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Graphical Abstract

Abstract

Recent work has shown that leaf traits and spectral properties change 
through time and/or seasonally as leaves age. Current field and 
hyperspectral methods used to estimate canopy leaf traits could, therefore, 
be significantly biased by variation in leaf age. To explore the magnitude of 
this effect, we used a phenological dataset comprised of leaves of different 
leaf age groups -developmental, mature, senescent and mixed-age- from 
canopy and emergent tropical trees in southern Peru. We tested the 



performance of partial least squares regression models developed from 
these different age groups when predicting traits for leaves of different ages 
on both a mass and area basis. Overall, area-based models outperformed 
mass-based models with a striking improvement in prediction observed for 
area-based leaf carbon (Carea) estimates. We observed trait-specific age 
effects in all mass-based models while area-based models displayed age 
effects in mixed-age leaf groups for Parea and Narea. Spectral coefficients and 
variable importance in projection (VIPs) also reflected age effects. Both 
mass- and area-based models for all five leaf traits displayed age/temporal 
sensitivity when we tested their ability to predict the traits of leaves of other 
age groups. Importantly, mass-based mature models displayed the worst 
overall performance when predicting the traits of leaves from other age 
groups. These results indicate that the widely adopted approach of using 
fully expanded mature leaves to calibrate models that estimate remotely-
sensed tree canopy traits introduces error that can bias results depending on
the phenological stage of canopy leaves. To achieve temporally stable 
models, spectroscopic studies should consider producing area-based 
estimates as well as calibrating models with leaves of different age groups as
they present themselves through the growing season. We discuss the 
implications of this for surveys of canopies with synchronised and 
unsynchronised leaf phenology.

Keywords: Remote sensing, Phenology, Age effects, Leaf physiology, Foliar 
chemistry, Mass- vs area-based PLSR models

1. Introduction Morphological and biochemical leaf traits are important 
indicators of plant physiology and play a critical role in regulating plant 
growth, and energy and material cycling in terrestrial food webs (Mercado et 
al., 2011; Messier et al., 2010; Niinemets et al., 2015; Wright et al., 2004). 
The ability to characterise the variation of key functional leaf traits in space 
and time is therefore, central to improving our understanding of ecosystem 
function, seasonal productivity and global biogeochemical cycling (Chavana-
Bryant et al., in review; Enquist et al., 2007; Reich et al., 1997; Violle et al., 
2007).

In the last few decades, remote sensing – specifically, hyperspectral 
spectroscopy – has played an increasingly important role in the study of the 
diversity and functional ecology of leaf, canopy and ecosystem traits (Asner, 
2001; Asner et al., 2009; Asner et al., 2011a; Blackburn and Milton, 1995; 
Curran, 1989; Fourty et al., 1996; Kokaly et al., 2009; Peterson et al., 1988; 
Serbin et al., 2014; Townsend et al., 2008; Ustin et al., 2009; Wessman et al.,
1988). 

Hyperspectral spectroscopy uses measurements of reflected light in narrow 
sampling intervals (typically ≤10–15 nm) over the entire reflected solar 
spectrum (i.e. 400–2500 nm), together with chemometric partial least square
regression (PLSR) techniques to link leaf and canopy spectroscopic 
measurements with their traits. From boreal to tropical environments, an 



extensive body of work has used spectroscopy and PLSR techniques to 
estimate vegetation traits associated with light capture and growth (i.e. 
pigments, nitrogen, phosphorus, leaf mass per area (LMA), leaf water 
content (LWC) and soluble carbon) and structure and defense (i.e. lignin, 
cellulose and total carbon) (Asner et al., 2015; Asner et al., 2009; Asner et 
al., 2011a; Axelsson et al., 2013; Féret et al., 2011; Qi et al., 2014; Ramoelo 
et al., 2011; Richardson and Reeves, 2005; Serbin et al., 2014; Singh et al., 
2015). A major goal of these studies, whether used at the leaf level or 
embedded in a canopy model for upscaling purposes, is to develop generic 
PLSR models to predict leaf traits across space and time. 

When developing chemometric PLSR models, spectroscopic studies have 
placed great importance in collecting leaf samples with high diversity of 
species and/or environmental growing conditions (Asner et al., 2009; Asner 
et al., 2011a; Asner et al., 2014; Axelsson et al., 2013; Peterson et al., 1988; 
Qi et al., 2014; Ramoelo et al., 2011; Richardson and Reeves, 2005; Serbin et
al., 2014) with much less importance given to capturing the 
temporal/seasonal diversity of leaf traits due to leaf age. However, 
seasonality is highly important in studies comparing plant communities 
found in different locations or covering large geographical areas, sampled at 
different times, or measured repeatedly between years (Grassi et al., 2005; 
Stokes et al., 2010; Wilson et al., 2001). The standard protocol in 
spectroscopic studies has been to use only fully expanded mature leaves 
(Asner et al., 2009; Asner et al., 2011a; Asner et al., 2014; Axelsson et al., 
2013; Ramoelo et al., 2011; Richardson and Reeves, 2005) or mature leaves 
of different growth seasons (Qi et al., 2014; Serbin et al., 2014) and to apply 
the resulting models across time/seasons. Even in studies that include leaf 
samples from “different developmental stages” such as Féret et al. (2011), 
the relative effects of including these samples in the development of PLSR 
models has not been addressed. To our knowledge, only a study by Yang et 
al. (2016) has assessed the potential of using leaf spectroscopy to predict 
leaf traits across their life cycle at two temperate deciduous forests but not 
the direct impact that leaf age can have on the performance of PLSR models.

Biochemical, morphological and physiological leaf traits change through time
and/or seasonally as leaves age. Previous studies in both tropical (Chavana-
Bryant et al., 2017; Kitajima et al., 2002; Kitajima et al., 1997; Wu et al., 
2016) and non-tropical forests (Escudero and Mediavilla, 2003; Field and 
Mooney, 1983; Mediavilla et al., 2011; Niinemets et al., 2005; Niinemets and 
Kull, 2003; Niinemets et al., 2004; Yang et al., 2016) have shown strong age 
effects on leaf traits of individual trees and that many of these age effects 
can have direct influence on the spectral reflectance behaviour of leaves 
(Datt, 1999; Gausman et al., 1970; Knipling, 1970; Roberts et al., 1998; Sims 
and Gamon, 2003). Furthermore, two recent studies that detail the lifecycle 
evolution of spectral and physiochemical leaf traits in tropical canopy trees, 
have demonstrated that (1) age-related spectral changes in leaves are 
distinct enough to enable the prediction of leaf age across trees of different 



species from hyperspectral leaf reflectance measurements (Chavana-Bryant 
et al., 2017) and (2) the trait variation generated from sampling leaves of 
different leaf age groups across a relatively small sample of 12 Amazonian 
canopy trees can be as large as the variation found among the mature 
leaves of a large sample of almost 200 Pantropical trees from the GLOPNET 
database (Chavana-Bryant et al., in review). It is therefore, very likely that 
the combined effect of leaf aging and asynchrony in leaf life cycles will have 
an impact on the performance of current PLSR models used to estimate 
canopy leaf traits in tropical evergreen forests. In unsynchronised vegetation
systems such as these, different proportions of leaves of different ages will 
be present throughout the annual cycle due to a range of species-specific 
leaf phenological behaviours, and seasonal trends due to intra- and 
interspecific phenological asynchrony (Borchert, 1983; Borchert et al., 2002; 
Reich, 1995; van Schaik et al., 1993). In forests with synchronised leaf 
phenology (e.g. dry tropical and temperate forests) there are times during 
the growing season when only developing or senescing leaves are present in 
the canopy (i.e. beginning and end) and even leaves at different stages of 
maturity (early, mid and late maturity) can display differences in traits 
(McKown et al., 2013). Furthermore, leaf trait and remote sensing sampling 
campaigns in tropical evergreen forests largely occur throughout the dry 
season, a time when their canopies are most in flux, while in dry tropical and
temperate forests these can occur at different times of the growing season. 
A better understanding of how leaf age/seasonality affects the performance 
of PLSR models is therefore long overdue. 

In this study, we address these issues using a phenological leaf dataset 
comprised of leaves of different leaf age groups –developmental (D), mature 
(M), senescent (S) and mixed-age (All)- from eight different canopy and 
emergent tropical trees. Chemometric PLSR models were developed using 
data subsets comprised of the different leaf age groups to answer the 
following questions: Does the robustness of PLSR models vary differently 
with leaf age when traits are measured on a mass and area basis? Does leaf 
age affect PLSR model performance differently for different leaf traits? How 
well do PLSR models, developed using leaves from a single leaf age group, 
predict the traits of leaves of other or mixed leaf age groups? And what are 
the implications for best practice when assessing leaf traits on a per mass 
basis versus per area basis using spectroscopy and PLSR techniques?

2. Materials and methods 

2.1. Field site

Data were collected in and around the borders of two lowland tropical 
rainforest plots located within the Tambopata National Reserve in the Madre 
de Dios region of Peru in southwestern Amazonia. The two study sites are 
part of the RAINFOR Amazon Forest Inventory Network (Malhi et al., 2002) 
and GEM intensive monitoring network, with RAINFOR codes TAM-06 
(12°50′24″S, 69°17′59″W) and TAM-09 (12°49′48″S, 69°16′48″W). The sites 



are located between 215 m and 220 m above sea level within lowland 
closed-canopy primary tropical rain forest growing on Haplic alisol soils 
(Quesada et al., 2010). They are fairly seasonal sites with a four to five 
month-long dry season (number of months with b100 mm rainfall) between 
June and October, mean annual rainfall over the period 2005–2012 of 1900 
mm (this may be lower than the long-term mean because of droughts in 
2005 and 2010 (Lewis et al., 2011)) and mean annual air temperature of 
24.4 °C. A detailed description of the geomorphology, climate and forest 
carbon cycle of this site can be found in Malhi et al. (2014).

2.2. Tree sampling

As top-of-canopy leaves are expected to be the main contributors to the 
spectral response of forest canopies (Asner and Martin, 2008; Clark et al., 
2005), the tree sampling for this study focused on canopy and emergent 
trees (Table 1). A total of eight trees were sampled. According to the “Crown 
Illumination Index” (Clark and Clark, 1992; Keeling and Phillips, 2007), six of 
these were canopy trees and two were emergent trees. Diameter at breast 
height (1.3 m; DBH) among sampled trees averaged 152 cm (range: 117–237
cm). The sampled trees averaged 32 m in height (range: 29–35 m), 
compared to a mean tree height of 27 ± 8 m (± SE) for canopy trees ≥40 cm
DBH in local plots. Among the sampled trees, canopy depth, the difference 
between tree height and height at the lowest branch of the canopy, 
averaged 10.3 m (range: 6.3–15.1 m).

Monitoring canopy and emergent tropical trees in situ presents considerable 
challenges. Canopy walkways and towers, where they exist, do not provide 
sufficient access across a large number of crowns. Canopy cranes are ideal 
for such sampling, but there are only a few across the tropics. Hence, we 
resorted to repeated climbing and sampling of a number of large trees. The 
total number of trees sampled in this study was limited by the need to 
sample structurally sound trees large enough to withstand the repeated 
climbing required to monitor their leaf life-cycle and sample leaves of 
different ages, and the difficulty involved in climbing large trees with ropes 
to minimise damage caused by repeated climbing. We therefore, chose to 
maximise variability within our leaf dataset by sampling 8 trees, each a 
different species, with a wide variety of leaf types (e.g. compound and 
simple leaves), leaf sizes and shapes, and leaf thickness and waxiness. This 
sampling allowed us to examine the trait and spectral variability due to 
natural leaf aging in a tropical canopy tree community with diverse leaf 
properties.

Trees were monitored frequently for bud development, new leaf emergence 
and development, general leaf condition and signs of leaf senescence. We 
sampled the developmental, mature and senescent leaf life-cycle phases for 
all eight trees. During leaf development, individual trees were sampled on a 
weekly basis from early leaf development (after ≤one week of active leaf 
expansion) until most leaf area expansion had been achieved (up to four 



consecutive weeks after active leaf expansion). During the mature leaf 
phase, individual trees were sampled on a monthly basis at different stages 
(i.e. newly matured, mid-maturity and end of maturity) for up to three 
months. Similarly, during the senescent leaf phase, individual trees were 
sampled at different stages (i.e. old leaves not yet abscising and senescent 
leaves starting abscission through to advanced senescence when most 
leaves had been abscised from the tree crown) for up to two months for old 
leaves and up to three months for senescent leaves. Example images and a 
detailed description of the leaf classification used in this study can be found 
in Fig. 1.

Two top-of-canopy (fully exposed to direct sunlight) apical metrelong 
branches were collected each time trees were sampled. Sampled branches 
were cut, labeled, promptly lowered to the ground and recut under water to 
maintain hydraulic connectivity and minimise leaf desiccation during 
transport to the field lab, where leaf spectral and morphological (fresh leaf 
weight and area) measurements were carried out within two hours of the 
branches being cut. Demographic leaf counts were also collected for all 
sampled branches.

2.3. Leaf spectroscopic and trait measurements

We randomly selected 15 to 30 leaves from each sampled leaf age class for 
spectral analysis. Leaves were cut (at base of petiole) from their branch just 
before reflectance measurements were collected. Measurements were 
collected using a field spectrometer (Analytical Spectral Devices FieldSpec 
Pro, Boulder, Colorado, USA) with a spectral range of 350–2500 nm and 
sampling intervals of 1.4 nm from 350 to 1000 nm and 2 nm from 1000 to 
2500 nm. The spectrometer was fitted with a contact probe (Analytical 
Spectral Devices High Intensity Contact Probe, Boulder, Colorado, USA) which
has its own calibrated light source designed to minimise measurement errors
associated with stray light. To ensure measurement quality, the 
spectrometer was optimised every 5 mins, spectra for every leaf was white 
referenced to a calibration panel (Spectralon, Lasphere, Durham, New 
Hampshire, USA) and an average of 25 spectrum, dark current and white 
reference measurements were used to improve the signal-to-noise ratio of 
the spectra. Furthermore, leaves were placed on a custom-designed 
measurement block covered in a low reflective (3%) material with a firm 
cushion fitted underneath to allow for the contact probe to be pressed 
against the leaf without causing damage, while ensuring that no light 
escaped the measurement. Four reflectance measurements from different 
sections of the leaf were collected and averaged for each leaf. This protocol 
delivered high-quality calibrated spectra that did not require smoothing or 
other filters. The full-range leaf spectral data were trimmed at the far ends 
(b412 nm and N2450 nm).



In addition to classifying leaves by their age, we recorded the presence of 
epiphylls (which was always in very low abundance) and/or necrosis for each 
leaf surface we measured. To account for potential effects of leaf coatings 
and natural leaf damage on spectra, we only used reflectance measurements
free of epiphylls and necrosis.

We chose LMA, LWC, P, N and C content as the ensemble of leaf traits to 
measure. Each of these traits is important to leaf physiological and ecological
functioning (Evans and Poorter, 2001; Field and Mooney, 1986b; Kokaly et 
al., 2009; Poorter et al., 2009; Raaimakers et al., 1995; Reich et al., 2008; 
Westoby et al., 2002) and have demonstrated contributions to the spectral 
signatures of vegetation (Asner et al., 2009; Curran, 1989). Carbon content 
(C) in leaves, as analysed in this and other spectroscopy studies, includes 
two functionally different components - non-structural and structural carbon. 
Non-structural carbon (i.e. sugars, starch and pectin) is produced and mainly 
stored in leaves and constitutes the mobile energy store of plants (Chapin et 
al., 1993.; Evans, 1989), while structural carbon (i.e. lignin and cellulose) is 
generated to support strength and longevity, and to decrease palatability to 
herbivores (Melillo et al., 1982).



All sampled leaves were measured for LMA and LWC. For LMA and LWC 
calculations, leaf petioles were removed and each sampled leaf was then 
measured for fresh mass, using a high-precision balance with a 0.01 g 
resolution (Durascale, My Weigh Europe, Erkelenz, Germany). Groups of 
individually identified leaves were then colour scanned at 300 dpi resolution. 
ImageJ software (NIH, New York City, NY, USA) used to calculate individual 
leaf areas. The scanned leaves were then individually placed in labeled 
paper bags and dried at 70 °C for 72 hrs before leaf dry mass was 
determined. LWCmass, LWCarea (commonly known as “equivalent water 
content”) and LMA were derived from these data as follows:



where leaf fresh and dry mass are in grams (g) and leaf area in square 
metres (m−2).

For Simarouba amara, a species with compound leaves, leaf trait values 
were measured on independent leaflets rather than the entire compound leaf
as the leaflet green leaf portion is comparable to that measured in whole 
leaves for other species. 

Leaf nutrient content was measured at the Department of Geosciences 
Environmental Isotope Laboratory at the University of Arizona. For each tree,
five dry leaves out of each leaf age class were randomly selected for 
chemical analysis. All dry leaf samples were then homogenised and ground 
to a fine powder. Phosphorous (P), nitrogen (N) and carbon (C) contents were
measured using a continuous-flow gas-ratio mass spectrometer (Finnigan 
Delta Plus XL, Thermo Fisher Scientific, Madison, WI, USA) coupled to an 
elemental analyzer (Costech Analytical Technologies, Valencia, CA, USA). 
Samples of 1.0 mg (± 0.1 mg) were combusted in the elemental analyser. 
Precision is at least ±0.1 mg based on repeated internal standards. Both 
mass based and area-based measurements were calculated for LWC, P, N 
and C content.

2.4. Experimental design

We used bootstrapping to produce 10 subsets of 60 leaf samples using 
leaves from each of four different leaf age groups (i.e. developmental (D), 
mature (M), senescent (S) and mixed-age (All)). These subsets were then 
used to develop both mass- and area-based PLSR models for the leaf traits 
under analysis (i.e., LMA, LWCmass, LWCarea, Pmass, Parea, Nmass, Narea, Cmass and 
Carea). A schematic detailing how we developed different sets of 10 PLSR 
models per leaf age group-trait combination (i.e. 10 models for each of the 
sampled leaf traits per leaf age group) can be seen in Fig. 2.

We used chemometric PLSR models to link leaf level reflectance spectra and 
trait measurements. PLSR is the standard statistical approach utilised in 
chemometric analyses and is designed to handle high predictor collinearity 
and situations where the number of predictor variables (2039 wavelengths in
this study) is much higher than the number of observations. PLSR reduces 
the large predictor matrix down to a relatively few, uncorrelated latent 
factors. As in Asner et al. (2015, 2014, 2011b) and Serbin et al. (2014), we 



performed a one-time randomised 70/30 split of each data subset into 
calibration and independent testing sets. We adopted a 100× permutation 
10- fold cross validation (i.e. 1000 total permutations in which the calibration
data set was further subdivided into 90% for calibration and 10% for 
validation) for each PLSR model. We evaluated the performance of PLSR 
models using two main metrics: R2 (i.e. precision) and root mean square 
error (RMSE, i.e. accuracy) (Asner et al., 2011a; Hodgson and Bresnahan, 
2004; Lin and Torbeck, 1998; Walther and Moore, 2005). We identified the 
optimal number of latent factors for each of the 10 leaf trait per age class 
models by minimising RMSE and maximising R2. The number of optimal 
factors varied between 4 and 6 for LMA models of different leaf age groups 
and between 6 and 8 and 5–8 factors for all other traits on a mass and area 
basis, respectively. We therefore, standardised to 6 latent factors for all LMA 
models and to 8 factors for all other leaf trait models.

PLSR analyses were performed using custom functions along with the MCS 
function from LibPLS (http://www.libpls.net) and the PLSREGRESS function in 
Matlab (Version R2014a, Mathworks Inc., Natick, MA, USA).

We report the trait summary statistics for the four leaf age group data 
subsets used to develop these models, the mean results (R2 and RMSE) of 
the 10 PLSR models for each leaf age group-trait combination and the 
standardised number of PLSR latent factors used to predict leaf traits across 
all leaf age groups. To evaluate the robustness of the PLSR models across 
leaf age groups, we used the 10 models from each group to predict the traits
of leaves from the other three age groups. We report the R2; RMSE as a 
percentage of the sample mean (i.e. % RMSE); mean spectral coefficients 
and their correlations between leaf age groups; and the mean relative 
importance of each variable (wavelength) in predicting leaf traits (VIPs) of 
the 10 mass based PLSR models for each leaf age group-trait combination. 
Wavelengths showing VIP values greater than one are considered important 
(Wold et al., 2001). Additionally, results of sensitivity analyses show stable R2

and RMSE values beyond leaf sample sizes of 60 (Fig. S1). Model accuracy 
(RMSE) showed less sensitivity to sample size than model precision (R2).

Finally, we explored the leaf traits, spectral range and coefficients of 
variation (CV) of the different leaf age groups to further elucidate the impact 
of leaf age on PLSR models. Tukey's HSD tests were used to compare the 
leaf trait means for the different leaf age groups.

3. Results

Both Cmass and Parea remained more or less stable throughout the leaf life 
cycle (i.e. showed similar trait range and means across leaf age groups), 
while other mass based traits displayed negative relationships and area-
based traits displayed both negative (LWCarea) and positive (LMA, Narea and 
Carea) relationships with age (Fig. 3, Tables 2 & 3). Mean LMA and Carea 
significantly increased between consecutive leaf age groups (P ≤0.01 for 
both D-M and M-S leaf age group comparisons), while mean LWC, LWCarea and



Pmass significantly decreased (P ≤0.0001 for both D-M and M-S leaf age group 
comparisons). Interestingly, both leaf N and C content displayed different 
relationships with age depending on their measurement basis with LMA 
modulating area-based trait relationships with age. Parea and Cmass remained 
stable while Pmass and Carea showed negative and positive relationships with 
age, respectively; Nmass displayed a negative relationship while Narea showed a
positive relationship with age. In terms of leaf age groups, the 
developmental (D) group displayed the largest trait ranges and covered most
of the ranges shown by the mature (M) and senescent (S) leaf age groups 
while the M group had the smallest trait ranges for most leaf traits.

Leaf reflectance spectra displayed differences in magnitude and shape 
between leaf age groups (Fig. 4). Upper bounds of visible reflectance (VIS; 
spectral domain: 390–700 nm) where highest for the developmental leaf age 
group and closely followed by the senescent age group while lower bounds 
displayed similar values across leaf age groups. Age-induced reflectance 
differences in this spectral domain were especially pronounced at 550 nm 
(green peak). NIR reflectance (spectral domain: 700–1400 nm) displayed 
opposite patterns to VIS. While upper bounds in NIR reflectance displayed 
similar values across leaf age groups, differences in lower bounds were 
pronounced with the senescent leaf age group showing a collapse between 
700 and 850 nm and a general flattening across the NIR spectral domain. 
Shortwave-infrared (SWIR; spectral domain: 1450–2500 nm) reflectance 
displayed similar patterns to VIS (Fig. 4). Upper bounds in SWIR displayed 
the largest differences between leaf age groups with the senescent age 
group showing significantly higher upper bounds. These were most 
pronounced around structural carbon absorption features around 2000–2250 
nm. Finally, the Red-Edge (spectral domain: 650–810 nm) also showed 
differences between leaf age groups with the widest amplitude displayed by 
the senescent age group.

We also observed age effects in terms of reflectance variability (measured as
coefficients of variation or CVs; Fig. 4). The developmental leaf age group 
displayed the highest variability across most of the spectrum (10–55%) 
followed by the senescent group (8–41%) with the mature age group 
showing the lowest variability (7–33%). The largest differences in variability 
between leaf age groups were observed across the VIS, Red Edge, NIR and at
the main water features around 1450 and 1940 nm.

We examined the robustness of PLSR models developed on both a mass and 
area basis and when using leaves from different leaf age groups 
(developmental (D), mature (M), senescent (S) and mixed-age (All)) to 
predict (1) individual leaf traits across different leaf age groups and (2) 
individual leaf traits within leaf age groups.



We found that except for the senescent leaf age group, mass based traits 
were predicted in the same descending order of precision (i.e. R2): LWCmass > 
Pmass > Nmass > Cmass (Table 2). However, areabased trait predictions showed 
no discernable pattern and generally displayed higher prediction precision 
and similar accuracy (i.e. RMSE) to mass-based models (Tables 2 & 3). 
Among all traits, LMA and Carea displayed the highest prediction precisions 
across all leaf age groups (R2 = 0.94–0.96 and %RMSE = 5–8; 0.93–0.97 and 
%RMSE = 5–8, respectively; Table 3). LWC showed high and consistent 
prediction precision and accuracy between mass- and area-based models 
and although lower prediction precisions were observed for leaf N content, 
this trait also displayed consistent predictions between mass- and area-
based models. However, striking contrasts in prediction precision between 
mass- and area-based models were observed for leaf C content. While Cmass 
displayed the lowest prediction precision across all traits and leaf age groups



(Table 2), Carea showed some of the highest precisions (Table 3). 
Furthermore, age-specific differences in performance for both mass- and 
area-based models were observed. For example, Parea showed a drop in 
prediction precision of 9–15% and 11–17% for developing and mixed-age leaf
age groups, respectively, compared to the other three leaf age groups (Table
3) and LWCmass displayed a drop 11–12% for the senescent leaf age group 
(Table 2).

When we analysed the performance of both mass- and area-based PLSR 
models developed using one leaf age group to predict the traits of the other 
three leaf age groups, we found that except for Parea, area-based models 
significantly and consistently outperformed mass-based models (Figs. 5 & 6).
Overall, for both mass- and area-based traits, mixed-age models (All) 
displayed the best performance and mature models the worst performance 
when predicting the traits of other leaf age groups (Figs. 5 & 6). Significantly,



when predicting leaf traits for the mixed-age group (All; Figs. 5 & 6) the 
developmental models (D) showed the best performance in terms of both 
precision and accuracy, however, precision still dropped by 24 and 26% 
when the D-models, was used to predict the chemical leaf traits Parea and 
Cmass, respectively. We also found that models displayed trait-specific age 
sensitivity. Our results show that only two traits -LMA and Carea were 
predicted with consistently high precision (≥70 across leaf age groups) and 
accuracy (mostly ≤12 across leaf age groups) regardless of the age model 
used (Fig. 6a-d & q-t). In contrast, Cmass models displayed the worst overall 
performance with large decreases in prediction precision (R2 = 36–53%) and 
some age models unable to predict Cmass for leaves of other leaf age groups 
(Fig. 5m-p). Parea models where the only area-based models that 
underperformed compared to mass based models, however, these results 
were mostly limited to the developmental and mixed-age leaf age groups. 
For developmental leaves, mass- and area-based PLSR models built using 
mature leaves (M) displayed the worst performance for four out of five leaf 
traits, and both M- and S-models were unable to predict Cmass for this leaf age
group (Figs. 5 & 6a, e, i, m, q). For mature leaves, S-models showed the 
worst overall performance with S-models unable to predict Cmass for this leaf 
age group (Figs. 5 & 6b, f, j, n, r). For senescent leaves, M-models displayed 
the worst overall performance with M-models unable to predict Nmass and 
Cmass for this leaf age group (Figs. 5 & 6c, g, k, o, s). For mixed-age leaves, M-
models displayed the worst overall performance, however, S-models were 
unable to predict Cmass for this leaf age group (Figs. 5 & 6d, h, i, p, t).

We also found differences in spectral PLSR coefficients (Fig. S2) and VIPs due
to leaf age (Fig. 7). Only correlations between coefficients for LMA models 
were found to be consistently high across leaf age groups, with correlations 
also high between all leaf age groups for the four other traits on both a mass
and area basis (Fig. S2).

4. Discussion 

To our knowledge, our study is the first to investigate the relative effect of 
leaf age on the PLSR models used to spectrally predict traits important to 
leaf physiological and ecological functioning. PLSR models have been 
traditionally developed on a mass basis as this is the standard unit used in 
studies of leaf traits, plant physiology and economy, and ecosystem function.
However, spectral reflectance is inherently an area-based measurement. 
Furthermore, as contrasting and combining leaves of different age groups 
(i.e., developmental, mature, and senescent) could result in some leaf 
samples sharing similar values of constituent content per mass unit while 
having very different morphological and optical properties, we also 
developed and tested the effect of leaf age on the performance of area-
based PLSR models.



4.1. Does the robustness of spectral PLSR models vary with leaf age and 
does leaf age affect model performance when predicting different leaf traits?

We found that within each leaf age group, the four individual leaf traits we 
analysed on a mass basis were largely predicted in the same descending 
order of precision: LWC > Pmass > Nmass > Cmass. These results are comparable 
with previous studies using PLSR approaches (Asner et al., 2011a; Asner et 
al., 2011b; Richardson and Reeves, 2005; Serbin et al., 2014), and more 
importantly, indicate that mass based leaf traitspectra relationships are 
stable within the different leaf life-cycle stages (i.e. developmental, mature 



and senescent). Area-based models displayed no obvious pattern and mostly
outperformed mass based models with LMA and Carea models displaying the 
highest prediction precision (N90%) among all traits analysed and also 
excellent accuracy (≤8) (Table 3).

We also observed interesting differences in trait-specific age effects between
mass- vs area-based PLSR models. Significantly, our results show that area-
based models may be less sensitive to age effects. We found that three out 
of the five traits we analysed on an area basis -LMA, Carea, LWCarea- displayed 
no age effects, while only one out of four mass based traits -Pmass- showed no 
such effects. LMA and Carea were not only predicted with the highest precision
among all traits but also consistently across all leaf age groups (R2 = 0.94–
0.96 and 0.93–0.97 and %RMSE = 5–8 for both traits, respectively; Table 2). 
Although LWCarea and Pmass models displayed lower prediction precisions than 
LMA and Carea across leaf age groups (R2 = 0.87–0.92 and 0.85–0.92 and 
%RMSE = 4–9 and 9–13, respectively; Table 2), these were also consistent 
across age groups (5 and 2–3% differences in R2 and %RMSE between age 
groups for LWCarea, and 2–6 and 1–4% for Pmass, respectively).

The contrast in our results between Cmass and Carea models are particularly 
striking as leaf C content is a trait that has been shown within the PLSR 
literature to be difficult to predict on a mass basis (see Asner et al., 2014, 
2011a, 2009; Serbin et al., 2014). Cmass may be a particularly challenging trait
to predict as total Cmass remains more or less stable throughout the leaf life-
cycle (see Fig. 3) while the ratio of the two different carbon constituents 
(non-structural and structural carbohydrates) changes: at the beginning of 
the leaf life-cycle, leaf C content is mostly comprised of non-structural 
carbon (sugars and starch) used to fuel leaf development, while in senescent
leaves, it is mostly comprised of structural C (lignin and cellulose). 
Correspondingly, the significant loss in prediction precision in Cmass models 
for leaves of mixed age (All) is likely the result of (1) the anti-correlation of 
spectral features of non-structural and structural carbon (Asner et al., 2015) 
and (2) a predicted variable (Cmass) that remains more or less stable while the
predictor variables (leaf spectra) change significantly with age. However, C 
content measured on an area basis (Carea) captures the age-related changes 
in this trait (which shows a positive relationship with age, see Fig. 3), and 
therefore, offers an alternative approach for estimating leaf C content with a 
high degree of precision from spectroscopic data. Similarly, the lower 
prediction precisions we observed for developmental and mixed-age (All) 
Parea models are likely to be related to the lack of change displayed in this 
trait with age on an area basis.

Models for LWCmass displayed a significant decrease in precision of 11–12% 
for the senescent leaf age group (S; Table 2) while a less pronounced 
decrease was observed for LWCarea (4–5%). This decrease in model precision 
may be due to a diminished contribution of LWC (relative to the contribution 
of intercellular leaf structure and biochemical leaf traits) to the optical signal 
in the NIR (700–1400 nm) and SWIR (1400–2500 nm) spectral regions as a 



result of the significantly lower mean LWC found in senescent leaves, 
whether expressed on a mass or area basis. Mixed age effects in both of 
these spectral regions due to intercellular leaf structure and biochemical 
features could have also contributed to the observed decrease in prediction 
precision. NIR and SWIR are directly correlated to LWC with strong water 
absorption features centred around 970, 1200, 1450 and 1940 nm (Fig. 4). 
However, NIR is also indirectly correlated to LMA as reflectance in this 
spectral region is determined by the complex intercellular structure of leaves
(i.e. the number of air-cell wall-water interfaces within leaves) for which LMA 
is a proxy, while SWIR is both directly and indirectly correlated to 
biochemical features of nitrogen, phosphorus, proteins and non-structural 
and structural carbon constituents. The age effects we observed for Nmass and
Narea models are more difficult to unravel. Nmass models showed lower 
prediction precisions for both senescent (S) and mixed-age (All) leaf age 
groups while Narea models displayed lower precisions for the mixed-age leaf 
age group. These results could be the result of tree-specific relationships 
with leaf age displayed by these traits as previously reported in Chavana-
Bryant et al. (2017).

Our findings suggest that using area-based PLSR models to predict leaf LWC, 
N and C content may avoid the trait-specific age effects we observed for 
these traits on a mass basis. However, the prediction decreases we observed



in both mass- and area-based models of mixed-age (All) leaf age groups 
point to the challenge of consolidating the combined age-related changes in 
leaf properties that are captured by spectral signatures (Fig. 4) with trait 
specific behaviours, in particular, when leaves of different ages display 
similar values of constituent content. This effect is revealed by the lack of 
change displayed in Parea and Cmass with age (Fig. 3) resulting in lower 
prediction precisions for Parea models and Cmass models, respectively. This 
effect is further highlighted in the next section of our discussion when we use
PLSR models developed using leaves from one leaf age group to predict 
traits of leaves of another leaf age group.

4.2. What is the performance of chemometric PLSR models developed using 
leaves from one leaf age group when predicting the traits of leaves of other 
leaf age groups?

Chemometric approaches such as PLSR are known to be subject to instability
when models developed with one dataset are used to predict chemicals from
spectra in another dataset (Boulesteix and Strimmer, 2006; Martens, 2001). 
When we tested the robustness of chemometric PLSR models across time 
(i.e. using models developed with one leaf age group to predict traits of 
leaves of other leaf age groups), we found that models for all leaf traits 
displayed leaf age/temporal sensitivity. However, as per our previous results,
except for Parea models, area-based models consistently and significantly 
outperformed mass based models (Figs. 5 and 6). Furthermore, mass based 
models of different leaf age groups were sometimes unable to predict Nmass 
and Cmass (Fig. 5), while area-based models only failed to do so on one 
occasion (i.e. the senescent area-based model for Parea was unable to predict 
this trait for the mature leaf age group).

Our results also show that on both mass and area basis, mixed-age models 
(All) displayed the best performance (Fig. 5a-t). However, even models 
developed using mixed-age leaves (All) sometimes displayed significant 
decreases in precision (11–41% and 11–31% for mass- and area-based, 
respectively) and accuracy (8–10% and 8% for mass- and area-based, 
respectively) when predicting the traits of leaves from single age groups. It is
also important to highlight that, among the models of the individual leaf age 
groups, the developmental (D) models displayed the best performance when 
predicting the leaf traits for the mixed-age (All) group for both mass- and 
area-based models. Considering that the developmental leaf age group 
displayed the largest trait ranges compared to the mature and senescent 
age groups (see Fig. 3), these results provide evidence that when developing
PLSR models capturing the temporal/seasonal diversity of leaf traits due to 
leaf age can be as important as capturing trait diversity generated by 
species diversity and/or environmental growing conditions. This is further 
supported by several studies which have highlighted that up to 30% of trait 
variation found “within-sites” or species can be attributed to plant 
asynchrony (Albert et al., 2011; Albert et al., 2010; Bolnick et al., 2011; 
Cornwell and Ackerly, 2009; McKown et al., 2013; Violle et al., 2012) and that



the trait variation generated from sampling leaves of different leaf age 
groups across a relatively small sample of 12 Amazonian canopy trees can 
be as large as the variation found among the mature leaves of a large 
sample of almost 200 Pantropical trees from the GLOPNET database 
(Chavana-Bryant et al., in review).





LMA was the trait that displayed the least age/temporal sensitivity (i.e. 
models performed well across leaf age groups) followed by Carea and LWCarea, 
respectively. Although LMA could be predicted by models developed from 
the different leaf age group datasets, significant losses in prediction 
precision (and accuracy) were observed in some cases (10–18%; Figs. 5 & 6) 
and much larger losses were observed for other traits. For example, Carea and
LWCarea models displayed losses in prediction precision of 19–36% and 19–
41% when used to predict the traits of other leaf age groups.

These results were also reflected in the spectral coefficients' differences we 
observed between models for individual leaf traits developed from different 
leaf age groups (Fig. 7). When we analysed the correlations between spectral
coefficients of the different leaf age group models, we observed that only the
spectral coefficients of LMA models displayed consistently strong correlations
between different leaf age groups (i.e. single leaf age group models can 
predict LMA for other leaf age groups), while the coefficients for models of 
different leaf age groups within the other four leaf traits on both mass and 
area basis displayed correlations of varying strength (i.e. single leaf age 
group models for these traits display age sensitivity and cannot consistently 
predict the leaf traits of other age groups) (Fig. 5). Although previous 
chemometric studies using PLSR approaches have reported differences in 
spectral coefficients and VIPs for different leaf traits, our study is the first to 
report differences in both of these metrics due to leaf age (Fig. 7 and Fig. 
S1).

As developing mass-based chemometric PLSR models using only “fully 
expanded mature leaves” is the standard practice in most spectroscopic 
studies, it is important to highlight two of our main findings: (1) the mature 
(M) models displayed the worst overall performance when predicting the 
traits of leaves from other leaf age groups on both mass- and area-basis (Fig.
5) and (2) current models developed using only mature leaves are likely to 
display leaf age/temporal sensitivity. The model uncertainty introduced by 
leaf age effects is a reduction in precision for all traits. For example, even for
LMA and Carea models, which show good performance across all leaf age 
groups, in vegetation systems with synchronised leaf phenology such as 
temperate and deciduous tropical forests, prediction precision would be 
significantly decreased if PLSR models were used to predict the leaf traits of 
leaves collected at different times in the growing season (i.e. early or late in 
the growing season). Therefore, to achieve temporally stable PLSR models, it
is important to ensure that PLSR models are calibrated using samples 
representing all leaf age groups (i.e. collected at different times of the 
growing season).

Our findings can have important implications for canopy and landscape level 
trait estimation for three main reasons. First, the sampling of mature leaves, 
even when chosen to represent the species diversity of a site or area, are 
unlikely to cover the full range of trait variation introduced by leaf age. 
Second, leaf reflectance represents a composite measure of morphological, 



structural and biochemical leaf traits, with some of these traits displaying 
different age-related changes and some sharing similar values of constituent 
content across different leaf ages. Lastly, current PLSR models calibrated 
with only mature leaves are embedded for upscaling purposes into canopy 
models and used to predict canopy traits across time/seasons and across the
canopy/landscape, however, these canopies are likely to contain leaves of 
different leaf ages. This is because leaves of both tropical and temperate 
trees can spend a significant part of their life-cycle (~27 to 55% and ~50%, 
respectively) in non-mature life phases. For example, the leaf life span of 
trees included in this study ranged from ~10 months to ~two years. These 
leaf life spans are similar to those found by Reich et al. (2004) for a large 
sample of well-lit trees in an Amazonian terra firme mature forest canopy. 
Within these life-cycles, leaves spent on average ~1.5 months in the 
developmental stage (which does not include budding period), ~2 months in 
old stage and/or up to 3 months in the senescent stage. The duration of the 
developmental stage for our trees are similar to those exhibited by other 
tropical trees (Cai et al., 2005; Ogawa et al., 1995), temperate-deciduous 
and tropical evergreen trees in montane cloud forest sites (Williams-Linera, 
2000) and a wide range of species from a macro-analysis by Pantin et al. 
(2012). However, the old/senescent phase tends to be shorter (1–2 months) 
in deciduous trees (McKown et al., 2013). It is therefore, very likely that the 
combined effect of leaf aging and asynchrony in leaf life cycles will have an 
impact on the performance of current PLSR models used to estimate canopy 
leaf traits. For example, in evergreen tropical forests most field and aerial 
spectranomic campaigns are conducted during the dry season, a time when 
field-based studies (Brando et al., 2010; Chavana-Bryant et al., 2017; Chave 
et al., 2010; Doughty and Goulden, 2008; Malhi et al., 2014 among many 
others) have shown that canopy leaf turnover is at its highest with many 
trees exchanging their leaves through a wide variety of phenological 
behaviours and intra- and interspecific phenological asynchrony (Borchert, 
1983; Borchert et al., 2002; Reich, 1995; van Schaik et al., 1993). This 
results in different proportions of leaves of different ages being present in 
tropical evergreen canopies not only during the dry season but throughout 
the annual cycle. Furthermore, in forests with synchronised leaf phenology 
(e.g. dry tropical and temperate forests) there are times during the growing 
season (i.e. beginning and end) when only developing or senescing leaves 
are present in the canopy and even leaves at different stages of maturity 
(early, mid and late maturity) can display differences in traits (McKown et al.,
2013). Temperate trees can also display a second or third flush of leaves 
during the growing season which can substantially reduce the time window 
when mature leaves dominate their canopy. Chemometric PLSR models 
calibrated with only mature leaves are, therefore, likely to experience 
different degrees of sensitivity to leaf age throughout the annual cycle in 
tropical evergreen forests or throughout growing season in deciduous 
forests, which could explain some of the model residuals in published studies
(Asner et al., 2015; Asner et al., 2009; Asner et al., 2011a; Axelsson et al., 



2013; Féret et al., 2011; Qi et al., 2014). Furthermore, Chavana-Bryant et al. 
(2017), provides evidence of how some widely used spectral vegetation 
indices, such as NDVI, EVI, PRI, etc. are affected by leaf age at the leaf level 
and in Chavana-Bryant et al. (in preparation) also at the canopy level. 
Spectroscopic studies may therefore benefit from moving away from 
standard practice (sampling only fully expanded mature leaves) and instead 
collect samples that represent the different seasonal phases and/or leaf ages
encountered at the time of sampling. In the Supplementary materials 
section, we provide practical protocols (from Chavana-Bryant et al., in 
review) that can be used to keep track of leaf age differences during field 
collection campaigns.

Finally, although further work comparing the performance of massversus 
area-based PLSR models for a wider range of traits (e.g. leaf pigments, etc.) 
and leaf samples will be required, our results provide a valid case for 
incorporating the development of area-based PLSR models into common 
practice. In the case of photosynthetic related traits, areabased PLSR models
may prove to be more relevant than mass-based models.



5. Conclusions 

This study is the first to demonstrated the importance of leaf age in the 
development of chemometric PLSR models used to estimate leaf and canopy 
traits from hyperspectral radiometry. It is also the first study to develop 
area-based PLSR models for several traits that are important to leaf 
physiological and ecological functioning and that have demonstrated 
contributions to the spectral signatures of vegetation. The results of this 
study reveal that leaf age affects the precision and accuracy of trait 
estimates of both mass- and area-based PLSR models with area-based 
models showing significantly less sensitivity to leaf age effects. The latter 
was particularly striking for leaf carbon content. Age effects vary across 
traits, and precision is more widely affected than accuracy. To achieve 



temporally stable models (i.e. models that can be applied on airborne 
acquisitions obtained at any time during the growing season and are not 
affected by canopies containing a mix of leaf age classes), spectroscopic 
studies would benefit from moving away from the standard practice of 
focusing on mature leaves and instead develop both mass- and area-based 
models calibrated with leaves representing different leaf age groups. In 
regions where leaf phenology is strongly synchronised (e.g. temperate and 
deciduous tropical forests) this would involve collecting leaves at different 
times of the growing season, while in regions with unsynchronised leaf 
phenology (e.g. evergreen tropical forests) it would involve sampling leaves 
representative of the different ages encountered in the field at the time of 
year of interest or across the year. Finally, the use of area-based PLSR 
models, which are less sensitive to leaf age, may prove to be more 
appropriate for estimating canopy traits associated to photosynthesis.
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