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PHYSICAL REVIEW D 69, 043505 (2004

Expanding cosmologies in brane geometries

Myron Bandef
Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
(Received 19 August 2003; published 23 February 2004

Five dimensional gravity coupled, both in the bulk and on a brane, to a scalar Liouville field yields a
geometry confined to a strip around the brane and with time dependent scale factors for the four geometry. In
various limits known models can be recovered as well as a temporally expanding four geometry with a warp
factor falling exponentially away from the brane. The effective theory on the brane has a time dependent
Planck mass and “cosmological constant.” Although the scale factor expands, the expansion is not an accel-
eration.
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There is considerable interest in theories of gravity and ofegulator brane ag=y, or place two branes at= *y,. As
cosmology with extra dimensions where our world is con-the metric vanishes on these extra branes they do not support
fined to a four dimensional space-time subspace or 3-branany physics.

All of our known fields, with the exception of gravity, are  In addition to the trivial solution witka(t) andb(t) in Eq.
confined to the brane. The extra dimensions may have com) being constant in time, the ansatft) =ag(t/ty)*, b(t)
pact toroidal topologie$l] or be unbounded with a scale =bg(t/ty)” yields a solution provided

factor, warp, depending on the “distance” from the brane

[2,3]. Branes meandering in the internal space, with the

brane metric dependent on the internal coordinates, were 2+3ExX2\1+¢& 276\ 1+¢
treated in Ref[4]. Less singular metrics we obtained in situ- @=""gYgr 9f ' = T 8+9¢ 2

ations where the branes were thickefi@td As many of these
works concerned themselves with the hierarchy problem they
restricted themselves to Minkowski metrics on the brane:These satisfy the relatiof=1—3«, reminiscent of one of
specifically, the metrics were time independent. Extendinghe Kasnel{7] conditions. For the upper solutiom, ranges
these concepts to cosmology requires the introduction ofrom 1/2 to 1/3 and8 from —1/2 to 0 as¢ goes from O to
time dependent scale factors on the brane and possibly in thgfinity; for the lower solutiona goes from 0 to 1/3 ang
extra dimensions. Solutions in which one posits variougtom 1 to 0.
stress tensors on the brane and a general review of cosmol- There are various interesting limits. In addition to being
ogy restricted to a brane in extra dimensions may be found iable to recover the geometry of Ref&,3] we can obtain a
Ref.[6]. cosmology where the four metric represents an expanding
In this work we look at a five dimensional bulk whose universe with a warp factor decreasing exponentially as we
dynamics is governed by a scalar Liouville field coupled tomove away from the brane
gravity in the usual way. In addition there is a coupling to the
scalar field and to the tension on a thin 3-brane. As in previ-
ous works the brane tension is finely tuned to parameters of
the bulk action. The general form of the metric we obtain is

23
dx?

0

d52=e‘2ky|[dt2—ao —dy?. (3)

This limit is interesting as we recover an effective four di-
mensional cosmology with a time dependent Planck mass.
For £=0 we recover the Kasner solutions. We shall return to
a discussion of these metrics further on.
The solution(1) is obtained from the action for the metric
In the extra dimension the bulk geometry is confined to aensor and for a scalar Liouville field with contributions from
finite strip, y=<y,, around the brane of interest. Although  the bulk and from one or two branes. Five dimensional theo-
may be scaled awagset equal to ong we keep it for the ries with bulk scalar fields have been previously considered.
convenience of limiting procedures discussed further on. IA massive scalar field can determine the size of the internal
will turn out that for §£=1/2 we may ignore singularities at dimension[8] and with intricate self couplings can thicken
the edges of the strip; faf<<1/2 these singularities force us the brane$9,10].
either to identify the opposite edges of the strip and place a The contribution from one of the branes, presumably the
one we are on, will be indicated explicitly while the one
from the other brane or branes will be left for later elabora-
*Electronic address: mbander@uci.edu tion:

¢
d32=(1—|yl|) [dt?—a(t)?dx?]—b(t)?dy?. )
0
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S= Spuikt Sprane 4é+4 a N b ~0 g
2 3l &g 7O (8)
. 5 1 nv
SbUIkzz_k§ dx\g| R+ 5 d,4d,4g""+ X exp(— k) | . 4 2+4 : 2+4 5 2+8 é) y b 2_0.
@ ®la *He) *Ha) T8a)lp) T3p) TO
h 5 the overdot represents differentiation with respect to time.
Shrane= ﬁf d®x/ga(n,x*)\n,n,g"" With the choice of metric in Eq(1), of the twenty five
5 equations for the components of the Einstein ten&y,
K —..-=0 and the equation of motion for the fieddonly five
Xexp{ - §¢>; are nontrivial and independent. These may be chosen to be

the equation of motion fog and for thett, ty, yy and any of
the diagonal space-space component of the Einstein tensor
along the brane. The relations betwegn« and ¢ in Eq. (7)

olve thety equation while Eq(8) takes care of the other
our. That, in the bulk, theséour equations yield only the

S threeconditions in Eq(8) is not surprising as the equation of
Y/ mv -
to the brane and the produa(n,x”) yn,n,g"" is indepen motion for the field and the Einstein equations for the metric

dent of the#rynagmtude of this \;eyctc.)r. varying the comt?lnauonare related by the conservation of the energy-momentum ten-
Vgyn,n,g"” with resp%%t tog"” yields terms proportional - g \nhat s pleasant is that all the four independent equa-
10 (—=g,,+n,n,/N.NEg*"), namely depending only on the yong o the brane, the ones involvieigy) terms, where the
metric along the brane; this .procedure quds t(.) the same r‘é’nergy—momentum tensor is not conserved, are also satisfied.
sults as one would get by using the Israel junction conditions We now turn to possible singularities Bt|=y,. For ¢

[11]. As in all previous works we will take,, to be alongts ;5 equivalently«< \/3/8 we can restrict the bulk to the
for Wh'ch we/gwll use the sdymbqj. Note t_?_ﬁt thep cqu%hngf strip |y|<y, as the solutions discussed above may be con-
;ﬂesg?;%': tKe ns%snogzﬁesr?nir:g dlrt]) Sab;"Tn reevirgjsgr\]/\llgjrki Ois tinued to the end points. Fa@i<1/2 singularities develop at
related to bulk pa'rameterS' our golutionps require ' these points and the solutions are no longer valid there. As in
' many previous discussions of bulk-brane geometries the cure
consists of either identifying=y, with y=—y, (orbifold-
h= / 2\ ) 5) ing) and introducing a brane &g|=y, or introducing inde-
k2(8/3k2—1)’ pendent branes gt= *y,. In the first case, the action on the
y=Y, brane is

k5=877/M§ whereMs is the five dimensional Planck mass.
x is a free parameter and althoughis included for conve-

nience it can be scaled by any positive humber through
shift in the field. In Syanen,, is @ spacelike vector normal

this restricts\=0 for x?<8/3 and\ <0 otherwise.

The solution for the equations of motion obtained by h
varying Eq.(4) with respect tog#” and ¢ we seek have a S prane= — —zf d°x\/g8(n, x“—yo)Vn,n,g""
metric given in Eq.(1) and the scalar field of the form 2ks

: (©)

K
H=Aln 1—M)b(t)}—c. ©) Xex"( 2
Yo

If one wishes to place branes at both ends of the strip, the
action contributed is one half that of E() on each of the
two branes. Since the four-metric in E@.) vanishes aty|
A=2/k, =Yy, these branes or brane cannot support any physics. The

explicit forms fora(t) andb(t) are given in Eq(2). For &

=2 the edgely|=y, is at the horizon in that it takes an

It is straightforward to check that fory,>|y| these are in-
deed solutions provided

1 2 8 infinite time to reach it.
C= ;In W ;_ , () Certain limits of these solutions are interesting. The case
YooK £=0 corresponds to Kasnefg] solutions. For the(t) and
b(t) constant case the limit— oo with y,= &/(2k) yields the
_ Randall-Sundrum solutiofi2,3]. Equation(5) is equivalent
&= ﬁ to their relation between the bulk cosmological constant and
brane tension. In the same limit, but withand 8 given by
and the scale factom(t) andb(t) satisfy either solution in Eq(2) we obtain the metri¢3) and
a\®> [a|[b b\ In(t)
4 a) +4(a)(b g(b) =0, d(ty)=2 B (10
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The above solution may be obtained independently from the 1 ly||2¢ R(@g;i(x))
action S= S, + Sprane Where S= —zf d*xdyy/— (459(1——> b(t) —”§
212 Yo (1_ vl )
Yo
1 1 N\ 2
Soul= —J d5x\/g| R+ = 0,69, 9"+ 3K/ L 3% (b
2ks 2 ( Iyl>§ b/ |’
2|1-—
Yo

1 4 2ygb(t)

3k
Shrane= 4_k§f d5x\/§5(n'uX“) Vyn,n, gt (11 = 2_ké X el

\ = (4)g

£ b)z
B .

R(9g, () +
1] 2
(15

) ) ] The four dimensional theory has a time dependent Planck
How well gravity on the brane is described bg?=dt?>  mass

—a(t)?dx? depends on solution of the equation

2yob(t)
2_np3
Ma(t?=M3 =g (16)
ly[| % MG L _ _
—|1- Yo dy| 1= Yo dy|h(y,t)=m(t)°h(y,t), and a time dependent “cosmological constant”
(12
A(t) Nt
e | (17)
Ma(t) to

with h(y,t) describing fluctuations around the metric. Fluc-

tuation equations for nonzer are quite complexsee, for |, cosmologies with small extra dimensions, when known
example, Refs[12,13) and here we shall restrict our study physics is not restricted to a brane, time dependence of the
to m=0; it is necessary to have an acceptable solution fofnternal dimensions is severely restricted by limits on the
this case and it is easy to exhibit such a solution temporal variations of all fundamental constdrit4]; in con-
trast for theories with most of known physics restricted to a
brane, only limits on the time evolution of the Planck mass
ly|\12¢ may come into play. The solutions discussed here can ac-
(1——) —1} (13  commodate any such limits as by choosirgsmall and
Yo equivalently 8 small we can make this variation as soft as

necessary. The most stringent present limit GHG<8
. . . . X 10 '2[15] translates into a limit o of 8<0.1. Temporal
Four dimensional gravity on the brane appears after inte 4 jations of the cosmological constant, or more generally of
grating the actior{4) with the metric the dark energy are coming into consideratia6.
The solutions presented hawe<1/2 and thus represent
decelerating cosmologies. In line with recent observations
ly|\¢ 4 o _— [16] we would like to accommodate an accelerating, expand-
ds’= ( 1- y_) @gi;)dx'dX —b(t)?dy*  (14)  ing scale factor. Having a time dependent scale factor for the
0 external dimensions circumvents some no-go theorems
[17,18 and such cosmologies have been found in M theories
@) ) _ . can achieve accelerating scale factors by analytically con-
overy; “g;;(x) is the four metric on the brane. This may be tjnying the solutions to negative. This, however, corre-
accomplished by using the ADM reduction witiit) playing  sponds to an imaginary exponent in the Liouville action.
the role of the lapse function and conformally transformingwhether this difficulty can be circumvented is under inves-
the resulting four dimensional metric by the factor (1 tigation. Difficulty in finding accelerating solution was noted
—|yllyo) “¢. The result is in Refs.[18,19.

hm=o(y,t)~€e(y)
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