Positioning [34][35][36]: This method involves pre-

collecting a map of the magnetic field within the environment. Subsequently, a

fingerprint-based positioning technique is utilized to determine the user's

location within this mapped magnetic field, as shown in Figure 2.1. This

 12

approach offers precise positioning but requires extensive offline data

collection and processing.

• Leader-Follower Model [19][18][15]: In this model, a designated leader

traverses the intended route, effectively mapping the magnetic field variations

along the path. The follower then utilizes this mapped information to navigate

through the environment. A similar concept was implemented by a prior PhD

researcher in our lab, known as the Easy Return app. However, this app only

utilized turns/steps data as input, without incorporating magnetic field data.

This is also the model used in our application. While this approach reduces the

need for extensive pre-mapping, it still requires a leader to traverse the route

initially. Some studies have relied solely on the magnitude of the magnetic field

for navigation [18][15]. However, research has shown that including directional

information about the magnetic field (such as 2D or 3D magnetic field data) can

improve navigation accuracy [37]. Magnetic field data can sometimes be

integrated with other navigation methods to enhance location accuracy further.

For instance, the FollowUs app [19] integrates inertial-based localization and

magnetic field data for navigation. However, similar to [18] and [15], FollowUs

relies on the magnitude of the magnetic field rather than its vectorized form. In

addition, this app is designed for sighted users who can easily manage system

errors and accuracies. For visually impaired people, building a system with a

higher level of direction accuracy is necessary. In contrast, our system employs

a novel path-matching algorithm that utilizes 2D magnetic field data and

 13

incorporates layers of graphs to address orientation differences among mapped

positions.

• Landmark Information [38]: Magnetic field measurements can be analyzed

to extract landmark information; for example, the magnitude of the magnetic

field may have peaked when the sensor is close to a pillar or another distinctive

structure. During the map collection phase, one can record the landmark

information and the corresponding magnetic field. During the navigation phase,

the system can use the measured magnetic field to provide landmark

information. This application is beneficial in environments with poor lighting

conditions, allowing users to receive landmark information even without visual

cues. This additional data enhances positioning accuracy, particularly when

combined with other technologies like inertial-based localization.

• Integration with Other Positioning Technologies [39][19][40]: As

mentioned earlier, magnetic field data can be combined with other positioning

technologies, such as visual- or inertial-based localization, to improve overall

accuracy. Since smartphones can easily gather both magnetic field and inertial

data, this integration is feasible and enhances the reliability of indoor

positioning systems.

However, most applications require an offline phase for data collection and processing.

This process can be time-consuming and resource-intensive, particularly when

mapping extensive indoor environments. For instance, the magnetic map in Figure 2.1

 14

was created by dividing the mapping space into 2D grids with dimensions of 0.5m x

0.5m, and each grid contains magnetic measurements. In a typical indoor environment,

such as a 20m x 20m area, there could be thousands of grids, each requiring the

identification of its location and recording of magnetic field readings. This makes the

process of building a magnetic map quite intensive [40].

Figure 2.1: An example of a magnetic map [40]. The colored area indicates the different

intensity of the magnetic field.

2.6 Assisted Return System

Assisted return is one of the particular forms of wayfinding that provides support to

visually impaired people who, after walking along a certain path, are trying to trace

their way back to the starting point. The concept is firstly introduced by Flore and

Manduchi [21] and it is especially useful for navigation when the map of an indoor

building is unavailable. The system could also help a person follow a path previously

taken by another individual. Figure 2.2 shows an example of an indoor path that can be

traced back by an assisted return system. As mentioned earlier, an assisted return

 15

system includes three tasks: (1) during the “way–in” path tracking the user’s

position;(2) during the “return” path, matching the current sub-path with the recorded

way–in path; (3) providing directions to the user during return with an appropriate user

interface.

Figure 2.2: An illustration of an indoor path typical for an assisted return system. This

path comprises a series of straight segments connected by left or right turns [21].

Several technologies could be implemented for assisted return. Still, most of them

require pre-deployed infrastructures in the environment (for example, preinstalled

BLE-Beacon in the building for navigation to retrace the locations) or require prior

knowledge of the map of the building. Here, we focus on a more hands-on technology

that could be easily acquired in daily life to perform assisted return, smartphones. There

have been studies that use smartphones to accomplish similar tasks. Those technologies

can be divided into the following two categories.

 16

2.6.1 Inertial Sensor-Based Assisted Return

Flore and Manduchi introduced the concept of assisted return by developing an inertial

sensor-based app called Easy Return, which involved a study with six visually impaired

participants navigating a controlled indoor environment. The Easy Return system

utilizes inertial data to track steps and detect turns as users traverse a path within a

building. When the user retraces their steps back to the starting point, the system

compares their current position against the recorded path and provides directions based

on remaining turns and steps. This system is also designed to handle scenarios such as

mistaken turns or inaccuracies in step counting to facilitate route correction [21].

However, relying solely on inertial sensors can lead to positioning inaccuracies due to

accumulated bias. To address this issue, we proposed an integrated system that

combines magnetic field with steps/turns information.

Another system called FollowUs [19] operates on a peer-to-peer navigation model,

where a leader (another user) who has previously traveled the route builds a map using

inertial and magnetic field data for followers to replicate. However, FollowUs is

primarily designed for sighted users who can manage system errors and accuracy

effectively. A system tailored for visually impaired individuals requires a higher level

of directional accuracy and a robust path recovery mechanism to ensure users can

navigate back along the correct route.

 17

2.6.2 Visual Odometry-Based Assisted Return

Clew [7] is an app based on visual odometry, specifically designed for visually

impaired users to retrace their routes after exploring their surroundings. This app

utilizes Apple's ARKit to estimate the user's movements in 3D space with high

accuracy. However, a drawback of Clew is that it is not hands-free technology, which

means users may need to hold both the smartphone with the app and another mobility

aid like a long cane or guided dog simultaneously, potentially creating extra work for

individuals with visual impairments.

 18

Chapter 3

Path-Matching Algorithm

When a map of an indoor environment is not available, an assisted return system

is designed for a visually impaired walker who has traversed a certain way-in route

(possibly with the aid of a sighted companion) to traverse the same route in reverse

(return), as shown in Figure 3.1. At any time instant during return, the system matches

the current sub-path to a prior acquired (reversed) way-in path. The system's main task

is matching any spatial information acquired during way-in with that acquired during

return. In addition, the system offers directional guidance, including distance to the

next turn and turn-by-turn instructions, and alerts users when they deviate from the

intended route, facilitating path recovery.

If the odometry can be accurately recovered, one could simply match the current

position estimated during return with the closest position in the way-in path.

Unfortunately, large errors can be expected when relying only on inertial sensors.

Hence, a more sophisticated strategy is necessary. Similarly to [18], we cast the

problem as one of sub-sequence alignment, which seeks the best matching of the time

sequence of measurements up to the current time during return, with an initial sequence

of measurements during way-in. The measurements considered in this thesis include

 19

information on steps/turns and variations in the magnetic field across different locations.

This alignment task is addressed using a dynamic programming algorithm,

DTW(dynamic time wrapping) [27].

In this chapter, we begin by discussing our approach to reconstructing the way-in path.

Subsequently, we provide an overview of Dynamic Time Warping (DTW) and

introduce a novel path-matching algorithm. This algorithm serves as the basis for a

hybrid-matching system, which will be further explored in Chapter 6. It utilizes

magnetic field data and steps/turns information to estimate users’ position/orientation

and detect statuses like off-route or reversed-route, facilitating path recovery. It is noted

that the details of magnetic field data and its application to the path-matching algorithm

will be further discussed in the next chapter.

Figure 3.1: An example of assisted return. The blue line is the way-in path, and the red

line is the return path. The way-in path starts from A to B, and the return path starts

from B to A.

 20

3.1 Path Reconstruction for the Way-in Route

As previously stated, our system does not rely on map information. However, it is

essential to track the traveler to reconstruct the path during their way-in. For mapless

navigation, SLAM (Simultaneous Localization and Mapping) techniques [41] are

commonly used in robotics to reconstruct paths in real-time. Some pedestrian SLAM

methods [42][43][44] have been proposed for mapping unfamiliar areas by leveraging

sensor data collected from users who have traversed the same environment multiple

times to reconstruct a real-time map. However, this approach isn't applicable to our

system, as our app is designed to offer navigation for individual travelers who have

visited a place only once and do not rely on prior knowledge from crowd-sourced data.

In buildings characterized by networks of corridors, it is conceivable that walkers

would proceed along relatively straight paths until they turn at a corridor junction. The

angle made by two intersecting corridors for typical buildings is often equal to ±90𝑜.

This geometric structural constraint can be leveraged to sidestep orientation drift.

Following [21][29],we represent both way-in and return paths as a sequence of straight

segments interleaved with discrete angle turns. We use the robust turn detector

developed by a prior PhD student in our lab [12], which processes azimuth information

using a Mixture Kalman Filter [45]. Although this algorithm was shown to work well

even for multiples of 45𝑜 turns, we constrained detection to multiples of 90𝑜 for the

purpose of this experiment (this reflects the type of junctions found in the building

considered for our tests, which were all of ±90𝑜). The way-in path can be depicted as

a 2-D polygonal chain (polyline), where the length of each segment is equal to the

 21

number of steps taken in that segment, and consecutive segments have an angle as

measured by the turn detector, as shown in Figure 3.2. Steps are detected using a LSTM

network developed by another PhD student in our lab [46].

Figure 3.2: Examples of way-in paths depicted as 2-D polylines (thick blue lines)

plotted on a building floorplan, with start points indicated by squares and endpoints by

stars.

3.1.1 Path Simplification for the Way-in Route

In some cases, deviation from the initial way-in path may occur, resulting in additional

unnecessary routes. These deviations could arise due to unintentional divergences from

the correct path. Eliminating redundant paths before providing guidance for the return

route is crucial for efficient navigation. While not all redundant paths can be removed

without prior map information, some can be identified by examining the overall path,

referred to as way-in simplification. These redundant paths fall into two categories:

1. Paths with Closed Loops (e.g., Figure 3.3(a)): The redundant paths form closed

loops and can be identified as the path intersects itself.

 22

2. Paths with Open Loops (e.g., Figure 3.3 (b)): These paths may consist of segments

within the same corridor (in this example, 𝑣2 and 𝑣3 are the same location along the

corridor but close to different sides of the wall), resembling extra steps, without

forming closed loops.

(a) (b)

Figure 3.3: Two examples of additional paths. (a) paths with a closed loop; (b) paths

with an open loop.

Let the original observed way-in path be represented as a 2D polyline graph, denoted

as 𝐺𝑖𝑛 = (𝑉𝑖𝑛, 𝐸𝑖𝑛) , where vertices 𝑉𝑖𝑛 correspond to specific turn points along the

route and edges 𝐸𝑖𝑛 represent the straight segments connecting these points. The graph

in Figure 3.3 (a) and (b) can both be defined as:

𝑉𝑖𝑛 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and

𝐸𝑖𝑛 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5)},

 23

where the way-in path starts from v1 and ends in v5. The purpose of way-in

simplification is to eliminate redundant loops. The methods to remove these loops,

whether closed or open, in these cases are detailed as follows:

Paths with Closed Loops

When encountering a closed loop, such as the one shown in Figure 3.4, an intersection

is formed. By identifying these intersections, we can create additional vertices or nodes

at these points. In this example, intersections between segments are identified, resulting

in the creation of extra vertex v6, as shown in Figure 3.4(b). The graph is updated by

establishing directional connections between the new vertices and existing ones. The

new graph representation in this example becomes:

𝑉𝑖𝑛 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝒗𝟔}

𝐸𝑖𝑛 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5), (𝒗𝟏, 𝒗𝟔), (𝒗𝟔, 𝒗𝟐), (𝒗𝟒, 𝒗𝟔), (𝒗𝟔, 𝒗𝟓)}

(a) (b)

 24

(c)

Figure 3.4: An illustration of simplifying the way-in path by removing a closed loop (a)

The detected way-in path with a closed loop (b) An intersection 𝑣6 is identified

between edges (𝑣1, 𝑣2) and(𝑣4, 𝑣5). (c) The shortest path from the start point 𝑣1 to

endpoint 𝑣5 is shown in blue.

After updating the graph with additional vertices and edges, such as adding 𝑣6 in

Figure 3.4(c), algorithms like Dijkstra's Algorithm can be applied to find the shortest

path. In this example, the shortest path from the starting point 𝑣1 to endpoint 𝑣5 in the

updated graph is 𝑣1 → 𝑣6 → 𝑣5.

Additionally, it is crucial to maintain a record of the length and direction of each edge

whenever the graph is updated. This information ensures the consistency of the relative

positions between the vertices.

Paths with Open Loops

In the scenario depicted in Figure 3.5, the walker misses the turning point 𝑣4 and

continues walking straight. Assuming it happens in the same hallway, in order to go

back in the right direction, they execute a 90𝑜 turn at 𝑣2, proceed for a few steps, and

then make another 90𝑜 turn at 𝑣3, resulting in a U-turn within the same area.

 25

Another potential scenario is that a wall blocks the walker from making a right turn, as

illustrated in Figure 3.6 (the brown area indicates the wall). However, this obstruction

results in a significantly larger distance D between the edges (𝑣1, 𝑣2) and (𝑣3, 𝑣4).

Consequently, our method can detect this situation(as discussed in the following

paragraph), ensuring that such situations are not mistakenly simplified.

In the case shown in Figure 3.5, where different segments can be created within the

same corridor. Identifying parallel edges (in this example, (𝑣3, 𝑣4)and part of (𝑣1, 𝑣2))

can help us recognize paths within the same corridor. To address this, we first ensure

that the distance between parallel edges is smaller than a threshold value denoted as 𝑟.

If this condition is met, we proceed to merge these edges as follows. Taking the parallel

edges (𝑣1, 𝑣2) and (𝑣3, 𝑣4) as an example, we then examine whether the vertices of

these edges can be projected onto each other. As shown in Figure 3.5(b), 𝑣4 can be

projected onto the line segment (𝑣1, 𝑣2), allowing us to create a new vertex, 𝑣6.

Additional edges are subsequently formed on this segment, specifically (𝑣1, 𝑣6) and

(𝑣6, 𝑣2), resulting in the updated graph:

𝑉𝑖𝑛 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝒗𝟔}

𝐸𝑖𝑛 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5), (𝒗𝟏, 𝒗𝟔),(𝒗𝟔, 𝒗𝟐)}

 26

(a) (b)

 (c)

Figure 3.5: An illustration of simplifying the way-in path by removing an open loop

(a)detected way-in path with an open loop (b) a projected point 𝑣6 is identified from

𝑣4 to segment (𝑣1, 𝑣2) (c) The shortest path from the start point 𝑣1 to endpoint 𝑣5 is

shown in blue. The shaded path is the eliminated edges after way-in simplification.

Figure 3.6: A situation where an open loop should not be simplified, the brown area

represents a wall blocking the direct path from the turning point (black dot). However,

 27

this obstruction results in a larger distance D, which will not be simplified by our

method.

Figure 3.7: Another example of a redundant path with an open loop. The nearby

vertices 𝑣2 and 𝑣6 can be merged.

After checking for parallel edges, we then examine all vertices to identify any close

pairs, meaning vertices with a distance smaller than the threshold 𝑟. Despite already

checking for the distance between processed parallel edges, we reevaluate all vertices

to account for potential scenarios involving other segments (e.g., in Figure 3.7, vertices

𝑣2 and 𝑣6 are near each other, suggesting they may belong to the same point). In the

example in Figure 3.5, vertices 𝑣4 and 𝑣6 are close to each other, indicating they may

belong to the same location along the corridor. Similarly, vertices 𝑣2 and 𝑣3 are also

close. Since the indices were labeled in temporal order, with the walker starting their

path from 𝑣1 and then proceeding to 𝑣2, 𝑣3, and subsequent vertices, we chose to

merge the vertices by replacing the one with the larger index number with the one

having the smaller number. This decision is based on the assumption that a walker

 28

reaches a smaller vertex index earlier during traversal of the way-in route; thus, likely

to accumulate fewer mistakes on the path up to that vertex. While this assumption may

not always hold true, this simplifies the problem without extra calculation on the

coordinate of the merged vertex. The updated graph for the example in Figure 3.5,

therefore, becomes:

𝑉𝑖𝑛 = {𝑣1, 𝑣2, 𝑣5, 𝒗𝟔}

𝐸𝑖𝑛 = {(𝑣1, 𝑣2), (𝒗𝟐, 𝒗𝟔), (𝒗𝟔, 𝒗𝟓), (𝒗𝟏, 𝒗𝟔),(𝒗𝟔,𝒗𝟐)}

(Note: duplicated vertices are removed)

We can utilize Dijkstra's Algorithm to find the shortest path from 𝑣1 to 𝑣5, resulting

in 𝑣1 → 𝑣4 → 𝑣5. Like the closed loop scenario, we consistently record the length and

direction of each edge during the update process of the polyline graph. This ensures

that the new polyline maintains the correct relative position between the vertices after

updating the graph.

To summarize, for real-time navigation, we propose a systematic method to handle both

scenarios at the same time by the following procedures:

1.Observing Intersecting Edges: Compare all edges in the graph. If there are

intersections between edges, create vertices based on these intersections and update the

edges/vertices in the graph, following the first case described earlier.

 29

2.Managing Parallel Edges: Identify parallel edges, and if the distance D between

them is smaller than a predefined threshold 𝑟, create additional vertices based on the

second case outlined earlier. Update the edges/vertices in the graph accordingly.

3.Merging Close Vertices: Compare the distance between any two vertices. If the

distance between them is smaller than a predefined threshold 𝑟, consider the vertices

as a single vertex and merge them while preserving the one with the smaller index.

Update the graph accordingly.

4.Finding the Shortest Path: Utilize Dijkstra's Algorithm to determine the shortest

path from the starting point to the destination.

The threshold 𝑟 in the application is set to 7 steps, corresponding to 3.5 meters, given

an average step length of 0.504 meters (the value is further discussed in the user study

in Chapter 7). We expect corridors to generally be less wide than 7 steps to reduce the

risk of mistakenly simplifying a wall belonging to the same corridor (the minimum

width of corridors in California's commercial buildings[47] is estimated at around 2.4

meters, which is equivalent to about 5 steps).

 30

3.2 Review: DTW and iDTW

The main objective of the system is to match the real-time information obtained during

the return phase with that collected during the way-in phase, thus providing positional

information to users based on the matched way-in location. This problem can be

addressed by aligning two time sequences, for example, magnetic field data from the

way-in and return paths. The goal is to synchronize them even in the presence of

variations in sampling rates, lengths, or disturbance. Dynamic Time Warping (DTW)

is a dynamic programming algorithm used for this purpose [27],[28]. DTW creates a

2-dimensional grid known as the cost matrix, where each cell represents the

accumulated cost (penalty) of aligning samples up to a specific point in both sequences.

By iterating through this grid and finding the path with the minimum total cost, we can

determine the best alignment between the two sequences. Figure 3.8 provides an

illustrative example of the sequence alignment by DTW.

In real implementation, given two time sequences 𝑋𝑖𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌𝑟𝑒𝑡 =

{𝑦1, 𝑦2, … , 𝑦𝑚}, we can build a 2-dimensional cost matrix based on the following

equation.

𝐶(𝑖, 𝑗) = min(𝐶(𝑖 − 1, 𝑗 − 1), 𝐶(𝑖, 𝑗 − 1), 𝐶(𝑖 − 1, 𝑗)) + |𝑥𝑖 − 𝑦𝑗|

where 𝐶(𝑖, 𝑗) is the element of cost matrix for 𝑖 − 𝑡ℎ index in 𝑋𝑖𝑛 and 𝑗 − 𝑡ℎ index in

𝑌𝑟𝑒𝑡. The optimal matched sequence can be determined by inspecting the minimum

element of the last row in the cost matrix and then tracing back the path to the beginning

of the matrix 𝐶(1,1). Figure 3.9 is an example of matching the magnitude of magnetic

field vector by DTW. Note that details of magnetic field are provided in Chapter 4.

 31

Figure 3.8: The alignment of two time sequences, blue and red lines.

Figure 3.9: Matching the magnitude of magnetic field before and after DTW. Top: the

blue line is the magnitude of magnetic field recorded in a path at an earlier time with

known positioning information, called the “way-in” path. Middle: The red line is the

magnitude of magnetic field collected later, called the “return” path. Bottom: aligned

way-in and return sequences after applying DTW (blue: way-in; red: return).

In our application, we match the return sequence to the way-in sequence. To achieve

real-time sequence matching, for every time instant on the return path, we have to

update one column in the cost matrix (the cost matrix has a size of 𝑚 × 𝑛). For example,

 32

at time instant 𝑗, the whole 𝑗 − 𝑡ℎ column of the cost matrix needs to be computed.

When the length of the way-in sequence (𝑚) is large, this computation can be costly.

Therefore, a revised DTW method, called incremental DTW (iDTW), was proposed by

Timothy et al. to reduce the computation complexity [18]. iDTW used a real-time

approach with a sliding window to determine the current best-matched sample on-the-

fly. At every time instant 𝑗, only a portion of the 𝑗 − 𝑡ℎ column in the cost matrix is

calculated based on a defined sliding window. The sliding window is defined by the

starting index of the window, 𝐶𝑗−1 −
𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒

2
, and the last index of the window,

𝐶𝑗−1 +
𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒

2
, where 𝐶𝑗−1 is the minimum element in the previous column in the

cost matrix.

This method does not require computing the overall cost matrix. However, the optimal

path might be overlooked because it assumes that the best mapping for the current

sample 𝑦𝑗 is located within a range of the sliding window based on the last best

mapping on sample 𝑦𝑗−1 . This assumption is not necessarily true in real

implementation so a proper window size should be selected for iDTW.

3.3 Path-Matching Algorithm

Our path-matching algorithm utilizes a combination of magnetic field and inertial data,

specifically steps and turns, as inputs. During return, the user is assumed to start from

the endpoint of the way-in path and walk the same path in the reverse direction. The

 33

goal is to identify the location in the way-in path that best matches the current location

(during return) of the user so that appropriate directions can be provided.

 Our strategy for matching the return path with the way-in path is based on the

coordination of two different algorithms: projected return sequence and sequence

alignment.

Projected Return Sequence

This algorithm creates a polyline to represent the return path, as described previously

for the way-in path. By comparing the current polyline reconstructed during the return

with the polyline we built during the way-in, it is possible to find the best match to

where the user is now. For instance, we can identify the closest point on the way-in

polyline to the user’s current position by calculating their respective distances. This

process is illustrated in Figure 3.10(a), where the matched positions for the way-in and

return paths are depicted by blue and red dots, respectively.

In theory, if accurate odometry data can be stored, one could efficiently match the

current estimated position during the return phase with the closest position along the

way-in path by aligning the turns or steps in both phases. However, this method faces

challenges in real-life situations, as illustrated in Figure 3.10(b) and (c), where the

length of a segment equals the number of steps. For instance, the user's steps may vary

in length between the way-in and return journeys (Figure 3.10(b)); there may be

instances where turns are missed or falsely detected(Figure 3.10(c)). All of these

situations may be expected, especially when someone walks without visual feedback.

 34

These challenges highlight the importance of implementing sequence alignment

algorithms to improve overall performance.

(a)

(b)

(c)

Figure 3.10: Examples of real-life challenges in the way-in and return paths. Red lines:

projected return trajectory. Blue line: way-in trajectory. The start and end points for the

way-in path are indicated by a square and a star, respectively. In this simplified

representation, the length of each segment is equal to the number of steps (a) In an ideal

situation, the path can be easily matched by finding the closest positions in the way-in

and return polylines. The matched positions are shown in blue and red dots,

respectively. (b) The walker takes a longer step length during return, resulting in fewer

steps and shorter lengths in each segment of the polyline. (c) The first turn during the

return was not detected.

 35

Sequence Alignment

When matching the current position during the return journey with the previously

acquired (reversed) way-in path, as described in [18][29][48], can be approached

through (sub)sequence alignment, with the concept of a graph formalized as follows.

Firstly, the sequence of way-in measurements is reversed, which is convenient since

the route is being backtracked. At each time during return, we aim to determine the

initial way-in subsequence of measurements that best matches the current sequence of

return measurements. Symbolically, given the (reversed) way-in sequence 𝑊 of

measurements (observations) 𝑜𝑖𝑛(𝑡) (i.e., 𝑊 = (𝑜𝑖𝑛(1),… . , 𝑜𝑖𝑛(𝑁)), and the current

sequence 𝑅 of return measurements 𝑜𝑟𝑒𝑡(𝑡) (i.e., 𝑅 = (𝑜𝑟𝑒𝑡(1), … . , 𝑜𝑟𝑒𝑡(𝐽)), the goal

is to find a sequence of indices 𝑖1, … . , 𝑖𝐽 such that (𝑜𝑖𝑛(𝑖1),… . , 𝑜𝑖𝑛(𝑖𝐽)) best matches

𝑅 under an appropriate criterion.

For real-time guidance, particularly at return time index 𝐽, we are interested in the last

matching point 𝑖𝐽 during way-in as it represents the best-mapped position computed

based on the return data up to the current time index. Dynamic Time Warping (DTW),

as described in section 3.2, can be utilized to find an optimal match.

Regarding the considered measurements—magnetic field vectors, detected turns, and

steps—step detection is implicitly accounted for: both in the way-in and return phases,

the sequences of time indices are structured such that there are three regularly spaced

time intervals between two consecutive detected steps. This choice provides sufficient

spatial granularity for magnetic field matching while ensuring efficient sampling, with

no samples recorded when the user is stationary. As mentioned in the previous section,

 36

in theory, if accurate odometry data can be restored, we can easily map the walker’s

position. For example, if someone walked 100 steps and then turned right during the

(reversed) way-in, it is expected that in the return path, they will also walk

approximately 100 steps and then turn right, with the magnetic signatures hopefully

matching. However, in real-life situations, this may not hold true; for example, the

walker may take a different number of steps in the same segment in the way-in and

return paths, or the walker may miss a turn during the return path. As a result, the path-

matching algorithm is proposed to provide better mapping.

Given these measurements, a directed graph 𝒢 can be constructed with nodes indexed

as (𝑖, 𝑗), where 𝑖 represents a way-in time index and 𝑗 represents a return time index.

It's important to highlight that 𝒢 is constantly expanded as the walker progresses along

the return path. As shown in Figure 3.11, each node (𝑖, 𝑗) in the graph has three edges:

to (𝑖 + 1, 𝑗), (𝑖 + 1, 𝑗 + 1), and (𝑖, 𝑗 + 1), respectively. This configuration aligns with

the assumption that the walker typically moves in the same direction as in the (reversed)

way-in path but possibly with different step lengths, resulting in steps detected in either

phase that cannot be matched in the other phase, which is accounted for by the edges

to (𝑖 + 1, 𝑗) and(𝑖, 𝑗 + 1). The edges to (𝑖 + 1, 𝑗), and (𝑖, 𝑗 + 1) carry an edge cost,

named non-diagonal cost, indicating a penalty if two time instants are matched to the

same time instant in the other path. There are different node costs introduced based on

input observations, which are the cost of magnetic field (𝐶𝑀𝐹) and the cost of

unmatched turns, as detailed below:

 37

Figure 3.11: The connections of node (𝑖, 𝑗) in graph 𝒢 . x-axis in the sample indices

during the return and y-axis in the sample indices during the way-in.

3.3.1.1 Node cost of discrepancy in magnetic field (𝑪𝑴𝑭)

We defined the node costs, cost of magnetic field (𝐶𝑀𝐹) as a function of the discrepancy

in the magnetic field between measurements 𝑜𝑖𝑛(𝑖) and 𝑜𝑟𝑒𝑡(𝑗) . Given the expectation

that the same location should exhibit similar magnetic fields, a higher discrepancy in

magnetic field results in a higher cost of magnetic field 𝐶𝑀𝐹. Figure 3.12 shows an

example of magnetic field discrepancies for all nodes in the graph 𝒢 . A detailed

description of 𝐶𝑀𝐹 is provided in Chapter 4.3.

 38

Figure 3.12: An example illustrating magnetic field discrepancies (intensity bar

displayed on the right, unit in 𝜇𝑇) for all nodes in the graph 𝒢.

3.3.1.2 Node cost of unmatched turns (𝑪𝑼𝑻)

Another node cost 𝐶𝑈𝑇 (cost of unmatched turn) is introduced when the walker makes

a turn. If, for example, at time index 𝑖, a 90𝑜 turn was taken during way-in traversal,

one could expect that, at the matching time index 𝑗, a turn by −90𝑜should be observed

during way-in. A simple way to leverage this intuition is to define, at each way-in turn

(index 𝑖), a certain node cost 𝐶𝑈𝑇 for all nodes (𝑖, :) in the graph, except for the nodes

(𝑖, 𝑗) in which a turn by the opposite angle was observed during return. Likewise, a

turn at 𝑗 during return would determine a node cost for all nodes (: , 𝑗) for which a way-

in turn by the opposite angle was not observed. These node costs could be added to the

node costs defined for magnetic discrepancies, encouraging the optimal path to include

matching turns at way-in and return.

 39

With this definition of graph 𝒢, the sequence alignment is obtained by finding the

minimum cost path originating from (0,0), and terminating at a node (𝑖, 𝐽). However,

this simple approach is liable to fail in common situations with short sequences of

incorrectly detected turns. For example, suppose that during the (reversed) way-in,

someone walked 100 steps and then turned right (−90𝑜 turn). During the return, it is

expected to detect approximately 100 steps and a right turn. However, at the turn

junction, the walker stopped briefly, turned their body to the left (perhaps to respond

to a greeting from a passerby), then resumed walking and made a right turn. In this case,

the system may incorrectly detect a left turn (90𝑜 turn) followed by a 180𝑜 turn.

Correctly matching the way-in and return paths in such cases may result in two

unmatched turns. Moreover, one of the spurious turns in the return path may

erroneously match with some other distant turn during the way-in, potentially creating

a significant path mismatch.

This example suggests that an unmatched turn should be given a lower penalty when

preceded shortly by another turn and the accumulated turn angle (in this example, 90𝑜

+ 180𝑜 = 270𝑜, i.e., −90𝑜 turn during the return phase) is the same as the expected

turn angle (in this example, −90𝑜 turn during the way-in phase). However, this cannot

be implemented by simply assigning costs to edges or nodes in our original graph. To

address this challenge, we propose a mechanism that considers the orientation of the

walker at each time, obtained by accumulating detected turns. This idea is described as

follows.

 40

This approach organizes the previously defined graph 𝒢 into a series of layered planar

graphs, with each layer representing a possible orientation discrepancy between the

way-in and return paths. By “orientation discrepancy,” we mean the angular difference

between the walker's measured orientation at some time j during return and the opposite

of the orientation of the walker measured at some time index 𝑖 during way-in. For

example, if in the return phase, a walker takes two consecutive 90𝑜 (left) turns followed

by a −90𝑜 (right) turn, their orientation at that point will be 90𝑜 + 90𝑜 − 90𝑜 = 90𝑜

(as defined with respect the starting walking direction). Ideally, the orientation

discrepancy should be consistently equal to 0𝑜 for a correctly matched sequence,

though this may not be the case when a turn is missed by the detector, or false turns are

detected, or the walker takes a detour.

 A node is now indexed by the triplet (𝑖, 𝑗, 𝑑) , where layer 𝑑 (for 0 ≤ 𝑑 ≤ 3)

represents an orientation discrepancy of 𝑑 ∙ 90𝑜, as shown in Figure 3.13. In our case,

since there are only 4 possible orientations (as only turns by multiple of 90𝑜 are

allowed), there are 4 possible discrepancies (0𝑜 , 90𝑜 , 180𝑜 , −90𝑜). The different graph

layers have identical topology and edge costs. In particular, a node (𝑖, 𝑗, 𝑑) is connected

to nodes (𝑖 + 1, 𝑗, 𝑑), (𝑖 + 1, 𝑗 + 1, 𝑑) and (𝑖, 𝑗 + 1, 𝑑) in the same layer. The node

costs at layer 𝑑 are the sum of the magnetic discrepancy costs 𝐶𝑀𝐹 (identical across

layers) and of constant mis-orientation cost 𝐶𝑚𝑜 for layers with non-zero orientation

(𝑑 ≠ 0). This cost discourages long paths with non-zero orientation discrepancy. If a

turn by 𝑘 ∙ 90𝑜 is detected during way-in at time 𝑖, additional edges are created between

(𝑖, 𝑗, 𝑑) and node (𝑖 + 1, 𝑗, (𝑑 − 𝑘) 𝑚𝑜𝑑 4) and (𝑖 + 1, 𝑗 + 1, (𝑑 − 𝑘) 𝑚𝑜𝑑 4) for all 𝑗

 41

and 𝑑 except for those 𝑗 in which a turn by −𝑘 ∙ 90𝑜 was detected. These edges account

for the fact that a way-in turn at 𝑖 that is unmatched with a return turn at 𝑗 modifies the

walker's orientation discrepancy. The original edges from (𝑖, 𝑗, 𝑑) to nodes (𝑖 + 1, 𝑗, 𝑑)

and (𝑖, 𝑗 + 1, 𝑑) (same layer) are maintained, but with a higher associated edge cost

𝐶𝑈𝑇 (cost of an unmatched turn). A path in the graph going through either such edge

indicates that this detected way-in turn has been “rejected” (since the orientation

discrepancy has not changed), as shown in Figure 3.14. It is noted that the edge between

(𝑖, 𝑗, 𝑑) and (𝑖 + 1, 𝑗, (𝑑 − 𝑘) 𝑚𝑜𝑑 4) is not created because the same turn by 𝑘 ∙ 90𝑜

was detected both of these nodes so the walker should not have orientation discrepancy

between these two nodes. Likewise, as shown in Figure 3.15, a turn by −𝑘 ∙ 90𝑜

detected at time 𝑗 during return generates new edges from (𝑖, 𝑗, 𝑑) to (𝑖, 𝑗 + 1, (𝑑 −

𝑘) 𝑚𝑜𝑑 4) and to (𝑖 + 1, 𝑗 + 1, (𝑑 − 𝑘) 𝑚𝑜𝑑 4) (unless a turn by the opposite angle

was detected at 𝑖), while the cost of edges 𝐶𝑈𝑇 from (𝑖, 𝑗, 𝑑) to (𝑖, 𝑗 + 1, 𝑑) and (𝑖 +

1, 𝑗 + 1, 𝑑) applies. The interplay between orientation discrepancy costs and ”turn

rejection” costs helps deal with incorrectly detected turns or with situations in which

the walker, during return, briefly detours from the way-in path.

 42

Figure 3.13: The layered graph. The x-axis represents the sample indices in the return

route, while the y-axis represents the sample indices in the way-in route.

Figure 3.14: Edge connections for node (𝑖, 𝑗, 0) between layers when a turn (𝑘 = 1)

occurs during way-in.

 43

Figure 3.15: Edge connections for node (𝑖, 𝑗, 0) between layers when a turn (𝑘 = −1)

occurs during return.

The minimum cost path in the graph 𝒢 is recomputed at each new return sample. We

use the incremental Dynamic Time Warping (iDTW) [riehle2012indoor], which uses a

sliding window defined around the endpoint of the previously found optimal path (we

set the window size equal to 300 samples). Although this algorithm produces a

suboptimal solution, particularly if the best mapping for the current sample falls outside

the sliding window range, it still represents a good compromise between precision and

computational cost.

3.4 Off-Route and Reversed-Route Detection

While a visually impaired walker tries to transverse their path with the assisted return

system, there are two challenges in the task. The first challenge arises when the walker

deviates from the intended route. This deviation may occur due to a missed turn (Figure

3.16, yellow shaded path) or taking a turn too early (e.g., counting the incorrect number

 44

of steps before the next turn). To address this issue, we propose a modified path-

matching algorithm capable of detecting when users are off-route. The second

challenge arises when the system must guide the user back onto the correct path after

they have been identified as off-route.

For example, in the case shown in Figure 3.16 (a), the users were instructed to make

the first U-turn at location C and return to a previously detected on-route location.

Subsequently, they made another U-turn to rejoin the path at location D. However,

providing specific step and turn instructions for users to backtrack may lead to

inaccuracies, as users' step lengths can vary. Consequently, users may remain off-route

(Figure 3.16(b), location E) despite following the system's directions intended to guide

them back onto the route.

To address this, we propose a mechanism to make sure that after the user makes the

first U-turn from the off-route status, the user is positioned correctly on the path but

facing the opposite direction. This ensures that the system accurately determines the

user's position before issuing further guidance. Consequently, we introduce the concept

of the reversed-route status, depicted by the brown shaded path in Figure 3.16(a). This

status indicates that the user is on the correct path but facing in the opposite direction,

typically occurring after the user has been detected as off-route and attempts to retrace

their steps. The algorithm supporting off-route and reversed-route detection is

described in the following sections.

 45

 (a) (b)

Figure 3.16: Path recovery after off-roue is detected. The return path starts from B to

A. (a) Off-route (yellow path) and the following reversed-route (brown path) are

properly detected. Path recovery is successfully executed in this scenario. (b) Without

the mechanism of detecting a reversed-route status, the user makes the second U-turn

too early and is unable to be back on the correct path.

3.4.1 Off-Route Detection

When the walker is not on the correct path, the steps/turns data has limited information

to identify the off-route status. For example, taking extra steps does not necessarily

mean being off-route because the walker might have different stride lengths between

the way-in and return paths. Another similar example is that the system might detect a

spurious turn because the user changes the smartphone’s position. Therefore, the

magnetic field plays an important role in detecting the off-route status by comparing

the signature of the magnetic field between the on-route path and the off-route path. In

other words, when the detected magnetic field on the return path is similar to it on the

way-in path, the chance that the user is off-route is low and vice versa. To incorporate

this concept into our algorithm, we introduce a fifth layer into the previously defined

 46

graph, specifically designated as the off-route layer. This is achieved by introducing a

triplet, (𝑖, 𝑗, 𝑑) where 𝑑 = 4, indicating the off-route layer.

A path through a node (𝑖, 𝑗, 4) in the off-route layer indicates a high chance of the

walker being off-route. Consequently, less penalty (𝐶𝑀𝐹𝑜𝑓𝑓
, cost of magnetic field for

off-route layer) should be applied to the node when there is a higher discrepancy in the

magnetic field between the mapped pair (𝑖, 𝑗). In contrast, for regular nodes (layer 𝑑 ≠

4), the penalty (𝐶𝑀𝐹 , cost of magnetic field) is high when there is a higher discrepancy

in the magnetic field. Consequently, 𝐶𝑀𝐹𝑜𝑓𝑓
 demonstrates an inverse relationship with

𝐶𝑀𝐹, such that as 𝐶𝑀𝐹𝑜𝑓𝑓
 increases, 𝐶𝑀𝐹 decreases, and vice versa. This relationship

allows us to utilize the 𝐶𝑀𝐹 to identify the 𝐶𝑀𝐹𝑜𝑓𝑓
 for the off-route layer.

The node cost of the off-route node is defined by 𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
. This is computed as:

𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
= max{(𝑚𝑎𝑔𝑡ℎ𝑟𝑒𝑠 − 𝛼 ∙ 𝐶𝑀𝐹(𝑖,𝑗)), 0}

Where:

𝑚𝑎𝑔𝑡ℎ𝑟𝑒𝑠 is the threshold of the cost of magnetic field for the off-route node.

𝐶𝑀𝐹(𝑖,𝑗) is the cost of magnetic field for the on-route nodes as defined in section 3.3.1.1.

 𝛼 is a parameter that controls the increasing rate of 𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
 when 𝐶𝑀𝐹(𝑖,𝑗) decreases.

 47

Figure 3.17: Relationship between 𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
 and 𝐶𝑀𝐹(𝑖,𝑗) . In this example, 𝑚𝑎𝑔𝑡ℎ𝑟𝑒𝑠

is set to 40.

As mentioned earlier, when there is a higher discrepancy in the magnetic field between

the mapped positions (i.e., when 𝐶𝑀𝐹(𝑖,𝑗) is large), it implies that the chance of the user

being off-route is high. In such case, 𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
 is expected to be small. Figure 3.17

shows this relationship with different values of 𝛼.

Extra edges are created for nodes in the off-route layer. The nodes in layers 0 to 3 (on-

route layers) have direct edges to the off-route layer, as shown in Figure 3.18. There

are two distinct groups of edges:

The first group of edges starts from the on-route layers. These edges indicate that one

can be on the correct path but become off-route in the next time instant. Such transitions

typically occur when 𝐶𝑀𝐹𝑜𝑓𝑓(𝑖,𝑗)
 is small (or large 𝐶𝑀𝐹(𝑖,𝑗)). However, temporary

fluctuations in the magnetic field (e.g., due to a running elevator) might erroneously

 48

trigger this transition. To mitigate this, a high edge cost is assigned to this group,

denoted as 𝐶𝑠𝑡𝑠1𝑜𝑓𝑓(𝑖,𝑗)
.

The second group is associated with the connections from the nodes in the off-route

layer. Consequently, a smaller penalty, 𝐶𝑠𝑡𝑠2𝑜𝑓𝑓(𝑖,𝑗)
 , is applied to the edges.

The additional edges for the nodes in the off-route layer are shown in Figure 3.18.

Figure 3.18: Additional connections to the node (𝑖, 𝑗, 4) (layer 4) in the off-route layer.

Blue nodes indicate nodes in the off-route layer (layer 4). 𝐶𝑠𝑡𝑠1𝑜𝑓𝑓(𝑖,𝑗)
 applies to blue

edges and 𝐶𝑠𝑡𝑠2𝑜𝑓𝑓(𝑖,𝑗)
 applies to the red edges.

3.4.2 Reversed-Route Detection

The concept of a reversed-route status occurs when the user is back on the correct path

but facing in the opposite direction, resulting in an orientation discrepancy of 180𝑜.

Therefore, one of the previously defined layers (specifically layer 2 with 𝑑 = 2, where

the orientation discrepancy equals 180𝑜) can be utilized to detect reversed routes. In

 49

this layer, a smaller cost assigned to a node indicates a higher likelihood that the walker

was on a reversed route at the corresponding time instants associated with that node.

Similar to the off-route detection process, the magnetic field contains valuable

information for determining the reversed-route status. When a reversed-route occurs,

the sampled sequences of magnetic field in the corresponding way-in and return paths

resemble mirror images because they essentially represent the same magnetic field

sampled in reverse order, as depicted in Figure 3.19.

When no turn is detected, a node (𝑖, 𝑗, 2) is connected to two sets of layers (Figure

3.20) .

• (𝑖 − 1, 𝑗, 2), (𝑖 − 1, 𝑗 + 1,2), (𝑖, 𝑗 + 1,2)

• (𝑖 − 1, 𝑗, 4), (𝑖 − 1, 𝑗 + 1,4), (𝑖, 𝑗 + 1,4)

The first set of connections assumes that the walker continues walking in reversed-

route and the second set of connections represents the possibility that the user becomes

off-route from reversed-route. A path with a decreasing time index in way-in and

increasing time index in return sequence(e.g., (𝑖, 𝑗, 2) → (𝑖 − 1, 𝑗 + 1,2) indicates that

the incoming sample (on the return path) is mapped to a prior way-in sample (the way-

in sample was already revered) which is similar to mapping the sample in a reversed

order. Consecutive nodes in a path with a repeated index (e.g., (𝑖, 𝑗, 2) → (𝑖 − 1, 𝑗, 2))

indicate that two time instants (in this example, during way-in) are matched to the same

time instant in the other path. Note that an extra penalty 𝐶𝑠𝑡𝑠𝑟𝑒𝑣
 is applied to the edges

that connect the off-route nodes to the reversed-route node. This mechanism can

 50

prevent a temporary change in the magnetic field (e.g., running an elevator or walking

too close to the wall), triggering an unexpected detection on a reversed route.

Figure 3.19: An example of the mirrored magnetic field signatures indicating reversed-

route. Blue: magnetic field detected during the way-in. Red: magnetic field detected

during the return. The magnetic field of the user being reversed-route is marked by the

dotted-dashed ellipse, and the corresponding magnetic field in the way-in path is

marked by the dashed ellipse on the left side of the figure.

Figure 3.20: Extra edges from reversed-route node(𝑖, 𝑗, 2). 𝐶𝑠𝑡𝑠𝑟𝑒𝑣
 applies to the red

edges.

When a turn by 𝑘 ∙ 90𝑜 is detected at time 𝑗 ,there are extra edges created for node

(𝑖, 𝑗, 2) connecting to 4 sets of nodes (Figure 3.21):

• (𝑖 − 1, 𝑗 + 1, (2 − 𝑘) 𝑚𝑜𝑑 4), (𝑖, 𝑗 + 1, (2 − 𝑘) 𝑚𝑜𝑑 4)

• (𝑖 − 1, 𝑗 + 1,2), (𝑖, 𝑗 + 1,2).

• (𝑖 − 1, 𝑗, 2)

 51

• (𝑖 − 1, 𝑗, 4), (𝑖 − 1, 𝑗 + 1,4) , (𝑖, 𝑗 + 1,4)

The first two connections are made under the assumption that the turn was correctly

detected, which causes an update on the difference of the walker’s orientation between

way-in and return. The second set of connections represent the possibility that the turn

was incorrectly detected, meaning that the orientation discrepancy should not be

changed. The “turn suppression” cost 𝐶𝑡𝑠 is applied to the edges. The third connected

(from (𝑖, 𝑗, 2) to (𝑖 − 1, 𝑗, 2)) indicates that both time instant 𝑖 and 𝑖 − 1 are matched

to 𝑗. The decision of whether to accept this turn is postponed till node to (𝑖 − 1, 𝑗 + 1,2)

or (𝑖 − 2, 𝑗 + 1,2), and therefore the turn suppression cost 𝐶𝑡𝑠 is not applied here. The

fourth set of connections indicates the possibility of going off-route from a reversed-

route.

Figure 3.21: In this example, a 90𝑜 turn was detected at the time instant j, and extra

edges are created for node (i,j,2). 𝐶𝑠𝑡𝑠𝑟𝑒𝑣
 applies to the red edges.

 52

3.5 Error Metrics

To evaluate the correctness of path matching, it would be necessary to access the

“ground truth” matches – i.e., the correct sequence of matching time instant pairs of

(𝑖𝑗 , 𝑗), where 𝑖𝑗 is the mapped index for the return index 𝑗. However, this would require

recording the user’s position at every time instant during way-in and return routes,

which requires extra tools, for example, a camera and SLAM (Simultaneous

Localization and Mapping) algorithm to track the camera's position and orientation in

real-time as it moves through the corridor. Instead, we propose an alternative error

metric in this study that only records the time at which the walker transitioned between

different segments, as shown in Figure 3.22. We interpolated the time matches between

these discrete time/location data points by assuming that participants walked at a

constant speed within each segment. This gives us an approximate location of the

walker at all times. Based on this information, we can compute the set of nodes {𝑙𝑗 , 𝑗, 𝑑}

that represent the correct matching of 𝑙𝑗 with 𝑗 (meaning that the walker was at the

same location at time 𝑙𝑗 during way-in as the walker at time 𝑗). When evaluating the

correctness of a given node (𝑖𝑗 , 𝑗, 𝑑) in the graph path chosen by the path matching

algorithm, we record the absolute difference between 𝑖𝑗 and 𝑙𝑗 . This measures the error

(in time instants) for node (𝑖𝑗 , 𝑗, 𝑑) . It's important to note that the orientation

discrepancy 𝑑 is not factored into the error calculation. This is because the mapped

node may temporarily be in different layers even when the walker is in the same

position due to variations in the timing of turn detection along the way-in and return

 53

routes. The path-matching error is computed as the average error over the entire on-

route path, as depicted in the following equation.

 𝐸𝑃𝑀 =
∑ ||𝑙𝑗−𝑖𝑗||

𝑀
𝑗=1

𝑀
 (3.1)

where 𝑀 is the number of matched samples on the correct path.

The error metric 𝐸𝑃𝑀 helps us to determine the parameters of the basic path−matching

algorithm. The values of the parameters are shown in Appendix A; they are established

through multiple trials in initial experiments which generate smaller 𝐸𝑃𝑀.

Figure 3.22: An illustration of segments to approximate the walker’s location at each

time. The start and end points for the path are indicated by a square and a star,

respectively. There are three segments (blue, pink, and green) in the overall path. To

approximate the walker’s location at each time, the time that the walker entered/exited

each segment was recorded and then interpolated by the location of the data points.

3.6 Conclusion

In this section, we address the challenges associated with leveraging magnetic field

data and turns/steps information to backtrack a walker's position in situations when the

map is unavailable. A straightforward approach to simplify the way-in route is

introduced. Furthermore, a novel graph-based path-matching algorithm is presented,

which considers variations in the walker's orientation between the way-in and return

 54

routes by incorporating penalties into the cost matrix of the graph for different scenarios.

Additionally, the algorithm addresses situations where the walker deviates from the

intended path. To evaluate the performance of the algorithm, we defined an error metric

for this basic path-match graph. Building upon this graph, we will propose a new

method of hybrid matching in Chapter 6. The new method excludes the off-route layer,

resulting in fewer parameters, which will be illustrated later.

 55

Chapter 4

Path-Matching Algorithm: Magnetic Field

Magnetic field is increasingly used for indoor navigation due to its unique

characteristics within indoor environments [9][22][23]. This navigation relies on a

combination of the Earth's magnetic field and the presence of ferromagnetic objects

indoors, resulting in distinct magnetic signatures that vary across locations.

Smartphones equipped with magnetometers offer a convenient platform for

implementing magnetic-based navigation solutions, providing advantages such as

affordability, ease of use, and no infrastructure requirements. However, despite these

advantages, challenges exist, including the need to pre-collect a map of the magnetic

field in indoor spaces and dynamic magnetic interference from sources like running

elevators and large electric appliances.

Our goal is to develop a mapless navigation system that utilizes real-time data for

magnetic field analysis during the user's traversal of the path on their way-in route, thus

eliminating the need for extensive offline collection of magnetic maps. Additionally,

by employing a path-matching algorithm based on real-time analysis of the magnetic

field and step/turn information (as described in Chapter 3), we aim to mitigate the

effects of dynamic magnetic interference. The following section provides an in-depth

 56

investigation of the magnetic field data, enabling the integration of this valuable

information (specifically, the cost of magnetic field 𝐶𝑀𝐹) with the path-matching

algorithm.

4.1 1D/2D/3D Magnetic Field

Smartphones are equipped with 3-axis magnetometers that measure the 3D vector of the

magnetic field, denoted as 𝑀⃑⃑ = {𝑀
𝑥
, 𝑀𝑦 , 𝑀𝑧}. While matching magnetic signatures, it's

important to note that the reference frames of the magnetometers are not fixed, as they

are continuously moving with the user's smartphone. One way to handle this changing

reference frame issue is by using the norm of the magnetic field, also called the 1D

magnetic field. The norm of the magnetic field represents its magnitude and remains

independent of the reference frame. This method simplifies the magnetic field into a

single value that shows how strong it is, no matter how the smartphone is held.

However, relying solely on the norm of the magnetic field may be insufficient, as

multiple locations could exhibit the same values in the magnetic field’s norm. To

address this limitation, we can use the gravity vector 𝑔 obtained from the

accelerometers. The accelerometer's output combines both gravity and user acceleration,

requiring the extraction of the gravity vector from the total acceleration. This task

typically involves two additional sensors: the magnetometer and gyroscope. The

magnetometer detects the Earth's magnetic field. Although it was influenced by the

environment, it still can be utilized as a reference for determining the "downward"

direction. Meanwhile, the gyroscope aids in distinguishing between user-induced

 57

movements, and the constant pull of gravity. Through sensor fusion techniques[49], the

smartphone distinguishes user acceleration from the total reading, isolating the gravity

vector as a constant downward force. The gravity vector is expressed in the device's

reference frame, which makes it possible to generate the 2D vector of the magnetic field;

one is the magnitude of magnetic field’s projection on the horizontal plane, and the other

is the magnetic field in the gravity direction [37] [50]. The following equation gives the

2D magnetic field.

• 𝑀𝑔 =
<𝑀⃑⃑ ,𝑔⃑ >

||𝑔⃑ ||

• 𝑀ℎ = (||𝑀⃑⃑ ||
2
−

<𝑀⃑⃑ ,𝑔⃑ >2

||𝑔⃑ ||
2)

0.5

,

where 𝑀⃑⃑ is the 3D magnetic field in the device’s reference frame, and 𝑔 is the gravity

vector in the device’s reference frame. 𝑀𝑔 is the magnetic field in the gravity

direction, and 𝑀ℎ is the magnitude of magnetic field’s projection on the horizontal

plane.

The 3D magnetic field {𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧} can also be used to match the magnetic signatures

if one can get the accurate rotation matrix of the device with respect to a fixed reference

frame. Indeed, it can even provide more precise positioning results because it preserves

the three-dimensional magnetic data. However, an accurate rotation matrix relies

heavily on inertial sensors. It is commonly known that inertial sensors are highly

affected by bias, which can lead to drift. Therefore, the 2D magnetic field is mainly used

in this study.

 58

4.2 Magnetic Field’s Characteristics

Subbu et al. investigated the magnetic field patterns due to the presence of furniture,

elevators, doors, pillars, etc. [51]. It was discovered that the short-term displacement of

an object (e.g., table, chair) does not cause a significant effect on the magnetic field.

Furthermore, when a smartphone collects the magnetic field, the metallic objects in the

user’s pocket do not significantly affect the magnetic field. They also investigate the

variance of magnetic field over time (7 months). As shown in Figure 4.1, there are no

significant variations in the magnetic signatures, which could potentially diminish its

effectiveness for sequence matching in localization

While using the magnetic field pattern for navigation, another factor that might

influence the result is veering, an issue that a walker cannot keep walking straight [52].

It can cause variations in a magnetic field. As shown in Figure 4.2, when the user is

walking in a hallway, the distance between the user and the wall leads to fluctuations in

the magnetic field. This topic is further discussed in section 4.3.

 59

Figure 4.1: Prior research about the variance of the magnetic field over time [51].

Figure 4.2: Comparing the variance of magnetic field while walking at a different

distance from the wall in a hallway. Blue line: 30 cm from the wall. Red line: 60 cm

from the wall. Purple line: 120 cm from the wall.

4.2.1 Magnetometer Calibration

The measured magnetic signature ideally reflects Earth's magnetic field along with

magnetic fields generated by nearby ferromagnetic materials, making it feasible to

utilize this uniqueness for indoor navigation. However, magnetometers may still have

0 20 40 60 80 100 120 140

number of samples

25

30

35

40

45

50

55

60

m
a

g
n

it
u
d

e
 o

f
m

a
g

n
e

ti
c
 f

ie
ld

(u
T

)

 60

significant drift caused by various distortions [17]. These distortions typically fall into

two categories: hard iron or soft iron so magnetometer calibration is necessary to ensure

precise measurements to eliminate these distortions.

Soft Iron Distortion

In an ideal environment, rotating the magnetometer in all possible directions results in

a sphere with a radius equal to the magnitude of the magnetic field. However, materials

with high magnetic permeability, such as nickel and iron, distort the magnetic field,

causing the sphere to deform into an ellipsoid. Figure 4.3 illustrates this distortion in

the x-y axis. One approach to mitigating soft iron distortion involves fitting the

ellipsoidal magnetic data into a sphere to derive the soft iron calibration matrix 𝑪𝒔𝒅 and

subsequently using 𝑪𝒔𝒅 to recover the magnetic field. Assuming the measured

magnetic field affected only by soft iron distortion is 𝑀⃑⃑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑠𝑜𝑓𝑡 , the calibrated

magnetic field 𝑀⃑⃑ 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑_𝑠𝑜𝑓𝑡 can be calculated as:

𝑀⃑⃑ 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑_𝑠𝑜𝑓𝑡 = 𝑀⃑⃑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑠𝑜𝑓𝑡 × 𝐶𝑠𝑑

 61

Figure 4.3: The x-y axis plot depicts soft-iron distortion in magnetometer readings.

When the magnetometer is rotated along the z-axis, the black-dashed circle represents

the ideal magnetic field in the x and y directions. However, soft-iron distortion makes

the uncalibrated data align more closely with an elliptical shape (blue line).

Hard iron Distortion

On the other hand, hard iron distortion occurs due to permanently magnetized materials

near the magnetometer sensor. These materials generate their magnetic fields,

introducing a constant bias to the magnetic field measured by the magnetometer. This

offset remains consistent regardless of the sensor's orientation and displaces the origin

of the ideal magnetic measurement sphere mentioned in the previous paragraph. Figure

4.4 provides an example of hard iron distortion in the x-y axis. Calibrating hard iron

distortion is straightforward; since it creates a constant bias, we can determine the bias

𝒃𝒉𝒅 by aligning the measurement sphere with the origin.

 62

Figure 4.4: The xy-axis plot depicts hard-iron distortion in magnetometer readings.

When the magnetometer is rotated along the z-axis, the ideal magnetic field orientation

in the x and y directions should be centered at the origin (represented by the black

dashed circle). However, the uncalibrated data may exhibit a significant bias due to

hard-iron distortion, as indicated by the blue circle.

After acquiring the soft iron calibration matrix and hard iron bias, the calibrated

magnetic field is represented in the following equation and used in the path-matching

algorithm. Figure 4.5 shows the magnetic field before and after calibrations.

𝑀⃑⃑ 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 = (𝑀⃑⃑ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑏ℎ𝑑) × 𝐶𝑠𝑑

 63

Figure 4.5: The magnetic field during calibration by rotating 360𝑜 along all three axes.

Blue: data before calibration. Black: data after calibration. The yellow dot indicates the

origin point.

4.3 Cost of Magnetic Field

As mentioned in Chapter 3, our path-matching algorithm is based on sequence

alignment expressed as a minimum cost route task over a properly defined graph 𝒢.

The cost matrix defined in 𝒢 can be interpreted as the penalty of aligning corresponding

elements of the sequences being matched. This penalty reflects the dissimilarity or cost

of aligning two elements from the sequences, such as magnetic field readings or

step/turn data. This section discusses the details of the cost of the magnetic field 𝐶𝑀𝐹

in the graph.

Let 𝐷𝑗 as the Euclidian norm of the difference between two magnetic field vectors

(𝑀𝑔
𝑖𝑛(𝐼𝑗),𝑀ℎ

𝑖𝑛(𝐼𝑗)) and (𝑀𝑔
𝑟𝑒𝑡(𝑗),𝑀ℎ

𝑟𝑒𝑡(𝑗)) , where 𝑀𝑔
𝑖𝑛(𝐼𝑗), 𝑀ℎ

𝑖𝑛(𝐼𝑗), 𝑀𝑔
𝑟𝑒𝑡(𝑗), and

𝑀𝑔
𝑟𝑒𝑡(𝑗) are 2D magnetic fields for the corresponding 𝐼𝑗-th and j-th samples on the way-

in and return paths, respectively. The 𝐷𝑗 value represents difference in magnetic field

 64

data at node (𝐼𝑗 , 𝑗, 𝑑𝑗) in the best-matched path in the graph ℊ, where 𝐼𝑗 is the mapped

index of the way-in for the return time instant 𝑗 and 𝑑𝑗 represents the orientation

discrepancy between the mapped indices.

In the path-matching algorithm, a matched node implies that at time instant 𝑗 during

return, the walker is at the same location as they were at time instant 𝐼𝑗 during way-in.

Therefore, the individual likelihood of observing 𝐷𝑗 given (𝐼𝑗 , 𝑗, 𝑑𝑗) is the correct

mapping can be written as:

𝑃(𝐷𝑗 | 𝐼𝑗), 𝑗 = 1, … ,𝑀

As previously mentioned, it is assumed that when the walker is at the same location

during the way-in and return, they should experience a similar magnetic field (i.e., 𝐷𝑗

is small). On the other hand, when the magnetic difference 𝐷𝑗 is large, there is a lower

likelihood that the node represents a correct mapping, so we will assign a higher penalty

to the node. Therefore, the magnetic cost of a matched pair of indices {𝐼𝑗 , 𝑗} can be

interpreted as the negative likelihood of magnetic difference observations. For the

entire optimal matched path, if we assume that the observations are independent, the

overall likelihood is represented by the product of the individual likelihoods:

∏ 𝑃(𝐷𝑗 | 𝐼𝑗)
𝑀
𝑗=1 ,

 65

where M is the number of samples in the return path. The overall magnetic cost of the

path can be defined as the negative logarithm of overall likelihood:

 −log (∏ 𝑃(𝐷𝑗 | 𝐼𝑗)))
𝑀
𝑗=1 = −∑ log (𝑃(𝐷𝑗 | 𝐼𝑗))

𝑀
𝑗=1 (4.1)

To determine 𝑃(𝐷𝑗 | 𝐼𝑗), we need to construct the histogram of the norm of differences

in the magnetic field. Assuming that during the navigation, the walker does not

consistently remain in the middle of the corridor due to veering behavior [52]; they can

be at various distances from the wall. As described in Figure 4.2 the distance between

the user and the wall affects the magnetic field along the hallway, resulting in different

𝐷𝑗 values even when mapped into the same position along the corridor. We simplify

this problem by categorizing these distances into three cases: in the middle of the

hallway, close to one side of the wall, and close to the other side of the wall, as shown

in Figure 4.6. In the latter two cases, we assume that the user is positioned 30cm away

from the nearest wall. This distance was chosen because it falls within the average

length of an upper arm (average upper arm’s length ranged from 23 to 41cm for

individuals aged 5 and above [53]). This measurement reflects the scenario where

walkers might choose to maintain a distance from the wall equivalent to the length of

their arm for safety and security reasons.

Denote 𝑃(𝐷𝑗 | 𝑐𝑤, 𝑐𝑟 , 𝐼𝑗) as the likelihood of observing 𝐷𝑗 given 𝑐𝑤 , 𝑐𝑟, and 𝐼𝑗 (i.e., the

correct mapped index for return index 𝑗 is 𝐼𝑗), where 𝑐𝑤 and 𝑐𝑟 are the distance to the

wall in way-in and return respectively. 𝑃(𝐷𝑗 | 𝐼𝑗) can be calculated by:

 66

𝑃(𝐷𝑗| 𝐼𝑗) = ∑∑𝑃(𝐷𝑗 | 𝑐𝑤 , 𝑐𝑟 , 𝐼𝑗) × 𝑃(𝑐𝑤 , 𝑐𝑟| 𝐼𝑗)

𝑐𝑟𝑐𝑤

Since we don’t have prior information regarding the user's walking behavior

(specifically, the distance from the wall), we can consider 𝑃(𝑐𝑤 , 𝑐𝑟| 𝐼𝑗) to be a

constant, denoted as 𝐶. Therefore,

 𝑃(𝐷𝑗| 𝐼𝑗) = 𝐶 ∙ ∑ ∑ 𝑃(𝐷𝑗 | 𝑐𝑤 , 𝑐𝑟 , 𝐼𝑗)𝑐𝑟𝑐𝑤 (4.2)

Although this method simplifies the problem into merely three distance categories, it

may not fully capture the hallway's variability. However, considering the hallway width

in our tested buildings typically ranges from 160 cm to 252 cm, we hope that this

method can provide a reasonable approximation of the distance scenarios observed

within our tested data.

(a)

 67

(b)

(c)

Figure 4.6 : Magnetic field measurements along the corridor. (a)The shaded areas

represent the walls. The pink line represents the group of positions in the middle of the

hallway, while the dashed lines indicate positions closer to the wall. The green

highlighted area illustrates the same positions along the corridor but at varying

distances from the wall. (b) 𝑀ℎ (c) 𝑀𝑔 . For (b) and (c), the solid line is the data

collected along the middle of the corridor, the dashed line is the data collected along

the left side of the hallway, and the dotted line is the data collected along the right side

of the hallway.

 68

(a) (b)

Figure 4.7: Hallways (red lines) where magnetic field histograms were collected. (a)

The hallway on the 2nd floor of BE building at UCSC. (b) The hallway in a local office

building

We measured the norm of magnetic field differences in two hallways: one in the BE

building at UCSC and the other in an office building, as depicted in Figure 4.7. The

measurements were gathered by walking along each hallway in one direction

(designated as the way-in path) and then retracing the path in the opposite direction (as

the return path). To address variations in the walker's distance from the wall, the paths

(for both way-in and return, corresponding to 𝑐𝑤 and 𝑐𝑟 in eq (4.2)) were also traversed

at a 30 cm distance from both sides of the wall, resulting in a total of six measurements

of paths.

For each path, measurements were taken at fixed intervals (0.504 m, corresponding to

the average step length of our participants in the user study, which will be discussed in

Chapter 7) to ensure consistent sampling. This approach allowed us to calculate 𝐷𝑗 for

a given correct mapping (𝑗, 𝐼𝑗), where at the return sample index 𝑗 and way-in sample

index 𝐼𝑗 , the walker was at the same location. Subsequently, the corresponding

 69

histogram was created for 𝑃(𝐷𝑗 | 𝐼𝑗) (after simplifying the constant 𝐶 in eq (4.2) to 1) ,

as shown in Figure 4.8. The distribution appears to be long-tailed. Several potential

distributions were considered to fit this distribution, including the Exponential

Distribution, Inverse Gaussian Distribution, and Rayleigh Distribution. After

examining the residuals of the fitted curves in Figure 4.8, it is evident that the

Exponential Distribution (as shown in eq (4.3)) provides a superior fit, exhibiting the

smallest residual value of 0.004, compared to the Inverse Gaussian Distribution

(residual = 0.016) and the Rayleigh Distribution (residual = 0.041).Thus, the likelihood

of observing the norm of difference in magnetic field is given by the following fitted

Exponential Distribution:

 𝑃(𝐷𝑗 | 𝐼𝑗) ≈
1

𝜇
𝑒

−
𝐷𝑗
𝜇 (4.3)

where a larger scale parameter μ indicates the more spread out the distribution.

The negative logarithm of 𝑃(𝐷𝑗 | 𝐼𝑗) can be calculated using the following formula:

 − log (𝑃(𝐷𝑗 | 𝐼𝑗)) ≈
𝐷𝑗

𝜇
+ 𝑐 (4.4)

where 𝑐 represents a constant. Then, the overall magnetic cost of the path in the graph

(in eq (4.1)) can be reformulated as:

−log (∏ 𝑃(𝐷𝑗 | 𝐼𝑗))
𝑀
𝑗=1 = −∑ (

𝐷𝑗

𝜇
+ 𝑐𝑀

𝑗=1)

It implies that the overall magnetic cost for the optimal matched path in 𝒢 is the

summation of the magnetic field differences 𝐷𝑗 divided by 𝜇 , thus for each node

(𝐼𝑗 , 𝑗, 𝑑𝑗) in 𝒢, the cost of magnetic field is
𝐷𝑗

𝜇
. The estimated value of 𝜇 in the tested

 70

data is 7.75, suggesting that in our tested buildings, the cost of magnetic field for each

node is
𝐷𝑗

7.75
. It is noted that the constant 𝑐 applies to every node in our graph; thus, it

can be ignored when calculating the cost.

Figure 4.8: The histogram of the norm of the difference in magnetic field fitted by

different PDF functions. Solid line: Exponential distribution. Dotted line: Inversed

Gaussian. Dashed line: Rayleigh Distribution. (The histogram has been normalized to

unit area)

A similar analysis was conducted utilizing the public dataset MINLOC [54], which

includes the magnetic field collected from different corridors. However, unlike our

dataset, the magnetic field at various distances from the wall was not recorded in

MINLOC. Consequently, the differences in magnetic field are relatively minor. Figure

4.9 displays the corresponding histogram of magnetic field differences within the

 71

corridors based on the MINLOC dataset. In comparison to our histogram in Figure 4.8,

Figure 4.9 lacks a long tail in the histogram due to smaller differences in magnetic field.

As previously mentioned, walkers may not always remain in the middle of the hallway.

Therefore, incorporating measurements of magnetic differences relative to the wall

provides additional insights into the characteristics of the magnetic field.

Figure 4.9: Histogram of magnetic field difference in public dataset. (The histogram

has been normalized to unit area.)

4.4 Conclusion

This chapter has explored the use of indoor magnetic fields for accurate positioning

and navigation. We also examined how magnetic fields can be influenced by an

individual's walking behavior, specifically focusing on veering behavior observed

through different measurements of the magnetic field relative to various distances from

the walls.

 72

Calibrating magnetometers to correct distortions caused by nearby metals is critical for

achieving accurate measurements. Two main types of distortions, hard iron and soft

iron, were discussed along with methods to calibrate magnetometers to mitigate these

distortions.

Additionally, we also explored how to leverage differences in magnetic fields between

mapped locations (referred as the "cost of magnetic field") in the path-matching

algorithm. This involved studying the likelihood of the observed norm of difference in

the magnetic field, enhancing our algorithm's capability to manage variations in

magnetic field data for precise positioning purposes.

 73

Chapter 5

Path-matching Algorithm: Experiment with WeAllWalk

Dataset and On-Site test

In this chapter, we present the experimental results of the path-matching algorithm. The

experiments are divided into two parts. In the first part, we simulated assisted return

situations using the WeAllWalk dataset to compare different odometry systems that

use inertial data (k ⋅ 90o or k ⋅ 45o turn detector w/wo step information, where k is an

integer). The odometry system exhibiting a smaller path-matching error was selected

for integration with magnetic field information in the second part of the on-site test

conducted with the SafeReturn app. This test was conducted in the E2 building at

UCSC. Additionally, the interface used for evaluation is presented in this chapter.

5.1 Comparing Path Odometry Algorithms for Assisted Return –

WeAllWalk Experiments

The WeAllWalk dataset [22] contains inertial sensor data, which was collected from

six visually impaired participants while they walked through several pre-defined

trajectories using a walking cane or a dog guide. Our path-matching algorithm

 74

leverages both steps/turns and magnetic field data to map the current position during

the return to a position collected during the way-in phase. While steps/turns information

for the WeAllWalk dataset can be obtained by processing the inertial data using step

and turn detectors developed by other PhD researchers in our lab [46][12], the magnetic

field data in the WeAllWalk dataset was not calibrated. Therefore, we only utilize the

steps/turns data when evaluating our algorithm in this part of the experiments.

We simulated an assisted return situation where a certain walker traversed the entire

path first (as the way-in path), followed by another (or the same) walker traversing the

same path while incrementally matching their path with that of the first walker (as the

return path). We considered pairs of traversals for each path, either by two different

walkers or by the same walker using different mobility tools (cane or dog guide). Figure

5.1 illustrates an example of these paths. There were 162 such traversal pairs on which

our path-matching algorithm was tested. For each of them, the optimal alignment

matching was computed incrementally for each time instant during return. It is noted

that the off-route scenarios are not included in this experiment but are included in the

next section for the on-site tests (section 4.3).

Figure 5.1: One of the six paths from the WeAllWalk dataset. The path begins at the

square and ends at the star [22].

 75

Table 5.1: Path-matching error 𝐸𝑃𝑀 (in seconds) measured using different path

odometry systems for the WeAllWalk experiment. The integer ' 𝑘 ' represents the

system's capability to detect different turn angles.

As mentioned in the previous chapter (section 3.5), we use an approximate location

(serves as reference data) to calculate the path-matching error 𝐸𝑃𝑀 and

Table 5.1 shows the recorded average errors using different turns/steps odometry, with

turns computed either at a multiple of 45o or 90o. (Note that 13% of all turns in

WeAllWalk are ±45° turns.). It is seen from

Table 5.1 that the lowest average error was obtained using both the turns (multiple of

90𝑜turns) and steps representation in the definition of graph costs.

Odometry System k ⋅ 90oturns k ⋅ 45o turns k ⋅ 90o turns + steps k ⋅ 45o turns + steps

𝐸𝑃𝑀 5.28 6.43 4.17 4.50

 76

Figure 5.2: The best matching sequence for two walkers, one using a dog guide and the

other using a long cane. The colored rectangles represent the entry and exit time of each

“segment,” as marked in WeAllWalk. The ‘+’ signs represent 90𝑜 turns. Red line: 𝑘 ⋅
90𝑜+ steps (mean error: 0.8 s); Gray line: baseline (mean error: 27.1 s); Green line: 𝑘 ⋅
45𝑜+ steps (mean error: 0.8 s). The horizontal and vertical lines show 90𝑜 (dashed)

turns detected during way-in and return, respectively. Bottom: the reconstructed paths

by the 𝑘 ⋅ 90𝑜+ steps odometry (without using the path-matching algorithm to match

the return samples to way-in samples) plotted on the building map. Solid line: way-in

path. Dotted line: return path. The way-in path starts from a square and ends in a star.

To provide some insight into the results, examples of path matches for pairs of walkers

over the same path are shown in Figure 5.2 and Figure 5.3 (top), while the reconstructed

paths are shown against a map of the building (in the bottom of the figures and the

reconstructed path was plotted assuming a stride length of 0.567 m.). In the path-

matching plots, the vertical and horizontal axes indicate time instants during way-in

and return, respectively. The colored rectangles represent contiguous segments in the

 77

path. Specifically, the vertical coordinates of each rectangle's top and bottom edges

correspond to the times when the walker entered and exited the rectangle during the

way-in (as recorded in WeAllWalk) and similarly for the return path. The diagonal line

joining each rectangle's top left and bottom right corners (not shown in the figures)

represents the set of correct nodes {(𝑙𝑗 , 𝑗)} using the interpolation approximation

described above. The ‘+’ and ‘*’ signs in the plots represent time instants (for both way-

in and return) in which a 90o or 45o turn was marked in WeAllWalk. For each path-

matching algorithm displayed in the figures, a line represents the set of nodes selected

by the algorithm. Lines close to each rectangle's diagonals denote satisfactory path

matches. A “baseline” match of all time instants in way-in with corresponding time

instants in return {(𝑖, 𝑗)} is also shown, which assumes that the two participants walked

at the same speed.

Figure 5.2 compares the path-matching using 𝑘 ⋅ 90𝑜+ steps (red line) and 𝑘 ⋅ 45𝑜+

steps (green line) odometry. In the path-matching plot(top), both methods show similar

results up to return time 𝑡 = 240s. However, after that point, the 𝑘 ⋅ 45𝑜+ steps deviates

from the rectangle's diagonals. It can be observed that the 𝑘 ⋅ 90𝑜+ steps produces a

slightly better result than the 𝑘 ⋅ 45𝑜+ steps, while both are substantially better than the

baseline.

Figure 5.3 shows an example using the 𝑘 ⋅ 45𝑜+ steps algorithm. In this case, the path

had one 45𝑜+ turn at the beginning, followed by two 90𝑜 turns. The graph shows

horizontal and vertical lines corresponding to the time when a 45𝑜 (dotted) or

90𝑜(dashed) turn was detected during way-in or return, respectively. The algorithm

 78

correctly detected the 45𝑜 turn, but the second 90𝑜 turn was mistakenly detected as a

sequence of two 45𝑜 turns during return. The path-matching algorithm was able to

manage this situation correctly. However, some “jitter” is noticeable (see segment

marked in green), which is a consequence of the fact that dynamic programming was

implemented incrementally (rather than just at the end of the return path).

Figure 5.3: The top plot represents the best matching sequence with the 𝑘 ⋅ 45𝑜+ steps

algorithm for two walkers, both using a long cane. The colored rectangles represent the

entry and exit time of each “segment,” as marked in WeAllWalk. The ‘+’ sign

represents 90𝑜 turns, while the ‘*’ sign represents a 45𝑜 turn. Purple line: 𝑘 ⋅
45𝑜+steps (mean error: 2.72 s). The horizontal and vertical lines show the 45𝑜 (dotted),

and 90𝑜 (dashed) turns detected during way-in and return, respectively. Bottom: The

 79

reconstructed paths are overimposed on the building map. Solid line: way-in path;

Dotted line: return path.

5.2 SafeReturn App - User Interface for Evaluation

An IOS App was built to evaluate the path-matching algorithms in real-world

environments. This application was tested extensively on an iPhone XR. The

application's user interface during the test process is shown in Figure 5.4. There are

four application views, and the arrows between the views indicate that users can

navigate directly between them. Figure 5.4(a) is the initial view for users to decide

whether starting the path-matching task or calibrating the magnetometers. Figure 5.4(b)

is the calibration view for users to calibrate the magnetometers by rotating the

smartphone alone on the three axes. This will produce a plotted solid circle representing

the completion of the calibration (Note that it is recommended to perform calibration

before starting a way-in path). The primary operation of path-matching is performed in

Figure 5.4(c). The trajectory and the mapped samples between way-in and return paths

are plotted in the view. Figure 5.4(d) is the setup for parameters, and a detailed

description of the parameters is provided in the Appendix.

 80

Figure 5.4: Design of the user interface. (a): entry view (b): calibration view (c): the

main view for path-matching (d) parameter setup view.

5.3 On-Site Test

The on-site test was conducted in the E2 building at UCSC to evaluate the system's

capability to provide path recovery guidance in situations where the walker deviates

from the correct path. Figure 5.5 illustrates an example of successful path recovery,

and its corresponding path-matching graph is shown in Figure 5.6. On the return

journey, the walker was asked to miss the first 90𝑜 turn to simulate an off-route

situation. In the path-matching plot, the green line indicates the best path-matching

sequence determined by the algorithm, which is only available at the end of the return

trip. On the other hand, the black line represents the matching sequence calculated on

the fly, which is also the data used to provide real-time guidance.

 81

Figure 1.6 shows a significant overlap between the black and green lines, indicating

that real-time guidance closely approximates the optimal path calculated after

collecting all return data. This suggests that real-time guidance reflects optimal

matching. In the sequence, points with non-zero orientation discrepancy (𝑑 ≠ 0) or

off/reversed-route status (𝑑 = 4 𝑜𝑟 𝑑 = 2) are highlighted in different colors. The

yellow dots at the return sample #120 indicate that the system detected an off-route

status and prompted guidance for the walker to make a U-turn. The walker followed

the instruction, and then a reversed-route status was detected at return sample #240

(brown dots in the figure), which is expected because the walker was on the correct

path but facing the opposite direction. The system provided further instructions to

prompt another U-turn, eventually guiding the walker back onto the correct path. While

other false-positive reversed-route points occurred between return samples #131 and

#183 (brown dots), these were only generated in the best path-matching sequence at

the end of the return trip. Therefore, they weren't detected during the real-time

navigation.

The system successfully mapped samples on the return path to those on the way-in path

and provided path recovery to the walker. The corresponding trajectory of the path and

the path-matching plots on the app are also shown in Figure 5.7.

 82

Figure 5.5: Illustration of trajectory with successful path recovery guidance generated

by the system. The way-in path is from A to B, and the return path is from B to A. The

off-route and reversed-route segments are highlighted by the yellow and brown markers.

Figure 5.6: A representation of the best path-matching sequence. Horizontal lines: 90o

(red) and -90o (blue) turns detected during way-in. Vertical lines: 180o (brown), 90o

(red) and -90o turns detected during return. Green line: The best path-matching

sequence selected by the algorithm at the end of the return. Colored cluster: Points with

non-zero orientation discrepancy (layer 𝑑 ≠ 0) or off-/reversed-route status in the best

path-matching sequence. Black line: Path-matching sequence computed from return

data up to the real-time return sample index.

0 50 100 150 200 250 300 350 400 450 500

return sample index

0

50

100

150w
a
y
in

 s
a
m

p
le

 i
n

d
e

x

Mapped Index (mapped points on-the-fly)

Mapped Index (optimal mapping for whole path)

45 deg turn

-45 deg turn

90 deg turn

-90 deg turn

180 deg turn

 83

Figure 5.7: The view in the SafeReturn app. Top plot: Best path-matching sequence.

Bottom: Trajectory of the path.

The previous example shows a scenario where the system provided accurate real-time

guidance and identified instances when the user went off-route. However, the

effectiveness of detecting off-route situations has limitations when there is dynamic

magnetic interference from sources like the running elevators in our tested building, as

highlighted in another scenario depicted in Figure 5.8 for trajectory and Figure 5.9 for

the path-matching graph.

 84

Similar to the initial example, during the return route, the walker failed to execute a

90𝑜 turn and continued straight, leading to an off-route situation (highlighted in yellow

in Figure 5.8). Despite the ability of the graph to identify the walker's off-route status

upon collecting all return data at the end of the trial (depicted by the green line in Figure

5.9, representing the optimal graph path), it failed to offer real-time guidance

(illustrated by the black line in Figure 5.9) when the walker deviated from the route, as

the green line (with the yellow dots) and the black line start to diverge from same index

#420. This discrepancy is attributed to the similarity of magnetic field signatures across

different locations, resulting in incorrect location identification within the system.

When two distinct locations exhibit similar magnetic field signatures or when the

magnetic field is temporarily affected by large metallic objects, it can result in incorrect

mapping. Another drawback of solely relying on the path-matching graph for

localization is that it always assigns a mapped location to the way-in for every incoming

return sample. However, this mapping may not always be correct if the walker deviates

from the correct path. To overcome these challenges, we updated the algorithm to

incorporate the concept of reliable matching. This enhancement will be further

elaborated on in the upcoming chapter.

 85

Figure 5.8: An illustration of a trajectory where off-route deviations were not

successfully identified in real-time. The path originates from point A to point B (way-

in path), followed by the return path from point B to point A. Off-route and reversed-

route segments are highlighted by the yellow and brown markers, respectively.

Figure 5.9: A representation of the best path-matching sequence where off-route

deviations were not successfully identified in real-time. Horizontal lines: 90o (red) and

-90o (blue) turns detected during way-in. Vertical lines: 180o (brown), 90o (red) and -

90o (blue) turns detected during return. Green line: The best path-matching sequence

the algorithm selects at the end of the return. Colored cluster: Points with non-zero

orientation discrepancy (layer 𝑑 ≠ 0) or off-/reversed-route status in the best path-

matching sequence. Black line: Path-matching sequence computed from return data up

to the real-time return sample index.

 86

5.4 Conclusion

In this chapter, we conducted simulations of assisted return using the WeAllWalk

dataset to compare the odometry systems based on robust two-stage turn detection and

step counting. The analysis revealed that the 𝑘 ⋅ 90𝑜+ steps algorithm performs better

than other methods. Furthermore, we developed an iOS app for our system and

performed on-site testing to assess its performance. Results indicate that the system

effectively maps the user's position and offers path recovery assistance when the

magnetic field is stable. However, certain limitations arise in scenarios where the

magnetic signature is affected by other sources and becomes unreliable. Therefore, in

the following chapter, we propose a hybrid matching approach to enhance the system's

performance and achieve more robust results.

 87

Chapter 6

Enhanced Path-Matching Algorithm:

Hybrid Matching with Last Reliable Position

In the basic path-matching algorithm (Chapter 3), we only utilized the path-matching

graph ℊ to generate the mapped position during the return phase. However, as

discussed in previous chapters, relying solely on the graph ℊ presents several

challenges. For instance, temporary disturbances in the magnetic field can lead to

incorrect matching. The accuracy of the matching process is significantly influenced

by the stability of the magnetic field. Consequently, this chapter introduces the

enhanced path-matching algorithm: hybrid matching, which incorporates the concept

of the "last reliable position (LRP)" to enhance the robustness of the system. Two

methods for determining LRP are introduced, and the algorithm is evaluated using

datasets from various buildings at UCSC.

6.1 Last Reliable Position (LRP)

The idea of identifying “last reliable position (LRP)” or "last known position" is

commonly employed in some navigation systems. For instance, in GPS navigation,

 88

Receiver Autonomous Integrity Monitoring (RAIM) evaluates its integrity by

analyzing pseudo-ranges between satellites and the receiver. If anomalies or issues are

detected, RAIM takes corrective action by excluding signals from problematic

satellites or indicating the current GPS positioning cannot be trusted. When such

situations arise, alternative solutions, such as integrating with other sensors, can be

implemented, and the current position can be calculated based on the last known

position [55]. This concept is not limited to GPS alone but is also applied in Wi-Fi-

based [56] and iBeacon-based [57] indoor positioning systems. In these systems, nodes

exhibiting anomalies must be eliminated before calculating the last known position,

particularly before providing input to the Pedestrian Dead Reckoning (PDR) system.

When backtracking the walker’s position in our application, leveraging the concept of

the Last Responsible Position (LRP) offers two distinct advantages: preventing

contradictory guidance and identifying deviations from the correct path.

Preventing Contradictory Guidance:

When providing real-time navigation for visually impaired individuals, excluding

unreliable localization information is particularly crucial to prevent contradictory

guidance, which can confuse the users. Figure 6.1 illustrates such a scenario: the entire

return path is S3 (straight segment) → "right turn" → S2 (straight segment) → "left

turn" → S1 (straight segment). At the first junction, the walker correctly makes a right

turn towards the next left turn. However, due to a temporary disturbance in the

magnetic field, the graph places the walker back into the previous segment (highlighted

 89

in yellow in Figure 6.1 (b)). As a result, the system announces inaccurate guidance,

such as "At the upcoming junction, make a right turn." As more data is acquired (e.g.,

the walker takes a few more steps), the path-matching graph can accurately locate the

walker, providing the correct guidance: "At the upcoming junction, make a left turn."

The inconsistency between these guidance messages (left turn vs. right turn)

underscores the importance of determining the reliability of positional information to

avoid providing conflicting information to the user.

 (a) (b)

Figure 6.1: An illustration of inconsistent guidance without adopting LRP. (a) The

trajectory of the walker: The way-in path starts from point A to B, and the return path

starts from point B. (b) The x-y axis of the path-matching graph of the whole sequence

of paths. Red lines and blue lines indicate 90𝑜 and −90𝑜 turns, respectively. The

walker makes a correct 90𝑜 turn, but the graph initially misplaces the walker into a

prior segment for a short period of time and asks the walker to make a 90𝑜 turn again

(highlighted in yellow in (b) and point C in (a)). Subsequently, it locates the walker to

the correct position and instructs the walker to make a −90𝑜 turn. However, this

inconsistency may result in confusion.

 90

Identifying Deviations from the Correct Path:

The original path-matching algorithm consistently assigns a mapped location to the

way-in for every incoming return sample. However, this mapping may become

inaccurate if the walker deviates from the correct path. Figure 6.2 (a) shows an example

of this scenario. The walker missed the 2nd turn junction and continued straight ahead.

Still, the path-matching algorithm incorrectly assigns a mapped location to the way-in,

potentially near the destination (point C in Figure 6.2 (a) and the highlighted area in

Figure 6.2 (b)), misleadingly informing the walker that they are "approaching the

destination."

Although we may utilize the off-route layer (𝑑 ≠ 0) in the graph 𝒢 to identify

deviations from the intended path, as discussed in Chapter 5.3, the reliability of this

information can be compromised by external factors affecting the magnetic field (e.g.,

nearby running elevators), making the results unreliable.

In contrast, in a hypothetical scenario where the last reliable position (LRP) can be

identified, as shown in Figure 6.2 (c), if the walker misses a turn and continues walking,

we can then project their position from the LRP (pink dot). The projected positions

from LRP can help us to determine whether they have deviated significantly from the

expected turn junction. This approach allows us to identify deviations from the correct

path more accurately.

 91

(a) (b)

(c)

Figure 6.2: (a) and (b) illustrate inconsistent mapping without adopting LRP. (a) is the

trajectory of the walker: The way-in path starts from point A to B, and the return path

starts from point B. (b) is the x-y axis of the path-matching graph of the whole sequence.

Red lines and blue lines indicate 90𝑜 and −90𝑜 turns, respectively. The walker misses

the turn, but the graph misplaces the walker into a location close to its destination

(highlighted in yellow in (b) and point C in (a)). (c) shows the projections from LRP

(pink dot). The green dashed line indicates the walker’s path after LRP was found.

 92

6.2 Notation

Before delving into the details of how LRP works in our design, the notation used

throughout this chapter is introduced here to ensure clarity and consistency in our

discussions.

𝑆(𝑗) : The whole sequence for mapped indices at time instant j, i.e., the minimum path

traced back from the 𝑗 − 𝑡ℎ column of the cost matrix the green line in Figure 6.3(b)).

At the end of the return path, the optimal mapped sequence is 𝑆(𝑀) where M is the

number of samples of the return sequence.

(𝑖𝑗 , 𝑗, 𝑑𝑗) : The triplet of a mapping at time instant j, where 𝑖𝑗 is the corresponding

mapped index of the way-in and the layer 𝑑𝑗 represents its orientation discrepancy. It

is noted that (𝑖𝑗 , 𝑗) is the last element of the mapped indices in the 𝑆(𝑗) and connecting

(𝑖𝑗 , 𝑗) for all 0 < 𝑗 ≤ 𝑀 , creating the black line in Figure 6.3 (b))

𝑀ℎ
𝑖𝑛, 𝑀𝑔

𝑖𝑛 : the recorded (in reverse time order) 2-dimensional magnetic field during

way-in.

𝑀ℎ
𝑟𝑒𝑡, 𝑀𝑔

𝑟𝑒𝑡 : the recorded 2-dimensional magnetic field during return.

 93

6.3 LRP in the Path-Matching Graph

When mapped positions remain consistent and reliable over time, they should not

contradict each other. For example, assuming the user walks at a constant speed in both

the way-in and return phase, during the return phase, if the user walks along the same

path as the way-in path, the mapped indices should be gradually increasing. This

scenario is illustrated in the path-matching graph in Figure 1.3 (a). As the user

progresses along the return path (x-axis), the mapped indices gradually increase (y-

axis).

However, this consistency is not always guaranteed in real-time navigation scenarios.

In real-time backtracking navigation, samples from the return path are aligned to the

original way-in, with the optimal matching computed at each time step denoted as 𝑆(𝐽).

As the user progresses along the return path, a new optimal matching 𝑆(𝐽 + 1) is

generated. This updated matching may not always include the previous one. As

depicted in Figure 6.3 (b), during the return phase, the mapped index of the way-in path

shifted significantly from around #110 to approximately #50 after the user made a 90𝑜

turn near return sample index #130. To assess the reliability of the mapped indices, we

propose two methodologies to assess whether the current matching is reliable: one is

based on linear fitting of the matched path in the graph ℊ and the other is based on

machine learning. They are described in the following sections.

 94

 (a) (b)

Figure 6.3: An illustration of different optimal matching (green line) in consecutive

time instants in the x-y axis of the path-matching graph. Green line: the optimal

matching sequence (i.e., 𝑆(𝑗)) from the most recent time instant. A. Black line: the best

match indices for every time instant (i.e., (𝑖𝑗 , 𝑗)). Red lines and blue lines indicate 90𝑜

turns, respectively. (a) The graph at time instant J. (b) The graph at time instant J+1.

6.3.1 Linearly Defined LRP

As mentioned earlier, mapped positions should remain consistent over time. In this

method, we determine LRP by examining whether the mapped position at the current

time instant contradicts earlier calculated positions. We use local properties of the

current minimum cost graph path to decide, at the current time 𝐽, whether the match

(𝑖𝐽, 𝐽, 𝑑𝐽) can be considered “reliable,” meaning that it is likely to be preserved even

after later observations are recorded and the mapped points are toward the same

directions (i.e., 𝑑𝐽 = 0). As illustrated in Figure 6.4 (a) and (b), the mapped positions

exhibit fluctuations over time in scenario (a), indicating potentially unreliable

matchings. Conversely, in scenario (b), the samples are matched smoothly over time,

suggesting that some can be considered reliable.

 95

In practice, we look at the last N samples of the minimum cost path in the graph ending

at (𝑖𝐽, 𝐽, 𝑑𝐽).

If this path segment aligns well with a line with a unitary slop (indicating that the

residual of the fitting falls below a predefined threshold) and also it exhibits zero

orientation differences (𝑑𝐽 = 0, i.e., no orientation discrepancy between the mapped

way-in and return indices), then we can identify the latest mapped time instant as the

last reliable mapped point. Its corresponding mapped position is designated as LRP.

The set of LRPs determined by this method for the entire return path is denoted as

𝐿𝑅𝑃𝑙𝑜𝑐𝑎𝑙.

As time progresses, we continuously evaluate the past N samples to determine if a new

LRP has emerged. Consequently, in Figure 6.4 (b), multiple LRPs may be identified

over time, but our focus is solely on the most recent LRP for navigation guidance and

positioning purposes. It is noted that we chose N=21 in our system. The decision is

based on our initial experiments, where we found that setting N to 21 provided a

sufficient samples of magnetic field samples to establish a reliable mapping.

 96

(a) (b)

Figure 6.4: Two examples of mappings (with layer d=0 in both plots) from different

experiments. Black line: the best match indices (𝑖𝐽, 𝐽) for every time instant. Dashed

line: a line with a unitary slope. (a) The mapped indices cannot be fitted into a unity

slope, leading to an undetermined LRP. (b)The LRP is successfully determined and

indicated by a yellow solid circle.

Figure 6.5: An illustration of determining the LRP in the path-matching graph ℊ. The

X-axis and Y-axis are mapped indices during return and way-in, respectively. The gray

solid circles are all the nodes (i, j, 0) where it is assumed that the orientation

discrepancy 𝑑 = 0 to simplify the graph. The red nodes are the chosen nodes (𝑖𝐽, 𝐽, 0)

with a minimum cost at each incoming time instant during return. The black line

implies that the walker is progressively moving forward, so the node on the lowest right

corner is considered as the last reliable mapping, and its corresponding mapped position

is LRP.

 97

However, this method merely considers the last mapped indices (𝑖𝑗 , 𝑗) from 𝑗 = 𝐽 −

𝑁 + 1 𝑡𝑜 𝑗 = 𝐽 and their orientation differences 𝑑𝐽 , potentially overlooking features

extracted from the magnetic field and the knowledge of sequences 𝑆(𝐽), i.e., the green

lines in Figure 6.3. Therefore, we introduce another method to incorporate this

information in identifying the last reliable position.

6.3.2 LRP Determined through Machine Learning

The uniqueness of the magnetic field at a certain location (along with steps/turns

information) is used in our algorithm to match return samples to their corresponding

way-in sequences. Theoretically, correctly matched samples should exhibit similar

magnetic field patterns, indicating reliable mapped positions. However, temporary

disturbances in the magnetic field can lead to incorrect matching (as shown in the prior

example in Figure 6.2(b)). To address this, an alternative approach was proposed. We

incorporate both the path in the segment (the last N samples of the minimum cost path)

and magnetic field information and utilize a neural network to determine the reliability

of the match, rather than relying solely on linear fitting and residual thresholding of the

path segment. Here's our approach:

For every time instant during return, we have the following information: the mapped

indices (𝑖𝑗 , 𝑗, 𝑑𝑗), and two-dimensional magnetic field corresponding to both way-in

and return sequences, (𝑀ℎ
𝑖𝑛(𝑖𝑗),𝑀𝑔

𝑖𝑛(𝑖𝑗)) and (𝑀ℎ
𝑟𝑒𝑡(𝑗),𝑀𝑔

𝑟𝑒𝑡(𝑗)). We focus on the last

N samples of this information, where j ranges from J-N+1 to J, ensuring a consistent

 98

length of N for each set. Additionally, we have the optimal sequence of mapped indices,

denoted as 𝑆(𝐽), obtained by tracing the minimum path back from the J-th column of

the cost matrix. We extract the last N paired elements of 𝑆(𝐽), resulting in a size of 2N.

Notably, (𝑖𝐽 , 𝐽) represents only the last element of 𝑆(𝐽). Combining all the information

(size of Nx9), we can employ a neural network to identify the LRP.

To train the neural network for this task, we must first establish the ground truth of the

last reliable positions. The optimal path 𝑆(𝑀) generated at the end of the return path

was utilized to define the ground truth, because this is the most reliable match we can

find. While this assumption may not always hold true, it represents the best-calculated

result achievable after acquiring all of the return data.

We filter out points in the path (computed at the end of mapped sequence 𝑆(𝑗)) using

these empirical criteria to ensure their reliability:

1. A reliable point (𝑖𝐽, 𝐽) should not deviate significantly from the optimal path

𝑆(𝑀). Specifically, the shortest distance between 𝑆(𝑀) and (𝑖𝐽, 𝐽) should be

smaller than a predefined threshold (dist((𝑖𝐽, 𝐽), 𝑆(𝑀)) <= threshold).

2. A reliable point (𝑖𝐽, 𝐽) should be mapped to the same straight segment of the

trajectory determined by the optimal path 𝑆(𝑀), ensuring the coherence of the

mapping.

3. The consecutive points in a horizontal line in the path-matching graph are

considered reliable matches because they suggest that the user remains at the

 99

same position during the return. However, this contradicts the nature of the

sequences of time indices, which are defined based on each detected step. Since

each detected step should ideally represent a change in the user's position

(assuming the detected step is not taken in the same location), the user's position

should also change between the time indices. Therefore, (𝑖𝐽 − 𝑖𝐽−1) = 0 or

(𝑖𝐽+1 − 𝑖𝐽) = 0 , which means a horizontal line in the graph, cannot be

considered as a reliable match.

To better illustrate the third criterion, two plots are shown in parallel in Figure 6.6, with

labeled reliable matches shown in purple (unreliable matches are highlighted in yellow)

for the same dataset. The walker deviated from the correct path between return time

index #210 to 290 (points in the circle on both figures). In the right figure, the third

criterion was not applied, resulting in points within the circle area being incorrectly

labeled as reliable. After applying the third criterion, those points are indicated as

unreliable.

Figure 6.6: An example of a graph indicating the importance of taking the 3rd criterion

while defining the LRP. See the caption of Figure 6.3. Purple markers: labeled reliable

matches. Yellow markers: unreliable matches. Right: not taking the 3rd criterion when

 100

determining LRP (points in the circle are incorrectly labeled as reliable). Left: adopting

all three criteria.

Once all three criteria are satisfied, a point (𝑖𝐽, 𝐽) computed at the end of mapped

sequence 𝑆(𝑗), is considered reliable, and we utilize it as ground truth during the neural

network training. It is noted that if the walker deviates from the correct path (for

example, the walker missed a turn), the corresponding mapped positions are not

considered reliable. The set of last reliable positions in the ground truth for the entire

return path is denoted as 𝐿𝑅𝑃𝑔𝑡.

Five different types of networks were tested in this study to determine the last reliable

positions, the output of a generic model is called 𝐿𝑅𝑃𝑁𝑁 : fully-connected network

(FCN), long short-term memory (LSTM), 1D convolutional network, graph neural

network (GCN) [58], and graph attention network (GAT) [59]. Each network has a

similar number of parameters, including one input layer, one output layer, and one

hidden layer, totaling around 7K parameters. In the case of FCN, the input data with a

size of 𝑁 × 9 were flattened. For GAT and GCN, we utilized a graph representation of

the data, dividing it into two groups of nodes: way-in nodes and return nodes. Each

group contains 5 features, including two-dimensional magnetic field data (𝑀ℎ,𝑀𝑔),

orientation differences (layer d), mapped indices on-the-fly (𝑖𝐽, 𝐽) (i.e., the black line

in the graph), and the optimal mapped indices sequences 𝑆(𝑗) (i.e., the green line in

the graph). It's important to highlight that the orientation differences are the same for

both groups.

 101

6.3.3 Projected Positions Based on LRP

When a reliable match is detected, a projected return sequence is initiated and

continuously adjusted until a new reliable match is identified. This sequence originates

from the last reliable match, aligning its initial direction with the walker's current

orientation determined by its return path. Figure 6.7 illustrates the user’s position based

on LRP over a period during the return path.

Utilizing this projected sequence, the system generates guidance notifications based on

the walker's location. Upon detecting a new reliable match, the projected sequence is

re-initialized at that point. Visual representations of reliable matches and projected

paths are provided in Figure 6.8. In these figures, the "way-in route" is depicted with a

prominent purple line, with segment lengths determined by multiplying the step count

by the average step length generated by the WayFinding app, which will be further

discussed in the next section. For this reason, these segments may not perfectly align

with the corridors depicted in the underlying floor plan. Nonetheless, this discrepancy

doesn't pose an issue, as the primary objective of the system is to accurately match the

walker's return location with their initial way-in position, in order to deliver correct

guidance notifications.

 102

Figure 6.7: An example of projecting the user’s position based on the last reliable

position over a series of times during the return path. The blue line represents the way-

in path from point A to B, while the return path begins at point B. The dotted green line

is the projected path. The black dot is the projected position, and the yellow dot is the

last reliable position. (a)In the beginning, the mapped point is also the last reliable

position, so only one yellow dot is plotted. (b) The walker’s position was projected

based on the last reliable position. (c) The user turned right, and the return’s projected

position deviated from the way-in path. (d) A small mapping error(𝑒𝑟𝑟𝑚𝑎𝑝) was

observed and the mapped position is considered as the last reliable point. Eventually,

the user reconverged back onto the original route.

(a) (b)

Figure 6.8: Examples of return path-matching using projected sequence(a) and hybrid

matching(b). The way-in path is shown with a thick purple line, ending at the black

square. The length of each segment is given by the number of steps recorded, multiplied

by the step length measured during calibration. A gray line shows the actual path of the

participant during the return phase. Projected sequences are shown with black lines. In

 103

(b), reliable matches are shown as yellow circles. Note that in (a), the length of the

initial segment appears to be longer than during the way-in, possibly because the walker

took shorter steps, or took additional steps while looking for a place where to turn. In

(b), the trajectory is corrected as soon as a new reliable match is found.

6.4 Dataset Description

Three categories of datasets are used to train the network for detecting the last reliable

point. They are listed below, and Table 6.1 provides information on the dataset size in

each dataset.

1. Actual way-in and return paths:

The paths were taken on the 3rd floor of the Engineering 2 building During the

return journey, the walker intentionally made wrong turns. Consequently,

samples corresponding to these off-route segments in the mapped index plot are

also labeled as unreliable mappings. Figure 6.9 illustrates an example of such a

path.

Figure 6.9: An example of dataset category 1. The trajectory of the walker. The blue

line represents the way-in path from point A to point B, while the red line represents

the return path from point B to point A.

 104

2. Generative dataset created by concatenating segments in the buildings:

This is done by simulating actual way-in and return paths within Engineering 2

and Natural Science - Interdisciplinary Science buildings. Initially, we recorded

magnetic field and steps/turns data in the segments, as illustrated in Figure 6.10.

By concatenating these segments, we generated scenarios for both the way-in

and return paths. In all paired paths (way-in and return), intentional off-route

paths were added to create scenarios where the mapped index is incorrect.

Figure 6.11 is an example of such a pair of paths in the E2 building; a way-in

path is formed by concatenating segments S1-S2-S6, and the corresponding

return path is S6-S2-S5-S5(reversed)-S1.

Although the generated pair paths may not exactly replicate the paths walked

by individuals, this method still provides our model with sufficient data to learn

the features necessary for identifying the reliability of the mapped index.

 105

Figure 6.10: Segments in E2(top) and Natural Science - Interdisciplinary Science

building (bottom). The red lines indicate the data (magnetic field and steps/turns) were

recorded in these segments in the building.

Figure 6.11: An example of the generative dataset. The way-in route spans from point

A to B, generated by connecting segments S1, S2, and S6. The return route, from point

B back to A, includes an additional off-route segment, S5, appended. This return route

is generated by connecting segments S6, S2, S5, S5 (reversed), and S1.

3. Seven visually impaired participants who used our app to navigate three

paths in BE:

This is the dataset collected during the user study on the second floor of the BE

building. Seven visually impaired participants were recruited for this

 106

experiment by traveling three routes once (as the way-in phase). And then at

the end of the third route, participants were instructed to retrace each route in

reverse order (as the return phase). Each path contains 4 to 5 turns, with

distances of 123m, 97m, and 72m, respectively. The defined routes are depicted

in Figure 6.12, and the details of the data dataset are further discussed in the

next chapter.

(a) (b)

(c)

 107

Figure 6.12: Floor plan of the building with the tested paths highlighted. (a) R1 path;

(b) R2 path; (c) R3 path. The tested paths are depicted in gray, with the start and end

points indicated by a square and a star, respectively.

As previously discussed, the system estimates the user’s location by aligning return

samples with way-in samples, enabling the calculation of positioning errors based on

misaligned samples. Consequently, the step length information is unnecessary.

However, to calculate positioning error in meters, datasets in categories 1 and 2 utilize

a fixed step length (0.54m, which is the average step length of the tester who collected

the dataset) for user position calculation. For dataset category 3, tests were conducted

concurrently with another WayFinding app [48] (developed by other PhD students in

our lab, the details of the app will be discussed in Chapter 7) capable of estimating the

user’s step length in the initial step length calibration stage. Thus, the averaged step

length measured from this app is applied to dataset category 3.

 Dataset # 1 Dataset # 2 Dataset # 3

of paired paths 12 44 19

Size of data 4392 32428 9885

Number of turns 35 109 13

Table 6.1:Information of the dataset.

 108

6.5 Error Metrics

Two error metrics are defined for the application: one is based on the generated

trajectory, and the other is based on the accuracy of the generated LRP. This section

provides detailed information about both metrics. It is important to highlight that we

conducted a Leave-one-out cross-validation (LOOCV) methodology to evaluate the

system’s performance. The dataset from the user study (category 3) serves primarily

for testing purposes because it is the actual dataset collected from seven visually

impaired participants. During testing with LOOCV, the model was tested on the “left-

out” participant while being trained using datasets from the remaining participants

in category 3 with the entire dataset in categories 1 and 2.

6.5.1 Error Metric Based on the Ground Truth

The error is calculated based on the reconstructed trajectory by each method. Assuming

the actual location of the user of the reconstructed trajectory based on the ground truth

𝐿𝑅𝑃𝑔𝑡 (defined in section 1.2.2) is represented as (𝑥𝑔𝑡,𝑖 , 𝑦𝑔𝑡,𝑖) and the calculated

trajectory based on proposed methods, 𝐿𝑅𝑃𝑙𝑜𝑐𝑎𝑙 and 𝐿𝑅𝑃𝑁𝑁 , are represented as

(𝑥̂𝑖 , 𝑦̂𝑖) where {𝑖|𝑖 ∈ ℤ, 1 ≤ 𝑖 < 𝑀} }, and 𝑀 is the number of steps in the path. The

average error on each user’s step can be calculated as follows.

 𝐸𝑔𝑡 =
∑ ||(𝑥̂𝑖,𝑦̂𝑖)−(𝑥𝑔𝑡,𝑖,𝑦𝑔𝑡,𝑖)||

𝑀
𝑖=1

𝑀
 (6.1)

 109

6.5.2 Correctness of Predicting LRP

As mentioned in section 1.2.2, the ground truth 𝐿𝑅𝑃𝑔𝑡 was based on the optimally

matched sequence 𝑆(𝑀) generated at the end of the return. 𝐿𝑅𝑃𝑔𝑡 serves as the

reference for comparing LRP determined by other methods. The accuracy of LRP

determined by different methods is defined using the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
 ,

Where:

 𝑇𝑃(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒): The number of correctly identified LRP.

𝑇𝑁(𝑡𝑟𝑢𝑒 𝑛𝑎𝑔𝑎𝑡𝑖𝑣𝑒): The number of correctly identified non reliable positions.

1.3 Estimated position in different methods.

In this section, we compare different methods of finding the LRP and generating the

user's estimated positions. The error based on the ground truth data, 𝐸𝑔𝑡 , is shown in

Table 6.2. As mentioned earlier, the neural network models were trained by the whole

dataset except for the data from the “left-out participant”. The left-out participant was

only used for testing and was labeled in the first row of the table. It is important to note

that in the last row of the table, the "default" method refers to considering all mapped

points as reliable, which corresponds to the original path-matching algorithm described

in Chapter 3. This default method is represented as 𝐿𝑅𝑃𝐵𝑎𝑠𝑒𝑑𝑙𝑖𝑛𝑒 =

{𝑎𝑙𝑙 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑖𝑛𝑑𝑖𝑐𝑒𝑠} . Additionally, for the "Linearly defined LRP" and

"Baseline" methods, since no training is involved, the results for each participant

column represent the corresponding test outcomes directly generated by the methods.

 110

Left-out participant P1 P2 P3 P4 P5 P6 P7

GAT 0.56 1.6 0.90 0.93 0.74 0.95 0.35

GCN 0.90 3.13 1.07 3.21 0.85 1.09 5.38

FCN 0.53 1.05 0.68 0.51 0.62 0.24 0.22

LSTM 1.15 3.12 0.62 1.12 1.50 1.21 2.65

CONV_1D 0.67 1.66 0.91 1.52 1.09 0.7 0.76

Linearly defined LRP 1.63 2.68 0.94 0.85 1.12 0.90 2.63

Baseline 0.82 3.20 1.52 3.64 1.98 1.6 3.62

Table 6.2: Error calculation (𝐸𝑔𝑡 in meters) relative to ground truth. The two methods

exhibiting the lowest errors for each left-out participant are highlighted in gray.

Test Path P7, path#1 P2, path#3

GAT 0.63 0.61

FCN 0.21 0.64

Linearly defined LRP 4.98 7.63

Baseline 6.90 5.31

Table 6.3: Error calculation (𝐸𝑔𝑡 in meters) relative to ground truth for the aborted cases

in the user study.

As illustrated in Table 6.2, FCN demonstrates the highest performance, followed by

GAT as the second-best model. Therefore, we have selected these two models for

further comparison to assess their performance in challenging scenarios encountered

during the user study, specifically the aborted cases that cannot be resolved simply by

increasing the iDTW window size in the path-matching algorithm. The results of this

comparison are presented in Table 6.3, indicating a significant reduction in errors

achieved by both GAT and FCN in these difficult cases, allowing us to provide correct

guidance to the user.

 111

Regarding the correctness of predicting the LRP, Table 6.4 shows that the FCN network

has the highest accuracy in most cases. When processing complicated paths, as shown

in Table 6.5, both FCN and GAT can generate more accurate labels. However, FCN

remains the better option across various scenarios.

Table 6.4: The accuracy of predicting the labels of the last reliable positions by different

methods. Note: for the "Linearly defined LRP" and "Baseline" methods, since no

training is involved, the results for each participant column represent the corresponding

test outcomes directly generated by the methods.

Test path P7, path#1 P2, path#3

Linearly defined LRP 0.86 0.85

GAT 0.98 0.83

FCN 0.95 0.86

Baseline 0.15 0.20

Table 6.5: The accuracy of predicting the labels of the last reliable positions in the

aborted cases in the user study.

Figure 6.13 illustrates reconstructed trajectories using method #1 (linearly defined LRP)

or method #2(LRP generated by FCN). Near the coordinate (50,30), the walker made

additional turns, and the system struggled to establish a reliable mapping in subsequent

steps due to fluctuated magnetic fields. When reconstructing the path using linearly

Left-out participant P1 P2 P3 P4 P5 P6 P7

GAT 0.75 0.76 0.87 0.81 0.82 0.70 0.94

GCN 0.75 0.77 0.77 0.73 0.70 0.74 0.83

FCN 0.78 0.84 0.89 0.82 0.86 0.79 0.82

LSTM 0.72 0.72 0.84 0.82 0.67 0.78 0.74

CONV_1D 0.74 0.81 0.88 0.79 0.75 0.77 0.79

Linearly defined LRP 0.63 0.79 0.78 0.81 0.82 0.79 0.83

Baseline 0.72 0.39 0.62 0.52 0.62 0.48 0.44

 112

defined LRPs, several incorrect LRPs (false positive LRPs) were identified over time,

indicated by the green dots near the coordinate (50,15). The resulting trajectory (the

green path in the lower part of the plot) shows significant misalignment with the

expected trajectory (the thicker blue line).

In contrast, when utilizing LRPs determined by a neural network (FCN), no false

positive LRPs were detected in Figure 6.13 (no black dot near the coordinate (50,15)).

The LRPs detected near the destination are true positive LRPs. Additionally, the

misalignment between the projected trajectory (the black line in the plot) and the

expected trajectory (the blue line in the plot) is reduced. It is noted that although a few

false positive LRPs were detected at the beginning of the path (near (50,30)) in both

methods, they did not significantly affect the result.

Therefore, using the last reliable position provided by neural networks (particularly by

FCN) reduces the error on constructed trajectory and increases the accuracy of

identifying LRP. This approach proves advantageous for navigating complex paths,

particularly in scenarios characterized by fluctuated magnetic fields.

 113

Figure 6.13: Projected trajectory based on the last reliable position determined by

different methods. (Participant 7, Path#1 aborted case). The return path starts from a

square and ends in a star. Thick blue line: expected trajectory. Black line: trajectory by

method#2 (FCN). Green line: trajectory by method # 1(linearly defined LRP). Black

and green solid circles: LRPs calculated by method#2 and method #1, respectively.

Blue solid circles: ground truth for LRP.

6.6 Conclusion

In the original path-matching algorithm, the issue of changing the best matching

sequences as more data becomes available during real-time navigation can lead to

inconsistent mapping and confusing guidance, especially for users without visual cues.

To address this, an improved algorithm called hybrid matching was discussed in this

chapter.

The hybrid matching algorithm introduces the concept of finding a "last reliable

position (LRP)" to determine the reliability of current mapped positions. Two

methodologies for identifying LRP were proposed: one based on linear definitions and

the other utilizing neural networks including fully-connected network (FCN), long

 114

short-term memory (LSTM), 1D convolutional network, and graph neural networks

(GCN and GAT).

A dataset consisting of three distinct collections from different buildings at UCSC was

created to evaluate these methodologies. Three error metrics were defined to compare

these methods and test the system's performance. The results revealed that using the

FCN network to determine LRP yielded the best outcomes. It demonstrates the

effectiveness of using neural network-based methodologies, particularly the FCN

approach, to improve path-matching accuracy.

 115

Chapter 7

Experiments with Backtracking Assistance

Navigating unfamiliar environments without a map presents significant

challenges, particularly for individuals who need visual cues. Our experiments address

this issue by implementing assisted return, a specific form of indoor navigation, to

facilitate wayfinding for individuals with blindness. Introduced by Flores and

Manduchi [21] assisted return involves providing support to guide blind users back to

their starting point after traversing a specific path. Building upon this concept, we

developed the SafeReturn app, utilizing path-matching algorithms to enable users to

record and navigate routes with automatic guidance using their smartphones.

This chapter begins by introducing the user interface of the SafeReturn app, followed

by a detailed explanation of the system's notification and navigation features for users.

Furthermore, a user study involving seven visually impaired participants was

conducted to evaluate the app's effectiveness, with the findings discussed in this chapter.

It is important to note that the system implemented in the user study was based on

section 6.3.1(Linearly defined LRP), where the user's last reliable position was linearly

identified and utilized for navigation purposes.

 116

7.1 User Interface Design

The SafeReturn app seamlessly integrates with VoiceOver [60], a gesture-based screen

reader, to provide visually impaired users with an accessible interface on their iOS

devices. Through VoiceOver, users can navigate the app's screens (storyboard) using

sound cues and adjust settings to their preferences. Additionally, the app offers Apple

Watch-based control, enabling users to interact with it and receive guidance while

keeping their phone in their pocket.

Furthermore, the interface of SafeReturn is synchronized with another navigation app

called "WayFinding[48]," developed by other PhD students in our lab . WayFinding is

also designed for visually impaired individuals to navigate indoor environments where

maps are available. By synchronizing the interfaces of these two apps, users can

seamlessly switch between them based on the availability of building maps and their

specific navigation requirements. This synchronization enhances the user experience

by providing continuity in navigation across different environments.

The app's entry screen is depicted in Figure 7.1. The blue "Run Safe Return” button

lets users start guidance on the main screen. Additionally, users can customize various

settings by following steps:

1. Selecting their preferred guidance unit among foot, meter, or number of steps.

2. Entering their personalized average step length (it can be obtained by the

WayFinding app in the initial calibration stage.)

3. Choosing between a 45𝑜 or 90𝑜 turn detector for navigation assistance.

 117

It is recommended that the magnetometer be calibrated before starting the navigation

task for the first time. This calibration process is initiated by tapping the yellow button

at the top of the main screen, as detailed in the following section.

Figure 7.1 : The entry screen of SafeReturn.

7.2 Calibration of Magnetic Field

As noted in Chapter 4.2.1, the magnetometer is prone to significant drift due to hard

iron or soft iron interference. Therefore, it is recommended that a one-time

magnetometer calibration be performed before the user starts the navigation task. This

calibration process can be quickly completed by rotating the smartphone along the x-

y-z axes or using the conventional "∞" motion-based magnetometer bias calibration

 118

method, as referenced in [17]. After calibration, the system will generate a fitted

ellipsoid and display the residue of the fitted result, enabling users to determine if

recalibration of the system is necessary. Figure 7.2 shows an example of the calibration

screen.

Figure 7.2 : The calibration screen of SafeReturn.

7.2.1 Main Screen of SafeReturn

The main screen, illustrated in Figure 7.3, includes a "Path Selection" scrollable list

positioned at the top, presenting users with various path names for selection. Our

application allows users to choose any path before starting their way-in journey without

requiring prior knowledge of the selected path. However, during the return phase, users

must select the same path name as their initial choice to ensure accurate matching with

the corresponding way-in path within the system.

 119

Below the "Path Selection" is the "Route Type" button, where users can specify

whether the route is for way-in or return before starting the route. Another important

button is located at the lower left corner to start or end the route.

Under the "Route Type" button, two figures are provided for real-time path-matching

graph and trajectories visualization. It's important to note that these figures are solely

intended for debugging by developers and are not accessible to the user.

As depicted in Figure 7.3, our design simplification emphasizes four primary interface

components directly accessible to users via VoiceOver: "Path Selected," "Route Type,"

"Start/End," and "Repeat Notifications." The remaining setups, intended for debugging

purposes, are configured once, and user intervention is not expected. This approach

maintains simplicity in our interface, reducing disruptions for users. An example of the

screen during the return phase is shown in Figure 7.4.

 120

Figure 7.3 : The main screen of SafeReturn. Black notations: Primary interface

components directly accessible to users. Gray notations: Components for debugging

purposes or configured once in the system.

Figure 7.4 : Example of the main screen during the return phase. The path-matching

graph (upper graph) displays colored lines indicating times when turns were detected

during way-in (horizontal lines) and return (vertical lines). The visualization of

 121

trajectories (lower graph) shows the real-time mapped position marked by a solid black

circle, and the last reliable position is highlighted in yellow.

7.2.2 Watch Gestures for the System

As mentioned earlier, our goal is to create intuitive gestures for interacting with the app.

To achieve this, we have developed an app for the Apple Watch, enabling users to keep

their smartphones in their pockets while engaging with the system, as shown in Figure

7.5. Below are the primary gestures available in the Apple Watch app:

• Selecting the path: Users can navigate through the path options by swiping left

or right on the Watch's face. VoiceOver will audibly announce the name of the

currently selected item from the list .

• Starting the route: Initiating the route is as simple as rotating the Watch's crown

in either direction until a distinctive "ding" sound is heard. This signals the

starting of the route, accompanied by a notification: “Please start walking.”

• Ending the route: Similar to starting the route, users can end their journey by

rotating the Watch's crown in either direction until they hear the familiar "ding"

sound, indicating the conclusion of the route.

• Repeating last notification: Users can replay the previous notification issued by

the app at any point during the path by performing a right swipe on the Watch's

face.

• Hearing route description: To obtain a comprehensive description of the

remaining route segments and turns from their current location to the

 122

destination, users can perform a left swipe on the Watch's face at any time

during their journey.

These gestures are designed to enhance user experience and facilitate easy navigation

and control of the app while on the move.

Figure 7.5: Supported gestures in the Watch app. Before starting the path, users can

swipe left or right on the Watch face to select a path. During navigation, swiping right

will repeat the last notification, while swiping left will provide comprehensive route

information.

7.2.3 Navigation Notifications - Turn-By-Turn Instructions

In our application, where map information is not available, the turn-by-turn instructions

serve as the primary method of navigation assistance for visually impaired people.

These instructions provide step-by-step guidance, helping users navigate themselves.

These notifications are generated based on the current route and the user's location.

Specifically, we calculate the distance of the user's location projected onto the

associated route segment to the next turn point in the reversed way-in direction.

 123

Figure 7.6 illustrates the different navigation states a walker may encounter. These

states are described as follows:

• S0 state: This is the initial state of the user and serves as an intermediate state

between notifications generated by other states. No notification is generated in

this state.

• S1 state: This state indicates that the user has entered a new route segment. The

notification generated in this state was originally "Walk straight for about XX

[meters/feet/steps]. Then, turn left/right/approaching destination." However,

during the user study from P4 to P7, the second sentence of the notification was

removed. This adjustment aimed to prevent users from making another turn

before reaching the actual turn point, enhancing navigation accuracy and user

experience.

• S3 state: This indicates that the user is close to the next turn point or the

destination (when the distance is smaller than Z steps). The notification

generated in this state is "At the coming junction, turn left/right" or

"Approaching destination."

• SW state: This state indicates that the user is walking in the wrong direction at

a distance of more than Z steps from the way-in path. The path recovery

notification is generated in this state: "You are walking in the wrong direction.

Please turn around and start walking again."

 124

The distance of Z steps (where Z =16 in our system) for defining the S3 and SW states

was determined through trial and error in our initial experiments. With 16 steps

defining the S3 state, the user is positioned approximately 8 meters away from the next

turn junction, based on an average step length of 0.504 meters acquired during the user

study. This distance provides sufficient time and distance for the user to prepare for or

locate the next turn junction. Similarly, the number in the SW states indicates that the

user has deviated from the correct path for a certain distance (8 meters), allowing the

system to confirm whether the user is truly deviating from the correct path or if it's a

temporary diversion. In cases of conflicting notifications, such as when the user enters

a segment and an S1 notification is generated (while the audio is not finished), but they

are immediately close to the next junction, an S3 notification will be generated. The

ongoing notification is never interrupted. Additionally, it's important to note that the

same notification is never repeated. This approach ensures a smooth and uninterrupted

navigation experience for users, minimizing confusion and enhancing usability.

 125

Figure 7.6: The state diagram for providing notifications.

7.3 Experiment – User Study

The user study was conducted concurrently for two apps: SafeReturn and WayFinding.

The WayFinding app was developed by other PhD students in our lab (F. Elyasi and P.

Ren) and they are also the developers of the step detector and turn detector in the

SafeReturn app. The details about combining two apps in one user study are described

in the next section. Seven participants were recruited for this experiment. Their

characteristics are summarized in Table 7.1. All participants were blind with minimal

to no light perception and were independent walkers. P6 recently transitioned from

using a dog guide to a long cane and was still adjusting to it. P5 used hearing aids due

 126

to hearing impairment. Everyone used iPhones except P7, who preferred a cell phone

with a physical keypad. Only P1 wore a smartwatch (Apple Watch) regularly.

 Gender Age Blindness

Mobility

aid

Preferred

Unit

Phone

preference Smartwatch

P1 F 73 L Dog Steps iPhone Apple Watch

P2 M 69 B Cane Feet iPhone No

P3 M 53 B Cane Feet iPhone No

P4 F 69 B Cane Feet iPhone No

P5 M 75 L Cane Meters iPhone No

P6 F 76 L Cane Steps iPhone No

P7 F 72 L Dog Feet

Phone with

keypad

No

Table 7.1: Characteristics of the participants in our study. For blindness onset, “B”

indicates “since birth,” while `L' indicates “later in life.”

7.3.1 Experiment Setting

The experiment was conducted on the second floor of the Baskin Engineering building.

Three routes (R1, R2, and R3) were selected, each comprising 4 to 5 turns, with

distances of 123m, 97m, and 72m, respectively. The defined routes are depicted in

Figure 7.7.

 127

(b) (b)

(c)

Figure 7.7 : The floor plan of the building with the tested paths is highlighted. (a) R1

path; (b) R2 path; (c) R3 path. The tested paths are depicted in gray, with the start and

end points indicated by a square and a star, respectively.

In SafeReturn, a way-in route could be potentially traversed with the assistance of a

sighted companion. In this study, instead of relying on a sighted companion during the

way-in, participants used the WayFinding app as their guide. The WayFinding app is

 128

specifically designed to assist visually impaired individuals in navigating from a

starting point to a destination, utilizing map information of the building. It's important

to note that SafeReturn does not utilize map information during the return phase.

This approach may introduce another level of difficulty, as participants had to navigate

the way-in path with the assistance of the WayFinding app instead of relying on a

sighted companion. This could lead to challenges such as navigating to a dummy route

due to unfamiliarity with the WayFinding app or making additional turns due to

swinging movements while attempting to locate a single turn point. However, by

employing this approach, we demonstrated the system's ability to provide guidance in

real-life situations, reflecting the complexities and challenges visually impaired

individuals may encounter during navigation.

The way to combine two apps is as follows. First, a participant would use the

WayFinding app to traverse three routes(R1-R2-R3), where the beginning of each route

coincided with the end of the previous route. During this way-in phase, the SafeReturn

app (running on a different iPhone, carried by the participant in a different pocket than

the iPhone running the WayFinding app) recorded measurements (magnetic field, steps,

turns) from each route. At the end of the third route, participants were instructed to

retrace each route in reverse order, starting from R3 in the opposite direction. During

this phase, participants received notifications from the SafeReturn app.

A separate building was utilized for the practice trial, where participants were

introduced to both apps. The practice trial route was simpler, consisting of only two

 129

turns with a total length of 63 meters. These two buildings were located close to each

other.

7.3.2 Modalities

Experimental Procedure

The experimental protocol followed the guidelines approved by the University's

Institutional Review Board, ensuring ethical conduct throughout the study. Prior to

participation, each participant provided informed consent and received a

comprehensive explanation of the applications' objectives and functionalities.

Participants were encouraged to seek clarification on any uncertainties.

Special emphasis was placed on the notification system, ensuring participants were

aware of upcoming turn alerts with advance notice. It was explained that upon receiving

a notification, they were required to identify the nearest available turn, which could be

in their proximity or a few meters down the way.

Initial Setup and Calibration

Following the introductory phase, participants underwent a simple calibration process

outlined in 7.2. Subsequently, they were accompanied to the starting point of the

practice trial. Each participant carried two iPhones in their pants pocket: one iPhone 12

running the WayFinding app, and the other an iPhone XR (running the SafeReturn app)

recording way-in data. Participants also wore a wireless bone conduction headset

 130

(Shokz OpenRun) to receive app notifications and an Apple Watch Series 8 to interact

with the app.

Before starting the practice trial, settings such as VoiceOver speed and sound volume

were adjusted to suit participant preferences. Additionally, participants were given the

option to choose distance units for directions (meters, feet, or steps), with settings

adjusted accordingly (see Table 7.1). It is important to note that the SafeReturn app

initially provided distances solely in steps due to implementation oversight for the first

three participants (from P1 to P3).

Practice Trial and Familiarization

Participants were guided through familiarization exercises, including practicing left

and right swipes on the Watch interface. While all participants eventually mastered this,

P2 initially struggled due to misinterpreting directional cues.

During the practice trial, the participants traveled a predefined route using the

WayFinding app, followed by backtracking the path using the SafeReturn app. At the

end of the practice trial, participants were asked about their preference regarding the

sound of detected footsteps. All participants opted to retain the footstep sound, with

some mentioning that it reassured them about the system’s proper functioning.

 131

(a) (b)

Figure 7.8: Participants interact with the Watch to start the test route.

Main Experiment Procedure

Upon completing practice trials, participants and experimenters relocated to the

designated experiment site, starting from the initial route (R1) point. The sequential

trials, detailed in section 7.3.1, were initiated. At the beginning of each trial,

participants were positioned at the route’s starting location and oriented in the initial

 132

walking direction. They then selected the next route via the Watch interface and

activated the app by rotating the crown, as shown in Figure 7.8.

Participants were instructed to swipe left on the Watch to hear a route description

before navigation. Upon reaching the destination, participants stopped the app by

rotating the Watch’s crown. Optional rest periods were provided before starting

subsequent trials, during which participants were repositioned at the next route’s

starting point (same as the previous route’s endpoint) and correctly oriented.

Throughout the trials, experimenters maintained a safe distance from participants to

avoid influencing routing decisions.

Post-Experiment Procedures

Following the final trial, participants and experimenters returned to the initial building,

where participants completed a questionnaire comprising the ten System Usability

Scale (SUS) questions and several open-ended inquiries [61].

7.3.3 Observation and result

Successful Trials and Performance

Figure 7.9 and Figure 7.10 show examples of successful trials with the SafeReturn app

and Table 7.2 outlines the duration of these successful route traversals. In addition,

Figure 7.11 demonstrates a situation where the participant took the wrong path. Then,

the app was able to provide notifications for path recovery, and the participant walked

back as directed by the app.

 133

In these visualizations (Figure 7.9 and Figure 7.10), the way-in route (depicted with a

thick purple line) consists of segments whose length is determined by multiplying the

number of steps taken in each segment by the step length calculated during initial

calibration. Consequently, these segments may not precisely align with the corridors

depicted in the floor plan. However, this disparity does not affect the app's functionality,

as the SafeReturn app aims to match the walker's location during the return with their

location during the way-in, ensuring correct guidance notifications. Therefore, the

metric consistency with the floor plan is not crucial for our purposes.

During the study, there were several situations in which the walker took extra loops

during the way-in phase. Our way-in simplification method, discussed in section 3.1.1,

effectively removed these loops. Figure 7.12 illustrates the result of the way-in

simplification. While our method could remove the loops and preserve the path's

geometry, there were instances where the length of the simplified way-in path differed

significantly from the actual path length, as explained later in this section, resulting in

the unsuccessful matching of the return path. Figure 7.12 (a) and (b) show the

optimized way-in paths for both scenarios.

 134

(a)

(b)

Figure 7.9: Examples of successful backtracking trials (hybrid matching). (a): Route

R2 for participant P5. (b): R1 for P4. Left panel: The way-in path is shown with a thick

purple line ending at the black square. The length of each segment is given by the

number of steps recorded, multiplied by the step length measured during calibration.

The actual path of the participant during the return phase is shown by a gray line.

Reliable matches are shown as yellow circles. Projected sequences are shown with

black lines. Right panel: Magnetic discrepancy for all pairs (𝑖, 𝑗) of samples from way-

in (vertical axis) and return (horizontal axis). Lighter gray indicates a larger

discrepancy.

(a)

 135

(b)

Figure 7.10: See caption of Figure 7.9 (a): path R1, participant P2. (b): path R2,

participant P2. Highlighted are situations in which the participant took a wrong path

and then walked back as directed by the app.

(a)

 136

(b)

Figure 7.11 : Path recovery in the highlighted route for Figure 7.10 (a). Top: P2 was

trapped in alcove path 1; Bottom: After receiving guidance from the system, P2 was

able to walk back on the correct route.

(a)

(b)

Figure 7.12 : Examples of successful (a) and unsuccessful (b) way-in path

simplification. The left panels depict the original way-in path with a thick purple line,

 137

ending at the black square, alongside the approximate actual path taken by the walker

(measured from the video), shown with a gray line. The right panels display the

simplified way-in paths.

 P1 P2 P3 P4 P5 P6 P7 Length

R3B 180 x 115 134(E) 136 x x 72m

R2B 182 (E) 232 x 238 173 154 149 97m

R1B 187 206 149 167 x,163(E) 184 x, x 123m

Table 7.2: Summary of the experiment for the WayFinding and SafeReturn routes. For

successfully completed routes, we report the duration (in seconds). When displayed

with a grey background, the participant missed one or more turns, or took a wrong turn,

but was able to walk back and complete the route with guidance from the app. E: the

route was completed, but verbal input from an experimenter was needed at some point.

x: The trial had to be aborted due to the app's inability to track the participant. In two

cases, a second attempt was made after a trial had been aborted.

On the other hand, six trials with the SafeReturn app were aborted due to tracking

failures during the return route. Here is the analysis in each case:

• Participant P3 in path R2: The system alerted the participant about an upcoming

turn ahead of time, but the participant made a wrong turn despite this. Although

the app recognized this mistake and sent a "turnaround" notification to guide

P3 back on track, he didn't follow it. P3 thought he knew the right way and

continued walking in the wrong direction, believing he remembered the route.

As he moved farther from the correct path, the app lost track of his location

 138

because it mistakenly mapped P3’s off-route position to an on-route position

due to the similar magnetic field in different places.

• Participant P7 in path R1: P7, accompanied by a fast and confident dog, missed

a turn due to her swift pace (Figure 7.14(a)). When she was notified to turn

around, she was too far down the corridor. Although she attempted to turn

around and return to the correct path, the system lost track of her due to the

smaller size of the iDTW search window in the system's setup. Consequently,

our current system has adopted a larger iDTW searching window setup to

prevent similar occurrences in the future.

• Participant P5 in path R1: Initially unable to complete R1B, P5 veered off

course and took multiple incorrect turns in an open space (Figure 7.14 (a)).

After aborting the trial and starting a new one, P5 successfully completed the

route by following the initial route description provided via the Watch interface.

• Participant P7 in path R3: P7 took several detours during the initial path,

creating multiple loops. Figure 7.12(b) shows that our algorithm removed these

loops and simplified the path while maintaining correct geometry. However,

the first segment of the simplified path turned out to be significantly shorter

than in the original path. This difference led to an unsuccessful backtracking

trial.

 139

• Participants P2 in path R3 and P6 in path R3: The main issue was a significant

difference in the magnetic field readings. This issue is apparent in Figure 7.13,

where the magnetic field discrepancies between pairs (𝑖, 𝑗) of samples from the

way-in (vertical axis) and return (horizontal axis) are displayed. A white

horizontal line around the way-in sample index 120 and nearby samples

indicates a significant difference in the magnetic field recorded at that location

compared to any location during the return.

These analyses provide insights into the factors influencing trial outcomes and offer

suggestions for enhancing the system’s performance, as discussed at the end of this

chapter.

Figure 7.13: See caption of Figure 7.9. Path R3, participant P6. In this case, the app

failed to track the participant. The gray star represents the point at which the trial was

aborted; the black star is the desired destination.

 140

 (a) (b)

Figure 7.14: Pictures of our participants during the trial. (a): P7 ’s guided dog kept

walking straight and missed the turn (path R1) (b): P5 veered off course on the first

attempt in an open space (path R1)

7.3.4 Final Questionnaire and Open-Ended Questions

Table 7.3 shows the participants' responses to the System Usability Scale (SUS)

questionnaire [48]. The overall score was 80.36, corresponding to a percentile rank of

90% based on the distribution of scores reported in [62]. It's noted that participants

responded to both the SUS questions and open-ended questions for the WayFinding

and SafeReturn apps rather than providing separate responses for each app.

 P1 P2 P3 P4 P5 P6 P7 Mean

1. I think that I would like to use this system frequently. 3 4 1 5 5 5 4 3.86

2. I found the system unnecessarily complex. 2 1 1 2 2 4 1 1.86

3. I thought the system was easy to use. 4 4 5 5 5 5 5 4.71

 141

4. I think that I would need the support of a technical

person to be able to use this system.

1 1 1 1 4 3 1 1.71

5. I found the various functions in this system were well

integrated.

4 2 1 5 4 5 5 3.71

6. I thought there was too much inconsistency in this

system.

3 3 1 1 2 4 1 2.14

7. I would imagine that most people would learn to use this

system very quickly.

3 3 5 4 5 5 5 4.29

8. I found the system very cumbersome to use. 2 1 1 1 2 1 1 1.29

9. I felt very confident using the system. 4 4 3 5 4 5 5 4.29

10. I needed to learn a lot of things before 2 1 1 2 1 4 1 1.71

Table 7.3 : System Usability Scale (SUS) responses.

Below are the open-ended questions and a summary of the responses:

Do you think that the system always knew your location?

Most participants responded affirmatively, stating that the system accurately identified

their location most of the time. However, both P2 and P3 answered "No." According

to P2, there were instances when localization was inaccurate. Meanwhile, P3 noted that

localization seemed to be influenced by individual walking styles.

Do you think that the system gave you the correct directions?

 142

The majority of participants thought the system gave the right direction. However, P2

thought it was mostly accurate, similar to P1, who said it was right about 80% of the

time.

The system often gives turning directions (such as “At the coming junction, turn

right”) with some advance notice, which means that you need to find the turn

using your cane/dog. Was this a problem for you?

Participants generally stated that this was not a problem with the advance turning

notifications, but some suggested they could be more consistent and accurate. For

example, P4 mentioned a problem she had once with making a turn too early. P6 said

it would be better if the notifications always came at the same distance from the

junction. However, the system could not support this feature due to localization

accuracy. P7 pointed out that this was the only part of the system that didn't meet her

expectations for accuracy.

Were the notifications understandable? Too many notifications? Too few?

All participants found that the notifications were "fine" or "just right." P2 explained

that it gave him an approximate distance to the next turn and alerted him just before the

turn.

Was it easy for you to use the Watch?

 143

Most participants found using the Watch easy, though P2 mentioned it required some

practice to become accustomed to the gestures.

What would you like to have in this app that is not already there?

P5 mentioned the desire to know their current facing direction, which would be helpful

when feeling lost. P3 suggested the option to scroll through route descriptions step by

step, noting that the current implementation only allows a left swipe to view the

remaining route without pausing to review each step.

Did you notice any difference between the WayFinding system and the

BackTracking system (SafeReturn)?

Participants found both WayFinding and SafeReturn apps to be consistent, though P2

and P3 noted differences in the unit, which was later corrected.

Do you think that using this app would make you feel safer or more confident

when traveling alone in a new place?

Participants expressed confidence in using the apps for traveling in unfamiliar places,

highlighting benefits such as enhanced safety and reduced mental effort. P3, however,

mentioned considering the SafeReturn app's potential use in navigating busy

environments like conferences with numerous tables, where it could aid in returning to

a specific location, such as a table after visiting the restroom. They discussed various

 144

scenarios where the apps would improve navigation and boost confidence in diverse

settings.

Overall, participants found the apps helpful for navigation, with positive feedback on

providing the right directions and the ability to create mental maps of routes.

7.4 Discussion & Conclusion

We conducted a user study involving seven blind participants who provided invaluable

real-world feedback on the system's performance. Overall, our SafeReturn app

functions effectively when users adhere closely to the way-in path. However, the

algorithm encounters challenges when users deviate significantly from the original

route, leading to mismatches. Another issue arises from the spatial variability of the

magnetic field within large corridors or hallways, which can cause mismatches when

the user walks on a different trajectory within the same space during the return phase.

Therefore, improvements are necessary to enhance the system's robustness in practical

scenarios.

One essential improvement is to increase the system's iDTW window size. This

adjustment will enable our path-matching algorithm to identify the mapped points after

the walker returns to the correct path following significant detours. Additionally, given

that the system implemented in the user study was based on section 6.3.1(Linearly

defined LRP), integrating a neural network to detect the LRP could enhance location

reliability, as discussed in section 6.3.2.

 145

Moreover, ensuring that the walker's facing direction aligns correctly in open spaces is

crucial for accurate navigation, especially at the beginning of the return phase. If the

facing direction is misaligned with the hallway, the walker may struggle to locate the

next turn points. One potential solution, which is currently being explored by another

colleague in our lab (for the WayFinding app), involves using visual data, such as

automatic landmark recognition [63], for sporadic "fixes" using computer vision

techniques. In our assisted return application, this concept can be implemented as

follows: at the end of the way-in path, the walker uses their smartphone camera to

capture surroundings. Then, at the start of the return path, the system aligns the user's

orientation by matching current surroundings with the previously captured visual

information. After that, the user may move the smartphone back to their pocket and be

tracked by our system.

Furthermore, during the process of simplifying the way-in path to remove redundant

loops, it would be beneficial to acquire detailed step-length information for each step

instead of using a fixed step length for all steps. This approach would result in a more

realistic, simplified way-in route. Implementing a step-length estimator developed by

another colleague in our lab can facilitate this enhancement [12].

By addressing these areas of improvement, we can enhance the functionality and

usability of the system, ultimately providing a more reliable and seamless navigation

experience for blind users in real-world environments.

 146

Chapter 8

Conclusion

Wayfinding in an unfamiliar environment could be challenging and potentially

unsafe for visually impaired people because it is difficult to recognize landmarks at a

distance or any other visual information.

This thesis focuses on addressing this issue through the implementation of assisted

return, a specific form of indoor navigation aimed at facilitating wayfinding for visually

impaired individuals [21][7]. When a map of an indoor environment is not available,

an assisted return system is designed for a visually impaired walker who has traversed

a certain way-in route (possibly with the aid of a sighted companion) to traverse the

same path in reverse (return).

We proposed a graph-based algorithm that leverages magnetic field data and inertial

data (turns/steps) information to backtrack a walker's position when the map is

unavailable (Chapter 3). Additionally, the algorithm addresses situations where the

walker deviates from the intended path. Also, a straightforward approach to simplify

the way-in route is introduced, which is suitable for some real-life scenarios where the

walker might take extra loops during the way-in phase. We also investigated using the

differences in magnetic fields between mapped locations (the "cost of magnetic field")

 147

in our algorithm by studying the likelihood of the observed magnetic field (Chapter 4).

Then, we tested the algorithm with the WeAllWalk dataset to compare the odometry

systems based on steps/turns information. The analysis revealed that the 𝑘 ⋅ 90𝑜+ steps

odometry provides better results (Chapter 5).

Furthermore, we developed an iOS app and conducted on-site testing to assess its

performance. However, certain limitations arise in scenarios where the magnetic

signature is unreliable. Therefore, we propose a hybrid matching approach by

introducing the concept of LRP to enhance the system's performance and achieve more

robust results (Chapter 6).

To evaluate these methods in real-world scenarios, we developed the SafeReturn app

(based on the linearly defined LRP), featuring an intuitive interface integrated with the

Apple Watch. We conducted a user study involving seven visually impaired

participants (Chapter 7). The positive usability scores from the System Usability Scale

(SUS) responses indicate overall satisfaction with the design. However, the fact that 6

out of 21 trials had to be aborted highlights several challenges in the current system.

Consequently, we have proposed several improvements for the system

One challenge is to improve the system's ability to accurately track the user's position

with similar magnetic fields across different locations. Implementing solutions such as

using neural networks to detect a reliable mapping (i.e., detecting LRP) instead of the

linearly defined LRP could significantly enhance location reliability, as discussed in

section 6.3.1.

 148

Another challenge is the requirement for users to begin a route from a specific starting

point and maintain a predefined direction. To address this, a potential solution currently

under investigation by another PhD student in our lab (for the WayFinding app)

involves implementing periodic "adjustments" using computer vision techniques. This

concept involves capturing the surroundings with a smartphone camera at the end of

the way-in path and then aligning the user's orientation at the start of the return path

using this visual information. Afterward, the user can put the smartphone back in their

pocket and continue to be tracked by our system.

Furthermore, the system assumes that indoor environments consist of networks of

corridors intersecting at certain angles (e.g., 90𝑜 or 45𝑜). Its performance degrades

when the intersecting angles deviate from these angles. Moreover, using the system in

open spaces presents challenges, as magnetic field data is recorded for specific paths

during the way-in phase, making it difficult to match magnetic sequences during the

return phase when the walker’s position is not confined to a specific corridor. Potential

solutions to these challenges include placing a stronger emphasis on steps/turns

information in open spaces. However, this approach may encounter issues if the

walker's step length varies significantly. Alternatively, leveraging computer vision

techniques to periodically adjust the walker's position using the camera can improve

system performance in this situation. However, this adjustment process should be

designed to minimize the need for the walker to hold the phone constantly. This

approach has the potential to enhance the system's performance and usability.

 149

Another challenging scenario during the user study was that users took too many extra

loops in the way-in path. During the process of simplifying the way-in path to remove

redundant loops, the simplified path sometimes became much shorter than the actual

path, resulting in inaccurate way-in paths for us to match the return path to. As a result,

we had to abort some of the tests for this reason. To resolve this issue, it would be

beneficial to acquire detailed step-length information for each step instead of using a

fixed step length for all steps. When users take extra loops during the way-in phase,

this approach can generate more realistic and simplified routes. Adding a step-length

estimator into the system developed by another PhD student in our lab can facilitate

this enhancement [12].

Despite these challenges, positive feedback and SUS scores indicate that participants

felt safer and more confident while using the app. It validates the potential of our

proposed technology for providing assisted return for visually impaired individuals.

 150

BIBLIOGRAPHY

[1] J. M. Loomis, R. L. Klatzky, R. G. Golledge, J. G. Cicinelli, J. W. Pellegrino,

and P. A. Fry, “Nonvisual navigation by blind and sighted: assessment of path

integration ability.,” J Exp Psychol Gen, vol. 122, no. 1, p. 73, 1993.

[2] S. A. Cheraghi, V. Namboodiri, and L. Walker, “GuideBeacon: Beacon-based

indoor wayfinding for the blind, visually impaired, and disoriented,” in 2017

IEEE International Conference on Pervasive Computing and Communications

(PerCom), IEEE, 2017, pp. 121–130.

[3] R. Sammouda and A. Alrjoub, “Mobile blind navigation system using RFID,”

in 2015 Global Summit on Computer & Information Technology (GSCIT), IEEE,

2015, pp. 1–4.

[4] J. Hurtuk, J. Červeňák, M. Štancel, M. Hulič, and P. Fecil’ak, “Indoor navigation

using IndoorAtlas library,” in 2019 IEEE 17th International Symposium on

Intelligent Systems and Informatics (SISY), IEEE, 2019, pp. 139–142.

[5] A. Budrionis, D. Plikynas, P. Daniušis, and A. Indrulionis, “Smartphone-based

computer vision travelling aids for blind and visually impaired individuals: A

systematic review,” Assistive Technology, pp. 1–17, 2020.

[6] G. Fusco and J. M. Coughlan, “Indoor localization for visually impaired

travelers using computer vision on a smartphone,” in Proceedings of the 17th

International Web for All Conference, 2020, pp. 1–11.

 151

[7] C. Yoon et al., “Leveraging augmented reality to create apps for people with

visual disabilities: A case study in indoor navigation,” in The 21st International

ACM SIGACCESS Conference on Computers and Accessibility, 2019, pp. 210–

221.

[8] R. Crabb, S. A. Cheraghi, and J. M. Coughlan, “A Lightweight Approach to

Localization for Blind and Visually Impaired Travelers,” Sensors, vol. 23, no. 5,

p. 2701, 2023.

[9] Amanda Morris, “Navigational Apps for the Blind Could Have a Broader

Appeal,” The New York Times, Dec. 20, 2021.

[10] D. Sato, U. Oh, K. Naito, H. Takagi, K. Kitani, and C. Asakawa, “Navcog3: An

evaluation of a smartphone-based blind indoor navigation assistant with

semantic features in a large-scale environment,” in Proceedings of the 19th

International ACM SIGACCESS Conference on Computers and Accessibility,

2017, pp. 270–279.

[11] I. Abu Doush, S. Alshatnawi, A.-K. Al-Tamimi, B. Alhasan, and S. Hamasha,

“ISAB: integrated indoor navigation system for the blind,” Interact Comput, vol.

29, no. 2, pp. 181–202, 2017.

[12] P. Ren, F. Elyasi, and R. Manduchi, “Smartphone-based inertial odometry for

blind walkers,” Sensors, vol. 21, no. 12, p. 4033, 2021.

[13] I. Apostolopoulos, N. Fallah, E. Folmer, and K. E. Bekris, “Integrated online

localization and navigation for people with visual impairments using smart

 152

phones,” ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 3, no.

4, pp. 1–28, 2014.

[14] J. Zegarra Flores and R. Farcy, “Indoor navigation system for the visually

impaired using one inertial measurement unit (IMU) and barometer to guide in

the subway stations and commercial centers,” in Computers Helping People with

Special Needs: 14th International Conference, ICCHP 2014, Paris, France, July

9-11, 2014, Proceedings, Part I 14, Springer, 2014, pp. 411–418.

[15] T. H. Riehle, S. M. Anderson, P. A. Lichter, J. P. Condon, S. I. Sheikh, and D.

S. Hedin, “Indoor waypoint navigation via magnetic anomalies,” in 2011 Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society, IEEE, 2011, pp. 5315–5318.

[16] S. Herath, H. Yan, and Y. Furukawa, “Ronin: Robust neural inertial navigation

in the wild: Benchmark, evaluations, & new methods,” in 2020 IEEE

International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp.

3146–3152.

[17] G. Ouyang and K. Abed-Meraim, “A survey of magnetic-field-based indoor

localization,” Electronics (Basel), vol. 11, no. 6, p. 864, 2022.

[18] T. H. Riehle et al., “Indoor magnetic navigation for the blind,” in 2012 Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society, IEEE, 2012, pp. 1972–1975.

[19] Y. Shu, Z. Li, B. Karlsson, Y. Lin, T. Moscibroda, and K. Shin, “Incrementally-

deployable indoor navigation with automatic trace generation,” in IEEE

 153

INFOCOM 2019-IEEE Conference on Computer Communications, IEEE, 2019,

pp. 2395–2403.

[20] N. A. Giudice, W. E. Whalen, T. H. Riehle, S. M. Anderson, and S. A. Doore,

“Evaluation of an accessible, real-time, and infrastructure-free indoor navigation

system by users who are blind in the mall of america,” J Vis Impair Blind, vol.

113, no. 2, pp. 140–155, 2019.

[21] G. Flores and R. Manduchi, “Easy return: an app for indoor backtracking

assistance,” in Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems, 2018, pp. 1–12.

[22] G. H. Flores and R. Manduchi, “Weallwalk: An annotated dataset of inertial

sensor time series from blind walkers,” ACM Transactions on Accessible

Computing (TACCESS), vol. 11, no. 1, pp. 1–28, 2018.

[23] S. Xia, Y. Liu, G. Yuan, M. Zhu, and Z. Wang, “Indoor fingerprint positioning

based on Wi-Fi: An overview,” ISPRS Int J Geoinf, vol. 6, no. 5, p. 135, 2017.

[24] Z. Zuo, L. Liu, L. Zhang, and Y. Fang, “Indoor positioning based on bluetooth

low-energy beacons adopting graph optimization,” Sensors, vol. 18, no. 11, p.

3736, 2018.

[25] S. Sprager and M. B. Juric, “Inertial sensor-based gait recognition: A review,”

Sensors, vol. 15, no. 9, pp. 22089–22127, 2015.

[26] C. Fischer, P. T. Sukumar, and M. Hazas, “Tutorial: Implementing a pedestrian

tracker using inertial sensors,” IEEE Pervasive Comput, vol. 12, no. 2, pp. 17–

27, 2012.

 154

[27] Y. Jin, H.-S. Toh, W.-S. Soh, and W.-C. Wong, “A robust dead-reckoning

pedestrian tracking system with low cost sensors,” in 2011 IEEE International

Conference on Pervasive Computing and Communications (PerCom), IEEE,

2011, pp. 222–230.

[28] M. Edel and E. Köppe, “An advanced method for pedestrian dead reckoning

using BLSTM-RNNs,” in 2015 International Conference on Indoor Positioning

and Indoor Navigation (IPIN), IEEE, 2015, pp. 1–6.

[29] C. H. Tsai, P. Ren, F. Elyasi, and R. Manduchi, “Finding Your Way Back:

Comparing Path Odometry Algorithms for Assisted Return,” in 2021 IEEE

International Conference on Pervasive Computing and Communications

Workshops and other Affiliated Events (PerCom Workshops), IEEE, 2021, pp.

117–122.

[30] S. Herath, H. Yan, and Y. Furukawa, “Ronin: Robust neural inertial navigation

in the wild: Benchmark, evaluations, & new methods,” in 2020 IEEE

International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp.

3146–3152.

[31] B. Li, T. Gallagher, A. G. Dempster, and C. Rizos, “How feasible is the use of

magnetic field alone for indoor positioning?,” in 2012 International Conference

on Indoor Positioning and Indoor Navigation (IPIN), IEEE, 2012, pp. 1–9.

[32] W. Storms, J. Shockley, and J. Raquet, “Magnetic field navigation in an indoor

environment,” in 2010 Ubiquitous Positioning Indoor Navigation and Location

Based Service, IEEE, 2010, pp. 1–10.

 155

[33] J. Kuang, X. Niu, P. Zhang, and X. Chen, “Indoor positioning based on

pedestrian dead reckoning and magnetic field matching for smartphones,”

Sensors, vol. 18, no. 12, p. 4142, 2018.

[34] H. Liu, H. Xue, L. Zhao, D. Chen, Z. Peng, and G. Zhang, “MagLoc-AR:

Magnetic-based Localization for Visual-free Augmented Reality in Large-scale

Indoor Environments,” IEEE Trans Vis Comput Graph, 2023.

[35] R. Putta, M. Misra, and D. Kapoor, “Smartphone based indoor tracking using

magnetic and indoor maps,” in 2015 IEEE Tenth International Conference on

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),

IEEE, 2015, pp. 1–6.

[36] J. Haverinen and A. Kemppainen, “Global indoor self-localization based on the

ambient magnetic field,” Rob Auton Syst, vol. 57, no. 10, pp. 1028–1035, 2009.

[37] X. Fan, J. Wu, C. Long, and Y. Zhu, “Accurate and low-cost mobile indoor

localization with 2-D magnetic fingerprints,” in Proceedings of the First ACM

Workshop on Mobile Crowdsensing Systems and Applications, 2017, pp. 13–18.

[38] B. Gozick, K. P. Subbu, R. Dantu, and T. Maeshiro, “Magnetic maps for indoor

navigation,” IEEE Trans Instrum Meas, vol. 60, no. 12, pp. 3883–3891, 2011.

[39] Y. Shu and B. F. Karlsson, “Path Guide: A New Approach to Indoor Navigation.”

Jul. 2017. [Online]. Available: https://www.microsoft.com/en-

us/research/publication/path-guide-a-new-approach-to-indoor-navigation/

[40] Y. Shu, C. Bo, G. Shen, C. Zhao, L. Li, and F. Zhao, “Magicol: Indoor

localization using pervasive magnetic field and opportunistic WiFi sensing,”

 156

IEEE Journal on Selected Areas in Communications, vol. 33, no. 7, pp. 1443–

1457, 2015.

[41] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning:

Continuous control of mobile robots for mapless navigation,” in 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), IEEE, 2017,

pp. 31–36.

[42] H. Shin, Y. Chon, and H. Cha, “Unsupervised construction of an indoor floor

plan using a smartphone,” IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), vol. 42, no. 6, pp. 889–898, 2011.

[43] P. Robertson, M. Angermann, and B. Krach, “Simultaneous localization and

mapping for pedestrians using only foot-mounted accelerometers,” in

Proccedings of ACM International Conference on Ubiquitous Computing, 2009.

[44] S. Kaiser and E. M. Diaz, “PocketSLAM based on the principle of the

FootSLAM algorithm,” in 2015 International Conference on Localization and

GNSS (ICL-GNSS), IEEE, 2015, pp. 1–5.

[45] R. Chen and J. S. Liu, “Mixture kalman filters,” J R Stat Soc Series B Stat

Methodol, vol. 62, no. 3, pp. 493–508, 2000.

[46] F. Elyasi and R. Manduchi, “Step length is a more reliable measurement than

walking speed for pedestrian dead-reckoning,” in 2023 13th International

Conference on Indoor Positioning and Indoor Navigation (IPIN), IEEE, 2023,

pp. 1–6.

 157

[47] B. Code, “CALIFORNIA Building Code,” California Mechanical Code,

California, 2002.

[48] C. H. Tsai, F. Elyasi, P. Ren, and R. Manduchi, “All the Way There and Back:

Inertial-Based, Phone-in-Pocket Indoor Wayfinding and Backtracking Apps for

Blind Travelers,” arXiv preprint arXiv:2401.08021, 2024.

[49] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. M. Havinga, “Fusion of

smartphone motion sensors for physical activity recognition,” Sensors, vol. 14,

no. 6, pp. 10146–10176, 2014.

[50] Apple, “deviceMotion,” Apple Developer Documentation. [Online]. Available:

https://developer.apple.com/documentation/coremotion

[51] K. P. Subbu, B. Gozick, and R. Dantu, “LocateMe: Magnetic-fields-based

indoor localization using smartphones,” ACM Transactions on Intelligent

Systems and Technology (TIST), vol. 4, no. 4, pp. 1–27, 2013.

[52] C. S. Kallie, P. R. Schrater, and G. E. Legge, “Variability in stepping direction

explains the veering behavior of blind walkers.,” J Exp Psychol Hum Percept

Perform, vol. 33, no. 1, p. 183, 2007.

[53] C. D. Fryar, M. D. Carroll, Q. Gu, J. Afful, and C. L. Ogden, “Anthropometric

reference data for children and adults: United States, 2015-2018,” 2021.

[54] I. Ashraf, M. Kang, S. Hur, and Y. Park, “MINLOC: Magnetic field patterns-

based indoor localization using convolutional neural networks,” IEEE Access,

vol. 8, pp. 66213–66227, 2020.

 158

[55] M. A. U. Shaikh, A. Mahmood, S. S. H. Zaidi, M. Zain, and M. Ashraf, “Future

Position Estimation In case of GPS Outages,” in 2022 Third International

Conference on Latest trends in Electrical Engineering and Computing

Technologies (INTELLECT), IEEE, 2022, pp. 1–6.

[56] B. Bonthu and M. Subaji, “An effective algorithm to overcome the practical

hindrance for Wi-Fi based indoor positioning system,” Open Computer Science,

vol. 10, no. 1, pp. 117–123, 2020.

[57] P. T. Mahida, S. Shahrestani, and H. Cheung, “Indoor positioning framework

for visually impaired people using Internet of Things,” in 2019 13th

International Conference on Sensing Technology (ICST), IEEE, 2019, pp. 1–6.

[58] J. Zhou et al., “Graph neural networks: A review of methods and applications,”

AI open, vol. 1, pp. 57–81, 2020.

[59] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,

“Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[60] Apple, “VoiceOver,” Apple Developer Documentation. [Online]. Available:

https://www.apple.com/voiceover/info/guide/_1121.html

[61] J. Brooke, “SUS: a retrospective,” J Usability Stud, vol. 8, no. 2, pp. 29–40,

2013.

[62] J. Sauro, A practical guide to the system usability scale: Background,

benchmarks & best practices. Measuring Usability LLC, 2011.

[63] L. Chen, Y. Zou, Y. Chang, J. Liu, B. Lin, and Z. Zhu, “Multi-level scene

modeling and matching for smartphone-based indoor localization,” in 2019

 159

IEEE International Symposium on Mixed and Augmented Reality Adjunct

(ISMAR-Adjunct), IEEE, 2019, pp. 311–316.

 160

APPENDIX: PARAMETERS IN PATH-MATCHING ALGORITHM

Parameter Name Description Default

Cts (e in app setup) Turn suppression cost. 100

C𝑚𝑜 (d in app

setup)

Mis-orientation cost. 5

C𝑠𝑡𝑠1−𝑜𝑓𝑓

(e2 in app setup)

Cost for changing status from on-route nodes

to off-route nodes.

30

C𝑠𝑡𝑠2−𝑜𝑓𝑓

(e4 in app setup)

Cost for changing status from off-route nodes

to off-route nodes.

8

C𝑠𝑡𝑠−𝑟𝑒𝑣 Cost for changing status from off-route nodes

to reversed-route nodes.

60

𝛼

(alpha in app

setup)

For calculating 𝐶𝑀𝐹_𝑜𝑓𝑓(𝑖,𝑗). 2

𝑚𝑎𝑔_𝑡ℎ𝑟𝑒𝑠

(mag_bound in app

setup)

Threshold of the cost from the magnetic field

for the off-route nodes.

40

Weight

(Magnetic Field)

Weight for magnetic field during cost matrix

calculation for path matching.

1/7.75

Path-Matching

window size

This is the window size for path matching

algorithm.

600

 161

	Chapter 1 Introduction
	Chapter 2 Related work
	2.1 Wi-Fi Based Indoor Positioning
	2.2 BLE-Beacon Based Indoor Positioning
	2.3 Inertial Sensor-Based Indoor Localization
	2.3.1 Strapdown Inertial Navigation
	2.3.2 Pedestrian Dead Reckoning (PDR)

	2.4 Learning-Based Odometry
	2.5 Magnetic Field Indoor Positioning
	2.6 Assisted Return System
	2.6.1 Inertial Sensor-Based Assisted Return
	2.6.2 Visual Odometry-Based Assisted Return

	Chapter 3 Path-Matching Algorithm
	3.1 Path Reconstruction for the Way-in Route
	3.1.1 Path Simplification for the Way-in Route

	3.2 Review: DTW and iDTW
	3.3 Path-Matching Algorithm
	Projected Return Sequence
	Sequence Alignment
	3.3.1.1 Node cost of discrepancy in magnetic field (,𝑪-𝑴𝑭.)
	3.3.1.2 Node cost of unmatched turns (,𝑪-𝑼𝑻.)

	3.4 Off-Route and Reversed-Route Detection
	3.4.1 Off-Route Detection
	3.4.2 Reversed-Route Detection

	3.5 Error Metrics
	3.6 Conclusion

	Chapter 4 Path-Matching Algorithm: Magnetic Field
	4.1 1D/2D/3D Magnetic Field
	4.2 Magnetic Field’s Characteristics
	4.2.1 Magnetometer Calibration
	Soft Iron Distortion
	Hard iron Distortion

	4.3 Cost of Magnetic Field
	4.4 Conclusion

	Chapter 5 Path-matching Algorithm: Experiment with WeAllWalk Dataset and On-Site test
	5.1 Comparing Path Odometry Algorithms for Assisted Return – WeAllWalk Experiments
	5.2 SafeReturn App - User Interface for Evaluation
	5.3 On-Site Test
	5.4 Conclusion

	Chapter 6 Enhanced Path-Matching Algorithm: Hybrid Matching with Last Reliable Position
	6.1 Last Reliable Position (LRP)
	6.2 Notation
	6.3 LRP in the Path-Matching Graph
	6.3.1 Linearly Defined LRP
	6.3.2 LRP Determined through Machine Learning
	6.3.3 Projected Positions Based on LRP

	6.4 Dataset Description
	6.5 Error Metrics
	6.5.1 Error Metric Based on the Ground Truth
	6.5.2 Correctness of Predicting LRP

	6.6 Conclusion

	Chapter 7 Experiments with Backtracking Assistance
	7.1 User Interface Design
	7.2 Calibration of Magnetic Field
	7.2.1 Main Screen of SafeReturn
	7.2.2 Watch Gestures for the System
	7.2.3 Navigation Notifications - Turn-By-Turn Instructions

	7.3 Experiment – User Study
	7.3.1 Experiment Setting
	7.3.2 Modalities
	7.3.3 Observation and result
	7.3.4 Final Questionnaire and Open-Ended Questions

	7.4 Discussion & Conclusion

	Chapter 8 Conclusion
	Bibliography
	Appendix: Parameters in Path-Matching Algorithm

