
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Multi-Robot Cooperative Localization and Target Tracking

Permalink
https://escholarship.org/uc/item/0q69h911

Author
Zhu, Pengxiang

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0q69h911
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Multi-Robot Cooperative Localization and Target Tracking

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Pengxiang Zhu

June 2022

Dissertation Committee:

Dr. Wei Ren, Chairperson
Dr. Jay A.Farrell
Dr. Konstantinos Karydis

Copyright by
Pengxiang Zhu

2022

The Dissertation of Pengxiang Zhu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First and foremost I am grateful to my advisor Dr. Wei Ren for his invaluable mentoring

and continue support over the past five years. Without his help, this work would never have

been here. His broad knowledge and insightful thinking have inspired me throughout my

PhD study and helped me learn a lot of skills. Also, his diligence and humble personality

encourage me to stay hungry and stay foolish. In addition, I would like to thank Dr. Guo-

quan Huang from the University of Delaware for giving me the opportunity to collaborate

with his group. The experience help me dig into the visual-inertial navigation system and

make progress in my research. Thanks for all the efforts they made.

I am grateful to the members in my oral and defense committees, Dr. Jay Farrell,

Dr. Konstantinos Karydis, Dr. Fabio Pasqualetti, Dr. Matt Barth and Dr. Jiasi Chen for

their valuable advice and insightful comments on my research.

My appreciation also goes out to my friends and labmates, who make my PhD

life a wonderful experience. Especially, I appreciate the work from Patrick Geneva and

Yulin Yang who come from RPNG lab. The experience working with them enhanced my

knowledge and promote my research work. My friends, Hongsheng Yu, Xing Zheng and

Shaocheng Wang have offered me their assistance in my research project. I also want to

thank Yong Ding, Shan Sun, Peng Wang, Shaoshu Su, Runze Li, Zhichao Liu and many

other friends at Riverside. They make my stressful PhD life not that boring and help me

maintain optimistic and positive through the hard time.

Most importantly, I would like to express my gratitude to my parents. They

devoted everything they have to provide me the study opportunities. Without their unwa-

iv

vering support, it would be impossible for me to complete my study.

Finally, I want to acknowledge the financial support from National Science Foun-

dation (Grant no. CMMI-1537729, CMMI-2027139) and the Department of Electrical and

Computer Engineering at UCR.

v

To my parents Shuping Zhu and Fenying Tang for all the support.

vi

ABSTRACT OF THE DISSERTATION

Multi-Robot Cooperative Localization and Target Tracking

by

Pengxiang Zhu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2022

Dr. Wei Ren, Chairperson

Sensor networks with the ability of communication and perception has a wide range

of applications. They can be utilized to estimate a target’s pose even if some sensors are

blind to the target. This problem is termed as distributed state estimation (DSE) which

has been widely studied. However, existing works are limited to 2-D scenarios with the

assumption of fixed and known sensor states. This manuscript addresses the limitations

and extends DSE to the mobile robot case where the robots use onboard sensors to track

the target’s state.

In particular, in Chapter 2 we study the problem of joint localization and target

tracking (JLATT) in 2-D situations. A team of robots simultaneously localize themselves

and track multiple targets. Instead of treating localization and target tracking as two

separate problems, we explicitly account for the influence of one to the other and exploit it

to improve performance in a distributed context. We introduce a fully distributed algorithm

that is applicable to generic robot motion, target process and measurement models, and is

robust to time-varying sensing and communication typologies.

vii

In the following three chapters, we work on the 3-D scenarios and use the most

popular sensor rig – the visual-inertial sensor. Specifically, we first focus on the target

tracking and robot localization separately and then work on the visual-inertial JLATT.

In chapter 3, a static camera network is used to cooperatively estimate the six degree-of-

freedom (6-DoF) pose of a moving object. A novel distributed Kalman filter (DKF) is

introduced for a general nonlinear system. In chapter 4, we present a multi-robot visual-

inertial navigation system (VINS) which achieves cooperative localization (CL) by efficiently

fuses environmental features. The algorithm enables drift-free estimation through the use

of loop-closure constraints to other robots’ historical poses without a significant increase in

computational cost. Finally, in chapter 5, we present an algorithm to track a target’s state

by utilizing a heterogeneous robot network. Rather than assuming a known common global

frame for all the robots, we allow each robot to perform motion estimation locally. For

localization, one robot builds a prior map and then the map is used to bound the long-term

drifts of the visual-inertial odometry (VIO) running on the other robots. The novel DKF

is employed to track the pose of the object which is represented as a point cloud.

The research presented in this dissertation aims at extending the application of

multi-robots by improving the performance in self-localization and target tracking. The

proposed algorithms are demonstrated in Monte-Carlo simulations and experiments.

viii

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Problem Description . 1
1.2 Key Contributions . 3

1.2.1 Distributed JLATT for generic models 3
1.2.2 Distributed 3-D Target State Estimation 4
1.2.3 Distributed Visual-Inertial Cooperative Localization 4
1.2.4 Distributed Visual-Inertial JLATT 5

1.3 Organization of the Manuscript . 6

2 Distributed Joint Localization and Target Tracking (Generic Models) 7
2.1 Introduction and Related Works . 7
2.2 Preliminaries . 11

2.2.1 Notations and Definitions . 11
2.2.2 Graphs . 12
2.2.3 Track-to-Track Fusion . 13
2.2.4 Problem Formulation . 15

2.3 Proposed Fully Distributed Algorithm . 17
2.3.1 Distributed Extended Information Filtering 17
2.3.2 Joint Localization and Target Tracking 24

2.4 Stability Analysis . 26
2.5 Simulations . 36
2.6 Experiments . 41
2.7 Conclusions . 46

3 Distributed 3-D Target State Estimation 48
3.1 Introduction and Related Works . 48
3.2 Preliminaries . 51

3.2.1 Quaternion . 51

ix

3.2.2 Notation and Definitions . 53
3.3 3-D Distributed State Estimation Algorithm 54

3.3.1 Problem Formulation . 54
3.3.2 Proposed Distributed Kalman Filter 55

3.4 Simulations . 57
3.4.1 State Vector and Models . 58
3.4.2 Results . 62

3.5 Conclusion . 63

4 Distributed Visual-Inertial Cooperative Localization 66
4.1 Introduction and Related Works . 66
4.2 Cooperative Visual-Inertial System . 69

4.2.1 Inertial Propagation . 70
4.2.2 Camera Measurement Update . 71

4.3 Distributed Visual-Inertial CL . 72
4.3.1 Independent VIO Feature: MSCKF Update 73
4.3.2 Independent SLAM Feature: FEJ-EKF Update 74
4.3.3 Common VIO Feature: CI-EKF Update 74
4.3.4 Common SLAM Feature: CI-EKF Update 77
4.3.5 Historical Features: CI-EKF Update 78

4.4 Simulations . 80
4.4.1 Accuracy and Consistency Evaluation 83
4.4.2 Timing Analysis . 85

4.5 Experiments . 88
4.5.1 TUM-VI Dataset . 89
4.5.2 Vicon Room Dataset . 90

4.6 Conclusions . 92

5 Distributed Joint Visual-Inertial Localization and Target Tracking 93
5.1 Introduction . 93
5.2 Preliminaries . 97

5.2.1 Notations and Definitions . 97
5.2.2 Communication Graph . 98

5.3 Multi-Robot VINS . 98
5.3.1 IMU State . 99
5.3.2 Update Strategy for Robot 1 . 99
5.3.3 Update Strategy for Robot j . 102

5.4 Cooperative Target State Tracking . 105
5.4.1 Tracking State Vector . 105
5.4.2 Target Measurements . 106
5.4.3 Distributed Kalman Filter For Tracking 108

5.5 Results . 110
5.5.1 Localization . 111
5.5.2 Tracking . 113

5.6 Conclusion . 115

x

6 Conclusions 117

Bibliography 119

xi

List of Figures

2.1 A team of four robots move randomly and track two targets. Their starting
positions are marked by cicles. 37

2.2 Position (left) and Orientation (right) RMSE for four robots averaged over
50 Monte Carlo runs. 40

2.3 Position (left) and Orientation (right) RMSE for two targets averaged over
50 Monte Carlo runs. 40

2.4 Average NEES for Robot 1 and Target 1 (obtained by Robot 1) averaged
over 50 Monte Carlo runs. 41

2.5 Trajectories of four robots. In these lines, the black solid lines correspond to
the real value, the blue dashed lines to DR, the green dashed lines to CEKF,
and the red dashed lines to JLATT-DEIF. The initial true and estimated
positions are marked by circles with the corresponding colors. Circles of DR,
CEKF and JLATT-DEIF are overlapped for each robot. 43

2.6 Trajectories of the target obtained by four robots. In these lines, the black
solid lines correspond to the real value, the green dashed lines to CEKF,
and the red dashed lines to JLATT-DEIF. The initial true and estimated
positions are marked by circles with the corresponding colors. 44

2.7 Orientations for four robots. In these lines, the black solid lines correspond
to the real value, the blue dashed lines to DR, the green dashed lines to
CEKF, and the red dashed lines to JLATT-DEIF. 45

2.8 Orientations for the target obtained by four robots. In these lines, the black
solid lines correspond to the real value, the green dashed lines to CEKF, and
the red dashed lines to JLATT-DEIF. 45

2.9 Position error in x-direction for one of the robots by using iJLATT-DEIF
(top) and JLATT-DEIF (bottom). The solid lines correspond to the absolute
value of x errors and the dashed lines to the 3σ bounds 46

2.10 Position error in x-direction for the target by using iJLATT-DEIF (top) and
JLATT-DEIF (bottom). The solid lines correspond to the absolute value of
x errors and the dashed lines to the 3σ bounds 47

xii

3.1 3-D moving object tracking over camera networks. G and T are respectively,
the global frame and the target’s body frame. The Blue camera denotes the
camera currently sensing the target directly while the red ones are the blind
cameras. The 3-D trajectory followed by the target is the black line. 59

3.2 Status of cameras directly sensing the target. The bold blue lines indicate
the time intervals when the cameras can directly sense the target. 60

3.3 Averaged RMSE for the estimated target pose over 50 Monte-Carlo runs and
ten cameras. 63

3.4 Estimated 3-D trajectories of the first four cameras. ‘+’ denotes the start
position while ‘x’ denotes the end point. The start and end areas are enlarged
in the built-in figures. 64

4.1 Illustration of the keyframe-aided 2D-to-2D matching for data association.
Assuming robot i’s 21st frame {Ci,21} matches to the 2nd robot’s N ’th frame
{C2,N}. We are able to find all feature correspondences between the features
the robot’s observer, namely z1..N . 79

4.2 Simulated trajectories, axes are in units of meters. General hand-held AR
dataset (left) are 147, 93, and 100 meters long, while ETH EuRoC MAV
Vicon room datasets (right) are 70, 58, and 59 meters long for each robot.
Green square denotes the start and red diamond denotes the end. 82

4.3 Robot 0’s average RMSE (left) and NEES (right) results in the simulated AR
(top) and ETH datasets (bottom). Cyan represents indp, magenta represents
indp-slam, red represents dc-msckf, blue represents dc-cmsckf-cslam, green
represents dc-full-window and green represent dc-full-history. Please refer to
the color figure. 84

4.4 Sequential propagation and update time (ms). Note that while decentralized
can update in parallel, here we report its sequential timings. 85

4.5 TUM-VI groundtruth (left) and Vicon room groundtruth trajectories (right)
TUM-VI trajectories are 146, 131, and 134 meters long, while the Vicon room
datasets are 507, 509, and 501 meters long. 88

4.6 Trajectory of groundtruth, independent, and distributed historical trajectory
for Robot 0 in the Vicon room dataset. It can be seen that the use of common
historical features limit drift in the z-axis along with improvements in x-y
accuracy. Please refer to the color figure. 91

5.1 Four Firefly drones equipped with visual-inertial sensors track a Pelican drone
in a corridor: (a) 3D trajectories for robot 1 (red), robot 2 (green), robot 3
(blue), robot 4 (yellow) and the target (black). The corresponding squares
denote the trajectory starts ; (b) Gazebo environment [64]. 97

5.2 Averaged RMSE for the estimated robots’ positions. 112
5.3 Averaged RMSE for the estimated robots’ orientations. 113
5.4 Averaged RMSE for the estimated target’s poses obtained by the four robots

when the communication percentages are 25% and 50%. 115

xiii

List of Tables

2.1 DEIF algorithm for localization . 21
2.2 DEIF algorithm for target tracking . 24
2.3 Overview of how many measurements are used. 42

3.1 Algorithm I: 3-D DKF Algorithm Implemented by Agent i at Timestep k. . 58
3.2 Averaged RMSE for the estimated target pose over 50 Monte-Carlo runs and

all timesteps. 64

4.1 Simulation parameters and prior standard deviations that perturbations of
measurements and initial states were drawn from. 82

4.2 ATE on simulated AR datasets in degrees / meters for each algorithm vari-
ation. Green denotes the best, while blue is second best. 83

4.3 ATE on simulated ETH datasets in degrees / meters for each algorithm
variation. Green denotes the best, while blue is second best. 83

4.4 Timing for AR dataset. Millisecond mean and deviation. 86
4.5 Relative pose error (RPE) on TUM-VI datasets in degrees / meters averaged

over all robots for the dataset. 89
4.6 Relative pose error (RPE) on Vicon room dataset in degrees / meters aver-

aged over all robots. 89

5.1 Sensor parameters in simulation. 111
5.2 Averaged RMSE for the estimated global frame transformations. 112
5.3 Averaged RMSE for the estimated target pose obtained by the robots with

different communication percentages. 114

xiv

Chapter 1

Introduction

1.1 Problem Description

Studies on distributed target estimation using sensor networks have recently be-

come attractive. Each sensor aims to have a good pose (orientation and position) estimator

of the target using information among communication neighborhood, even its own cannot

observe the target directly. However, most of the existing results address this problem by

using a network of static sensors and simply assume that sensors’ positions are known. To

address this limitation, we utilize a mobile robot network where each robot is equipped with

proprioceptive sensors, exteroceptive sensors and communication units. Proprioceptive sen-

sors like wheel encoders and inertial measurement unit (IMU) can measure the self-motion

of the robot, while exteroceptive like cameras and lidars can capture the information of

surroundings.

As we do not assume known robot poses, high-precision localization especially in

GPS-denied environments is a prerequisite for successful target state estimation. We first

1

consider 2-D cases that the robots use robot-to-robot relative measurements to achieve lo-

calization and robot-to-target relative measurements to achieve target tracking. We assume

the target follows a known motion model and then jointly estimate the robots’ and the tar-

gets’ poses instead of treating localization and tracking independently. By doing this, the

well-estimated target can work as an object reference in the localization part to improve

the performance. Stability is studied under very mild conditions.

Next, we focus on 3-D cases. One promising solution to localization is the VINS,

which is to fuse both the measurements from cameras and IMUs. These sensors are cheap

and light-weight but they are complementary and able to provide rich environmental infor-

mation, hence enabling highly-accurate motion estimation. The visual-inertial sensor rig

has been widely used in robotics, autonomous driving, virtual reality (VR), and augmented

reality (AR). Hence, we employ the camera and IMU sensors in the 3-D cases.

Target can be represented as a point cloud in 3-D cases. We can select one point

as the representative point and treat the others as non-representative points. The origin

of the target’s coordinate is chosen as the representative point. Non-representative points

also provide constrains of targets’ poses. Orientations are represented as unit quaternion

and then a distributed Kalman filter which is applicable in SO3 is introduced to track the

target’s state cooperatively.

By considering that robot-to-robot measurements are difficult and inefficient to

obtain when cameras are used, we employ environmental features to perform localization

and additional geometric like the common features (features observed by multiple robots)

to improve the accuracy. As the goal of the VINS here is to estimate robots’ poses and

2

not to generate a map, VIO is prefer as an efficient solution. We incorporate loop-closure

constraints from the historical common features (e.g., a robot can gain information if another

robot had previously explored the same location). As a result, the proposed estimator does

not require simultaneous viewing of the same features.

Lastly, we study the problem of joint visual-inertial localization and target track-

ing. To be more realistic, we do not assume the target follows a known motion model.

Additionally, a pre-designed common global frame is not required and each robot can per-

form motion tracking locally. In this part, we adopt a heterogeneous mobile robot network.

One robot build a map that is shared in the group while other robots run VIO. Common

features in the map are utilized to enable a map-based localization that can bound the

navigation drift of VIO. Note that in this system, we separate the localization and tracking

parts. This is because the mismatch between the adopt target model and the true un-

known model can introduce inconsistency in the localization part which will degrade the

performance.

1.2 Key Contributions

1.2.1 Distributed JLATT for generic models

To the best of our knowledge, it is the first time that a distributed algorithm with

consistency guarantee is proposed for JLATT in mobile robot networks. Each robot only

needs to exchange information with its one-hop communicating neighbors. The algorithm

can handle multiple measurements simultaneously, including multiple relative measurements

(i.e., robot-to-robot and robot-to-target measurements) as well as absolute measurements if

3

available. Furthermore, it supports generic robot motion, target process and measurement

models. In the case of linearized time-varying systems, it is proved that the estimated

error covariances of both robots’ poses and targets’ states are bounded under certain mild

conditions on the sensing and communication graphs and system observability. To the best

of our knowledge, it is the first time that the stability for CL or JLATT in mobile robot

networks is analyzed in a distributed setting, even for the linearized system.

1.2.2 Distributed 3-D Target State Estimation

The existing DKF can only work on vector space which means it can only use Euler

angle representation when estimating the orientation. However, Euler angle expression

suffers from singularities. So the main contribution of this chapter is that a novel DKF

suitable for the 3-D DSE over sensor networks is proposed and further applied to camera

networks. The proposed approach is fully distributed and applicable for generic target

motion and measurement models. It can also handle time-varying communication typologies

and changing blind agents.

1.2.3 Distributed Visual-Inertial Cooperative Localization

We propose a fully distributed multi-robot visual-inertial CL estimator by deli-

cately exploiting information contained in both environmental landmarks and loop-closures

across robots and time. Specifically, We develop a fully distributed CI-based visual-inertial

CL estimation algorithm, which allows for accurate, efficient and consistent estimation of

all robot states. We propose two different SLAM feature measurement models that allow

for cooperative estimation of common long-lived environmental features, and validate their

4

relative accuracy and computational complexity through a series of simulations. We intro-

duce a computationally efficient method for long-term loop-closure to reduce localization

drift, which enables multi-robot constraints between historical poses and features, allowing

for robots to gain additional constraints even in the case when other robots are not ac-

tively in the same location. We thoroughly validate the proposed approach in Monte Carlo

simulations and real world experiments by comparing to centralized CL algorithms.

1.2.4 Distributed Visual-Inertial JLATT

The proposed distributed algorithm consists of multi-robot VINS and cooperative

target state tracking. We formulate the JLATT problem in a more realistic scenario with

the monocular visual-inertial setting. Specifically, we consider changing communication

typologies and dynamic blind robots (the robots losing sight of the whole object), and

do not assume a known common global frame. We propose a multi-robot VINS system

where one robot runs the VI-SLAM and builds a prior map using environmental features to

improve the performance of the VIO running on the other robots. The novel DKF is used

to achieve 6-DoF target tracking of a moving object whose motion model is unknown. The

cooperative tracking algorithm is robust to the changing blind robots and achieves good

performance even if there is significant mismatch between the adopted target model and

the unknown actual one.

5

1.3 Organization of the Manuscript

The Manuscript is organized as follows. In the following chapter, we study the

JLATT problem under generic motion and measurement models. A distributed estimator

is proposed and its stability is studied. The effectiveness is validated using simulations

and experiments in 2-D environments. In Chapter 3, we focus on estimating the 6-Dof

pose of a rigid body target using fixed sensor networks whose states are assumed known.

Simulations shows the performance of the proposed DKF. In Chapter 4, we study the

visual-inertial CL problem. A distributed cooperative SLAM algorithm is proposed. The

efficiency and accuracy are demonstrated in extensive simulations and experiments. Next,

in Chapter 5, we introduce a distributed algorithm to achieve JLATT in 3-D scenarios by

using visual-inertial sensors. We validate the proposed algorithm in synthesized datasets.

Finally, Chapter 6 summarizes the main results of this manuscript.

6

Chapter 2

Distributed Joint Localization and

Target Tracking (Generic Models)

2.1 Introduction and Related Works

Sensor networks with the ability to communicate, sense, and interact with sur-

roundings have a wide range of applications such as region monitoring, area surveillance,

and search and rescue. When mobile robots equipped with sensors are employed, a large

area can be covered without the need to increase the number of sensors in the network.

Also, the robots can actively pursue targets and prevent them escaping from the sensing

regions of their onboard sensors. In this chapter, a team of, possibly heterogeneous, mobile

robots is employed to track multiple targets in a fully or intermittently absolute measure-

ment (e.g., GPS data) denied environment. To perform this task, distributed strategies

outperform centralized approaches in scalability, energy (e.g., processing and communica-

7

tion) efficiency and robustness against failures or attacks. In particular, we aim to propose

a fully distributed algorithm with only local information and local communication in the

absence of global parameters and multi-hop information propagation or flooding. As we

do not assume a prior known information about the robots’ poses, to successfully track

the targets, it is necessary for the robots to determine their poses precisely. Cooperative

Localization (CL) is a widely used technique to achieve multi-robot localization in the ab-

sence of absolute measurements. In CL, by cooperating with other robots, each robot can

estimate its own pose using relative measurements (e.g., relative distance, bearing, rela-

tive pose or any combination of them) between robots. In particular, distributed CL has

gathered significant attention in robotics. However, distributed centralized-equivalent al-

gorithms presented in [109, 62, 6, 121, 79] are not fully distributed. At each occurrence of

the measurements, some variables need to be shared among the team through information

propagation rather than purely one-hop neighbor-to-neighbor communication. For exam-

ple, a distributed algorithm equivalent to the centralized Extended Kalman Filter (EKF)

is presented in [109]. But the measurements obtained by one robot are required to be

transmitted to all teammates. For another instance, [62] introduces new intermediate lo-

cal variables to decouple the propagation stage of the EKF. However, the communication

graph is required to have a spanning tree rooted at the interim master so as to propagate

the intermediate local variables to the rest of the team through multiple hops in one time

step. To relax the communication limitations in centralized-equivalent approaches, [100]

presents an EKF-based distributed algorithm to handle asynchronous communication. But

the cross-correlations between robots are ignored, which leads to inconsistent estimates.

8

In contrast, the distributed algorithm proposed in [75] is able to approximate the cross-

correlations between robots. Nevertheless, the estimate is not guaranteed to be consistent.

The Covariance Intersection (CI) technique is used in [20] to compute a consistent estimate.

However, the estimate requires a particular measurement model, specifically, the relative

poses of neighbors. The Interleaved Update (IU) algorithm in [5] can handle generic models

and compute consistent estimates. Nevertheless each robot in a team of M robots has to

maintain 2M filters and keep tracking the origin of the measurements. Besides the above

mentioned limitations, all aforementioned approaches do not consider robots working in a

dynamic environment where moving targets exist and hence ignore the effect resulting from

jointly estimating the targets’ states. Also, there exist some cases where robots need to

co-work with targets (e.g., humans) and then it is essential to estimate the poses of targets

in addition to localizing themselves.

In another aspect, many algorithms have been proposed to address the distributed

target estimation problem with sensor networks. Each sensor fuses local information with

information from its neighbors to estimate the state of a common target. Current ap-

proaches, either consensus-based or diffusion-based algorithms, solve the tracking problem

using a static sensor network where the sensors’ positions are assumed to be known explicitly

or implicitly [97, 57, 108, 10, 98, 15, 124, 22, 46].

However, there exist several approaches for solving the problem of joint localiza-

tion and target tracking (JLATT). Mobile robots are adopted in [49, 1, 90]. A consistent

Unscented Incremental Smoothing algorithm is introduced in [49] by enforcing the observ-

ability constraint on the unscented transformation. In [1], the problem is modeled under

9

a least square minimization framework, where the states of the robots, the targets and

static landmarks are jointly estimated. To mitigate, not avoid, the risk of using the mea-

surements more than once, a common reference is defined by using static landmarks which

might be unavailable. By assuming that robots have access to the measurements of absolute

orientations, an EKF-based approach is presented in [90]. Furthermore, it is analytically

shown that jointly estimating the robot and target positions results in better accuracy of

the robots’ position estimates in the steady state, in comparison to the CL. It is worth

noting that the algorithms mentioned above are all centralized.

A distributed algorithm for JLATT is presented in [4], where static sensors are

used. The sensors are localized via a Jacobi algorithm that computes the Best Linear Unbi-

ased estimates in a distributed matter. In order to use the Jacobi algorithm, the measure-

ments between sensors are required to have a particular linear model. Also, each sensor has

to maintain a history of the average measurements. As the number of sensors increases, the

storage and computational costs increase dramatically. In addition, a distributed Kalman

filter is designed to estimate the target’s state. Here, only the prior estimates from neighbors

are used and the neighbors’ relative measurements to the target are neglected. As a result,

some useful information might be lost. Although this approach is distributed, it is limited

to static sensor networks where each sensor’s state is a static parameter to be estimated.

When a mobile robot network is employed, each robot propagates its pose according to a

noisy motion model. The state estimates of two robots or one robot and one target become

correlated after updating the estimates using the relative measurements between them.

Note that directly fusing these two estimates would yield an inconsistent estimate. Then,

10

there exist significant challenges to avoid information double-counting between robots and

account for the coupling between localization and target tracking.

The above observations motivate us to derive a fully distributed algorithm for

JLATT with mobile robot networks. We explicitly account for the mutual influence between

localization and target tracking and exploit it to improve performance in a fully distributed

way. In terms of stability analysis, it is worth pointing out that few works analyze the

stability in CL while all the works on target tracking are limited to static sensor networks.

We aim to jointly analyze the stability in both the localization and tracking parts. Our

approach is based on two fully distributed estimates and able to track multiple targets by

using mobile robots whose poses are unknown.

2.2 Preliminaries

2.2.1 Notations and Definitions

Let the vector xk represent the actual pose of a robot or the actual state of a target

at time k. Given a real-valued xk, the prior estimate is x̄k and the posterior estimate is x̂k.

Denote, respectively, ēk = xk − x̄k and ek = xk − x̂k, the prior and posterior estimation

errors. Then, we use p̄k and pk to represent, respectively, the estimated covariance of ēk and

ek. We distinguish the variables associated with robot i’s self estimate by the subscript Ri,

e.g., x̄k
Ri

representing robot i’s prior estimate of its own actual pose xk
Ri

and p̄k
Ri

representing

the estimated covariance of ēkRi
with ēkRi

= xk
Ri

− x̄k
Ri
. Further, we distinguish the variables

associated with robot i’s estimate of target j by the subscript Tij , e.g., x̄
k
Tij

denoting robot

i’s prior estimate of target j’s actual state xk
Tj

and p̄k
Tij

denoting the estimated covariance

11

of ēkTij
with ēkTij

= xk
Tj
− x̄k

Tij
. We denote by In the identity matrix of dimension n×n. The

superscript T denotes transpose and superscript −1 represents inverse.

E{·} computes the expectation of a random variable. Diag{·} and Max{·} denote,

respectively, the block-diagonal matrix constructed from the elements and the maximum of

the elements. We let Tr{·} denote the trace of a matrix. The interval of time instants T kn
k0

is defined as [k0, . . . , kn], where 0 ≤ k0 < kn < ∞. For symmetric matrices A and B, the

notationA ≥ B (orA > B) means thatA−B is positive semidefinite (or definite). For finite

setsA and B, we denote byA\B the set whose elements include all elements inA that are not

in B. The transition matrix on T τ
k0
, Φ(τ, k0), is defined as Φ(τ, k0) = Φτ−1

Ri
, . . . ,Φk0+1

Ri
Φk0

Ri

and Φ(k0, k0) is the identity matrix.

Definition 1 [54] Suppose that xk is a random variable. Let x̂k and pk be, respectively, the

estimate of xk and the estimated error covariance. The pair (x̂k,pk) is said to be consistent

if the actual error covariance E{ek(ek)T} ≤ pk.

The consistency is a critical property of estimates that the estimated error covari-

ances realistically expresses the covariance of actual errors. In contrast, an inconsistent

estimate that underestimates the actual errors might diverge as a result [86, 3].

2.2.2 Graphs

In the network of M robots, we define a directed communication graph Gk
c =

(V, Ek
c), where V = {R1, . . . , RM} is the robot set and Ek

c ⊆ V × V is the edge set, which

stands for the communication links between robots at time k. We assume that self edge

(i, i) ∈ Ek
c , ∀i ∈ V, exists in the communication graph. If there exists an edge (j, i) ∈ Ek

c ,

12

where j ̸= i, which means that robot i can receive information from robot j, then robot j is

a communicating neighbor of robot i. At time k, the communicating neighbor set of robot

i is defined as N k
c,i = {i|(l, i) ∈ Ek

c , ∀l ̸= i, l ∈ V}; The inclusive communicating neighbor set

of robot i is J k
c,i = N k

c,i ∪ {i}.

Similarly, we define a directed sensing graph Gk
s = (V, Ek

s) to describe robot-to-

robot measurements, where Ek
s ⊆ V × V is the edge set, which stands for the detection

links between robots at time k. For example, when robot i detects robot j at time k,

there exists an edge (j, i) directed from robot j to robot i in Ek
s . At time k, we denote

the sensing neighbor set of robot i by N k
s,i = {i|(l, i) ∈ Ek

s , ∀l ̸= i, l ∈ V} (i.e., all robots

detected by robot i). A directed path is a sequence of edges in a directed graph of the

form (i0, i1), (i1, i2), . . ., where ij ∈ V. Besides, the set of N targets is denoted by U =

{T1, . . . , TN} and the subset of targets detected by robot i at time k is denoted by Uk
i . We

assume that for each robot, the communication radius is larger than the sensing radii of all

robots. Then when robot i detects robot j, robot i can receive the information broadcast

by robot j.

2.2.3 Track-to-Track Fusion

Track-to-track fusion is the problem of combining multiple estimates of a state

into a single and more accurate estimate. At time k, consider two consistent estimation

pairs (pk
a1 , x̂

k
a1) and (pk

a2 , x̂
k
a2) of xk, we seek to compute an improved consistent estimate

(pk
c , x̂

k
c). The cross-correlation between x̂k

a1 and x̂k
a2 is denoted as pk

a1a2 . If p
k
a1a2 is known,

13

the consistent fused estimate with minimum covariance is given by [7]

pk
c = pk

a1 − (pk
a1 − pk

a1a2)[p
k
a1 + pk

a2 − pk
a1a2 − (pk

a1a2)
T]−1[pk

a1 − (pk
a1a2)

T],

x̂k
c = x̂k

a1 + (pk
a1 − pk

a1a2)[p
k
a1 + pk

a2 − pk
a1a2 − (pk

a1a2)
T]−1(x̂k

a2 − x̂k
a1).

Further, if x̂k
a1 and x̂k

a2 are independent, by setting pk
a1a2 = 0, we have

(pk
c)

−1 = (pk
a1)

−1 + (pk
a2)

−1,

x̂k
c = pk

c [(p
k
a1)

−1x̂k
a1 + (pk

a2)
−1x̂k

a2].

(2.1)

On the other hand, if pk
a1a2 is unknown, CI, a well-known conservative fusion

scheme that yields a consistent fused estimate, is given as follows [54]

[pk
c]CI =

[
αk
1(p

k
a1)

−1 + (1− αk
1)(p

k
a2)

−1
]−1

,

[x̂k
c]CI = [pk

c]CI

[
αk
1(p

k
a1)

−1x̂k
a1 + (1− αk

1)(p
k
a2)

−1x̂k
a2

]
,

(2.2)

where αk
1 ∈ [0, 1]. Compared with CI, the recently proposed Inverse Covariance Intersection

(ICI) [96] provides an optimal consistent and tight solution and therefore is more accurate.

The ICI is given as [96]

[pk
c]ICI =

[
(pk

a1)
−1 + (pk

a2)
−1 − (Γk

c)
−1
]−1

,

[x̂k
c]ICI = [pk

c]ICI

(
Kk

c x̂
k
a1 + Lk

c x̂
k
a2

)
.

(2.3)

where

Γk
c = αk

2p
k
a1 + (1− αk

2)p
k
a2 ,

Kk
c = (pk

a1)
−1 − αk

2(Γ
k
c)

−1,

Lk
c = (pk

a2)
−1 − (1− αk

2)(Γ
k
c)

−1,

for any αk
2 ∈ [0, 1]. The time-varying parameters αk

1 and αk
2 can be chosen to minimize an

optimality criterion such as the traces of [pk
c]CI and [pk

c]ICI, respectively. (Γk
c)

−1 can be

considered a tight outer bound of the common information.

14

Lemma 2 [96] Let [pk
c]

∗
CI and [pk

c]
∗
ICI be, respectively, the fused covariances with minimal

traces by using CI and ICI at time k. Then [pk
c]

∗
ICI ≤ [pk

c]
∗
CI.

CI is generalized to fuse an arbitrary number of estimation pairs (pk
ai , x̂

k
ai), i =

1, . . . , n, according to [53]

[pk
c]CI =

[
n∑

i=1

αk
i (p

k
ai)

−1

]−1

,

[x̂k
c]CI = [pk

c]CI

[
n∑

i=1

αk
i (p

k
ai)

−1x̂k
ai

]
,

(2.4)

where αk
i ∈ [0, 1] and

n∑
i=1

αk
i = 1. For the sake of computational simplicity, we use the

simplified algorithm in [95] to calculate αk
i as

αk
i =

1/Tr{pk
ai}

n∑
i=1

1/Tr{pk
ai}

. (2.5)

2.2.4 Problem Formulation

Consider a group of M heterogeneous mobile robots and N targets moving within

the same space. Each robot carries proprioceptive sensors (e.g., odometries) to measure its

self-motion and exteroceptive sensors (e.g., cameras or laser scanners) to generate relative

measurements to other robots as well as multiple targets. Besides, some robots might have

access to the absolute measurements intermittently. The motion of robot i is described by

a nonlinear model

xk
Ri

= fi(x
k−1
Ri

,uk−1
Ri

−wk−1
Ri

), (2.6)

where xk
Ri
, uk

Ri
, and wk

Ri
are, respectively, the ith robot’s pose (position and orientation),

the measured input, and the process noise at time k. We assume that the noise wRi is

zero-mean white Gaussian.

15

The state of target j at time k is represented by xk
Ti
, which might contain the

target’s pose or velocity components. The process model of target j is given as

xk
Tj

= gj(x
k−1
Tj

,wk−1
Tj

), (2.7)

where wTj is the process noise, assumed to be zero-mean white Gaussian.

At time k, if robot j (respectively, target j) is within the sensing region of robot

i, robot i obtains the robot-to-robot measurement zkRij
(respectively, robot-to-target mea-

surement zkTij
). If accessible, robot i receives the absolute measurement zkRi

. We model the

collected measurements as

zkRij
= hr

ij(x
k
Ri
,xk

Rj
) + vk

Rij
,

zkTij
= ht

ij(x
k
Ri
,xk

Tj
) + vk

Tij
,

zkRi
= ha

i (x
k
Ri
) + vk

Ri
,

(2.8)

where vk
Rij

, vk
Tij

, and vk
Ri

are the corresponding measurement noises, assumed to be zero-

mean white Gaussian. The covariance matrices are, respectively, represented as Rk
Rij

=

E[vk
Rij

(vk
Rij

)T], Rk
Tij

= E[vk
Tij

(vk
Tij

)T] and Rk
Ri

= E[vk
Ri
(vk

Ri
)T]. Note that at any time,

some robots might not be able to obtain any relative or absolute measurement. Further,

we assume that the measurement noises are mutually uncorrelated across robots and are

uncorrelated with the process noises.

The objective of our work is for each robot i to construct estimates of its own pose

and of each target’s state by using its local measurements if available and the information

received from its one-hop communicating neighbors at the current time.

16

2.3 Proposed Fully Distributed Algorithm

In this section, we derive a fully distributed scheme for JLATT from the perspective

of Extended Information Filter (EIF), the information form of Kalman filter.

2.3.1 Distributed Extended Information Filtering

Localization

Unlike the existing works on distributed target estimation with static sensor net-

works where the pose of each sensor is deterministic and known, we consider the general

scenario where the poses of the mobile robots (serving as mobile sensors) are states to be es-

timated. Robot i estimates xk
Ri

by using its available relative measurements to other robots

and targets. At time k, when robot i detects another robot l ∈ V, robot i obtains the rel-

ative measurement zkRil
and receives the information broadcast by robot l. The broadcast

information contains robot l’s current pose estimate x̄k
Rl

with estimated covariance p̄k
Rl
.

After linearization of the measurement zkRil
at x̄k

Ri
and x̄k

Rl
, we compute the measurement

residual

z̄kRil
= Hk

Ril
ēkRi

+ H̃k
Ril

ēkRl
+ vk

Ril
, (2.9)

where z̄kRil
= zkRil

− hr
il(x̄

k
Ri
, x̄k

Rl
) with Hk

Ril
=

∂hr
il

∂xRi
(x̄k

Ri
, x̄k

Rl
) and H̃k

Ril
=

∂hr
il

∂xRl
(x̄k

Ri
, x̄k

Rl
).

By defining v̄k
Ril

= H̃k
Ril

ēkRl
+ vk

Ril
, we get

z̄kRil
= Hk

Ril
ēkRi

+ v̄k
Ril

.

The corresponding covariance for v̄k
Ril

is given by

R̄k
Ril

= Rk
Ril

+ H̃k
Ril

p̄k
Rl
(H̃k

Ril
)T, (2.10)

17

which has included the uncertainty of robot l’s pose estimate. Then, define the relative

correction pair (skRil
,yk

Ril
) as

skRil
= (Hk

Ril
)T(R̄k

Ril
)−1Hk

Ril
,

yk
Ril

= (Hk
Ril

)T(R̄k
Ril

)−1(z̄kRil
+Hk

Ril
x̄k
Ri
).

(2.11)

Similarly, when robot i detects target j ∈ U , robot i obtains the relative measure-

ment zkTij
. After linearization of the measurement zkTij

at x̄k
Ri

and x̄k
Tij

, we compute the

measurement residual

z̄kTij
= Hk

Tij
ēkRi

+ H̃k
Tij

ēkTij
+ vk

Tij
, (2.12)

where z̄kTij
= zkTij

− ht
ij(x̄

k
Ri
, x̄k

Tij
) with Hk

Tij
=

∂ht
ij

∂xRi
(x̄k

Ri
, x̄k

Tij
) and H̃k

Tij
=

∂ht
ij

∂xTij
(x̄k

Ri
, x̄k

Tij
).

By Defining v̄k
Tij

= H̃k
Tij

ēkTij
+ vk

Tij
, we get

z̄kTij
= Hk

Tij
ēkRi

+ v̄k
Tij

.

The corresponding covariance of v̄k
Tij

is given by

R̄k
Tij

= Rk
Tij

+ H̃k
Tij

p̄k
Tij

(H̃k
Tij

)T. (2.13)

Then, define the relative correction pair (skTij
,yk

Tij
) as

skTij
= (Hk

Tij
)T(R̄k

Tij
)−1Hk

Tij
,

yk
Tij

= (Hk
Tij

)T(R̄k
Tij

)−1(z̄kTij
+Hk

Tij
x̄k
Ri
).

(2.14)

Note that unlike (2.11), no communication is needed to compute (2.14) as (p̄k
Tij

, x̄k
Tij

), x̄k
Ri

and zkTij
are all available at robot i.

Remark 3 As shown in (2.10) and (2.13), the noise covariances Rk
Ril

and Rk
Tij

are, respec-

tively, suitably increased by a positive semidefinite quantity H̃k
Ril

p̄k
Rl
(H̃k

Ril
)T and H̃k

Tij
p̄k
Tij

(H̃k
Tij

)T.

18

As a result, a large uncertainty in robot l’s pose or target j’s state leads to a large R̄k
Ril

or R̄k
Tij

, which makes (skRil
,yk

Ril
) or (skTij

,yk
Tij

) small. Then the influence caused by the

corresponding inaccurate measurements will be alleviated.

At time k, if robot i has access to its absolute measurement zkRi
, the measurement

residual after linearization at x̄k
Ri

is given by

z̄kRi
= Ck

Ri
ēkRi

+ vk
Ri
, (2.15)

where z̄kRi
= zkRi

− ha
i (x̄

k
Ri
) with Ck

Ri
=

∂ha
i

∂xRi
(x̄k

Ri
). For notation convenience, if robot i’s

absolute measurement is not accessible, we let Rk
Ri

= ∞, which assumes infinite uncertainty

about zkRi
. Then we denote the absolute correction pair (skRii

,yk
Rii

) as

skRii
= (Ck

Ri
)T(Rk

Ri
)−1Ck

Ri
,

yk
Rii

= (Ck
Ri
)T(Rk

Ri
)−1(z̄kRi

+Ck
Ri
x̄k
Ri
).

(2.16)

Next, the task is to compute the posterior estimate x̂k
Ri

with the estimated covari-

ance pk
Ri

from the available correction pairs and the prior estimate x̄k
Ri

with the estimated

covariance p̄k
Ri
. Although the relative measurement noises are mutually uncorrelated, the

defined v̄k
Ril

and v̄k
Tij

are correlated for different l and j due to the correlations between the

estimates of the robots’ poses as well as the targets’ states.

Accordingly, the corresponding relative correction pairs are correlated. We apply

the CI algorithm (2.4) on the relative correction pairs to guarantee consistency with the

simplified weight selection strategy (2.5). The absolute correction pair can be directly

incorporated, as it is uncorrelated with the relative correction pairs. Therefore, at time k,

19

we can compute an estimate of xk
Ri

by using all available correction pairs. We have

p̆k
Ri

= (
∑

l∈N k
s,i

ηkils
k
Ril

+
∑
j∈Uk

i

ηkijs
k
Tij

+ skRii
)−1, (2.17a)

x̆k
Ri

= p̆k
Ri
(
∑

l∈N k
s,i

ηkily
k
Ril

+
∑
j∈Uk

i

ηkijy
k
Tij

+ yk
Rii

), (2.17b)

where ηkil ∈ (0, 1] and ηkij ∈ (0, 1] subject to
∑

l∈N k
s,i

ηkil +
∑

j∈Uk
i
ηkij = 1.

Recall that another estimate of xk
Ri

is the prior estimate x̄k
Ri
. Here, one might be

tempted to directly fuse them using (2.1) as

pk
Ri

= [(p̄k
Ri
)−1 + (p̆k

Ri
)]−1,

x̂k
Ri

= pk
Ri
[(p̄k

Ri
)−1x̄k

Ri
+ (p̆k

Ri
)−1x̆k

Ri
],

(2.18)

which implicitly assumes that x̄k
Ri

and x̆k
Ri

are uncorrelated. However, this is not the case.

For example, when robot i uses robot l’s pose estimate to update its own, their estimates

become correlated. If we use (2.18) directly, when there exists a chain of updates back to

robot l, robot l’s pose estimate will be overconfident, since we incorporate the common

information twice. In fact, the posterior estimation process becomes the problem of track-

to-track fusion under unknown correlations. In order to guarantee the consistency while

improving the accuracy, we adopt an ICI based update approach to fuse x̄k
Ri

and x̆k
Ri

in

this step. The proposed Distributed EIF (DEIF) algorithm for localization is summarized

in Tab. 2.1.

Remark 4 We incorporate robot-to-target measurements zkTij
in the localization part. In-

tuitively, this can result in more accurate estimates of the robots’ poses, since the targets

can be treated as moving references to the robots. This is one of the advantages resulting

20

Table 2.1: DEIF algorithm for localization

Propagation:

Φk−1
Ri

= ∂fi
∂xRi

(x̂k−1
Ri

,uk−1
Ri

),

Gk−1
Ri

= ∂fi
∂wRi

(x̂k−1
Ri

,uk−1
Ri

),

Qk−1
Ri

= Gk−1
Ri

E[wk−1
Ri

(wk−1
Ri

)T](Gk−1
Ri

)T,

p̄k
Ri

= Φk−1
Ri

pk−1
Ri

(Φk−1
Ri

)T +Qk−1
Ri

,

x̄k
Ri

= fi(x̂
k−1
Ri

,uk−1
Ri

).

Compute the update terms:

Obtain (p̆k
Ri
, x̆k

Ri
) using (2.10)-(2.17).

Ωk
Ri

= (p̄k
Ri
)−1, qk

Ri
= (p̄k

Ri
)−1x̄k

Ri
,

Γk
Ri

= (p̆k
Ri
)−1[αk

i (p̆
k
Ri
)−1 + (1− αk

i)Ω
k
Ri
]−1Ωk

Ri
,

Kk
Ri

= Ωk
Ri

− αk
i Γ

k
Ri
,

Lk
Ri

= (p̆k
Ri
)−1 − (1− αk

i)Γ
k
Ri
.

Update:

pk
Ri

= [Ωk
Ri

+ (p̆k
Ri
)−1 − Γk

Ri
]−1

x̂k
Ri

= pk
Ri
[Kk

Ri
(Ωk

Ri
)−1qk

Ri
+ Lk

Ri
x̆k
Ri
].

The time-varying weight αk
i subject to αk

i ∈ [0, 1]
is selected to minimize Tr{pk

Ri
}.

from jointly estimating the states of both robots and targets. The algorithm in Tab. 2.1 is

still applicable in the case of CL without targets involved by simply letting Uk
i = ∅ in (2.17).

In this case, we refer the algorithm as CL-DEIF. Compared with the existing works on CL,

our approach is a fully distributed solution that is consistent, amenable to general models,

and computationally simple while accounting for the possible existence of targets.

21

Target Tracking

Recall that when robot i detects target j ∈ U at time k, linearization of zkTij
at

x̄k
Tij

and x̄k
Ri

yields the measurement residual (2.12). By defining ṽk
Tij

= Hk
Tij

ēkRi
+vk

Tij
, we

get z̄kTij
= H̃k

Tij
ēkTij

+ ṽk
Tij

. The corresponding covariance of ṽk
Tij

is given by

R̃k
Tij

= Rk
Tij

+Hk
Tij

p̄k
Ri
(Hk

Tij
)T. (2.19)

Then, define the relative correction pair (s̃kTij
, ỹk

Tij
) as

s̃kTij
= (H̃k

Tij
)T(R̃k

Tij
)−1H̃k

Tij
,

ỹk
Tij

= (H̃k
Tij

)T(R̃k
Tij

)−1(z̄kTij
+ H̃k

Tij
x̄k
Tij

).

(2.20)

Next, all available prior estimation pairs and correction pairs from the inclusive

communicating neighborhood, i.e., (p̄k
Tlj

, x̄k
Tlj

) and (s̃kTlj
, ỹk

Tlj
), ∀l ∈ J k

c,i, are incorporated to

compute the posterior estimate x̂k
Tij

with the estimated covariance pk
Tij

. It is possible that

a certain robot, say robot l, cannot directly detect target j. Then for notation convenience,

we let Rk
Tlj

= ∞, which assumes infinite uncertainty about the corresponding measurement

zkTlj
. As a result, the received ỹk

Tlj
= 0 and s̃kTlj

= 0.

The first step is to use all available correction pairs to compute an estimate of xk
Tj
.

Similar to the localization part, due to the correlations between the robot pose estimates,

the defined ṽk
Tij

are correlated for different i. Accordingly, we apply the CI algorithm (2.4)

on the relative correction pairs to guarantee consistency with the simplified weight selection

strategy (2.5). Then, at time k, by using all available relative correction pairs, we have

p̆k
Tij

= (
∑
l∈J k

c,i

η̃klj s̃
k
Tlj

)−1, x̆k
Tij

= p̆k
Tij

(
∑
l∈J k

c,i

η̃kljỹ
k
Tlj

), (2.21)

22

where η̃klj = 0 if robot l cannot directly detect target j; otherwise η̃klj ∈ (0, 1] is the weight

subject to
∑

l∈J k
c,i

η̃klj = 1. The second step is to fuse all available prior estimation pairs. Due

to the common process model of target j, the local prior estimates (p̄k
Tlj

, x̄k
Tlj

), ∀l ∈ J k
c,i, are

highly correlated after propagations. Therefore, the CI algorithm (2.4) is used to guarantee

consistency with the simplified weight selection strategy (2.5). We have

Ωk
Tij

=
∑
l∈J k

c,i

πk
il(p̄

k
Tlj

)−1, qk
Tij

=
∑
l∈J k

c,i

πk
il(p̄

k
Tlj

)−1x̄k
Tlj

, (2.22)

where πk
il ≥ π > 0 is the weight subject to

∑
l∈J k

c,i
πk
il = 1 with π being the uniform lower

bound of all the weights at all time steps.

The third step is to fuse (p̆k
Tij

,x̆k
Tij

) with (Ωk
Tij

,qk
Tij

) to compute the posterior

estimate of target j. One might consider that the relative correction pairs and the prior

estimation pairs are uncorrelated and directly fuse (p̆k
Tij

,x̆k
Tij

) with (Ωk
Tij

,qk
Tij

) using (2.1)

as

pk
Tij

= [Ωk
Tij

+ (p̆k
Tij

)−1]−1, x̂k
Tij

= pk
Tij

[qk
Tij

+ (p̆k
Tij

)−1x̆k
Tij

]. (2.23)

This is the case when static sensor networks with known positions are employed. However,

as target j’s state estimate has been used to update the robots’ pose estimates in the

localization part, its state estimate becomes correlated with the robots’ pose estimates.

Hence, here we adopt the ICI (2.3) to fuse (p̆k
Tij

,x̆k
Tij

) with (Ωk
Tij

,qk
Tij

) to avoid information

double-counting when the robots’ pose estimates are in turn used in the relative correction

pairs to compute the posterior estimate of target j. The proposed Distributed EIF (DEIF)

algorithm for target tracking is summarized in Tab. 2.2.

23

Table 2.2: DEIF algorithm for target tracking

Propagation:

Φk−1
Tij

=
∂gj

∂xTij
(x̂k−1

Tij
), Gk−1

Tij
=

∂gj

∂wTj
(x̂k−1

Tij
),

Qk−1
Tij

= Gk−1
Tij

E[wk−1
Tj

(wk−1
Tj

)T](Gk−1
Tij

)T,

p̄k
Tij

= Φk
Tij

pk−1
Tij

(Φk−1
Tij

)T +Qk−1
Tij

,

x̄k
Tij

= gj(x̂
k−1
Tij

).

Compute the update terms:

Obtain (p̆k
Tij

, x̆k
Tij

) and (Ωk
Tij

,qk
Tij

) using (2.19)-(2.22).

Γk
Tij

= (p̆k
Tij

)−1[αk
ij(p̆

k
Tij

)−1 + (1− αk
ij)Ω

k
Tij

]−1Ωk
Tij

,

Kk
Tij

= Ωk
Tij

− αk
ijΓ

k
Tlj

,

Lk
Tij

= (p̆k
Tij

)−1 − (1− αk
ij)Γ

k
Tij

.

Update:

pk
Tij

= [Ωk
Tij

+ (p̆k
Tij

)−1 − Γk
Tij

]−1

x̂k
Tij

= pk
Tij

[Kk
Tij

(Ωk
Tij

)−1qk
Tij

+ Lk
Tij

x̆k
Tij

].

The time-varying weight αk
ij subject to αk

ij ∈ [0, 1] is

selected to minimize Tr{pk
Tij

}.

Remark 5 In Tables 2.2, the prior estimates are weighted averaged over the communicating

neighborhood. Therefore, a robot directly sensing target j can either directly or indirectly

influence the other robots through the communication topology. Hence, target j’s state is

cooperatively estimated by each robot even if some robots cannot detect target j at a certain

time. In addition, data association is required for multi-target tracking. However, it is out

of the scope in this chapter. We assume that each robot knows exactly which measurement

belongs to which target.

2.3.2 Joint Localization and Target Tracking

Based on the previous section, we propose the JLATT (JLATT) algorithm from

the DEIF perspective in a mobile robot network, where multiple relative measurements

24

might take place at one robot and each robot can communicate with its nearby neighbors

within the communication range. We refer the algorithm as JLATT-DEIF. It is worth

noting that the communication and sensing topologies are subject to change with time as

well as the robots not directly sensing the targets.

Initialization: For i ∈ V, initialize the DEIF estimates: p0
Ri
, x̂0

Ri
and p0

Tij
, x̂0

Tij
, ∀j ∈ U .

Propagation: as in Tables 2.1 and 2.2.

Update:

1. Robot i obtains available relative measurements zkRil
to the other robots in N k

s,i and

zkTij
to the targets. Recall that if target j is out of the sensing region of robot i,

(R̄k
Tij

)−1 = 0.

2. Robot i obtains its absolute measurement zkRi
if available and otherwise (Rk

Ri
)−1 = 0.

3. Receive {p̄k
Tlj

, x̄k
Tlj

, s̃kTlj
, ỹk

Tlj
} from robot l, ∀l ∈ N k

c,i and ∀j ∈ U .

4. Compute localization correction pairs {skRil
,yk

Ril
}, ∀l ∈ N k

s,i as in (2.10)-(2.11), {skTij
,yk

Tij
},

∀j ∈ Uk
i as in (2.13)-(2.14) and {skRii

,yk
Rii

} as in (2.16).

5. Update the pose estimate of robot i as in Tab. 2.1.

6. Compute tracking correction pairs {s̃kTij
, ỹk

Tij
}, ∀j ∈ U as in (2.19)-(2.20).

7. Update the state estimate of target j ∈ U as in Tab. 2.2.

Remark 6 The state and covariance propagations and updates described in Tables 2.1 and

2.2 allow for a fully distributed JLATT-DEIF algorithm which uses one-hop communication

and requires no global parameter.

25

2.4 Stability Analysis

In this section, the stability of the proposed algorithm is analyzed in the linearized

time-varying systems. By linearizing (2.6), the error propagation equation for robot i is

given by

ēkRi
= Φk−1

Ri
ek−1
Ri

+Gk−1
Ri

wk−1
Ri

, (2.24)

where Φk−1
Ri

and Gk−1
Ri

are defined in Tab. 2.1, with the measurement error equations given

by (2.9), (2.12), and (2.15). By linearizing (2.7), the error propagation equation for target

j is given by

ēkTij
= Φk−1

Tij
ek−1
Tij

+Gk−1
Tij

wk−1
Tj

, (2.25)

whereΦk−1
Tij

andGk−1
Tij

are defined in Tab. 2.2, with the measurement error equation given by

(2.12). We refer to (2.24), (2.9), (2.12), and (2.15) as the localization system and (2.25) and

(2.12) as the tracking system, respectively. Further, the motion, process and measurement

noise covariances are assumed to be time invariant for simplicity (i.e., Qk
Ri

= QRi > 0,

Qk
Tij

= QTij > 0, Rk
Rij

= RRij > 0, Rk
Ri

= RRi > 0, and Rk
Tij

= RTij > 0). Next, we focus

on the localization part. We first give the definition of observable pairs.

Definition 7 The pair (Aτ ,Cτ), where τ is the time index, is observable on T j1
j0
, if and

only if the observability grammian

j1∑
τ=j0

[A(τ, j0)]
T(Cτ)TCτA(τ, j0) > 0

where A(τ, j0) is the transition matrix on T τ
j0
.

In order to evaluate the stability of the algorithm in Tab. 2.1, we make the

following assumptions.

26

Assumption 2.4.1 There exists a positive integer k̄ such that at each time k ≥ k̄, the

following statements hold.

1. There exists a nonempty subset Vk ⊆ V, such that for each robot i ∈ Vk, the pair

(Φτ
Ri
,Cτ

Ri
) is observable on T k−k̄+n̄

k−k̄
, where 0 < n̄ < k̄.

2. For each robot j ∈ V\Vk, there exists a directed path from a certain robot i ∈ Vk to j

in the form of (i0, i1), (i1, i2), . . . , (il−1, il), where i0 = i and il = j, and l consecutive

intervals of the form T m1
m0

, . . . , T ml
ml−1

, where m0 = k − k̄ + n̄ and ml = k, such that

(Φτ
Ris

,Hτ
Risis−1

) is observable on T ms
ms−1

, where s = 1, . . . , l.

Assumption 2.4.2 For each k ≥ 0 and robot i ∈ V, the system matrix Φk
Ri

is invertible.

Assumption 2.4.3 For each robot i ∈ V, the initialized estimation pair
(
x̂0
Ri
,p0

Ri

)
is con-

sistent. That is,

E{e0Ri
(e0Ri

)T} ≤ p0
Ri
.

Remark 8 As for Assumption 2.4.1, Vk can be changing over time. For example, Vk

might just contain one robot at times. Further, none of the robots needs to receive absolute

measurements on T k
m0

. In other words, for either absolute or relative measurements, only a

sparse possibly changing subset of the team needs to have access to and those measurements

can be intermittent. Assumption 2.4.2 is automatically satisfied as Φk
Ri

is obtained by

discretization of a continuous-time system before linearization. Finally, Assumption 2.4.3

can be guaranteed by initializing p0
Ri

with a sufficiently large value.

We next give the main stability result of the localization part and then prove it

step by step.

27

Theorem 9 Suppose that Assumptions 2.4.1-2.4.3 hold. Then the pose estimate of each

robot is stable under the algorithm in Tab. 2.1. That is, for each robot i ∈ V, there exists a

positive definite matrix pi such that

E{ekRi
(ekRi

)T} ≤ pi

for any k ≥ k̄.

In order to prove the above stability result, we first study the consistency of the

estimates.

Lemma 10 Let Assumption 2.4.3 hold. For each robot i ∈ V, the estimation pair
(
x̂k
Ri
,pk

Ri

)
obtained from the proposed DEIF in Tab. 2.1 is consistent, that is,

E{ekRi
(ekRi

)T} ≤ pk
Ri
, ∀k ≥ 0.

Proof. The proof is shown by induction. When k = 0, Assumption 2.4.3 implies that

E{e0Ri
(e0Ri

)T} ≤ p0
Ri
. Then it is assumed that at time k − 1, E{ek−1

Ri
(ek−1

Ri
)T} ≤ pk−1

Ri
.

Notice that the propagation error satisfies

ēkRi
= Φk−1

Ri
ek−1
Ri

+Gk−1
Ri

wk−1
Ri

.

Because E{ēkRi
(wk

Ri
)T} = 0, it follows that

E{ēkRi
(ēkRi

)T} = Φk−1
Ri

E{ek−1
Ri

(ek−1
Ri

)T}(Φk−1
Ri

)T +QRi

≤ Φk−1
Ri

pk−1
Ri

(Φk−1
Ri

)T +QRi = p̄k
Ri
.

Next, as analyzed in Section 2.3.1, by exploiting the consistency property of ICI, the update

step in Tab. 2.1 is guaranteed to be consistent. It follows that E{ekRi
(ekRi

)T} ≤ pk
Ri
.

28

Lemma 10 points out that, in order to prove the boundedness of the actual error

covariance, it is sufficient to show that the estimated covariance pk
Ri

is upper bounded by

a certain constant matrix.

Lemma 11 [10] Let Φ be a nonsingular matrix. For any Q > 0 and p̆ > 0, there exists a

parameter β ∈ (0, 1] such that (ΦpΦT +Q)−1 ≥ βΦ−Tp−1Φ−1 for any p ≥ p̆.

Lemma 12 Suppose that Assumptions 2.4.1-2.4.3 hold. Then for each i ∈ V, there exists

a positive-definite matrix pi such that

pk
Ri

≤ pi, ∀k ≥ k̄.

Proof. To simplify the notation, for certain time τ and τ0, we define τ̃τ0 = τ − τ0. First,

we focus on robot i ∈ Vk. At any time a ∈ T k
m0

, the inverse of the updated covariance can

be written as

(pa
Ri
)−1 = Ωa

Ri
+
∑

l∈Na
s,i

ηails
a
Ril

+
∑
j∈Ua

i

ηaijs
a
Tij

+ saRii
− Γa

Ri
.

Invoking Lemma 2, one can get the lower bound

(pa
Ri
)−1 ≥ αaΩ

a
Ri

+ (1− αa)(
∑

l∈Na
s,i

ηails
a
Ril

+ saRii
)

= αaΨ{(pa−1
Ri

)−1}+ (1− αa)(
∑

l∈Na
s,i

ηails
a
Ril

+ saRii
)

where Ψ{(pa−1
Ri

)−1} = [Φa−1
Ri

pa−1
Ri

(Φa−1
Ri

)T + QRi]
−1 and αa ∈ (0, 1). Further, under As-

sumption 2.4.2, it follows from Lemma 11 that

Ψ{(pa−1
Ri

)−1} ≥ βa(Φ
a−1
Ri

)−T(pa−1
Ri

)−1(Φa−1
Ri

)−1,

29

with βa ∈ (0, 1], for any pa−1
Ri

≥ E{ea−1
Ri

(ea−1
Ri

)T}. Then, one can obtain

(pa
Ri
)−1 ≥αaβa(Φ

a−1
Ri

)−T(pa−1
Ri

)−1(Φa−1
Ri

)−1

+ (1− αa)(
∑

l∈Na
s,i

ηails
a
Ril

+ saRii
).

(2.26)

where we can further write

(pa−1
Ri

)−1 ≥αa−1βa−1(Φ
a−2
Ri

)−T(pa−2
Ri

)−1(Φa−2
Ri

)−1

+ (1− αa−1)(
∑

l∈Na−1
s,i

ηa−1
il sa−1

Ril
+ sa−1

Rii
).

(2.27)

By recursively substituting (2.27) into (2.26) for ā = a− k̃k̄ times, one can write

(pa
Ri
)−1 ≥

ā∑
τ=0

α̌τ β̌τΦ
−T
Ri

(a, ãτ)△Φ−1
Ri

(a, ãτ), (2.28)

where ΦRi(a, ãτ) is the transition matrix on T ãτ
a ; △ =

∑
l∈N ãτ

s,i
ηãτil s

ãτ
Ril

+ sãτRii
; α̌τ = (1 −

αãτ)
∏τ−1

j=0 αãj and β̌τ =
∏τ−1

j=0 βãj , for τ > 0; α̌τ = (1 − αa), and β̌τ = 1, for τ = 0. Note

that the right hand side of (2.28) can be equivalently written as Φ−T
Ri

(a, ãā)ΨΦ−1
Ri

(a, ãā),

where

Ψ =

ā∑
τ=0

α̌τ β̌τΦ
T
Ri
(ãτ , ãā)△ΦRi(ãτ , ãā) =

ā−n̄−1∑
τ=0

α̌τ β̌τΦ
T
Ri
(ãτ , ãā)△ΦRi(ãτ , ãā)

+
ā∑

τ=ā−n̄

α̌τ β̌τΦ
T
Ri
(ãτ , ãā)△ΦRi(ãτ , ãā).

Invoking part (1) of Assumption 2.4.1, (Φτ
Ri
,Cτ

Ri
) is observable on T a−ā+n̄

a−ā . We have

ā∑
τ=ā−n̄

ΦT
Ri
(ãτ , ãā)(C

ãτ
Ri
)TCãτ

Ri
ΦRi(ãτ , ãā) > 0.

Recall that sτRii
= (Ck

Ri
)TR−1

Ri
Ck

Ri
. Then, by noticing that α̌τ ∈ (0, 1), β̌τ ∈ (0, 1] and

R−1
Ri

> 0, it can be seen that

Ψ ≥
ā∑

τ=ā−n̄

α̌τ β̌τΦ
T
Ri
(ãτ , ãā)s

ãτ
Rii

ΦRi(ãτ , ãā) > 0.

30

Hence, we can obtain a positive-definite matrix

(pa
i)

−1 =
ā∑

τ=ā−n̄

α̌τ β̌τΦ
−T
Ri

(a, ãτ)s
ãτ
Rii

Φ−1
Ri

(a, ãτ),

such that pa
Ri

≤ pa
i . Further, let p̄i = ΦRipi(ΦRi)

T +QRi , where ΦRi ≥ Φτ
Ri
, ∀τ ∈ T a

k−k̄
.

We have p̄k
Ri

≤ p̄a
i . As a is arbitrary in T k

m0
, it follows that there exist, respectively, positive

matrices pi and p̄i such that pτ
Ri

≤ pi, p̄
τ
Ri

≤ p̄i and ∀τ ∈ T k
m0

.

Next, consider the robots in V\Vk. Starting from robot j to which there exists an

edge from one robot i ∈ Vk on T m1
m0

. Such robot j exists due to part (2) of Assumption

2.4.1. Following a similar process, at any time b ∈ T k
m1

, after b̄ = b−m0 iterations, one can

obtain

(pb
Rj

)−1 ≥
b̄∑

τ=b̄−m̄1

α̌τ β̌τΦ
−T
Rj

(b, b̃τ)(
∑

l∈N b̃τ
s,j

ηb̃τjl s
b̃τ
Rjl

)Φ−1
Rj

(b, b̃τ),

where ΦRj (b, b̃τ) is the transition matrix on T b̃τ
b ; m̄1 = m1 −m0. Note that it is possible

that sτRjj
= 0, ∀τ ∈ T k

k−k̄
but N τ

s,j contains i on T m1
m0

. Then one can write

(pb
Rj
)−1 ≥

b̄∑
τ=b̄−m̄1

α̌τ β̌τΦ
−T
Rj

(b, b̃τ)η
b̃τ
ji s

b̃τ
Rji

Φ−1
Rj

(b, b̃τ).

Recall from (2.10) and (2.11) that

sτRji
=(Hτ

Rji
)T(R̄τ

Rji
)−1Hτ

Rji
= (Hτ

Rji
)T{RRji + H̃τ

Rji
p̄τ
Ri
(H̃τ

Rji
)T}−1Hτ

Rji
.

It can be immediately seen that the boundedness of pτ
Rj

is related to p̄τ
Ri
. As p̄τ

Ri
≤ p̄i,

there exists H̃Rji ∈ {H̃τ
Rji

| τ ∈ T m1
m0

} such that R̄τ
Rji

≤ R̄Rji = RRji + H̃Rjip̄i(H̃Rji)
T,

∀τ ∈ T m1
m0

. Then, we can write sτRji
≥ sτRji

> 0, where sτRji
= (Hτ

Rji
)T(R̄Rji)

−1Hτ
Rji

,

∀τ ∈ T m1
m0

. Invoking part (2) in Assumption 2.4.1, (Φτ
Rj
,Hτ

Rji
) is observable on T b−b̄+m̄1

b−b̄
.

We have
b̄∑

τ=b̄−m̄1

ΦT
Rj
(b̃τ , b̃b̄)(H

b̃τ
Rji

)THb̃τ
Rji

ΦRj (b̃τ , b̃b̄) > 0.

31

Then, by noticing that α̌τ ∈ (0, 1), β̌τ ∈ (0, 1], ηb̃τji ∈ (0, 1] and R̄−1
Rji

> 0, we can obtain a

positive-definite matrix

(pb
j)

−1 =
b̄∑

τ=b̄−m̄1

α̌τ β̌τη
b̃τ
ji Φ

−T
Rj

(b, b̃τ)s
b̃τ
Rji

Φ−1
Rj

(b, b̃τ),

such that pb
Rj

≤ pb
j . Hence, we can claim that there exists a matrix pj such that pτ

Rj
≤ pj ,

∀τ ∈ T k
m1

. Also, we can find an upper bound p̄j of p̄τ
Rj
, where τ ∈ T k

m1
.

Similarly, for another robot l ∈ V\Vk to which there exists an edge from robot j

on T m2
m1

. We can obtain a positive-definite matrix pl which is associated with p̄j , such that

pτ
Rl

≤ pl, ∀τ ∈ T k
m2

.

Part (2) of Assumption 2.4.1 says that for each robot in V\Vk, there exists a

directed path from one robot in Vk to that robot. By applying the above approach orderly

along that directed path, it takes k̄− n̄ time instants to make the estimated pose covariance

of the farthest robot upper bounded, where k̄−n̄ is the total length of l consecutive intervals.

As this is the case for any k ≥ k̄, we can conclude the proof.

Hence, the statement of Theorem 9 follows directly from Lemmas 10 and 12.

Since the stability analysis is the same for each target, we focus on one target

j ∈ U . Further, as the proof follows a similar approach to that of Theorem 9, only the

different parts are shown in detail in the following. We first give the definition of the joint

observable set and orderly appearing path as follows.

Definition 13 Let V ′ be a nonempty subset of V. The tracking system (2.12) and (2.25) of

target j is jointly observable to the robots in V ′ on T j1
j0

if and only if the joint observability

32

grammian ∑
l∈V ′

j1∑
τ=j0

[ΦTlj
(τ, j0)]

T(H̃τ
Tlj

)TH̃τ
Tlj

ΦTlj
(τ, j0) > 0,

where ΦTlj
(τ, j0) is the transition matrix on T τ

j0
.

Definition 14 [122] Let B = {e1, . . . , ep}, where ej = (ij−1, ij), ∀j = 1, . . . , p, be a direct

path in a graph. Then B is an orderly appearing path on T τ1
τ0 , if there exist p time instants

τl1 < τl2 <, . . . , < τlp on T τ1
τ0 such that ej is an edge (including the self edge) of that graph

at time τli, where i = 1, . . . , p.1

In order to derive the stability result of the algorithm in Tab. 2.2, the following

assumptions and a lemma are needed.

Assumption 2.4.4 There exists a positive integer l̄, such that for each robot i ∈ V at each

time k ≥ k̄ + l̄, where k̄ is from Assumption 2.4.1, one can find a nonempty robot subset

Vk
i ⊆ V that satisfies the following statements.

1. Vk
i has joint observability about target j on T k−l̄+m̄

k−l̄
, where 0 < m̄ < l̄.

2. Every robot in Vk
i has an orderly appearing path in the communication graph Gτ

c to i

on T k
k−l̄+m̄

.

Assumption 2.4.5 For any k ≥ 0, the system matrix Φk
Tlj

is invertible.

Assumption 2.4.6 For each robot i ∈ V, the initialized estimation pair
(
x̂0
Tij

,p0
Tij

)
is

consistent. That is E{e0Tij
(e0Tij

)T} ≤ p0
Tj
.

1By default (i, i) itself can be an orderly appearing path.

33

Let Dk = [Dk
il] be the stochastic adjacently matrix associated with Gk

c at time k,

where Dk
il = πk

il with πk
il ∈ (0, 1] being the weights from the algorithm in Tab. 2.2 if l ∈ J k

c,i

and Dk
il = 0 otherwise.

Lemma 15 [122] Given a finite time interval T j1
j0
, let Dj1

j0
= Dj1 , . . . ,Dj0+1Dj0. Then

{Dj1
j0
}il > 0 if and only if there exists an orderly appearing path from i to l on T j1

j0
.

The following theorem shows the stability result of the tracking part.

Theorem 16 Suppose that Assumptions 2.4.1-2.4.6 hold. Then target j’s state estimate

obtained by each robot is stable under the algorithm in Tab. 2.2. That is, for each i ∈ V,

there exists a positive-definite matrix pi,j such that,

E{ekTij
(ekTij

)T} ≤ pi,j

for each k ≥ k̄ + l̄.

Proof. Notice that the consistency of the update step is preserved by ICI as shown in

Section 2.3.1. Then, under Assumption 2.4.6, following the same process as in Lemma 10,

we can get the consistency result. That is, for each robot i ∈ V,

E{eτTij
(eτTij

)T} ≤ pτ
Tij

, ∀τ ≥ 0.

As Assumption 2.4.5 holds, for each robot i ∈ V at time k, where k ≥ k̄ + l̄, by

following a similar approach to that in Lemma 12, we have

(pk
Tij

)−1 ≥
∑
l∈V

αkβk(Φ
k−1
Tlj

)−TDk
il(p

k−1
Tlj

)−1(Φk−1
Tlj

)−1 + (1− αk)
∑
l∈J k

c,i

η̃klj s̃
k
Tlj

,

34

where αk ∈ (0, 1) and βk ∈ (0, 1]. Then, by noticing that
∑

l∈J k
c,i

s̃kTlj
≥
∑

l∈V Dk
ils̃

k
Tlj

, after

l̄ iterations, one can write

(pk
Tij

)−1 ≥
l̄∑

τ=l̄−m̄

α̌τ β̌τ
∑
l∈V

Φ−T
Tlj

(k, k̃τ){Dk
k−τ}ilη̃

k̃τ
lj s̃

k̃τ
Tlj

Φ−1
Tlj

(k, k̃τ). (2.29)

where α̌τ = (1− αãτ)
∏τ−1

j=0 αãj and β̌τ =
∏τ−1

j=0 βãj , for τ > 0; α̌τ = 1− αa and β̌τ = 1, for

τ = 0. Equation (2.29) can be further written as

(pk
Tij

)−1 ≥
∑
l∈V

Φ−T
Tlj

(k, k̃k̄)[
l̄∑

τ=l̄−m̄

α̌τ β̌τΦ
T
Tlj

(k̃τ , k̃k̄){Dk
k̃τ
}ilη̃k̃τlj s̃

k̃τ
Tlj

ΦTlj
(k̃τ , k̃k̄)]Φ

−1
Tlj

(k, k̃k̄).

As part (2) of Assumption 2.4.4 is satisfied, it follows from Lemma 15 that {Dk
k̃τ
}il > 0,

∀l ∈ Vk
i and ∀τ ∈ T l̄

l̄−m̄
. Then, from part (1) of Assumption 2.4.4, we can claim that

∑
l∈V

l̄∑
τ=l̄−m̄

ΦT
Tlj

(k̃τ , k̃k̄){Dk
k̃τ
}il(H̃k̃τ

Tlj
)TH̃k̃τ

Tlj
ΦTlj

(k̃τ , k̃k̄)

is positive definite. Recall from (2.13) and (2.14) that

s̃τTlj
=(H̃τ

Tlj
)T(R̄τ

Tlj
)−1H̃τ

Tlj
= (H̃τ

Tlj
)T{RTlj

+Hτ
Tlj

p̄τ
Rl
(Hτ

Tlj
)T}−1H̃τ

Tlj
.

Invoking Theorem 9, for any τ ≥ k̄, there exists an upper bound p̄l for p̄
τ
Rl
, ∀l ∈ V. Then,

there exists HTlj
∈ {Hτ

Tlj
| τ ∈ T k−l̄+m̄

k−l̄
} such that R̄τ

Tlj
≤ R̄Tlj

= RTlj
+ HTlj

p̄l(HTlj
)T,

∀τ ∈ T k−l̄+m̄
k−l̄

. Then, we can write s̃τTlj
≥ s̃τTlj

, where s̃τTlj
= (H̃τ

Tlj
)TR̄−1

Tlj
H̃τ

Tlj
, ∀τ ∈ T k−l̄+m̄

k−l̄
.

Let Bτ ⊆ V be the set of blind robots at time τ . On T k−l̄+m̄
k−l̄

, as Vτ
i is nonempty, V\Bτ

(the set of robots directly detects target j) is nonempty. For any l ∈ V\Bτ , we have

η̃τlj ∈ (0, 1] and R−1
Tlj

> 0, ∀τ ∈ T k−l̄+m̄
k−l̄

. Further, by noticing that α̌τ ∈ (0, 1), β̌τ ∈ (0, 1]

and Vτ
i ⊆ V\Bτ , we can obtain a positive-definite matrix (pi,j)

−1 as

∑
l∈V

l̄∑
τ=l̄−m̄

α̌τ β̌τ η̃
k̃τ
lj Φ

−T
Tlj

(k, k̃τ){Dk
k̃τ
}ils̃k̃τTlj

Φ−1
Tlj

(k, k̃τ),

35

such that pk
Tij

≤ pi,j .

Hence, the proof can be concluded by noticing that in the above proof, i is arbitrary

chosen from V for each time k ≥ k̄ + l̄.

2.5 Simulations

In this section, the performance of the proposed JLATT-DEIF algorithm is tested

via a series of Monte Carlo simulations. We consider the scenario, where a team of M = 4

robots randomly move on a surface and track multiple targets with N = 2. While any

type of motion and process model is applicable for the proposed algorithm, we adopt the

unicycle model for both robots and targets, to be consistent with the ensuing experimental

case. The robot pose xk
Ri

is described with the position [xkRi
, ykRi

] and the orientation ϕk
Ri

in the global frame. Then the motion model is expressed as

xkRi
= xk−1

Ri
+ vk−1

Ri
δtcos(ϕk−1

Ri
)

ykRi
= yk−1

Ri
+ vk−1

Ri
δtsin(ϕk−1

Ri
)

ϕk
Ri

= ϕk−1
Ri

+ ωk−1
Ri

δt,

(2.30)

where δt is the length of the sampling time interval, and vRi , ωRi represent, respectively, the

linear and rotational velocity of robot i. These velocities are measured by the odometries

equipped on the drive wheels and the associated noise is assumed to be white Gaussian

with the standard deviation of 0.02 m for position and 2◦ for orientation. Each robot moves

with a constant linear velocity of vRi = 0.5 m/s, and the rotational velocity ωRi is chosen

from a uniform distribution over [−π
6 ,

π
6] rad/s. Similarly, the targets move in the same area

following the process of (2.30) with vTi = 0.6 m/s and ωTi ∈ [−π
5 ,

π
5] rad/s, subject to the

36

same noise of the robot odometry measurements. The state xTi to be estimated contains

the position and orientation of target i also in the global frame.

-25 -20 -15 -10 -5 0 5 10 15 20 25

x (m)

-15

-10

-5

0

5

10

15

20

25

y
 (

m
)

Robot 1

Robot 2

Robot 3

Robot 4

Target

Target

Figure 2.1: A team of four robots move randomly and track two targets. Their starting
positions are marked by cicles.

In the test, the robots and the targets start from different locations and follow

the real trajectories depicted in Fig. 2.1. Although our approach can deal with generic

measurement models. To be consistent with the experiment, each robot records the relative

distance and bearing to other robots and targets within its sensing region. In order to

fully validate our algorithm, in the simulation case no absolute measurements exist and the

relative measurements are generated randomly in time, while in the following experimental

case, the landmarks provide absolute measurements and the relative measurements obtained

are related to the pose of each robot. For robot i, if robot j is detected, the relative

37

measurement is given by

zkRij
=

√
(xkRj

− xkRi
)2 + (ykRj

− ykRi
)2

atan2((ykRj
− ykRi

), (xkRj
− xkRi

))− ϕk
Ri

+ vk
Rij

,

where vRij is a zero-mean white Gaussian noise. The distance noise is set to be 3% of the

actual value and the standard deviation of the bearing noise equals to 3◦. The same model

is used for the robot-to-target measurement zTij .

Consider a general case in which each robot performs relative measurements to the

other robots with the probability of 20%, while the probability of detecting the targets is

40%. We consider a weak communication link with the failure probability of 30% between

each pair. Since the absolute measurement is not accessible, we assume that each robot

knows its initial global pose. The initial estimates of the targets’ states obtained by each

robot are set to x̂0
Tij

∼ N (xTj (0),p
0
Tij

), where xTj (0) is the initial true state of the target,

and the initial covariance p0
Tij

= I3, for j = 1, 2. We run 50 Monte Carlo simulations and

compare the following four cases under the same setup.

• Dead reckoning (DR): No relative measurements exist. The robots propagate their

estimates by integrating the measured velocities. Target tracking is not considered

here, since good knowledge of the robots’ poses is a prerequisite for tracking.

• CL-DEIF: To show the strength of jointly estimating the states of robots and targets,

we purposely neglect the existence of targets and perform CL using the novel DEIF

in Tab. 2.1 without incorporating robot-to-target measurements.

• JLATT-DEIF: Based on the algorithms of Tab. 2.1 and 2.2, we achieve localization

and target tracking simultaneously.

38

• CEKF: To the author’s knowledge, none of the existing works can address the same

problem in a fully distributed way. We hence use CEKF as the benchmark. The cen-

tralized state vector contains all the robots’ and targets’ states. Whenever a relative

measurement occurs, the EKF-based update invokes.

We employ the root mean square error (RMSE) to quantify the accuracy. Figures

2.2 show the average RMSE over 50 Monte Carlo runs in positions and orientations for

the four robots. As expected, without relative measurements, the estimation errors of DR

increase quickly as time goes on. When relative measurements take place in the other three

cases, due to the collected information regarding the relative motion to the other robots

and targets, the pose uncertainties are significantly reduced. It is evident that JLATT-

DEIF results in better accuracy for the estimates of both robot positions and orientations,

compared with CL-DEIF in which robot-to-target measurements are ignored. Figures 2.3

depict the position and orientation RMSE for the state estimates of two targets obtained

by four robots using JLATT-DEIF and the benchmark CEKF. It becomes clear that four

robots can track the targets with performance close to CEKF through communicating only

with one-hop neighbors. In comparison to CEKF which achieves the best accuracy, the

errors of JLATT-DEIF are slightly larger in both localization and tracking. This is due to

the fact that each robot only uses the information from itself and one-hop communicating

neighbors. However, it allows for a fully distributed implementation with less computational

and communication cost while preserving consistency.

39

0 50 100

Time (sec)

0

2

4

6

R
o

b
o

t
1

 P
o

s
it
io

n
 R

M
S

E
 (

m
)

0 50 100

Time (sec)

0

2

4

6

R
o

b
o

t
2

 P
o

s
it
io

n
 R

M
S

E
 (

m
) DR

CEKF

CL-DEIF

JLATT-DEIF

0 50 100

Time (sec)

0

2

4

6

R
o

b
o

t
3

 P
o

s
it
io

n
 R

M
S

E
 (

m
)

0 50 100

Time (sec)

0

1

2

3

4

R
o

b
o

t
4

 P
o

s
it
io

n
 R

M
S

E
 (

m
)

0 50 100

Time (sec)

0

0.1

0.2

0.3

R
o

b
o

t
1

 O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

ra
d

)

0 50 100

Time (sec)

0

0.1

0.2

0.3

0.4

R
o

b
o

t
2

 O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

ra
d

) DR

CEKF

CL-DEIF

JLATT-DEIF

0 50 100

Time (sec)

0

0.1

0.2

0.3

R
o

b
o

t
3

 O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

ra
d

)

0 50 100

Time (sec)

0

0.1

0.2

0.3

R
o

b
o

t
4

 O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

ra
d

)

Figure 2.2: Position (left) and Orientation (right) RMSE for four robots averaged over 50
Monte Carlo runs.

0 20 40 60 80 100

Time (sec)

0

0.5

1

1.5

T
a

rg
e

t
1

 P
o

s
it
io

n
 R

M
S

E
 (

m
)

Robot 1 (JLATT-DEIF)

Robot 2 (JLATT-DEIF)

Robot 3 (JLATT-DEIF)

Robot 4 (JLATT-DEIF)

CEKF

0 20 40 60 80 100

Time (sec)

0

0.5

1

1.5

2

T
a

rg
e

t
2

 P
o

s
it
io

n
 R

M
S

E
 (

m
)

0 20 40 60 80 100

Time (sec)

0.05

0.1

0.15

0.2

T
a

rg
e

t
1

 O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

ra
d

)

Robot 1 (JLATT-DEIF)

Robot 2 (JLATT-DEIF)

Robot 3 (JLATT-DEIF)

Robot 4 (JLATT-DEIF)

CEKF

0 20 40 60 80 100

Time (sec)

0.04

0.06

0.08

0.1

0.12

0.14

T
a

rg
e

t
2

 O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

ra
d

)

Figure 2.3: Position (left) and Orientation (right) RMSE for two targets averaged over 50
Monte Carlo runs.

To illustrate the consistency issue considered in Section 2.3, we show how the

algorithm would perform if the update steps in Tab. 2.1 and Tab. 2.2 are replaced with, re-

spectively, (2.18) and (2.23). The resulting algorithm is denoted as the inconsistent JLATT-

DEIF (iJLATT-DEIF) and is then compared with the JLATT-DEIF. The normalized es-

timation error squared (NEES)[8] is used to evaluate the filter consistency. Specifically, if

a filer is consistent, it is expected that the average NEES over all Monte Carlo runs for

both robots’ and targets’ states will be close to 3 (i.e., should be close to the dimension of

40

the state errors). A larger NEES value indicates inconsistency. Fig. 2.4 shows the average

NEES for the estimates of one robot and one target. We note that the average NEES of

the JLATT-DEIF is close to that of the benchmark CEKF as well as the ideal value 3 in

both the localization and tracking parts. While the average NEES of the iJLATT-DEIF

in these two parts is gradually increasing over time, indicating that the estimates become

inconsistent quickly.

0 20 40 60 80 100

Time (sec)

0

10

20

30

40

R
o

b
o

t
1

 N
E

E
S

0 20 40 60 80 100

Time (sec)

0

5

10

15

20

25

T
a

rg
e

t
1

 N
E

E
S

CEKF

iJLATT-DEIF

JLATT-DEIF

Figure 2.4: Average NEES for Robot 1 and Target 1 (obtained by Robot 1) averaged over
50 Monte Carlo runs.

2.6 Experiments

We further evaluate the performance of our approach on the publically available

UTIAS multi-robot cooperative localization and mapping dataset [67], where a fleet of five

ground robots move in an indoor area of 15 m × 8 m with 15 static landmarks. Each robot

is equipped with a monocular camera with the field of view (FOV) of about 60 degrees. The

41

robot makes range and bearing measurements when another robot or landmark is inside

its FOV. In the meanwhile, a Vicon system is used to monitor the robots’ poses and the

positions of the landmarks, serving as the groundtruth in the global frame. Note that the

original intention of the dataset is not for target tracking. In order to test our approach,

we treat one of the robots as the target whose exteroceptive measurements are dropped

and the other four form a robot network. We sample the logged data at 50 Hz. In the

dataset, there are numerous occlusions between the robots and the target assigned for our

purpose, which does not allow the recovering of the target trajectory. To test the target

tracking scenario, the groundtruth is used to synthesize robot-to-target measurements with

the accuracy of 1% of the actual value for position and 1◦ for bearing. Note that the

synthesized data is only incorporated in the tracking part. Tab. 2.3 gives an overview on

the number of actual measurements (including odometry data, and relative and absolute

measurements obtained by cameras), and the synthesized robot-to-target measurements for

each robot within the first 30000 time instants. The values in parentheses are the actual

robot-to-target measurements.

Table 2.3: Overview of how many measurements are used.

Actual Measurement Synthesized Measurement

Odometry Camera (robot-to-target)

Robot 1 30000 2184 (124) 297

Robot 2 30000 2424 (136) 272

Robot 3 30000 2874 (153) 259

Robot 4 30000 3530 (155) 267

The initial estimates for the robot poses are obtained by adding (or subtracting)

0.5 m offset to (or from) the true positions and 5◦ to (or from) the true orientation, rather

42

-2 0 2 4 6

x (m)

-4

-2

0

2

4

y
 (

m
)

Robot 1

-2 0 2 4 6

x (m)

-4

-2

0

2

4

6

y
 (

m
)

Robot 2

-2 0 2 4

x (m)

-5

0

5

y
 (

m
)

Robot 3

-2 0 2 4

x (m)

-5

0

5

y
 (

m
)

Robot 4

Real

DR

CEKF

JLATT-DEIF

Figure 2.5: Trajectories of four robots. In these lines, the black solid lines correspond to the
real value, the blue dashed lines to DR, the green dashed lines to CEKF, and the red dashed
lines to JLATT-DEIF. The initial true and estimated positions are marked by circles with
the corresponding colors. Circles of DR, CEKF and JLATT-DEIF are overlapped for each
robot.

than the true poses in the preceding simulation. For each robot, the target state estimate is

initialized at x̂0
Ri,1

∼ N (xT1(0),p
0
Ri,1

), where p0
Ri,1

= 0.5I3. As in the preceding simulation

test, we compare the performance of our approach JLATT-DEIF with the benchmark CEKF

and the DR. Fig. 2.5 depicts the real and estimated trajectories for the robots and Fig. 2.6

shows the results of the target estimates obtained by four robots over the first 30000 time

instants. It becomes clear that each robot’s estimate of its own position (respectively, the

target’s position) well tracks the real trajectory of its own (respectively, the target) without

knowing the initial true pose. Further, as shown in Figs. 2.7 and 2.8, each robot can also

well estimate the real orientations of itself and the target. This is due to the existence of

the landmarks which provide the robots with intermittent absolute information in addition

43

to the relative measurements. Further, the proposed JLATT-DEIF performs comparably

to CEKF and the groundtruth.

0 1 2 3 4

x (m)

-2

0

2

y
 (

m
)

By Robot 1

0 1 2 3 4

x (m)

-2

0

2

y
 (

m
)

By Robot 2 Real

CEKF

JLATT-DEIF

0 1 2 3 4

x (m)

-2

0

2

y
 (

m
)

By Robot 3

0 1 2 3 4

x (m)

-2

0

2
y
 (

m
)

By Robot 4

Figure 2.6: Trajectories of the target obtained by four robots. In these lines, the black solid
lines correspond to the real value, the green dashed lines to CEKF, and the red dashed lines
to JLATT-DEIF. The initial true and estimated positions are marked by circles with the
corresponding colors.

Fig. 2.9 presents the recorded absolute value of x errors for one of the robots and

the 3σ bound for these errors over a time interval of 10000 instants. The top plot shows

the result for iJLATT-DEIF. There are some time intervals in which the absolute x error is

outside the 3σ bound, a clear indication that the iJLATT-DEIF estimate is overconfident,

which may cause the estimate to diverge. Unlike that, in the bottom one the resulting

absolute x error of JLATT-DEIF is well enveloped by the 3σ bound, which agrees with the

previous simulation result that JLATT-DEIF is consistent in the localization part. Fig.

2.10 illustrates the comparative result along x direction for one target. Note that robot-to-

44

0 1 2 3

Time Instants 104

-4

-2

0

2

4

O
ri
e

n
ta

ti
o

n
 (

ra
d

)

Robot 1

0 1 2 3

Time Instants 104

-4

-2

0

2

4

O
ri
e

n
ta

ti
o

n
 (

ra
d

)

Robot 2

0 1 2 3

Time Instants 104

-4

-2

0

2

4

O
ri
e

n
ta

ti
o

n
 (

ra
d

)

Robot 3

0 1 2 3

Time Instants 104

-4

-2

0

2

4

O
ri
e

n
ta

ti
o

n
 (

ra
d

)

Robot 4

Real

DR

CEKF

JLATT-DEIF

Figure 2.7: Orientations for four robots. In these lines, the black solid lines correspond to
the real value, the blue dashed lines to DR, the green dashed lines to CEKF, and the red
dashed lines to JLATT-DEIF.

0 1 2 3
Time Instants 104

-4

-2

0

2

4

O
ri
e
n
ta

ti
o
n
 (

ra
d
)

By Robot 1

0 1 2 3
Time Instants 104

-4

-2

0

2

4

O
ri
e
n
ta

ti
o
n
 (

ra
d
)

By Robot 2
Real

CEKF

JLATT-DEIF

0 1 2 3
Time Instants 104

-4

-2

0

2

4

O
ri
e
n
ta

ti
o
n
 (

ra
d
)

By Robot 3

0 1 2 3
Time Instants 104

-4

-2

0

2

4

O
ri
e
n
ta

ti
o
n
 (

ra
d
)

By Robot 4

Figure 2.8: Orientations for the target obtained by four robots. In these lines, the black
solid lines correspond to the real value, the green dashed lines to CEKF, and the red dashed
lines to JLATT-DEIF.

45

target measurements have been incorporated in the localization part. Hence, directly using

(2.23) leads to an inconsistent estimate as shown in the top plot. While as shown in the

bottom one, JLATT-DEIF also computes consistent estimates in the tracking part.

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Time Instants 104

0

0.1

0.2

0.3

R
o
b
o
t
|x

-e
rr

o
r|

 (
m

)

3 bound (iJLATT-DEIF)

|x-error| (iJLATT-DEIF)

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Time Instants 104

0

0.1

0.2

0.3

R
o
b
o
t
|x

-e
rr

o
r|

 (
m

)

3 bound (JLATT-DEIF)

|x-error| (JLATT-DEIF)

Figure 2.9: Position error in x-direction for one of the robots by using iJLATT-DEIF (top)
and JLATT-DEIF (bottom). The solid lines correspond to the absolute value of x errors
and the dashed lines to the 3σ bounds

2.7 Conclusions

In this chapter, we have introduced a fully distributed algorithm for the problem of

JLATT when both the sensor network and the targets are mobile. Each robot maintains only

the latest estimates of its own pose and the states of the targets. The proposed algorithm

only requires one communication iteration with the nearby neighbors at one time instant.

Further, our approach supports generic robot motion, target process and measurement

models, changing communication topologies and dynamic blind robots. These properties

46

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Time Instants 104

0

0.05

0.1

T
a

rg
e
t
|x

-e
rr

o
r|

 (
m

) 3 bound (iJLATT-DEIF)

|x-error| (iJLATT-DEIF)

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Time Instants 104

0

0.1

0.2

0.3

0.4

T
a
rg

e
t
|x

-e
rr

o
r|

 (
m

) 3 bound (JLATT-DEIF)

|x-error| (JLATT-DEIF)

Figure 2.10: Position error in x-direction for the target by using iJLATT-DEIF (top) and
JLATT-DEIF (bottom). The solid lines correspond to the absolute value of x errors and
the dashed lines to the 3σ bounds

ensure that our approach is applicable in a wide range of multi-robot scenarios. We have also

theoretically justified that the proposed estimates are consistent and stable with the errors

being bounded in the linearized case. The effectiveness of our approach has been validated

by using Monte Carlo simulations and the real-world dataset in different scenarios.

47

Chapter 3

Distributed 3-D Target State

Estimation

3.1 Introduction and Related Works

State estimation in sensor networks has a wide range of applications such as target

tracking, environmental monitoring and surveillance. It is assumed that a state of interest

is evolving according to noisy dynamics, and each agent may or may not get measurements

that are related to the state. The objective is to obtain an accurate estimator of this

state on every agent. In conventional centralized algorithms, all the agents send their

measurements to a fusion center that runs a centralized Kalman filter (CKF) to get an

optimal estimator. This estimator is then sent back to every agent. This approach requires

expensive communication and computational resources. Moreover, it has the potential

for the failure on the fusion center. In contrast, distributed approaches that have the

48

advantages of effectiveness, scalability and robustness have drawn more attentions in the

research community. In 3-D environments, quaternions have been introduced to express

orientations due to its unambiguity and computational efficiency. Furthermore, compared

to the Euler angle expression, quaternions avoid singularity when calculating rotations [59].

However, quaternions are not valid vector quantities, which makes the existing distributed

Kalman filter (DKF) algorithms not suitable for the quaternion-based 3-D motion tracking

in sensor networks.

Due to the aptitude for distributed computing, most of the existing DKF algo-

rithms are derived from the information filter (IF) (information form of the Kalman filter)

which propagates and updates, instead of the state estimate and the covariance, the infor-

mation pair that contains the information matrix and the information vector The consensus

algorithm as a tool of distributed averaging has been exploited in DSE. Three kind of con-

sensus filters are proposed in [14] where the consensus-on-information algorithm performs

the consensus on the prior information pair and the consensus-on-measurements algorithm

performs the consensus on the measurements. These two algorithms are then combined to

provide a hybrid consensus filter. Ref. [10] develops a Kullback–Leibler average consensus

filter where the local measurement is first used to update the local prior information pairs

and then the consensus is exploited on the resulting posterior information pairs. Some other

consensus filtering algorithms derived from the IF can be found in [57, 128, 11, 41].

Apart from the consensus-based algorithms that require several communication

iterations for each measurement, a more efficient kind of DKF is based on the covariance

intersection (CI) algorithm presented in [54, 53]. The CI algorithm is proposed to obtain

49

an improved and consistent estimator from the fusion of multiple estimators with unknown

correlations by using a convex combination of the local information pairs. The weights are

chosen to minimize the trace or determinant of the fused covariance. Refs. [3] and [42] let

each agent compute an estimator by using its own measurements independently and then

fuse the resulting posterior information pairs among the neighborhood with CI to obtain an

improved estimator. Only the posterior information pairs are transmitted. Another typical

CI-based approach is proposed in [45, 123, 122] where the prior information pairs are first

fused with CI and then the resulting prior estimator at every agent is further updated with

all the measurements among the neighborhood. Here, the prior information pairs and the

local measurements are transmitted. Some other CI-based DKF can be found in [16, 126].

Both the IF-derived consensus filters and the CI-based DKF algorithms need to

compute the information vector. However, we cannot calculate the information vector for a

quaternion due to the mismatching dimension between a quaternion and the corresponding

covariance [119]. We further explore the existing DKF without the need of computing the

information vector. The Kalman consensus filter (KCF) in [97] and the Generalized KCF

(GKCF) in [58] perform an average consensus on the prior estimates in the update step.

KCF use equal weights, which causes large estimation errors with blind agents. This issue

is avoided by using GKCF that weights the prior estimates by their covariances. Ref. [22]

presents the diffusion Kalman filter where each agent first updates the local estimates using

its own and the neighbors’ measurements, and then computes a convex combination of

the resulting estimates. Nevertheless, quaternions are not in the vector space. Then, the

arithmetic mean (average consensus) or a convex combination computed is no longer a valid

50

quaternion and has no physical meaning, which renders the approaches in [97, 58, 22] not

applicable.

Indirect Kalman filter has been proposed in [119, 116] to address the problem

of single robot 3-D localization where the quaternion is used to represent the orientation.

But how to fuse the information especially the quaternions from other sensors in a sensor

network has not been addressed. From the above observations, it is clear that the existing

DKF algorithms are not applicable for the quaternion-based 3-D tracking, which limits their

applications in many real-world scenarios where the target exhibits 3-D motion.

3.2 Preliminaries

3.2.1 Quaternion

A quaternion consists of a vector and scalar portion as

q̄ = q1i+ q2j+ q3k+ q4.

For notation simplicity, q̄ can be further written as a four-dimensional column matrix given

by

q̄ =

q
q4

 =

[
q1 q2 q3 q4

]T
. (3.1)

Orientation is represented as a unit quaternion [18] which satisfies |q̄| =
√

|q|2 + q24 = 1. A

rotation can be represented by a unit quaternion

q̄ =

q
q4

 =

m · sin(θ/2)

cos(θ/2)

 , (3.2)

51

wherem is the unit vector defining the rotation axis and θ is the angle of rotation. A rotation

can also be described by a rotation matrix R which is related to the unit quaternion q̄ by

R =
(
2q24 − 1

)
I3 − 2q4⌊q ×⌋+ 2qqT

where ⌊·×⌋ denotes the skew symmetric matrix. Moreover, q̄ and −q̄ describe the same

rotation [114].

The error vector and its covariance are usually expressed in terms of the arithmetic

difference between the true and estimated values. However, using this representation for a

quaternion would make the corresponding covariance singular [66]. Instead, the quaternion

error δq̄ is represented as a rotation between the estimated and true quaternion as q̄ = ˆ̄q⊗δq̄,

where ⊗ denotes the quaternion multiplication. When representing the uncertainty of a

quaternion error, a minimal representation of the 3-dimension vector is required [63]. Since

the rotation associated with δq̄ can be assumed to be very small, the mapping between δq̄

and the minimal representation, the rotation angle error δθ ∈ R3, is obtained from (3.2)

with small angle approximation as

δq̄ =

 δq
δq4

 =

m · sin(δθ/2)

cos(δθ/2)

 ≈

1
2δθ

1

 ,

where δθ = mδθ. Then, the uncertainty of δq̄ is represented as the covariance of δθ. It is

evident that for a quaternion estimate ˆ̄q, we cannot compute its information vector, as the

dimension for the covariance of ˆ̄q is 3×3 but ˆ̄q is 4×1.

52

3.2.2 Notation and Definitions

Im×n (0m×n) is the identity (zero) matrix of size m× n. If m = n, for simplicity,

we use Im (0m) to denote the square identity (zero) matrix. We denote G, T and Ci,

respectively, as the global frame, the target’s body frame and the ith camera frame. T
Gq̄,

the target’s orientation, describes the rotation from G to T . T
GR is the rotation matrix

associated with T
Gq̄.

GpT , the target’s global position, denotes the position of T in G. For

vector quantities, the error δx is defined as the standard additive error δx = x − x̂. For

a vector x = [x y z]T, the projection function is defined as Π(x) = 1
z [x y]T whose state

Jacobian

Hp(x) =
1

z

1 0 −x
z

0 1 −y
z

 .

We define a directed communication graph Gk = (V, Ek), where V is the agent set and Ek is

the edge set defined as Ek ⊆ V × V. Ek stands for the communication links between agents

at timestep k. We assume that self edge (i, i) ∈ Ek, ∀i ∈ V, exists in the communication

graph. If there exists an edge (j, i) ∈ Ek, where j ̸= i, which means that agent i can

receive information from agent j, then agent j is a communicating neighbor of agent i. The

communicating neighbor set of agent i at timestep k can be defined as N k
i = {i|(l, i) ∈

Ek, l ∈ V}. Note that i ∈ N k
i .

53

3.3 3-D Distributed State Estimation Algorithm

3.3.1 Problem Formulation

Consider a network of agents, where each agent has the ability to communicate

with its neighbors and sense the target with limited sensing region. The target is moving in

a 3-D environment. Without loss of generality, we represent the 3-D motion of the target

with the following state,

x =

T
Gq̄

xv

 =

[
T
Gq̄

T GpT
T GvT

T

]T
, (3.3)

where x includes the target’s 6-DoF pose, T
Gq̄ and GpT in addition to the target’s global

linear velocity GvT ; xv contains all the vector quantities in x. Consider the following

nonlinear motion model as the dynamics of the target object:

xk = f(xk−1,nk−1), (3.4)

where xk is the target’s state at timestep k, n is the zero-mean white Gaussian noise with

covariance O. The local measurement zki obtained by each agent i, i ∈ V, is given by the

following general nonlinear model:

zki = hi(x
k,wk

i), (3.5)

where wi is the local measurement noise assumed to be zero-mean white Gaussian with

covariance Ri. We further suppose that the measurement and target process noises are mu-

tually uncorrelated. The objective is to compute an accurate estimate of the target’s state

x on every agent by only using the information from itself and the one-hop communicating

neighbors.

54

3.3.2 Proposed Distributed Kalman Filter

Suppose that at timestep k, each agent maintains a prior estimator (x̄k
i , p̄

k
i) after

propagation. Now, agent i aims to update its local estimator (x̄k
i , p̄

k
i) by using its local

information and the information from its one-hop communicating neighbors. The first step

is to fuse all prior estimation pairs among the neighborhood, i.e., (x̄k
j , p̄

k
j), ∀j ∈ N k

i . Recall

that we cannot directly compute the information vector of a quaternion and then use the

consensus or CI algorithms to fuse the prior estimation pairs. Instead, we first weighted

synchronize the prior estimation pairs to reduce its uncertainty. The weight πj satisfies

πj ∈ [0, 1] and
∑

j∈Ni
πj = 1, which makes sure that we do not overuse the information

among the neighborhood. For the estimates of the vector quantities xv in x, we compute

x̌k
vi =

∑
j∈N k

i

πk
j x̄

k
vj . (3.6)

Note that for the quaternions, our objective is to average the orientations described by the

quaternions, not the average of the quaternion. Simply taking the same form of xvi cannot

even get a valid quaternion (e.g., change the sign of a quaternion should not change the

described orientation). Here, we employ the method in [78] which provides a closed form

solution of the averaged quaternion Ti
G
ˇ̄q by the following maximization procedure

Ti,k

G
ˇ̄q = argmax

q̄∈S3
q̄TMq̄, M =

∑
j∈N k

i

πk
j (

Tj,k

G
¯̄q)T

Tj,k

G
¯̄q, (3.7)

where
Tj,k

G
¯̄q is agent j’s prior estimate of Tk

G q̄; S3 denotes the unit 3-sphere. Solving (3.7) in

fact gives a quaternion that minimizes the weighted sum of the orientation errors.

55

We define a compatible symbol ⊠ for computing the weighted average and then

we obtain

x̌k
i =

Ti,k

G
ˇ̄q

x̌k
vi

 =
∑
j∈N k

i

πk
j ⊠ x̄k

j .

As for the synchronized covariance, we can directly compute p̌k
i =

∑
j∈N k

i
πk
j p̄

k
j , since the

quaternion error is represented by the error of the rotational angle that is a vector quantity.

The weight πk
j is chosen to minimize the determinant or the trace of p̌k

i .

For the sake of computational simplicity, we use the simplified algorithm in [95]

to calculate πk
j as

πk
j =

1/Tr(p̄j)∑
j∈N k

i
1/Tr(p̄j)

,

where Tr(·) computes the trace of a matrix. Clearly, more weights will be given to the prior

estimation pairs with small covariances.

The second step is to fuse the intermediate estimation pair (x̌k
i , p̌

k
i) with all the

local measurements zkj , ∀j ∈ N k
i . If agent j cannot sense the target directly, we assume

infinite uncertainties in zkj , that is, Rk
j = ∞. After linearization of zki about the current

estimated state, we compute

ski = (Hk
i)

T(Rk
i)

−1Hk
i , yk

i = (Hk
i)

T(Rk
i)

−1z̃ki , (3.8)

where z̃i = zi − hi(x̄i) and Hi =
∂hi
∂xi

(x̄i). Then, we obtain the updated covariance pk
i and

the state correction δxk
i according to

pk
i =

(p̌k
i

)−1
+
∑
j∈N k

i

skj

−1

, δxk
i =

δθk
i

δxk
vi

 = pk
i

∑
j∈N k

i

yk
j , (3.9)

56

where δθi is the orientation correction while δxvi is the corrections of the vector quantities.

Next, we update x̌i by using δxi.

For the vector quantities x̌vi in x̌i, we have x̂k
vi = x̌k

vi + δxk
vi . We update the

quaternion
Ti,k

G
ˇ̄q according to

Ti,k

G
ˆ̄q =

Ti,k

G
ˇ̄q ⊗ δq̄i (3.10)

where δq̄i represents a rotation that is supposed to be a unit quaternion. Recall that δq̄i

is approximately equal to [12δθ
T
i 1]T, which is however not a unit quaternion. To obtain a

unit quaternion, we let δq̄i =
1√

1+ 1
4
δθT

i δθi

1
2δθi

1

. We define a compatible symbol ⊞ for

updating x̌k
i . Then we have

x̂k
i =

Ti,k

G
ˆ̄q

x̂k
vi

 = x̌k
i ⊞ δxk

i . (3.11)

By adding the standard propagation step, the proposed 3-D DKF algorithm is summarised

in Algorithm I.

3.4 Simulations

In this section, we apply the proposed 3-D DKF to address the DSE problem over

a camera network where 10 cameras are employed to track a drone executing 3-D motion

(see Fig. 3.1). Each camera has a limited field of view. The status of which cameras are

directly sensing the target over the tracking period is shown in Fig. 3.2. Clearly, all of

the cameras could turn into blind cameras for long time periods. Moreover, each camera’s

intrinsic parameters are known via prior calibration [30]. We perform extensive Monte-Carlo

57

Table 3.1: Algorithm I: 3-D DKF Algorithm Implemented by Agent i at Timestep k.

Propagation:

Φk−1
i = ∂f

∂xi
(x̂k−1

i), Gk−1
i = ∂f

∂n(x̂
k−1
i),

Qk−1
i = Gk−1

i Ok−1(Gk−1
i)T,

p̄k
i = Φk−1

i pk−1
i (Φk−1

i)T +Qk−1
i ,

x̄k
i = f(x̂k−1

i).

Update:

(1) compute the update terms ski , y
k
i ;

(2) receive skj , y
k
j , x̄

k
j , p̄

k
j from agent j, ∀j ∈ N k

i ;

(3) update x̄k
i , p

k
i according to

pk
i =

(∑
j∈N k

i

πk
j p̄

k
j

)−1

+
∑

j∈N k
i

skj

−1

x̂k
i =

(∑
j∈N k

i

πk
j ⊠ x̄k

j

)
⊞

(
pk
i

∑
j∈N k

i

yk
j

)
The time-varying weight πk

j subject to πk
j ∈ [0, 1]

is selected to minimize Tr{pk
i }.

simulations to validate the effectiveness of the proposed algorithm.

3.4.1 State Vector and Models

As vision algorithms can yield many features on the target, like [27] we represent

the 3-D rigid body target as the point cloud constructed by the tracked corner features.

One of these features is chosen as the representative feature where the target’s state is

defined while all the other features are the non-representative features that can provide

additional observations. These non-representative features’ positions are also unknown.

We include the non-representative features’ relative position in the target’s body frame in

our estimation state to provide reobservation constraints. Therefore, the target state (3.3)

58

Figure 3.1: 3-D moving object tracking over camera networks. G and T are respectively, the
global frame and the target’s body frame. The Blue camera denotes the camera currently
sensing the target directly while the red ones are the blind cameras. The 3-D trajectory
followed by the target is the black line.

is extended to

x =

T
Gq̄

xv

 =

[
T
Gq̄

T GpT
T GvT

T Tpf
T

]T
,

Tpf =
[
Tpf1 · · · Tpfn

]T
,

(3.12)

where Tpf contains n non-representative features’ relative positions in T .

At timestep k, suppose that the target moves according to the following dynamics

[119]

Tk
G

˙̄q =
1

2
ωk ⊗ Tk

G q̄, GṗTk
= GvTk

, Gv̇Tk
= Tk

G RTak, (3.13)

where ω and a are the actual local angular velocity and linear acceleration. The corre-

sponding noisy angular velocity and linear acceleration are given as ωm = ω + nω and

am = a+na, where nω and na are zero-mean white Gaussian noise. ωm and am are known

59

0 10 20 30 40 50 60

Time (sec)

camera 1

camera 2

camera 3

camera 4

camera 5

camera 6

camera 7

camera 8

camera 9

camera 10

Figure 3.2: Status of cameras directly sensing the target. The bold blue lines indicate the
time intervals when the cameras can directly sense the target.

to each agent. After linearizing (3.13), the corresponding error state obtained by camera i

evolves according to
G ˙δθTi,k

G ˙δpTi,k

G ˙δvTi,k

 = Fk
i

GδθTi,k

GδpTi,k

GδvTi,k

+ Lk
i n

k (3.14)

where n =

[
nT
ω nT

a

]T
with the covariance O,

Fi =

−⌊ωm×⌋ 03 03

03 03 I3

−⌊Ti
G R̄Tam×⌋ 03 03

 , Li =

−I3 03

03 03

03 −Ti
G R̄T

 .

Then, we discretize (3.14) and obtain the first-order approximation. By noting that Tpf

does not evolve over time as we assume a rigid-body target, we obtain the discrete-time

transition matrix and the noise covariance

Φi =

Fiδt+ I9 09×3n

03n×9 I3n

 , Qi =

LiOLT
i δt 09×3n

03n×9 03n

 ,

60

where δt is the sampling time. With Φi and Qi, we can perform the propagation step in

Algorithm I.

As the target explores the environment, the target features are captured by the

cameras. Each camera i is assumed to be static with the global pose (Ci
G q̄,GpCi). At

timestep k, the measurements of the representative features take the form

zkTi
= Π(CipTk

) +wk
i , (3.15)

CipTk
= Ci

G R
(
GpTk

− GpCi

)
, (3.16)

where CipT denotes the target’s position in the ith camera frame; wi is the zero-mean

white Gaussian noise with covariance Ri. By linearization of (3.15) and (3.16), we obtain

the state Jacobian

Hi = Hp(
Cip̄T)

Ci
G R

[
03 I3 03×3(n+1)

]
.

For a non-representative feature Tpf1 (for notation simplicity, consider the first feature in

Tpf), then (3.16) is replaced with

CipTk
= Ci

G R
(
Tk
G RTTpf1 +

GpTk
− GpCi

)
. (3.17)

Note that (3.17) puts constraints not only on the target’s position GpTk
as (3.16) does, but

also on the relative position Tpf1 and the rotation matrix Tk
G R associated with the target’s

orientation. By linearization of (3.15) and (3.17), we obtain the state Jacobian

Hi = Hp(
Cip̄T)

Ci
G R[−⌊Ti

G R̄TT p̄f1×⌋ I3 03
Tk
G R̄T 03×3(n−1)].

With Hi, we can perform the update step in Algorithm I.

61

3.4.2 Results

The target is moving following a pre-designed 3-D trajectory. Further, the non-

representative features are generated around the target’s body frame. Each camera has

the resolution of [752, 480] and its maximum sensing distance is purposely set to 5 m. The

linear acceleration and angular velocity noise are 0.4 m/s2 and 0.03 rad/s, while the camera

measurements are corrupted by 1 pixel noise. Then we perform 50 Monte-Carlo simulations

and the results are quantified by the root mean squared error (RMSE).

To show the benefits of cooperative tracking, we assume that each camera can

communicate with the other cameras with certain percentages. For example, 40% means

that each camera can communicate with another camera with the probability of 40%. Hence,

each camera’s communicating neighbors are randomly chosen at every timestep and the

communication graph is time varying. We compare the results of the proposed distributed

algorithm (3-D DKF) against the one obtained by the benchmark (CKF) where all the

cameras can communicate with the fusion center perfectly. Fig. 3.3 shows the averaged

position RMSE (PRMSE) and the orientation RMSE (ORMSE) results for the CKF and

the 3-D DKF over all trials and all cameras. It becomes clear that as the communication

percentage increases, the estimation errors of the 3-D DKF reduce in both the positions

and orientations. In particular, the performance of the 3-D DKF with 60% communication

percentage is comparable to the CKF’s performance.

Further, to show the performance of individual cameras, Tab.3.2 provides the

averaged RMSE results with different communication percentages for the first four cameras

(cams 1, 2, 3 and 4) over all trials and all timesteps. Obviously, none of the cameras can

62

0 10 20 30 40 50 60

Time (sec)

0

0.2

0.4

0.6

0.8

1

P
R

M
S

E
 (

m
)

3-D DKF (20%)

3-D DKF (40%)

3-D DKF (60%)

CKF

0 10 20 30 40 50 60

Time (sec)

0

5

10

15

20

25

30

O
R

M
S

E
 (

d
e

g
)

Figure 3.3: Averaged RMSE for the estimated target pose over 50 Monte-Carlo runs and
ten cameras.

successfully track the target with 0% communication (no collaboration between cameras).

While as the communication percentage increases, all the estimators maintained by each

camera become more accurate. When the communication percentage is 40%, the estimated

trajectories obtained by the first four cameras are plotted against the groundtruth in Fig.

3.4, which shows that our approach can well track the 3-D trajectory of the target.

3.5 Conclusion

In this chapter, we have introduced a new DKF that is applicable for tacking the

6-DoF motion of a target moving in 3-D environments over sensor networks. The proposed

algorithm enjoys the property of being fully distributed as it only uses its own and one-

hop neighbors’ information. Moreover, it only requires a single communication iteration

63

Table 3.2: Averaged RMSE for the estimated target pose over 50 Monte-Carlo runs and all
timesteps.

communication (3-D DKF) 0 % 20 % 40% 60%

Cam 1
PRMSE (m) 22.654 0.239 0.119 0.041

ORMSE (deg) 22.246 9.902 6.992 4.320

Cam 2
PRMSE (m) 65.005 0.265 0.123 0.040

ORMSE (deg) 36.935 10.306 6.917 4.285

Cam 3
PRMSE (m) 72.067 0.217 0.117 0.042

ORMSE (deg) 26.246 9.970 6.900 4.337

Cam 4
PRMSE (m) 56.871 0.281 0.124 0.043

ORMSE (deg) 38.271 10.245 6.925 4.314

CKF
PRMSE (m) 0.022

ORMSE (deg) 4.128

Figure 3.4: Estimated 3-D trajectories of the first four cameras. ‘+’ denotes the start
position while ‘x’ denotes the end point. The start and end areas are enlarged in the built-
in figures.

in the update step and is robust to the time-varying changes in the network such as the

communication topology, the blind agents, and the network size. It also deals with the

generic target and measurement models. These properties ensure that our approach is

64

applicable in a wide range of cooperative target tacking scenarios. The performance is

tested with the application to camera networks via Monte-Carlo simulations.

65

Chapter 4

Distributed Visual-Inertial

Cooperative Localization

4.1 Introduction and Related Works

Camera and inertial measurement unit (IMU) pairs have been at the forefront of

multi-robot (or mobile device) applications due to their complementary nature, low cost

and small size. Accurate and efficient cooperative localization (CL) that enables multi-

user augmented reality (AR) experiences, multi-device cooperative mapping, and multi-

vehicle formation control, is a key barrier to overcome due to challenges of communication,

distributed computation, and complexity of multi-robot asynchronous measurement con-

straints. One intuitive strategy to localize a group of robots is to let each member run

a single-robot VINS algorithm independently. However, additional geometric constraints

(e.g., common feature observations, relative robot-to-robot measurements) can be explored

66

in multi-robot systems to improve the localization performance, if robots communicate with

each other. Then, it holds great potential to design cooperative VINS (C-VINS) algorithms

for multi-robot systems.

Significant research efforts have recently been devoted to visual-inertial navigation

system (VINS) [48], while primarily focusing on improving single-robot VINS accuracy, effi-

ciency, and robustness [93, 103, 36]. The extension to the multi-robot case is not sufficiently

explored as a naive approach would be prohibitively costly and non-realtime. For example,

one could communicate all measurements generated from itself to each other (or fusion cen-

ter), where all measurements could be optimally fused and all states can be refined jointly.

While this does allow for accurate estimation, both the requirement for constant commu-

nication and the joint estimation of robot states requires cubic computational complexity

in terms of the number of robots. As such, a multi-robot distributed estimator is needed to

address these shortcomings by relaxing communication requirements and distributing the

computation cost across all robots.

Efficient 2D CL has focused on the fusion of relative measurements between robots

(e.g., relative robot-to-robot bearing or distance range measurements). Roumeliotis et

al. [109] proposed a decentralized algorithm that achieves performance equivalent to the

centralized formulation, but required communication between all robots and increases in

computational cost due to its centralized nature as the number of robots grow. Other works

such as [76] have investigated the approximation of the robot-to-robot cross-covariances

that are not involved in a relative measurement update to reduce the computational cost,

and while it performs close to its centralized, it is unable to guarantee consistency and

67

thus can easily diverge. More recently, Jung et al. [56] extended this work to the 3D

case, but inherits the same underlying issues and requires maintaining of the approximated

robot-to-robot cross-covariances. There exist other works aiming at estimating the relative

poses between robots using relative measurements [81, 129]. Alternative approaches have

leveraged CI [21, 137] to guarantee consistency and only requires that each robot maintains

its own state and auto-covariance (the correlations between robots are ignored). By contrast,

in our work we specifically take advantage of the CI formulation for 3D multi-robot state

estimation, enabling a consistent distributed algorithm which fuses inertial and visual sparse

environmental feature information.

As compared to CL with relative distance, bearing, or poses between robots

[109, 76, 68, 21, 137, 56, 81, 80, 65, 129], common sparse environmental features are used

in [102, 60, 87, 112], which is appealing as getting relative robot information can be difficult

with visual-inertial sensors in practice and requires both the detection and tracking of other

robots. For example, Melnyk et al. [87] introduced CL-MSCKF using common environ-

mental feature constraints within a centralized formulation that jointly estimated all robot

states. They required that robots communicate all sensor data to a common fusion center

and demonstrated its use for the two robot case in simulation. Karrer et al. [60] developed a

graph-based centralized server which handled non-realtime computationally expensive loop

closure detection and optimization of all robot maps to find the joint global optimal. In this

chapter, we instead focus on the computationally efficient distributed localization problem

where each robot only estimates its own state and tries to leverage information from other

robots without a centralized server or joint optimization.

68

As closest to our work, Sartipi et al. [112] introduced a distributed method for

multi-user AR experiences through the use of multi-map feature constraints. Common

features were detected in environmental maps received from other users and the transmitted

feature position estimates were used to constrain the user’s state directly. Instead of inflating

measurement noise to compensate for the unknown correlations between the current user

and the other user’s map, we leverage CI that theoretically guarantee consistency to handle

the unknown correlations. Also, instead of requiring that all common features must match

to sparse features in the other user’s map, we leverage the other user’s common feature

measurements directly allowing for update with additional measurements.

4.2 Cooperative Visual-Inertial System

In this section, we briefly describe the cooperative visual-inertial system that serves

the basis for the proposed distributed CI-based estimator. The state vector for the i’th

robot contains its current IMU navigation state xIi , sliding window of cloned IMU poses

xCi , spatial-temporal calibration parameters xWi , along with a small temporal map (i.e.,

SLAM features) xMi (see [34, 138]).

xi,k =

[
x⊤
Ii

x⊤
Wi

x⊤
Ci

x⊤
Mi

]⊤
(4.1)

xIi =

[
Ii,k
G q̄⊤ Gp⊤

Ii,k
Gv⊤

Ii,k
b⊤
ωi,k

b⊤
ai,k

]⊤
(4.2)

xWi =

[
CitIi

Ci
Ii
q̄⊤ Cip⊤

Ii
ζ⊤i

]⊤
(4.3)

69

xCi =

[
Ii,k−1

G q̄⊤ Gp⊤
Ii,k−1

· · · Ii,k−c

G q̄⊤ Gp⊤
Ii,k−c

]⊤
(4.4)

xMi =

[
Gp⊤

f1 · · · Gp⊤
fm

]⊤
(4.5)

where
Ii,k
G q̄ is the unit quaternion parameterizing the rotation C(

Ii,k
G q̄) =

Ii,k
G R from the

global frame of reference {G} to the IMU local frame {Ik} at time k for the i’th robot

[119], bωi,k
and bai,k are the gyroscope and accelerometer biases, and GvIi,k and GpIi,k are

the velocity and position of the IMU expressed in the global frame, respectively. The clone

state xC contains c historical IMU poses in a sliding window, while the temporal map state

xM has m features. Each robot additionally calibrates its camera intrinsics ζi, camera-IMU

extrinsics, and camera-IMU temporal offset CitIi [34]. Finally, given a group of n robots,

we have the following combined state and covariance matrix decomposition:

xk =

[
x⊤
1,k · · · x⊤

n,k

]⊤
, Pk =

P11k · · · PN1k

...
. . .

...

P1Nk
· · · PNNk

 (4.6)

Here we note that in the centralized formulation this is the state that we jointly estimate

along with the cross-covariance terms, while in the distributed case each robot only estimates

a sub-set of the total state and correlations between robots are dropped (e.g., robot i only

tracks xi,k and Piik).

4.2.1 Inertial Propagation

The inertial state of the i’th robot xIi is propagated forward using its own IMU

measurements of linear accelerations (ami) and angular velocities (ωmi) based on the fol-

70

lowing generic nonlinear IMU kinematics [23]:

xi,k+1 = f(xi,k,amk
− nak , ωmk

− nωk
) (4.7)

where na and nω are the zero-mean white Gaussian noise of the IMU measurements. We

linearize this nonlinear model at the current estimate for all robots, and can then propagate

the state covariance matrix forward in time:

Pk|k−1 = Φk−1Pk−1|k−1Φ
⊤
k−1 +Qk−1 (4.8)

Φk−1 = Diag (Φ1,k−1, . . . ,ΦN,k−1) (4.9)

Qk−1 = Diag (Q1,k−1, . . . ,QN,k−1) (4.10)

where Φi,k and Qi,k are respectively the system Jacobian and discrete noise covariance for

the i’th robot [93], and Diag(· · ·) creates a block diagonal matrix from the specified values.

In the distributed case, all states can be propagated independently since cross-covariance

are not tracked.

4.2.2 Camera Measurement Update

A corner feature at time-step k can be be written as the distortion of a perspective

projection of a 3D point Ci,kpf , expressed in the i’th robot’s camera frame:

zk = hdist(zk,n, ζi) + nfk (4.11)

zk,n =
1

Ci,kzf

Ci,kxf

Ci,kyf

 (4.12)

Ci,kpf = Ci
Ii
R

Ii,k
G R

(
Gpf − GpIi,k

)
+ CipIi (4.13)

71

where nfk is the zero-mean white Gaussian measurement noise with covariance Rk, and

hdist(·) is the camera distortion function which maps a normalized bearing zk,n to the

raw distorted image plane. The linearization of this measurement model (4.11) yields the

following:

rfk = Hkx̃k + nfk = Hxi,k
x̃Ii +Hfk

Gp̃f + nfk (4.14)

Once the measurement residual and Jacobian are computed the state and error covariance

can be updated using the standard EKF update equations [85].

4.3 Distributed Visual-Inertial CL

As it is known that the standard EKF in the worst case has cubic computation

complexity due to its covariance update, a naive implementation of the multi-robot visual-

inertial CL can become prohibitively expensive as the number of robots grow in size. Note

also that due to communication constraints, the robots might not be able to communicate

with all the other robots or a common fusion center. To address these issues, the key idea

of our CL approach is to leverage CI [55] to reduce the estimation cost, by only updating

the state and error covariance of the current robot (i.e., robot i only updates xi,k and Piik)

while ensuring consistency.

In particular, each robot independently propagates its own state and updates with

measurements that are only a function of its own state. When updating with measurements

of features observed from multiple robots, CI is employed to consistently handle the un-

known and untracked cross-covariance terms between the involved robots. This means that

robots need to communicate their state and covariance, along with visual feature informa-

72

tion to the other robots. Each robot tracks a set of visual features using KLT optical flow

[74], and communicates its latest tracks and extracted ORB descriptors [111] to the other

robots in communication range. A robot then performs descriptor-based feature matching

and loop-closure detection to find correspondences between its most recent features and

other robots’ feature tracks. After tracking and matching, feature tracks are categorized as

follows:

(A) VIO features which have only been tracked for a short period of time.

(B) Temporal SLAM features which have been tracked beyond the current sliding window.

(C) Common VIO features which have been matched to features in another robot and

tracked for only a short period of time.

(D) Common SLAM features which have been matched to features in another robot. Note

that this feature might be either a VIO or SLAM feature in the other robot.

In the following, we present in detail how we update our state with these different feature

variants. Note that for the centralized case independent features update the full state and

covariance since cross-covariances are tracked, while in the distributed case only the i’th

robot state and covariance is updated thus allowing for computational savings.

4.3.1 Independent VIO Feature: MSCKF Update

For VIO features that have lost active track in the current window, we perform

MSCKF update [93]. In particular, we first triangulate these features for computing the

feature Jacobians Hfk , and then project rfk [see (4.14)] onto the left nullspace of Hfk (i.e.,

73

Q⊤
2 Hfk = 0) to yield the measurement noise independent of state:

Q⊤
2 rfk = Q⊤

2 Hxi,k
x̃i,k +Q⊤

2 Hfk
Gp̃f +Q⊤

2 nfk (4.15)

⇒ r′fk = H′
xx̃k + n′

fk
(4.16)

where Hxi,k
is the stacked measurement Jacobians with respect to the navigation states in

the current robot’s window.

4.3.2 Independent SLAM Feature: FEJ-EKF Update

SLAM features which a robot is able to reliably track longer then its sliding window

in length, will be initialized into the SLAMmap state vector xMi . These features are directly

updated using the linearized system (4.14) and will remain in the state until they have lost

tracking. To improve consistency, we employ First Estimate Jacobians (FEJ) [51] ensuring

Jacobians are evaluated at the same linearization points to prevent spurious information

gain.

4.3.3 Common VIO Feature: CI-EKF Update

Consider we find a feature which has been seen from multiple robots and want to

use this information to update the state. In the centralized case, we would directly update

our state with all available measurements (4.14) through the standard EKF since we track

the cross-covariance (e.g., PiNk
). In the distributed case, a robot only tracks its own state

and autocovariance to ensure computational efficiency and scalability with respect to the

robot team size. This presents two key challenges: (i) how to efficiently and consistently fuse

multiple robots’ autocovariances, and (ii) how to find the data association between different

74

features, which motivates us to leverage CI to fuse estimates and covariances transmitted

from other robots.

CI-EKF Update

Consider the i’th robot has a measurement which is a function of L other robot

states. The linearized measurement model can be computed as:

rfk = Hxi,k
x̃i,k +Hx1..L,k

x̃1..L,k +Hfk
Gp̃f + nfk (4.17)

where Hxi,k
is the Jacobian in respect to the i’th robot state using the k’th estimates,

and Hx1..L,k
is the stacked Jacobian with respect to all other robots the measurement is a

function of. To guarantee consistency when updating with this measurement, we adopt the

CI-EKF update [55] to construct a prior covariance such that:

Diag

(
1

ωi
Piik ,

1

ω1
P11k , · · · ,

1

ωL
PLLk

)
≥ Pk (4.18)

where the left side is the CI covariance with zero off-diagonal elements and the right hand

side is the unknown true covariance of the state with cross-covariances [see (4.6)]. The

weights ωl > 0 and
∑

l ωl = 1, for l ∈ {i, 1..L}, can be found optimally [55]. Substituting

(4.18) into the standard EKF equations and only selecting the portion that updates the

current robot’s state (say robot i) yields:

δxi,k =
1

ωi
Pii,k|k−1H

⊤
xi,k

S−1
k r′fk (4.19)

Pii,k|k =
1

ωi
Pii,k|k−1−

1

ω2
i

Pii,k|k−1H
⊤
xi,k

S−1
k Hxi,k

Pii,k|k−1 (4.20)

Sk =
∑

o∈{i,1..L}

1

ωo
Hxo,k

Poo,k|k−1H
⊤
xo,k

+Rfk (4.21)

where δxi,k is the correction to the state estimate x̂i,k.

75

Efficient Nullspace Projection

To process common features which are short in length, we leverage the similar logic

as in Sec. 4.3.1. For example, we have multiple measurements from two different robots

and wish to update our state:

rfi,k
rf2,k

 =

Hxi,k
0 Hfi,k

0 Hx2,k
Hf2,k

x̃Ii

x̃I2

Gp̃f

+

nfi,k

nf2,k

 (4.22)

We can then project both equations onto their left range and nullspace (e.g., Hfi,k =

[Qi,1 Qi,2][Ui 0]
⊤):

r1fi,k

r2fi,k

r1f2,k

r2f2,k

=

Q⊤
i,1Hxi,k

0 Ui

Q⊤
i,2Hxi,k

0 0

0 Q⊤
2,1Hx2,k

U2

0 Q⊤
2,2Hx2,k

0

x̃Ii

x̃I2

Gp̃f

+

n1
fi,k

n2
fi,k

n1
f2,k

n2
f2,k

where we have defined that r1fi,k = Q⊤

i,1rfi,k and n1
fi,k

= Q⊤
i,1nfi,k . Note that the last row

is no longer dependent on the current robot’s state, xIi , and thus, this can be discarded

since it will not update the state or covariance due to the lack of tracked cross-covariances.

This directly reduces the number of measurements involved during update and makes the

computation of S−1
k substantially cheaper [see (4.21)]. We then have the following linear

76

systems:

r1fi,k
r1f2,k

 =

Q⊤
i,1Hxi,k

0 Ui

0 Q⊤
2,1Hx2,k

U2

x̃Ii

x̃I2

Gp̃f

+

n1
fi,k

n1
f2,k

r2fi,k = Q⊤
i,2Hxi,k

x̃Ii + n2
fi,k

(4.23)

A second nullspace projection onto the left nullspace of Hf = [Ui U2]
⊤ is performed to

create a linear system which is only a function of the xIi and xI2 states. The CI-EKF update

[see (4.19) and (4.20)] is then used to update the state xIi . The second equation [see (4.23)]

can update the current robot state without CI through the standard EKF equations since it

is only a function of the current robot state. This update contains the same information as

in the case that we performed a “large” nullspace projection using the full feature Jacobians

in (4.22), but results in a much smaller measurement size since we can drop measurement

residuals which are not a function of the i’th robot’s state.

4.3.4 Common SLAM Feature: CI-EKF Update

There are two different cases for temporal SLAM features: (i) a SLAM feature in

the current robot state matches to a feature that is not a SLAM feature in another robot, and

(ii) a SLAM feature matches to another robot’s SLAM feature. For example as in Fig. 4.1,

in the first case we collect the measurements from the other robot (z1..N) and directly apply

(4.17) and update both the current robot’s poses and its estimate of the SLAM feature.

In the second case, we can either follow this same logic (i.e., grab the measurements from

the other robot and update current robot’s estimate) or we can leverage the knowledge

77

that the 3D position of these two features should be equal. This SLAM feature constraint

model is similar to the one introduced in [39] for cooperative mapping. Consider we have

the following two robots:

xi,k =

[
x⊤
Ii

x⊤
Wi

x⊤
Ci

Gp⊤
fa

]⊤
(4.24)

x2,k =

[
x⊤
I2

x⊤
W2

x⊤
C2

Gp⊤
fb

]⊤
(4.25)

If we have matched feature Gpfa in the current i’th robot to the Gpfb in the other robot,

then we can construct the following feature constraint (see Fig. 4.1):

Gpfa − Gpfb = 0 ⇒ rc (xi,k,x2,k) = 0 (4.26)

which can be linearized to yield:

rc (x̂i,k, x̂2,k) +Hfa
Gp̃fa +Hfb

Gp̃fb ≈ 0 (4.27)

⇒0− rc (x̂i,k, x̂2,k) ≈ Hfa
Gp̃fa +Hfb

Gp̃fb (4.28)

This linearized system can then update the i’th robot state estimate using the CI-EKF

update [see (4.19) and (4.20)]. Note that this is a very efficient update, as it is only a

function of the two estimated feature positions.

4.3.5 Historical Features: CI-EKF Update

We now explain how to leverage loop-closure constraints to previous robot states.

First, to find the feature correspondences between robots, as in [33, 36], each robot create

DBoW2 [32] databases for all other robots. When a robot receives feature tracks and

descriptors from other robots they are appended to their corresponding DBoW2 database.

78

{Ci,21}
{Ci,20}

pfa
pfb

{C2,N}

z1

zN

{C2,1} · · ·

Figure 4.1: Illustration of the keyframe-aided 2D-to-2D matching for data association.
Assuming robot i’s 21st frame {Ci,21} matches to the 2nd robot’s N ’th frame {C2,N}.
We are able to find all feature correspondences between the features the robot’s observer,
namely z1..N .

The current image can then be queried against the other robots’ databases to see if any other

robots are or have been at the current location. If a loop-closure is detected and verified

using a fundamental matrix geometric check, then we assume that we have detected that

another robot has been at our current location. After matching descriptors, we know the

correspondences between a feature in the current robot, and that of the features in the

other robot (see Fig. 4.1). We can then grab the history of measurements and formulate a

common feature update.

To incorporate these measurements from historical states, each robot records the

measurement and previous states received from the other agents.1 Outside of the most

recent sliding window, these historical states can provide loop-closure information if we

are able to generate measurement constraints to them. Specifically we store the following

historical states and covariances in addition to their most recent states published:

xi = {xi,0, · · · ,xi,k−1} , Pi =
{
Pii0 , · · · ,Piik−1

}
(4.29)

Since each one of these historical states contain a sliding window of poses and SLAM

1In the future, we plan to investigate the latency introduced due to communication constraints, but
historical matching ensures that the robot will leverage all available information at the current time including
delayed information recently communicated.

79

features, we only store non-overlapping sliding windows. To accelerate lookup we only

store historical descriptor information at a fixed rate (normally 1Hz) since recent frames in

the same sliding window contain redundant loop-closure information. More ideal heuristic

could be leveraged here to increase match rates. Once loop-closure is detected, we know

old historical feature correspondences which we can then use to retrieve measurements and

update our current robot state. This update is identical to the CI-EKF update as in Sec.

4.3.3–4.3.4, which only needs to involve the historical windows that contain the historical

measurements, and thus is efficient since historical states are not updated.

4.4 Simulations

To validate the proposed method, we have simulated two realistic scenarios both

with three robots (see Fig. 4.2). The first is a hand-held mobile AR dataset which has a

series of users look and move around a central table, while the second is a series of tra-

jectories from the ETH EuRoC MAV dataset [19]. We employ the OpenVINS simulator

[33] to generate realistic visual-bearing and inertial measurements from these supplied tra-

jectories. On average each robot is able to find common features on, respectively, 79.0%

and 83.5% (43.7% and 62.7%) of the frames without or with loop-closure in AR datasets

(ETH dataset). This clearly shows that advantage of historical loop-closure on datasets

which have limited temporal view overlaps between robots. Simulation parameters used

are documented in Tab. 4.1. We fix the weight of other robots’ covariance in the CI-EKF

update as ωo = 0.001. While for the constraint measurement update presented in Sec. 4.3.4,

we use the value ωo = 0.005 and a synthetic measurement noise of 2cm. Note that while

80

these weights can be found by minimizing the trace or determinant of Pii,k|k [55], we have

empirically found that using fixed weights still ensures consistent performance. For fair and

thorough comparison, we define the following variations of the centralized and proposed

distributed CL estimators:

indp – No common features are found between robots and all measurements are

processed as independent features which only relate to the current robot.

indp-slam – Same as indp, but temporal SLAM features are included in each robot

to show the relative improvement.

ce-cmsckf – The centralized estimator using the common VIO features over the

sliding window.

ce-cmsckf-cslam – The centralized estimator using the common VIO and SLAM

features over the sliding window.

dc-cmsckf [138] – The distributed estimator using the common VIO features over

the sliding window.

dc-cmsckf-cslam – The distributed estimator using the common VIO and SLAM

features over the sliding window without enforcing the same feature constraint. For

example, even if a common SLAM feature is a SLAM feature in another robot’s state,

we grab the measurements from the other robot and update as the first case in Sec.

4.3.4.

dc-full-window – The distributed estimator using the common VIO and SLAM

features over the sliding window with enforcing the same feature constraint.

81

dc-full-history – The distributed estimator using both the common VIO and SLAM

features over the sliding window and from historical matching.

Note that the observed independent VIO features and SLAM features are used in all these

estimators. To ensure a fair comparison, the same parameters reported in Tab. 4.1 are used

for all algorithms and for all robots.

Table 4.1: Simulation parameters and prior standard deviations that perturbations of mea-
surements and initial states were drawn from.

Parameter Value Parameter Value

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05

Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3

Pixel Proj. (px) 1 Robot Num. 3

IMU Freq. (hz) 400 Cam Freq. (hz) 10

AR Avg. Feats 25 AR Num. SLAM 3

ETH Avg. Feats 50 ETH Num. SLAM 5

Num. Clones 11 Feat. Rep. GLOBAL

Figure 4.2: Simulated trajectories, axes are in units of meters. General hand-held AR
dataset (left) are 147, 93, and 100 meters long, while ETH EuRoC MAV Vicon room
datasets (right) are 70, 58, and 59 meters long for each robot. Green square denotes the
start and red diamond denotes the end.

82

Table 4.2: ATE on simulated AR datasets in degrees / meters for each algorithm variation.
Green denotes the best, while blue is second best.

Algorithm Robot 0 Robot 1 Robot 2 Average

indp 1.957 / 0.072 0.811 / 0.041 0.742 / 0.039 1.170 / 0.051

indp-slam 1.396 / 0.046 0.602 / 0.029 0.557 / 0.022 0.852 / 0.032

ce-cmsckf 0.364 / 0.017 0.323 / 0.015 0.355 / 0.015 0.347 / 0.016

ce-cmsckf-cslam 0.232 / 0.011 0.228 / 0.011 0.220 / 0.010 0.227 / 0.011

dc-cmsckf 0.759 / 0.029 0.540 / 0.025 0.553 / 0.020 0.617 / 0.025

dc-cmsckf-cslam 0.643 / 0.025 0.496 / 0.022 0.478 / 0.017 0.539 / 0.022

dc-full-window 0.644 / 0.024 0.547 / 0.022 0.480 / 0.017 0.557 / 0.021

dc-full-history 0.356 / 0.017 0.299 / 0.014 0.319 / 0.013 0.325 / 0.014

Table 4.3: ATE on simulated ETH datasets in degrees / meters for each algorithm variation.
Green denotes the best, while blue is second best.

Algorithm Robot 0 Robot 1 Robot 2 Average

indp 0.569 / 0.088 0.578 / 0.092 0.560 / 0.093 0.569 / 0.091

indp-slam 0.371 / 0.070 0.406 / 0.069 0.444 / 0.075 0.407 / 0.071

ce-cmsckf 0.221 / 0.052 0.221 / 0.049 0.221 / 0.051 0.221 / 0.050

ce-cmsckf-cslam 0.151 / 0.042 0.143 / 0.038 0.144 / 0.040 0.146 / 0.040

dc-cmsckf 0.329 / 0.064 0.342 / 0.061 0.319 / 0.062 0.330 / 0.062

dc-cmsckf-cslam 0.298 / 0.054 0.325 / 0.050 0.290 / 0.052 0.304 / 0.052

dc-full-window 0.285 / 0.052 0.287 / 0.047 0.268 / 0.047 0.280 / 0.049
dc-full-history 0.211 / 0.029 0.207 / 0.031 0.218 / 0.030 0.212 / 0.030

4.4.1 Accuracy and Consistency Evaluation

We performed 20 Monte Carlo simulations on each dataset. The average Absolute

Trajectory Error (ATE) [132] can be found in Tab. 4.2 and 4.3. It is clear from the top

two rows that the additional SLAM features improve indp. In the cooperative case, when

using the common VIO features, both ce-msckf and dc-msckf outperform the indp-slam,

and when including common SLAM features, the accuracy is further improved. It is worth

noting that the efficient dc-full-window with feature constraint has close accuracy to its

83

Figure 4.3: Robot 0’s average RMSE (left) and NEES (right) results in the simulated AR
(top) and ETH datasets (bottom). Cyan represents indp, magenta represents indp-slam,
red represents dc-msckf, blue represents dc-cmsckf-cslam, green represents dc-full-window
and green represent dc-full-history. Please refer to the color figure.
counterpart dc-cmsckf-cslam. Moreover, when including the historical common features,

the distributed estimator becomes more accurate as expected. Interestingly, with only

the common features over the sliding window, the ce-cmsckf-cslam can achieve the best

performance on the AR dataset even without loop-closure. This is likely due to the fact

that over the whole dataset all robots look in the same general location thus negating any

benefit of loop-closure detection. As show in Tab. 4.3 and in the following real-world

84

Figure 4.4: Sequential propagation and update time (ms). Note that while decentralized
can update in parallel, here we report its sequential timings.

experiments, when robots do not have many overlapping views, the historical information

plays an important role.

We additionally show the average Root Mean Square Error (RMSE) [132] and

Normalized Estimation Error Squared (NEES) [9] of the distributed algorithms for Robot

0 in Fig. 4.3. The results for the other two robots are similar and are omitted here for

space. The indp has the largest drift that can be reduced as shown by indp-slam and

leveraging common features. The dc-cmsckf-cslam and dc-full-window have almost the

same performance while the dc-full-history achieves the best accuracy. It is clear that

all the distributed algorithms are conservative in nature (NEES is smaller than three) and

have smaller NEES than the centralized ones.

4.4.2 Timing Analysis

Multiple Robots

We now investigate the computational efficiency of the proposed work in compar-

ison to the centralized estimator using only common features over the sliding window. We

compare the timing results of dc-full-window and ce-cmsckf-cslam while processing the

85

Table 4.4: Timing for AR dataset. Millisecond mean and deviation.

Algorithm Proposed Combined

MSCKF update (window) 1.20 ± 0.94 2.88 ± 3.90

MSCKF update (hist) 4.11 ± 5.52 22.75 ± 159.65

Algorithm Constraint No Constraint

SLAM update (window) 0.10 ± 0.03 0.15 ± 0.16

SLAM update (hist) 0.17 ± 0.06 27.11 ± 160.95

same amount of measurements. We first investigate the performance as more robots are

added to show the efficiency gains from the distributed formulation. The results in Fig.

4.4 show that as more robots are added, the centralized estimator quickly becomes compu-

tationally expensive while the distributed one is able to remain efficient since each robot

only needs to propagate and update its own state and auto-covariance. Additionally, if one

robot does not find common features in a given frame, the robot can update the estimator

independently in the distributed case. On the contrary, the centralized estimator needs

to collected all data, propagate, and update the whole state even if there are no common

features. The distributed algorithm does have a slight increase in cost, which is due to the

increase of common measurements from the additional robots.

Common VIO Features

We next investigate the efficiency of the common VIO feature nullspace projection

and subsequent CI-EKF update introduced in Sec. 4.3.3. We report the update time

for dc-full-window (window) and dc-full-history (history) without common SLAM

features. The results presented in Tab. 4.4 show that if we use the proposed method

to first perform nullspace projection and separate each robot’s systems into two systems

86

(Proposed) we are able to outperform the naive way of performing nullspace projection on

a “stacked” Jacobian containing all robot feature Jacobians (Combined). It is clear that in

both algorithms, the proposed method is able to have less computational cost, especially

in the historical case due to the proposed system reducing the number of measurements in

the update. We also note that there is a high level of variance in the historical case due to

loop-closure introducing large amounts of measurements in short intervals.

SLAM Constraint Update

Now we investigate the efficiency of the common SLAM feature update introduced

in Sec. 4.3.4. Only common SLAM features that can be matched to another robot’s SLAM

feature are used to ensure that both variants have the same number of measurements in

the update. When we match features in the current window, the constraint update (Con-

straint) is slight more efficient than the naive way of grabbing all the measurements from

the other robots (No Constraint) since all robots only have the most recent measurements

(in most cases just one). During historical SLAM matching, by definition SLAM features

are long feature tracks, and thus many measurements and clones states are associated with

a historical SLAM feature. This means that after loop-closure in the naive case (No Con-

straint) we will process all measurements ever recorded for a SLAM feature which can easily

reach many sliding windows in length. If instead we use the constraint update, only the

two feature positions are involved, thus the update is extremely efficient in nature (bottom

Tab. 4.4).

87

Figure 4.5: TUM-VI groundtruth (left) and Vicon room groundtruth trajectories (right)
TUM-VI trajectories are 146, 131, and 134 meters long, while the Vicon room datasets are
507, 509, and 501 meters long.

4.5 Experiments

We have also evaluated the proposed distributed CL estimators on the TUM-VI

dataset [113] and a hand collected 10 minute long Vicon room dataset (see Fig. 4.5).2 Both

datasets provide monochrome stereo images at 20Hz and IMU readings at 200Hz. We only

leverage the left camera and initialize all robots based on the groundtruth orientation and

position with zero velocity. The specific datasets we run on for the TUM-VI are the room1,

room3, and room5. For the Vicon room dataset, the groundtruth has been generated using

the vicon2gt utility [35]. The shorter TUM-VI dataset has more time periods where multiple

robots are looking at the same environmental location (26.7% and 41.8% of the frames

detected common features without and with loop-closure), thus provides a good insight

into an expected performance in a multi-user AR case where many users are observing the

same environment at the same time. On the other hand, the Vicon room dataset has near-

zero time periods where we are able to detect common features between robots by matching

the most recent features. Thus, we use the Vicon room dataset to show the accuracy gain

2A video demo https://youtu.be/boHBcVoMKk8

88

https://youtu.be/boHBcVoMKk8

Table 4.5: Relative pose error (RPE) on TUM-VI datasets in degrees / meters averaged
over all robots for the dataset.

Algorithm 40m 60m 80m 100m 120m

indp-slam 1.818 / 0.093 2.833 / 0.126 2.604 / 0.154 2.774 / 0.185 2.716 / 0.215

ce-cmsckf 1.358 / 0.071 1.321 / 0.091 1.357 / 0.108 0.843 / 0.128 0.932 / 0.140

ce-cmsckf-cslam 1.758 / 0.069 1.350 /0.079 1.027 / 0.100 0.718 / 0.119 0.938 / 0.130

dc-cmsckf 1.662 / 0.075 2.005 / 0.104 1.605 / 0.129 1.142 / 0.141 1.531 / 0.170

dc-cmsckf-cslam 1.800 / 0.080 2.642 / 0.093 2.233 / 0.106 1.544 / 0.114 0.934 / 0.157

dc-full-window 1.768 / 0.075 2.218 / 0.091 1.788 / 0.109 1.257 / 0.123 0.854 / 0.159

dc-full-history 1.213 / 0.067 1.232 / 0.061 1.029 / 0.065 1.004 / 0.068 0.784 / 0.072

Table 4.6: Relative pose error (RPE) on Vicon room dataset in degrees / meters averaged
over all robots.

Algorithm 80m 100m 200m 300m 420m

indp-slam 2.022 / 0.276 2.416 / 0.334 3.872 / 0.613 5.222 / 0.870 8.045 / 1.189

ce-cmsckf-cslam 2.180 / 0.288 2.603 / 0.333 2.771 / 0.548 3.050 / 0.770 3.557 / 1.044

dc-full-window 2.197 / 0.281 2.340 / 0.332 3.322 / 0.580 3.670 / 0.804 5.977 / 1.102

dc-full-history 1.271 / 0.145 1.307 / 0.151 1.346 / 0.158 1.267 / 0.157 1.343 / 0.160

from leveraging historical loop-closure information by matching to historical states (28.8%

of the frames detected common loop-closure features).

4.5.1 TUM-VI Dataset

We use a sliding window of 11, a max of 5 SLAM features, max 30 VIO features

per update, 300 active tracks, and perform online calibration of all parameters. For the

historical method, we insert keyframes into our database at 5Hz and detect and match to

historical keyframes at each timestep. We used a static weight of ωi = 0.99 and distribute

the remaining weight to all other robot covariances used in the CI-EKF update, and for

constraint measurement updates [see Eq. (4.28)], we used a value of ωi = 0.995 and injected

a synthetic measurement noise of 2cm to relax the hard constraint.

The Relative Pose Error (RPE) [132] results are shown in Tab. 4.5 solidify the

performance gains due to leveraging common features from other robot agents. The inde-

89

pendent methods which leverage only independent VIO and SLAM feature updates have

about three times the error compared to the distributed method which leverages loop-

closure information. Additionally, we can see that all variations which leverage common

features are able to reduce errors due to the additional information. It is also important to

note that even though the distributed variants do not track the cross-covariances between

robotic states, the use of CI allows the accuracy to be near the same level as that of the

centralized algorithm, and in the case where we leverage historical information (which the

centralized algorithm is unable to do), we can slightly outperform for longer trajectory

length. The dc-full-history method, which leverages loop-closure information, has a rel-

atively constant error as the trajectory lengths increase as expected (showing its drift-free

nature).

4.5.2 Vicon Room Dataset

We now present results on the longer hand-held, approximately 500 meter and 10

minute trajectory. We use a sliding window of 11, a max of 20 SLAM features, max 30 VIO

features per update, 200 active tracks, and perform online calibration of all parameters.

The RPE results for different segment lengths can be found in Tab. 4.6 and give the same

conclusion as the previous TUM-VI dataset. It is also important to note that there is very

similar performance of the indp-slam and ce-cmsckf-cslammethods (and their distributed

equivalents). This is expected as there are no time periods in any of the robotic trajectories

where robots are looking at the same location at the same time. Compared to these cases, we

have huge accuracy gains due to the inclusion of common feature measurement constraints

90

-6 -4 -2 0 2 4 6

-4

-3

-2

-1

0

1

2

3

4

y
-a

x
is

 (
m

)

-6 -4 -2 0 2 4 6

x-axis (m)

0
0.5

1
1.5

z-
ax

is
 (

m
)

groundtruth

dc-indp-slam

dc-full-history

Figure 4.6: Trajectory of groundtruth, independent, and distributed historical trajectory
for Robot 0 in the Vicon room dataset. It can be seen that the use of common historical
features limit drift in the z-axis along with improvements in x-y accuracy. Please refer to
the color figure.

in the historical case, with halved orientation errors and a quarter of the position error at

long trajectory lengths. We also plot the groundtruth, indp-slam, and dc-full-history

Robot 0 trajectories in Fig. 4.6, which reinforces that by leveraging historical information

we are able to prevent inherent drift in the loop-closure-free case.

91

4.6 Conclusions

In this chapter, we have presented a distributed visual-inertial cooperative CL

estimator that efficiently fuses constraints between robots and leverages temporal SLAM and

loop-closure information. We have introduced two different ways to incorporate temporal

SLAM features: (i) directly update using the other robot’s measurements, and (ii) if both

robots are estimating the SLAM feature, a constraint between the two feature positions

is leveraged. We have adapted CI to ensure consistent fusion of loop-closure constraints

to other agent’s historical poses and SLAM features whose cross-correlations are unknown.

Extensive simulation and real-world evaluations have demonstrated the performance of the

proposed method in realistic scenarios and showed impressive accuracy gains over the single

robot case.

92

Chapter 5

Distributed Joint Visual-Inertial

Localization and Target Tracking

5.1 Introduction

Tracking the 6-DoF poses of moving objects in a 3-D environment is a key com-

ponent in many applications such as area surveillance, region monitoring, rescue and au-

tonomous driving. When mobile robot networks are employed to track the moving objects,

a larger area can be covered and more observations to the objects can be obtained. Further,

each robot in the networks are allowed to have only occasional observations of the objects,

which makes the tracking system more robust in complex environments where obstacles

might block some robots’ views to the objects. To achieve successful tracking, the robots

need to have good knowledge of their own poses. However, absolute measurements (e.g.,

GPS or motion-capture system) might not be available in many scenarios. In such scenarios,

93

the cheap, lightweight sensor suite of a monocular camera and an IMU is a popular choice

for motion estimation. Moreover, in multi-robot applications, it is usually assumed that a

common global frame encoding all the robots’ states is available. Additionally, distributed

algorithms outperform centralized ones in multi-robot applications due to the strengths in

scalability, processing and communication efficiency, and robustness. As such, we are in-

terested in simultaneously estimating both the robots’ poses and the object’s state locally

with only the monocular visual-inertial sensor fixed on each robot in a distributed matter.

The objective of our visual-inertial navigation systems (VINS) is to achieve multi-

robot localization rather than cooperative mapping [38, 40]. The single robot VINS problem

has been studied extensively in recent years [93, 69, 104, 94, 28]. Among the proposed algo-

rithms, filtering-based approaches remain the most popular for resource-constrained plat-

forms. One of the most favorable filtering solutions is the multi-state constraint Kalman

filter (MSCKF) [93] based VIO which is efficient yet accurate for real-time motion estima-

tion. This approach only includes a constant-size sliding window of IMU poses in the state

vector without storing the features. The MSCKF is extended to solve the multi-robot local-

ization problem in [88] where the state vector includes a sliding window of every robot’s IMU

poses. Common environmental features observed over a sliding-window time horizon are

used to add extra constraints. Recently, cooperative VINS is studied in [82, 83] where they

rely on robot-to-robot camera measurements. But the same as [88], it inherits the drawback

of VIO that the estimator exhibits long-term navigation drifts. In contrast, visual-inertial

SLAM (VI-SLAM) [69, 94, 104] enables “loop closure” to provide bounded navigation errors

by building a map of surroundings. However, cooperative VI-SLAM where each robot runs

94

VI-SLAM and shares the local maps and states requires expensive communication, storage

and computational cost. An extra server is used in [61] to handle computationally expensive

and non-time-critical tasks. It is worth noting that the above mentioned multi-robot VINS

algorithms are all centralized and running in a known common global frame.

Single robot VINS algorithms have been extended to concurrently estimate a mov-

ing object’s state in recent works [25, 106, 105, 27]. Ref. [25] addresses the problem of

tracking a moving target using a quadrotor in cluttered environments. The quadrotor’s

state is estimated using a VI-SLAM algorithm and the target’s trajectory is recovered using

polynomial fitting with relative observations of the target’s position provided by a camera.

In [106], a monocular VINS is built to track the 6-DoF pose of the target. Camera poses are

estimated with VINS [105], while the object’s state is obtained by the combination of an

object region-based bundle adjustment (BA) and metric scale estimation. A tightly-coupled

estimator for visual-inertial localization and target tracking is proposed in [27] where the

MSCKF is generalized to incorporate tracking of a 3D object. The target object is repre-

sented as a rigid body built from features and three motion models are proposed to capture

the target’s actual motion. However, the above mentioned single robot tracking requires

continuous observation of the whole or partial target body. Multiple cameras are used in

[110] and [120] where [110] jointly estimates the 6-DoF trajectory of a flying object and

the cameras’ poses while [120] propose a spatio-temporal BA to jointly estimate the 3-D

trajectories of dynamic points and camera intrinsics and extrinsics. Both [110] and [120]

are limited by the centralized approaches, the use of static cameras and the assumption of

known motion dynamics of the target. Distributed Kalman filters (DKF) have been used to

95

track targets over sensor networks [97, 57, 14, 45] in 2-D scenarios. However, the proposed

DKF are not suitable for the quaternion-based 3-D motion tracking, as quaternions are not

valid vector quantities.

There exist several approaches for solving the problem of multi-robot joint local-

ization and target tracking (JLATT) in a centralized way [49, 1, 90] or distributed way [135].

Theses algorithms share the following common limitations: (1) Only address the problem in

2-D setting, which limits their applications in many real-world scenarios which require 3-D

motion. (2) The target is represented as a point particle. But vision algorithms can yield

many features on the target object, which means a great amount of useful information is

discarded. (3) The actual target motion model is assumed known to the robots implicitly,

as they either directly simulate the target motion using the model adopted in the estimator

design or use the proprioceptive sensor on the target for prediction in the experiments. As

a result, the performance is not fully tested when there exists model mismatch. (4) They

implicitly assume that the absolute measurements are available for setting a common global

frame for all the robots.

The above observations motivate us to study the 3-D multi-robot JLATT problem

with the minimal sensor suite (monocular visual-inertial sensor) mounted on each robot.

As shown in Fig. 5.1, a robot network is employed to track the 6-DoF motion of a target

object whose actual motion model is unknown. Each robot’s own pose is also unknown

and the robots perform motion estimation locally. Without loss of generality, we let each

robot’s gravity-aligned global frame have the same origin as each robot’s initial IMU frame.

96

Figure 5.1: Four Firefly drones equipped with visual-inertial sensors track a Pelican drone
in a corridor: (a) 3D trajectories for robot 1 (red), robot 2 (green), robot 3 (blue), robot
4 (yellow) and the target (black). The corresponding squares denote the trajectory starts ;
(b) Gazebo environment [64].

5.2 Preliminaries

5.2.1 Notations and Definitions

Let the quantity x represent the true value, x̂ denote the estimated value and δx

be the corresponding error. The superscript l/j associated with x̂ refers to the estimator of

x at timestep l, after processing all the measurements up to timestep j. We use both the

rotation matrix R and the unit quaternion q̄ [18] to represent a rotation. We denote Gi, Ii

and Ci, respectively, as the global frame, the IMU frame and the camera frame of robot i.

T represents the target’s body frame. Further, Ii,k, Ci,k and Tk represent the corresponding

frames at timestep k. Ii
Gi
R and Ii

Gi
q̄ describe the same rotation from Gi to Ii.

GivIi and
GipIi

are the velocity and position of Ii expressed in Gi.
Gipfi and

Cipfi are, respectively, feature

i’s position in Gi and Ci. {Ci
Ii
R,Ci pIi} is the set of camera-IMU extrinsic parameters. We

here assume both the extrinsic and intrinsic parameters of each camera are known via prior

calibration [30]. For the orientation error, we use the minimal 3-dimensional representation

97

GiδθIi [72] which is encoded in Gi. For all the other quantities, δx is defined as the standard

additive error δx = x − x̂ (e.g., GiδpIi = GipIi − GipIi). For a vector x = [x y z]T, the

perspective projection function is defined as Π(x) = 1
z [x y]T.

5.2.2 Communication Graph

Consider a network of M robots, we define a directed communication graph Gk =

(V, Ek), where V is the robot set defined as V = {R1, . . . , RM} and the edge set Ek (Ek ⊆

V × V) stands for the communication links between robots at time k. We assume that

self edge (i, i) ∈ Ek, ∀i ∈ V, exists in the communication graph. If there exists an edge

(j, i) ∈ Ek, where j ̸= i, which means that robot i can receive information from robot j,

then robot j is a communicating neighbor of robot i. The communicating neighbor set of

robot i at time k can be defined as N k
i = {i|(l, i) ∈ Ek, l ∈ V}. A directed path is a sequence

of edges in a directed graph of the form (i0, i1), (i1, i2), . . ., where ij ∈ V.

5.3 Multi-Robot VINS

In this section, we present the proposed multi-robot VINS framework where one

of the robots labeled as robot 1 runs the extended Kalman filter (EKF) based VI-SLAM.

Consider the fact that when a group of robots is employed to achieve a task, they usually

explore the same area. Then certain features detected by robot 1 will be detected by

another robot j (j ∈ V, j ̸= 1). So we can leverage the prior information about those

common environmental features from robot 1 to improve the estimation performance of

robot j. For robot j, the received prior map will be tightly fused into the MSCKF VIO to

98

bound the long-term navigation drifts while maintaining the computational efficiency.

5.3.1 IMU State

For any robot i (i ∈ V), the IMU state represented in Gi is described by

xIi =
[
Ii
Gi
q̄T bT

ωi

GivT
Ii bT

ai
GipT

Ii

]T
,

where bωi and bai are the gyroscope and accelerometer biases. These biases are modeled

as a Gaussian random walk process. The corresponding IMU error state is defined as

δxIi =
[
GiδθT

Ii b̃T
ωi

GiδvT
Ii b̃T

ai
GiδpT

Ii

]T
.

With the IMU dynamics [24], each robot can perform the EKF propagation to evolve the

current IMU state and the covairance matrix according to [72].

5.3.2 Update Strategy for Robot 1

Localization State Vector

At the imaging timestep k, the localization state for robot 1 is given by

xk
R1

=
[
xk
I1 xk

C1
xS

]T
,

xk
C1

=
[
I1,k
G1

q̄T G1pT
I1,k

· · · I1,k−m

G1
q̄T G1pT

I1,k−m

]T
,

xS =
[
G1pT

f1 · · · G1pT
fn

]T
,

where xk
I1

is robot 1’s IMU state at timestep k, xk
C1

is a sliding window of m cloned

historical IMU poses of robot 1, and xS contains n SLAM features’ positions in G1. We

refer xr1 = [xT
I1

xT
C1
]T as the robot state. The error states of xk

C1
and xS take the following

99

form

δxk
C1

=
[
G1δθT

I1,k
G1δpT

I1,k
· · · G1δθT

I1,k−m

G1δpT
I1,k−m

]T
,

δxS =
[
G1δpT

f1 · · · G1δpT
fn

]T
.

Localization State Update

Static environmental features are captured by robot 1’s onboard camera. The

measurements corresponding to the same tracked feature fi are collected over the sliding

window. Each measurement is associated with the corresponding cloned pose and the

feature’s position. The measurement of fi at timestep k is given by

zkR1
= Π(C1,kpfi) + nk

1,

C1,kpfi =
C1
I1
R

I1,k
G1

R
(
G1pfi −

G1pI1,k

)
+ C1pI1 ,

(5.1)

where nk
1 is the zero-mean white Gaussian noise.

Next we briefly describe the adopted VI-SLAM update strategy presented in [37].

The tracked environmental features are divided into two types: (1) SLAM features that can

be tracked beyond the window size m and are kept in xS ; (2) MSCKF features that can

be tracked for a short period of time or beyond m but not in xS . Both types of features

will be used to update the localization state vector. The SLAM features in xS enable ”loop

closure” to limit the long-term navigation drifts.

For an MSCKF feature fi whose track has been lost or reached m, we perform

the standard MSCKF update [93]. Specifically, we first perform BA to triangulate G1pfi

by using the cloned poses and all the collected measurements corresponding to fi. We then

linearize each measurement to obtain the Jacobians associated with the robot state and

the feature together with the measurement residual. By stacking all the values of each

100

measurement, we get

z̃R1 = Hr1δx
k/k−1
r1 +Hfi

G1δpfi + n1, (5.2)

where z̃R1 is the stacked measurement residual; Hr1 and Hfi are the stacked robot state

and feature Jacobians. Next, project z̃R1 onto the left nullspace of Hfi and we get

z̃′R1
= H′

r1δx
k/k−1
r1 + n′

1 = H′
R1

δx
k/k−1
R1

+ n′
1, (5.3)

where z̃′R1
= NTz̃R1 , H

′
r1 = NTHr1 , n

′
1 = NTn1, and H′

R1
= [H′

r1 03×3n] with NTHfi = 0.

Here, (5.3) is independent of the feature fi and then can be directly used to perform the

standard EKF update without storing the features in the localization state.

For a SLAM feature f1 (for notation simplicity, consider the first feature in xS)

that can be tracked longer than m, we first triangulate its position and initialize it into xS

by using the first m measurements. After initialization, whenever we obtain a measurement

of a SLAM feature, we trigger the update process. Linearization of the measurement at

timestep k yields the following residual

z̃kR1
= Hk

r1δx
k/k−1
r1 +Hk

fi
G1δp

k/k−1
f1

+ nk
1, (5.4)

which can be further written as

z̃kR1
= Hk

R1
δx

k/k−1
R1

+ nk
1, (5.5)

where Hk
R1

= [Hk
r1 Hk

f1
03×(3n−3)]. We can perform the standard EKF updates using

(5.5). By observing the fact that when SLAM features become matured, there will be no

significant updates in their states and covariances, we can gain computational savings by

performing Schmidt EKF update for those matured features according to [37]. Specifically,

101

we avoid updating the states and covariances of the matured features, while maintaining

and updating their cross-correlations with the other states in the localization state vector.

By doing this, the computational complexity becomes linear with respect to the number of

SLAM features.

Robot 1 transmits a prior map including xM (xM ⊆ xS) and the corresponding

covariance set PM with the corresponding descriptors to the other robots. When a new

SLAM feature loses its track and the prior map has not reached the maximum size n, we

register it in the prior map and then transmit it. The descriptors are only sent once, but the

prior map needs to be renewed and transmitted every transmitting time, as we include xS

in the localization state and the SLAM features’ states are kept being refined. Moreover, if

a SLAM feature become matured, no need to renew its state and covariance. So when xS

is matured, robot 1 can stop transmitting the prior map.

5.3.3 Update Strategy for Robot j

Localization State Vector

Note that robot j runs in Gj , which is different from G1 where the prior map is

encoded. To make use of the prior map, we online estimate the transformation GjFG1 =

{Gj

G1
q̄,GjpG1} from G1 to Gj . Therefore, at the imaging timestep k, the localization state

for robot j is given by

xk
Rj

=
[
xk
Ij xk

Cj

GjFG1

]T
,

xk
Cj

=
[
Ij,k
Gj

q̄T GjpT
Ij,k

· · · Ij,k−m

Gj
q̄T GjpT

Ij,k−m

]T
,

102

where xk
Ij

and xk
Cj

are the current IMU state and a sliding window containing m cloned

historical IMU poses of robot j. We also refer xrj = [xT
Ij

xT
Cj
]T as the robot state. The

error state of xk
Cj

is defined the same as xk
C1

and the error state of GjFG1 is defined as

Gj F̃G1 = [G1δθT
Gj

GjδpT
G1

]T. Note that to estimate GjFG1 , we need an initial guess which

can be obtained with Horn’s method [43] by using the first few (more than three) detected

map features.

Localization State Update

We divide the static environmental features tracked by robot j’s camera into two

types: (1) map features that are inside xM received from robot 1; (2) MSCKF features

that can be tracked for a short period of time or beyond m but not in xM . Both types of

features will be used to update the localization state. Similar to (5.1), the measurements

corresponding to the same tracked MSCKF feature are collected over the sliding window.

At timestep k, the observation model for an MSCKF feature fj is given by

zkRj
= Π(Cj,kpfj) + nk

j , (5.6a)

Cj,kpfj =
Cj

Ij
R

Ij,k
Gj

R
(
Gjpfj −

GjpIj,k

)
+ CjpIj , (5.6b)

where nk
j is the zero-mean white Gaussian noise with covariance Qk

j . The standard MSCKF

update can be performed for the MSCKF feature as described in Section 5.3.2 by using the

cloned poses and the collected measurements.

Unlike the MSCKF feature, whenever we obtain a measurement of a map feature,

we trigger the update process. For the observation model of a map feature fj , we replace

103

(5.6b) with

Cj,kpfj =
Cj

Ij
R

Ij,k
Gj

R
(
Gj

G1
RG1pfj +

GjpG1 − GjpIj,k

)
+ CjpIj .

(5.7)

Note that (5.7) provides not only the constraints of the IMU pose, but also the constraints

of the transformation between two global frames. Linearizaton of (5.6a), (5.7) yields the

following residual

z̃kRj
= Hk

Rj
δx

k/k−1
Rj

+Hk
fj

G1δpfj + nk
j , (5.8)

where Hk
Rj

and Hk
fj

are the corresponding Jacobians. Unlike (5.2) and (5.5), here G1pfj is

known from the prior map xM with the covariance Pfj ∈ PM . Define ñk
j = Hk

fj
G1δpfj +nk

j

with the covariance Q̃k
j = Hk

fj
Pfj (H

k
fj
)T +Qk

j . Then (5.8) turns into

z̃kRj
= Hk

Rj
δx

k/k−1
Rj

+ ñk
j . (5.9)

Equation (5.9) can be used to update the localization state directly with the standard EKF

update. Note that we have taken into account the prior map’s uncertainty in (5.9) which

further improves the accuracy.

The size of robot j’s state vector is (16+6m+6) which is comparable to that of a

standard MSCKF (16+6m) [93], but much smaller than that of the VI-SLAM (16+6m+3n),

especially for a large-scale environment (n ≫ m). So robot j maintains the computationally

efficiency of MSCKF while avoiding long-term drift with the aid of the prior map built by

robot 1.

104

5.4 Cooperative Target State Tracking

In this section, we present the proposed cooperative target state tracking approach

that is based on a novel distributed Kalman filter. In our setting, each robot maintains an

estimator of the common target’s state in addition to its own pose estimator.

5.4.1 Tracking State Vector

As we do not assume a known common global frame, the target’s state would

express different values in different global frames. However, a prerequisite for using a

neighboring robot’s information is that this information is encoded in the same frame.

So each robot tracks the target in its own global frame independently before initializing

the transformations between the global frames. After initialization, we can convert the

estimated target state of robot j (j ∈ V, j ̸= 1) from Gj to G1 with the estimated value

of GjFG1 . After initialization of the transformation, the target state is encoded in G1. We

define the target state as [27]

xT =

[
T
G1

q̄
T G1pT

T Tω
T G1vT

T

]T
,

where T
G1

q̄ describes the rotation from G1 to T , G1pT is the position of T in G1,
G1vT is

target’s global linear velocity and Tω is the target’s local angular velocity. Both G1vT and

Tω are treated as continuous-time random walks driven by noises nv and nω, respectively.

Like [27], we represent the 3D rigid-body target as a point cloud consisting of corner

features that can be tracked by the robots’ cameras. One of these target features is chosen

as the representative point where the pose of the target is defined while the other features

are the non-representative features that provide additional observations. Note that none of

105

the target features is required to be reliably tracked by each robot over time. It could be the

case that the target is totally invisible to some of the robots in the group. A sparse feature

set of the target is extracted and tracked. As we employ multiple robots, more observations

and constraints can be obtained for every target feature. This makes it possible to limit the

number of tracked features for a successful tracking. So unlike [27], instead of maintaining a

sliding window of cloned historical target poses to triangulate none-representative features’

positions, we add these features’ relative positions in the target’s body frame to our tracking

state to provide reobservation constraints. Therefore, at timestep k, the tracking state for

each robot is given by

xk
O =

[
xk
T

Tpt

]T
, Tpt =

[
TpT

t1 · · · TpT
ts

]T
,

where xk
T is the target state at timestep k, and Tpt contains s non-representative features’

positions in T . Note that Tpt does not evolve over time as we assume a rigid-body target.

Robot i (i ∈ V) maintains an estimator x̂Oi of xO and the corresponding error state is given

by

δxOi =
[
δxTi

Tiδpt

]T
, Tiδpt =

[
TiδpT

t1 · · · TiδpT
ts

]T
,

δxTi =
[
G1δθT

Ti

G1δpT
Ti

Tiω̃T G1δvT
Ti

]T
,

where the orientation error G1δθTi is expressed in G1 and the subscript i associated with T

denotes the quantity obtained by robot i.

5.4.2 Target Measurements

Like the static environmental features, the target features are captured by the

robots’ cameras. For robot 1, the measurements of the representative features take the

106

form

zkT1
= Π(C1,kpTk

) + nk
1, (5.10)

C1,kpTk
= C1

I1
R

I1,k
G1

R
(
G1pTk

− G1pI1,k

)
+ C1pI1 . (5.11)

While for a non-representative feature Tptj , (5.11) is replaced with

C1,kpTk
=C1

I1
R

I1,k
G1

R
(
Tk
G1

RTTptj +
G1pTk

− G1pI1,k

)
+ C1pI1 .

(5.12)

For robot j (j ̸= 1), as we encode the target state in G1, the measurements of the repre-

sentative feature is given by

zkTj
=Π(Cj,kpT) + nk

j , (5.13)

Cj,kpT =
Cj

Ij
R

Ij,k
Gj

R
(
Gj

G1
RG1pTk

+ GjpG1 − GjpIj,k

)
+ CjpIj .

(5.14)

While for a non-representative feature Tptj , we replace (5.14) with

Cj,kpT =
Cj

Ij
R

Ij,k
Gj

R
[
Gj

G1
R(Tk

G1
RTTptj +

G1pTk
) + GjpG1 − GjpIj,k

]
+ CjpIj .

(5.15)

The linearization residuals of these measurements take the following compatible

form for notation simplicity

z̃kTi
= Ȟk

Oi
δx

k/k−1
Oi

+ Ȟk
Ri
δx

k/k−1
Ri

+ nk
i . (5.16)

Here, for robot 1, equation (5.16) is computed using (5.10), (5.11) and (5.12). While for

robot j, equation (5.16) is computed using (5.13), (5.14) and (5.15). Ȟk
Oi

and Ȟk
Ri

are the

corresponding localization and tracking state Jacobians.

107

5.4.3 Distributed Kalman Filter For Tracking

Unlike the robots whose onboard IMU measurements provide the propagations

for the states, we do not have access to any sensor measuring the target’s actual motion.

In other words, we do not assume that the actual target motion model is available to the

robots. We adopt the following constant linear global velocity dynamics given by [27]

T
G1

˙̄q =
1

2
Ω(Tω)TG1

q̄, G1ṗT = G1vT ,

G1 v̇T = nv,
T ω̇ = nω,

(5.17)

to propagate the target’s state. Here, G1vT and Tω are treated as random walk driven by

the noise nv and nω. By linearization and discretization of (5.17), each robot i can perform

the EKF propagation to evolve the target state and the tracking state covariance.

To avoid degradation of the localization part caused by the poorly modeling of

the target’s actual motion. We decouple the localization and tacking systems by not up-

dating the cross-covariances between them (set the cross-covariances to zero). Further, to

avoid information double-counting, we do not use the target measurements to update the

localization states. For any robot i at timestep k, we define n̄k
i = Ȟk

Ri
δx

k/k−1
Ri

+ nk
i . The

corresponding covariance is given by

Q̄k
Ti

= Ȟk
Ri
P

k/k−1
Ri

(Ȟk
Ri
)T +Qk

Ti
, (5.18)

which takes account of the localization states’ uncertainties. Then, the measurement resid-

uals (5.16) turn into

z̃kTi
= Ȟk

Oi
δx

k/k−1
Oi

+ n̄k
i . (5.19)

108

Further, we define two correction terms as

ski = (Ȟk
Oi
)T(Q̄k

Ti
)−1Ȟk

Oi
, yk

i = (Ȟk
Oi
)T(Q̄k

Ti
)−1z̃kTi

, (5.20)

where we consider the uncertainties of the localization states. Then, a large uncertainty

P
k/k−1
Rl

in robot l’s localization state will lead to a large Q̄k
Tl
, which makes the corresponding

correction terms small. Note that by using Q̄k
Tl

in the correction terms, the resulting

estimator is more accurate than the one obtained by simply setting Ȟk
Ri

to zero.

Next, we present the distributed update procedure running on each robot i. Recall

that every robot maintains an estimator of the target. After propagation, robot i receives

{x̂k/k−1
Ol

,P
k/k−1
Ol

, skl ,y
k
l } (sends {x̂k/k−1

Oi
,P

k/k−1
Oi

, ski ,y
k
i }) from (to) robot l, ∀l ∈ N k

i . We

first “weighted average” the prior estimators among the communicating neighbor set N k
i

to reduce its uncertainty. In order to find the average orientation, we employ the following

method [78] which finds a quaternion that minimizes the weighed sum of the orientation

errors estimated by each robot.

Ti,k

G1
ˇ̄q = argmax

q̄∈S3
q̄TMq̄, M =

∑
l∈N k

i

πk
l (

Tl,k/k−1

G1
ˆ̄q)T

Tl,k/k−1

G1
ˆ̄q, (5.21)

where S3 denotes the unit 3-sphere. For the remaining quantities in x̂
k/k−1
Oi

, we compute

x̌k
Vi

=
∑

l∈N k
i
πk
l x̂

k/k−1
Vl

, where x̂Vl
=

[
G1p̂T

Tl

Tlω̂T G1 v̂T
Tl

Tlp̂T
tf

]T
. We define a compati-

ble symbol ⊗ for computing the averaged state and then we have
∑

l∈N k
i
πk
l ⊗ x̂

k/k−1
Ol

. As for

the covariance, we can directly compute
∑

l∈N k
i
πk
l (P

k/k−1
Ol

), since all errors are represented

by valid vector quantities. Then, we update the estimator according to the following novel

109

distributed update equations

P
k/k
Oi

=

∑
l∈N k

i

πk
l P

k/k−1
Ol

−1

+
∑
l∈N k

i

skl

−1

,

x̂
k/k
Oi

=
∑
l∈N k

i

πk
l ⊗ x̂

k/k−1
Ol

+P
k/k
Oi

∑
l∈N k

i

yk
l ,

(5.22)

where the weight πk
l subject to πk

l ∈ [0, 1] and
∑

l∈N k
i
πk
l = 1 is selected to minimize the

determinant or the trace of P
k/k
Oi

. The detailed derivation of (5.22) can be found in [136]. In

(5.22), the prior estimators are “weighted averaged” over the neighborhood and the target

measurements from the neighboring robots are used. Therefore, a robot directly detect the

target can affect the other robots through the communication topology. The target state

is thus cooperatively estimated by the robots, even if certain robots cannot capture any of

the target features over a time interval.

5.5 Results

In this section, we present the results of the Monte-Carlo simulations that demon-

strate the effectiveness of the proposed algorithm. The Gazebo MAV simulator RotorS [31]

is used to create the tracking scenario where four Firefly drones (tracking robots) and a

Pelican drone (the target) fly following 3D trajectories in a corridor and the approximate

loop period is 75 seconds. The non-representative target features are generated around the

target’s body frame while the static environment features are simulated on the walls. Each

tracking robot is equipped with an visual-inertial sensor and has the ability to communicate

with the neighboring robots. The resolution of the camera is [752, 480] while its maximum

sensing distance is purposely set to 5m. The groundtruth of the IMU and the image mea-

110

surements obtained by each robot are corrupted by the realistic sensor characteristics as

shown in Tab. 5.1. The sliding window sizes m for all the robots are set to the same

value 15 and robot 1’s SLAM feature number n is 200. Then we perform 45 Monte-Carlo

simulations and the results are quantified by the root mean squared error (RMSE).

Table 5.1: Sensor parameters in simulation.

Parameter Value

IMU rate 100 (Hz)

Gyroscope noise density 1.6968e-4 (rad/s/
√
Hz)

Gyroscope random walk 1.9393e-5 (rad/s2/
√
Hz)

Accelerometer noise density 2.0000e-3 (m/s2/
√
Hz)

Accelerometer random walk 3.0000e-3 (m/s3/
√
Hz)

Camera rate 10 (Hz)

Image noise 1 (pixel)

5.5.1 Localization

To validate the performance, we compare the proposed multi-robot VINS (MR-

VINS) approach to the case where robot j (j = 2, 3, 4) works independently with the

standard MSCKF-VIO. The averaged RMSE results of the robots’ poses over all Monte-

Carlo trials are shown in Fig. 5.2 and Fig. 5.3, while Tab. 5.2 provides the results over all

Monte-Carlo trials and all timesteps for the estimated transformations of the global frames.

As expected, in both the position and orientation, running independently with MSCKF-

VIO exhibits accumulated long-term drift while the MR-VINS provides much smaller and

bounded errors without long term drift. In addition, robot j’s (j = 2, 3, 4) pose estimator

is less accurate than the one of robot 1. It is mainly caused by two reasons: (1) SLAM

features included in xS are not all captured by robot j; (2) The cross-correlations with xS

111

maintained by robot 1 are used to update the localization state and covariances. However,

robot j gains significant computational savings and is as efficient as MSCKF-VIO. As is

evident from Tab. 5.2, the estimated transformation from Gj to G1 is very accurate.

0 100 200 300

Time (sec)

0

0.05

0.1

0.15

0.2

0.25

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Robot 1

VI-SLAM

0 100 200 300

Time (sec)

0

0.1

0.2

0.3

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Robot 2

MR-VINS

MSCKF-VIO

0 100 200 300

Time (sec)

0

0.1

0.2

0.3

0.4

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Robot 3

MR-VINS

MSCKF-VIO

0 100 200 300

Time (sec)

0

0.1

0.2

0.3

0.4

P
o

s
it
io

n
 R

M
S

E
 (

m
)

Robot 4

MR-VINS

MSCKF-VIO

Figure 5.2: Averaged RMSE for the estimated robots’ positions.

Table 5.2: Averaged RMSE for the estimated global frame transformations.

Time (sec) Initial 50 100

G2FG1

G2
G1

q̄ (deg) 4.191 0.150 0.149
G2pG1 (cm) 24.253 2.981 2.506

G3FG1

G3
G1

q̄ (deg) 2.564 0.144 0.138
G3pG1 (cm) 18.564 3.86. 3.692

G4FG1

G4
G1

q̄ (deg) 2.186 0.200 0.193
G4pG1 (cm) 15.001 3.442 3.211

112

0 100 200 300

Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

O
ri
e
n
ta

ti
o
n
 R

M
S

E
 (

d
e
g
)

Robot 1

VI-SLAM

0 100 200 300

Time (sec)

0

0.2

0.4

0.6

0.8

O
ri
e
n
ta

ti
o
n
 R

M
S

E
 (

d
e
g
)

Robot 2

MR-VINS

MSCKF-VIO

0 100 200 300

Time (sec)

0

0.2

0.4

0.6

0.8

1

O
ri
e
n
ta

ti
o
n
 R

M
S

E
 (

d
e
g
)

Robot 3

MR-VINS

MSCKF-VIO

0 100 200 300

Time (sec)

0

0.2

0.4

0.6

0.8

1

O
ri
e
n
ta

ti
o
n
 R

M
S

E
 (

d
e
g
)

Robot 4

MR-VINS

MSCKF-VIO

Figure 5.3: Averaged RMSE for the estimated robots’ orientations.

5.5.2 Tracking

To show the benefits of cooperative tracking, we assume that each robot can com-

municate with the other robots with certain percentages. For example, 50% means that each

robot communicates with the other robots with the probability of 50% at every timestep.

Tab. 5.3 provides the averaged RMSE for the estimated target’s pose over all Monte-Carlo

trials and all timesteps for different communication percentages. It becomes clear that as

the communication probability increases, the estimation errors reduce significantly for all

the robots in both the positions and orientations. The errors of the estimated target’s pose

for all the robots are very large when the communication percentage is 0 (no collaboration

between robots in tracking). This is because we simulate a realistic scenario where each

robot can become a blind robot during different time intervals.

113

Further, Fig. 5.4 shows the averaged RMSE results for the estimated target’s pose

over all trials with 25% and 50% communications. It is interesting to point out that the

results are not as smooth as those for the robots’ poses. This is most likely due to the

fact that the actual simulated target motion does not follow the model (5.17) or exhibits

constant global velocity. In particular, when the communication percentage is 50%, several

peaks appear periodically. This is caused by the larger motion modelling error around

the corners where the target’s actual velocities change quickly. However, as we increase

the communication percentage to 50%, the RMSE values become smaller especially for

the values around the corners. This demonstrates the strength of cooperative tracking.

Additionally, the larger errors at the beginning are caused by the fact that the robots

work independently before initializing the global frame transformations. It is clear that

all the robots can well track the target’s 6-DOF motion over a long time period with 50%

communication.

Table 5.3: Averaged RMSE for the estimated target pose obtained by the robots with
different communication percentages.

communication 0 % 25 % 50% 80%

Robot1
T
G1

q̄ (deg) 45.530 12.553 5.404 2.153
G1pT (m) 3.032 0.206 0.127 0.070

Robot2
T
G1

q̄ (deg) 38.598 12.799 5.542 2.167
G1pT (m) 3.560 0.208 0.122 0.072

Robot3
T
G1

q̄ (deg) 29.908 12.273 5.516 2.150
G1pT (m) 1.831 0.201 0.124 0.074

Robot4
T
G1

q̄ (deg) 32.355 11.867 5.463 2.158
G1pT (m) 1.965 0.204 0.126 0.076

114

0 50 100 150 200 250 300

Time (sec)

0

0.2

0.4

0.6

0.8

T
a

rg
e

t
P

o
s
it
io

n
 R

M
S

E
 (

m
) Robot 1 (25%)

Robot 2 (25%)

Robot 3 (25%)

Robot 4 (25%)

0 50 100 150 200 250 300

Time (sec)

0

10

20

30

40

T
a

rg
e

t
O

ri
e

n
ta

ti
o

n
 R

M
S

E
 (

d
e

g
)

Robot 1 (50%)

Robot 2 (50%)

Robot 3 (50%)

Robot 4 (50%)

Figure 5.4: Averaged RMSE for the estimated target’s poses obtained by the four robots
when the communication percentages are 25% and 50%.

5.6 Conclusion

In this chapter, we propose a distributed filtering algorithm that cooperatively

estimates the 6-DoF poses of a moving object and networked robots with onboard visual-

inertial sensors. By using the information from neighboring robots, each robot performs

a more accurate and robust tracking of the target object even if it fails to see the target.

Common environmental features are exploited to provide prior information which is used

to bound the long-term errors of the VIO. Further, we get rid of the pre-designed common

global frame which is widely used in the literature regarding multi-robot applications. The

communication graph can be time varying with the only requirement that robot 1 should

have a directed path to the other robots in the union graph over a time period for transmit-

ting the prior map. When robot 1 stops renewing the prior map, the communication graph

115

can be fully distributed that each robot only needs to communicate with its one-hop neigh-

bors that might be changing over time in the estimators’ update steps. The performance

of the proposed algorithm has been evaluated by Monte-Carlo simulations.

116

Chapter 6

Conclusions

The work presented in this manuscript focus on localization and target state esti-

mation, the two crucial tasks, for multi-robot applications. We prefer distributed algorithm,

as it outperforms the centralized one in efficiency, robustness and scalability.

The topics we studied is inspired by the the problem of distributed state estimation

(DSE) using sensor networks. We realized that DSE assumes static sensor networks and

known sensors’ poses. To address these limitations, we studied the problem of jointly

localization and target tracking (JLATT). Each robot estimated its own pose (localization)

and the target state (tracking) using robot-to-robot and robot-to-target measurements.

Furthermore, it is proved that, in the case of linear time-varying models, the estimation

errors are bounded in the mean-square sense under very mild conditions. Simulations

and experiments showed that better performance in localization is achieved when jointly

estimating the robots and target states. The proposed estimators is only applicable to the

states in vector space, which limits the application when orientations are in SO3.

117

Next, we specified the sensors as the most popular combination: camera and IMU.

Firstly, we addressed DSE in 3-D scenarios where each camera tracked the state of a 3-D

moving object. We demonstrated that each sensor can have a good estimator of the target

pose via varying communication and sensing typologies. Next, we focused on the localization

problem in 3-D.

By realising that robot-to-robot measurements is more difficult to obtain as com-

pared to the rich environmental features, we explored the environmental features to perform

the visual-inertial navigation. We developed a visual-inertial cooperative localization (CL)

framework, in which each robot utilizes not only its own measurements but constraints

of common features co-observed with its neighbors in order to improve the localization

accuracy. The proposed distributed CL estimator is validated against its non-realtime cen-

tralized and the non-cooperative counterparts extensively. The estimator is shown to be

able to achieve better accuracy with competitive efficiency.

Lastly, we proposed a framework to achieve visual-inertial JLATT (VIJLATT).

We further removed two assumptions in the preceding chapters: the assumed known target

motion models and a known common global frame for all the robots. In the localization

part, one robot performed SLAM while other robots ran VIO and map-based localization.

Target was represented as a point cloud and tracked by using the novel distributed Kalman

filter. It is shown that each robot have improved accuracy in both localization and tracking

parts in cooperative case.

118

Bibliography

[1] Aamir Ahmad, Gian Diego Tipaldi, Pedro Lima, and Wolfram Burgard. Cooperative
robot localization and target tracking based on least squares minimization. In Proc.
of the IEEE International Conference on Robotics and Automation (ICRA), pages
5696–5701, 2013.

[2] Mehdi Alighanbari and Jonathan P How. Unbiased Kalman consensus algorithm.
Journal of Aerospace Computing, Information, and Communication, 5(9):298–311,
2008.

[3] Pablo O Arambel, Constantino Rago, and Raman K Mehra. Covariance intersection
algorithm for distributed spacecraft state estimation. In Proc. of the American Control
Conference, pages 4398–4403, 2001.

[4] Nikolay Atanasov, Roberto Tron, Victor M Preciado, and George J Pappas. Joint
estimation and localization in sensor networks. In Proc. of the IEEE Conference on
Decision and Control, pages 6875–6882, 2014.

[5] Alexander Bahr, Matthew R Walter, and John J Leonard. Consistent cooperative
localization. In Proc. of the IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3415–3422, 2009.

[6] Tim Bailey, Mitch Bryson, Hua Mu, John Vial, Lachlan McCalman, and Hugh
Durrant-Whyte. Decentralised cooperative localisation for heterogeneous teams of
mobile robots. In Proc. of the IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 2859–2865, 2011.

[7] Yaakov Bar-Shalom and Leon Campo. The effect of the common process noise on the
two-sensor fused-track covariance. IEEE Transactions on Aerospace and Electronic
Systems, 22(6):803–805, 1986.

[8] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation with
applications to tracking and navigation: theory algorithms and software. John Wiley
& Sons, 2004.

119

[9] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation with
applications to tracking and navigation: theory algorithms and software. John Wiley
& Sons, 2004.

[10] Giorgio Battistelli and Luigi Chisci. Kullback–leibler average, consensus on probabil-
ity densities, and distributed state estimation with guaranteed stability. Automatica,
50(3):707–718, 2014.

[11] Giorgio Battistelli and Luigi Chisci. Stability of consensus extended Kalman filter for
distributed state estimation. Automatica, 68:169–178, 2016.

[12] Giorgio Battistelli, Luigi Chisci, and Claudio Fantacci. Parallel consensus on likeli-
hoods and priors for networked nonlinear filtering. IEEE Signal Processing Letter,
21(7):787–791, 2014.

[13] Giorgio Battistelli, Luigi Chisci, Giovanni Mugnai, Alfonso Farina, and Antonio
Graziano. Consensus-based algorithms for distributed filtering. In Proc. of the IEEE
Conference on Decision and Control, pages 794–799, 2012.

[14] Giorgio Battistelli, Luigi Chisci, Giovanni Mugnai, Alfonso Farina, and Antonio
Graziano. Consensus-based linear and nonlinear filtering. IEEE Transactions on
Automatic Control, 60(5):1410–1415, 2014.

[15] Giorgio Battistelli, Luigi Chisci, Giovanni Mugnai, Alfonso Farina, and Antonio
Graziano. Consensus-based linear and nonlinear filtering. IEEE Transactions on
Automatic Control, 60(5):1410–1415, 2015.

[16] Giorgio Battistelli, Luigi Chisci, and Daniela Selvi. A distributed Kalman filter with
event-triggered communication and guaranteed stability. Automatica, 93:75–82, 2018.

[17] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[18] WG Breckenridge. Quaternions proposed standard conventions. Jet Propulsion Lab-
oratory, Pasadena, CA, Interoffice Memorandum IOM, pages 343–79, 1999.

[19] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc micro aerial
vehicle datasets. The International Journal of Robotics Research, 35(10):1157–1163,
2016.

[20] Luis C Carrillo-Arce, Esha D Nerurkar, José L Gordillo, and Stergios I Roumeliotis.
Decentralized multi-robot cooperative localization using covariance intersection. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1412–1417, 2013.

[21] Luis C Carrillo-Arce, Esha D Nerurkar, José L Gordillo, and Stergios I Roumeliotis.
Decentralized multi-robot cooperative localization using covariance intersection. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1412–1417. IEEE, 2013.

120

[22] Federico S Cattivelli and Ali H Sayed. Diffusion strategies for distributed Kalman
filtering and smoothing. IEEE Transactions on Automatic Control, 55(9):2069–2084,
2010.

[23] Averil B. Chatfield. Fundamentals of High Accuracy Inertial Navigation. AIAA, 1997.

[24] Averil B Chatfield. Fundamentals of high accuracy inertial navigation. American
Institute of Aeronautics and Astronautics, 1997.

[25] Jing Chen, Tianbo Liu, and Shaojie Shen. Tracking a moving target in cluttered
environments using a quadrotor. In Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 446–453. IEEE, 2016.

[26] Timothy H Chung, Joel W Burdick, and Richard M Murray. A decentralized motion
coordination strategy for dynamic target tracking. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2416–2422. IEEE, 2006.

[27] Kevin Eckenhoff, Yulin Yang, Patrick Geneva, and Guoquan Huang. Tightly-coupled
visual-inertial localization and 3-d rigid-body target tracking. IEEE Robotics and
Automation Letters, 4(2):1541–1548, 2019.

[28] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. On-
manifold preintegration for real-time visual–inertial odometry. IEEE Transactions
on Robotics, 33(1):1–21, 2016.

[29] Dietrich Franken and Andreas Hupper. Improved fast covariance intersection for
distributed data fusion. In Proc. of the IEEE International Conference on Information
Fusion, volume 1, pages 7–pp, 2005.

[30] Paul Furgale, Joern Rehder, and Roland Siegwart. Unified temporal and spatial cali-
bration for multi-sensor systems. In Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1280–1286. IEEE, 2013.

[31] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. Rotors—a mod-
ular gazebo mav simulator framework. In Robot Operating System (ROS), pages
595–625. Springer, 2016.

[32] Dorian Gálvez-López and J. D. Tardós. Bags of binary words for fast place recognition
in image sequences. IEEE Transactions on Robotics, 28(5):1188–1197, October 2012.

[33] Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang. A linear-complexity EKF
for visual-inertial navigation with loop closures. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3535–3541. IEEE, 2019.

[34] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang.
Openvins: A research platform for visual-inertial estimation. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 4666–4672. IEEE,
2020.

121

[35] Patrick Geneva and Guoquan Huang. vicon2gt: Derivations and analysis. Technical
Report RPNG-2020-VICON2GT, University of Delaware, 2020. Available: http:

//udel.edu/~ghuang/papers/tr_vicon2gt.pdf.

[36] Patrick Geneva, James Maley, and Guoquan Huang. An efficient schmidt-ekf for
3d visual-inertial slam. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 12105–12115, 2019.

[37] Patrick Geneva, James Maley, and Guoquan Huang. An efficient schmidt-ekf for
3d visual-inertial slam. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 12105–12115, 2019.

[38] Chao X Guo, Kourosh Sartipi, Ryan C DuToit, Georgios A Georgiou, Ruipeng Li,
John O’Leary, Esha D Nerurkar, Joel A Hesch, and Stergios I Roumeliotis. Large-
scale cooperative 3d visual-inertial mapping in a manhattan world. In Proc. of the
IEEE International Conference on Robotics and Automation (ICRA), pages 1071–
1078. IEEE, 2016.

[39] Chao X Guo, Kourosh Sartipi, Ryan C DuToit, Georgios A Georgiou, Ruipeng Li,
John O’Leary, Esha D Nerurkar, Joel A Hesch, and Stergios I Roumeliotis. Resource-
aware large-scale cooperative three-dimensional mapping using multiple mobile de-
vices. IEEE Transactions on Robotics, 34(5):1349–1369, 2018.

[40] Chao X Guo, Kourosh Sartipi, Ryan C DuToit, Georgios A Georgiou, Ruipeng Li,
John O’Leary, Esha D Nerurkar, Joel A Hesch, and Stergios I Roumeliotis. Resource-
aware large-scale cooperative three-dimensional mapping using multiple mobile de-
vices. IEEE Transactions on Robotics, 34(5):1349–1369, 2018.

[41] Xingkang He, Chen Hu, Yiguang Hong, Ling Shi, and Haitao Fang. Distributed
Kalman filters with state equality constraints: Time-based and event-triggered com-
munications. IEEE Transactions on Automatic Control, 2019.

[42] Xingkang He, Wenchao Xue, and Haitao Fang. Consistent distributed state estimation
with global observability over sensor network. Automatica, 92:162–172, 2018.

[43] Berthold KP Horn. Closed-form solution of absolute orientation using unit quater-
nions. Journal of the Optical Society of America, 4(4):629–642, 1987.

[44] Roger A Horn, Roger A Horn, and Charles R Johnson. Matrix analysis. Cambridge
university press, 1990.

[45] Jinwen Hu, Lihua Xie, and Cishen Zhang. Diffusion Kalman filtering based on co-
variance intersection. IEEE Transactions on Signal Processing, 60(2):891–902, 2011.

[46] Jinwen Hu, Lihua Xie, and Cishen Zhang. Diffusion Kalman filtering based on co-
variance intersection. IEEE Transactions on Signal Processing, 60(2):891–902, 2012.

[47] Zheng Huai and Guoquan Huang. Robocentric visual-inertial odometry. In Proc. of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 6319–6326. IEEE, 2018.

122

http://udel.edu/~ghuang/papers/tr_vicon2gt.pdf
http://udel.edu/~ghuang/papers/tr_vicon2gt.pdf

[48] Guoquan Huang. Visual-inertial navigation: A concise review. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), pages 9572–9582.
IEEE, 2019.

[49] Guoquan Huang, Michael Kaess, and John J Leonard. Consistent unscented incremen-
tal smoothing for multi-robot cooperative target tracking. Robotics and Autonomous
Systems, 69:52–67, 2015.

[50] Guoquan Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis. A first-estimates
jacobian EKF for improving SLAM consistency. In Oussama Khatib, Vijay Kumar,
and George J. Pappas, editors, Experimental Robotics, volume 54 of Springer Tracts
in Advanced Robotics, pages 373–382. Springer Berlin Heidelberg, 2009.

[51] Guoquan P Huang, Anastasios I Mourikis, and Stergios I Roumeliotis. Observability-
based rules for designing consistent EKF SLAM estimators. The International Journal
of Robotics Research, 29(5):502–528, 2010.

[52] Guoquan P Huang, Nikolas Trawny, Anastasios I Mourikis, and Stergios I Roumeliotis.
Observability-based consistent ekf estimators for multi-robot cooperative localization.
Autonomous Robots, 30(1):99–122, 2011.

[53] Simon Julier and Jeffrey K Uhlmann. General decentralized data fusion with covari-
ance intersection. In Handbook of multisensor data fusion, pages 339–364. CRC Press,
2017.

[54] Simon J Julier and Jeffrey K Uhlmann. A non-divergent estimation algorithm in the
presence of unknown correlations. In Proc. of the American Control Conference, pages
2369–2373, 1997.

[55] SJ Julier and Jeffrey K Uhlmann. General decentralized data fusion with covariance
intersection. Handbook of multisensor data fusion: theory and practice, pages 319–344,
2009.

[56] Roland Jung, Christian Brommer, and Stephan Weiss. Decentralized collaborative
state estimation for aided inertial navigation. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), pages 4673–4679. IEEE, 2020.

[57] Ahmed T Kamal, Jay A Farrell, and Amit K Roy-Chowdhury. Information weighted
consensus filters and their application in distributed camera networks. IEEE Trans-
actions on Automatic Control, 58(12):3112–3125, 2013.

[58] Ahmed Tashrif Kamal, Chong Ding, Bi Song, Jay A Farrell, and Amit K Roy-
Chowdhury. A generalized Kalman consensus filter for wide-area video networks.
In Proc. of the IEEE Conference on Decision and Control, and the European Control
Conference, pages 7863–7869. IEEE, 2011.

[59] Elliott Kaplan and Christopher Hegarty. Understanding GPS: principles and appli-
cations. Artech House, 2005.

123

[60] Marco Karrer, Patrik Schmuck, and Margarita Chli. Cvi-slam—collaborative visual-
inertial slam. IEEE Robotics and Automation Letters, 3(4):2762–2769, 2018.

[61] Marco Karrer, Patrik Schmuck, and Margarita Chli. Cvi-slam—collaborative visual-
inertial slam. IEEE Robotics and Automation Letters, 3(4):2762–2769, 2018.

[62] Solmaz S Kia, Stephen F Rounds, and Sonia Martinez. A centralized-equivalent
decentralized implementation of extended kalman filters for cooperative localization.
In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3761–3766, 2014.

[63] Daniel P Koch, David O Wheeler, Randal Beard, Tim McLain, and Kevin M Brink.
Relative multiplicative extended Kalman filter for observable gps-denied navigation.
[Online]. Available: https://scholarsarchive.byu.edu/facpub/1963/, 2017.

[64] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), volume 3, pages 2149–2154. IEEE, 2004.

[65] Pierre-Yves Lajoie, Benjamin Ramtoula, Yun Chang, Luca Carlone, and Giovanni
Beltrame. Door-slam: Distributed, online, and outlier resilient slam for robotic teams.
IEEE Robotics and Automation Letters, 5(2):1656–1663, 2020.

[66] EJ Leffens, F Landis Markley, and Malcolm D Shuster. Kalman filtering for spacecraft
attitude estimation. Journal of Guidance, Control, and Dynamics, 5(5):417–429, 1982.

[67] Keith YK Leung, Yoni Halpern, Timothy D Barfoot, and Hugh HT Liu. The utias
multi-robot cooperative localization and mapping dataset. The International Journal
of Robotics Research, 30(8):969–974, 2011.

[68] Keith YK Leung, Yoni Halpern, Timothy D Barfoot, and Hugh HT Liu. The utias
multi-robot cooperative localization and mapping dataset. International Journal of
Robotics Research, 30(8):969–974, 2011.

[69] Stefan Leutenegger, Paul Furgale, Vincent Rabaud, Margarita Chli, Kurt Konolige,
and Roland Siegwart. Keyframe-based visual-inertial slam using nonlinear optimiza-
tion. Proc. of the Robotics: Science and Systems Conference, 2013.

[70] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Fur-
gale. Keyframe-based visual–inertial odometry using nonlinear optimization. The
International Journal of Robotics Research, 34(3):314–334, 2015.

[71] Hao Li and Fawzi Nashashibi. Cooperative multi-vehicle localization using split covari-
ance intersection filter. IEEE Intelligent transportation systems magazine, 5(2):33–44,
2013.

[72] Mingyang Li and Anastasios I Mourikis. High-precision, consistent ekf-based visual-
inertial odometry. The International Journal of Robotics Research, 32(6):690–711,
2013.

124

[73] Mingyang Li and Anastasios I Mourikis. Optimization-based estimator design for
vision-aided inertial navigation. In Proc. of the Robotics: Science and Systems Con-
ference, pages 241–248, 2013.

[74] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with
an application to stereo vision. In International Joint Conference on Artificial Intel-
ligence, pages 674–679, Vancouver, BC, August 1981.

[75] Lukas Luft, Tobias Schubert, Stergios I Roumeliotis, and Wolfram Burgard. Recur-
sive decentralized localization for multi-robot systems with asynchronous pairwise
communication. The International Journal of Robotics Research, 37(10):1152–1167,
2018.

[76] Lukas Luft, Tobias Schubert, Stergios I Roumeliotis, and Wolfram Burgard. Recur-
sive decentralized localization for multi-robot systems with asynchronous pairwise
communication. International Journal of Robotics Research, 37(10):1152–1167, 2018.

[77] Simon Lynen, Torsten Sattler, Michael Bosse, Joel A Hesch, Marc Pollefeys, and
Roland Siegwart. Get out of my lab: Large-scale, real-time visual-inertial localization.
In Proc. of the Robotics: Science and Systems Conference, volume 1, 2015.

[78] F Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman. Aver-
aging quaternions. Journal of Guidance, Control, and Dynamics, 30(4):1193–1197,
2007.

[79] Agostino Martinelli. Improving the precision on multi robot localization by using a
series of filters hierarchically distributed. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1053–1058, 2007.

[80] Agostino Martinelli. Cooperative visual-inertial odometry: Analysis of singularities,
degeneracies and minimal cases. IEEE Robotics and Automation Letters, 5(2):668–
675, 2020.

[81] Agostino Martinelli, Alexander Oliva, and Bernard Mourrain. Cooperative visual-
inertial sensor fusion: The analytic solution. IEEE Robotics and Automation Letters,
4(2):453–460, 2019.

[82] Agostino Martinelli, Alexander Oliva, and Bernard Mourrain. Cooperative visual-
inertial sensor fusion: the analytic solution. IEEE Robotics and Automation Letters,
4(2):453–460, 2019.

[83] Agostino Martinelli, Alessandro Renzaglia, and Alexander Oliva. Cooperative visual-
inertial sensor fusion: fundamental equations and state determination in closed-form.
Autonomous Robots, pages 1–19, 2019.

[84] Ion Matei and John S Baras. Consensus-based linear distributed filtering. Automatica,
48(8):1776–1782, 2012.

125

[85] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 1. Academic
Press, London, 1979.

[86] Peter S Maybeck. Stochastic models, estimation, and control, volume 3. Academic
press, 1982.

[87] Igor V Melnyk, Joel A Hesch, and Stergios I Roumeliotis. Cooperative vision-aided
inertial navigation using overlapping views. In Proc. of the IEEE International Con-
ference on Robotics and Automation (ICRA), pages 936–943. IEEE, 2012.

[88] Igor V Melnyk, Joel A Hesch, and Stergios I Roumeliotis. Cooperative vision-aided
inertial navigation using overlapping views. In Proc. of the IEEE International Con-
ference on Robotics and Automation (ICRA), pages 936–943. IEEE, 2012.

[89] Pablo Millán, Luis Orihuela, Carlos Vivas, and Francisco R Rubio. Distributed
consensus-based estimation considering network induced delays and dropouts. Au-
tomatica, 48(10):2726–2729, 2012.

[90] Faraz M Mirzaei, Anastasios I Mourikis, and Stergios I Roumeliotis. On the perfor-
mance of multi-robot target tracking. In Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), pages 3482–3489. IEEE, 2007.

[91] Fabio Morbidi and Gian Luca Mariottini. Active target tracking and cooperative
localization for teams of aerial vehicles. IEEE Transactions on Control Systems Tech-
nology, 21(5):1694–1707, 2012.

[92] Fabio Morbidi and Gian Luca Mariottini. Active target tracking and cooperative
localization for teams of aerial vehicles. IEEE Transactions on Control Systems Tech-
nology, 21(5):1694–1707, 2013.

[93] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint Kalman fil-
ter for vision-aided inertial navigation. In Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), pages 3565–3572. IEEE, 2007.

[94] Raúl Mur-Artal and Juan D Tardós. Visual-inertial monocular slam with map reuse.
IEEE Robotics and Automation Letters, 2(2):796–803, 2017.

[95] Wolfgang Niehsen. Information fusion based on fast covariance intersection filtering.
In Proc. of the IEEE International Conference on Information Fusion, volume 2,
pages 901–904, 2002.

[96] Benjamin Noack, Joris Sijs, Marc Reinhardt, and Uwe D Hanebeck. Decentralized
data fusion with inverse covariance intersection. Automatica, 79:35–41, 2017.

[97] Reza Olfati-Saber. Distributed Kalman filtering for sensor networks. In Proc. of the
IEEE Conference on Decision and Control, pages 5492–5498, 2007.

[98] Reza Olfati-Saber. Kalman-consensus filter: Optimality, stability, and performance.
In Proc. of the IEEE Conference on Decision and Control, and the Chinese Control
Conference, pages 7036–7042. IEEE, 2009.

126

[99] Reza Olfati-Saber and Parisa Jalalkamali. Collaborative target tracking using dis-
tributed kalman filtering on mobile sensor networks. In Proc. of the American Control
Conference, pages 1100–1105. IEEE, 2011.

[100] Stefano Panzieri, Federica Pascucci, and Roberto Setola. Multi-robot localisation
using interlaced extended kalman filter. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2816–2821, 2006.

[101] Lynne E Parker and Brad A Emmons. Cooperative multi-robot observation of mul-
tiple moving targets. In Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), volume 3, pages 2082–2089, 1997.

[102] Liam Paull, Guoquan Huang, Mae Seto, and John J Leonard. Communication-
constrained multi-auv cooperative slam. In Proc. of the IEEE International Con-
ference on Robotics and Automation (ICRA), pages 509–516. IEEE, 2015.

[103] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020,
2018.

[104] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020,
2018.

[105] Tong Qin and Shaojie Shen. Robust initialization of monocular visual-inertial es-
timation on aerial robots. In Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4225–4232. IEEE, 2017.

[106] Kejie Qiu, Tong Qin, Wenliang Gao, and Shaojie Shen. Tracking 3-d motion of
dynamic objects using monocular visual-inertial sensing. IEEE Transactions on
Robotics, 35(4):799–816, 2019.

[107] Kejie Qiu, Tong Qin, Hongwen Xie, and Shaojie Shen. Estimating metric poses of
dynamic objects using monocular visual-inertial fusion. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 62–68.
IEEE, 2018.

[108] Wei Ren, Randal W Beard, and Derek B Kingston. Multi-agent Kalman consensus
with relative uncertainty. In Proc. of the American Control Conference, pages 1865–
1870, 2005.

[109] Stergios I Roumeliotis and George A Bekey. Distributed multi-robot localization.
IEEE Transactions on Robotics and Automation, 18(5):781–795, 2002.

[110] Artem Rozantsev, Sudipta N Sinha, Debadeepta Dey, and Pascal Fua. Flight
dynamics-based recovery of a uav trajectory using ground cameras. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6030–6039,
2017.

127

[111] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In Proc. of the IEEE International Conference on Computer
Vision, pages 2564–2571. IEEE, 2011.

[112] Kourosh Sartipi, Ryan C DuToit, Christopher B Cobar, and Stergios I Roumeli-
otis. Decentralized visual-inertial localization and mapping on mobile devices for
augmented reality. In Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2145–2152. IEEE, 2019.

[113] David Schubert, Thore Goll, Nikolaus Demmel, Vladyslav Usenko, Jörg Stückler, and
Daniel Cremers. The TUM VI benchmark for evaluating visual-inertial odometry. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1680–1687. IEEE, 2018.

[114] Malcolm D Shuster. A survey of attitude representations. Navigation, 8(9):439–517,
1993.

[115] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches.
John Wiley & Sons, 2006.

[116] Joan Sola. Quaternion kinematics for the error-state KF. Laboratoire dAnalyse et dAr-
chitecture des Systemes-Centre national de la recherche scientifique (LAAS-CNRS),
Toulouse, France, Tech. Rep, 2012.

[117] Ashley W Stroupe and Tucker Balch. Value-based action selection for observation
with robot teams using probabilistic techniques. Robotics and Autonomous Systems,
50(2-3):85–97, 2005.

[118] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57,
2002.

[119] Nikolas Trawny and Stergios I. Roumeliotis. Indirect Kalman filter for 3D attitude
estimation. Technical report, University of Minnesota, Dept. of Comp. Sci. & Eng.,
March 2005.

[120] Minh Vo, Srinivasa G Narasimhan, and Yaser Sheikh. Spatiotemporal bundle adjust-
ment for dynamic 3d reconstruction. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1710–1718, 2016.

[121] Thumeera R Wanasinghe, George KI Mann, and Raymond G Gosine. Distributed
leader-assistive localization method for a heterogeneous multi-robotic system. IEEE
Transactions on Automation Science and Engineering, 12(3):795–809, 2015.

[122] Shaocheng Wang, Yang Lyu, and Wei Ren. Unscented-transformation-based dis-
tributed nonlinear state estimation: Algorithm, analysis, and experiments. IEEE
Transactions on Control Systems Technology, 27(5):2016–2029, 2018.

[123] Shaocheng Wang and Wei Ren. On the convergence conditions of distributed dynamic
state estimation using sensor networks: A unified framework. IEEE Transactions on
Control Systems Technology, 26(4):1300–1316, 2017.

128

[124] Shaocheng Wang and Wei Ren. On the convergence conditions of distributed dynamic
state estimation using sensor networks: A unified framework. IEEE Transactions on
Control Systems Technology, 26(4):1300–1316, 2018.

[125] Shaocheng Wang, Wei Ren, and Jie Chen. Fully distributed state estimation with
multiple model approach. In Proc. of the IEEE Conference on Decision and Control,
pages 2920–2925, 2016.

[126] Shaocheng Wang, Wei Ren, and Jie Chen. Fully distributed dynamic state estimation
with uncertain process models. IEEE Transactions on Control of Network Systems,
5(4):1841–1851, 2017.

[127] Yimin Wang and X Rong Li. A fast and fault-tolerant convex combination fusion
algorithm under unknown cross-correlation. In Proc. of the IEEE International Con-
ference on Information Fusion, pages 571–578, 2009.

[128] Guoliang Wei, Wangyan Li, Derui Ding, and Yurong Liu. Stability analysis of covari-
ance intersection-based Kalman consensus filtering for time-varying systems. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2018.

[129] Hao Xu, Luqi Wang, Yichen Zhang, Kejie Qiu, and Shaojie Shen. Decentralized
visual-inertial-UWB fusion for relative state estimation of aerial swarm. In Proc.
of the IEEE International Conference on Robotics and Automation (ICRA), pages
8776–8782. IEEE, 2020.

[130] Hongsheng Yu and Anastasios I Mourikis. Edge-based visual-inertial odometry. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6670–6677. IEEE, 2017.

[131] Fan Zhang, Guilherme S Pereira, and Vijay Kumar. Cooperative localization and
tracking in distributed robot-sensor networks. Tsinghua Science & Technology,
10(1):91–101, 2005.

[132] Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory evalua-
tion for visual (-inertial) odometry. In Proc. of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 7244–7251. IEEE, 2018.

[133] Ke Zhou and Stergios I Roumeliotis. Optimal motion strategies for range-only con-
strained multi-sensor target tracking. IEEE Transactions on Robotics, 24(5):1168–
1185, 2008.

[134] Ke Zhou, Stergios I Roumeliotis, et al. Multi-robot active target tracking with com-
binations of relative observations. IEEE Transactions on Robotics, 27(4):678–695,
2011.

[135] Pengxiang Zhu and Wei Ren. Multi-robot joint localization and target tracking with
local sensing and communication. In Proc. of the American Control Conference, pages
3261–3266. IEEE, 2019.

129

[136] Pengxiang Zhu and Wei Ren. Distributed kalman filter for 3-d moving object tracking
over sensor networks. In Proc. of the IEEE Conference on Decision and Control. IEEE,
2020.

[137] Pengxiang Zhu and Wei Ren. Fully distributed joint localization and target tracking
with mobile robot networks. IEEE Transactions on Control Systems Technology, 2020.

[138] Pengxiang Zhu, Yulin Yang, Wei Ren, and Guoquan Huang. Cooperative visual-
inertial odometry. In Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), pages 13135–13141. IEEE, 2021.

130

	List of Figures
	List of Tables
	Introduction
	Problem Description
	Key Contributions
	Distributed JLATT for generic models
	Distributed 3-D Target State Estimation
	Distributed Visual-Inertial Cooperative Localization
	Distributed Visual-Inertial JLATT

	Organization of the Manuscript

	Distributed Joint Localization and Target Tracking (Generic Models)
	Introduction and Related Works
	Preliminaries
	Notations and Definitions
	Graphs
	Track-to-Track Fusion
	Problem Formulation

	Proposed Fully Distributed Algorithm
	Distributed Extended Information Filtering
	Joint Localization and Target Tracking

	Stability Analysis
	Simulations
	Experiments
	Conclusions

	Distributed 3-D Target State Estimation
	Introduction and Related Works
	Preliminaries
	Quaternion
	Notation and Definitions

	3-D Distributed State Estimation Algorithm
	Problem Formulation
	Proposed Distributed Kalman Filter

	Simulations
	State Vector and Models
	Results

	Conclusion

	Distributed Visual-Inertial Cooperative Localization
	Introduction and Related Works
	Cooperative Visual-Inertial System
	Inertial Propagation
	Camera Measurement Update

	Distributed Visual-Inertial CL
	Independent VIO Feature: MSCKF Update
	Independent SLAM Feature: FEJ-EKF Update
	Common VIO Feature: CI-EKF Update
	Common SLAM Feature: CI-EKF Update
	Historical Features: CI-EKF Update

	Simulations
	Accuracy and Consistency Evaluation
	Timing Analysis

	Experiments
	TUM-VI Dataset
	Vicon Room Dataset

	Conclusions

	Distributed Joint Visual-Inertial Localization and Target Tracking
	Introduction
	Preliminaries
	Notations and Definitions
	Communication Graph

	Multi-Robot VINS
	IMU State
	Update Strategy for Robot 1
	Update Strategy for Robot j

	Cooperative Target State Tracking
	Tracking State Vector
	Target Measurements
	Distributed Kalman Filter For Tracking

	Results
	Localization
	Tracking

	Conclusion

	Conclusions
	Bibliography

