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Abstract
The study of mind perception, particularly how one perceives
the mental states of ‘others,’ has attracted considerable inter-
est in cognitive science. The present study contributes to the
investigation of mind perception in a human-robot interaction
context, by testing a humanoid robot and a human and their
communicative and noncommunicative actions. We examine
mind perception across its two primary dimensions: Agency
and Experience and in their High and Low ends. The novelty
of our study lies in its real-time and implicit nature—both iden-
tified as crucial elements in current debates within the field.
Our results indicate that testing physically present and active
agents, as well as exposing participants to various types of live
actions, influences mental capacity attributions across differ-
ent capacities. Additionally, the integration of behavioral mea-
surements alongside verbal data holds promise for a detailed
interpretation of the mind perception process.
Keywords: mind perception; agency; experience; human-
robot interaction; communicative actions; noncommunicative
actions

Introduction
A closer examination of fundamental debates in Cogni-
tive Science, including the Chinese Room argument (Searle,
1980), Turing Test (Turing, 1950), and classical Theory of
Mind discussions (Gordon, 1986), reveals a recurring theme:
the persistent curiosity about whether an agent possesses a
mind or cognitive capacities. This curiosity remains relevant
today, especially with the growing interactions with “minds”
such as chatbots or social robots in our daily lives, intensi-
fying the significance of such inquiries to better understand
human social reasoning (Broadbent, 2017). The human abil-
ity to attribute mental capacities to nonhuman entities (Epley,
Waytz, et al., 2010) emphasizes the complexity of this pro-
cess, necessitating thorough investigations into the causes
and consequences of mind perception (Waytz, Gray, Epley,
& Wegner, 2010). Artificial agents, especially social robots,
with human-like features such as anthropomorphic appear-
ances or movement capabilities are promising candidates for
further research in this domain (Henschel, Laban, & Cross,
2021). Understanding whether and why we attribute men-
tal capacities such as beliefs, desires, or intentions to robots

is crucial, as humans tend to trust, collaborate with, and ac-
cept more readily those agents they perceive as having men-
tal capacities (Epley, Waytz, & Cacioppo, 2007; Waytz et al.,
2010). Besides having the potential to shape the future of
human-robot interaction (HRI), these investigations also con-
tribute to documenting the evolution of our relationships with
these “extraordinary entities,” shedding light on the broader
aspects of human social cognition (Weisman, 2022).

Investigations into mind perception within the HRI con-
text commonly employ comparative analyses between hu-
mans and robots as agents. While most previous research
indicates a stronger tendency to attribute mental states to hu-
mans over robots, discrepancies exist since some studies note
comparable tendencies between the two agents (Thellman, de
Graaf, & Ziemke, 2022). However, the ecological and exter-
nal validity of these studies is often questioned due to their
reliance on verbal scenarios, images, or videos of agents. Ev-
idence also suggests that anthropomorphism towards robots
increases when they are physically present (Kiesler, Powers,
Fussell, & Torrey, 2008; Straub, 2016; J. Li, 2015). Addi-
tionally, recent studies also indicate that besides factors such
as perceived similarity (Waytz et al., 2010) and appearance or
the degree of anthropomorphism (K. Gray & Wegner, 2012),
behaviors and capabilities of the robots also significantly in-
fluence attributions of mental capacities. Therefore, testing
physically present and actively performing robots in diverse
actions could provide deeper insights into the dynamics of
mind perception in HRI.

The inconsistencies observed in previous studies may stem
from the reliance on self-report methods such as question-
naires and surveys. These explicit methodologies have no-
table limitations, including their inability to capture the un-
derlying processes of mind perception and the potential to
misrepresent actual thoughts due to factors like social desir-
ability bias (Fazio & Olson, 2003; Nosek, Hawkins, & Fra-
zier, 2011). Consequently, there is a pressing need to incor-
porate more implicit methodologies in this field (Greenwald
& Banaji, 1995).
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In this work, we build upon the existing questions and in-
vestigate how agent and action type influence mind percep-
tion processes in a real-time setting, employing an implicit
testing methodology. Specifically, we: (1) compare two types
of agents—a human and a robot; (2) make participants eval-
uate these agents as they perform both communicative and
noncommunicative actions; (3) utilize an implicit task that we
developed, which allows us to collect verbal and behavioral
data through a real-time yet controlled methodology.

Relevant Work
Acknowledging the complex nature of mind perception as a
cognitive process, certain abstractions are necessary to reveal
the fundamental conceptual structure. A seminal work by
Gray et al. (2007) has significantly contributed to this en-
deavor by proposing that people’s judgments about others’
minds revolve around two distinct dimensions: Agency and
Experience. In broad terms, Agency refers to “the capacity to
do” while Experience refers to “the capacity to feel”. When
evaluating Agency, individuals assess the others in terms of
possessing a mind capable of self-directed, intentional ac-
tions, or making choices. On the other hand, evaluations
of Experience focus on having the capacity to have subjec-
tive mental states, feelings, emotions, or other experiential
aspects. Further research has broadened these concepts, in-
troducing varied agent types and dimensional structures. For
instance, Weisman et al. (2017) categorized capacities into
Body, Mind, and Heart, and Malle (2019) proposed divisions
into Affect, Moral and Mental Regulation, and Reality In-
teraction. A recent validation study (Pekçetin, Barinal, Tunç,
Acarturk, & Urgen, 2023) confirmed the original division into
Agency and Experience while identifying additional clusters
within these dimensions. These clusters particularly relate to
concepts requiring a higher level of processing or those ex-
hibiting physical or instinctual attributes.

Previous studies (H. M. Gray et al., 2007; K. Gray & Weg-
ner, 2012; Ishii & Watanabe, 2019; Okanda, Taniguchi, &
Itakura, 2019) have reported differential mental state attribu-
tions towards robots and humans, particularly noting that hu-
mans are more likely to be attributed with experience-related
capacities, whereas agency-related capacities are similarly at-
tributed to both. Additionally, previous studies focusing on
how different behaviors of agents affect attributions of men-
tal capacities to them reported stronger tendencies in attribut-
ing mental capacities to robots when they exhibit emotional
(Złotowski, Strasser, & Bartneck, 2014) and social behav-
iors (Fraune et al., 2020; Straub, 2016), or gestures (Salem,
Eyssel, Rohlfing, Kopp, & Joublin, 2011). Furthermore,
some studies found that different types of actions impact var-
ious aspects of mind perception. For instance, Saltik et al.
(2021) reported that the type of action performed by a robot
increased the tendency to attribute higher Agency ratings,
though they did not observe this effect in the Experience di-
mension. Złotowski et al. (2014) reported that exhibiting
emotional behavior resulted in higher ratings in the Experi-
ence dimension, while exhibiting intelligent behavior resulted

in higher Agency scores. These insights; however, face gen-
eralizability challenges to real-world scenarios, highlighting
the need for methodologies that better capture interactive be-
haviors occurring in naturalistic settings.

Research on mind perception in HRI has largely utilized
explicit methods like questionnaires and interviews, which,
while useful in emerging or applied domains, also have limi-
tations. Explicit measures often rely on subjective judgments
that can be influenced by external factors, making them less
reliable (Fazio & Olson, 2003; Nosek et al., 2011). To gain
a deeper mechanistic insight into human cognition and be-
havior, the integration of implicit measurements is crucial
(Greenwald & Banaji, 1995). Previous studies have begun to
incorporate non-verbal behavioral metrics such as response
times (Z. Li, Terfurth, Woller, & Wiese, 2022), anticipatory
gaze (Sciutti et al., 2013; Thellman & Ziemke, 2020), and
attentional cueing (Wiese, Mandell, Shaw, & Smith, 2019),
revealing that these methods tend to elicit stronger attribu-
tions of mental states to robots compared to verbal assess-
ments (Thellman et al., 2022).

The Present Study

Building upon open questions and methodological challenges
in the current state of the art, we adopt an empirical approach
to explore the mind perception process in HRI, aiming to ad-
dress the following key research questions: RQ1: Do peo-
ple attribute mental states to humans more than to robots?
and RQ2: Are mental states attributed more frequently in re-
sponse to communicative actions than to noncommunicative
actions? To investigate these questions, we tested a human
actor and a humanoid robot, Pepper, whose extensive mobil-
ity capabilities enabled us to test a wide variety of action stim-
uli. We tested the agents and actions on two dimensions of
mind perception—Agency and Experience—using the Real-
World Implicit Association Test (RW-IAT) we developed
(Pekçetin, Evsen, Pekçetin, Acarturk, & Urgen, 2024). The
study design has been established upon a real-time yet con-
trolled approach, enabling us to collect behavioral metrics
besides the final verbal responses. As behavioral data, we
recorded the response times and mouse trajectories of the
participants while they were making their binary evaluations.
Response time is the classical measure collected in classi-
cal Implicit Association Test (IAT) (Greenwald, McGhee, &
Schwartz, 1998), as an indicator of the overall speed, thus the
strength of the association; however, it falls short in demon-
strating what happens during an IAT trial (Yu, Wang, Wang,
& Bastin, 2012). So, we included mouse tracking to our
RW-IAT to capture the motor trajectories which reveal the
real-time course characteristics of the entire response process
(Freeman & Ambady, 2010). This approach allows us to fur-
ther explore: RQ3: How are different dimensions of mind per-
ception influenced by variations in agent and action types?
and RQ4: Do verbal responses from participants align with
behavioral metrics such as response time and mouse trajec-
tories?
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Figure 1: The communicative actions across human and robot
conditions. The images are screen captures from the six-
second videos filmed for the action norming study.

Methodology
The study was conducted in person in a psychology labora-
tory at Bilkent University. The experimental materials and
protocols were approved by the Ethics Committee for Re-
search with Human Participants at the same university. Par-
ticipants were 18 or above and they provided informed con-
sent before the study. The study took between 70 to 100 min-
utes. At the end of the study, the participants received com-
pensation of 50 Turkish Liras (approximately 3 USD then).

Participants
A total of 166 participants enrolled in the study, but data
from 6 were excluded due to technical problems encountered
during data collection. Specifically, sudden IP configuration
changes disrupted the robot-computer connection, leading to
incomplete sessions for two participants. Additionally, data
from four participants were excluded due to repeated blocks
caused by experiment code crashes linked to Wi-Fi connectiv-
ity losses. In the end, the data of 160 participants, comprising
98 females and 62 males, with age range 18-73 (M = 44.93,
SD = 16.63) were included in the analyses. For participants
aged 63 and above (n = 40), a mini-mental state examination
(Folstein, Folstein, & McHugh, 1975) was administered by
a neurology specialist to assess cognitive impairments. Only
the participants scoring above the cut-off score of 23-24 out
of 30 for normal cognition (Thorndike, 1953), and those ap-
proved by the specialist, were recruited for the study. Within
this age group, the scores ranged from a low of 27 (n = 1) to
a high of 30 (n = 24), with a mean score of 29.43.

Materials
Although the original IAT (Greenwald et al., 1998) was
adapted to examine mind perception using images of humans
and robots (Z. Li et al., 2022), it was not feasible to present
the real-time actions of two actors randomly and without any
delay in a single block. Inspired by the Single Category
IAT (Karpinski & Steinman, 2006), we developed a tailored
IAT, RW-IAT (Pekçetin, Evsen, Pekçetin, Acarturk, & Urgen,
2024) for both human and robot actors across four blocks, ad-

Figure 2: The noncommunicative actions across human and
robot conditions. The images are screen captures from the
six-second videos filmed for the action norming study.

dressing their distinct categories. The details regarding the
development of the task and lab setup are documented in our
prior work (Pekçetin, Evsen, Pekçetin, Acarturk, & Urgen,
2023; Pekçetin, Evsen, Pekçetin, Karaduman, et al., 2024).
RW-IAT included target and attribute concepts, similar to the
structure of the classical IAT (Greenwald et al., 1998) and its
modified versions (Karpinski & Steinman, 2006).

Attribute Stimuli We utilized Agency and Experience as
attribute stimuli, and included High Agency, Low Agency,
High Experience, and Low Experience to represent the ex-
tremes of both dimensions, based on a recent study (Z. Li
et al., 2022). Following best IAT practices (Greenwald et
al., 2022), we conducted a Lexical Training session to fa-
miliarize participants with these terms. We defined Agency
as “the ability to do” and Experience as “the ability to feel,”
with High and Low ends indicating varying levels of capac-
ity within each dimension. We validated these concepts, def-
initions, and their sub-concepts as examples of the broader
concepts in an online study (Pekçetin, Barinal, et al., 2023).

Target Stimuli While creating the action stimuli, we
benefited from the descriptions in datasets featuring point-
light actions (Manera, Schouten, Becchio, Bara, & Verfail-
lie, 2010; Zaini, Fawcett, White, & Newman, 2013). We
selected communicative—conveying or exchanging informa-
tion with the recipient, e.g., hand-waving and noncommu-
nicative actions—object-oriented actions related to activities,
not a recipient, e.g. jogging (Ekman & Friesen, 1969; Mc-
Neill, 1985). We animated these actions on the robot actor
using Android Studio and Pepper SDK’s Animation Editor
IDE. We standardized and filmed 40 actions for both human
and robot actors, then validated them through two online stud-
ies (Pekçetin, Aşkın, et al., 2023) with 438 participants who
identified each action, categorized them as communicative or
noncommunicative, and rated their confidence levels. We an-
alyzed the data based on H entropy (Shannon, 1948), com-
municativeness score, and confidence levels using a k-means
clustering algorithm (Hartigan & Wong, 1979; Thorndike,
1953). Figures 1 and 2 illustrate the most agreed upon and
selected communicative and noncommunicative actions, re-
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spectively: throwing a kiss, saluting, peek-a-boo, and hand-
waving, drinking, shooting an arrow, jogging, and driving.
The action videos are online at https://osf.io/e6mts/.
An Action Identification session was conducted to familiar-
ize participants with these actions, serving as both a manipu-
lation check and preparation for the implicit task.

Procedure
After the participants provided demographic information and
consent in a separate room, they were welcomed into the main
experiment room, which was divided by curtains into two
sections: the participant area and the actor area. Here, par-
ticipants were positioned in front of a 55” OLED screen until
the experiment concluded. At the end of the session, they
were introduced to the robot and shown the backstage. Be-
fore starting the implicit task, participants were briefed on the
real-time nature of the study, involving both human and robot
actors behind the curtains. They then completed the Lexical
Training and Action Identification phases before proceeding
with the implicit task.

The task consists of four blocks, with two dedicated to
Agency and two to Experience, featuring both human and
robot actors. The procedure is as follows: Participants first
receive instructions about the dimension of the upcoming
block. A fixation cross then appears on the opaque OLED
screen, signaling the upcoming presentation of the stimulus
(see Figure 3.1). The screen subsequently switches to its see-
through mode to display live-action stimuli (see Figure 3.2).
Participants observe each action for six seconds, with all ac-
tions starting and ending in a standing position to maintain
consistency. After the action, the screen reverts to opaque,
and the response screen appears (see Figure 3.3), where par-
ticipants’ responses, response times, and mouse trajectories
are recorded. Participants are encouraged to respond quickly
but have up to 30 seconds to evaluate each stimulus. Fol-
lowing their response, a fixation screen appears, signaling the
next action. This sequence repeats for nine trials per block.
Each block starts with a neutral (standing) action and contin-
ues with randomly presented communicative and noncommu-
nicative actions. The robot actor is operated using a Wizard-
of-Oz setup, and the human actor uses a backstage laptop to
track the order of the actions. The order of the blocks is coun-
terbalanced among participants. After each block, except the
last, participants see a “Please wait!” message, and neutral
background music plays while the human actor prepares the
stage for the next set of actions. The actor signals readi-
ness for the next block by waving through a security camera,
prompting the experiment conductor to proceed.

Independent and Dependent Variables
The study employs two independent variables: Actor type:
Robot or Human and Action type: Neutral, Communicative,
and Noncommunicative. During the analyses of the Action
Identification data, we observed that over 20% of the trials la-
beled as ‘neutral’ actions were ambiguously identified (e.g.,
“waiting for someone” or “looking at someone”), complicat-

Figure 3: The sequence of a sample trial from Robot-Agency
block. The task includes four blocks and there are nine trials
in each block.

ing their classification as truly neutral. Consequently, our
analysis now focuses exclusively on the Communicative and
Noncommunicative actions, as originally intended.

The primary continuous dependent variable is Response
Time (RT), which measures the seconds elapsed from the end
of an action to a mouse click on a response option. We
also measured Maximum Deviation (MD) and Area Under the
Curve (AUC) to evaluate response trajectories. MD measures
the largest perpendicular deviation from an idealized straight-
line trajectory, indicating the maximum attraction toward the
unselected choice. AUC, considered a more comprehensive
index, calculates the geometric area between the actual tra-
jectory and the idealized line, encompassing all time steps.
We calculated the MD and AUC values, based on the formu-
las of the original work (Freeman & Ambady, 2010). High
values of MD and AUC are interpreted as indicators of par-
ticipant hesitation (Freeman, Dale, & Farmer, 2011; Yu et al.,
2012). Lastly, the categorical dependent variable Response is
divided into High or Low categories, with the ratio of High
responses reflecting greater attributions of mental capacity in
a specific dimension.

Analyses
The initial dataset contained 5760 observations, but after ex-
cluding 6 missed and 639 neutral trials, 23 outliers with RTs
over 11.83 seconds (M = 2.02, SD = 1.89 for RTs), and one
trial with an extreme MD value, we processed a final dataset
of 5091 trials and categorized data by Agency and Experience
dimensions in a wide format using MATLAB 2023b. Then
we used RStudio 2023.09.1 for analysis. Given the Shapiro-
Wilk test indicated a significantly non-normal distribution (p
< .001) for both actor and action types across dimensions,
we applied Friedman’s test (Friedman, 1937), a nonparamet-
ric alternative to repeated-measures ANOVA (Field, Miles, &
Field, 2012). Following a significant result from Friedman’s
test, we conducted post hoc analyses using the Nemenyi test
(Nemenyi, 1963) to identify specific group differences.
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Figure 4: Boxplots of Response time (top row) and Response
(bottom row) based on actor and action type. The boxes rep-
resent the 25th to 75th percentiles, and the line inside indi-
cates the median.

Results
All participants evaluated each actor and action combina-
tion across both Agency and Experience dimensions. Con-
sequently, we have organized the results separately for these
two dimensions. In the subsequent section, Figure 4 displays
boxplots for Response Time and the Ratio of High Responses,
while Figure 5 showcases the boxplots for Maximum Devia-
tion and Area Under the Curve.

Agency Dimension
Actor Type The maximum deviation (χ2(1) = 3.60 , p =
.058), the area under the curve values (χ2(1) = 1.60, p =
.206) and the ratio of High responses (χ2(1) = 1.33, p = .248)
showed no significant changes across actor types. However,
the response times significantly varied by actor type, χ2(1)
= 11.02, p < .001 (see Actor Type in Figure 4.A). Pairwise
comparisons indicated that the response times for the robot
actor were significantly higher than for the human actor, p <
.001.

Action Type There was a main effect of action type on the
response times, χ2(1) = 16.90, p < .0001 (see Action Type
in Figure 4.A); maximum deviations, χ2(1) = 5.62, p = .018
(see Action Type in Figure 5.A); and areas under the curve,
χ2(1) = 6.40, p = .011 (see Action Type in Figure 5.C). How-
ever, the action type did not significantly affect the ratio of
the High responses (χ2(1) = 3.46, p = .063). Pairwise com-

Figure 5: Boxplots of Maximum Deviation (top row) and
Area Under the Curve (bottom row) based on actor and ac-
tion type. The boxes represent the 25th to 75th percentiles,
and the line inside indicates the median.

parisons revealed that the RT, p < .0001; MD, p = .018; and
AUC values, p = .011 were significantly longer, higher, and
larger, respectively, for communicative actions compared to
noncommunicative actions.

Experience Dimension
Actor Type The type of the actor significantly affected the
response times, χ2(1) = 11.02, p < .001 (see Actor Type in
Figure 4.B) and the ratios of the High responses, χ2(1) = 5.95,
p = .015 (see Actor Type in Figure 4.D). Pairwise compar-
isons revealed that the robot actor elicited significantly longer
RT, p < .001, and the ratio of High Experience responses for
the robot was significantly lower than the ratio for the human
actor, p = .048. The maximum deviations, (χ2(1) = 3.02, p
= .082) and areas under the curve, (χ2(1) = 3.60, p = .058)
showed no significant changes across actors.

Action Type The response times (χ2(1) = 0 , p = 1), max-
imum deviations (χ2(1) = 3.60, p = .058), and areas under
the curves (χ2(1) = 1.60, p = .21) did not significantly change
across action types. However, there was a significant effect
of the action type on the ratio of High responses of the par-
ticipants, χ2(1) = 10.96, p < .001 (see Action Type in Fig-
ure 4.D). Pairwise comparisons revealed that the ratio of High
Experience responses for the communicative actions was sig-
nificantly higher compared to the ratio of the High scores
given for the noncommunicative actions, p < .01.
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Discussion
In the current study, we aimed to examine the interplay be-
tween agent and action dynamics in mind perception during
real-time human-robot interactions. We tested both a human
actor and a humanoid robot, employing a range of system-
atically selected communicative and noncommunicative ac-
tions alongside validated conceptual stimuli. Our novel ex-
perimental setup facilitated the simultaneous presentation of
live-action stimuli and collection of behavioral data in a con-
trolled environment. Our findings for RQ1, RQ2, and RQ3 in-
dicate that both agent and action types significantly influence
mental capacity attributions, with distinct patterns observed
in the Agency and Experience dimensions. Regarding RQ4,
our results higlight the value of behavioral metrics alongside
verbal measures, as they can reveal the duration of the eval-
uation process and hesitations during this process, offering
insights that extend beyond what final verbal responses alone
can provide. Additionally, we emphasize the potential impact
of robots’ physical presence and activity on mental capacity
attributions.

Regarding agency dynamics, we observed similar Agency
capacity attributions for both human and nonhuman agents,
with the human agent receiving higher attributions for Ex-
perience capacities. This is consistent with prior research
that used explicit measurements, which found comparable
Agency attributions between humans and robots but higher
Experience attributions for humans (H. M. Gray et al., 2007;
K. Gray & Wegner, 2012; Ishii & Watanabe, 2019; Okanda et
al., 2019). Our data also showed that longer response times
in Agency evaluations were associated with a preference for
nonhuman agents, aligning with previous findings (Levin,
Killingsworth, Saylor, Gordon, & Kawamura, 2013). For Ex-
perience evaluations, despite longer decision times for nonhu-
man agents, the human agent was still attributed with higher
Experience capacities. This difference in Agency and Expe-
rience attributions suggests that nonhuman agents’ mimicry
of human behavior may elevate their Agency scores, narrow-
ing the gap in mental state attributions (Abubshait & Wiese,
2017). The physical presence of the robot in our study might
have enhanced this tendency.

We observed the impact of action type on the behavioral
metrics within the Agency dimension and on the attribution
levels in the Experience dimension. Notably, communicative
actions required longer evaluation times and elicited more
hesitations regarding Agency. Despite these differences in
evaluation time and hesitations, communicative actions re-
sulted in Agency attribution levels similar to those of non-
communicative actions. This result differs from earlier re-
search that tested various action videos implicitly and found
that communicative actions received higher Agency ratings
(Saltik et al., 2021). We interpret this as potentially due to
participants observing all actions in real-time, which may
simplify the attribution of Agency scores across both action
types. In the Experience dimension, communicative actions
led to higher Experience ratings. This finding aligns with a

previous study involving a physically present robot, which
found that while intelligent behavior did not significantly al-
ter Agency ratings, the Experience ratings were affected by
the robot’s display of emotionality (Złotowski et al., 2014).
This highlights the importance of examining mind perception
across different types of behaviors.

Limitations and Future Work
In our implicit task, live-action stimuli necessitate a six-
second duration to accommodate the robot actor’s initiation,
performance, and return to a standing posture. Despite po-
tential concerns about the implicit nature of the task, this
timeframe is the most viable option within current techno-
logical constraints. Furthermore, our participant pool rep-
resented four generations. Although exploring generational
differences in mind perception is beyond the scope of this pa-
per, we anticipate age-related differences in mental capacity
attributions in further analyses.

Our study primarily examined the impact of action types
on mind perception using a unidirectional setup. However,
our flexible experimental design can be adapted to investi-
gate bidirectional interactions in a realistic yet controlled en-
vironment. Future directions could enhance realism by incor-
porating factors such as facial expressions, eye contact, and
linguistic cues, and by enabling agents to exchange feedback
with participants. Future research could also involve com-
paring the outcomes of this real-time study with those of an
online equivalent to precisely assess the impact of physical
presence.

Concluding Remarks
Since our study is unique in terms of examining action dy-
namics with physically present non-human agents through
implicit measurements, we would like to conclude with sev-
eral insights. Implicit measurements are crucial for deeply
exploring the determinants and implications of mind per-
ception, though their applications in real-life scenarios pose
challenges. We encourage adherence to the best experimen-
tal practices while customizing the experimental setup and
stimuli to minimize confounds, thus ensuring the reliability
of measurements. Furthermore, the inclusion of physically
present and active robots, or more broadly, the use of natural-
istic stimuli, has the potential to enhance the ecological and
external validity of the research. Integrating implicit mea-
surements with verbal assessments also provides deeper in-
sights into the underlying processes of mind perception. Be-
yond experimental considerations, our findings that the na-
ture of robot behaviors influences human perceptions have
significant implications for designers and engineers. Specif-
ically, the design of social robots should ensure their capa-
bility to interact with humans through various gestures and
emotional behaviors, in addition to performing manipulative
or locomotive actions. We believe that continued research in
mind perception within HRI will both advance robot design
and deepen our understanding of perceptual, cognitive, and
motor processes during interactions with other minds.
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