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Abstract

How can we leverage the cognitive science of lay theories to
inform interventions aimed at correcting misconceptions and
changing behaviors? Focusing on the problem of vaccine skep-
ticism, we identified a set of 14 beliefs we hypothesized would
be relevant to vaccination decisions. We developed reliable
scales to measure these beliefs across a large sample of partici-
pants (n = 1130) and employed state-of-the-art graphical struc-
ture learning algorithms to uncover the relationships among
these beliefs. This resulted in a graphical model describing
the system of beliefs relevant to childhood vaccinations, with
beliefs represented as nodes and their interconnections as di-
rected edges. This model sheds light on how these beliefs re-
late to one another and can be used to predict how interventions
aimed at specific beliefs will play out across the larger system.
Moving forward, we hope this modeling approach will help
guide the development of effective, theory-based interventions
promoting childhood vaccination.
Keywords: graphical modeling; lay theories; conceptual
change; behavioral interventions

Much of the richness of human thought depends on our
ability to combine and synthesize information into coherent
belief systems, lay theories, and mental models. These cog-
nitive processes are vital for interpreting, explaining, and pre-
dicting events; and for planning actions to intervene on the
course of these events. But these same abilities can some-
times lead people astray, generating misconceptions that re-
sult in inappropriate and even dangerous actions. Here, we
focus on one striking and timely example: The resurgence of
diseases like measles in the wake of widespread misconcep-
tions about the safety of childhood vaccines.

In a larger project, we aim to develop effective ways to ad-
dress this and other misconceptions by leveraging the cogni-
tive science of lay theories to effect conceptual and behavioral
change (see Weisman & Markman, 2017, for a review of this
approach). In this paper, our goal is to enrich our understand-
ing of the conceptual “ecosystem” that supports or discour-
ages vaccination. To this end, we develop a graphical model
that describes the system of beliefs relevant to childhood vac-
cinations, representing these beliefs as nodes and their inter-
connections as directed edges. Moving forward, we hope the
use of these formal techniques will let us make quantitative
inferences and predictions to help guide the development of
educational interventions.

Vaccine beliefs and misconceptions
In the early 2000s, now-discredited research led many people
to believe that childhood vaccinations, such as the Measles,
Mumps, and Rubella (MMR) vaccine, could increase chil-
dren’s risk for autism. Vaccination rates declined in many

communities, leading to a resurgence of preventable child-
hood diseases: In 2014 the CDC tracked 667 cases of measles
in the US, where the disease had previously been eradicated
(CDC, 2015). Vaccines do not, in fact, cause autism (Taylor,
Swerdfeger, & Eslick, 2014), but these misconceptions have
proved to be remarkably difficult to correct (e.g., Betsch &
Sachse, 2013; Horne, Powell, Hummel, & Holyoak, 2015).

One challenge to addressing misconceptions is that they
are often embedded in larger, internally coherent belief sys-
tems that guide how people interpret and respond to evidence
(Lewandowsky, Ecker, Seifert, Schwarz, & Cook, 2012).
Suppose someone thinks the infant immune system is im-
mature, weak, and easily overwhelmed: It might then seem
unreasonable to vaccinate a 2-month-old baby against 5 or
more diseases at once, as the CDC recommends. Similarly, if
someone believes that the medical community is unduly influ-
enced by pharmaceutical companies, she might be skeptical
when medical studies come out in favor of these companies’
interests. Such beliefs might sustain the misconception that
vaccinating children is dangerous, even in the face of counter-
evidence.

For educational interventions to be effective, they must be
sensitive to the broader conceptual context in which they’ll
be interpreted. In the case of vaccine attitudes, interventions
that simply emphasize the safety of vaccines may not be con-
vincing to people who hold strong beliefs about the vulner-
ability of the infant immune system or corruption in medi-
cal research—but other beliefs might be more amenable to
revision. Consistent with this, Horne et al. (2015) found
that straightforward reassurances of vaccine safety were in-
effective in changing people’s attitudes toward vaccination,
but informing people about the risks of measles, mumps, and
rubella resulted in more positive views of childhood vacci-
nation. As in many domains, our understanding of the con-
ceptual system driving vaccination decisions is limited. Hav-
ing hypothesized that some set of beliefs might be relevant to
people’s vaccination decisions, it would be extremely useful
to validate these intuitions and specify precisely how these
beliefs relate to or inform one another.

How can we effectively transform a qualitative account
into a useful, testable, model of a lay theory? In this pa-
per, we describe a graphical modeling approach to develop-
ing a rich, formal theory of the beliefs surrounding vaccina-
tion decisions. We began by identifying potentially relevant
beliefs, developing reliable instruments for measuring them,
and using those instruments to survey a large sample of par-
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ticipants. Then, we used a state-of-the-art graphical modeling
approach—Bayesian network structure learning (for a review,
see Scutari & Denis, 2014)—to discover and describe con-
nections among these beliefs and represent them in a quanti-
tative model. We consider this project a first step in a longer
process that we hope will yield a rich, quantitatively precise
theory of this conceptual system.

Study
Our goal was to use behavioral data to develop a graphical
model of a conceptual system that could support or discour-
age vaccination. This process involves many choices about
data representation, as well as trade-offs between the fit, com-
plexity, and intelligibility of the models produced. Here we
describe the steps we took to build this model, highlighting
key decision points that shaped the resulting model.

Scale development: Identifying and measuring
relevant beliefs
The first and perhaps most consequential decision points con-
cern the set of beliefs we hypothesized are relevant to vacci-
nation decisions, and how we chose to measure these beliefs.
Our outcome of interest was participants’ intentions to vac-
cinate their children (vaccination intentions). Drawing on a
variety of sources, including research on anti-vaccine skepti-
cism, anti-vaccine websites, and our own qualitative surveys
with vaccine skeptics (not reported here), we generated a list
of 13 additional beliefs that might influence this outcome.

These included two broad worldviews: (1) naturalism, a
general preference for natural over artificial things; and (2)
holistic balance, one important aspect of attitudes toward
alternative medicine (McFadden, Hernandez, & Ito, 2010);
as well as three slightly more specific theories about par-
enting and medicine: (3) general parental protectiveness;
(4) parental expertise, namely the belief that parents usually
know more about their children’s health than medical experts;
and (5) medical skepticism, including concerns about phar-
maceutical companies and corruption in the medical commu-
nity. In addition, we identified a variety of specific claims
about vaccines that seemed important to people’s arguments
for and against vaccination, including beliefs about (6) the
overall safety of vaccines (vaccine danger); (7) toxic addi-
tives in vaccines; and (8) vaccine effectiveness, how effective
vaccines are in preventing disease; as well as a variety of spe-
cific claims about childhood diseases like measles, mumps,
and rubella, including beliefs about (9) disease rarity and
(10) disease severity. Beyond this, we theorized that intu-
itive theories of the infant immune system might be relevant,
including beliefs that (11) the infant immune system is weak
(IIS: weakness); (12) the infant immune system is limited in
its capacity and can be easily overwhelmed (IIS: limited ca-
pacity); and (13) vaccines strain the infant immune system
(IIS: vaccines strain).

We then developed psychometrically robust scales to mea-
sure these beliefs, stipulating that each scale should be brief,

composed of 4-6 statements for participants to evaluate; in-
clude at least one reverse-coded item; and be highly reliable
(Cronbach’s a � .80). After extensive piloting and refine-
ment, we created 14 scales that met these criteria, including
one preexisting scale (the “holistic balance” subscale from
McFadden et al., 2010). Final observed reliability ranged
from .73 to .91. (A full list of items for all scales is avail-
able at https://osf.io/dc5j8/.)

Method
To investigate relationships among the beliefs surrounding
vaccination intentions, we examined covariation among these
beliefs across a large sample of participants. For instance,
if someone strongly endorses medical skepticism, how might
this influence their beliefs about the toxicity of vaccines, or
the severity of diseases like measles? These observed co-
variation relationships shed light on how these beliefs hang
together and influence one another and, combined with struc-
ture learning algorithms, provide a path toward approximat-
ing this conceptual system.

Participants 1200 people participated via Amazon Me-
chanical Turk. All participants had gained approval for �
95% of previous work (� 100 assignments); had verified US
MTurk accounts; and indicated that they were � 18 years old.
Participants were paid $1.60 for about 8 minutes of their time.
Repeat participation was prevented.

Procedure Participants were told that we were interested in
their opinions about a variety of topics. They then proceeded
through our 14 scales, rating each statement on a scale from
“Strongly disagree” (coded as -3) to “Strongly agree” (+3);
the order of presentation of these scales and the order of ques-
tions within each scale was randomized for each participant.

Two attention checks (e.g., “Please select somewhat
agree”) were embedded randomly among these questions; the
70 participants who failed at least one of these checks were
excluded from further analyses. This left a final sample of n
= 1130 (94% of our full sample).

Data preparation Scores for each scale were calculated as
the average of the responses to questions in that scale, after
reverse-coding; for all scales, the theoretical range of scores
was -3 to +3. The final dataset for modeling included 14
scores for each participant.

Model Building
Our primary goal was to build a formal model that could ap-
proximate the conceptual relationships among beliefs related
to vaccine intentions. This brings us to our second decision
point: How to model the data. We conceived of these beliefs
as influencing one another in asymmetric ways, as in, for ex-
ample, causal relationships (Pearl, 2009) and logical implica-
tion (Williamson, 2001). These types of asymmetric relations
can be well-captured in a Directed Acyclic Graph (DAG),
where each belief is represented as a node in a network, and
all edges between nodes are directed, i.e., connections run
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Figure 1: Cross-validation results. Left: Log-likelihood loss predicting out-of-sample data across 10 run 10-fold cross-
validation. Right: Number of edges in models generated by each algorithm. Algorithms are named according to the use
of the theory-based blacklist, and the threshold used (e.g., mmhc-theory-05 is the MMHC algorithm with the theory-based
blacklist and a = .05).

in one direction only. For instance, an edge from naturalism
to medical skepticism would indicate that naturalism beliefs
influence medical skepticism. Because we measured beliefs
continuously, we employed gaussian (linear) DAGs.

This class of models has several desirable qualities. First,
there are efficient algorithms for “learning” these network
structures from data, allowing us to discover possible rela-
tionships among beliefs using observed correlations in a large
sample of participants. Second, a DAG can be used to gen-
erate inferences based on information about a subset of the
network’s nodes. This allows us to predict a person’s be-
liefs about a given topic (e.g., vaccine safety) based on ob-
servations of their beliefs about another topic (e.g., medical
skepticism). Finally, these networks are capable of gener-
ating predictions about the consequences of intervening on
nodes within these systems, an important advantage when us-
ing these networks to craft real-world interventions.

Incorporating theory
Structure-learning algorithms operate in a “bottom-up” fash-
ion, generating a model based on raw data. Still, there are
opportunities to exert “top-down” influences on this theory-
building process. This brings us to our third decision point:
whether and how to constrain the search for the structure con-
necting these beliefs. By “whitelisting” or “blacklisting” con-
nections between nodes, we can stipulate that they must or
must not be included in the final model. Such constraints
could be specific (e.g., a link from A to B must be included)
or broad (e.g., C has no “parents,” i.e., no incoming connec-
tions; D has no “children,” i.e., does not feed into any other
nodes).

Before constructing our model, we sorted the 14 measured
beliefs into “tiers” based on how broad or abstract each belief
was. For instance, we considered holistic balance and natu-
ralism to be the most abstract beliefs measured, and labeled
these “worldviews”; we considered our outcome of interest,
vaccine intentions, to be the most concrete measurement of

a specific “intention.” Figure 3 shows the level assigned to
each node in the network. We used this hierarchy of beliefs
to induce a blacklist that would constrain our search space.
We made the assumption that the beliefs surrounding vaccine
decisions would be best described as a generative model, in
which more abstract beliefs set expectations for more con-
crete beliefs or observations (following, e.g., Jern, Chang,
& Kemp, 2014). In other words, “worldviews” could feed
directly into “theories,” “claims,” or “intentions,” but none
of these more concrete beliefs could feed into “worldviews”;
likewise, “theories” could feed into “claims” or “intentions”
(but not vice versa); and “claims” could feed into “intentions”
(but not vice versa). This approach offers a highly generaliz-
able means to incorporating existing a priori theories into the
structure learning process.

Structure learning algorithms

We now turn to our fourth decision-point, the selection of a
structure-learning algorithm. Here, we consider two struc-
ture learning algorithms implemented in the bnlearn R pack-
age (v4.2)– the score-based hill climbing (HC) algorithm and
the hybrid Min-Max Hill Climbing (MMHC) algorithm (Scu-
tari, 2010). In addition, we introduce a new, hybrid approach
that may offer some appealing qualities for our purposes.
Our approach is similar to MMHC, which first restricts the
search space for a directed graph by finding an undirected
“skeleton” describing conditional-independence relationships
among variables. However, unlike the MMHC algorithm,
which uses the “min-max parents” (MM) heuristic algorithm
to constrain the search space, we use state-of-the-art Bayesian
structure learning algorithms implemented in the BDgraph R
package (Mohammadi & Wit, 2017) to identify this undi-
rected skeleton. Like MMHC, our approach then uses the
HC algorithm to find a directed graph. We will refer to this
custom algorithm as “BDHC.”
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Figure 2: Final BDHC model using posterior probability threshold = .95. Nodes are labeled for abstractness, from worldviews
(w), to theories (t), claims (c), and intentions (i). Edge weights indicate standardized linear coefficients from the gaussian
model, which can be interpreted as regression coefficients. Asterisks indicate edges that were directed arbitrarily.

Achieving intelligibility
Because we aim to develop interventions based on the theory
emerging from our model, an important desideratum for this
model is intelligibility. This raises a fifth decision point: the
degree to which we are willing to trade off predictive accu-
racy in exchange for greater intelligibility.

Some degree of simplicity is likely necessary for intelli-
gibility. One proxy for simplicity is sparsity, or the number
of edges present in the graph. Both MMHC and our custom
algorithm, BDHC, offer a fairly direct means to impose vary-
ing degrees of sparsity on the resulting graph. In MMHC the
modeler is free to choose the (frequentist) a criterion for the
restriction phase: A higher a value results in fewer edges.
Similarly, using BDHC the modeler can set the threshold for
the posterior probability of edges to be included in the skele-
ton: In this approach, edges are present in the final graph
only when the posterior probability that there is a dependency
between these nodes, independent of the other variables, is
greater than some specified threshold (e.g., .95).

Cross-validation and algorithm selection
We have highlighted five key decision points in constructing
our model. Several of these, including choosing an algorithm
and a threshold for retaining edges, can be aided by empiri-
cal cross-validation procedures, which allow us to explore a
large space of models while avoiding overfitting. With this
in mind, we split our data into a “training split” (80% of

the data), which we used to develop and compare models,
and a “testing split” (20%), which we used to validate the fi-
nal model’s performance. We performed 10 runs of 10-fold
cross-validation on the training data to compare the perfor-
mance of our different approaches, using identical fold-splits
for all models. Using this procedure, we compared the HC,
MMHC, and BDHC algorithms, using various values for a
(MMHC) and posterior thresholds (BDHC), and including or
omitting our theory-based blacklist.

Cross-validation results comparing these models are shown
in Figure 1. We were interested in both how well the models
produced by these algorithms performed in an out-of-sample
prediction (as indexed by their log likelihood loss) as well as
how complex the resulting models were (as indexed by the
number of edges in the resulting graphs).

A few points are apparent from the results of cross-
validation. First, the inclusion of the theory-based blacklist
(“tiers” of abstractness) had relatively little impact on model
performance. This is promising, as it suggests our existing
theory is not in conflict with the data.

Second, there is a trade-off between the degree to which the
algorithm is tuned toward sparsity and the resulting fit, such
that more complex models generally provide somewhat better
fits. If we were prioritizing predictive power, we would pro-
ceed with the best-fitting model (HC-theory); if we were pri-
oritizing simplicity, we might opt to proceed with the spars-
est model (BDHC-theory-99). For the purposes of designing
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Figure 3: Observed versus predicted values for each belief in the testing set, with predictions from the final BDHC model using
posterior probability threshold = .95 and fit to the training split.

real-world interventions, we would like a model that both al-
lows us to make accurate out-of-sample predictions and that
provides an intelligible theory. Striking the “right” balance
between predictive power and intelligibility is difficult to re-
solve formally.

We thus proceeded informally, attempting to balance con-
cerns for fit and intelligibility in proportion to our project’s
goals. Averaging across folds, the likelihood ratio of ob-
served data under the best-fitting model (HC-theory) com-
pared with the worst-fitting model (BDHC-theory-99) was
only 1.19. Although reliable, these differences in fit are not
sufficient to motivate adopting the most complex models. In-
stead, we sought to identify the best-fitting model that was
sufficiently simple and intelligible for our purposes. To as-
sess intelligibility more directly, we used each algorithm to
learn a graph based on the entire set of training data (n =
904). From among these different options, we chose to pro-
ceed with the model resulting from the BDHC method with a
posterior probability threshold of .95.

This resulted in a partially-directed acyclic graph (PDAG)
with three undirected edges. To generate model predictions
for validation, we chose to set these edge directions arbitrar-
ily, under the assumption that they will not meaningfully im-
pact prediction performance due to score-equivalence (Scu-
tari & Denis, 2014). The resulting network is shown in Figure
2.

Evaluating the model’s performance
To evaluate the model’s performance, we tested its accuracy
in predicting responses among the remaining 20% testing
split (n = 226). After learning the network and fitting its
parameters using the training data split, we generated pre-
dictions for held-out participants’ responses for each variable
by conditioning the network on the remaining 13 (observed)
variables. Figure 3 compares the model’s predictions with

participants’ actual responses.
Collapsing across all variables, the average correlation be-

tween predicted and observed responses was r = .825, ac-
counting for 68.1% of the variance in observed responses.
Correlations between observed and predicted values ranged
from .304 to .899 across the different belief scales. In general,
the model shows greater predictive accuracy for more central
beliefs (e.g., vaccine danger) than for more distant beliefs
(e.g., parental protectiveness). Altogether, this out-of-sample
predictive performance suggests this model can usefully pre-
dict and explain participants’ beliefs.

Discussion
We developed a graphical model of a conceptual “ecosystem”
surrounding vaccination decisions, by combining an initial
qualitative theory with behavioral data using Bayesian net-
work structure learning. The resulting model (Figure 2) of-
fers a preliminary description of the conceptual systems that
support and discourage vaccination decisions.

The ultimate value of this model rests heavily on its val-
idation by future interventional studies. Bearing that caveat
in mind, we consider some preliminary insights and impli-
cations. First, this model confirms that the beliefs we hy-
pothesized would be relevant to vaccine decisions are, in fact,
closely related to each other and to participants’ intentions to
vaccinate their children. Many of the conceptual connections
revealed by this model make sense intuitively. For example,
beliefs about the effectiveness of vaccines, the safety or dan-
ger of vaccines, and the severity of childhood diseases are
the three nodes with direct connections to vaccination inten-
tions. Such findings provide one check on the success of the
model-building process, and suggest it is uncovering mean-
ingful relationships.

Other findings may shed new light on the role of lay
theories in vaccine decisions. For example, a “naturalist”
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worldview—the general view that natural things are better
than artificial things—appears to be strongly related to med-
ical skepticism and parental expertise; all three of these ab-
stract beliefs are related to concrete beliefs that, in turn, feed
into participants’ vaccination intentions. This finding sup-
ports some of our earlier speculations as to why interventions
have often failed to alter vaccine skepticism: These beliefs
may be tied into far-ranging worldviews that affect many as-
pects of people’s thinking, including their interpretation and
response to evidence about the safety of vaccines.

The current model highlights certain beliefs that might be
especially influential in shaping vaccination decisions, such
as beliefs about naturalism, vaccine danger, vaccine effec-
tiveness, and toxic additives in vaccines. Of course, some
of these beliefs may be more or less amenable to interven-
tions. For instance, previous work suggests that it may be
difficult to craft interventions that effectively dispel beliefs
about vaccine danger (e.g., Horne et al., 2015). Still, by re-
vealing the interconnections among these beliefs, the model
suggests ways to overcome these challenges. One promising
approach could be to combine successful interventions from
past research, such as providing information about the severe
dangers of diseases like measles for infants and young chil-
dren (Horne et al., 2015), with information about how and
why vaccines work so well to protect children from these dis-
eases (targeting vaccine effectiveness).

Conversely, some interventions that initially seemed
promising now seem more complicated. For example, we ini-
tially hoped that providing information to parents about how
the infant immune system works—in particular, dispelling the
misconception that it has a limited capacity—could promote
positive attitudes toward vaccination. We were disappointed
to observe the weak first-order correlation between this belief
and vaccine intentions in our behavioral data (r = -.097 in our
training split). The model sheds light on this surprising (lack
of) relationship: Although the belief that the infant immune
system is limited in capacity is positively related to the belief
that vaccines strain the immune system—discouraging vac-
cination, as we had assumed—it also seems to promote the
belief that childhood diseases have severe consequences for
young children, which might, in turn, encourage vaccination.
In light of this, we speculate that attempting to dispel beliefs
about limited capacity might have no effect on a person’s vac-
cine intentions (due to these countervailing forces)—or such
an intervention might have different effects for different peo-
ple, depending on their auxiliary beliefs (e.g., about disease
severity). Simulation studies using this model could help elu-
cidate these possibilities, and will be critical as we continue
to pursue effective interventions.

Moving forward, we envision an iterative process in which
we continue to combine bottom-up, data-driven insights with
top-down theorizing to refine our understanding and develop
effective interventions. First, we can use the model to simu-
late how interventions targeting specific beliefs or combina-
tions of beliefs will affect beliefs throughout the wider net-

work. Based on these predictions, we can choose optimal
sites of intervention, craft interventions aimed at changing
these target beliefs, and measure their effects. Studies and
simulations will allow us to identify where the model suc-
ceeds or fails, and revise our model and theory accordingly
(e.g., by reversing the direction of edges, adding missing vari-
ables, specifying interactions, or modeling non-linear rela-
tionships). If these interventions have positive outcomes, we
can begin translating them into more applied contexts.

Developing educational interventions is difficult, and test-
ing these interventions, particularly in person, can be ex-
tremely costly. Here, we illustrated a promising and novel
method for moving effectively from intuitions about lay the-
ories to empirically validated methods for correcting miscon-
ceptions and improving decisions.
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