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Abstract

Sparse high-dimensional massive sample size (sHDMSS) time-to-event data present multiple 

challenges to quantitative researchers as most current sparse survival regression methods and 

software will grind to a halt and become practically inoperable. This paper develops a scalable ℓ0­

based sparse Cox regression tool for right-censored time-to-event data that easily takes advantage 

of existing high performance implementation of ℓ2-penalized regression method for sHDMSS 

time-to-event data. Specifically, we extend the ℓ0-based broken adaptive ridge (BAR) methodology 

to the Cox model, which involves repeatedly performing reweighted ℓ2-penalized regression. We 

rigorously show that the resulting estimator for the Cox model is selection consistent, oracle for 

parameter estimation, and has a grouping property for highly correlated covariates. Furthermore, 

we implement our BAR method in an R package for sHDMSS time-to-event data by leveraging 

existing efficient algorithms for massive ℓ2-penalized Cox regression. We evaluate the BAR Cox 

regression method by extensive simulations and illustrate its application on an sHDMSS time-to­

event data from the National Trauma Data Bank with hundreds of thousands of observations and 

tens of thousands sparsely represented covariates.
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1 | INTRODUCTION

Advancements in medical informatics tools and high-throughput biological experimentation 

are making large-scale data routinely accessible to researchers, administrators, and 

policymakers. This data deluge poses new challenges and critical barriers for quantitative 

researchers as existing statistical methods and software grind to a halt when analyzing 

these large-scale data sets, and calls for appropriate methods that can readily fit large-scale 

data. This paper primarily concerns survival analysis of sparse high-dimensional massive 

sample size (sHDMSS) data, a particular type of large-scale data with the following 

characteristics: (1) high-dimensional with a large number of covariates (pn in thousands 

or tens of thousands), (2) massive in sample-size (n in thousands to hundreds of millions), 

(3) sparse in covariates with only a very small portion of covariates being nonzero for each 

subject, and (4) rare in event rate. An example of sHDMSS data is the pediatric trauma 

mortality data from the National Trauma Data Bank (NTDB) maintained by the American 

College of Surgeons.1 This data set includes 210 555 patient records of injured children 

under 15 collected over 5 years from 2006 to 2010. Each patient record includes 125 952 

binary covariates that indicate the presence or absence of an attribute (ICD9 Codes, AIS 

codes, etc) as well as their two-way interactions. The data matrix is extremely sparse with 

less than 1% of the covariates being non zero. The event (mortality) rate is also very low 

at 2%. Another application domain where sHDMSS data are common is drug safety studies 

that use massive patient-level databases such as the US FDA’s Sentinel Initiative (https://

www.fda.gov/safety/fdassentinelinitiative/ucm2007250.htm)and the Observational Health 

Data Sciences and Informatics program (https://ohdsi.org/) to study rare adverse events with 

hundreds of millions of patient records and tens of thousands of patient attributes that are 

sparse in the covariates.

The sHDMSS survival data present multiple challenges to quantitative researchers. First, not 

all of the thousands of covariates are expected to be relevant to an outcome of interest. 

It would also be practically undesirable to predict a patient outcome using thousands 

of covariates. Traditionally, researchers hand-pick subject characteristics to include in an 

analysis. However, hand picking can introduce not only bias, but also a source of variability 

between researchers and studies. Moreover, it would become impractical in large-scale 

evidence generation when hundreds or thousands of analyses are to be performed.2 Hence, 

automated sparse regression methods are desired. Secondly, the commonly used “divide 

and conquer” strategy for massive size data is deemed inappropriate for sHDMSS time-to­

event data since each of the divided data would have too few events for a meaningful 

analysis. Third, sHDMSS data presents a critical barrier to the application of existing 

sparse survival regression methods, since most current methods and standard software 

become inoperable for large data sets due to high computational costs and large memory 

requirements. Although many sparse survival regression methods are available,3–10 to the 

best of our knowledge, only LASSO, Elastic Net11 and ridge regression have been adapted 

to fit sHDMSS time-to-event data. In particular, Mittal et al12 developed a tool, named 

CYCLOPS, for fitting LASSO and ridge Cox regression with sHDMSS time-to-event data 

by storing data in a sparse format, exploiting sparsity in the data and partial likelihood, 

and using multicore threading and vector processing, along with other high-performance 
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computing techniques, which delivers > 10-fold speedup12 over its competitors. However, 

ridge Cox regression does not yield a sparse model and LASSO tends to select too many 

noise features and is biased for estimation.13,14 Improved sparse Cox regression tools for 

sHDMSS time-to-event data are desired.

The purpose of this paper is to develop a surrogate ℓ0-based sparse Cox regression method 

and adapt it to sHDMSS time-to-event data. It is well known that ℓ0-penalized regression is 

natural for variable selection and parameter estimation with some optimal properties.15–18 

On the other hand, it is also known to have some pitfalls such as instability19 and being 

unscalable to even moderate dimensional covariates. The broken adaptive ridge (BAR) 

estimator, defined as the limit of an iteratively reweighted ℓ2-penalization algorithm, was 

introduced to approximate the ℓ0-penalization problem and has been recently shown to 

possess some desirable selection, estimation, and clustering properties under the linear 

model and several other model settings.10,20–22 It is also computationally scalable to high­

dimensional covariates and stable for variable selection as discussed later in Remark 2 of 

Section 2. However, the BAR method has yet to be rigorously studied for the Cox model. 

Moreover, current BAR algorithms have only been implemented for densely-represented 

covariates and are unsuitable for sHDMSS data due to high computational costs, high 

memory requirements, and numerical instability. Computation of the Cox partial likelihood 

and its derivatives is particularly demanding for massive sample size data since the required 

number of operations grows at the rate of O(n2). The key contributions of this paper are 

twofold. First, we rigorously extend the BAR methodology to the Cox model. Specifically, 

we establish the selection consistency, an oracle property for parameter estimation, and a 

grouping property of highly correlated covariates for the Cox model. It is worth noting that 

the theoretical extension of the BAR methodology to Cox model is nontrivial and notably 

different from other models because the log-partial likelihood for the Cox model is not 

the sum of independent terms and the standard martingale central limit theorem used to 

derive the asymptotic theory for Cox’s model with a fixed number of covariates is no longer 

applicable when the number of parameters diverges. Furthermore, because BAR involves 

performing an infinite number of penalized regressions, the derivations of its selection 

consistency and oracle property for estimation are substantially different from those for a 

single-step oracle estimator in the literature. The second key contribution of this paper is 

to develop an efficient implementation of BAR for Cox regression with sHDMSS time-to­

event data by leveraging existing efficient massive ℓ2-penalized Cox regression techniques,12 

which include employing a column relaxation with logistic loss (CLG) algorithm using one­

dimensional updates and a one-step Newton-Raphson approximation as well as exploiting 

the sparsity in the covariate structure and the Cox partial likelihood to reduce the number of 

operations from O(n2) to O(n).

In Section 2, we formally define the BAR estimator, state its theoretical properties for 

variable selection, parameter estimation, and grouping highly correlated covariates for 

the Cox model, and describe an efficient implementation for sHDMSS survival data. We 

also discuss how to adapt BAR as a postscreening sparse regression method for ultrahigh 

dimensional Cox regression with relatively small sample size. In Section 3, we present 

simulation studies to demonstrate the performance of the CoxBAR estimator with both 

moderate and massive sample size in various low and high-dimensional settings. We provide 
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a real data example using the pediatric trauma mortality data12 in Section 4. Lastly, we give 

closing remarks in Section 5. The appendix collects proofs of the theoretical results and 

regularity conditions needed for the derivations. An R package has been developed for BAR 

and made available at https://github.com/OHDSI/BrokenAdaptiveRidge.

2 | METHODOLOGY

2.1 | Cox’s BAR regression and its large sample properties

2.1.1 | The data structure, model, and estimator—Suppose that one observes 

a random sample of right-censored time-to-event data consisting of n independent and 

identically distributed triplets Xi, δi, zi( ⋅ ) i = 1
n , where for subject i, Xi = min(Ti, Ci) is the 

observed event time, δi = I(Ti ≤ Ci) is the censoring indicator, Ti is the event time of interest, 

and Ci is a censoring time that is conditionally independent of Ti given a pn-dimensional, 

possibly time-dependent, covariate vector Zi( ⋅ ) = zi1( ⋅ ), …, zipn( ⋅ ) ′.

Assume the Cox23 proportional hazard model

ℎ t z(t) = ℎ0(t)exp z(t)′β , (1)

where h{t | z(t)} is the conditional hazard function of Ti given {z(u),0 ≤ u ≤ t, }, h0(t) is 

an unspecified baseline hazard function, and β = β1, …, βpn  is a vector of time-independent 

regression coefficients. Denote by β1 and β2 the first qn and remaining pn − qn components 

of β, respectively, and define β0 = β01′ , β02′ ′ as the true values of β, where, without loss 

of generality, β01 = β01…, β0qn  is a vector of qn nonzero values and β02 = 0 is a pn − qn 

dimensional vector of zeros. Further technical assumptions for β0 and pn are given later in 

condition (C6) of Section S4 of the Supplementary Material. For simplicity, we work on the 

time interval s ∈ [0, 1] as in the work of Andersen and Gill,24 which can be extended to 

any time interval [0, τ] for 0 < τ < ∞. Using the standard counting process notation, the 

log-partial likelihood for the Cox model is defined as

ln(β) = ∑
i = 1

n ∫
0

1

β′zi(s)dNi(s) − ∫
0

1

log ∑
j = 1

n
Y j(s)exp β′zj(s) dN(s), (2)

where, for subject i, Yi(s) = I(Xi ≥ s) is the at-risk process and Ni(s) = I(Xi ≤ s, δi = 1) 

is the counting process of the uncensored event with intensity process hi(t | β) = h0(t)Yi(t) 

exp{zi(t)′β} and N = ∑i = 1
n Ni.

Our Cox’s BAR estimation of β starts with an initial Cox ridge regression estimator25

β(0) = argmin
β

−2ln(β) + ξn ∑
j = 1

pn
βj

2 , (3)

which is updated iteratively by a reweighed ℓ2-penalized Cox regression estimator
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β(k) = argmin
β

−2ln(β) + λn ∑
j = 1

pn βj
2

β j
(k − 1) 2 , k ≥ 1, (4)

where ξn and λn are nonnegative penalization tuning parameters. The BAR estimator is 

defined as

β = lim
k ∞

β(k) . (5)

Since ℓ2-penalization yields a nonsparse solution, defining the BAR estimator as the limit is 

necessary to produce sparsity. Although λn is fixed at each iteration, it is weighted inversely 

by the square of the ridge regression estimates from the previous iteration. Consequently, 

coefficients whose true values are zero will have larger penalties in the next iteration, 

whereas penalties for truly nonzero coefficients will converge to a constant. We will show 

later in Theorem 1 that, under certain regularity conditions, the estimates of the truly zero 

coefficients shrink toward zero while the estimates of the truly nonzero coefficients converge 

to their oracle estimates with probability tending to 1. As illustrated by a small simulation 

in Section S2 (Figure S1) of the Supplementary Material, the signal (nonzero coefficients) 

and noise (zero coefficients) can be quickly separated within a few BAR iterations, although 

more iterations may be necessary in some scenarios to improve estimation of the nonzero 

coefficients.

Remark 1. (Computational aspects of BAR): For moderate size data, one may calculate 

β(k)
 in (4) using the Newton-Raphson method as in the work of Frommlet and Nuel,26 who 

outlined an iterative reweighted ridge regression for generalized linear models. It appears 

at first sight that (4) will encounter numerical overflow as some of the coefficients β j
(k − 1)

will go to zero as k increases. However, it can be shown that after some simple algebraic 

manipulation the Newton-Raphson updating formula will only involve multiplications, 

instead of divisions, by β j
(k − 1)s, and thus numerical overflow can be avoided. Further 

details are provided in Section S1 (Equation (3)) of the Supplementary Material. We also 

note that because the limit of the BAR algorithm cannot be numerically achieved at any 

finite iteration step, an extra thresholding rule for small coefficients will be required to 

numerically obtain a sparse solution. However, this thresholding level can be set arbitrarily 

small (by default, we set the threshold value to 10−6 in our implementation) since it is 

simply used for numerical convergence to zero and has minimal impact on the resulting 

BAR estimator. Furthermore, Equation (3) of Section S1 of the Supplementary Material 

implies that, once a β j
(k − 1) becomes zero, it will remain as zero in subsequent iterations. 

Thus, one only needs to update β(k)
 within the reduced nonzero parameter space, an 

appealing computational advantage for high-dimensional settings.

For massive-size data with large n and pn, the Newton-Raphson procedure, which at each 

iteration, calls for the calculation of both the gradient and Hessian can become practically 
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infeasible due to high computational costs, memory requirements, and numerical instability. 

In Section 2.2, we will discuss how to adapt an efficient algorithm for massive ℓ2-penalized 

Cox regression via cyclic coordinate descent and exploit the sparsity of the covariate 

structure to make BAR scalable to sHDMSS data.

Remark 2. (Broken adaptive ridge versus best subset selection): The BAR method can 

be viewed as a performing a sequence of surrogate ℓ0-penalizations, where each reweighted 

ℓ2 penalty serves as a surrogate ℓ0-penalty and the approximation of ℓ0-penalization improves 

with each iteration. Consequently, BAR enjoys the best of ℓ0- and ℓ2-penalized regressions. 

For example, we establish in the next two sections that BAR possesses the oracle properties 

for estimation and selection consistency (an ℓ0 property) as well as a grouping property 

(an ℓ2 property). Numerically, for a fixed tuning parameter value, BAR is a surrogate 

to ℓ0-penalization is not expected to be identical, but can be similar to the exact global 

ℓ0-penalization solution where the latter must be solved using the best subset search (BSS). 

We illustrate this in Section S3 of the Supplementary Material (Figures S2 and S3) using 

a small simulation study. It is worth emphasizing that BAR overcomes some shortcomings 

of BSS; for example, BSS is computationally NP-hard and can be unstable for variable 

selection,19 whereas BAR is scalable to high-dimensional covariates and is more stable for 

variable selection as demonstrated in Figures S2 and S3 in Section S3 of the Supplementary 

Material.

2.1.2 | Oracle properties—We establish the oracle properties for the BAR estimator for 

simultaneous variable selection and parameter estimation where we allow both qn and pn to 

diverge to infinity.

Theorem 1 (Oracle properties).: Assume the regularity conditions (C1) to (C6) in Section 

S4.1 of the Supplementary Material hold. Let β1 and β2 be the first qn and the remaining pn 

− qn components of the BAR estimator β, respectively. Then, as n → ∞, with probability 

tending to one,

a. the BAR estimator β = β1, β2  exists and is unique, where β2 = 0;

b. nbn′ Σ β0 11
−1/2 β1 − β01

D N(0, 1), for any qn-dimensional vector bn such that 

∥bn∥2 ≤ 1 and where Σ(β0)11 is the first qn × qn submatrix of Σ(β0), where Σ(β0) 

is defined in Condition (C4).

Theorem 1(a) establishes selection consistency of the BAR estimator. Part (b) of the theorem 

essentially states that the nonzero component of the BAR estimator is asymptotically normal 

and equivalent to the weighted ridge estimator of the oracle model, as shown in the proof 

provided in Section S4.2 of the Supplementary Material.

Remark 3 (Ultrahigh-dimensional covariates setting).: Although we allow pn to diverge, 

the asymptotic properties of the BAR estimator in the Section 2.1 are derived for pn < n. In 

an ultrahigh-dimensional setting where the number of covariates far exceeds the number of 

observations (pn ≫ n), one may couple a sure screening27 method with the BAR estimator 

to obtain a two-step estimator with desirable selection and estimation properties. The orders 
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of qn, pn, and n and their relationships depend on the employed screening procedure. For 

example, coupling the BAR estimator with the sure joint screening procedure28 has been 

explored in the work of Kawaguchi.29

2.1.3 | A grouping property—When the true model has a group structure, it is 

desirable for a variable selection method to either retain or drop all variables that are 

clustered within the same group. It is well known that ridge regression possesses the 

grouping property for highly correlated covariates.11 Because the BAR estimator is based 

on an iterative ridge regression, we show that BAR also possesses a grouping property for 

highly correlated covariates as stated in following theorem.

Theorem 2.: Let λn, Xi, δi, zi i = 1
n  be given and assume that Z = zi′, …zn′  is standardized. 

That is, for all j = 1, … , pn, ∑i = 1
n zij = 0, z[, j]′ z[, j] = n − 1, where z[, j] is the jth column 

of Z. Suppose the regularity conditions (C1) to (C6) in Section S4.1 of the Supplementary 

Material hold and let β be the BAR estimator. Then, for any β i ≠ 0 and β j ≠ 0,

β i
−1 ± β j

−1 ≤ 1
λn

2 (n − 1) 1 ± rij n 1 + dn
2, (6)

with probability tending to one, where dn = ∑i = 1
n δi, and rij = 1

n − 1z[, i]′ z[, j] is the sample 

correlation of z[,i] and z[, j].

The proof is provided in Section S4.3 of the Supplementary Material. It is seen from (6) 

that, as rij → 1, the absolute difference between β i and β j approaches 0, implying that 

the estimated coefficients of two highly positively correlated variables will be similar in 

magnitude. Similarly, the estimated coefficients of two highly negatively correlated variables 

are also similar in magnitude with a sign change.

2.1.4 | Selection of tuning parameters—Model complexity depends critically on the 

choice of the tuning parameters. The BAR estimator depends on two tuning parameters, 

ie, ξn for the initial ridge estimator in (3) and λn for the iterative ridge step in (4). Our 

simulations in Section 3.1 illustrate that, while fixing λn, the BAR estimator is insensitive to 

the choice of ξn over a wide interval (Figure 1) and thus practically only optimization with 

respect to λn is needed.

We optimize with respect to λn in a similar manner to currently used penalization methods. 

A popular strategy for tuning parameter selection is to perform optimization with respect 

to a data-driven selection criterion such as cross-validation (CV),30,31 Akaike information 

criterion,15 and Bayesian information criterion (BIC).16,17,32 Although CV has been used 

extensively in the literature, it has been known to asymptotically overfit models with a 

positive probability.33,34 Recent theoretical work has shown that, for penalized Cox models 

that possess the oracle property, BIC-based tuning parameter selection identifies the true 

model with probability tending to one.32 Further discussion on selecting λn for BAR is 

provided in the last paragraph of Section 3.2.
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2.2 | Implementation of BAR for sHDMSS data

As mentioned in Remark 1, the Newton-Raphson algorithm used for each iteration of the 

BAR algorithm will become infeasible in large-scale settings with large n and pn due to high 

computational costs, high memory requirements, and numerical instability. Furthermore, 

recently proposed BAR algorithms, as with most popularly available procedures, cannot 

directly handle sHDMSS data due to the computational burden imposed by the design 

matrix. Because BAR only involves fitting a reweighted Cox’s ridge regression at each 

iteration step, it allows us to adapt an efficient algorithm developed by Mittal et al12 for 

massive Cox ridge regression.

2.2.1 | Adaptation of existing efficient algorithms for fitting massive ℓ2­
penalized Cox’s regression—Mittal et al12 developed an efficient implementation of 

the massive Cox’s ridge regression for sHDMSS data. For parameter estimation, the authors 

adopted the CLG algorithm of Zhang and Oles,35 which is a type of cyclic coordinate 

descent algorithm that estimates the coefficients using one-dimensional updates. The CLG 

easily scales to high-dimensional data7,36,37 and has been recently implemented for fitting ℓ2- 

and ℓ1-penalized generalized linear models,38 parametric time-to-event models,39 and Cox’s 

model.12 Readers are encouraged to refer to Section S3 of the Supplementary Material for a 

detailed explanation of the algorithm.

The design matrix Z for sHDMSS data has few nonzero entries for each subject. Storing 

such a sparse matrix as a dense matrix is inefficient and may increase computation time 

and/or cause standard software to crash due to insufficient memory allocation. To the 

best of our knowledge, popular penalization packages such as glmnet40 and ncvreg41 

do not support a sparse data format as an input for right-censored time-to-event models, 

although the former supports the input for other generalized linear models. For sHDMSS 

data, we propose to use specialized column-data structures as in the works of Mittal et 

al12 and Suchard et al.38 The advantage of this structure is two-fold, ie, it significantly 

reduces the memory requirement needed to store the covariate information, and performance 

is enhanced when employing cyclic coordinate descent. For example, when updating βj, 

efficiency is gained when computing and storing the inner product ri = zi′β using a low-rank 

update ri
(new) = ri + zij + Δβj for all i.12,35,36,38,42

Furthermore, one requires a series of cumulative sums introduced through the risk set Ri 

= {j : Xj > Xi} for each subject i to calculate the gradient and Hessian diagonal. These 

cumulative sums would need to be calculated when updating each parameter estimate in 

the optimization routine. This can prove to be computationally costly, especially when 

both n and pn are large. By taking advantage of the sparsity of the design matrix, one 

can reduce the computational time needed to calculate these cumulative sums by entering 

into this operation only if at least one observation in the risk set has a nonzero covariate 

value along dimension j and embarking on the scan at the first nonzero entry rather than 

from the beginning. Mittal et al12 and Suchard et al38 have implemented these efficiency 

techniques for conditional Poisson regression and Cox’s regression, respectively. Our BAR 

implementation naturally exploits the sparsity in the design matrix and the partial likelihood 
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by embedding an adaptive version of Mittal et al’s12 massive Cox’s ridge regression within 

each iteration of the iteratively reweighted Cox’s ridge regression.

3 | SIMULATIONS

This section presents three simulation studies. First, we demonstrate in Section 3.1 that, 

for fixed λn, the BAR estimator is insensitive to the tuning parameter ξn of its initial 

ridge estimator and does well in terms of performing variable selection and correcting 

possible bias of the initial ridge estimator. Then, in Section 3.2, we evaluate and compare 

the operating characteristics of BAR with some popular penalized Cox regression methods, 

where we only consider settings with moderate sample sizes due to the fact that most of the 

competing methods are inoperable for massive sample size data. Finally, in Section 3.3, we 

use a sHDMSS setting to illustrate the performance of BAR over its closest competitor.

Sections 3.1 and 3.2 employ the same simulation structure. Event times are drawn from an 

exponential proportional hazards model with baseline hazard h0(t) = 1, β0 = (0.40, 0, 0.45, 

0, 0.50, 0.55, 0, 0, 0.70, 0.80, 0pn − 10), representing qn = 6 small to moderate effect sizes; 

the design matrix Z = z1′ , …, zn′  is generated from a pn-dimensional normal distribution with 

mean zero and covariance matrix Σ = (σij) with an autoregressive structure such that σij = 

0.5|i−j| and independent censoring times are generated from uniform distribution U(0, umax), 

where umax is chosen to achieve different percentages of censoring. We describe how we 

simulate sHDMSS time-to-event data in Section 3.3.

3.1 | Broken adaptive ridge estimator for varying values of ξn

We illustrate how the BAR estimator behaves by fixing λn and varying the tuning parameter 

ξn of the initial Cox ridge regression in the following. Figures 1B to 1D depict the solution 

path plots average over 100 Monte Carlo simulations of the BAR estimator with respect 

to ξn over a wide interval [10−2, 102] for n = 300, pn = 100, ≈ 25% censoring, and λn = 

log(pn), 0.5 log(pn), 0.75 log(pn), respectively. It is seen that the resulting BAR estimator is 

essentially unchanged, regardless of the choice of λn, over a large interval of ξn, suggesting 

that the BAR estimator is relatively insensitive to original ridge estimator.

As a reference, we also display the solution path plots of the corresponding initial ridge 

estimator in panel (a). The initial ridge estimator starts to introduce over shrinkage and, 

consequently, estimation bias when ξn exceeds 10. However, its bias has been effectively 

corrected by BAR. Therefore, by iteratively refitting reweighted Cox ridge regression, the 

BAR estimator not only performs variable selection by shrinking estimates of the true zero 

parameters to zero, but also effectively corrects the estimation bias from the initial Cox ridge 

estimator. Similar results are obtained for several different simulation scenarios and can be 

found in Section S4 of the Supplementary Material.

3.2 | Model selection and parameter estimation

In this simulation, we evaluate and compare the variable selection and parameter estimation 

performance of BAR with four popular penalized Cox regression methods, ie, LASSO,3 

SCAD,4 adaptive LASSO (ALASSO),5 and MCP.6 We fix ξn = 1 for the BAR methods since 
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Section 3.1 yields evidence that the BAR estimator is insensitive to the selection of ξn. For 

all methods, a 25-value grid was used to find the optimal value of the tuning parameter via 

BIC minimization.32

Estimation bias is summarized through the mean squared bias, E ‖β − β0‖2 . Variable 

selection performance is measured by a number of indices, ie, the mean number of false 

positives (FP), the mean number of false negatives (FN), and average similarity measure 

for support recovery where SM = ‖S ∩ S0‖0/ ‖S|0 ⋅ ‖S0‖0 and S0 and S are the set of 

indices for the nonzero components of β0 and β, respectively.43 The similarity measure 

can be viewed as a continuous measure for true model recovery, ie, it is close to 1 when 

the estimated model is similar to the true model and close to 0 when the estimated model 

is highly dissimilar to the true model. We use the R package ncvreg to perform LASSO, 

ALASSO, SCAD, and MCP penalizations in our simulations. For ALASSO, we let the 

initial weight be the maximum partial likelihood estimator since pn < n. Partial simulation 

results are summarized in Table 1 where we fix n = 300, 1000, pn = 100, a censoring rate of 

≈ 25%, and average results over 100 replications.

From Table 1, we have that, when the tuning parameter λn is selected by minimizing the 

BIC score as the other methods, the performance of BAR (BIC) is generally comparable 

to other methods with respect to all measures across both scenarios. We have conducted 

more extensive simulations with different combinations of model dimension, censoring 

rates, sample sizes, and model sparsity, which yielded consistent findings and are reported in 

Section S5 of the Supplementary Material.

Since BAR aims to approximate ℓ0-penalized regression, it directly provides a surrogate 

optima to some popular information criteria with some prefixed λn. For example, 

performing BAR with λn = c log(pn) for some c > 0 leads to a surrogate optima for the 

directly optimizing the extended BIC.44–46 For thoroughness, in addition to using a 25-value 

grid for c, we also include simulation results in Table 1 for BAR with some prefixed 

values λn = 0.5 log(pn) and λn = log(pn). Not surprisingly, BAR with these prefixed values 

produced sometimes slightly suboptimal, but generally comparable estimation and selection 

performance. We also conducted further simulations using a 10-value coarse grid for λn. 

The results are presented in Tables S1 to S3 of the Supplementary Material, which showed 

that the 10-value grid worked as well as the 25-value grid across almost all of our simulation 

scenarios. This suggests that potential computational savings could be gained for BAR by 

using either prefixed or a coarse grid of values for λn for massive data, which is also 

illustrated in Section 4 (Table 3).

3.3 | Sparse high-dimensional massive sample size data

In this simulation, we simulate a sHDMSS time-to-event data set with n = 200, 000, pn 

= 20, 000, and qn = 80. Event times are generated from an exponential hazards model 

with baseline hazard h0(t) = 1, regression coefficients β0 = (0 . 710, 0 . 510, 0 . 810, 110, − 

0 . 710, − 0 . 510, − 0 . 810, − 110, 0pn − 80), and a censoring rate of 95%. The covariates 

for each subject are simulated such, on average, 2% are assigned a nonzero value. The 

amount of memory used to store this dense design matrix would require over 16 GB, which 
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exceeds the functional capacity of most statistical software packages on standard hardware. 

To overcome this difficulty, we efficiently store the information in a coordinate list fashion 

and compare our massive Cox’s regression for BAR (mBAR) with the massive sparse 

Cox’s regression for LASSO (mCox-LASSO) using the Cyclops package,12,38 which, to 

the best of our knowledge, is the fastest software available today that exploits the sparsity 

of sHDMSS time-to-event data for efficient computing and offers > 10-fold speedup12 

over its competitors such as CoxNet7 and FastCox.47 For LASSO, CV (mCox-LASSO 

(CV)), combined with a nonconvex optimization technique which is more efficient than 

the classical grid search approach, and BIC score minimization (mCox-LASSO (BIC)), 

implemented with the classical grid search approach, were used to find the optimal value 

for the tuning parameter. For the mBAR method, we implement BIC score minimization 

using a grid search and two prefixed tuning parameters λn = 0.5 log(pn) and log(pn) for 

comparative purposes. We report the bias ‖β − β0‖2 , number of FP, FN, and BIC score 

−2ln(β) + log(n)∑jI βj ≠ 0  in Table 2.

We observe that both mCox-LASSO methods have retained all 80 true nonzero coefficients 

together with a moderate to large number of noise variables (12 for BIC and 967 for CV). 

In contrast, mBAR (BIC) chooses a sparser model selecting all 80 nonzero coefficients 

and 5 noise variables. As expected, mBAR (BIC) is less biased (0.82) than mCox-LASSO 

(2.49 for BIC and 2.02 for CV) and has a much lower BIC score when compared to both 

mCox-LASSO methods. We also notice that mBAR with the two prefixed λn tends to 

underestimate the true model, ie, fixing λn = log(pn) results in estimating a model that is too 

sparse, whereas λn = 0.5 log(pn) produces a model that is closer to the oracle model.

We further examined the solution paths of mCox-LASSO and mBAR in Figure 2. The 

vertical solid and dashed lines in the mCox-LASSO solution path plot (Figure 2A) represent 

the estimates at the optimal tuning parameter obtained via CV and BIC minimization, 

respectively. We can see that the mCox-LASSO solution path changes rapidly as its tuning 

parameter varies and shows severe bias. In contrast, the mBAR solution path plot (Figure 

2B) with respect to λn changes very slowly where the vertical line represents the estimates 

at the optimal tuning parameter selected by BIC minimization and selects a model with 

estimates that are less biased than mCox-LASSO (see Table 2). Furthermore, the optimal 

value of λn that minimizes the BIC score for mBAR roughly corresponds to 0.3 log(pn). 

Since our empirical results suggest that the optimal value for λn generally lies within some 

constant of log(pn), we recommend that a coarse grid search within c log(pn) where c ∈ (0, 

1] can be used. This is further corroborated by additional simulations in the Supplementary 

Material (Tables S1 to S3).

For the mBAR method, we also made a solution path plot with respect to ξn, while fixing λn 

= log(pn) in Figure 2C. It shows that the mBAR estimates are very stable over a large range 

of ξn, affirming our observation in Section 3.1 with small scale data that mBAR is generally 

insensitive ξn.
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4 | PEDIATRIC TRAUMA MORTALITY

For an application of mBAR regression in the sHDMSS setting, we consider a subset of the 

NTDB, a trauma database maintained by the American College of Surgeons.1 This data set 

was previously analyzed by Mittal et al12 as an example for efficient massive Cox regression 

with mCox-LASSO and ridge regression to sHDMSS data. The data set includes 210 555 

patient records of injured children under 15 that were collected over 5 years (2006 to 2010). 

Each patient record includes 125 952 binary covariates, which indicate the presence or 

absence of an attribute (ICD9 Codes, AIS codes, etc) as well as the two-way interactions. 

The outcome of interest is mortality after time of injury. The data is extremely sparse, with 

less than 1% of the covariates being nonzero and has a censoring rate of 98%. We randomly 

split the data into training and test sets of 168 000 and 42 555, respectively. The mortality 

rate of both sets were approximately equal to the combined rate. Similar to Section 3.3, we 

were unable to load the training set (n = 168 000, pn = 125 000) into other popular oracle 

procedures due to the memory requirements needed to support a dense design matrix of that 

size and compare mBAR to mCox-LASSO. The BIC-score minimization over a penalization 

path of 10 tuning parameters was used to select the final model for both mBAR (fixing ξn 

= log(pn)) and mCox-LASSO. In addition, we perform mCox-LASSO using CV and mBAR 

with fixed tuning parameters λn = 0.5 log(pn) and log(pn). The BIC score based on the 

training data is used to compare selection performance between models and discriminatory 

performance is measured using Harrell’s c-statistic48,49 based on the test data.

Table 3 summarizes the findings for our example, which reflect what we observe in Section 

3.3. Massive Cox’s regression for BAR, using BIC minimization, selects fewer covariates 

than both mCox-LASSO methods. Both model selection and discriminatory performance 

are similar to slightly superior for mBAR (BIC) over both mCox-LASSO methods. Again, 

mBAR with prefixed λn selects far fewer covariates than mBAR (BIC); however, the overall 

high c-index for both methods suggest that the strong predictors for pediatric trauma are 

still retained in the model. In terms of runtime, mBAR (BIC) is more time consuming than 

LASSO (BIC) as expected, but BAR with a prefixed tuning parameter value can help to 

reduce the runtime with a comparable prediction performance.

5 | DISCUSSION

We have extended the BAR methodology to Cox’s model as a new sparse Cox regression 

method and rigorously established that it is selection consistent, oracle for parameter 

estimation, stable, and has a grouping property for highly correlated covariates. We illustrate 

through empirical studies that the BAR estimator has satisfactory performance for variable 

selection and parameter estimation. We have also extended the application of BAR to the 

sHDMSS domain by taking advantage of the fact that the BAR algorithm allows us to 

easily adapt existing high performance algorithms and software for massive ℓ2-penalized Cox 

regression.12

Our surrogate ℓ0-based BAR method and theory can be easily extended to a surrogate 

ℓd-based BAR method for any d ∈ [0, 1], by replacing β j
(k − 1) 2

 with β j
(k − 1) 2 − d

 in (4). We 
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have observed empirically that, as d increases toward 1, the resulting estimator becomes less 

sparse, and the average number of FP as well as estimation bias tend to increase, especially 

for larger pn, while the average number of FN tends to decrease. In practice, d can be used as 

a resolution tuning parameter.

Our theoretical and empirical results have established the BAR method as a valid and viable 

tool for variable selection and parameter estimation under the pn < n setting although 

pn is allowed to diverge with n. Theoretical properties of the BAR estimator for the 

high-dimensional setting (pn ≫ n) remain to be investigated. Furthermore, as pointed out 

by a referee, although BAR is selection consistent and oracle, it is subject to the same 

postselection inference issues as other variable selection methods.50,51 Lastly, although 

iteratively performing reweighted ℓ2-penalizations allows BAR to enjoy the best of ℓ0- 

and ℓ2-penalized regressions and to readily adopt an existing efficient implementation 

of ℓ2-penalization for sHDMSS data, its iterative nature does present another layer of 

computational complexity. While this added layer of computational complexity is not a 

practical concern for moderate size data, it can considerably increase the runtime in a large 

data setting when both n and p are large. As illustrated in our real data example, trying a 

prefixed tuning parameter value based on the extended BIC λn = c log(pn) can reduce the 

runtime of BAR with reasonably good performance. To further improve its computational 

efficiency, we are currently developing some modified BAR algorithms including a cyclic 

coordinatewise BAR algorithm, which will have comparable computational complexity 

and runtime to other popular variable methods such as LASSO. This line of further 

developments is beyond the scope of this paper and will be fully studied in a sequel paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Path plot for broken adaptive ridge (BAR) regression with varying (A) ξn and (B) λn = 

log(pn), (C) λn = 0.5 log(pn), and (D) λn = 0.75 log(pn) with estimates averaged over 100 

Monte Carlo simulations of size n = 300, pn = 100, and censoring rate ≈ 25%. Path plot for 

ridge regression (D) with varying ξn is also included as a comparison
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FIGURE 2. 
Path plots for massive sparse Cox’s regression for LASSO (mCox-LASSO) and massive 

Cox’s regression for broken adaptive ridge (mBAR) regression. A, Path plot for mCox­

LASSO regression, where the black solid and dashed lines represents the estimates when 

BIC minimization and cross-validation where used to find the optimal value of the tuning 

parameter, respectively; B, Path plot for mBAR regression with ξn = log(pn) and varying 

λn, where the black solid, dashed, and dotted lines represent estimates where λn was 

found using Bayesian information criterion minimization, fixed at log(pn) and 0.5 log(pn), 

respectively; C, Path plot for mBAR regression with λn = log(pn) and varying ξn, where the 

black solid line represent the estimates for mBAR when ξn = log(pn)
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TABLE 1

(Moderate dimension and sample size) Simulated estimation and variable selection performance of broken 

adaptive ridge (BAR) Bayesian information criterion (BIC), LASSO (BIC), SCAD (BIC), adaptive lasso 

(ALASSO) (BIC), and MCP (BIC) where BIC in parenthesis indicates that the BIC minimization was used 

to select the tuning parameters via a grid search. (MSB = mean squared bias; FN = mean number of false 

positives; FP = mean number of false negatives; SM = average similarity measure; BIC = average BIC score; 

Each entry is based on 100 Monte Carlo samples of size n = 300, 1000, pn = 100, censoring rate = 25%)

MSB FN FP SM BIC

n = 300

BAR (λn = 0.5 log(pn)) 0.06 0.02 0.23 0.98 1930.97

BAR (λn = log(pn)) 0.10 0.17 0.02 0.98 1938.43

BAR (BIC) 0.11 0.01 1.79 0.89 1919.26

LASSO (BIC) 0.27 0.01 3.32 0.82 1958.40

SCAD (BIC) 0.12 0.01 2.23 0.87 1933.43

ALASSO (BIC) 0.11 0.04 1.48 0.90 1935.60

MCP (BIC) 0.09 0.02 1.21 0.92 1929.33

n = 1000

BAR (λn = 0.5 log(pn)) 0.01 0.00 0.19 0.99 8200.97

BAR (λn = log(pn)) 0.01 0.00 0.00 1.00 8203.52

BAR (BIC) 0.02 0.00 0.73 0.95 8196.51

LASSO (BIC) 0.10 0.00 2.77 0.84 8236.76

SCAD (BIC) 0.01 0.00 0.23 0.98 8203.00

ALASSO (BIC) 0.02 0.00 0.26 0.98 8204.58

MCP (BIC) 0.01 0.00 0.08 0.99 8202.04
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TABLE 2

(Sparse high-dimensional and massive sample size) Estimation and variable selection results for massive 

Cox regression with broken adaptive ridge (mBAR) and LASSO penalty (mCox-LASSO12) for a simulated 

sHDMSS data set with n = 200 000, pn = 20 000, and qn = 80. (Bias = ‖β − β0‖2; FP= number of false 

positives; FN = number of false negatives)

Method Bias FP FN BIC score

mBAR (λn = 0.5 log(pn)) 1.19 0 3 83 313.02

mBAR (λn = log(pn)) 2.02 0 10 83 573.96

mBAR (BIC) 0.97 5 0 83 266.47

mCox-LASSO (BIC) 2.93 12 0 84 479.47

mCox-LASSO (CV) 2.12 963 0 93 770.58

Abbreviations: BIC, Bayesian information criterion; CV, cross-validation.
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TABLE 3

(Pediatric National Trauma Data Bank (NTDB) data) Comparison of mCox-LASSO and massive Cox’s 

regression for broken adaptive ridge (mBAR) regression for the pediatric NTDB data. (mCox-LASSO 

cross-validation (CV) and mCox-LASSO Bayesian information criterion (BIC) correspond to mCox-LASSO 

using cross validation and BIC selection criterion, respectively. mBAR (BIC) denotes mBAR using the BIC 

selection criterion while fixing ξn = log(pn). The training set has a sample size of 168 000, while the test set 

used for the c-index has a sample size of 45 555)

Method # Selected BIC score c-index Runtime (hours)

mBAR (λn = 0.5 log(pn)) 45 51 613.52 0.91 8

mBAR (λn = log(pn)) 21 52 182.90 0.89 8

mBAR (BIC) 83 51 269.43 0.93 97

mCox-LASSO (BIC) 100 52 544.90 0.91 25

mCox-LASSO (CV) 253 53 165.44 0.92 41
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