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Abstract
Multipartite Entanglement in Rabi Driven Superconducting Qubits
by
Marie Lu
Doctor of Philosophy in Physics
University of California, Berkeley

Professor Irfan Siddiqi, Chair

In harnessing quantum advantages for computation, there is a need for developing high
fidelity operations on qubits. An algorithm can be broken down into single qubit operations
and multi-qubit entangling gates. However, as the leading quantum processors today are
limited to 50-100 qubits and each qubit is sensitive to decoherence noise (often referred to
as NISQ era devices), running algorithms with long gate depth is difficult. Understanding
the errors that plague existing gates and also expanding the dictionary of available gates
is an important part of building a quantum computer. In this thesis we demonstrate two
multiqubit gate experiments.

In the first experiment we demonstrate a multiqubit entangling gate for superconducting
qubits on an all-to-all connected processor that draws upon the advantages of Rabi driven
qubits. We also take inspiration from the ion qubit community by using a Mglmer-Sgrensen-
like interaction through the use of a shared coplanar waveguide (CPW) resonator driven
superconducting qubits. We perform sensitivity analysis to understand the parameters that
limit our gate fidelities.

In the second experiment we introduce and demonstrate a technique for scalable RB of many
universal and continuously parameterized gate sets, using a class of circuits called randomized
mirror circuits. The technique can be applied to a gate set containing an entangling Clifford
gate and the set of arbitrary single-qubit gates, as well as gate sets containing controlled
rotations about the Pauli axes. We use our technique to benchmark universal gate sets
on four qubits, including a gate set containing a controlled-S gate and its inverse, and we
investigate how the observed error rate is impacted by the inclusion of non-Clifford gates. We
also show that our technique scales to many qubits with experiments on a 27-qubit IBM Q
processor. We use our technique to quantify the impact of crosstalk on this 27-qubit device,
and we find that it contributes approximately 2/3 of the total error per gate in random
many-qubit circuit layers.
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Chapter 1

Introduction

Computers are an invaluable part of our lives, integrated into everything from our handheld
phones to supercomputers that help run some of the most powerful computing centers.
However there are still some problems that even most power computers today cannot solve.
Theory developments have shown that exchanging the transistors in classical computers
for new materials with quantum properties could help make previous intractable problems
possible.

However this change in the fundamental building blocks of the computer necessitate a
complete rework of all the higher layers of the computing stack, from gates all the way
to the language that interfaces with users. There are many models of quantum computers.
Among the most popular of models is the gate based quantum computer. Must like a classical
computer, algorithms are mapped into operations on a register of N qubits. Another popular
model is to use quantum bits to model more complex materials and simulate the detailed
dynamics of systems that typically can only be measured for bulk behaviour.

Since the proposal of these new methods of computing, huge resources have been invested
into developing all aspects of the quantum computer, from the base level bits to the algo-
rithms and languages that users might interface with. The end goal is general fault tolerant
quantum computations. The devices that are being made now are currently in the NISQ era,
which stands for Noisy Intermediate Scale Quantum devices. The types of challenges to be
faced depend on the qubit platform. Currently, various types of materials being considered
for the hardware, each with its own advantages challenges. One of the most important yet
conflicting properties of a qubit is its relationship to its environment. On one hand, a qubit
cannot be to strongly coupled to its surroundings. Stray electromagnetic fields, cosmic rays,
and material defects can all be sources that destroy the information stored in the bit. How-
ever, a completely isolated qubit sitting in vacuum is also useless in terms of computation.
The qubit must have some interaction with the environment to allow its state to be manipu-
lated and measured and to interact with other qubits in order to perform operations. These
conflicting needs is one of the hardest parts of constructing a qubit. Among the contenders
are superconducting qubits, atoms, ions, photons, quantum dots, nitrogen vacancy centers,
and majoranas. Atoms, for instance could be great for storing information because they do
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not interact with the environment very much, minimizing sources of decay and decoherence.
But at the same time this same property makes it hard to control and interact with for
faster gates. Superconducting qubits are also a top contender with its fast gate times, but it
has lower connectivity between qubits and requires the processor to be at mK temperatures,
which can be a challenge when scaling up to millions of qubits. Photons are great a traveling
long distances in fiber optic cables and do not require superconducting temperatures but
one of the challenges is the amount of loss they experience going from the fibers to chips.
One of the visions for quantum computers is that there might not be one single type of bit
to do everything, but rather we might have to employ a hybrid approach where some types
of bits are used for storing information and others are used for computation or building far
reaching networks.

The idea of observing quantum behavior in a macroscopic entity was first in the 1980s
and carried out in experiment in 1986 when a layer of insulating material was sandwiched
between two superconductors. Unlike other qubit proposals, superconducting qubits are
macroscopic. This device, known as a Josephson junction, exhibited tunnel behavior of its
electrons when cooled to superconducting temperatures. This component later became the
fundamental building block of one of the most popular superconducting qubits used today,
the transmon. Through focused efforts various versions of the qubit similar to the transmon
that all utilize the Josephson Junction have been realized, each with increasing lifetimes up
to hundreds of microseconds. These growing lifetimes along with the flexibility of having
individual qubit control and readout and qubit structure design are all part of what make
superconducting qubits so attractive.

At the same time, there is work to be done on superconducting qubits before achieving
fault tolerance. For instance, despite the recent improvements, we must continue to grow
qubit lifetimes, reduce qubit crosstalk, understand material defects that cause qubits to cou-
ple to unwanted two-level-systems, and many other technical engineering challenges that
come with scaling up. Some of these include figuring out how make a dilution refrigerator
that is large enough and powerful enough to cool down 1 million superconducting qubits. In
this thesis, we will focus on the area of how to improve the native gates. This encompasses
understanding the sources of error plaguing existing gates, which will touch on in the last
chapter of this thesis. The majority of this thesis, though, will be dedicated to expanding
the dictionary of gates, in an attempt to provide more options when breaking down an al-
gorithm into a series of gates. Superconducting qubits lack the higher connectivity between
qubits as experienced by other platforms such as ion qubits. Superconducting qubits are
printed on the 2-D surface of a silicon wafer which means that generating couplings between
neighboring qubits is easy but connecting a qubit on one side of the chip to one physically
farther away is difficult. In addition, high connectivity typically exacerbates crosstalk chal-
lenges. For this reason, the vast majority of super conducting gates are two qubit gates.
Entanglement between qubit numbers greater than two is achieved often through cascaded
pairwise interactions.

In this thesis look towards other platforms for advantages and inspiration. Specifically,
we work with superconducting qubits but draw inspiration from the ion qubit and NMR
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communities. Ion qubits have natural all-to-all connectivity due the laser that hold them
all in place. This allows them efficiently to do multi-qubit entangling operations with high
fidelity. Furthermore, the NMR community has developed dynamical decoupling techniques
that help isolate qubits from noise. We combine these advantages with the superconducting
qubit system to expand the toolbox of available gates to prepare a maximally entangled
state.

1.1 Structure of Thesis

The rest of this thesis is structured as follows:

In chapter 2, we discuss some of the fundamental building blocks of superconducting qubit
systems. This includes the various components that make up a qubit and also commonly
used state control techniques. We also cover some concepts that are revisited later in the
thesis. In particular this includes the Rabi dressed frame and dynamical decoupling, as the
final version of the gate is operated in the dressed frame.

In chapter 3, we introduce the ion Mglmer-Sgrensen gate. The chapter begins with key
components of the ion gate and motivates why such a gate is advantageous. We then discuss
the differences in the ion and superconducting platforms that make a direct translation of
the gate infeasible. Finally, we bring back some concepts from chapter 2, such as the Rabi
drive, that allow us to adapt the ion gate to superconducting qubit systems. We show that
the Rabi drive is not only a tool to help us adapt the gate but also a helpful feature that
provides the gate numerous advantages.

Chapter 4 introduces the hardware used to implement the gate. This includes processor
design, dilution fridge wiring details, and amplifiers used. Hopefully this section will be
useful reference to anyone who wishes to would like to design microwave components or run
a dilution refrigerator.

Chapter 5 delves into the details of characterizing the chip and calibrating for the gate.
This section is where we call upon the spinlocking technique from the NMR community
previously introduced in Chapter 2. We pair the spinlocking measurement the with res-
onator drives used for the gate to obtain single qubit resonances, which we use to extract
qubit-resonator couplings and photon numbers—important parameters for the gate fidelity.
Additionally, we detail calibration procedures for the Rabi drive powers and resonator drive
phases.

In chapter 6, we show implementations of the gate for 2, 3, and 4 qubits and describe
how we characterize the gate. This section could be useful for anyone hoping to learn how to
implement basic tomographic methods. We show results from state and process tomography.
We detail how we analyze the effect of the Rabi drive on each qubit appears as a global phase
on the gate. In addition, we explore the various factors that could be limiting the gate and
propose an alternative version of this gate that could solve several of its challenges.

Finally in chapter 7, we switch gears from focusing on the intricacies of errors on spe-
cific gate to looking at methods of characterizing errors on a broader scale. We discuss the
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limitations in the current status quo of validation techniques, such as Randomized Bench-
marking. We motivate a new kind of circuit construction as a way of making randomized
benchmarking more scalable while ensuring its ability to capture noise. We demonstrate
that randomized mirror circuits perform just as well as standard Randomized benchmarking
by using both methods to characterize four qubits on our eight-qubit processor. Further-
more, we use the benchmarking data to quantify the amount of crosstalk error by fitting to
error models. Finally, we demonstrate that Mirror Randomized Benchmarking is scalable by
demonstrating it on IBM’s 27 qubit processor.



Chapter 2

Superconducting Circuits and
Techniques

A quantum computer is composed of two-level systems that are used to store information and
serve as a quantum memory. Unlike a classical bit, the quantum bit has a phase component

and is expressed as
W) = al0) + 5I1) (2.1)

where o = cos % and B = €¢?sin g are allowed to be complex values and |a|* and |3|?
represent the probability of being in the |0) and |1) states, respectively. These states are
often visualized on the Bloch sphere. The angles ¢ and 6 determine the azimuthal and polar
angles on the Bloch sphere. The north and south pole represent the |0) and |1) states with
a =1 or B =1, respectively. The coordinates that represent the state on the Bloch sphere

are
d = (sin @ cos ¢, sin 0 sin ¢, cos 0) (2.2)

States with coordinates that land on the surface of the Bloch sphere are called pure states.
States that are inside the sphere are called mixed states. Imperfect qubits in the NISQ
era are not fixed in position on the Bloch sphere. There are mechanisms due to a qubit’s
interactions with its environment that can cause the Bloch vector to change unexpectedly.

The purpose of the rest of this section is to introduce the basic building blocks that going
into superconducting circuits. There are a few key properties that a qubit must have in order
to function for computation. These include

1. two discrete states that serve as the computational basis
2. a method to manipulate the state of the qubit

3. a method to readout the state of the qubit

4. a coupling mechanism to connect qubits

The sections below should touch on each of these aspects.
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2.1 Quantum LC Circuit

The most important feature of a qubit is distinctly addressable quantized energy levels.
Photon qubits use the choice of photon pathway, as measured by a detector, as the qubit
states. Many qubit platforms use energy levels of electron orbitals or nuclear spins found
in naturally occurring atoms and ions. However, naturally occurring energy levels in atoms
are often chosen among of forest of energy levels. The complex level structure provides
opportunities for unwanted transitions. There have been efforts to develop artificial atoms
where the level structure is simplified.

One of the simplest models of quantized energy levels is the quantum harmonic oscillator.
We show that this model is equivalent to the quantum LC circuit, which is a lumped element
representation of artificially made components commonly found in superconducting circuit
systems. However, we also show it is not quite sufficient to be a qubit, although it will
reappear later in this chapter as a useful element for readout and qubit-qubit coupling.

The LC circuit can be first classically described the the sum of it’s energies

Lo 1o
H=-CV°+-LI (2.3)
2 2
as we sum the energies from both the capacitor and the inductor. We can rewrite this in
terms of the charge and magnetic flux by substituting in V = Q/C = dand I =& /L:
QQ (I)Z
H = 2 Tar (2.4)
The first step of quantizing this circuit is to place hats on H, @), and ¢ to turn them into
operators that have the commutation relation [®, Q)] = ¢h. From here, it is noticeable that
the equation has a very similar form to the quantum harmonic oscillator (H = % + 3mw?a?,
allowing us to follow the second quantization procedure of substituting in analogous ladder
operators

1 (& Q
a = \/—% (i — z%> (2.5)

1 (o Q

where w = 1/+/LC and have the commutation relation [a,a] = 1. Making these substitu-
tions, one arrives at precisely the form form of the Hamiltonian for the quantum harmonic
oscillator, as expected

A 1

H = hw(a'a + 5) (2.7)

While this does conveniently have a clear level structure, with equal energy spacing, it is
inconvenient to use as qubit. The equal energy level spacing makes it impossible to uniquely
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Figure 2.1: Cross-section visualization of josephson junction

Figure 2.2: Image of actual Josephson junction after fabrication. Two strips of aluminum
are evaporated on with an oxidation step in between. Top view.

isolate to energy levels to address as a qubit. Any photons that excites the 0 — 1 transition
will also be able to excite up the ladder. A coherent tone from a generator will drives all
of the transitions simultaneously, resulting in a probability of occupying each state in a
Poissonian distribution. In order to select out just a pair of energy levels, we need energy
levels with unique energy separations. The LC circuit must have some additional nonlinearity
to generate anharmonicity.

2.2 Josephson Relations

We add a nonlinear element to the circuit by replacing the linear inductor with a new element
called the Josephson junction. The Josephson junction is composed of two superconducting
layers (typically aluminum) that sandwich an insulating layer, often an oxide. When alu-
minum is cooled down below the T, 1.2K, the electrons experience an attractive potential
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to the lattice phonons that overcomes the repulsive Coulomb potential that normally repels
electrons from each other. Thus, the electrons with opposite momenentum at the Fermi
surface pair up into Cooper pairs, forming a composite boson. These pairs condense into
a Bose-Einstein superfluid condensate and carry charge through the metal without dissipa-
tion. The cooper pairs are also able to tunnel from one superconducting layer to the other
layer, through the insulating oxide. Here we derive the Josephson relations that describe
the dynamics of cooper pairs tunneling in Josephson junctions. Starting from Schrédingers
equation, we obtain a set of coupled equations for the bulk wave functions of the Cooper
pairs on either side of the insulating barrier:

oV
'lh—l - Ulllfl -+ K\Ijg
85 . (2.8)
h——2 = UpWy + KV
( BN 2Wo + 1
where W; = /n;e'®. Here, U; are the energies of the cooper pairs, also known as the chemical

potential. Since each cooper pair contains two electrons, The energy is 2eV, where V' is the
potential across the junction V5 — V;. For convenience, we choose 0V as the middle between
V1 and V5. Thus the above equations become

v/
m@ = eV, + KU,
35 o (2.9)
ma—; = eV, + KU,

We substitute our expression of ¥; into Eq. (2.9)) to obtain

1 ) L ) )
ih {2\/71_171'16”’1 + \/n_l(wl)e”sl} = eV \/n1e"" + K/nye'?

(2.10)
1 . . . . )
th [ TNge'?? + \/nz(z'gbg)e“’h] = —eV\/nae'®? + K\/nie
2,/na
which simplifies to
1 . .
ih {2\/_711 + \/n_l(zc;ﬁl)] =eVy/ni + K\/@e’(@_‘bl)
n
| (2.11)
il lwn_?ng + \/n_Q(z'qsg)] = —eV/ng + Ky/nje ¢2791)
Expressing the exponential quantities in terms of sines and cosines
1 . L eV K In .
2—n1n1 + (igy1) = e + o n—j[cos(gbg — ¢1) + isin(¢y — ¢1)] o1
1 . » eV K |n _ '
— iy + (i) = ——— + —Llcos(¢ — 1) — isin(py — ¢y)]

2712 ih E No
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We equate the real and imaginary parts on either side of the equations to obtain

. 2K :
n, = - ning sin(pg — ¢1)
. 2K .
Ng = T ningsin(gz — ¢1)
: eV K [n (2.13)
¢ = “hn T h n_j cos(pz — ¢1)
: eV K n
Pr=—— 7 n—jCOS(% — ¢1)
We subtract the pairs of equations for ¢z and substitute in ¢ = ¢ — Py
2e K
I =eny = —eny = € Vningsing = I.sin ¢ (2.14)
. 2eV
= 2.15
b= (2.15)

which are the Josephson relations. Jg is the maximum current that can pass through the
junction without dissipation. Together these equations describe the behavior of the electrons
going through the thin insulator. The first Josephson relation informs us that a current can
flow through the barrier even with no applied voltage, just from having a phase difference
between the two superconducting islands. This is called the DC Josephson effect. The second
relation tells us that with a voltage applied, the phase difference will change as a function of
time. This will cause the current through the barrier to oscillate, hence it’s name, the AC
Josephson effect[]

We will derive the expression for the induction and show that, unlike that of a regular
inductor, it is nonlinear. We start by taking the time derivative of the first Josephson

relation: o1 96
— =1 — 2.16
o ~ locos o, (2.16)
Recall that g—f is known from the second Josephson relation. Making the substitution gives
ol  2nlcsV
i 2.17
5 o 080 (2.17)
where we have used the definition of the flux quantum &, = 2% Recall that V = L% SO
rearranging the previous expression gives
) ol
V= 0 (2.18)

2l cos ¢ Ot

!Dearest reader, thank you for spending your precious time on this mediocre text. This footnote has no
purpose other than to provide useless trivia about my third great love: kpop. If you see this footnote, feel
free to let me know at marielu94@gmail.com. It will tickle me greatly. Kpop fun fact 1/7: The first known
usage of the term kpop appeared in on Billboard in 1999.
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and thus
D

L=—"+—— 2.1
2mle cos ¢ (2.19)

2.3 Quantization of the Qubit Hamiltonian

Now that we have a nonlinear element, the Josephson junction, we return to the task of
generating a level structure with unique energy level spacing. We can arrange the JJ and
capacitor together in a variety of combinations, each producing a unique type of qubit.
As mentioned before, designing a qubit is often a balancing acting between allowing for
control and protecting from noise. Different structures of Josephson junctions and capacitor
combinations are protected from different kinds of noise. In Fig. we highlight some of the
common types of superconducting qubits. At the time of writing this thesis, we mainly use
the fixed transmon, tunable transmon, flux qubit, and fluxonium in the lab. The transmon
is an modification of the original cooper pair box with a large shunting capacitor to reduce
the qubit’s sensitivity to charge noise [38|. There are both tunable and fixed frequency
transmons. There is trade-off for this capacitor, however. The increased capacitance also
slightly reduces the anharmonicity, which exacerbates frequency crowding issues. Tunable
transmons have the advantage of being able to better avoid frequency crowding since their
frequencies are adjustable. However, the flux coupling that allows for tuning also introduces
a new pathway for flux noise, typically causing shorter lifetimes. The Xmon is similar to
transmons but has different capacitor geometries. Alternatively, fluxonium is an exciting
candidate for future work. Instead of shunting with a large capacitor, it has a shunting
inductor composed of a chain of small Josephson junctions. This protects the qubit from
charge noise, just like the transmon, while maintaining a large anharmonicity. Furthermore
the inductive loop allows the frequency to be tuned. This typically makes the qubit sensitive
to flux noise as well, but the qubit has a flux noise insensitive sweet spot when half of a
magnetic flux quantum is threaded through the loop. Here it exhibits long coherence times.
In the following derivation and the rest of this thesis, we will be using the fixed frequency
transmon. To better understand the level structure, we start with the familiar Hamiltonian
for a harmonic oscillator

Q2 @2
= =4 — 2.20
2C 3L (2.20)
but for our circuit we replace a linear inductor with a nonlinear inductor, the Josephson

junction.
We make a change of variables here using ® = ®y¢. Now to find the qubit Hamiltonian,
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Figure 2.3: A table of some of the common types of superconducting qubits.
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recall that the power P = I'V so to find the energy we integrate [6]
. d \ hd
H=|[|1Vdt= [ I, —dt
/ / Sm((l) ) 2

] h d
=5 sm(ao) dd

Now the total qubit Hamiltonian is

A Q2 o
H=—-F — 2.21
2C 708 D ( )
with E; = MQC%. In the first quantization step, we promote the conjugate variables ) and
® to operators
O é
H=—-F — 2.22
— Breos| o 2.22)
and make the following substitutions:
i Q
2e
~ 21D
¢ = e
0
such that the Hamiltonian becomes
~ 4
H= %n — Ejcosd (2.23)
and use the substitution Eo = % such that
H = 4Ecn* — Ej cos ¢ (2.24)

Similar to the quantum harmonic oscillator derivation, we perform the second quantization
by defining n and ¢ in term of ladder operators:

n = in(é' — ¢)

o= +e

| |
VR

32EC)

- (5)
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With this substitution, the Hamiltonian becomes
H = —4Ecn*(et — ¢)% — Eycos(p(é +¢)) (2.25)

This is the general Hamiltonian for a Josephson junction and a capacitor, commonly known
as the Cooper Pair Box. The values of the F; and Es can be adjusted to protect from
charge noise. In this lab, we use the transmon regime [38|, where E; >> E¢ so ¢ << 1 and
@ is a small parameter. This allows us to Taylor expand the cos term:

X 2At L A2 A0at L A4
H=—4En2(et — ¢ - B, {1 _ 7 (C; oL ¢ (04'+ 2 ] (2.26)

1 4
~ —A4FEcn?((¢')? + & —éle —eel) — By {1——@ ((eh)? + ¢ —l—cc—l—cc)—i—%(éti-é)‘l}

2
(2.27)

Note that 4E-n? = 4E¢ \/32Ec = \/16E0EJ = \/% and LE;0* = LE, \/QEC \/ZEiEJ _

% = 4Fcn?. Using these identities, we simplify the Hamiltonian

A EAE 4
H = Byt 2| =2 (e + eet) - EJ%(éT + o)t
EcE,
=~ 2| =S (@l 14-¢l0) - EJ%(T+C)
EcE 4
= —Ey+ ~ 2y =5 (2ele 1) - EJ%(?:T + o)t

We remove the constant offsets and simplify

- EcEy .. o .
H=—E;+ =~ 44/ éle — By (&' +¢)
JT 5 J24( +¢)
4
= —Ej+ =~ \/8EcEé'e — EJ— f )

Next, using the rotating wave approximation, we drop any terms that have unequal numbers
of ¢ and é:

4
H=—E;+~ 8ECEJ6T6—EJ;0—4(( 262 + 2(e)? + éfePel + e(eh)%e)

Using commutation relation [¢, ¢'] = 1, we combine the various terms and simplify. We arrive

at
. LY 4. 0 a2
H = (wo + 5) ée+ 2 (¢fe) (2.28)
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Applying the definition ¢ = 3, /7 +1[j + 1) (j|, we rewrite the Hamiltonian in terms of
|7), it’s various energy levels:

A= |(w+3)i+ 32| (2.29)

We now see that the energy levels are anharmonically spaced, allowing us to select the
bottom two energy levels to be the computational basis of the qubit.

2.4 Controlling Qubit Population

Now that we have a qubit, the next step is to show that we can manipulate the state of
the qubit. One drive that appears repeatedly in the rest of this manuscript is the Rabi
drive. This is a semi-classical process. When an electric field, a classically generated pulse,
is applied to the qubit closely resonant with the qubit’s transition frequency, w,, the qubit
will experience populations swaps between the ground and excited states. To see this we
start with the Hamiltonian of the qubit and a drive

Hp = Hy+ Hy (2.30)
]:IO = Wq0, (231)
Hy=d-E (2.32)

where d = ef is the dipole of the qubit and E = (e~ + E*e™at)e. Recall that the qubit
does not have an intrinsic dipole moment?] so the only dipole matrix elements that appear
are the ones that involve different energy levels: p;; = (j|7- €]i) for i # j. Expanding Hy
we have

Hy = (fge [€) (g] + tieg |9) (€]) (ge—iwdt n S*eiwdt)
= (Mgeo-+ + ,uego-—) (ge_i“’dt + g*ei“’dt)

— ,ugeo-—&—ge_lwdt + Iuego__ge—zwdt + ngo-—l—g*ezwdt + Mego__g*ezwdt

Wq0

If we take Hr to the interaction picture by using the transformation U = e ! we obtain

Hr = 11500 1€ + fiogo_E + 1ge0 X8 4 i 0 E*e?wat

We apply the rotating wave approximation (RWA) and drop the terms oscillating at 2wy and
return back to the original frame:

o =" i |
Hr = w0, + Qore ™ + Qfg_edt (2.33)

2Kpop fun fact 2/7: Psy’s video for Gangnam Style was the first Youtube video to reach 1 billion views.
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le)
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X X Wy Typically ~5.5 GHz
19) —Z |9)
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|+) |+)
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a)

Figure 2.4: a) Original qubit basis on the Bloch sphere b) Dressed states as new basis states
that result from a resonant qubit drive.

where we have made the replacement 2 = p&. If we now go to the frame of the drive, then

the Hamiltonian becomes R
Hr =60,4+ Qo +Q0_ (2.34)

where 0 = w, = wy. We can put this into the Schrédinger equation and use a general form
of the wave function [¢)) = ¢0|0) 4+ ¢1]|1). This gives us a set of coupled equations for ¢; and
(&)

icy = Qe (2.35)
’idl = COQ* - 501 (236)

We will consider these coupled equations in two regimes.

2.4.1 Near detuned regime
We set 6 = 0 and take second derivative of the coupled equations above to obtain
icp = Qcy (2.37)
1¢) = " (2.38)
and substituting in our coupled equations from above gives

co = —|Q|2co (2.39)
¢ = —|Qe; (2.40)
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This tells us that the amplitudes evolve as sines and cosines as follows:

W) = cos(|Qt) |1) + z% sin(|€2|¢) |0) (2.41)
The frequency of the oscillations depends on €2 which is proportional to the strength of the
electric field, an experimentally controllable parameter. Thus by choosing the length and
amplitude of the applied microwave field, we can select the final state of the qubit.
In addition, another useful picture to interpret the Hamiltonian in is the frame of the
drive. We apply U = ™%+ to obtain

~

H = (w; —wq)o, + Qo (2.42)

We re-diagonalize the Hamiltonian and solve for new basis states which are superpositions
of the original |g/e) states:

+) = l9) £ &) (2.43)

V2
Most importantly, in the limit of § << €2, the energy separation between these states is
given by

5 5\?
=—= — Q2 2.44
c=-57y(3) + (2.44)
with 0 = w, — wq. This basis is typically called the Rabi Dressed basis and can form a new
effective qubit with energy levels that are experimentally tunable, as they largely depend on
Q. In experiments, we aim for § = 0.

2.4.2 The far detuned regime w; >> 6 >> )

We note here that above, we have dealt with the near detuned regime when the drive
frequency is close to the natural qubit transition. We also touch upon the far detuned regime
when the drive is very far from the qubit frequency. This will be technically relevant in later
parts of this thesis. When doing gates on qubits, there are often many tones present, not
only driving the qubit directly, that could be at a wide range of frequencies. It is important
to understand how these tones affect the qubit.

When the drive frequency is far, we use a method called adiabatic elimination. Intuition
tells us that the populations will rarely transfer to the excited state, meaning |co(t)| = 1 and
le1(t)] =< < 1. Given this insight, we set ¢o(t) = 1 in Eq. such that ¢ (t) = idcq () +i€2.
We an integrate this expression to get the population in the excited state as a function of
time

Q

ci(t) = —g(l — ™), (2.45)

Now we do something similar for the excited state population. Since our detuning is big, idc;
is large, meaning c;(t) will be oscillating very fast, overall averaging out to zero. Hence we
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set ¢1(t) = 0. This gives the relation ¢; = %co. We can substitute this back into Eq. 1)
for icy = |Q2]*/dcy — an easily integrable expression:

2
_lei?,

co(t) = co(t =0)e " 5 (2.46)

The lower state energy appears as if it has undergone an energy shift by %, an effect

known as the AC Stark shift. Intuitively speaking, applying a light tone to the qubit that is
far from the qubit’s transition frequency, shifts qubit frequency by %. The stronger this of
resonant drive, the more the qubit frequency moves. The direct of this shift is set by whether
the drive tone is above or below the qubit frequency. Later in this thesis when we discuss
how to operate the gate, we will have two sideband tones that are a few GHz higher than
the qubit frequency. These will shift the qubit frequency down when turned on, an effect we

must calibrate for to have accurate qubit pulses.

2.5 Coupling Qubits to Resonators

2.5.1 cQED

As we’ve seen earlier, control of the qubit is through classical electronics, and similarly,
measurement of the qubit state must use classical electronics too. In order to readout the
qubit, we must map the qubit state onto something that we can probe with classically. To
understand this process, we look to the (cQED) cavity quantum electrodynamics—and its
extension circuit quantum electrodynamics—a field pioneered by Serge Haroche in the 1970s.
Here we bring back the harmonic oscillator and LC circuit equivalent from earlier in this
chapter. We will show that it is useful for readout.

cQED describes the interaction between a two-level atom and electromagnetic field in a
cavity. The cavity is composed of two mirrors facing one another in a Fabry-Perot geometry.
The low loss reflective walls allow electromagnetic waves to bounce between them resonantly
and form standing waves. If one of the mirrors is slightly transparent, photons in the cavity
will remain in the cavity for a long time, but a small percentage will escape to allow for
detection of processes in the cavity at a rate k.

We can make an analogous setup described the the same physics by using an artificial
atom, such as a superconducting qubit, and a coplanar waveguide resonator. These 1D
transmission lines printed onto dielectric substrates, typically made from superconducting
material like niobium or aluminum. The conducting track is printed with return conductors
on either side, hence the word ’coplanar’ in the name.

To show how we can map the qubit state to this printed resonator, we begin with the
Hamiltonian of the combined system:

~ 1
H= 3% +w,ala + gog(a’ + a) (2.47)
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Figure 2.5: a) Qubit and resonator as lumped elements. b) photo of fabricated qubit and
resonator on a processor.

e expand the o, term into o, 4+ o_ and then go into the interaction picture defined by
U = e~iwso=twrala)t T the interaction picture the Hamiltonian is

H = g [ei(wq+w,«)t0_+a’[ + ei(wq—wr)to__’_a + e—i(wq—wr)to__aT + e—i(wq—l—wr)ta__a}

i(wqg—wr)t —i(wg—wr)t

=g [e oya+e J_aT]

. Now going back to the original frame, we have the Jaynes-Cummings Hamiltonian:

1
H= JWat wyata+g(ora+o_al) (2.48)

Note that the generalized form including all the transmon levels is

Wy . . . . . .
H =2 i)l +walat g (li+1) (Gla+ 1) G+ 1) (2.49)
J

For superconducting platforms, and in particular for readout, we typically operate the system
in the dispersive regime, g; j+1 << wy —w,. We transform the generalized Hamiltonian using
U = eZi M40 Gla+NG+1e’) pere \i = % are small parameters. We make use of the
identity
)\2
AMHe ™ = H — \[T, H] + E[T, [T, H]] + ... (2.50)

and expand the Hamiltonian in terms of small parameter \;

H=Y" - 19 Gl + wpata + ;1 17+ 1) G+ xoala [0) (0] + ) (xjm1y — Xsg1)alals) (|
J

=1
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2
We define y;; = wqgijw Truncating to the two level system gives

H = (wy — X01)0: + (w, — x12/2 + x0.)a'a (2.51)

and x = xo1 — %*. Note that the resonator frequency has gained a qubit state dependent
term yo,, implying that the resonator frequency will shift depending on whether the qubit
is in the ground or excited state. This is particularly useful because by monitoring the
frequency of the resonator coupled to the qubit, we can indirectly infer the state of the

qubit.

2.6 Introduction to Noise and Decoherence

All quantum objects are subject to decoherence. While we could put our efforts into com-
pletely isolating a qubit in vacuum to have longer coherence times, that would also be a
rather useless qubit. Access the qubit through drive lines, coupling or readout resonators
means the qubit cannot be isolated in a vacuum. As such, the qubit and the surrounding
quantum objects like coplanar waveguide resonators are subject to decay through a variety of
uncontrolled degrees of freedom in its environment and within itself. These can be expressed
as noise fluctuations in the qubit Hamiltonian itself. Each noise source is described by its

quantum spectral density
1 .

= — [ (AO)A(t))e™"dt 2.52
3 [ 0@ (252)

While classical noise spectrums describe the magnitude of the noise at a frequency w, quan-
tum noise spectrums describes a system’s ability to absorb and emit energy at hw according
to the decay rates given by Fermi’s Golden Rule. Positive (negative) values of w are associ-
ated with absorption (emission).

Given we typically operate our processors in the k,7' << hw, limit, there are two main
types of decoherence we will be focusing on: relaxation processes that are mainly dependent
on S)(w = w,) and dephasing processes that depend on S)(Jw| << w,). Relaxation is
described by the decay time 77 which is the timescale for a qubit to decay from the excited
state to the ground state, described by the diagonal components of the qubit density matrix.
Deocoherence (T3), on the other hand, is obtained from the free induction decay of a Ramsey
measurement. This is associated with the off-diagonal elements of the density matrix. For
Gaussian noise sources that are weakly coupled and have short correlation times, a qubit’s
decay is described by the Bloch-Redfield equations:

(1 + (loé’2 o 1)€_F1t aﬁ*eiAwte—th)

Oé*ﬂe_iAWte_th |B|2€_F1t

S,\(w)

(2.53)

where I'; is the longitudinal relaxation rate and describes the depolarization along the qubit

quantization axis:

1
M= =Ty +Ty (2.54)
1
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Longitudinal noise fluctuates the qubit vector field and changes the Bloch vector precession
rate on the equator. This contributes to I', that feeds into

1 r
I'y=—=—+7T 2.55
2= =5+l (2.55)
While this decay is exponential in the presence of white noise, it can be non-exponential
when there is other noise like 1/f noise or any other noise that is singular at w = 0. In this
situation, instead of describing the decay with e™"2!, the decay function becomes

f(t)e! (2.56)

where f(t) is some other decay function.

Some common sources of noise include two level fluctuators (TLF) in the qubit junction
tunnel barriers that cause changes in E; and also relaxation events. Another potential source
of noise is fluctuation in the superconducting phase variable . While this is more of an issue
for tunable or flux qubits rather than fixed frequency qubits (as in this thesis), we make not
of it here because it is commonly seen on other processors. This fluctuation can be caused
by deviations in the magnetic field surrounding the qubit or from magnetic vortices in the
superconducting electrodes on the device.

All of the sources listed above contribute low frequency noise.

2.6.1 T

Using Fermi’s Golden Rule, T} has contributions from both relaxation events and excitation
events:

Fl = Frel + Fea:
= [{e| Hint|9)|? p(heg) + [{g| Hintle)|* p(—evy)

This can then be rearranged and written in terms of the noise spectrum
aI{int

e - 25

o\
In the kT << hw, limit, the excitation process is exponentially suppressed so I'y = I,

2 2

P<_hwq)

2.6.2 T, and Dynamical Decoupling Methods

For noise that deviates from Bloch-Redfield theory we provide an example for Gaussian noise.
The accumulated noise in the qubit state relative between the ground and excited states is
described by

. /0 dt! = () + 5o(t) (2.57)
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This fluctuates according to changes in the qubit frequency due to noise sources

_

t
/! /
dp =5 /0 dHN(E) (2.58)

For noise generated by a large number of fluctuators, that are weakly coupled to the qubit,
the overall statistics are Gaussian. When we average over all realization of the Gaussian
distributed noise, we get the decay function

R (2.59)

2 [e's}

i) =5 G0 [ st (2.60)
where gn(t) is a filter function. The simplest measurement to capture the decay function
is a Ramsey measurement. This is where a 7/2 pulse prepares the qubit in a superposition
state of |g) and |e) and then it is allowed to evolve for time ¢ before a second /2 pulse is
applied to map the remaining bloch vector into the z basis for measurement. An alternative
version of this pulse sequence that is also an example of dynamical decoupling is called the
CPMG sequence which also inserts a series of N 7 pulses in between the 7/2 pulses. When
N=0, gn—o = sinc*(wt/2), but in general,

gn(t) = (i) 2

We use 6,, € [0, 1] to be the normalized center of the jth 7 pulse relative to position of the
/2 pulses and 7, is the length of each 7 pulse. As you increase the number of 7 pulses,
the filter function peak moves to higher frequencies, which acts to reduce the contribution
from low frequency, thus increasing coherence times. In the limit of continuous 7 pulses, we
have a Rabi drive, which is the basis of the spinlocking pulse sequence discussed in the next
section. However, this is only beneficial if the noise spectrum is dominated by low frequency
terms. The filter function always integrates to have the same area, regardless of N, so if
the noise spectrum is white or if it is dominated by higher frequency terms, then performing
CPMG will provide no change or make things worse, respectively.

N 2
L4 (—D)NFle™ 42 " (—1) e cos(wrs/2) (2.61)

2.7 Spinlocking and Dressed Frame Lifetimes

When a drive resonant with the qubit transition is applied to the qubit, the Hamiltonian
can be re-diagonalized such that the basis states |+) are superpositions of the original |g/e)
basis states, as described in the section earlier on driving the qubit. In this Rabi dressed
frame, we can define new lifetimes 77, and 715, that are analogous to 7} and 75 of the bare
qubit. These describe the longitudinal and transverse decay of the dressed qubit [78|.
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The T, lifetime can be measured using the spinlocking sequence, derived from traditional
NMR measurements and is an extension of the CPMG pulse sequence referenced earlier. The
pulse sequence consists of a §_ pulse followed by a Rabi drive around the y-axis followed
by a final 7 pulse. This is the limit of using an infinite number of 7 pulses in the CPMG
scheme. The T, lifetime can be measured using by observing the decay of the envelope of
Rabi drive response. Both measurements should produce envelopes that follow exponential
decay function if the noise is purely Gaussian. However, qubits are often subject to 1/f noise
due to TLS’s coupled to the qubit in at surfaces and interfaces. These arise from defects
in the material and result in bistable fluctuators that tunnel between interfaces and cause
telegraphing noise. The key difference between these two schemes is the type of noise they
are senstive to. Ty, is associated with transverse decay in the dressed frame and is sensitive
to low frequency fluctuations in the qubit drive which may cause non-exponential decay
envelopes that are more complicated to fit. It is also difficult to sample enough points to fit
the sinusoid when looking at the qubit response over long periods of time. In contrast, 77,
dynamically decouples from the 1/f noise as it has the drive axis collinear with the Bloch
vector sitting in either the |+) or |—) states such that the qubit decays longitudinally from
the spinlocked state such that the decay function is purely exponential and easy to fit. One
may add an artificial detuning-similar to a Ramsey experiment-to assist with fitting the
data. Furthermore, the decay is dominated by noise at the Rabi drive frequency, instead of
being sensitive to broadband noise. For this reason, the T}, time is typically longer than T}
and 75 times.

We will revisit these measurements as the STAR gate we introduce is done in the Rabi
Dressed frame. The implication is that the main limiting qubit lifetimes are the dressed frame
lifetimes 77 /o, which are longer due to dynamical decoupling. This will be an advantage of the
gate. Furthermore, these spinlocking measurements will also be developed into calibration
procedures for parameters important to the gate.
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Chapter 3
Multiqubit STAR Gate

In this chapter we motivate the advantages of a more highly connected qubit system, partic-
ularly in the era of NISQ devices, and describe a multiqubit entangling gate for transmons on
an all-to-all connected platform that derives inspiration from the ion Mglmer-Sgrensen gate.
We will begin by detailing the Mglmer-Sgrensen gate. We then discuss a direct translation
of this gate to the superconducing platform. We discuss why the direct translation does
not produce a high fidelity gate due to transmon crosstalk, frequency crowding issues, and
fabrication limitations. Finally, we introduce a technique that allows us to emulate many
advantages of ion qubits and successful adapt the Mglmer-Sgrensen gate.

Most of the gate development on superconducting qubits has been in achieving high
fidelity two-qubit gates |51, 35, |74, [57]. This is because superconducting qubit platforms
often lack the higher connectivity between qubits present on other platforms, as it is hard to
place O(n?) qubits in an area that fits O(n) qubits [47]. Thus many multi-qubit entanglement
schemes have nearest neighbor couplings and use cascaded pairwise interactions such as the
demonstration of 20 qubit entanglement on the IBM systems [54]. However, in the NISQ
era where qubit lifetimes are shorter and gates are not at the fault-tolerant threshold, it
is advantageous to shorten the gate depth. There are some works that show multi-qubit
entanglement with three and more qubits on more highly connected systems. For instance,
the Pan group demonstrated entanglement between 10 tunable qubits coupled to a shared
resonator [76]. The qubits are tuned to be close to resonance with each other and the
shared resonator frequency, allowing the qubits to do a SWAP interaction through the shared
resonator. However, this demonstration uses tunable qubits which require a tuning line in
addition to a drive line, increasing the footprint per qubit. This makes scaling up even more
challenging as the community is already dealing with crosstalk issues between neighboring
lines. Furthermore, tunable qubits expose the qubit to 1/f flux noise and typically have
shorter lifetimes than fixed frequency qubits. In general, higher connectivity processors
do invite in its own challenges, such as higher crosstalk, correlated errors, and increased
complexity in spectator qubit dynamics on superconducting qubit platforms. However, the
benefits still make it worth exploring. We attempt to address some of the challenges exposed
by previous demonstrations in our implementation of the STAR gate.
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3.0.1 The Mglmer-Sorensen Gate

We now present the ion gate that inspires the multiqubit STAR gate. Single-operation mul-
tiqubit entanglement is most commonly found in ion qubit experiments where, using the
Mglmer-Sgrensen gate and similar interactions, they have demonstrated GHZ state prepa-
ration of up to 14 ions [53]. Ion qubit are suspended in free space using electromagnetic
fields and the traps provide natural all-to-all connectivity due to the shared phonon mode.
They are able to selectively entangle any subset of qubits, providing greater flexibility when
decomposing an algorithms into a sequence of gates [46]. Their most popular multiqubit
entangling gate is the Mglmer-Sgrensen gate 73], 72, 52].
There are a few advantages of the gate.

1. the gate was designed to be insensitive to the vibrational mode the ions are coupled to.
The key to this is as long as the starting and ending vibrational mode are the same,
the gate can be operated from any phonon mode, eliminating the need to always cool
ions to the lowest temperature possible.

2. The gate is composed of multiple transition paths that interfere to cancel any depen-
dence of the gate’s rates and frequencies on vibrational quantum numbers.

3. The gate is that is scalable, in theory, to entangle as many qubits as can fit in the ion
trap.

4. There are two operating modes. In the near detuned regime, the vibrational modes are
significantly populated. This produces a faster gate. Conversely, in the far-detuned
regime, the gate is slower and two photon transitions are virtual. This does make the
gate less sensitive to any losses in the coupling mode, however.

Demonstrations of the gate have shown over 99.9% fidelity on 2 qubit gates and at maximum
have entangled 14 qubits in one operation. Scaling of the ion gate is currently limited by
correlated errors among the ions such as fluctuations in the homogeneous magnetic field.
Entangled states of N qubits under the presence of such noise decays N? time faster than for
a single qubit. Furthermore it becomes harder and harder to hold more ions in a single trap
as adding more qubits makes the spectrum of the phonon modes more complex and inter-ion
spacing decreases. Finally the coupling strength of the ions to the phonon mode, described
by the Lambe-Dicke parameters scales as v/ N which means that as more ions are added, the
coupling decreases relatively, slowling down all qubit gates, making the qubits more prone
to decoherence, B-field noise, and laser frequency fluctuations. This provides a limit on how
many qubits can be entangled.

The gate is driven by red and blue sidebands driven at frequencies v, = w,; — wy, and
Vp = Wy + wp, Where w, is the frequency of the ion qubit and v, is the frequency of the
shared phonon mode, as shown in Fig. [3.1] These sidebands drive 2 photon transitions
that carry population from the |gg) state to the |ee) state. If one applies the sidebands for

half the time, an entangled state ¥ = % is formed. Key to the entanglement is to
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Figure 3.1: The original ion Mglmer-Sgrensen gate on the left versus the direct transmon
adaptation. Energy scaling differences are shown on the bottom for each platform. In both
systems, g/e label the qubit states. For the ion platform, n labels the vibrational mode,
whereas for the transmon system, n is the number of photons in the shared resonator. The
gate is driven by red and blue sidebands that are at the qubit plus and minus the coupling
mode energy.

select a proper detuning ¢ of the sidebands from the intermediate states of the two photon
transitions. These are the energy levels that are n £ 1 in phonon mode. This ensures that
the intermediate states are not populated at the time of the gate.

Looking at the phonon mode in the phase space picture provides additional insight the
importance of 9. At the beginning of the gate the the phonon mode starts at the origin of
the phase space diagram. During the course of the gate, the phonon makes a circle in phase
space as it entangles with the ions and, at the gate time, returns back to the origin, having
completely detangled from the ions, leaving all the ions entangled with each other.

3.1 A Direct Transmon Adaptation

While it is possible to draw an analogous level diagram with identical sidebands for su-
perconducting qubits, there are several difference between ions and superconducting qubits
that make this direction adaptation infeasible. First, while ions couple using the vibra-
tional modes, superconducting qubits typical couple using the electromagnetic mode of a
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Figure 3.2: The phonon/resonator mode makes a circle in phase space.

coplanar waveguide (CPW) resonator, causing an energy scaling difference between the two
platforms. Ions have qubits in the GHz regime whereas the coupling mode frequency is in
the MHz range. In superconducting qubits, the coupling does not come from shared phonon
modes. Rather it is generated by the electromagnetic mode of resonators, which have fre-
quencies in the GHz regime, just like the qubits themselves. Mapping the ion gate directly
to the transmon platform would result in sidebands that were over 10 GHz apart. Given
the most resonators on superconducting platforms have bandwidths that are at most MHz
wide, the sidebands would be largely be filtered out by the linewidth of whatever resonator
they are being sent into. Second, ion qubits are largely identical in qubit frequency, up to
slight deviations due to the trap environment. In contrast transmon frequencies are at the
mercy of fabrication inaccuracies. In addition, due to crosstalk in qubit control lines, qubits
on the same chip cannot have transition frequencies in case driving one qubit might excite
the g — e or e — f transitions in another qubit. One possible method of dealing with
this is to use tunable qubits, but tunable qubits require an additional tuning line beyond
the usual drive line and thus have a larger per qubit footprint. Tunability also makes the
qubit vulnerable to flux noise and as a result, tunable qubits have shorter lifetimes than
fixed frequency qubits. For these reasons superconducting qubits are intentionally printed
at different frequencies.

This spread in qubit frequencies shifts the energy levels in the diagram shown in Fig.
such that the detunings of the red and blue sidebands from the intermediate states are not
all equal. As mentioned in the previous section, the choice of § is important in ensuring that
the side states are not populated and that qubits are properly disentangled from the shared
mode at the time of the gate. On the superconducting qubit platform, for a fixed set of
frequencies for the red and blue sidebands, ¢ to the side states wold all be unequal, causing
misalignment in the rates of all the two photon transition paths. This would be damaging
to the entanglement fidelity.
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3.2 Multiqubit STAR Gate: A Rabi Driven Transmon
Adaptation

Here we present the multiqubit STAR (Sideband Tone Assisted Rabi driven) gate. The
concept of this work was developed by Sydney Schreppler, a postdoc at QNL. The derivations
were fleshed out by our collaborators Joachim Cohen and Alexandru Petrescu from Professor
Alexandre Blais’s lab at Université de Sherbrooke.

To solve the technical challenges of unequal qubit frequencies Mglmer-Sgrensen gate to a
superconducting platform presented above, we use the dressed states of Rabi driven qubits as
a new effective qubit. We apply a drive resonant with the ground to excited state transition
to each of the participating qubits. As shown in previous chapters, re-diagonalizing the
combined Hamiltonian of the qubit and drive produces new basis state |). The energy level
separation between these states is set by the power of the drive, an experimentally tunable
parameters. This solves both challenges of the direct transmon translation of the MS gate.
First, we create a new effective qubit out of each native qubit with energy levels that we can
experimentally tune to be identical. Second, typically Rabi drives are kept within the MHz
regime so we have also successfully lowered the qubit energy scale down to be much smaller
than the energy scale of the coupling mode (GHz). Now, like the ion situation, we can have
wp — wy << (wp + wy)/2, making them much easier to send into a shared resonator.

The red and blue sidebands are similar to that of the traditional Mglmer-Sgrensen gate.
The sidebands are at w, = w. — Q2 + § and w, = w. + Q + § where w, is the frequency of the
coupling element, the cavity mode, and {2 is the strength of the Rabi drive, an experimentally
tunable parameter. We point out that just like the ion gate case, the sidebands have a slight
detuning ¢ from being resonant with the intermediate states of the two photon transitions
such that these states are not fully populated. By carefully selecting the correct value of
0 which we will calibrate for in Chapter 4, one should ideally have no population in the
intermediate states at the gate time. As indicated by the thick black arrows in Fig. [4.6h,
these sidebands drive two-photon transitions that result in population swaps between |4+, n)
and |——,n) if the qubits are prepared in either |++,n) or |——,n). We note that one may
also initialize the qubits in |—+,n) and generate population swaps with |+—,n).

In the frame rotating at the qubit frequencies and at w. 4+ 0 for an n-qubit gate, the
dispersive Hamiltonian describing the system is given by [5]

H, = —da'a+ > (Qr/2)0,, — xko-,a'a+ Ha(t). (3.1)
k=1

Here, a is the annihilation operator of the resonator, and oy, | = z,y,z, are the Pauli
matrices of qubit k. The effect of the sideband term Hg,(¢) acting on the resonator mode is
to displace the field of the resonator such that a = d+a(t), with a(t) = v/2n cos(Qxt + @a),
where 7 is the mean resonator photon number due to the two sideband tones, and ¢ is the
phase difference of the two tones. After performing the displacement transformation and
going into the qubit frame at the Rabi frequency [please see Supplement for details|, the
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Figure 3.3: Driven transmon adaptation with Rabi dressed qubit levels. Instead of labeling
the levels with g/e, they are now labeled with £, representing superpositions of the original
basis states. The new effective qubit energy is €2, which is qubit drive strenght dependent.
The energy hierarchy has been flipped compared to the ion gate. Here the coupling energy is
higher than the qubit energy. Thus the blue (red) sidebands are at the resonator frequency
plus (minus) Qg.

Hamiltonian reduces to
Hp = —6d'd — 2v2nxJ22 (d + d') + He, (3.2)

where J,, = cos(pa)J, —sin(pa)d,, Ji = >, 01,/2, | = x,y,z are the generalized spin
operators, and He,, = A€ 2! 4 A e 5t L h.c are spurious oscillating terms . The effect
of these terms can be neglected in the limit of large Rabi frequency, § ~ yv/n < xn < Qg.
In this parameter regime, the Hamiltonian of Eq. can be mapped to the Hamiltonian
originally proposed by Mglmer and S¢rensen in the context of trapped ions.

Here, we give a brief review of the working principle of the STAR gatd®] During the
gate, the qubits entangle with the resonator field, resulting in a non-trivial operation on
the qubits U = ¢'2%%5. The origin of this non-trivial phase comes from the qubit-state-
dependent paths that the resonator describes in phase-space. To see this, one can cast the
Hamiltonian of Eq. in the form Hy = —0(d' —a*)(d—a) —a?, with o = 2xv/2nJ,, /4.
The first term describes a harmonic oscillator of frequency § centered on the qubit-state
dependent «, while the second term a? = 8nx?J i, N; 62 describes a qubit-qubit interaction

3Kpop fun fact 3/7: The dance for ‘On’ by BTS was choreographed by a 19 year old choreographer
Sienna LaLau.
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term. Note that the two terms commute. Initializing the resonator field d in the vacuum,
the field state remains in a coherent state and revolves around the qubits-dependent vacuum
positions a, as depicted in Fig. . After one period of evolution 7" = 27/d, the field
state comes back to its initial position (the vacuum), and the qubits and the resonator
disentangle. The qubits undergo a non-trivial evolution U generated by the last term —a?,
with U = exp [z’7r(87‘zx2/62)JiA]. When § = 2y/ny, this implements the entangling gate
U = 2%, With two qubits, U takes the simple form U = L gonT sty up to a global
phase factor, where o7 = cos(¢a)o., —sin(pa)o,,. During the gate, the entanglement of
the qubits with the resonator makes the gate fidelity sensitive to the resonator photon loss
channel. In addition to yv/n < Qg, we therefore require that the gate rate is much larger

than x, i.e Kk < YV7.

3.3 A more detailed derivation of gate Hamiltonian

We now derive the version of the Hamiltonian we use in our simulations. We include res-
onator losses and qubit decay times, but we assume that the transmon is a two-level system,
neglecting higher states. This makes the simulation less accurate for Rabi drives that ap-
proach the anharmonicity, where f states are very likely to be populated. Furthermore, we
assume that the resonator only has one mode that the qubits are coupled to, whereas in
reality, the resonator has many modes. These modes could provide spurious interactions
that affect qubit couplings. However, for our experiment we assume that these other modes
are several GHz away and will not, at least, be populated by the sidebands. Let us con-
sider two transmon qubits coupled to a resonator through a Jaynes-Cumming Hamiltonian,
two resonant Rabi drives applied to the transmons, and two sideband tones applied to the
resonator. The Hamiltonian of the driven system can be written in the following form [60],

2
H(t)/h = Gala+ Y dpblby
k=1

2
. &\ 182
_ ;EJ (cos (%) + §¢—%>

+ 37, (1i(b], — by)

- i(;r(t) + &(t))(al — a), (3.3)
where ,
@), = gi(a+al) + Z 670 (b +bl,).
k=1

Here we note a (resp. a') and by, (resp. b]) the annihilation (resp. creation) operator of
the resonator and qubit k, @. and @, the dressed frequencies of the resonator and qubit
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k respectively, E¥ the Josephson energie of qubit k, ¢y = h/2e the superconducting flux
quantum. The drives applied to the resonator (resp. the transmons) also weakly drive the
transmons (resp. the resonators) through the hybridization. However, if the frequencies of
the system are well separated, these terms can be neglected.

Noting that ¢} < qﬁ] ;» the dressed mode a shares a much smaller part of the non-linearity
than the dressed modes by. This is why we refer to the b modes as the qubit modes and the
a modes as the cavity modes. In the transmon regime, zero-point phase fluctuations of the
modes are small, and we can limit the expansion of the cosine to fourth order. Assuming
that the frequencies of the system are well separated, and |w, — @;| > Q, where Q is the
common Rabi frequency, the Hamiltonian simplifies to

2
H(t)/h = wala+ > wblby — Kb} b,

k=1

2 2
Ta( Z Xkb,tbk) — ) xjubib;blby

J#k
+ Z Qg, (1)i(bl —by)

+Z(€r( )+ e(t))(al - a), (3.4)

where w, and wy, are the renormalized frequencies, xx, X, and K}, are respectively the
cross Kerr coefficient between the resonator and qubit k, the cross Kerr coefficient between
qubit j and qubit &, the self Kerr coefficient of qubit k. The Rabi drives and the sideband
tones take the forms Qp, (t) = Q cos(wit) and €.4(t) = € cos((we + Qvyp)t + 1), where
€2, is the detuning of the tone from the resonator frequency.

One can write €2, = —Qgp + 9, and Q, = Qg + J, where ¢ is a small detuning compared
to Qgsp. We eliminate the drive term in the Hamiltonian by applying the displacement on
the cavity

a=d+ at),
€, e~ (wa—Qsp+o)t etwa—Qsp+0)t
alt) =—; ( “Ospt0o T 2wa—953+5>
ey e~ i(wat+Qsp+o)t et wat+Qsp+0)t
2 ( Qsp +6 +2wa+QSB+5>

We choose €, and €, such that |e|/(Qsp +6) = |&|/(—Qsp +6) = Vii. As |ep] <
2w, + Qgp + 9, one can discard the terms having 2w, £+ Qgp + ¢ in the denominator. The
amplitude of the classical field becomes simply a(t) = v2ncos(Qgpt + ¢a)e H(Wetd)tton)
where ¢y, = ¢T+¢"+” and o = ‘b” . We drop the phase factor e ¥, as it can be ehmlnated
by the transformatlon a— aewﬁz.
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Moving to the frame rotating at the frequencies w, +9 and wy, and discarding the counter
rotating terms, the Hamiltonian becomes

2
H(t)/h = —dd'd — Y Kb} b,
k=1

— (d'd + V27 cos(Qgpt + ¢a)(df +d)

2
+ 20 cos*(Qspt + da)) (Z Xkb,tbk)
k=1

2
— ) xjublb;blby
J#k

2
+ Z Qy, cos(wyt)i(ble™rt — bye™™r). (3.5)
k=1

From this more complete form of the Hamiltonian, we note two possible limitations to the
performance of the gate. First, the cross-Kerr or ZZ interaction, which becomes a resonant
XX interaction when the Rabi drives are on. Secondly, another limitation is due to the finite
ratio of the Rabi frequency over the anharmonicity of the transmons, /K.

Assuming that the anharmonicity of the transmons remains larger than the Rabi fre-
quency, i.e Kj/Qr > 1, we can make a two-level approximations and project the above
Hamiltonian on the ground and excited states of the transmons. In addition, we neglect
the cross-Kerr between the qubits mediated by the resonator, and perform a rotating-wave
approximation on the Rabi drive terms, leading to

2
Q
H — _5d°7 it
(t)/h = —od d+; ST
— (dfd + V27 cos(Qgpt + ¢a)(df +d)
2
+ 20 cos*(Qspt + da)) (Z Xko'zk) ) (3.6)
k=1

where Xr = xx/2. In the following and in the main text (under Circuit QED Imple-
mentation), we take the definition xj; := xj. Setting Qi = Qgp and x; = x for all k, and
going into the frame rotating at the Rabi drive frequency, the Hamiltonian becomes that of

eq.(3.2),
Hp = —dd'd — 2v2nxJ22 (d + d') + He, (1), (3.7)

where J,, = cos(pa)J, —sin(pa)d,, Ji = >, 01,/2, | = x,y, 2z are the generalized spin
operators, and He,, = A e8! 4 A %8 4 h.c represents spurious oscillating terms [17].
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H,..(t) can be neglected as long as one satisfies ||Bis|| < Q. The dominant term in
H.,.(t) comes from the term in third line of eq. , and scales as ynie®*. This leads to a
renormalization of the Rabi frequency that is taken into account in the simulations. This
term is responsible for the fidelity saturation in Fig[6.6b. When the Rabi frequency is set
to Qr = 2Qgp, this term becomes resonant and leads to large oscillation of (ox) seen at
Qr = 60 MHz in Fig. [5.3|

3.3.1 Master Equation

All simulations are obtained using the following master equation:

dp 1
7 ?_L[H(t),p]

+ Z D [\/m%] (p)
+ ZD[WWJ (p)

+ D[ wal (p). (3.5)

where D[M](p) = MpM' — (MMp + pMTM) /2. Here, Tj ) and T, are the spinlocking
times of qubit k, and we use the Hamiltonian of Eq. (3.6]).
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Chapter 4

Experimental Setup

In this section we describe all the techniques used to build a system that allows for maximal
accuracy in controlling the qubits and detecting signals that come back from the chip for
readout. This includes several low temperature methods such as using dilution refrigerators
to keep the processor far under the T, amplification choices, plus wiring and shield methods.
These help to keep stray thermal photons from disturbing the qubits and also help boost the
quality of the signal that is coming back form the chip. In addition, we touch upon design
choices for the processor itself such that we are able to increase control of the qubit and also
maximize the sensitivity of the signal to the qubit state for readout while minimizing sources
of unwanted external coupling.

4.1 Low temperature methods

The superconducting processors must be operated at temperatures lower than the T of the
materials used. For our processors, we use niobium on the ground plane and aluminum for
the junctions. The T of niobium is 9.7 K and 1.2 K for aluminum. However, it is not enough
just to operate slightly lower than these temperatures. Ideally if we do not send control pulses
to a qubit, we would want the qubit to be idling in the ground state. But if the surrounding
environment temperature is too warm, there could be stray photons that excite the qubit
[33]. Typically we design the qubit to have a ground to excited state transition energy that
is much larger than the energy of the thermal photons in its surrounding environment.

Ege = hfge >> kT (4.1)

where typically f,e ~ 5GHz and T" ~ 15mK. Ideally, the qubit is perfectly in equilibrium
with its fridge base plate environment, and thus the probability of the qubit being in the
excited state for a given temperature is described by the Bose-Einstein distribution

1

P = chwg/keT _ |

(4.2)
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With the values given above, this corresponds to an idle excited state population of 107°%.
In reality, we usually measure excited state populations that are orders of magnitude above
this value-anywhere from a few percent to 20% [33]. There are many channels that thermal
photons may reach the qubit and we will cover the methods |13, [39] used to mitigate the
leakage in this section:

1. Using a dilution fridge

2. Design choices of elements on the quantum processor
3. Wiring the fridge and filter choices

4. Heralding

However, even assuming all of these techniques have been perfectly implemented, many
research groups report that there is still thermal population that could be due to hot quasi-
particles |33]. In addition we include a few sections on general hardware choices such as

1. processor fabrication
2. amplification techniques

3. Rabi drive stabilization

4.1.1 Basic principles of a He / ‘He refrigerator

Dilution refrigerators are composed of multiple stages as shown in Fig. with each de-
scending stage colder than the previous one. The coldest one is typically at 10-20 mK. This
is where the sample is attached and thermalized. Coaxial cables that bring signals from
room temperature down to the sample on the base stage are carefully designed with specific
materials at each stage to help thermalize them properly at every stage. We discuss this in
more detail in the wiring section.

The highest stage is the 70K stage. Historically in wet fridges, the helium mixture was
pre-cooled to 77K by a bath of liquid nitrogen, giving this stage its name. However, with
advances in fridge technology, most fridges now are closed circuit dry fridges (wet fridges are
only used for vibration sensitive experiments). Two-stage pulse tube coolers first bring the
top plate down to H0K and the next stage down to 4K. We now explain the basic principles
of evaporative cooling using just *He, a key concept for the rest of this section. First we
have a small pot of “He that is constantly fed from the main bath of helium. A pump
a used to reduce the pressure inside the pump to approximately 0.1 mbar. The reduced
pressure accelerates the evaporation of He particles from the surface of the liquid, causing
cooling. The limit of lowest achievable temperature is set by the exponentially decreasing
vapor pressure. At low enough pressure there will not be enough helium to evaporate to cool
the setup further. This method can cool the system to 1.2K. However, modern fridges don’t
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Figure 4.1: Example of the inside of a dilution refrigerator. This is the Bluefors fridge in
Campbell 109.

just use one type of helium. It is the mixture of *He and “He. Here are the key differences
between *He *He:

1. ®He is lighter, which means that the binding energy between molecules is smaller. This
means it has higher vapor pressure than its heavier counterpart. We can repeat the
evaporative cooling process above with *He, allowing us to cool to 0.25 K.

2. Pure *He has a nuclear spin of [ = 0, meaning that it obeys Boson statistics. It
undergoes superfluid transition at 2.7 K.

3. In contrast, *He has [ = 1 /2, obeys Fermi statistics. The Pauli Exclusion principle
suppresses the superfluid transition until much lower temperatures. Then the *He pair
up into bosons and obey Boson statistics, forming a superfluid.
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Figure 4.2: Phase diagram of helium

When *He and *He are mixed together, the superfluid transition temperature depends
on the ratio of the concentrations, according to the phase diagram Fig. If we follow
the path drawn, we see that if we start at point A, we are in the normal phase. Cooling
the temperature down takes us to point B, where we enter the superfluid phase. Cooling it
further still takes the mix to a state where it is split between a *He rich phase floating on
top of a *He poor phase (the dilute phase that contains mostly “He) as shown in Fig. .
The key part is that the dilute phase has a finite solubility of *He at 6.4%.

If we remove *He from the dilute phase, then molecules of *He from the top layer will
go into the bottom layer to fill the vacant spots to keep the concentration at 6.4%. This is
similar to the evaporative cooling process we described earlier. This is all happening in the
mixing chamber of the fridge that is located on the base plate. A line that is connected to
the mixing chamber from the Still pumps on the bottom of the mixing chamber and is what
pulls these *He molecules from the dilute phase on the bottom. A return line takes the *He
and feeds it back to the *He rich layer in the mixing chamber. The still is typically heated
such that it is not cooled too much by the *He that is pulled up from the mixing chamber.
Otherwise the vapour pressure will get too low and the cycling of *He will stop. We usually
toggle the heater to a level that keeps the still at 700-800 mK.

The reason that this dilution process is more effective than evaporative cooling is that the
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Figure 4.3: Hlustration of how cooling works from the mixing of the isotopes of helium

solubility of *He in *He is constant. This is analogous to the vapour pressure in evaporative
cooling except the vapour pressure decreases over time. This technique allows us to reach
base temperatures of 10 mK.

4.2 Wiring

The dilution refrigerator has lines that pass through each stage down, connecting from the
room temperature environment down to the mixing chamber at 15 mK. These lines include
coaxial drive lines that carry qubit drive signals, readout pulses, DC lines for flux tuning,
pumps for amplifiers, and also readout lines that carry return signals from the chip that
carry information about the qubit state. As mentioned previously, each of these channels
are critical to running the processor but are also sources of thermal noise that can lead
to qubit dephasing, quasiparticles, and reduced lifetimes. We use thermalization of the
lines of cables, attenuators, and other microwave components at each stage of the dilution
refrigerator to mitigate the losﬂ We also add filters with stop-bands outside of the qubit
frequency ranges to further suppress thermal radiation or 1/f noise from electronics. Because

4Kpop fun fact 4/7: The singer Rain auditioned and was rejected by the company JYP 18 times before
he was accepted on the 19th try. He went on to make 7 albums and win dozens of awards. Never give up
folx.
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this experiment used only fixed frequency qubits, we will neglect details about DC line wiring
and focus on coax lines for qubit control and readout. We refer the reader to more details
at [40].

There are two types of heat loads on the lines: passive and active. Passive loads refers
to heat energy which is gained by the stages of the fridge due to conduction through the
microwave lines. Between stages, the heat flow to stage ¢ with temperature T; from stage
1 — 1 for a single coax cable is

pi= [ artolDo o p A,

Ty L;

(4.3)

where po, pa, pc and Ap, Ay, and A, are thermal conductivities and cross-sections of the outer
conductor, dielectic, and center conductor respectively. The length of the cable between the
stages is denoted by L;. To minimize this, we use stainless steel cables, a material with low
thermal conductivity to connect between the stages of the fridge up until the mixing chamber
base. Because stainless steel (SS-SS) wires are very touch to bend and shape, an alternative
that is sometimes used is Cupronickle (CuNi), which has a 20-30% higher passive load than
SS-SS cables. For the sample at base, we use superconducting wire (typically copper) since
everything should be at the same temperature.

In addition to passive loads, the attenuation on the lines and the qubit control and
readout signals add an active load. Attenuation is needed on the RF lines to reduce room
temperature blackbody radiation, also known as Johnson noise. The thermal photons come
from room temperature and propagate down the lines through the lower temperature stages.
The photon occupation number at the base temperature is approximately 1073 and we
typically need at least 60 dB of attenuation is spread along the lines to lower the thermal
radiation to match the mixing chamber environment level. This forces us to use much higher
power from the room temperature generators to have enough power at the qubit after it
passes through the attenuation. To calculate how we spread this attenuation among the
stages, we use the following formula, which describes the photon occupation n; at each stage
7 in terms of the attenuation A;, the temperature 7T;, at the frequency of interest:

ni_l(y) Az -1 1
nZ(V> - Az Az ehv/ksT — ]

(4.4)

Knowing that we would like to have nyixing chamber = 1073, we can use the equation above
to calculate solve for ng;; with a guess value for the attenuation A; and chain together the
calculation stage by stage up. It turns out the putting 20 dB on each stage works pretty
well. Each 20 dB attenuator is designed to transmit 1% of the signal and 99% of of the
radiation is dissipated in the attenuator. We carefully thermalize the attenuators at each
stage to keep. The cooling power of each stage is large enough such that the stage just acts
as an infinite cold bath for the attenuation. For a Bluefors XL.LD400, the cooling power at
each stage is 30 W, 1.5 W, 40 x 1073 W, 200 x 107® W, and 19 x 107 W at the 50K, 4K,
Still, CP, and MXC stages, respectively.
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A diagram of the wiring used for our final experiment setup in the Campbell Bluefors
fridge (Blizzard) is shown in Fig. The qubit drive lines are labeled by @);. These drive
lines have 20 dB attenuators that are anchored and thermalized to each stage. Once we
reach the base stage, we use additional filters as an added layer of protection from noise.
The high pass filter has a cutoff around 4 GHz, just below the qubit frequencies at around 5
GHz. The low pass filter has a cutoff around 10 GHz. These filters allow qubit and readout
pulses through but limit noise at other frequencies. We omit the lowpass filter on the shared
resonator in line because the we require high power for the gate sidebands and there would
be a decent amount of attenuation at around 8 GHz.

4.3 Amplifiers

In the wiring diagram in Fig. there are two amplifiers, both located on the readout out
line, that are key to allowing us to detect the qubit state. They amplify the return signal that
has been reflected off of the readout resonators on the chip. There is a fundamental limit to
how well we can detect the qubit state due to the uncertainty principle and the zero-point
energy fluctuations. Furthermore, for superconducting qubit measurements, we are dealing
with measurements close to this quantum limit at the mixing chamber, but we must also
pass this signal back to room temperature for acquisition while maintaining enough signal to
over noise floor of room temperature electronics. For these reasons, the signal carrying the
qubit state is not just a point in phase space. It has an area of uncertainty around it that
follows a Gaussian distribution, one for each of ground and excited states. The goal of the
amplifiers is to maximize the separation between the two Gaussians while also minimizing
contributions the size of the Gaussians at each amplification stage.

To better understand amplifiers, we introduce a couple of parameters that amplifiers
are often evaluated by. The first is the noise temperature, and related, the noise power. A
resistor at temperature 7" has Johnson noise, which comes from the vibration of the electrons
due to their kinetic energy. The electrons jostling causes the voltage to fluctuate as well with
a root mean square value given by

AhfAFR

‘/7'ms - eh‘f/ka o 1

(4.5)

which reduces to

in the limit of high temperature. This is also known as the Rayleigh-Jeans limit. The
Thevenin equivalent of a noisy resistor is a noiseless resistor plus a generator with a given
voltage. With this picture, we can convert the voltage above to an rms power

Vv 2
Ny = ( o5 ) R = kgTAf. (4.7)
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Figure 4.4: Wiring diagram for all filters and attenuators in the fridge. We note that there
is no attenuation on the readout line and we have two amplifiers: one at 4K and one at base.
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Figure 4.5: Room temperature setup to generate readout signals and demodulate signal
returning from the chip. The local oscillator (LO, typically around 6 GHz) is mixed with
signals from an Arbitrary Waveform Generator (AWG) in the hundreds of MHz regime. This
generates sidebands from the mixer at the resonator frequencies. These signals are sent to
the chip and reflected off of the readout resonators for multiplexed readout. The signals
at come back with a qubit state dependent frequency shift. Returning from the fridge, the
signal is demodulated again by using the mixer in reverse and remixing with the LO. Finally
it is captured by an analog to digital converter (ADC) to be processed by the computer for
another demodulation step. We perform an FFT of the signal captured by the ADC and
record the power of at the frequencies corresponding to the readout resonators as a function
of time to obtain a time trace. We integrate this time trace to obtain a single point in the
IQ plane, as shown in the inset in the bottom left. Each blob in the inset is the result of
thousands of measurements.
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When the noise power white as it is here, meaning is not dependent on the frequency, it can
be characterized with an equivalent noise temperature obtained from rearranging the above

equation
N

T p—
© T GkpAf

(4.8)

where G is the gain of an amplifier.
Another useful descriptor is the noise figure which is a measure of how much the signal
to noise ratio decreases between the input and output of the amplifier:

S;/N;
= —— > 1. 4.9
S,/N, 2 (4.9)
Given that S, = GS;, N; = kgTyAf, and N, = kgAf(T, + T.) where T, and T, are the
equivalent noise temperature before the amplifier and of the amplifier, respectively, we can
rewrite F’

T,
F=1+=2>1 (4.10)
Ty

We typically use multiple amplifiers in a chain, and in this situation, the first amplifier is
the most important. Each amplifier increases the amount of signal. However, there will be
some degradation of signal to noise ratio through each segment of the chain. We can calculate
the overall dynamics using the concepts we built up above. Consider two amplifiers with
gain (G;, noise figures F;, and equivalent noise temperatures T;;. The noise power after the
first amplifier is

N1 = le’BToAf + leBTelAf- (411)
The noise power after the second stage is
NO = G2N1 + GQkBTeQAf = GlGQkBAf(Tcas + To) (412)
1
Tcas = Te _Te . 4.13
1+ Gl ( )
We can convert the noise power to a noise figure
1
Fcastl—i-—(Fg—l). (414)
G
Extending this method for more than two amplifiers we have:
Te2 Te3
Tcas = Te — 4.15
e e T (4.15)
-1 -1
Fcas =F 4.16
e T T (4.16)

These equations show that the performance of the system is dominated by the first
amplifier. The first amplifier should have the lowest noise figure and as much gain as possible.
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The later stages have much smaller impact. For this reason, much research has gone into
developing amplifiers for the base stage, closest to the processor.

For a description of the room temperature setup, see Fig. [4.5] The base stage amplifier
is called a Josephson traveling wave parametric amplifier (JTWPA) on the base stage that
is on the readout out line. This is a wide bandwidth cryogenic amplifier developed at QNL
in 2015 [42]. The TWPA is made from a chain of a couple thousand Josephson junctions.
In contrast to other amplifiers, such as the JPA that amplify over a few tens of MHz, the
TWPA amplifies with 20 dB of gain over a wide bandwidth-over 4 GHz. The JTWPA is
operated using a pump tone that travels down the line of Josephson junctions along with
the signal, facilitating four-wave mixing [61]. The pump is coupled into the signal line using
a directional coupler right before entering the TWPA. Due to its sensitive to changes in the
magnetic field, the JTWPA is always encased in a MuMetal shield and thermalized to the
mixing chamber base.

The second amplifier that the return signal passes through is the Low Noise Factory LNC4
8A High Electron Mobility Transistor (HEMT) LNF-LNC4 8C s/n 1666H. This amplifier
is attached to the 4K plate of the fridge. The HEMT provides 40 dB of gain by generally
achieves noise temperatures at least 10 times the quantum limit.

4.3.1 Heralding

Despite best efforts with a dilution fridge in conjunction with best wiring and shielding prac-
tices, typically we find some excited state population. To compensate for this, we implement
heralding to reduce the effect of spurious excited state population due to thermal photons.
Heralding has been developed on many qubit platforms including trapped ion, photonic, and
quantum dot systems. This work was demonstrated on the superconducting qubit platform
by Johnson et al. in 2012 |34]. Heralding is implemented by inserting an additional readout
pulse before the start of the intended qubit manipulation and final measurement. This al-
lows us to check what the state of the qubit is before each measurement. For instance, a T}
measurement is done by preparing a series of pulse sequences where you apply a 7 pulse to
the qubit followed by a wait time nAT and end with a pulse sent to the readout resonator to
probe the qubit state. Here, n indexes into the series. To add heralding, we would insert an
additional readout pulse before each 7 pulse. The signals from both readout pulses would
be captured by the analog to digital converter the collects the data. After all measurements
have been collected, we check each result from the inserted readout measurements. Then in
post processing, we throw out any results for which this initial readout measured that the
qubit was in the excited state. Depending on the temperature at base and the quality of the
processor shielding, the percentage thrown out can be anywhere between 1% and 10%. This
technique reduces the effect of an incorrect initial state.
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4.4 Device Design

We designed a 4-qubit fixed frequency transmon device (E;/Ec = 70), with all-to-all connec-
tivity through a shared coplanar waveguide resonator. Each qubit has its own qubit control
line and readout resonator (\/4 resonator). The readout resonators on the left and right are
coupled to a readout bus (A\/2) for multiplexed readout. There were a few parameters on
the chip that we paid special attention to.

1.

We prioritized simulating the couplings of the qubits and the shared resonator (),
making them as close to equal as possible. While it would have been easier to have
equal coupling if we placed the qubits on the left and right directly opposite of each
other in a symmetric fashion, we also wanted to avoid direct qubit-qubit coupling.
Placing qubits directly across from one another would have maximized the overlap of
their dipoles. This is why you see the qubits slightly offset from each other to minimize
this.

. In practice, we found that x varied quite a bit from chip to chip. On some chips, the

simulations matched the couplings very well. However, on other chips, we had some
qubits that matched the simulations and other chips that were up to 2x larger in ¥,
despite all of the chips coming from the same design. One possible explanation is that
the wirebonding and packaging environment could be a huge variable. To help prevent
bulk chip modes, we always bond over the shared resonator down the middle. Since
this was always done by hand (by me), there could be a lot of difference per chip.

. We also tried to minimize the value of k. of the shared resonator. We cannot make

kext = 0 because we need to be able to send the red and blue sidebands in. However,
we also need to minimize the chance of photons leaking out of the resonator during
the gate. Unfortunately, ki, the internal loss of the resonator, is dependent on the
fabrication process, material quality, and packaging environment. These are harder
to control for. There have been demonstrations of niobium resonators with > 10° in
quality factor, but these chips have not undergone the qubit evaporation process, which
is believed to reduce resonator quality factors.

. We made several iterations of the chip testing different magnitudes of y. A larger y

contributes to a faster gate, ideally helping fight limiting coherence times. However,
when we made chips with higher y, we also found that x increased as well, that there
was a trade off between the two parameters. This was unexpected. One possible
explanation is that the qubits coupled to the shared resonator also serve as a source of
absorption and loss for any photons in the shared resonator. However, we only tested
a couple of chips with higher coupling and a more detailed, systematic study should
be made.

. We optimized the qubit control line coupling to have both strong enough coupling to

have Rabi drives of at least 40 MHz, but also avoid strong 77 decays.
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Parameter Ideal Value | Experimental Value

wge 5.2 GHz 5.24 GHz

W 5.4 GHz 5.37 GHz

wge 5.8 GHz 5.69 GHz

W;’e 5.6 GHz 5.48 GHz

Shared resonator xq 500 KHz 380 KHz
Shared resonator yi 500 KHz 410 KHz
Shared resonator x» 500 KHz 718 KHz
Shared resonator ys 500 KHz 815 KHz
We 7.84 GHz 7.82 GHz

Shared resonator K., 30 KHz 20 KHz
Shared resonator ks 0 KHz 180 KHz
RO resonator 0 6.2 GHz 6.4 GHz
RO resonator 1 6.4 GHz 6.5 GHz
RO resonator 2 6.8 GHz 6.8 GHz
RO resonator 3 6.6 GHz 6.6 GHz

Table 4.1: Summary of commonly referenced chip parameters

All simulations were done in ANSYS HFSS, a 3D electromagnetic (EM) simulation soft-
ware for designing and simulating high-frequency electronic products.

In Table [4.1], we list some relevant frequencies. We point out that the two qubit gate was
done on Q0 and Q1, while the 3-qubit gate used QO0, Q1, and Q2. Q2 has much stronger
coupling relative to Q0 and Q1, which we believe to be one of the limitations on the gate.
Our target values are in the middle column and the actual experimental values in the last
column.

4.5 Device Fabrication
Here we broadly summarize the steps for fabricating the sample.

1. Clean silicon wafer substrate. Some other labs use sapphire.

2. Deposit a layer of niobium. This becomes the ground plane of the processor. Tech-
nically it is possible to use aluminum as well and one might expect to use aluminum
especially given demonstrations of million Q 3D cavities that use aluminum. However,
somehow people have gotten better results in our lab with niobium. Also niobium
has a larger bandgap and a higher T which is beneficial when it comes to avoiding
quasiparticles.

3. The niobium is then coated with two layers of resist and patterned using a Raith e-
beam writer. The Raith exposes the resist to electrons. The resist under any exposed
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Figure 4.6: Chip with 4 fixed frequency qubits (grey boxes) coupled to a shared resonator
in the middle (purple). We send the sidebands into this line. Each qubit has its own qubit
control line (green). This is where we send any state preparation or tomography pulses and
the Rabi drive. Each qubit also has its individual readout resonator (yellow) coupled to two
readout buses (orange) on the left and right for multiplexed readout. Each readout bus also
has an interdigitated capacitor that helps form a Purcell filter to limit qubit decays through
the readout lines.
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Figure 4.7: Image of chip after wirebonding. We wirebond all edges of the chip to the ground
plane of the PCB. Whenever possible, we use two wirebonds to connect each signal trace to
the chip bond pads. In addition, we bond over any long control lines or resonators such as
the Purcell filter readout bus and the shared resonator in the middle.

areas will dissolve away in the development process leaving exposed niobium. This
allows us to then etch away these parts of the niobium.

4. We then repeat the resist and patterning process for the Josephson junctions.

5. The wafer, now with resist on top and the junction pattern exposed is placed into the
Plassys. Then aluminum is evaporated onto the entire sample covering everything. A
liftoff process is performed after where all the areas of aluminum with resist underneath
are shed from the wafer, leaving only the areas where the aluminum was laid directly
on top of the sample, forming the junctions.

6. We note that the junction evaporation process is actually a three step process where a
layer of aluminum is evaporated, followed by an oxidation step where the chamber is
filled with oxygen and an oxide is allowed to form on the surface, followed by a final
aluminum evaporation step to finish the Josephson junction.

We note here that since niobium is a superconducting material too, one could make
junctions out of niobium. However, the oxide layer for niobium is notoriously difficult to
work with. There is a lot of dielectric loss, resulting in much shorter lifetimes for qubits.
Experiments that use a niobium junction have to use a tri-layer process (Nb-Al-AlOx).

After fabrication, the wafer of 64 chips is probed to measure their room temperature
resistance, which allows us to predict their frequency once cooled down to superconducting
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temperatures. The room temperature resistance can be related to the critical current of the
qubit through the Ambegaokar-Baratoff formula:

1o = t 4.1
= 2R, MoRT (4.17)
which becomes AT )
7{' pr—
J="— 7 4.1
¢ 2¢eR, (4.18)

in the limit of 7" << T¢. From here, one can use the following equations that we derived in
Chapter 2 to calculate the qubit frequency from /¢:

Wg =V 8EJEC - EC (419)
2
e

Ep=—— 4.20

“ 7 20y (4.20)
D1,

Ey=-2¢ (4.21)
2

The first few years, we probed the wafers by hand, but for the last fabrication round,
we used the Micromanipulator P200L semi-automatic probe station to obtain the room
temperature resistance of Josephson junctions on a standard 8 x 8 array of samples. The
tool uses pattern recognition to track its location on the wafer and then shifted the stage for
the probe to access each qubit site. Two probe tips made from tungston carbide and are used
to punch through the hard native Nb oxide of each qubit capacitor paddle simultaneously
and a voltage is applied to measure the resistance going through the junction.

After probing, the wafer is diced and a selected set of chip is cleaned. We package each
chip in a boxes made from oxygen-free copper, which has the best thermal conductivity at
low temperatures. The box has a PCB inside with traces that connect SMA ports on the
outside of the box to the chip in the middle of the PCB. The middle of the PCB has a cutout
that is designed to fit our chips exactly. We GE varnish to glue the chip to two ledges below
the cutout that support the chip. The ledges also create an 0.5 mm airgap between the
chip and the bottom of the box to reduce the effective dielectric constant of the chip mode.
This increases the chip mode frequency to be higher than the frequency range of the circuit
elements. We wirebond the ground plane of the chip to the ground plane of the box and also
use wirebonds to connect all of the drive lines on the chip to lines on the PCB. Typically
we use two wirebonds per bondpad on the chip. Finally, we also wirebond across any major
control lines and resonators on the chip itself to prevent slotline modes.

4.6 Rabi Drive Stabilization

The key feature of the gate in this thesis is the Rabi drive and the tunability of the dressed
basis states. However, this flexibility also requires precise control of this parameter from
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Figure 4.8: a) Fluctuations in power of an Agilent generator in the laboratory. Samples of
the power output for constant generator settings are taken once every 30 seconds. b) Rabi
response of a single qubit with the water cooled racks installed. Rabi drive is able to be
stabilized to within 60 KHz of target. We see an exponential rise upwards at the beginning.
That is when we first close the enclosure doors and let the temperature inside the racks
equilibrate. We see a sharp dip at a little just past 100 min. We quickly open the doors and
see a sharp drop in the Rabi drive. c¢) temperature inside racks over several hours.

the experiment. One challenge that we experienced early on was the fluctuation in qubit
drive power due to the room temperature electronics. We found that the generators and
amplifiers all fluctuated in the output based on the temperature of the room itself. With
an air conditioning unit that turned on and off every 25-30 minutes, we saw the the Rabi
drive fluctuated on a period of 30 minutes with maximum difference up to 1 MHz, making
any Rabi calibration completely obsolete by the time we were ready to measure the gate.
This is especially detrimental when our sideband detunings are small-on the order of a few
MHz, such that any 1 MHz shift in the Rabi drives is significant compared to the sideband
detunings. In addition, broader average room temperature would cycle with the day and
night and the amount of sunlight in the room. It was very hard to take data overnight.
To solve the temperature drift issue, we collaborated with Martin Int’l Enclosures to design
water cooled racks that kept the generator environment stable and helped us stabilize the
Rabi frequency to within 60 KHz.
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Chapter 5

Implementation

In this section we describe the experimental details of tuning up and implementing the gate.

5.1 Pulse Sequence

The pulse sequence for this gate is shown in Fig. and is implemented as follows:

1. Turn on sidebands and send them into the shared resonator. We start the sidebands
10us before the qubit pulses because the shared resonator has a narrow width and we
need to fill the shared resonator to a steady state before beginning the qubit pulses.
If the shared resonator is not in a steady state, the Stark shift on the qubits will be
changing during the course of the gate and that will affect the quality of all the pulses.

2. The qubits have been sitting in the ground state while the resonator is being filled.
Once the resonator is in steady state, we do a state preparation pulse. Typically if
we are just trying to make a GHZ state with the gate, we will prepare in either the
|+) or |-) state. We do this by sending a §_ pulse to the qubit. However, during
process tomography, we have other state preparation pulses as we are preparing a
variety of initial states that span the two qubit subspace. More about this in the gate

characterization sections.

3. Then to do the gate, we must bring the qubits close to resonance with the sidebands
and that requires us to turn on the Rabi drive. Note that the axis of the Rabi drive
is always perpendicular to the axis of the 7 pulses for state preparation. This means
that for the states |£), the Bloch vector does not continue to spin around the YZ plane.
Instead, it may slowly evolve from one basis state to another basis state.

4. After the duration of the gate (which is just the length of the Rabi drive) we finish
with a final qubit pulse that maps any population we are trying to measure back to
the Z-axis for readout.
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Figure 5.1: Pulse sequence. The qubit begins idle, typically sitting in the ground state.
With the sidebands on, a state preparation pulse is applied to the qubit to prepare it in an
eigenstate of the dressed frame. This is usually a +7/2 pulse around the x-axis. However,
without a Rabi drive, the |+) and |—) states are degenrate. Thus we turn on a Rabi drive
about the y-axis to split this degeneracy. Since the drive axis is parallel with the Bloch
vector, the state does not precess. After the appropriate interaction time, a final qubit pulse
is applied to map the chose component of the Bloch vector to the z-axis for measurement.
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The gate is scaled by adding a Rabi drive to any qubit coupled to the shared resonator
that you wish to participate in the gate. Qubits without a Rabi drive are completely out of
resonance with the sidebands by at least 2 GHz, and therefore just experience a Stark shift
as the sit idly.

We point out here that the pulse sequence is reminiscent of the spinlocking pulse sequence
that we discussed in the introduction when we set the state preparation and tomography
pulses to both be § . This gives us some intuition about system.

1. The gate is inherently built to dynamically decouple from low frequency noise. The
lifetimes most relevant to the gate will be the dressed frame lifetimes 7', and T5,, which
are obtained from measurements like the spinlocking measurement. The spinlocking
pulse sequence is a dynamical decoupling method. Especially in the presence of non-
Gaussian noise, like 1/f noise, these lifetimes are typically longer than the bare frame
T} and T, values.

2. William Oliver’s group at MIT has used spinlocking measurements as a form of noise
detection. Sweeping the Rabi drive frequency allows them to adjust the qubit’s sen-
sitivity to the noise spectrum in frequency space. Changes in the decay function give
insight into the type of noise the qubit experiences.

3. The first and last 7/2 pulses are just pulses that map between the bare to dressed
qubit frames. The Rabi drive in the middle splits the degenerate energy levels of the
|[+) and |—) states qubit, turning the qubit into a dressed qubit.

5.2 Calibration

To tune up a new gate, we had to develop calibration protocols for the most important
parameters of the gate: 4, ), and ¢4. For inspiration, we look to the ion community
to see how they calibrate. When the ion experiments tune up the Mglmer-Sgrensen gate,
they measure the individual qubit responses to the sidebands and tune the sidebands until
each qubit has an equal oscillation rate between |g) and |e) due to individual sideband
drives. Given that we are in the driven frame, we would like to generate similar single qubit
population flops using sidebands between the |+) and |—).

We point out in the section above that the pulse sequence for the gate resembles the
classic NMR spinlocking pulse sequence implemented on multiple qubits simultaneously,
under the presence of sidebands. We take inspiration from past experiments from our lab.
In 2012, Kater Murch used a Rabi driven qubit coupled to a dissipative cavity and additional
sidebands to show that one could cool the qubit to either the |+) or |—) state. The experiment
used a spinlocking-like pulse sequence with sidebands, similar to our experiment. The key
difference between their system and ours is that the decay of the cavity is engineered to
be much stronger in their system compared to the qubit-cavity coupling. Conversely, in
our system, our qubit-resonator couplings are higher, giving the qubit an opportunity to



CHAPTER 5. IMPLEMENTATION 53

exchange with the cavity multiple times before the resonator decays. We also expect a
cooling dynamic to be present in our system set by x, but because we are in the high x/x
regime, we also expect that the sidebands will drive population swaps between the |+) and
|—) states before the decay pins you to a final state. These population swaps are exactly
the single qubit drives that are analogously done in the ion systems for calibration. We will
show how we harness these for Hamiltonian spectroscopy and gate calibration.

5.2.1 Calibration of y and n.

In this section we describe the single dressed qubit state population swaps we can engineer
using individual sidebands. We then show that this type of dressed qubit control allows us
to calibrate the parameters most important to our system: y, n, and k. The combination
of x and n sets the gate time and is used to calculate the sideband detuning ¢ necessary for
the gate |56]. Whereas k, the decay rate of photons from the shared resonator, sets a limit
on the fidelity of the gate. We discuss this below when we analyse the sources of errors.

We provide an overview of our characterization procedure in Fig.[5.2] The level diagram
for the single qubit interaction with sidebands is shown in Fig. [5.2 We apply a state-
preparation pulse to initialize the qubit(s) of interest, followed by a Rabi drive around the x
axis to bring the qubits close to resonance with the sidebands. The strength of the Rabi drive
sets the energy level spacing in Fig. and also how close to resonance the dressed qubits
are with the sidebands. For instance in Fig. we sweep (Qp with sideband frequencies
fixed at vp..s + Qg — 6 and v,y — Qp — 0 for Qg = 30MHz and detuning 6 = 2.5 MHz.
The qubit is in resonance with the red (blue) sideband when Qg = 32.5 (27.5) MHz. When
(1g is far from resonance, the dynamics is set by a T; , limited decay of the driven qubit
|78, where T} , is the dressed frame analog of 7} qubit relaxation. In contrast, when Qg is
close to resonance, excitation swaps will occur in addition to the Tj , limited decay. We use
excitation swaps between the Rabi driven qubit and resonator combined with a Stark shift
measurement to calibrate y and n. Where xyn > k, these exchanges occur at a faster time
scale than the loss out of the shared resonator. The red (blue) sideband drives population
swaps between |+,0) (|—,0)) and |—,1) (]+, 1)), shown in Fig. which is a cutaway of
the full chevron in Fig. for Qg. The rate of these oscillations is set by yv/7, and the
observed exponential decay is set by k, cooling the driven qubit to either |+) or |—) [56].
This contrasts with previous works studying the resonance features in the low y/k that show
similar cooling effects without population swaps [56, 3, 36]. The frequency of the oscillations
in Fig. combined with the Stark shift of the qubit - which has a x7n dependence - for
different sidebands power allow us to calibrate xy and n. We explain this in detail in the
Supplement, along with other calibration measurements for the Rabi drive power €2; and the
sideband phase. We note that there is an additional resonance feature at 60 MHz, marked
by the black dotted line in Fig. [5.3] These are generated by higher order terms in the
Hamiltonian due to the presence of the Rabi drive. In general, as discussed later, w, — w,
should be maximized as to push this higher frequency resonance away from the Rabi drive
frequencies for the gate.
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Figure 5.2: Single Rabi driven qubit level diagram with example of sideband positions for
calibrations. For a fixed set of sideband frequencies, there will be two resonances depending,
one for each sideband at specific Rabi drive frequencies and qubit initializations. The red
(blue) sideband will drive transitions between the |+,0) (|—,0)) and |—,1) (|+,1)) states
when the qubit is initialized in the |4) state and the Rabi drive applied to the qubit induces
a Rabi frequency that is equal to the frequency separation of the red (blue) sideband from
the shared resonator frequency.

We use the combination of two measurements to calibrate the coupling strength of the
qubit to sidebands: the spinlocking measurements with sidebands and qubit Stark Shift
measurements as a function of sideband power. Both measurements produce oscillations that
we fit to extract the frequency. The resulting frequencies for the spinlocking and starkshift
measurements exhibit different scalings with respect sidebands powelﬂ In the spinlocking
sequence, we repeat the measurement for several different red sideband powers, recording
the resonant population swaps between |+0) and |—1). We fit the population evolution and
extract the frequency of the oscillations, which has a yv/7 dependency, and sets the strength
of the couplings between the dressed qubit and sidebands, as shown in Fig. |5.4, This yv/n
value sets the gate detuning and also gate time. We also measure the Stark shift of the bare
qubit frequency as a function of the sideband strength using a Ramsey measurement, for
which we expect a yn dependence. Combining these two relations, we obtain the y’s.

5.2.2 Rabi Drive

We repeat Rabi drive measurements and sweep the amplitude of the qubit pulse. The popu-
lation swaps between |g) and |e) for each Rabi drive measurement are fit with a sin function
and the frequency is extracted. We see an increase in the frequency of qubit population

SKpop fun fact 5/7: Tablo, singer and rapper in Epik High, is a Stanford University graduate. He
acquired a bachelors and a masters in English in just 3.5 years. He only started to learn English after
moving to Canada from Korea in 2nd grade with his family.
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Figure 5.3: Chevron obtained from repeating the spinlocking sequence with sidebands on at
various Rabi drive powers. Each horizontal cut is obtained from sweeping the Rabi drive
duration in the spinlocking sequence. The bottom is an example of a linecut at the blue
dashed line where the qubit is resonant with the blue sideband.

swaps with the power of the drive power. We then plot the frequencies as a function of the
amplitude of the pulse, producing a linear dependence (Fig. |5.5p). The linear fit is used to
interpolate between the data points to select the amplitudes required for specific Rabi drive
frequencies.

5.2.3 Sidebands Phase calibration

The phase difference of the sidebands and their relative phase compared to the qubit drive
determines whether the Hamiltonian is an XX or combination of XX and YY with respect
to the |£) basis. Due to the fact that the Rabi pulse we use for the gate has a cosine edge,
there an extra accumulation of phase difference between the sidebands and the qubit drive
depending on the length of the cosine edge. We calibrate the sideband phase such that we
implement the XX interaction. One can tune the gate angle

QOGAH = @A(tr) — Qgpt, = QOA(O) + Qpt, (51)
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Figure 5.4: Example of x calibration procedures. a) Examples of dressed qubit resonant
population swaps at different sideband powers. The fitted frequency is plotted in ¢), following
a /n relation. For the same sideband powers used in a) and c), we measure the Stark shift
on qubit, which is plotted in b) and is linearly related to 7.
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Figure 5.5: a) Fitted Rabi frequencies as a function of the amplitude of the qubit pulse used
to do the Rabi drive. b) Sideband phase calibration. We plot the concurrence at the gate
time as a function of the sideband phase.

by adjusting the sideband phase difference @ (0). The angle is calibrated by initializing the
qubits in |00), running the gate and looking at the concurrence at the gate time as a function
of the sideband phase. Without a cosine edge in the pulse, the minimum of the concurrence
should occur in the plot at ¢ = 0. However, as in Fig. [5.5b), the minimum is offset. We
set the experimental effective angle ¢ to be 217 degrees, which is when the concurrence is
minimum.

5.3 Conclusion

While these calibration procedures have been adequate to tune up our gate for a first demon-
stration, we highly recommend refining these techniques for future experiments aiming for
higher fidelity. One recommendation is to develop a way to better measure how well the
qubit is detangled from the resonator at the time of the gate. Ideally, the calibrations of y
and n that feed into the chosen value of § should account for this, but we don’t currently
have any method of quantifying this. One possible method is to look at the single and two
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qubit purity of the state
v =Tr{p’} (5.2)

at the time of the gate. For a fully entangled two-qubit state, the individual qubit states
should be mixed (purity is low). However, the purity of a properly entangled state should be
high. If the two qubit purity is lower than expected, one possible reason is that the qubits are
still somewhat entangled with the resonator. In ion experiments, they look for a minimum
of the odd qubit states (when starting in an even state) while fine tuning parameters. This
allows them to optimize the gate time and detuning to ensure the resonator returns to its
original state. Perhaps this is a good diagnosic to go on in the future.
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Chapter 6

Gate Characterization

6.1 Introduction to Tomographic Methods

The development of gates and novel state generation methods requires us to have accurate
ways of characterizing these methods so that we can both diagnose the types of errors that
systems could be experiencing and also as a measure of performance. Performance must
be evaluated to determine whether we are satisfying the requirements for quantum error
correction (QEC). Several methods of characterization are available:

1. Quantum state tomography
2. Quantum process tomography
3. Randomized benchmarking

4. Gate set tomography

In this thesis, we will make use of state and process tomography in this chapter and
randomized benchmarking in the next chapter. We devote the rest of this introductory
section to providing some background each of these methods.

Quantum state tomography reconstructs the unknown state p by measuring its individual
components ((k|p)), where k are often the Pauli basis vectors. However, one does not have
to use the Pauli basis vectors and can use some other set of measurement operators £ as
long as they span the Hilbert-Schmidt space with j = 1,...,d%. In general

p; = ({Ejlp)) = Y (E k) {(klp)) (6.1)

Experimentally, we obtain p; by measuring F; a large number of times. Typically for our
experiments that’s on the order of N = 1000. For each measurement, the state is collapsed
onto an eigenstate and we obtain a measurement outcome value m;; = 0 or 1. We then solve
for p using the equation above by applying matrix inversion:

16)) = ((E;|k)) " m)) (6.2)
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where |m)) is the vector of measurement averages and |p)) is the estimated version of the
true density matrix.

Quantum process tomography is an extended version of state tomography. We now wish
to characterize a gate, G, not just a single state. This is done by measuring the Pauli Transfer
Matrix

((KIGI1)) (6.3)

. We now need d* measurements of the probabilities

Pbij = <<E]|G|p2>> :
(CE;1R)) (RIGID) (U pi)) (6.5)

As before, both E; and p; are set by the experimenter and so ((E;|k)) and ({{|p;)) are
known. We can put these two known quantities together as S in the equation above:

7= SF (6.6)

Once again, we invert this equation to solve for 7 = S~!p where 7'is a vector of measurements.
In practice, process tomography amounts to performing state tomography on the results
of the gate for a whole set of initial states that span the N-qubit subspace.

6.1.1 Interpreting the PTM

There are many ways to express the composition of a gate. Of the many expressions there
is the process matrix, the pauli transfer matrix, the Choi-Jamiolkowski, etc, etc. Each form
gives a slightly different insight into the same process. For our experiment we chose to use
the PTM.

The Pauli Transfer Matrix for a gate is a d? by d? matrix defined as a gate’s action
on the Pauli matrices. The values of its entries are restricted to be from -1 to 1. In this

representation, density matrices are written as vectors-denoted by |p)) and each entry is
defined as

pi = ((ilp)) = Tr{Fip} (6.7)

and P; are the Pauli matrices.

6.2 Characterizing the STAR gate

We use a combination of the tomographic techniques described above to characterize the
gate. For the two qubit gate, we use both state and process tomography. For the three and
four-qubit gates, we use state tomography.

First, we study the two-qubit population evolution over time to extract the gate time. To
perform the gate, we implement the full pulse sequence in Fig. on any desired subset of
our qubits. We use Qg and ()1, two qubits with the most similar shared resonator dispersive
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Figure 6.1: Characterizing two-qubit gate. a) Gate evolution for two qubits. Experi-
mental data (points) together with simulations of Eq. (solid lines) with /27 = 30.55
MHz, O, /27 = 29.92 MHz, xo/2m = 380K Hz, x1/2m = 410 KHz, k = 180 KHz. b) PTM of
the experimental data in the |g/e) basis, at Ty = 310 ns, obtained measuring 16 different
initial states. The process fidelity is 81.6%. The average fidelity to the target bell states
91.8%. The solid lines that fit each population are from simulations.

couplings x. The results for our choice of |[++) initial state are summarized in Fig. |6.1]
Maximum entanglement occurs when the |+—) and |—+) populations reach a minimum and
the |[++4) and |——) populations cross, as indicated by the vertical dashed line in Fig. [6.1h.
The gate time at that point is 310 ns, which refers to the length of the Rabi drive applied
to each qubit. We prepare each of the 4 Bell states and perform state tomography at that



CHAPTER 6. GATE CHARACTERIZATION 62

gate time. The state fidelity [59], defined as

F = \/\/po/p, (6.8)

ranges from 87% to 95% with an average of 91%. We do not fully understand the spread in
the fidelities. While we suspected unequal couplings or inaccurate Rabi drives to be potential
reasons, both of these failed to cause large spreads in the fidelity in simulation.

We further characterize our gate using quantum process tomography (QPT) |11, 63|,
which is achieved by preparing 16 different input states and performing state tomography
on each output state. A convenient set of input states that spans the two-qubit subspace is
{I+),1=)19) . [i=)} @ {[+),1=) . l9) , [i=)}, where [i—) = (]+) — i|—))/v2. The measure-
ment basis is chosen as o,, ® g, where m,n = 0,z,y, 2, and o9 = I. Since we measure the
qubits in the o, basis, we apply single qubit tomographic pulses to measure the expectation
values of 0; ® o;. We present our results as a Pauli Transfer Matrix in Fig. [6.1p, which
maps input Pauli state vectors to output Pauli state vectors. We then perform QPT on
the two-qubit entangling interaction with process fidelity of 81.6% between qubits 0 and
1. The average state fidelity of all 16 initial states is 91.8%. We note that the qubit Rabi
drive adds a global phase in the Rabi driven qubit frame that we unwind using techniques
described in the Supplement, resulting in the PTM shown. We also perform QPT on the
identity operation with process fidelity 93.5% as a baseline check of state preparation and
measurement (SPAM) errors (see Fig. in Supplements).

The most important feature of the gate is its scalability, which we demonstrate by gen-
erating a three-qubit GHZ state on @y, @1, Q:

Vo — 1999) + lece).
V2

We note here that for odd numbers of qubits, the Hamiltonian allows us to generate entangle-
ment in either the |+) basis or directly in the |g/e) basis, depending on the initial state and
sideband phase. Given that the two bases have a direct mapping between them, we choose
an initial state and sideband phase combination that directly entangles in the |g/e) basis for
simplicity. We use a Yz pulse to prepare each qubit in the |+) state and then apply a o,
Rabi drive to each qubit for 217 ns. Using individual qubit pulses to do state tomography,
we find state fidelity 90.5%, similar to our two qubit fidelities. The density matrix is shown
in Fig. [6.2l We note that the three-qubit gate time is faster than the two-qubit gate time
because the speed is proportional to the average y; and /7. We used the same sideband
power for both gates, but the third added qubit had a much higher coupling than the first
two qubits, thus raising the gate speed.

Finally, we attempted 4-qubit GHZ state preparation and achieved state fidelity 66% in
200 ns. The density matrix is shown in the Fig. [6.3] Similar to before, the gate time is even
shorter because the final added qubit has the highest x of all qubits on our processor. The
4-qubit fidelity is mainly limited by the large spread in x and crosstalk between ()5 and ()3.
The (Y3 qubit frequency is very close to the e — f transition frequency for (Js. When both

(6.9)
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Figure 6.2: Three-qubit entanglement. Density matrix for three qubits measured at gate
time of 217 ns. The bars represent the amplitude of the density matrix elements. We prepare
the qubits in |+ 4 +) state and use sideband phase calibrated to be 180 degrees offset from
the value used for the two-qubit interactions such that we entangle directly in the bare qubit
basis. Note here that the qubit states are labeled with |g/e) rather than |+). Entanglement
in the £ basis can be done by preparing in the |i—) state and using the same sideband phase
as in the 2 qubit measurements. We chose this for convenience.

qubits are Rabi driven, as during the gate, we see significant f state population for (). To
mitigate this, we had to lower Qg for each qubit to 20 MHz, which further limits fidelity.
We discuss this in our error analysis.

6.3 Unwinding Global Phase from Rabi Drive

The gates applied on undriven transmon qubits commonly take place in the frame rotating at
the mode frequencies. In the case of Rabi driven qubits, the system undergoes the MS gate
in the frame rotating at the Rabi frequencies. As the latter is not kept constant throughout
the entire pulse sequence and as the tomography is done in the original undriven frame,
one needs to track and unwind the phase accumulated to characterize the gate. Without
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" 0.5

T 04

Figure 6.3: Four-qubit entanglement. Density matrix for four qubits measured at gate
time of 200 ns. The bars represent the amplitude of the density matrix elements. We prepare
the qubits in |+ + ++) state and prepare a GHZ state

unwinding the phase, one will notice XI and IX single qubit rotation terms in the PTM that
arise from the Rabi drives.

The Rabi drive pulse, of duration t,, consists a square amplitude pulseﬁ of duration
tsq during which the entangling operation is happening, sandwiched between two cos edge
ramps, of duration ¢,. The gate occurs during the square pulse, and one has t, = t5, + 2t,.

Neglecting decoherence, the propagator corresponding to the full Rabi drive pulse can
be expanded as Utp,O = UdownUgateUup7 with Udown = Utsq+2tr,tsq+tr7 Ugate(tsq) - Utsq—&—tr,tw and
Uswp = U, 0. Note that the populations in Fig. are plotted as a function of 4.

As the ramp time ¢, is much shorter than the inverse gate rate, the qubit-resonator
coupling is (almost) resonant only during the square pulse. Consequently, Ujown and Uy,

6Kpop fun fact 6/7: Min Yoongi, a member of one of the biggest Kpop groups in history, was as a
part-time delivery worker before he debuted. We love humble beginnings.
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consists of local operations on each qubit around the X axis (accumulated phase), given by
Usp/down = exp(—1§2pt,J;/2), where J, = (04, + 04,)/2. The factor 1/2 in Uyp/down comes
from the integral of the cos edge pulse. Here, we have assumed that the Rabi frequencies of
the qubit are the same.

The propagator Ugate(ts;) expands as Ugae(tsqy) = Unrl(tsg)Uptio(tsq), where Ug(ty,) =
exp(—iQrts,J,) represents the single qubit phase accumulated during the gate, and

U gate(tsq) = Ut]jq—i-tr,tr (6.10)

is the time evolution operator generated by the Hamiltonian in Eq. (3.2). Since the two
sideband tones are detuned from one another by 2Qg, the effective sideband phase difference
pa of the gate depends on the time ¢, at which the gate starts. More precisely, one can write
ealty) = oal0) +20,.
The global evolution operator can be cast in the convenient form
Uty = UownUr(tsq) U (US,UESSE (£s0) Usp) (6.11)

R,gate

From the expression of Uyp/down, We note that this operator applies a rotation on the
qubits around the J, axis by an angle Qxt,, and its effect on Uﬁi,gw (tsq) is merely to change

the angle of the gate from @a(t,) to o = @a(t,) — Qgt,. Furthermore, the effective
winding operator takes the form Ureti(tsy) = UdownUr(tsq)Unp = exp(—iQr(tsq +t,)J2),

leading to Uy, o = Uren(t sq)U}f gate(zfsq). By applying the unwinding operator Uliheﬁ(tsq) to
the the measured density matrix, one recovers the density matrix resulting from the MS gate

evolution Ug Sate(tsq)-

6.4 Discussion and Errors

We now turn to a study of the following sources of infidelity: state preparation and measure-
ment (SPAM) errors, shared resonator decay (k), spread in qubit-shared resonator couplings
(Ay), d calibration errors, pulse shaping, and the effects of a lower Rabi drive rate (Qg).
Each error listed here is included in our simulations aside from SPAM errors.

The first major source of infidelity is due to state preparation and measurement (SPAM)
error. Process tomography of the identity process resulted in process fidelity of 93.5%.
Due to the nonzero k of the shared resonator, we start the sideband pulse before the state
preparation pulse and perform all qubit operations, including the tomography pulses, under
the presence of sidebands. However, the presence of sidebands decreases our qubit lifetimes
and pulse quality (see Supplement).

Assuming no SPAM errors, simulations based on Eq. (details found in the Supple-
mentary Materials) suggest x as one of the leading sources of error (a complete summary
of simulated accumulated error can be found in Table . The effect of k is shown in the
decay of oscillations in Fig.[5.3d. During the course of the gate, the resonator makes a circle
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Figure 6.4: Process tomography of the identity operation

in phase space (Fig. and changes its photon population by An = 0.5 as the qubits swaps
excitations with the resonator. This allows the qubits to each simultaneously entangle and
then disentangle with the resonator, leaving the qubits entangled with one other. However,
while the resonator is populated, photons may decay from the resonator. We have designed
the external x of the resonators to minimize the loss of photons during the gate. As such, the
resonator loss is dominated by internal loss. We highlight this source of error first because
we believe it is the most technically challenging to solve. While there have been demonstra-
tions of high quality factor CPW resonators on chips without qubits , this has yet to be
recreated on chips with qubits present and the additional fabrication steps may still lower
the quality factor.

A second source of error that becomes more important with increasing qubit number is
the spread of cross-Kerr couplings, Ay, between the qubits. We define Ay = w
Our simulations show that for a two qubit gate, the contribution of Ay to the 1nﬁdehty is
overshadowed by k. The coupling strengths y; sets the rate of the each segment of the two
photon transition paths. If different qubits have different coupling strengths, then the various
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Figure 6.5: Fidelities to the target states for 16 different initial states labelled in the title of
each subplot, used to construct the PTM of figure 3. The light blue points are the fidelities
without removing the Rabi drive, exhibiting oscillations at 30 MHz for most initial states,
at 60 MHz for |[+,+),|—, —) and no oscillations for |+, —),|—,+). The dark blue points
are the processed data which have been unwound. The points at t=300 ns give an average
fidelity of 92%.

paths will have different rates of population transfer.Since the gate is the interference of all
the various paths, the rates need to line up for to minimize the populations in the side states
and achieve the highest fidelity possible. To verify this experimentally, we measure the two-
qubit state fidelity between two qubits (Qo, ()2) that have the largest Ay among the three

qubits used for our multi-qubit gate. We obtain a state fidelity of 93% for preparing %
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Figure 6.6: Error analysis using simulations of Eq. (3.8) a) For a system composed of
two (blue) or three (green) qubits, the fidelity of the gate is shown as a function of Ay. The
two different styles of lines represent different x values. We exclude qubit decays in order to
isolate the contribution of error due to Ax and use the average of the x., /27 = 500 KHz. b)
State fidelity as a function of the mean photon number 7. A higher photon number raises
the gate speed which helps mitigate the effect of lifetimes but also raises the contribution of
counter rotating terms that cause the fidelity to saturate at approximately 10 photons. c)
Scaling of entanglement fidelity as function of N, the number of qubits, for the best possible
achievable chip. The black dashed line marks the 0.999 fidelity threshold. We set Q2 =150
MHz and y; = 1MHz while varying . All three figures take qubit lifetimes to the industry

best values.
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Error Term

Infidelity (2-qubits)

Infidelity (3-qubits)

Infidelity (4-qubits)

) = 30 MHz

r = 180 KHz
Ax

Qubit
times
0 miscalibra-

life-

0.14%
L.7%
2.14%
2.7%

4%

0.27%
1.9%
6.8%
7.5%

11%

37% (Qr = 20
MHz)
4.34%
26.8%
27.2%

30.5%
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tion by 10%

Table 6.1: Error budget. Accumulated infidelity with each added term, descending, using
parameter values that are currently found on our chip. The last item the table includes an
error in dg, is the only speculative error term, where we quote a 10% miscalibration to give
a intuitive sense of scaling, but we are not currently measuring this value.

QUbIt Tl T2,Ramsey TQ,echo Tl,p T2,p
0 493 £ 14.1 | 13.2 £ 0.9 | 16.0 £ 0.9 | 50-60 | 28
1 57.0 £25.8 | 11.0 £ 4.7 | 13.9 £ 2.6 | 50-60 | 16
2 4877 £ 59 | 1561 £0.5 | 15,703 | 60 45
3 23.8£32 | 11.8£34 129+ 05| 40 18

Table 6.2: Lifetimes of the 4 qubits without sidebands, all in us. The T} , and T3 , are shown
for a Rabi frequency of 30 MHz.

, which is very similar to maximum fidelities observed between )y and );. However, for a
three and four-qubit gate, Ax carries increasing weight in the infidelity. While the three-
qubit gate uses the same qubits as in our two-qubit experiments, we see a drop in state
fidelity as Ay as a larger effect. This takes even greater effect for the four-qubit gate, as
> and (Y3 have almost twice the coupling strength as )y and );. We note that while the
fidelity does strongly depend on Ay, the couplings on this chip were anomalies due to design
and fabrication errors and standard fabrication techniques should allow for Ay values below
15%. We emphasize that for smaller values of Ay, x will become the leading source of error
that stands as a technical challenge.

To further describe the effects of kK and Ay, we again performed simulations with Eq. (3.8)
as a function of the parameters of interest. We summarize the effects of x and Ay in Fig. [6.6]
In Fig. and b, we use resonator loss values that are similar that on our sample and show
fidelity dependence on key system parameters. We take qubit lifetimes to be infinite in order
to isolate the effect of each parameter. Fig. shows the fidelity as a function of Ay, , and
the number of qubits. Fig. shows expected fidelites as a function of the sideband power.
While increasing 7 raises fidelites at first because it decreases the gate time compared to loss
rates, increased n also widens the 2€)p feature shown in Fig. increasing the contribution
of spurious counter-rotating terms in the Hamiltonian. Our simulations (Fig. ) suggest
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that for leading fabrication techniques that produce resonators with quality factors over 5
million and leading qubit coherence times [1, 62|, the gate can be implemented at or above
the fault tolerant threshold of 0.999 fidelity for up to four qubits. Furthermore, the STAR
gate can be useful for running algorithms on NISQ processors for even higher numbers of
qubits.

While x and Ay are the main error sources that we are able to characterize experimen-
tally, there are a few additional contributions that will be important to consider to optimize
for the best attainable fidelities. First, we are currently not verifying how well the qubits
disentangle from the shared resonator at the gate time. Ideally, a proper calibration of the
0—obtained from our measurements of y and n—should ensure this, but because we do not
measure the state of the resonator, there is the possibility of an inaccurate calibration. As
an example, from simulations, a miscalibration of ¢ by 10% on a two-qubit gate would add
an additional 1.3% error. Second is the finite ramp time used in the shape of the Rabi pulse.
This ramp is necessary to keep the spectrum of the pulse narrow in frequency space. How-
ever, as the drive ramps up to the required Rabi frequency, it crosses a resonance with the
sidebands. These are the same resonances used in the spinlocking measurements to calibrate
our chip parameters in Fig. 5.4 These spurious interactions can be mitigated using pulse
optimization techniques |77, |16].

The final source of error is Rabi drive rate. As shown in the chevron plot in Fig. [5.3]
there is a feature at frequency 2{2 marked by the black dotted line, at twice the Rabi drive
frequency typically used for the gate at {2z. The frequency of the oscillations of the 2Qg
feature are at 2 x 30MHz = 60 MHz, and the width of the oscillations is set by yn. For higher
sideband powers and lower Rabi drive frequencies, the oscillations generate counter-rotating
terms in the Hamiltonian that interfere with gate dynamics. In our numerical simulations,
the effects on the gate can be seen in Fig. in the Supplement (comparing 30 and 60 MHz
Rabi drive gates). The fidelity of the two-qubit gate would benefit from increasing the Rabi
drive to over 100 MHz, or equivalently, adding an extra cancellation tone to offset the effects
of the spurious feature.

6.5 Conclusions and Outlook

In summary, we demonstrate a scalable maximally entangling gate on an all-to-all connected
fixed frequency transmon processor between two, three, and four qubits. The gate is gener-
ated through bichromatic microwaves and Rabi drives applied to each participating qubit.
The Rabi drive provides the advantages of reducing limitations on qubit-qubit detunings
during fabrication, dynamically decoupling from noise, and allowing us to entangle any sub-
set of qubits on the chip. For the three-qubit gate, we are able to choose whether to entangle
the qubits in the Rabi dressed basis or the original qubit basis based on the sideband phase
and preparation state, without the need for additional qubit pulses to map between bases.
The four qubit gate is strongly limited by crosstalk, the spread in qubit-resonator couplings,
and loss from the shared resonator. Looking forward, the gate is most limited by photon loss
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Figure 6.7: Comparing effect of counter rotating terms on the population for 30 MHz vs
60 MHz Rabi drive. We see that the small oscillation are much larger for gate 30 MHz

Rabi drives. The counter-rotating terms that form the 2€) feature in Fig. have a larger

contribution to the gate dynamics.

from the shared resonator for four and more qubits. Applying state of the art fabrication
techniques will yield multi-partite gates that exceed the 0.999 fidelity threshold for up to four
qubits. At the same time, for gates with higher numbers of qubits, it is also worth exploring
new adaptations that couple make the gate easier to scale. Some of the major challenges of

this gate are:

1. The loss out of the shared resonator is a major technical challenge.

2. The sidebands are currently turned on before the gate and the gate cannot be performed
until the shared resonator is at a steady state.

3. The single qubit pulses currently always done under the presence of sidebands and are
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degraded by the sidebands.

4. Because the sidebands require extra fill time, overlap with the single qubit pulses,
and must be carefully phase correlated with the qubit pulses, other validation tech-
niques like Randomized Benchmarking or Cycle Benchmarking are harder to imple-
ment. These benchmarking methods require repetitions of the gate and that is hard
to do while keeping track of the phases.

5. While the physics of the gate itself lifts restrictions on the qubit frequency due to
the use of the Rabi drive, the reality of crosstalk on 2D processors still limits qubit
frequencies. For instance, crosstalk still prevents qubit ¢ — e and e — f transitions
from being too close to each other. This is not a fundamental limitation of the gate,
but rather a technical challenge of the superconducting qubit platform in general.

We propose an alternative all-to-all connected scheme for fixed frequency qubits on para-
metrically coupled chip in a 3D flip chip architecture that has similar physics. This gate
is performed in a far-detuned regime, where the shared resonator is barely populated, thus
eliminating the x loss factor. The qubits will be Rabi driven, like the current scheme, for
effective qubit energies that are experimentally controllable. Instead of using sidebands to
generate two photon paths that connect energy levels, we now modulate the shared tunable
coupler at the difference frequency between the states of interest. Again, the Rabi drive is
what allows this parametric gate to be scalable. Many other parametric schemes exist for
two qubit gates. However, modulating at the frequency difference between |ggg) and |eee)
in the bare frame would be several GHz of modulation, which is harder to do. Using Rabi
dressed qubits reduces this frequency difference to something on the order of 60-150 MHz.

The parametric version of this gate has several advantages. Without the sidebands,
tuneup will be much easier since we do not need to fill the shared resonator to steady state.
Instead we will simply begin modulation of the shared resonator at the same time as the
Rabi drive. This adjustment also allows the state preparation and tomography pulses to
be done without an additional Stark shift on them due to sidebands. This should make for
higher quality single qubit pulses, and thus, improved process tomography results.

We also suggest exploring simultaneous implementations of this gate using subsets of
the qubits. We imagine that this could be achieved if the qubits are coupled to different
order modes. For instance, if a shared resonator has 4 coupled qubits, one could imagine
a design where two of the qubits use a lower frequency mode of the shared resonator, and
two qubits couple to the next order mode. One might send two different pairs of red and
blue sidebands, each addressing a different resonator mode—and thus also a different pair of
qubits—potentially allowing for simultaneous STAR gate implementation.

Another future direction for this project is to implement readout from the shared res-
onator. This idea is derived from past work from QNL. This would involve setting up new
room temperature hardware to do homodyne detection on the reflected signal that comes
out of the shared resonator. This could give more insight into noises that are correlated
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[+ —,n)

Figure 6.8: a) Example of lumped element representation of 4 fixed frequency qubits coupled
to a tunable coupler. b) Level diagram for 2 qubits. The yellow arrows represent the
frequency difference that one would modulate the shared coupler at to induce a transition
between the indicated states.

between multiple qubits, which is especially relevant on an all-to-all connected device like
this one.

A final possible direction that could be possible to explore would be to explore bench-
marking and other validation techniques for multiqubit gates like the STAR gate. In Chapter
7, we explore how to better scale randomized benchmarking for two-qubit gates, but bench-
marking for gates involving three or more qubits is still an unexplored territory. Typically,
to make these algorithms more efficient to run, the error models assume only weight 1 and
2 errors, meaning errors are local on individual qubits or at most a neighboring qubit. In
reality, there are often errors such as quasiparticles in coupling resonators that could af-
fect multiple qubits simultaneously and these are best explored on gates that use all-to-all
connectivity. Even crosstalk on a multiqubit device could have higher weights.



74

Chapter 7

Scalable Randomized Benchmarking

Quantum computers suffer from a diverse range of errors that must be quantified if their
performance is to be understood and improved. Errors that are localized to single qubits
or pairs of qubits can be studied in detail using tomographic techniques [58, |69]. However,
many-qubit circuits are often subject to large additional errors, such as crosstalk |23} |70,
67, 66, 65, |49], that are not apparent in isolated one- or two-qubit experiments. There
are now techniques for partial tomography on individual many-qubit circuit layers (also
called “cycles”), including cycle benchmarking [20] and Pauli noise learning |26, |22, [21]. But
quantum computers can typically implement exponentially many different circuit layers, and
it is only feasible to characterize a small subset of them.

Randomized benchmarks [66} 65, 49, |18, (19} 44, 43, |37, (10} 14, 9, |27, 144} 43} |10, |14} (9,
27, 29, 130, |12, 128, |55, 67, |8, 4, 41|, [15, 48] make it possible to quantify the rate of errors in
an average n-qubit layer, by probing a quantum computer’s performance on random n-qubit
circuits. However, established randomized benchmarks cannot measure the performance of
universal layer sets in the many-qubit regime, where quantum computational advantage may
be possible. Those randomized benchmarks that can be applied to universal layer sets, such
as standard randomized benchmarking (RB) [44} 43| and cross-entropy benchmarking (XEB)
[41, |8, |4], require classical computations that scale exponentially in the number of qubits
(n). XEB requires classical simulation of random circuits that are famously infeasible to
simulate for more than approximately 50 qubits [4]. This is because XEB requires estimat-
ing the (linear) cross-entropy between each circuit’s actual and ideal output distributions.
Standard RB of a universal layer set is restricted to even smaller n, because it requires com-
piling and running Haar random n-qubit unitaries [44]. This compilation requires classical
computations that are exponentially expensive in n, and results in circuits containing O(2")
two-qubit gates [71]. Due to the large overhead, even standard RB on Clifford gates—which
has lower overheads and non-exponential scaling—has only been implemented on up to 5
qubits |66, |67, 49].

In this chapter we introduce and demonstrate a simple and scalable technique for RB of
a broad class of universal gate sets. The techniques in this chapter builds up previous work
showing scalable randomized benchmarking using randomized mirror circuits for Clifford
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gates [66]. This work is in collaboration with the Sandia team lead by Jordan Hines and
Tim Proctor, who came up with the theory and performed the data analysis. My contribution
was mainly in terms of implementation of the method on our Advanced Quantum Testbed
device.

The technique uses a novel kind of randomized mirror circuits, shown in Fig. [7.2] and
advances on a recently introduced method—mirror RB (MRB)—that enables scalable RB
of Clifford gates [66]. Please refer to [66] for details on demonstrating that this technique
is scalable for Clifford circuits. Here we expand this technique to include universal gate
sets. Our randomized mirror circuits use a layer-by-layer inversion structure that enables
classically efficient circuit construction and prediction of that circuit’s error-free output.
Furthermore, randomized mirror circuits do not contain the exponentially large subroutines
used in other RB methods, which enables MRB of even hundreds or thousands of qubits.
To perform MRB on universal gate sets, we run randomized mirror circuits of varied depths
(d) and compute their mean observed polarization [66], a quantity that is closely related
to success probability. The mean observed polarization versus circuit depth is fit to an
exponential decay, as shown in Fig. [7.3pb. As in standard RB, the estimated decay rate is
then simply rescaled to estimate the average error rate of n-qubit layers. MRB therefore
preserves the core strengths and simplicity of standard RB and XEB, while avoiding the
classical simulation and compilation roadblocks that have prevented scalable and efficient
RB of universal layer sets.

We use MRB to study errors in two different quantum computing systems, based on
superconducting qubits. Our experiments are on 4 qubits of the Advanced Quantum Testbed
(AQT) [2] and on all of the qubits of a 27-qubit IBM Q quantum computer (ibmq_montreal)
[32]. In our experiments on AQT we use MRB to quantify and compare the performance
of three different layer sets on each subset of n qubits (for n = 1,2,3,4), including a layer
set containing non-Clifford two-qubit gates. In our experiments on ibmq_montreal we show
that our method scales to many qubits by performing MRB on a universal gate set on up to
27 qubits.

Multi-qubit MRB enables probing and quantifying crosstalk, which is an important source
of error in contemporary many-qubit processors [70, 67, 65, 23| that cannot be quantified
by only testing one or two qubits in isolation. We quantify the contribution of crosstalk
errors to the observed error rates in our experiments on AQT and further divide the error
into contributions from individual layers and gates. The techniques we introduce for these
analyses complement other established RB-like methods for estimating the error rates of
individual gates—such as interleaved RB [45] 24, 25| and cycle benchmarking [20]. In our
experiments on ibmg_montreal, we use MRB to study how crosstalk errors vary on this
device as n increases, with n ranging from n = 1 up to n = 27. We find that crosstalk errors
dominate in circuit layers on n > 1 qubits.
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Clifford Randomized Benchmarking
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Figure 7.1: Example of a typical randomized benchmarking circuit. Randomized bench-
marking is hard to scale past a few qubits because the number of two-qubit gates scales as

o@2").

I

HE

#

=]

\
(
-

f

&

7.1 Mirror Circuits

Randomized benchmarking is typically a sequence of Clifford gates applied to an initial state,
such that ideally with perfect operation, it amounts to an identity operation. For instance
in this image below (Fig. [7.1} we have a sequence of randomly sampled n-qubit Clifford
highlighted in blue, and the inverse of everything in yellow. Unfortunately, the compilation
step of turning Clifford gates into native gates makes circuits infeasible. The number of 2
qubit gates scales as 2".

In contrast, mirror circuits are composed of layers of 1 gates and layers of 2
qubit gates with an inversion structure to transform an )-distributed random circuit into
a circuit with an efficiently computable outcome, where 2 is the distribution we sample
from. We now introduce a natural family of circuits—which we call {2-distributed random
circuits—that we use in our method in order to estimate eq. (2-distributed random circuits
are similar to the circuits used in XEB and other benchmarking routines. They are defined
in terms of a customizable gate set G and sampling distribution €2 over that gate set. This
gate set consists of one- and two-qubit gate sets G = (G, Gy), and  is determined by two
probability distributions ; and €y over n-qubit layer sets L(G;) and L(G,), respectively.
An Q-distributed random circuit with a benchmark depth of d is a circuit-valued random
variable Cy = Loy - - - LoL; where the d odd-indexed layers are 2;-distributed and the d even-
indexed layers are ()o-distributed. These circuits consist of interleaved layers of one and
two-qubit gates, so it is useful to define a composite layer to be a pair of layers of the form
L = LoL; where Ly € IL(Gy) is a layer of one-qubit gates and Ly € IL(G3) a layer of one-qubit
gates. We denote the set of all composite layers by L(G). An Q-distributed random circuit
of benchmark depth d then consists of d composite layers that are (2-distributed over L(G)
with Q(LoLy) = Q1(L1)Q(Ls).

The detailed protocol is enumerated below. We construct a specific randomized mirror
circuit on n qubits with benchmark depth d via the three-step procedure shown in Fig. [7.2]
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Figure 7.2: How to build up a randomized mirror circuit. We alternate layers of two qubit
and single qubit gates. We then find the inverse of each layer backwards and append it to
the circuit. Similar to randomized benchmarking, we want the qubit to return to the ground
state if there were no errors. However, we do not want to undo all of the errors as well. We
add a generalized version of an randomized compiling step since we are constructing this
circuit for both Clifford and non-Clifford 2 qubit gates. In the case of Clifford gates, this
step looks identical to RC
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This procedure consists of first sampling a circuit C; consisting of an (2-distributed ran-
dom circuit preceded by an initial layer of random single-qubit gates that randomizes the
state input into the circuit (enabling estimation of the circuit’s fidelity using the method
of Ref. [64]). We then append the inverse of C; to obtain Cy, a simple form of mirror (or
motion-reversal) circuit whose error-free output is definite and easy to predict. Finally, Cs is
randomly compiled, to prevent systematic coherent addition or cancellation of errors between
the Q-distributed random circuit and its inverse—which is essential for reliable estimation
of eg. The exact procedure is as follows:

1. (Sample a random circuit) Construct a circuit Cy = Las, Ly s Ly Ly, Ly consisting of:

(a) A layer Lo sampled from €2y, which consists of a single-qubit gate on each qubit.

(b) d/2 composite layers L;Ly,, where L; is sampled from €y, and Ly, is sampled from
Q.

2. (Construct simple mirror circuit) Add to the circuit C) the layers in step (1] in reverse
order, with each layer replaced with its inverse. The result is a circuit

Co=Ly'Ly 'Lyt L;d}QLflLd/QL% -+~ LiLg, Ly, (7.1)

d/g
such that U(Cy) = L.

3. (Randomized compiling) Construct a new circuit M by starting with Cy and replacing
layers using the following randomized compilation procedure, which reduces to standard
Pauli frame randomization [75| when the two-qubit gates are all Clifford gates. The
reason we do this step is that, like in RB, we want the qubits to return back to their
initial state if there were no errors. At the same time, simply implementing the inverse
in the second half because that could echo out coherent errors, causing us not to detect
them. Thus we ‘dress’ each layer with additional correction gates that overall still allow
us to return the qubits back to the initial state given NO errors. But if there are errors,
these additional gates prevent the errors from being echoed out. For instance following
our single qubit gates, we add single qubit Pauli’s in bright blue (Fig. , we adjust the
rotation angles of 2 the two qubit gates (orange), add single qubit Paulis on the qubits
used for the 2 qubit gates after the 2 qubit gate (red) and also single qubit Paulis before 1
qubit layers. Those are in purple. For those that are familiar with randomized compiling,
when the two qubit layers are just 2 qubit Cliffords, then this is identical to randomized
compiling. However, since we also wish to demonstrate our method for non-Clifford 2
qubit gates, the red corrections are there for non-Clifford gates.

To specify our procedure, we first write Cy [Eq. ([7.1)] in the form
CQ - Ld+1L9d+1 Ld e Lgd/2+2Ld/2+1L9d/2+lLd/2Lgd/2 ce L1L91 Lo,

where Ly Y1 is a dummy (empty) 2-qubit gate layer, so that Cy consists of alternating
layers of one- and two-qubit gates. Then:
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(a) For each single-qubit gate layer L; in Cy, sample a uniformly random layer of Pauli
gates P;, that in the following procedure is inserted after and then compiled into L;.

(b) Replace each two-qubit gate layer Ly, in Cy with a new two-qubit gate layer T (Lq,, P;—1)
that is constructed as follows: For each gate C'Fy in Ly, with control qubit ¢; and
target qubit g, consider the instructions in F;_; acting on ¢; and ¢, denoted by
P, j and P;_y 4, respectively. If U(P,_y ;) = I or Z, then add C Py acting on (g;, qx)
to T(Lg,, Pi—1) where ¢ = 6 if [U(P),U(P—1x)] = 0 and ¢ = —6 otherwise. If
U(Pi—1;) = X or Y, then add CP; acting on (g;,qx) to T (Le,, P,—1) where ¢ = —0
if [U(P),U(Pi—1x)] =0 and ¢ = 6 otherwise.

(¢) For each single-qubit gate layer L; in Cy with i > 0, we define a layer of single-qubit
gates Pf that undoes the effect of adding P;_; into the circuit—meaning a layer such
that U(PFT (Lg,, Pi—1)Pi—1) = U(Ly,). Because Gy is restricted to only controlled
Pauli-axis rotations, the correction takes the form U(Pf) = U(P;_1F;,), where P
consists of single-qubit Pauli axis rotations. If L; is not immediately preceded by a
two-qubit gate layer, then P; = I. Otherwise,

U(F;,) = U(Pio1Lo, P aT (L, Pa) ™). (7.2)

(d) Replace each single-qubit gate layer L; in Cy with a recompiled layer R(P;L; PF ),
defined by
U(R(PLiPLy)) = U(PLiPE). (7.3)

This randomized compilation step transforms the layer pair L;Ly, into
R(PL:P{ )T (Lo, Pie1), (7.4)

where

U(R(P,LiPLy)T (Lo, Pie1)) = U(P;LiLo, P;-1). (7.5)

The final circuit produced by this procedure (M) has the property that U(M) = U(Py41),
i.e., its overall action is an n-qubit Pauli operator. So, if run perfectly, M returns a
single bit string (sps) that is determined during circuit construction with no additional
computation needed.

The final depth-d randomized mirror circuit has the form
M = R(Py1 Ly PS) M R(PyLy), (7.6)
where

M = T(Ly!, POR(P.Ly'PS_y) - - - R(Pyzy1 Ly Popa)
R(Pd/2Ld/2PdC/2—1) e 'R(P2L1P1C)T(L91, Po),
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is the circuit obtained after applying randomized compilation to the 4/2 composite layers
sampled from €2 and their inverses.

To run these circuits, we chose a range of circuit depths which sets how many layers
we have. Then for each depth, we randomly sample our set of available gates K different
times. Then we run each circuit many times, typically for us, 1000 times. From each run of
these circuits, we get back a string of Os and 1s representing the measured state of the qubit.
Ideally we’d get all 0’s back, meaning the qubits returned to their initial state and there were
no errors, but usually that’s not true. We compare this string to the perfect ‘target’ string
to calculate an effective polarization, which is closely related to the success probability. This
step is much like what is done for RB.

7.2 Effective Polarization

We note that the effective polarization here because it’s not calculated the way it’s normally
done for RB. As I showed earlier, our method is different from RB, because we don’t calculate
the inverse of a bunch of n-qubit unitaries and instead do it layer by layer. However, this
means that the effect of twirling our errors in RB is somewhat lost. This okay in RB because
errors in Rb are spread amongst the qubits in various directions. But this twirling effect
is limited in our randomized mirror circuits. To accommodate for this, we calculate the
polarization with an extra correction on top to account for the potential errors we might not
be detecting.

We use the same analysis technique as MRB of Clifford gate sets [66]. In particular, for
each n-qubit circuit C' that we run, we estimate its observed polarization |66]

S = 4n4i 1 [z": <_%)kh’“] B 4n1— 1 (©.7)

k=0

where hy is the probability that the circuit outputs a bit string with Hamming distance &
from its target bit string (s¢). As shown in Ref. |66] and discussed further below, the simple
additional analysis in computing S simulates an n-qubit 2-design twirl using only local state
preparation and measurement. This formula is rather complicated and we leave the details
and derivations to [|31], but the takeaway here is that the sum, from 0 to n, where n in the
maximum number of qubits we have is a sum over the number of possible errors we might be
missing. For example for 4 qubits, we might have missed 0 errors, or we might have missed
1, 2, 3, or 4. The weighted sum adds together these possibilities.

A specific MRB experiment is defined by a gate set G, a sampling distribution €2, and
the usual RB sampling parameters (a set of benchmark depths d, the number of circuits K
sampled per depth, and the number of times N each circuit is run). Our protocol is the
following;:
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Figure 7.3: Scalable randomized benchmarking of universal gate sets. (a) Randomized mirror
circuits combine a simple reflection structure with randomized compiling to enable scalable
and robust RB of universal gate sets. (b) Data and fits to an exponential obtained by using
our method—MRB of universal gate sets—to benchmark a universal gate set onn =1,2,3,4
qubits of the Advanced Quantum Testbed, and the average error rates of n-qubit layers (rq,
where €2 is the layer sampling distribution) extracted from these decays. (c) We benchmarked
each connected set of n qubits for n = 1,2, 3,4, enabling us to map out the average layer
error rate (rq) for each subset of qubits. The values of the color bars in figure ¢) correspond
to error rates that are extracted from fitting to the exponential decays shown in figure b).
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1. For a range of integers d > 0, sample K randomized mirror circuits that have a
benchmark depth of d, using the sampling distribution {2, and run each one N > 1
times.

2. Estimate each circuit’s observed polarization S.
3. Fit Sy, the mean of S at benchmark depth d, to
Sy = Ap?, (7.8)
where A and p are fit parameters, and then compute
ro = (4"=1)(1 -p)/4" (7.9)
which is the average error per layer.

In Fig. [7.3pb, we show an example of the exponential decay that results from measuring
the effective polarization at various circuit depths. For each circuit depth we generate k
= 30 randomly sampled circuits and we measure each circuit 1000 times so that gives us
30,000 bit strings back that we calculate the effective polarization for. We plot the effective
polarization we calculate from every run of the circuits. Each violin plot represents the
spread of the results that come back from the 1000 runs of each circuit for a given depth.
The exponential fit is done to the average point in this spread. From the fits we extract an
rq which is an averaged error per layer.

7.3 Simulations

We have made modifications to traditional RB in both the circuit structure and polarization
calculation in order to make RB more scalable. It is important to verify that these changes
still allow us to capture the error accurately. In particular, the theory for MRB suggests
that MRB is particularly robust when the two-qubit gates are Clifford gates and when all
errors are stochastic Pauli errors.

We use numerical simulations to investigate the robustness of MRB, studying whether
the MRB error rate (rq) closely approximates the error rate of Q-distributed layers (egq).
We choose an artificial amount of error for each gate during the simulations. We use the
simulated bit string to calculate the effective polarization. The effective polarization at
various depths is fitted to an exponential decay, allowing us to extract the "measured" error,
rq, which we compare to the amount of injected error. We simulated MRB for n-qubit layer
sets constructed from the gate set G; = SU(2) and Gy = {cs,cs'} and n = 1,2, 4, with all-
to-all connectivity. We used a sampling distribution €2, for which the two-qubit gate density
is &€ = /2. In these simulations (and our experiments) each single-qubit gate is decomposed
into the following sequence of x-/, and z gates:

U(Q, ¢, )\) - Z_¢_7'r/2 X7r/2 Zr_920 X7r/2 Z_)\+7r/2. (7.].0)
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Here x./, is a 7/2 rotation around the X axis and zy is a rotation around the Z axis by
0 € [0,27). Note that even when a shorter sequence of gates can implement the required
unitary (e.g., u(0,0,0) implements the identity so it could be implemented with no gates)
we always use this sequence of five gates. Therefore, the only difference between any two
single-qubit gates is the angles of the zy gates.

We simulated three different families of error model: stochastic Pauli errors, Hamiltonian
errors, and stochastic and Hamiltonian errors. Hamiltonian errors refer to coherent errors,
such as over-rotations. These error models are specified using the error generator framework
of Ref. [7], and they consist of gate-dependent errors specified by randomly sampling error
rates for each type of error and each gate. We simulated error models that are crosstalk free
(note that our theory encompasses crosstalk errors) so each error model is specified by the
rates of each type of local error on each gate. In particular, for an m-qubit gate we randomly
sample 4™ — 1 stochastic error generators, or 4™ — 1 Hamiltonian error generators, or both,
depending on the error model family. We sampled the error rates so that the infidelity
of each two-qubit gate was approximately ¢, and the infidelity of each one-qubit gate was
approximately 0.1¢g, where ¢ is a parameter swept over a range of values.

Figure shows the results of these simulations. It compares the true average layer error
rate per qubit

€qaperq = 1 — (1 — €)™ = ca/n (7.11)

to the observed MRB error rate per qubit
roperq = 1= (1 —1q) /"~ ra/n (7.12)

in each simulation, separated into the three families of error model (1o error bars are shown,
computed using a standard bootstrap).

We see a 1:1 correspondence, meaning that whatever error we put in, we are indeed
detecting. This is an intuitive check that our method is working. Here, stochastic errors
refer to incoherent errors, relating to things like t2 decays. Whereas Hamiltonian errors
are coherent errors, like over rotations. We recognize that realistic devices will have a
combination of stochastic and Hamiltonian errors the last simulation gives equal weight to
each type of error in the simulation. Here plot the same data but with the y axis normalized
and we actually see that 1 qubit simulations show a LOT more error spread than simulations
for higher numbers of qubits. This is because often for 2 and more qubits, we have 2 qubit
gates that spread the error out among the qubits. Creating a kind of averaging effect. For
single qubits subject to over-rotation errors, depending on what exactly the circuit you have
is, it could show up as a huge error or be totally canceled out. So the spread is very large.
We will see this in our data later too.

7.4 Experimental Implementation

In our experiments we investigated three different choices for (Gy,Gy): (SU(2),{\,cs'}),
(SU(2), {cz}), and (Cy, {cz}), where C; is the set of all 24 single-qubit Clifford gates. Thus
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Figure 7.4: Investigating the reliability of MRB using simulations. We simu-
lated MRB on n all-to-all-connected qubits for n = 1,2,4 on the gate set (Gi,Gy) =
(SU(2), {cs,cs'}) with randomly-sampled gate-dependent errors. From left to right, the
columns show results from simulations with crosstalk-free error models consisting of only
stochastic errors (a,c), a combination of stochastic and Hamiltonian errors (b,d), and only
Hamiltonian errors (e,f). (a-c): The MRB error rate per qubit [rq perq = 1—(1—7g)""] versus
the average composite layer error rate per qubit [eg, perq = 1 — (1 — €g) /"] for each randomly
sampled error model. The MRB error rate rq closely approximates e, and the agreement
is closest under purely stochastic errors. (d-f): The relative error d,q = ("2 per@=¢2.perQ)/eq gy
divided by its uncertainty o5, for each randomly sampled error model (o5, is calculated
via a standard non-parametric bootstrap). The MRB error rate rq is biased towards very
slightly underestimating e for n > 2 qubits, which is expected from our theory (see main
text).

rel
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we have a non-Clifford only, mixed, and Clifford only gate set, respectively.

MRB enables benchmarking each layer set on any connected set of qubits, and the error
rates on subsets of a device can be used to learn about the location and type of errors. We
benchmarked n-qubit layer sets for every possible connected set Q C {Q4,Q5,Q6,Q7} of n
qubits with n = 1,2, 3, 4, resulting in 10 different qubit subsets. Independently benchmarking
every connected subset of qubits allows us to study the spatial variation in gate performance
in detail and determine the size of crosstalk error on circuits with 3 and 4 qubits (see
Section ?7). For each RB experiment, we sampled K = 30 circuits at a set of exponentially-
spaced benchmarking depths (d =0,2,4,8...).

For each of the three gate sets (G1,G,), and each qubit subset Q, we ran experiments
with a two-qubit gate density of & = /2. To investigate the effect of varying &, we also ran
experiments with & = 1/s for one of the gate sets—(SU(2), {\,cs'})—and every Q. For each
qubit subset we therefore ran 4 MRB experiments, defined by E

1. G, =SU(2), Gy = {\,cs'}, and & = 1/s.
2. G; =SU(2), Gy = {\,cs'}, and & = /2.
3. Gy =SU(2), Gy = {cz}, and £ = /.

4. Gy = Cy, Gy = {cz}, and £ = 1/a.

We implement these circuits on the AQT 8 qubit device. devices shown in Fig. We
use qubits 4 thru 7. These are fixed frequency qubits highlighted in green on the image.
They are linearly connected with coupling resonators highlighted in pink. Each qubit has
its own drive line in blue and readout resonator in red. The line down the middle in bright
blue is a multiplexed readout bus. Our results are shown in Fig. [7.6] Each row corresponds
to different gate set. We have the universal set with with the CS/CSD gates on top, the
universal set with Clifford CZs, and the Clifford only group on the bottom. The left column
shows the same exponential fits of the effective polarizations, which are used to extract Rq,
the average error per layer. The middle column shows the errors from all 10 combinations
of qubit subsets. And the height of each bar indicates rg.

By comparing (e) and (f), we find that the average error rate of a layer set is approxi-
mately independent of whether single-qubit gates are sampled from SU(2) or from C; (the
single-qubit Clifford group)—that is, r(SU(2), {cz}, Q,/2) ~ r(Cy,{cz},Q,1/2) for all ten
subsets of qubits Q. All single-qubit gates in our experiments are implemented using a com-
posite u(f, ¢, \) gate [see Eq. (7.10)] that contains two x., gates and three zy gates. This
is the case even for unitaries that do not require two x., pulses, such as the identity. The
difference between any two single-qubit gates is therefore only in the angles of the three zgy
gates within u(@, ¢, A). These gates are implemented by in-software phase updates on later
pulses 50|, so it is expected that these “virtual gates” cause negligible errors.

'For the four one-qubit subsets, three of the cases coincide—as they differ only by the two-qubit gate
set or the two-qubit gate density, which are unused parameters in one-qubit circuits. In that case we only
sample and run only of the three identical MRB designs.
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Figure 7.5: The Advanced Quantum Testbed. We performed MRB experiments on
four qubits (Q4-Q7) of AQT’s eight-qubit superconducting transmon processor (AQT@LBNL
Trailblazer8-v5.c2). The processor includes 8 fixed frequency transmons coupled in a
ring geometry. Each qubit (purple) has its own control line (orange) and readout resonator
(cyan) coupled to a shared readout bus (red) for multiplexed readout.

Comparing Figs. (d) and (f), we observe that the error rates for layers containing
cs and cs' gates are all almost equal to, but slightly larger than, the error rates for layers
containing cz gates. The largest relative difference is in the experiments on the 3-qubit set
{Q4,Q5,Q6):

r(SU(2), {cs,cs'}, {Q4,Q5,Q6}, 1/2) = 1.64(5)% (7.13)

and

r(SU(2), {cz}, {Q4,Q5,Q6}, 1/2) = 1.48(4)% (7.14)

The three different two-qubit gates (cs, cs', and cz) on each qubit pair were a priori
expected to have similar error rates, due to their similar calibration procedures. The slightly
larger error rates for cs and cs' were cross-validated using cycle benchmarking . Therefore,
these results are experimental evidence for the robustness of MRB with non-Clifford two-
qubit gates.
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Figure 7.6: Randomized benchmarking of universal gate sets on four qubits of the
Advanced Quantum Testbed. We used MRB to benchmark n-qubit layers constructed
from three different gate sets, on each connected n-qubit subset of a linearly-connected set of
four qubits {Q4, Q5,Q6,Q7} in an eight-qubit superconducting transmon processor (AQTOLBNL
Trailblazer8-v5.c2). The rows correspond to results from three different choices of gate
set, each consisting of a two-qubit gate set G, and a single-qubit gate set G;. From top to
bottom, the rows correspond to: a universal gate set containing two non-Clifford entangling
gates and the set of all single-qubit gates |Gy = {cs,cs'}, G; = SU(2)|; a universal gate
set containing a Clifford entangling gate and the set of all single-qubit gates [Gy = {cz},
G, = SU(2)[; and a non-universal, Clifford gate set |Gy = {cz}, G; = C; where C; is
the one-qubit Clifford group|. (a-c): MRB decays for the qubit subsets {Q4}, {Q4,Q5},
{Q4,Q5,Q6}, and {Q4,Q5,Q6,Q7}. Violin plots and points show the distribution and mean,
respectively, of the MRB circuit’s observed polarization (Sy) versus benchmark depth (d).
The curve is a fit of the mean of Sy (Sd) to Sq = Ap?. The average error rate of an n-qubit
layer (rq) is given by rq = (4" — 1)(1 — p)/4™. The observed S; decays exponentially, as
predicted by our theory for MRB. (d-f): The estimated error rate rq for each qubit subset
that we benchmarked. (g-i): Predictions for the average layer error rate of 3- and 4-qubit
subsets (hatched) based on the experimental 1- and 2-qubit error rates (un-hatched) and
the assumption of no crosstalk errors. The difference between (d-f) and (g-i) quantifies the
contribution of crosstalk errors to the average error rate of an n-qubit layer, for n = 3, 4.
For all three gate sets and n = 4, we see that crosstalk errors are contributing approximately
0.7% error to rq, which is approximately 1/3 of rq.
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Figure 7.7: tbd

In Fig. [7.6-1, we begin to use our data to extract information about crosstalk on our
system. We take the error values for 1 and 2 qubit circuits from the middle plot and put
them back into simulations for 3 and 4 qubit circuits. Then we run the simulations and data
analysis to see what we predict should be the average error per layer given we are limited
to JUST single and 2qubit errors. We plot those in the striped bars on the third column.
We see that these stripped predicted errors are much lower than what we actually get in the
middle column for 3 and 4 qubit circuits . Indicating that there are errors that only appear
when more qubits participate in the circuits. We plot the difference between the expected
crosstalk free and measured values for 3 and 4 qubit circuits in Fig. [7.7]

7.5 Error Models

In addition to using RB data to extra the average error per layer, as we have done, we can
also use this data to look at the error for a specific layer using error models. Fitting to
error models is a known technique can also be a computationally expensive step that scales
exponentially with the number of qubits. We take our simulations from before and generate
circuits with a certain amount of error injected in. We tweak the quantities of these errors
until the resulting simulation result is as close to our own data as possible. Figure Fig.
shows the two models we use. The first kind of model is a depolarizing model. We give each
kind of 1 and 2 qubit gate an error. (click) We then use this error to calculate an overall
error rate for an n-qubit layer, represented in the circuit here as D.;. In other words for
each dressed layer of gates we insert a probability of failure. In this model the probability
of any n qubit error (XXXX, XIXX etc etc) is equal. We give it a probability that the state
at the end of this layer becomes maximally mixed. We verify the results of our first model
with a second more complex model that is less efficient to run. The second model is the
Pauli Stochastic model, where more parameters vary. The probability of error is allowed to
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Figure 7.8: Fitting error models to MRB data and estimating gate error rates.
We fit two types of error models to MRB data to estimate the infidelity of individual circuit
layers. (a) By running two MRB experiments with two different two-qubit gate densities &,
we can estimate the mean infidelity of a set of one or more two-qubit gates—here cs and
cs!—using basic linear algebra. We call this procedure the two densities heuristic. The
estimates of the average gate error obtained from the two densities heuristic (orange) are
compared to independent estimates obtained from two more rigorous but more complex
and computationally intensive procedures: fitting each set of two-qubit MRB data to (1)
a depolarizing model (light blue), and (2) a stochastic Pauli errors model (dark blue). (b)
To fit a depolarizing model, we assign an error rate to each dressed layer and an error rate
to each qubit’s readout. (c) To fit a Pauli stochastic model, we assign a Pauli stochastic
channel to each possible gate except the virtual zg gates.

be different for each qubit. For instance after our two qubit gate on Q4 and Q5 on the left,
we insert the purple Eyy 5. Which represents the probability of that gate failing. During that
time, we also let the two idle qubits (6-7) have a probability of error. In addition, we assign
a probability of error to the remaining single qubit gates.

Using these models we fit the data and extract process infidelities for each 2 qubit gate
over the three pairs of connected qubits (45, 56, and 67), displayed in Fig.[7.9, The process
infidelities are between 2-3 % for the models in bright blue and dark blue. The takeaway
from these plots is that the two qubit model in orange is underpredicting error by 56%.
Where as the 4 qubit models capture the error much better. We attribute this difference
between the 2 qubit models and the 4 qubit models to the presence of crosstalk. There
doesn’t seem to be much obvious different between the depolarizing model (which is much
less computationally expensive) and the Pauli stochastic one, so this was a nice verification
that in the future we can rely more on the easier depolarizing model.

In addition, we verify our models against cycle benchmarking data (shown in light blue) in
Fig.[7.9] Our results are broadly similar to the CB results. We get at most 22% disagreement
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Figure 7.9: Estimating the infidelity of dressed 4-qubit layers. By fitting error models
to MRB data, we can estimate the infidelity of each G;-dressed layer used in the MRB
circuits. Here we show four different estimates of the infidelities of 4-qubit layers containing
a single cs, cs! or cz gate on one of the three connected pairs of qubits. We fit a simple
n-qubit depolarizing model to (1) the 4-qubit data, and (2) the 1- and 2-qubit data, and
use both models to estimate the infidelity of 4-qubit G;-dressed layers. The estimates from
fitting to the 1- and 2-qubit data do not account for any additional crosstalk errors that
occur in 4-qubit layers, so the additional error estimated when fitting to the 4-qubit data is
a quantification of crosstalk. We also fit a more sophisticated stochastic Pauli error model
to the 4-qubit circuit data, resulting in comparable estimates to those obtained from the
simple depolarizing model (which uses a scalable, less computationally intensive analysis). To
validate our results against an established technique, we compare to infidelities independently
estimated using cycle benchmarking . We observe qualitative agreement. The cycle
benchmarking experiments measure the infidelities of layers dressed with one-qubit gates
sampled from a different gate set (the Pauli group) to that used in our MRB experiments
[SU(2) or C;, the single-qubit Clifford group|, and these experiments were implemented on
a different day than the MRB circuits, so exact agreement is not expected.
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Figure 7.10: Comparing to DRB to mirror circuits

between the models and cycle benchmarking. This difference is expected because of two
reasons: 1) the CB data was taken on a day earlier than the other data. And 2) CB estimates
layers that are dressed with random Paulis where as our circuits have layers dressed by single
qubit Clifford gates. Overall though, this plot suggests crosstalk in our system.

Our last piece of verification is to compare our results with other established forms of
benchmarking. We do this for up to two qubits because randomized benchmarking is still
practical to implement for a couple of qubits. Specifically, we choose Direct Randomized
Benchmarking (DRB), a variant of standard RB developed by Tim Proctor’s team [68§]
because standard RB measures an error rate the is not directly comparable the error rate
derived from Mirror randomized benchmarking. In contrast, DRB is designed to do so.
Furthermore, DRB is now an established technique that is known to be reliable. We run
DRB on the gate set that contains non-Cliffords gates: cs and cs'. In Fig. , the red and
orange bars are for Mirror RB (single and two qubit circuits, respectively) And then the
yellow and purple bars are for Direct RB results. We see good agreement between the error
rates from MRB and Direct RB. The inset of this plot is the effective polarization obtained
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Figure 7.11: Comparing to IBM

from Direct RB for a fixed depth as a function of the qubit number. The sharp decrease
in polarization happened because of the overwhelming overhead required to implement a
Haar-random unitary for DRB. The circuits were so large that we were not able to measure
anything for 3 or more qubits. This again demonstrates that DRB cannot be scalable. But
it’s encouraging that the MRB results are comparable and trustworthy, so that we can use
it for larger numbers of qubits in situations out of reach for DRB.

7.6 Demonstrating Scalability

One important feature of our benchmarking is its scalability. We demonstrate this by repeat-
ing our measurements on the IBMQ-Montreal device, which has 27 qubits, and characterizing
the crosstalk. The universal gate set consists of the CNOT gate and single qubit rotations.
We first run circuits for different qubit numbers, ranging from 1 to 27 qubits. Fig. [7.11]
shows the connectivity of the chip and highlights which qubits were used for each type of
circuit. For instance QO highlighted in red was used for the 1 qubit circuit and corresponds
to the familiar exponential plot in red on the left. Similarly a 3 qubit circuit was run on
qubits 0, 1, and 2, highlighted in orange on the chip and the data is in orange on the left.
And so on. Even for the 27 qubit circuits, we can still get effective polarizations that are
much greater than 0 and extract an average layer error rate of 28%, showing that our MRB
protocol is indeed scalable.

Next we would like to understand the crosstalk present on the IBM chip. We take a
second round of data where we run 27 single-qubit circuits simultaneously and also several
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2 qubit circuits simultaneously. Ideally we’d run them all separately, but that would take a
good bit of time on the IBM processor and there was a long queue of submitted user projects
so we ended up running them simultaneously.

In the Fig. [7.11k, the blue shaded squares around each qubit indicate that a single qubit
circuit was run on each qubit. In addition, the purple and green boxes indicate the qubits
that were paired up to use for 2 qubit circuits. The pairs of qubits for the 2 qubit circuits
were selected based on frequency constraints

Much like before, we use these single and 2 qubit circuit results to extract an average
error per layer. Then we use these error rates in our simulations to predict what error rates
we would expect for circuits using more qubits. We compare these predictions to our data
in the middle plot.

I will point out here that we are plotting rq divided by the number of qubits, which
is the observed error rate per qubit. The predictions are in blue. There is a small rise in
error between 1 and 2 qubits, which is pretty typical and expected. As two qubit gates
generally have more error than 1 qubit gates. Then the plot remains flat for the most part
for higher qubit numbers. This complies with our intuition for 2 reasons. First without
crosstalk, it is expected that the error per qubit to be unaffected by the presence of other
qubits participating. Second, we also take care to keep the density of 2 qubit gates constant
throughout all the circuits. We note that there is a slight kink upwards at around n = 8. We
believe this is due to the fact that not all of the qubits on the IBM chip have the same error.
Some are a bit higher than others and contribute a little more erroif’| But for the most part
the error per qubit is constant. This is very different from the points in red, which are the
results of actual circuits for qubit numbers ranging from 1 through 27. Here, the error per
qubit continues to climb far past n = 2 and is about 0.5% higher than the prediction. This
is further emphasized in the last plot. The Y axis has been adjusted to be the ratio between
the error obtained from data and the predicted error. We divided the red points by the blue
points. There is a clear 250-300% increase that saturates at around n = 15. This indicates
crosstalk with a finite spatial radius.

7.7 Conclusion and Outlook

Scalable benchmarking methods are needed to quantify the integrated performance of medium-
and large-scale quantum processors. We have introduced Mirror randomized circuits as a
new method to benchmark processors. We have showed that it is scalable for both Clif-
ford and also universal gate sets. The method reliably measures the error rate of a random
n-qubit circuit layer sampled from a user-specified distribution 2. We verified our results
using simulations and other established techniques like Cycle benchmarking and direct ran-
domized benchmarking for low numbers of qubits. Additionally, we showed that Mirror RB
data contains more information than just the average error per layer. We quantified the

"Kpop fun fact 7/7: BTS was the first group to reach No. 1 on the US Albums chart and also No. 1 on
the US Artists 100. They are also the most streamed group on Spotify (16,300,000,000 streams total).
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amount of crosstalk on two different processors and obtain two qubit gate fidelities through
fitting error models, such as the scalable depolarizing model. Which gave us results compa-
rable to the more computationally expensive Pauli stochastic model. Our results indicate
that MRB on many qubits reveals and quantifies errors not present in one- and two-qubit
circuits, highlighting the importance of scalable benchmarks.

Our method can be viewed as both an adaptation of standard RB and its variants, to
enable efficient and scalable benchmarking of universal gate sets, and as an adaptation of
XEB that removes XEB’s inefficient circuit simulation step. It therefore provides a link
between two widely used benchmarking methodologies, and so we anticipate that the ideas
introduced here will lead to further advances in randomized benchmarking.

We expect that a variety of interesting benchmarking methods can be constructed using
MRB and extensions or adaptations of this method. First, while our simulations and data
indicate that our method works well for non-Clifford gates, we believe that we can make this
method even more sensitive to coherent errors in non-Clifford gates by changing the way the
circuits are sampled. For example we can change the layer structure and include consecutive
2 qubit gate layers. Adjusting the circuit structures will also improve the predictive power
of our error model fitting. In addition, many algorithms have more structure. Our method
is still based on randomized gates and it would be interesting to look at how we can apply
our mirror technique to make scalable benchmarking methods with more structured circuits.
Furthermore, we anticipate that MRB can form the foundation of methods for estimating
the error rates of individual gates and layers, within the context of many-qubit circuits. In
this work we demonstrated a simple example of such a technique—fitting MRB data to a
depolarizing model-—and we expect that a variety of robust methods could be developed,
that would complement or advance on existing methods for this task [45 20, 21| such as
interleaved RB. Alternatively, we anticipate that MRB can be adapted to construct scalable
“full-stack” benchmarks based on random circuits, such as a scalable variant of the widely-
used quantum volume benchmark [15].
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