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A High Order Cut-Cell Method for Solving the Shallow-Shelf Equations

Will Thachera,b,∗, Hans Johansenb, Daniel Martinb

a Applied Science and Technology Group, University of California Berkeley, Berkeley, CA, 94720, United States
b Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States

Abstract

In this paper we present a novel method for solving the shallow-shelf equations in the presence of grounding

lines. The shallow-self equations are a two-dimensional system of nonlinear elliptic PDEs with variable coeffi-

cients that are discontinuous across the grounding line, which we treat as a sharp interface between grounded

and floating ice. The grounding line is “reconstructed” from ice thickness and basal topography data to

provide necessary geometric information for our cut-cell, finite volume discretization. Our discretization en-

forces jump conditions across the grounding line and achieves high-order accuracy using stencils constructed

with a weighted least-squares method. We demonstrate second and fourth order convergence of the velocity

field, driving stress, and reconstructed geometric information.

Keywords: Shallow-Shelf Equations, Ice Sheet Model, Jump Conditions, Grounding Line, Cut cell,

Embedded Boundary

1. Introduction1

Marine-terminating ice sheets exhibit complex behavior in the grounding zone, the region where seaward-2

flowing ice transitions from being grounded (in contact with bedrock) to floating in the ocean. This region3

is the focus of much glaciological research because the flux of ice through the grounding line can have a large4

impact on the total contribution of the changing ice sheet to global sea level rise [1]. From a mathematical5

perspective, this abrupt change may violate the underlying smoothness assumptions of the discretization6

scheme. This challenge has been dealt with in various ways including increased/adaptive resolution, an7

internal boundary condition, and sub-grid interpolation of basal friction and driving stress (see [2, 3]). In8

this work we propose a novel approach to this problem: we treat the grounding line as a sharp interface9

between grounded and floating ice, which are each represented as distinct fluids coupled by jump conditions10

at the grounding line. We use these jump conditions to create modified stencils near the grounding line, but11

away from the grounding line, in the bulk of the ice sheet or shelf, the discretization is unaffected.12

The majority of the computational effort in an ice sheet model is devoted to solving a stress-balance equa-13

tion, which relates the unknown velocity of the ice to the instantaneous ice thickness and basal topography14
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based on the bedrock elevation map. Many ice sheet models use an approximation to the three-dimensional15

equations for Stokes flow to reduce the stress-balance equation to a two-dimensional system of nonlinear16

elliptic PDEs [4]. By considering the grounding line to be an interface, we can solve this problem using17

methods for solving elliptic PDEs with discontinuous coefficients and source term across an interface. Nu-18

merous schemes have been proposed to solve this problem based on finite difference, finite volume, and finite19

element formulations. See [5] for a thorough review and list of references. There are many different finite20

element approaches that support sharp interfaces for elliptic problems, including XFEM [6] and CutFEM21

[7]. We only note these are based on modifications of standard conforming finite element methods and thus22

are not written in flux-divergence form (and in contrast to DG-FEM methods).23

In general, a finite volume approach has a natural interpretation of the physical control volumes and their24

conservative flux balances, which hold regardless of discretization errors. For example, this is important for25

conservation of mass (ice) in the BISICLES model [3]. In the finite volume context, it is natural to represent26

the grounding line as a sharp interface, or “embedded boundary.” Embedded boundary (EB) methods (also27

known as “cut-cell” methods) represent complex domains by intersecting a (D − 1)-dimensional boundary28

with a regular D-dimensional Cartesian grid. [8], [9] have extended this method to represent the interface29

between fluids or materials as an EB for elliptic problems.30

Advantages of these methods include discrete conservation, efficiency of generating new geometries, and31

the flexibility to create stable, geometry-dependent stencils. This problem is particularly well-suited for an32

EB method: Conservation is critical because one of the primary goals of an ice sheet model is to predict33

ice mass change over time. In addition, the grounding line may move in time, meaning new geometries and34

stencils will need to be re-calculated each time step. Although this paper focuses specifically on solving the35

elliptic stress-balance equation, in future research we will couple this solver to a time integrator.36

This work builds off of our prior work [9], which develops a high-order EB method for solving 2D elliptic37

interface problems −βϕ + ∇ · η∇ϕ = f, where {β, η, f} vary in space and may jump across an interface.38

There are several difficulties in extending that work to the present problem. First, we are dealing with39

a system of coupled elliptic PDEs rather than just one equation. Second, the stress-balance equation is40

nonlinear. Third, we do not assume that the geometric description of the interface is given; it must be41

generated from given physical data, and produces a higher-order accurate reconstruction for the spatial42

discretizations. These issues add complexity to the discretization, and significantly extend the purely linear43

scheme in [9].44

The outline of this paper is as follows: in Section 2 we briefly introduce governing equations. In Section 345

we extend the analysis and methodology of [9] to the present problem and additionally propose an algorithm46

for grounding line “reconstruction.” Lastly, in Section 4 we present convergence tests and analyze the results.47
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H Ice thickness [m]

Hf Ice thickness above flotation [m]

zs Sea level [m]

zb Bedrock elevation [m]

ρ Ice density [kg/m3]

ρw Ocean water density [kg/m3]

s Ice surface elevation [m]

u = (u, v) Vertically-integrated velocity [m/s]

µ Effective viscosity [Pa·s]

θ Ice temperature [K]

β Sliding coefficient [Pa/m2]

Table 1: Physical variables

2. Governing Equations48

In this work we use the 2D Shallow-Shelf Approximation (SSA) to the full 3D Stokes equations for49

large-scale ice sheet dynamics, since these equations which take advantage of the fact that ice sheets are50

dynamically thin ([10],[11],[12]). See Table 1 for physical variable definitions; bold lowercase variables rep-51

resent vectors and bold uppercase variables represent matrices. We provide a quick mathematical summary52

here to put the solver and discretization in a physical context; for a derivation of the SSA from the Stokes53

equations see references above.54

Ice is treated as a shear-thinning, non-Newtonian fluid that can deform or slide on top of bedrock to55

balance gravity-driven forces. The ice flow must satisfy a stress balance equation, which for the purpose of56

numerical modeling is often simplified based on scaling arguments (See [13], Chapter 6). In the SSA, the57

stress balance equation is integrated vertically, resulting in a 2D nonlinear, coupled system of elliptic PDEs58

relating the ice velocity u(x, y), the ice thickness H(x, y):59

−β(u)u+∇ · (µ(u) H F(u)) = ρgH∇s(H, zb, zs) , (1)

where the linear part of the stress tensor F(u), is defined as:60

F =

Fxx Fxy

Fyx Fyy

 =

4
∂u

∂x
+ 2

∂v

∂y

∂u

∂y
+

∂v

∂x
∂u

∂y
+

∂v

∂x
2
∂u

∂x
+ 4

∂v

∂y

 . (2)

There are also several nonlinear quantities in (1). First, the gradient of the upper surface of the ice61

∇s(H, zb, zs) depends on the thickness H and the bedrock elevation, zb, relative to the sea level, zs, which62

together determine if the ice is resting on the bedrock (“grounded”) or floating, and by how much. This is63
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expressed by the thickness above flotation,64

Hf = H − ρw
ρ
(zs − zb) , (3)

where zs is the sea level, and we assume zs = 0 for simplicity. Note that if Hf is positive, the ice is65

grounded and if Hf is negative then the ice is floating. Therefore the grounding line is the zero contour of66

the Hf function. As a result, the upper surface of the ice s is given by:67

s =

zb +H for grounded ice: Hf > 0(
1− ρ

ρw

)
H for floating ice: Hf < 0

. (4)

The effective viscosity µ(u) and friction coefficient β(u) are both highly nonlinear functions of the velocity68

and its gradients:69

µ = µ0(θ)
(
ϵ̇2 + ϵ̇20

) 1−n
2n , (5)

ϵ̇2 =

(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂u

∂x
+

∂v

∂y

)2

+
1

2

(
∂u

∂y
+

∂v

∂x

)2

, (6)

β = C
∣∣u2 + v2 + u̇0

2
∣∣(m−1)/2

, for grounded ice. (7)

where ϵ̇2 is the effective strain rate invariant, and µ0(θ) is a coefficient dependent on temperature (as in70

[14]). The sliding coefficient β follows the Weertmann sliding law, and the constant C can vary in space,71

but is zero for floating ice. For the simplest case of Glen’s Flow law, n = 3 is commonly used [4]. The72

net result is that these exponential relationships are negative, that is as the velocity or shear become small,73

the sliding coefficient and viscosity become large, limited only by small regularization constants ϵ̇20, u̇0
2 to74

prevent infinite viscosity and friction coefficient, respectively.75

To understand the jump conditions at the grounding line, assume n̂ is the unit normal to it and define76

η ≡ µ(u)H to be the spatially-varying, nonlinear coefficient of the linear stress flux. Using arguments77

for conservation of mass and momentum across the grounding line [15], the following homogeneous jump78

conditions should be satisfied:79

[u] = 0 , (8)

[ηF · n̂] = 0 , (9)

where [·] denotes a jump in that quantity across the grounding line. Along with problem-specific boundary80

conditions, these four jump conditions couple the elliptic equations (1) across the grounding line. Note that81

the coefficients and right-hand-side may jump at the grounding line; the sliding coefficient β is positive for82

grounded ice and discontinuously changes to zero for floating ice. Similarly, the piecewise definition of the83

upper surface of the ice means that the driving stress on the right-hand-side of (1) is also discontinuous at84

the grounding line. We assume ice thickness is continuous across the grounding line, meaning there are no85
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Figure 1: Cut cell geometric quantities that make up the finite volume notation.

cliffs there. However, we cannot assume that viscosity will be continuous across the grounding line because86

we are only enforcing continuity of µHF · n̂, so the partial derivatives of u may be discontinuous across the87

grounding line, caused by a jump in viscosity µ.88

3. Finite Volume, Embedded Boundary Discretization89

In this section we briefly review the notation and analysis in [9] and extend it to the present problem.90

Let Ω be the physical domain, which is divided into the subdomains Ωg and Ωf (where f, g denote a phase of91

floating or grounded ice, respectively) by the grounding line interface, Γ. The domain Ω is discretized into a92

Cartesian mesh of control volumes (or “cells”) Vp,i, where i ∈ Z2 and Vp,i phase p ∈ {f, g}, and side lengths93

of scale h, the grid spacing (see Figure 1). Note that if these do not contain a portion of the grounding line,94

they are called “regular” cells in phase p on the Cartesian grid.95

Any cell that is intersected by the grounding line Γ is treated as a “cut” cell containing an embedded96

boundary. We make the following assumptions to simplify the geometric considerations. First, a cut cell97

consists of only two control volumes Vf,i and Vg,i divided by a portion of the EB, denoted by AB,i, with a98

unit normal vector n̂ on Γ points from Ωg to Ωf . Cell Vp,i can have up to four grid-aligned faces, Ap,i± 1
2ed

99

(where ed is an index vector in direction d). So, along with these grid-aligned faces of each portion of the100

cut cell, each cut cell has at least 3, but at most 5, faces.101

For the higher-order finite volume formulation, we define a geometric “moment,” which is the integral102

of a centered monomial over some specified region. We use multi-index notation for this, where q = [qx qy]103

is a vector of non-negative integers, and (x−xc)
q = (x− xc)

qx(y− yc)
qy , where xc is the local center of the104

moment calculation. Multi-indices are ordered lexicographically: {00, 10, . . . , P0, 01, 11, . . . , 1(P − 1), 0P},105
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which allows us to refer to v [q] as the qth entry of a vector v with maximum sum of exponents, P .106

We can then define four moments corresponding to four components of the geometry:107

mq
p,i =

∫
Vp,i

(x− xc)
q dV “volume” (10)

mp,f =

∫
Ap,f

(x− xc)
q dA , f = iq ± 1

2
ed “grid-aligned face” (11)

mq
B,i =

∫
AB,i

(x− xc)
q dA “boundary” (12)

mq
B,i,d =

∫
AB,i,d

(x− xc)
q n̂d dA “d-normal boundary”. (13)

Clearly, the volume of cell i is just |Vp,i| = m00
p,i, and the centroid x̄p,i of Vp,i is [m

10
p,i,m

01
p,i]/|Vp,i|. Similarly,108

m00
B,i is the area of the EB, and m00

B,i,0 is its x normal component-weighted area, or x direction cross-section.109

As we will see, the overall accuracy of the scheme depends on the accuracy of these moments; lower-order110

moments should be very accurate, whereas higher-order ones can have lower accuracy. See §3.6 for a full111

description of how these moments can be calculated as a zero contour of the thickness above flotation, Hf ,112

with convergence results in Fig. 4.113

For ease of notation, throughout this paper we drop xc, since the polynomial interpolants based on114

moment equations are not significantly affected by their centering; in practice we use the cell-center of each115

full Cartesian cell or face.116

For our discretization, variables are stored on the mesh as either cell-averaged quantities ⟨ϕ⟩p,i ≡117

1
|Vp,i|

∫
Vp,i

ϕ dV , or centroid-centered (“pointwise”) quantities ϕp,i ≡ ϕ(x̄p,i). For ⟨u⟩p,i in each volume118

Vp,i in the mesh, our finite volume system for (1), (8), and (9) becomes:119

−⟨βu⟩p,i + ⟨∇ · ηF⟩p,i = ⟨ρgH∇s⟩p,i (14)

[u]i = 0 (15)

[ηF · n̂]i = 0 , (16)

where [·]i denotes the integral of the jump of a quantity across the EB in cut cell i:120

[ϕ]i =

∫
AB,i

ϕg − ϕf dA . (17)

The system of equations we are solving has two degrees of freedom (⟨u⟩p,i , ⟨v⟩p,i) in regular cells, and121

four degrees of freedom (⟨u⟩g,i , ⟨v⟩g,i , ⟨u⟩f,i , ⟨v⟩f,i) in cut cells, separated by the grounding line. Note that122

so far, we have not introduced any approximations, we have simply defined the control volumes for each of123

the discrete variables in (14) - (16).124

3.1. Taylor Series Error Analysis125

The analysis in [9] showed that arbitrarily high order stencils can be generated from cell-centered Taylor126

expansions that are implicitly defined in terms of local solution information, such as cell averages and jump127
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conditions, as well as the geometry, including cut cells and curved boundaries. We now review this concept128

and extend it to the present problem.129

Let ϕp be a function that is sufficiently smooth throughout phase p, but may experience a jump discon-130

tinuity at the EB. We can approximate ϕp with a Taylor series expansion:131

ϕp(x) =
∑

|q|≤P

1

q!
ϕ(q)
p (xc)(x− xc)

q +O
(
hP+1

)
(18)

where xq = xqxyqy , q! = qx!qy!, and ϕ
(q)
p = ∂qx∂qy

∂xqx∂yqy ϕp. From this we see that the equivalent expressions132

for the Taylor polynomial coefficients are cqϕ,p = 1
q!ϕ

(q)
p (xc).133

We will now show how a local polynomial fit based on (18) can be approximated. Consider a cell-centered134

Taylor expansion of ϕ in cell i, we need to interpolate local cell-averages of ϕ, denoted by ⟨ϕ⟩. Note that135

this is in general not equivalent to interpolating point values of ϕ. The relationship is clearer for low-order136

methods, where a first-order (P = 0) approximation for any ⟨ϕ⟩ could be approximated by its value at ϕ(xc),137

using just the first term in (18)), or by its value at ϕ(xc = x̄) for P = 1, using both the first and second138

terms in (18). For higher-order approximation we use more terms in the series and, assuming xc = 0, we139

can write the average using the moment notation:140

⟨ϕ⟩j =
1

|Vj|

∫
Vj

 ∑
|q|≤P

cqϕx
q

+O
(
hP+1

)
dV (19)

=
1

|Vj|
∑

|q|≤P

mq
j c

q
ϕ +O

(
hP+1

)
(20)

≡ mT
j cϕ +O

(
hP+1

)
, (21)

where mj is now defined as a vector of cell-average volume moments for cell j, meaning the moments are141

divided by the (arbitrarily-small) cell volume to correspond to cell-average quantities. This is in contrast to142

the scalar quantity, mq
j which is defined in (10). From this point forward, we will use this vector notation143

almost exclusively to avoid implied subscripts and summations.144

Suppose we now choose n arbitrary volumes in a nearby neighborhood, labeled j1...jn, that we will use145

for our interpolation of their corresponding values ⟨ϕ⟩j on each of volumes. Then we can write:146 
mT

j1

mT
j2

...

mT
jn

 cϕ ≡ Mϕcϕ , and


⟨ϕ⟩j1
⟨ϕ⟩j2
...

⟨ϕ⟩jn

 ≡ dϕ . (22)

The matrix Mϕ is the “moment matrix” with rows made up of the vectors mT
ji
. This matrix maps the147

coefficients of an order P polynomial the average values of that polynomials over the n volumes j1...jn. The148
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corresponding “data” vector dϕ contains the actual cell-average value of ϕ in those volumes. If the moment149

matrix is full rank, then the Taylor series coefficients can be approximated by the least-squares solution:150

cϕ = M†
ϕdϕ , (23)

where † represents the Moore-Penrose inverse, or pseudoinverse. Given this definition, we can see it is151

completely analogous to a Lagrange polynomial interpolation over arbitrary point values, resulting in a full-152

rank Vandermonde matrix system. In this case, the only difference is that we are dealing with cell-average153

quantities, and the cells included in the interpolation may be arbitrary in their shape and size. Given cell154

averages of some function, we are merely approximating a polynomial of a given order using least-squares.155

If the values ⟨ϕ⟩j1 ... ⟨ϕ⟩jn are intended to be unknowns, then the Taylor coefficients cϕ are defined156

implicitly as linear combinations of the unknown values. More generally, the dϕ vector may also contain157

information about ϕ besides cell averages defined on arbitrary cell volumes; point values, boundary condi-158

tions, jump conditions, etc. can be used in the matrix system. The corresponding rows of Mϕ will represent159

the action on the Taylor polynomial that would produce that piece of data. The basic idea, detailed in [9],160

is that we are enforcing consistency: if ϕ is a P th order polynomial, we must recover its coefficients ex-161

actly, with any additional errors coming from higher-order derivatives or errors in the geometric quantities.162

Throughout the paper we may add additional subscripts where necessary to indicate which phase and cell163

the Taylor expansion will be used in; for example the matrix Mu,p,i is the moment matrix that interpolates164

u in phase p, centered around the cell i.165

This Taylor series formulation allows us to create stencils that approximate the terms in (14): if we write166

the variable coefficients β, η as well as the unknown u as Taylor polynomials, we can expand the terms in the167

stress balance equation to obtain expressions that are combinations of the Taylor series coefficients for u.168

Since each Taylor series coefficient for u is a linear combination of unknown local cell averages of u in (23)169

and possibly other known information such as boundary and jump conditions, we can obtain an expression170

that is also a linear combination of local cell averages of u, i.e., a stencil that acts on ⟨u⟩. This process is171

shown in detail in below for each term in the stress balance equation.172

We will first tackle the divergence of fluxes term, where the x-component (and similarly for the y-173

component) of the divergence over the (cut or regular) volume Vp,i can be written as a sum of fluxes over174

the grid-aligned and EB faces of the volume:175

⟨∇ · ηFx⟩p,i =
1

|Vp,i|

∫
V

∇ · ηFx dV (24)

=
1

|Vp,i|

∑
±,d

∫
A

p,i± 1
2
ed

ηFx · n̂ dA+

∫
AB,i

ηFx · n̂ dA

 . (25)

Again, we must repeat that this has no approximations in it; it is an exact discretization given the control176

volume Vp,i, and errors are only introduced through the approximations of fluxes.177
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For the x component of the flux Fx = (Fxx, Fxy), we have for the surface integral along any face or178

boundary A with outward facing normal n̂:179 ∫
A

ηFx · n̂ dA =

∫
A

η

[
4
∂u

∂x
+ 2

∂v

∂y
,
∂u

∂y
+

∂v

∂x

]
· n̂ dA ,

and expanding each variable in terms of its Taylor series expansion:180 ∫
A

ηFx · n̂ dA =

∫
A

 ∑
|r|≤P

crη,px
r


 ∑

|q|≤P

cqu,p
cqv,p

T 4qxxq−ex n̂x + qyx
q−ey n̂y

2qyx
q−ey n̂x + qxx

q−ex n̂y


+O(hP ) dA

=
∑

|r+q|≤P

crη,p

4qxmq+r−ex

A,x + qym
q+r−ey

A,y

2qym
q+r−ey

A,x + qxm
q+r−ex

A,y

T cqu,p
cqv,p

+O(hP+1) +O(hRA) (26)

where O(hRA) is the accuracy of the area moments (11), (12), and (13), and ex is the unit vector (1, 0),181

etc. Note that we have treated η ≡ µH as a single variable coefficient; although µ depends on u and v, we182

ultimately need to build stencils for linear solvers in u and v, and µ and H can be reevaluated as needed183

within the nonlinear solver iterations.184

Applying (26) to each surface integral for the cell averaged flux divergence term, we have a truncation185

error of O(hRA−2) +O(hP−1) for (25) because we divide by the O(h2) volume |Vp,i|. If we define Gu,η,x,A186

and Gv,η,x,A to be the matrices whose r,q entry are given by187

Gu,η,x,A [r,q] ≡ 4qxm
q+r−ex

A,x + qym
q+r−ey

A,y (27)

Gv,η,x,A [r,q] ≡ 2qym
q+r−ey

A,x + qxm
q+r−ex

A,y , (28)

we can define the stress tensor derivative terms as operators involving the face moments, normals, and188

Taylor coefficients of η and u alone. Making the necessary substitutions, the flux component can be written189

as:190 ∫
A

ηFx · n̂ dA = cTη,p [Gu,η,x,Acu,p +Gv,η,x,Acv,p] +O
(
hmin(P+1,RA)

)
(29)

= dT
η,p

(
M†

η,p

)T [
Gu,η,x,AM

†
u,pdu,p +Gv,η,x,AM

†
v,pdv,p

]
+O

(
hmin(P+1,RA)

)
, (30)

where we have used the corresponding expressions for cη,p, cu,p, and cv,p from (23). In summary, we have191

obtained a “bilinear” stencil for the surface integral of the flux. First, we multiply on the left by dT
η,p, the192

vector of values of η, and then on the right by du,p and dv,p, the vectors of cell averaged values of u. Note193

that all the geometric information and averages have been collapsed into a single matrix expression that194

produces a single scalar quantity for the flux to be used in the divergence term. We do the same for all195

grid-aligned faces and boundary segments, using exactly the same formulas but with different normals and196

geometric moments.197
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For the x (or similarly y) component of the basal traction term in any grounded cell, we can define198

another bilinear stencil:199

⟨βu⟩g,i =
1

|Vg,i|

∫
Vg,i

 ∑
|r|≤P

crβx
r

 ∑
|q|≤P

cqu,gx
q

+O(hP+1)dV (31)

=

 1

|Vg,i|
∑

|r+q|≤P

crβm
r+q
g,i cqu,g

+O
(
hmin(RV −2,P+1)

)
(32)

= dT
β,p

(
M†

β,p

)T

Gu,β,iM
†
u,pdu,p +O

(
hmin(RV −2,P+1)

)
(33)

where O(hRV ) is the accuracy of the volume moments (10), and Gu,β,i is the matrix whose r,q entry is200

given by201

Gu,β,i [r,q] ≡
mr+q

g,i

Vg,i
. (34)

Again we treat β as a variable coefficient rather than a function of the Taylor expansion of u and v. Lastly,202

for the x-component (and likewise for the y-component) of the right-hand-side we have for grounded ice203 〈
ρgH

∂s

∂x

〉
g,i

=
1

|Vg,i|

∫
Vg,i

ρgH
∂(H + zb)

∂x
dV (35)

=
1

|Vg,i|
ρg

∑
|r+q|≤P

cqH,g(c
r
H,g + crzb,g) rxm

q+r−ex

g,i +O
(
hmin(P,RV −2)

)
(36)

and similarly for floating ice:204 〈
ρgH

∂s

∂x

〉
f,i

=
1

|Vf,i|
ρg

(
1− ρ

ρw

) ∑
|q+r|≤P

cqH,f (c
r
H,f ) rxm

q+r−ex

f,i +O
(
hmin(P,RV −2)

)
(37)

Putting this all together, if we want to achieve a truncation error of order P − 1 for the three terms in (14),205

we need to calculate geometric moments with errors of order RV , RA = P +1 and Taylor expansions of order206

P . We emphasize that this analysis did not depend in any way on the shape of the volume. However, as we207

will expand upon later in the paper, in cells that are away from the grounding line, due to symmetries in208

square-shaped volumes we can achieve an order P truncation error with an order P Taylor expansion. Since209

the grounding line is a codimension one smaller set, globally we expect order P truncation error in the L1
210

norm from using order P Taylor expansions, due to the nature of the elliptic equations.211

For linear problems, the analysis and results in [9] show that this cell-centered Taylor series formulation212

produces the expected level of truncation and solution error for the simpler equation −βϕ +∇ · η∇ϕ = f213

where β, η, f vary smoothly in space on either side of an interface but can jump across that interface. If214

we were to linearize the stress balance equation, the η and β fields would look like this simpler equation,215

and we would expect similar accuracy results in the linearized case. Because of the complexity of the full216

nonlinear relationships, we only empirically assess the effect of the nonlinearity on the error for numerical217

test problems.218
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Vg,i

Vf,i

Ng,i

Nf,i

(a)

Vg,j

Vf,k

Ng,j

Nf,k

(b)

Figure 2: Figure (a) shows neighborhoods Np,i used to construct interpolation matrices for order P = 2, around cut cell i,

which contains two volumes Vp,i bordering the interface. Figure (b) shows neighborhoods surrounding full cells j and k that

don’t contain the interface, but are “irregular,” meaning the regular stencil for order P = 2 would be inconsistent.

3.2. Stencil Construction219

To complete our description of the discretization, we need to define the various moment and data matrices220

that appear in (30) and (33). As in [9], we partition our cells into three subsets: regular cells ΩR, cut cells221

ΩC , and irregular cells ΩI . Regular cells use no geometric information beyond the selection of the (also222

regular) neighbor set, and can thus use a regular, unmodified finite volume stencil. Cut cells are intersected223

by the EB and must use geometric information. Irregular cells are not intersected by the EB, but at least224

one cell in the stencil footprint for a regular cell is intersected by the EB, thus making the regular cell stencil225

inaccurate.226

Construction of the moment matrices is similar to what is done in [9], but there are additional complica-227

tions that we must address for the stress-balance equation. First, fluxes in cut cells with jumps must couple228

both components and both phases of the velocity field. Second, the operator also contains cross-derivatives,229

which must be suitably discretized in regular cells. Lastly, the coefficients β, µ are functions of u and so230

must be calculated in a consistent way with other terms.231

Starting with the Taylor coefficients in (23), these nonlinear coefficients are stored as point values at the232

centroids of cells, x̄i, so that the matrices Mη,p,i and Mβ,p,i interpolate these in a neighborhood around233

each cell i (see Fig. 2). This is not done for accuracy reasons, but to make it easier to evaluate the nonlinear234

formulas (5)–(7); although it is possible to use cell average values with higher-order nonlinear correction235

terms, our ultimate goal is to create higher-order operator stencils for u, v, which are stored as cell averages.236
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Thus the regular and irregular cell moments are used in the matrices Mu,p,i and Mv,p,i to interpolate cell237

averages in the same neighborhood of cell i. In cut cells that contain a portion of the EB, we additionally use238

the moment matrix to enforce jump conditions. Finally, in regular cells, we take advantage of symmetries239

to minimize the stencil footprint. We will go into the details of each of these steps next.240

3.2.1. Regular Cells241

The vast majority of cells will be regular and will all have the same bilinear stencil, meaning we only242

have to solve for this stencil once. Since regular cells are squares, the integral of any monomial error term243

with odd degree over a regular cell is 0. This means that for the the flux divergence term, in regular cells244

we can achieve a truncation error of order P using an order P polynomial. This logic only applies if the245

neighborhood for the moment matrix is symmetric about the center cell, similar to how an extra order of246

accuracy is gained from centered differences. We can achieve an order P cell averaged linear term with247

an order P − 2 polynomial. See [9] for more details on these simplifications. The columns of the moment248

matrix Mu,i correspond to all monomials with either |q| < P or |q| = P and qx, qy are both even. Each row249

contains the cell-averaged moments mT
j for each cell j in the stencil, and the resulting matrix is square.250

For the matrix Mβ,i and Mη,i we use the same footprint as Mu,i, but the entries are monomial terms251

evaluated at centroids rather than cell-averaged moments. Construction of the stencil for the linear term is252

then straightforward using (33). The flux divergence term is slightly more involved. As in [9], for each face of253

the cell we zero out rows and columns of Mη,i to create the smaller matrices Mη,Ai±ed
. The neighborhoods254

for these matrices are symmetric about their respective faces and only contain moments that are necessary255

for the surface integral flux divergence term. We calculate the flux stencil for each face using (30), and256

average that with the stencil calculated from the neighboring cell. This symmetric averaging, along with the257

0 odd moments for regular faces and volumes, eliminates several O(hP ) error terms that were not accounted258

for in the Taylor expansions of u and v. This procedure produces a nine point stencil for P = 2 and a 21259

point stencil for P = 4. The bilinear stencils are written out explicitly for P = 2 in the Appendix for clarity.260

3.2.2. Irregular Cells261

Let cell i be an irregular cell in phase p, meaning its regular cell footprint contains at least one cell which262

is intersected by the EB. Therefore we must use a more general method for construction of moment matrices263

for irregular cells. We note that while irregular cells are squares, we do not cancel odd order truncation264

error terms because our stencil are generally not symmetric about the center of the stencil. Let Np,i be265

a neighborhood of cells in phase p around cell i. See Figure 2 (b). Our data vector du,p,i will consist of266

cell averaged values ⟨u⟩j for each cell j ∈ Np,i. As defined in (23), each row of the corresponding moment267

matrix Mu,p,i will simply be mT
j , the row of cell averaged volume moments for each cell j up to order P ,268

and is used likewise for the v component of the velocity field. For irregular cells, the data vector dβ,p,i will269
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consist of the point values of β at the centroid of each cell j ∈ Np,i, and the moment matrix Mβ,p,i will rows270

of monomials up to order P evaluated relative to the centroid, exactly like a Vandermonde interpolation271

matrix, but over-determined. The same approach is used for the η field. Then on each face of the irregular272

cell, we calculate the matrices Gu,η,x,A etc. to create a stencil for the flux integral along a face as in (30).273

3.2.3. Cut Cells274

In cut cells, we must enforce the jump conditions (8) and (9). Let Ni be a neighborhood of cells about275

cut cell i. See Figure 2 (a). Again, evaluating the jump in velocity u or v in terms of Taylor series and276

coefficients, we have in cut cell j in Ni:277 ∫
AB,j

ug − uf dA = mT
B,j(cu,g − cu,f ) +O(hP+2) , (38)

where mT
B,j is the row vector of EB moments defined in (11). For the jump in flux, we have278 ∫

AB,j

(ηgFx,g − ηfFx,f ) · n̂ dA =

cTη,g [Gu,η,x,Acu,g +Gv,η,x,Acv,g]− cTη,f [Gu,η,x,Acu,f +Gv,η,x,Acv,f ] +O(hP+1) , (39)

with a similar expression for Fy. Note that the flux jump condition couples the velocity components279

across the grounding line in one equation. The jump conditions are linear with respect to the velocity,280

so once cη,g and cη,f are approximated, these look like linear constraints on the four sets of coefficients281

cu,g, cv,g, cu,f , and cv,f .282

To see this, let the matrix MB have rows mT
B,j for each cut cell j ∈ Ni. Similarly, let the matrix MFx,u,g,283

have rows cη,gGu,η,x,A for each cut cell j ∈ Ni. Again, Mp is the matrix that interpolates the cell averaged284

values of u in phase p in Ni. Then finally we can assemble these into a coupled moment matrix:285

Mu,i =



Mg 0 0 0

0 Mf 0 0

0 0 Mg 0

0 0 0 Mf

MB −MB 0 0

0 0 MB −MB

MFx,u,g −MFx,u,f MFx,v,g −MFx,v,f

MFy,u,g −MFy,u,f MFy,v,g −MFy,v,f



, (40)

where the first 4 rows interpolate ug, uf , vg and vf . The next two rows enforce [u] and [v], respectively, while286

the last two are the flux jump conditions which couples all four components. Note that the jump conditions287

are enforced in a least-squares sense in this system as an average over the cut cell GL interface for a given288
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η (= µ(u)H) field. However, because we are using a FV scheme, the resulting fluxes cancel and the jump289

conditions are exactly enforced in the polynomial reconstruction.290

The data vector for cell averages and the jump constraints is then:291

du =
[
du,g du,f dv,g dv,f 0 0 0 0

]T
. (41)

Because the jump conditions are homogeneous, the last rows in the data vector du corresponding to the292

jump conditions are all zeros. Thus, there is no contribution from cut cell stencils to the right-hand-side293

from the jump conditions. Also, we calculate the matrices Mη,p,i only within each phase, to avoid nonlinear294

constraints on the coefficients, and we only need the grounded phase β matrix, Mβ,g,i, because there is no295

basal friction term in the floating part of the cell. We note that the number of moment matrices that need296

to be pseudo-inverted to assemble the operator scales linearly with the number of volumes that intersect the297

grounding line, which is O(n) for an n×n domain. The size of each moment matrix is (4|N |+4|NB |)×4|cP |298

where |N | is the number of neighbors of a volume, |NB | is the number of cut cells in the neighborhood,299

and |cP | is the number of polynomial coefficients up to order P in two dimensions,
(
P+2
2

)
. |N | is typically300

(2P + 1)2, so for the 4th order scheme a moment matrix might be of size 360 × 60. The pseudo-inverse301

is computed using an SVD routine. This computation is parallelized across multiple MPI processes, and302

it could be further parallelized if necessary using GPU operations. Although our code is not optimized,303

the cost of creating stencils, which includes these pseudo-inverses, is a less significant cost than solving the304

linearized system of equations.305

Finally, if we set du,p to the cell averaged values of u in each phase, then our four coupled sets of velocity306

coefficients can be approximated by:307 
cu,g

cu,f

cv,g

cv,f

 = M†
u,i du . (42)

This is the last piece that was needed: now that the interpolation matrices include jump conditions, ground-308

ing line geometry and partial cells, all parts of the domain are coupled and we can generate a nonlinear309

operator acting on ⟨u⟩i for all the terms in (14):310

L( β(u), µ(u), H )u = b .

The matrix operator L is a nonlinear, 2N×2N sparse matrix, where N is the number of cell volumes. It has311

a typical banded structure of finite difference operators, with off-diagonal banded blocks that locally couples312

the two components of u with neighbors. The width of the bands changes depending on if it is “regular”313

away from the interface, with band width P + 1, or near it with band width 2P + 1.314
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3.3. Neighborhood Selection, Weighting, Conservation315

We choose each neighborhood of cells so that the moment matrix has more rows than columns, and the316

interpolation leads to a full rank, over-determined least-squares system. To avoid a prolonged search based317

on local geometry, we opt to make the neighborhood sufficiently large to accommodate a locally smooth318

geometry. For any irregular or cut cell in phase p, we let Np,i be those cells in phase p that lie in the the319

square of cells with side length 2P +1 surrounding cell i. In cut and irregular cells we use a weighted least-320

squares approach and solve the least-squares system WMu,icu,i ≈ Wdu,i, where W is a diagonal matrix321

whose entries are weights which decay with distance from the center of the stencil. Let xj be the centroid322

of a volume in the stencil. The weight corresponding to that row of the moment matrix is given by:323

wj =
(
∥xi − xj∥ℓs + 1

)−α
. (43)

Experiments have shown that using s = 2, α = P + 1 is an effective combination. This weighting is critical324

for controlling spectral properties of the global system that make it amenable to off-the-shelf preconditioners325

and iterative solvers. This technique is used in [9], [16], [17] and many other works. However, weighting does326

not affect accuracy. This follows from the fact that if du,i is in the range of Mu,i, this system will be solved327

exactly regardless of the diagonal weight matrix used. In order for our discretization to be conservative, we328

need a single flux calculation for each face. This is accomplished by simply averaging the flux stencils from329

the two cells neighboring a face, and assembling the divergence stencils and other operators into a matrix330

coupling all the unknown velocity degrees of freedom.331

3.4. Right-hand-side Discretization332

We use the same moment matrix technique to calculate the right-hand-side driving stress from the333

thickness and topography fields. In (36) and (37), we need the Taylor coefficients of the H and zb fields,334

which can be interpolated from cell-averaged values. We again expect that this will have order P − 1 errors335

in cut cells and order P errors in regular cells.336

3.5. Nonlinear Iteration337

We use a simple Picard (fixed-point) iteration to solve the nonlinear system, meaning we repeatedly338

linearize the stress balance equation around the current guess for the velocity field uk, which determines the339

coefficient fields βk, ηk, and then solve the linear system for uk+1. Algorithm 1 summarizes the algorithm340

details we present next.341

Given a previous iteration of the velocity field uk, we can approximate the nonlinear coefficient fields342

βk, ηk. These are functions of the values and gradients of uk at cell centroids, as well values of H at343

cell centroids. All values and gradients are determined through interpolation using the moment matrix344

methodology. The moment matrix in cut cells depends on ηk through the nonlinear jump condition (39), so345
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Algorithm 1 Picard Iteration

1: Set tolerance ϵ, max iterations K

2: Set β0, µ0 to constants

3: Construct operator L0

4: Solve L0u1 = b

5: Set r0 = b− L0u1

6: while (ϵ
∥∥r0∥∥

L∞ <
∥∥rk∥∥

L∞ AND k < K) do

7: Compute βk, µk given uk

8: Construct operator Lk(βk, µk,uk)

9: Solve Lkuk+1 = b

10: Set rk = b− Lkuk+1

11: end while

in cut cells we must rebuild the flux matrices MF, which are blocks of Mu, each time the η field is updated.346

This means we must also rebuild the stencils in cut cells and neighboring irregular cells that share flux347

surfaces. However, in the remainder of irregular and regular cells, the bilinear stencils remain the same each348

iteration because they do not depend on satisfying jump conditions. Together, these stencils are assembled349

into a linear operator for that iteration, Lk. The right-hand-side vector b does not change because it is a350

function of the ice thickness and basal topography, but not the velocity.351

We then solve the linearized stress balance equation for a new velocity field uk+1 and repeat until352

convergence, as measured by the ratio of the initial residual norm to the current residual norm. The first353

iteration sets β0 and η0 to constants. The linearized equation is solved using PETSc Kryolv subspace354

methods and preconditioners [18]. We first multiply each row of Lk and b by the cell volume fraction355

(cell area divided by h2) to reduce row-scaling issues associated with dividing by small cell volumes in the356

divergence operation. The linear system is non-symmetric, so we use either GMRES or BiCGStab for the357

Krylov method and algebraic multigrid as the preconditioner. In practice we have found it is unnecessary to358

fully solve the linear system each Picard iteration. It typically takes around 40 Picard iterations to reduce359

the residual norm by a factor of 1e10. In future research we will pursue a geometric multigrid solver and a360

more sophisticated nonlinear solver such as the JFNK method, which is used successfully in time-dependent361

ice sheet problems [19].362

3.6. Grounding Line Reconstruction Algorithm363

The shape and position of the grounding line Γ must be “reconstructed” by interpolating the known364

values of ⟨H⟩i and ⟨s⟩i. Therefore geometric moments are subject to error from the reconstruction, and will365

introduce additional numerical error into the discretization of (14) - (16).366
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Algorithm 2 Grounding Line Reconstruction

1: Set order P

2: Set ⟨Hf ⟩i = ⟨H⟩i +
ρw

ρ ⟨zb⟩i for each cell i in mesh

3: Compute partial derivatives of Hf on nodes

4: Tag the set S = {i1, i2...iN} of cut cells

5: for (ik ∈ S) do

6: Compute bi-polynomial interpolant of Hf in cell ik

7: Compute gridline intersections

8: Compute mq
p,i,m

q
B,i,m

q
B,i,d for |q| ≤ P

9: end for

To complete our description of the discretization, we must calculate the geometric moments for each367

cell to use in the moment matrices and stencil expressions. Recall that moments are simply integrals of368

monomials over some region defined by the intersection of the grounding line with the Cartesian grid. For369

many numerical methods these integrals are computed using quadratures, either on the elements themselves370

or through a mapping from a reference element. However, the volumes in our method can have arbitrary371

shapes, so we rely on the integration technique detailed in [9]. This technique explicitly reconstructs the372

boundary of the volume as a polygon, and through an application of Green’s theorem computes moments as373

integrals over the boundary of that polygon. The polygons are successively refined, and combined with an374

extrapolation technique, arbitrary accuracy can be achieved. One method for reconstructing the boundary,375

which is very natural for this problem, is to consider the boundary to be the zero level set of some implicit376

function, so that points on the boundary can be located by a root-finder.377

The grounding line is simply the zero level set of the function Hf = H + ρw

ρ zb, that is, where the378

“thickness above flotation” is exactly zero. Typically, cell-averaged ice thickness and basal topography data379

would be given by output from a previous timestep or initial conditions for an ice sheet evolution problem.380

The reconstructed zero level set should be 1) piecewise continuous across the grounding line and between381

cells, and 2) sufficiently accurate for the order of the scheme. We construct an interpolant of the Hf field382

in each cell whose zero level set satisfies the two necessary conditions. Geometric moments can quickly be383

calculated from this interpolant using the algorithm in [9] for computing monomial integrals from an implicit384

function description of an interface. Regarding condition 2, in the analysis section we determined that for385

an order P scheme, we need to calculate moments with errors of order at least P +1, but our reconstruction386

algorithm computes moments with errors of order P + 2 so that the geometric error should not adversely387

affect the truncation error.388

The order P algorithm proceeds as follows, and is summarized in Algorithm 2: For each node in the mesh,389

we calculate the value and partial derivatives ofHf using a polynomial interpolant of local cell averages ofHf390
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in the square of side length P + 2 surrounding each node. Specifically, this is a “bi-polynomial” interpolant391

of order P + 1, meaning a linear combination of all monomial terms xqxyqy such that qx, qy ≤ P + 1. We392

expect errors of order P +2 for the nodal values. Now given the values of Hf on each node of the mesh, we393

can form the set of cut cells: a cell is intersected by the grounding line if the four values of Hf on the nodes394

of that cell all do not have the same sign.395

For each cut cell i, we use the values and partial derivatives of Hf on the four nodes of the cell to create396

an order P + 1 bi-polynomial interpolant whose zero level set represents the portion of the grounding line397

in cell i. In each coordinate direction, the interpolant is an order P + 1 polynomial, so we expect errors398

in the location of the level set to be of order P + 2. This construction ensures continuity of the grounding399

line because along the gridlines between neighboring cells the interpolant is defined uniquely by the shared400

nodal values and derivatives, which define the grid line intersections. For an order p area moment (defined401

in (11), (13), (12)) we expect order |p|+ P + 2 error, and for an order p volume moment (defined in (10))402

we expect an order |p|+ P + 3 error.403

3.7. Software404

The method is implemented using the Chombo software library, which allows for straightforward par-405

allelization of the algorithm [20]. As mentioned, we use the PETSc library [18] for a linear solver. The406

least-squares solvers in Chombo are built on top of the SVD least-squares routine in LAPACK [21].407

4. Test Problems408

We present two tests: the first verifies that the method converges at the expected order, and the second409

demonstrates how our method can be used on a realistic problem. We present three tests: the first verifies410

that the method converges at the expected order, the second one examines the robustness of the method to411

small cells, and the third demonstrates how the method can be used on a realistic problem. For all tests,412

we use periodic boundary conditions in order to isolate our study of the grounding line reconstruction and413

modified discretization.414

4.1. Numerical Convergence415

Let the domain Ω = [0, 130 km]2. Let the function B(x, y) be given by416

B(x, y) = cos(ωx)2 cos(ωy)2 + c (44)

with ω = π/130 km, c = −5/6. The ice thickness and topography are then given by:417

H = 600B + 600 (45)

zb = 600B − ρ

ρw
600 , (46)
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(a)

Figure 3: Upper right quadrant of domain for numerical convergence test. Color map of µ field with velocity field vectors

scaled and colored by magnitude.

so that the grounding line is the zero level set of B. For the friction term we let m = 1
3 [19] and let418

C = 3000 everywhere. We consider isothermal ice with a constant rate factor A = 3e−17. The regularization419

constants are u2
0 = 10−6, ϵ20 = 10−12 The domain and grounding line are shown in Figure 3. For this test we420

are interested in measuring the numerical convergence of several quantities: the geometric moments from421

the grounding line reconstruction, the right-hand-side driving stress, and the velocity field. We use values422

computed at the finest level, n = 1024, as an “exact” solution. To demonstrate high-order accuracy, we run423

the convergence tests with both P = 2 and P = 4. We measure the error ⟨e⟩i as discrete cell averages, and424

evaluate it using discrete ℓp norms:425

∥e∥1 =
1

|Ω|
∑
p,i

∣∣∣⟨e⟩p,i∣∣∣ |Vp,i| (47)

∥e∥∞ = max
p,i

∣∣∣⟨e⟩p,i∣∣∣ , (48)

where |Ω| is the volume of the domain. Convergence results are shown in Figure 4. We are primarily426

interested in the rate of convergence of the solution error in the velocity field, as that is what we are solving427

for. Our analysis showed that there are several interconnected factors contributing to the truncation error:428

geometric information, right-hand-side discretization, and operator discretization. We saw that in order to429

achieve an order P − 1 truncation error in regular cells and order P truncation error in cut and irregular430

cells, we required 1) order P polynomial interpolants of the u, β, µ,H, zb fields and 2) order P +1 geometric431

moments. Firstly, we confirm expected behavior from the reconstruction scheme in panels (c) and (d). Since432
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the moments are sufficiently accurate, we expect to be able to compute order P polynomial interpolants,433

from which we discretize the right-hand-side driving stress. The right-hand-side converges at the required434

order of P . This is an indication that our operator discretization will also have the order predicted by the435

analysis, because it uses the same interpolation and integration process. The ℓ∞ norm is two orders of436

magnitude larger than the ℓ1 norm because the driving stress is much larger in the grounded part of the437

ice sheet, where the slope of the topography contributes to the surface gradient. Given these plots, we are438

satisfied that discretization of the geometric information and the driving stress do not interfere with the439

truncation error of the operator.440

P, s 2,1 2,2 2,∞ 4,1 4,2 4,∞

Slope 2.26 2.26 2.27 3.83 3.86 3.03

Table 2: Slopes for least-squares fit to data points at n = 128, 256, 512 for error in X component of velocity for order P scheme

measured in the ℓs norm. See Fig. 4.

To obtain the velocity field we must solve a nonlinear elliptic equation, so the relationship between441

truncation and solution error is highly complex and we choose to analyze it empirically. We see that for all442

norms except the ℓ∞ norm for the P = 4 scheme we obtain roughly order P convergence. A least-squares443

fit to the convergence rate of the error in the x component of the velocity is shown in Table 2 (results are444

identical for the y component due to symmetry). Specifically, the slope β1 is calculated from fitting the line:445

log2(e) ≈ β1 log2(h) + β0 (49)

to the error data points at n = 128, 256, 512 for 3 different ℓs norms. A possible explanation for the slow446

convergence of the ℓ∞ norm for the P = 4 may be due to the following: we can see from Figure 3 that447

the velocity field flows radially outward from the center of the domain, meaning the both components of448

the velocity field should pass through zero at that point. The form of the sliding law in (7) shows that449

the friction coefficient is highly sensitive near the regularization constant, i.e., when the velocity is small.450

Errors in the velocity field are amplified by the friction coefficient, possibly leading to further errors in the451

velocity field. Figure 5 shows that the highest error is concentrated at the center of the domain, and at the452

grounding line where the ice flow is fastest. Despite this singular error at the center, we note that the P = 4453

scheme with n = 128 achieves approximately the same accuracy as the P = 2 scheme with n = 512.454
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Figure 4: Errors for ice rise test. The number of cells (n) per domain side of length 130km. Figures (a) and (b) show roughly

order P convergence for the x-component of the velocity field and right-hand-side. In (c) and (d) we plot the error in zeroth-

order geometric moments as well as nodal values from the reconstruction.
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Figure 5: Absolute value of x component of velocity error for n = 512. The black contour is the grounding line. The error

is concentrated near grounding line, where ice is flowing the fastest, and at the center of the domain where the basal sliding

coefficient increases sharply.

Figure 6: Domain and test problem for small volume fractions. The velocity field vectors are scaled by magnitude on the lower

color bar, while the ice surface is shown with the top color bar.

4.2. Effect of small cells455

We now conduct a simple experiment to demonstrate the indifference of the algorithm to small cut cell456

volumes, which are always present, especially with moving boundary problems. This is a known problem in457

the finite element context, where small and stretched elements can cause conditioning problems. Thus, it458

is important to establish that we can handle arbitrarily small cut cell volumes. As with the previous test,459
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κ 5e-1 5e-2 5e-3 5e-4 5e-5 5e-6 5e-7

P=2 1.40e3 1.62e3 1.64e3 1.52e3 1.92e3 1.99e3 2.00e3

P=4 1.13e3 1.12e3 1.28e3 1.39e3 1.41e3 1.41e3 1.41e3

Table 3: Condition number of operator with varying floating cell volume fraction κ for 1d test.

the domain ([0, 130km]2) is open but with B(x, y) a quadratic function in x, with roots at 32.5km+ ϵ and460

97.5km− ϵ (see Figure 6). If n is a power of 2, this means that the volume fraction κ of the floating part of461

the cells containing the grounding line will be κ = nϵ
130 . We set n = 32 and vary κ, and measure the condition462

number of the operator. The condition number of the operator stays roughly constant even for very small463

volume fractions (see Table 3). This is the result of a flux-conservative discretization, where the small cell464

and its complement contribute to the interpolants in a way that respects the jump conditions. Although465

this is essentially a one-dimensional example, we see similar stability in our two-dimensional example, where466

volume fractions are not bounded below and can be as small as 10−7.467

4.3. Pine Island Glacier468

We next demonstrate our method on a more realistic problem. Pine Island glacier is an ice stream in469

West Antarctica which is closely studied and monitored by glaciologists because of its potential to contribute470

significantly to global sea level rise [22]. In this test we modify the Pine Island Glacier test in [19] to create a471

[360 km]2 tile shown in Figure 7, replicated and flipped to create a 2× 2 periodic domain. Basal topography472

and ice thickness data were obtained for 1 km grid spacing, and the basal friction coefficient was determined473

by solving an inverse problem [19]. We reconstruct the grounding line to partition the domain into grounded474

and floating regions, and linearize the equation around a constant viscocities µg = 1e7, µf = 1e6 in the475

respective parts of the domain.476

The resulting velocity field flows downhill from the grounded region to the floating area enclosed by the477

grounding line. In the grounded region, ice flow is fastest in the “channels” where the friction coefficient478

is lower. These features are typical in dynamic ice sheet calculations of the Pine Island glacier, and our479

algorithm handles the realistic flow and topography features without issue.480

5. Conclusion481

We have developed a higher-order cut-cell finite volume method for solving the shallow-shelf approxima-482

tion to the stress balance equation in ice sheet dynamics, which is a two-dimensional system of nonlinear483

elliptic PDEs with variable coefficients that are discontinuous across the grounding line. Fourth order ac-484

curacy is achieved by extending the method developed in [9] for solving elliptic interface problems to the485
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(a)

(b)

Figure 7: (a) Upper right quadrant from the Pine Island glacier test. The background colormap is the basal friction coefficient

field, with the velocity field vectors of unit length but colored by magnitude. (b) Reconstructed grounding line with colors

indicating fraction of cell that is grounded. Note that the value varies dramatically along the interface between the grounded

(light yellow) and floating (light green) ice.

shallow-shelf equations. To support the higher-order finite volume discretization, we generate a correspond-486

ingly higher-order representation of the grounding line from the thickness above flotation field.487
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Future research directions could include adding adaptive mesh refinement [20], which has been successful488

in resolving fine features critical for tracking the grounding line [19]. We would expect higher-order methods489

to do an even better job with additional refinement and provide lower errors at coarser resolutions. Higher-490

order time integrators and advection schemes could be paired with this algorithm, but careful analysis491

would be required for how the reconstruction and discretization would behave in a time-dependent system.492

In addition, computationally-expensive parts of the algorithm, such as the dense matrix pseudo-inverses and493

stencil calculations, might benefit from acceleration on GPUs.494
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6. Appendix551

For clarity, we include the regular cell bilinear stencil for our operator for P = 2. Recall the stress552

tensor F has four components which are each functions of the two components of the velocity field. Due to553

the fact that Fxx(u, v) = Fyy(v, u) and Fxy = Fyx, it is only necessary to include the bilinear stencils for554

∇ · (η[Fxx, Fyy]) and βu. From (30) we see that our bilinear stencil involves multiplying a matrix on the555

left by local point values of η and on the right by local cell averaged values of u, v. We label these matrices556

Su,η,x,Sv,η,x for the flux divergence term. Let the center cell of the stencil have index (0, 0). The data557
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vectors and stencil matrices for the flux divergence term for P = 2 are:558

dT
η = [η0,−1 η−1,0 η0,0 η1,0 η0,1] (50)

dT
u =

[
⟨u⟩−1,−1 ⟨u⟩0,−1 ⟨u⟩1,−1 ⟨u⟩−1,0 ⟨u⟩0,0 ⟨u⟩1,0 ⟨u⟩−1,1 ⟨u⟩0,1 ⟨u⟩1,1

]
(51)

Su,η,x =



0 1
2 0 0 −1

2 0 0 0 0

0 0 0 2 −2 0 0 0 0

0 1
2 0 2 −1

2 2 0 1
2 0

0 0 0 0 −2 2 0 0 0

0 0 0 0 −1
2 0 0 1

2 0


(52)

Sv,η,x =



1
8 0 −1

8
1
8 0 −1

8 0 0 0

1
4

1
4 0 0 0 0 −1

4 −1
4 0

3
8 0 −3

8 0 0 0 −3
8 0 3

8

0 −1
4 −1

4 0 0 0 0 1
4

1
4

0 0 0 −1
8 0 1

8 −1
8 0 1

8


(53)

and dv is defined analogously to du. Then we finally have:559

⟨∇ · (η[Fxx, Fyy])⟩ =
1

h2
dT
η (Su,η,xdu + Sv,η,xdv) +O(h2) (54)

For the friction term we simply have:560

⟨βu⟩ = β0,0 ⟨u⟩0,0 +O(h2) (55)

We can similarly define stencils for P = 4 with a larger (21 point) footprint for the flux divergence term and561

a 5 point footprint for the friction term.562
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