
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Cellular Adhesion and Molecular Transport: Stochastic Phenomena

Permalink
https://escholarship.org/uc/item/0q9031k3

Author
Lin, KuanPo

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0q9031k3
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Cellular Adhesion and Molecular Transport: Stochastic Phenomena

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Structural Engineering

by

Kuan-Po Lin

Committee in charge:

Professor Robert J. Asaro, Chair
Professor Pedro J. Cabrales Arevalo
Professor Jiun-Shyan Chen
Professor Shabnam J. Semnani
Professor Qiang Zhu

2021



Copyright

Kuan-Po Lin, 2021

All rights reserved.



The Dissertation of Kuan-Po Lin is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2021

iii



DEDICATION

I dedicate my dissertation work to my family and many friends. Without their constant
support this dissertation was not possible.

I am thankful for all the ones guiding me and motivating me throughout my life.

I dedicate this dissertation to all the people in my life who touch my heart.

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of mechanosensing train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Talin and connections to actin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Transition state theory of protein unfolding-refolding . . . . . . . . . . . . 7
1.4 Catch bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Summary of points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2 Mechanosensitivity occurs along the adhesome’s force train and affects
traction stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Plan of the presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Overview of the force-train’s key elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Integrin clustering: contributing factors and pre-force . . . . . . . . . . . . . . . . . . 19
2.4 Force response of talin and its connections to actin . . . . . . . . . . . . . . . . . . . . 23
2.5 Net forces generated on the force train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Variable actin retrograde flow speed . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Net traction stress and assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Steady state traction stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 General discussion & required parameters . . . . . . . . . . . . . . . . . . . . . 39
2.7.2 Integrin density and clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.3 Concluding discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 3 Nascent cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Nascent adhesion clusters: background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



3.2.1 Finer points regarding the background on nascent clusters . . . . . . . 55
3.3 Clustering model: outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Specific integrin elastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 Simulation model: general set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.3 Simulation model: force mediated diffusion . . . . . . . . . . . . . . . . . . . . 65
3.3.4 Ligation vs. bond rupture kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.5 Scaffolding proteins affect clustering: talin . . . . . . . . . . . . . . . . . . . . . 69

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.1 Effects of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 4 Diffusion-advection within dynamic biological gaps driven by structural
motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Introuduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Mathematical formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.1 Fluid flow field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.2 Random vibration of the membrane disc . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.3 The random flow field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.4 Diffusion-advection equation and its solution . . . . . . . . . . . . . . . . . . . . 101
4.3.5 Resolution of eq. 4.42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.6 Regular disc motion: e.g. harmonic motion . . . . . . . . . . . . . . . . . . . . 106

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.1 Numerics for parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.2 Results for case examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Outstanding issues and future studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vi



LIST OF FIGURES

Figure 1.1. (a) The actin-vinculin-talin-integrin-ligand-substrate adhesome as we
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ABSTRACT OF THE DISSERTATION

Cellular Adhesion and Molecular Transport: Stochastic Phenomena

by

Kuan-Po Lin

Doctor of Philosophy in Structural Engineering

University of California San Diego, 2021

Professor Robert J. Asaro, Chair

The stochastic nature of many fundamental cellular mechanisms such as adhesion,

the development of traction forces, and of molecular transport is quite different than

typical deterministic structures. Biological structures are truly stochastic in their basic

function even when subjected to purely deterministic applied loading. Herein are discussed

two areas of vital biological cellular processes, viz. 1) adhesion and the development of

traction force and 2) molecular transport.

Cell adhesion is important for cells to sense and react to the environments. The

process of force development along the adhesome within cell focal adhesions is specifically

considered. A holistic analysis is presented that explicitly includes the role of a major set

xiv



of force-bearing proteins involved in force transmission along a "model adhesome" and that

leads to the development of traction stress. Our analysis provides a rational description for

the various levels of traction stresses that have been reported and of the effect of substrate

stiffness. Our approach has the advantage of being quite clear as to how each constituent

contributes to the net development of force and traction stress.

Nascent adhesions are general precursor to the formation of focal adhesions. Nascent

adhesions form when cells come into contact with substrates at all rigidities and generally

involve the clustering of ligated integrins that may recruit un-ligated integrins. The

flexible, adaptable model we present provides a clear explanation of how these conserved

cluster features come about. Our model is based on the interaction among ligated and un-

ligated integrins that arise due to deformations that are induced in the cell membrane-cell

glycocalyx and substrate system due to integrin activation and ligation. Our simulations

reveal effects of various key parameters related to integrin activation and ligation as well

as some unexpected and previously unappreciated effects of parameters including integrin

mobility and substrate rigidity.

To study the significance of advection in the transport of solutes, or particles,

within thin biological gaps(channels), we theoretically examine the process driven by

stochastic fluid flow caused by random thermal structural motion and compare it with

transport via diffusion. The model geometry chosen resembles the synaptic cleft. Our

model analysis thus provides unambiguous insight into the prospect of competition of

advection vs. diffusion within biological gap-like structures. The importance of the

random, versus a regular, nature of structural motion and of the resulting transient nature

of advection under random motion are made clear in our analysis.
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Chapter 1

Introduction

This thesis contains the results of a number of studies of fundamental cellular

mechanisms such as adhesion, the development of traction forces cell’s impose on substrates

they adhere to, and of molecular transport. Throughout these developments the stochastic

nature of the various elements involved in these processes will become evident. Hence the

analysis involved is quite different than that typical of more deterministic structures such

as civil structures. In the latter case typical random variables may include loading such as

stochastic seismic loading whereas the response of the structural elements is essentially

deterministic. For biological, e.g. cellular, structures both loading (i.e. the mechanical

stimuli) and the basic response of the structural elements are generally stochastic in nature.

For this reason a brief discussion is given of the stochastic nature of two such elements,

viz. 1) the stochastic unfolding-refolding of talin that plays a strong role in cell adhesion

and 2) molecular bonding via the so-called catch bond such as in integrins, an important

class of cell adhesion molecules (CAMS). These brief discussions should be of value to

make the more detailed presentations of Chapter 2, 3 and 4.

1.1 Overview

This thesis will present the findings of three basic studies of phenomena critical

and common to a nearly ubiquitous line of cell types; in particular, herein are discussed
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studies of cell adhesion, vital to cell motility, and of molecular transport. As it happens,

and as noted above, a common theme in these three studies is the stochastic nature of

the mechanisms involved at various, if not at all, the steps and stages of the processes

involved. Viewed as structures, it will be appreciated that biological structures, by the

nature of their various components, are not deterministic as, for example civil structures,

but are truly stochastic in their basic function when subjected to applied loading; we will

see by examples that this loading may also be random, yet we will see that the response

of the "structure" itself is stochastic even when subject to deterministic forms of loading.

Cell adhesion and the development of traction force is presented first in Chapter 2,

where the process of cell migration driven by traction forces, is metaphorically described

as a river raft being towed atop a river bottom. This rough analogy makes clear the

importance of the stochastic nature of the attachments of "ropes" and "anchors" and even

the stochastic mechanisms of attachments and anchoring vs., on the other hand, the simple

deterministic nature attaching and anchoring in an actual river raft.

The second main presentation addresses the basic process of nascent adhesion

formation, i.e. the process by which cellular adhesions initiate; this is presented in Chapter

3. This process involves force affected diffusion of integrins - molecules that serve as

mobile anchors - as controlled by their ability to deform a cell’s membrane. This leads to

clustering of integrins attached to adhesion proteins such as talin that is also included in

the earlier study of adhesions. Here it is shown, as also in the discussion of adhesion, that

the bonding of integrins is itself stochastic as it is, in fact a reversible chemical reaction.

This introduces the idea of expectation times for bonding and stochastic response, as

opposed to permanent bonds. The development of interactions among integrins driven

by their ability to deform cell membranes is an entirely novel theoretical development

described in Chapter 3.

In Chapter 4, a treatment of stochastic force driven diffusion-advection is presented.

The specific context is diffusion-advection driven by thermally driven motion of a synapse.
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The stochastic, thermally driven motion of the synapse creates a random fluid flow

advection-diffusion process that mediates molecular transport. The concept and methods

introduced, however, are more generally applicable to diffusion-advection processes in

biological cellular system.

To set the stage for Chapters 2, 3, and 4, I first briefly describe the basic stochastic

nature of two elements of our processes of cellular adhesion, viz. the mechanical response

of talin and the operation of a catch bond that is typical of integrins.

1.2 Overview of mechanosensing train

Cell adhesion is essential for cells to sense and respond to the biophysical properties

of the environment. Mechanotransduction, induced by the retrograde flow of the cell’s

intracellular actin cytoskeleton (aka hereafter “actin”) via a series of proteins [7–9] that

are bound, from the cell’s nucleus, to each other and ultimately to the cell’s extracellular

matrix is essential to the process of cell differentiation [7–9]. The transmitted forces to the

nucleus stimulate gene expression and thereby mediate cell differentiation. We consider

a model that contains actin(myosin)-vinculin-talin-integrin-ligand(extracelular matrix)-

substrate as the basis of the so called force-train that stimulates mechanotransduction.

It is by the action of the force train, aka the adhesome, that traction forces and stresses

are developed. As noted, the current study will follow an essential, yet detailed, account

of a model adhesome’s force-train with account given to the major players, including the

actin(myosin) cytoskeleton, talin, vinculin, integrins, and ligands that are incorporated

into the extracellular matrix. Vinculin provides for the essential bonding of talin to the

actin cytoskeleton. Indeed, analysis of the key elements demonstrates mechanosensitivity

within each element, e.g. at each stage in the process of force generation effects of substrate

rigidity are observed. We shall also point out a number of mediating effects of the substrate

in addition to its simple rigidity. We now provide additional perspective by using Fig. 1.1,
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that depicts a sort of metaphorical representation of the force train as it operates in a

cell’s migration. The metaphor of a river raft is used for this purpose.

!"#

!$#

Figure 1.1. (a) The actin-vinculin-talin-integrin-ligand-substrate adhesome as we consider
it vis-à-vis cell traction forces and stresses driving cell migration. The figure of a man
represents the cell nucleus subject to mechanotransductive stimuli (blue arrow) from the
forces within the skeleton. (b) The adhesome in a cell. Actin is in red attached to talin
via vinculin; talin is attached to integrins that then bond to ECM ligands.

Actual river rafts, such as depicted in Fig. 1.1 are anchored, or propelled, by

the action of their human engines (identified with the cell’s myosin/actin cytoskeleton)

throwing out ropes (identified with talin) with attached anchors (identified with integrins)

that sink to the river bottom (that is identified with the ECM) where the anchors “catch”

on to nooks and crannies (identified with the ECM’s ligands) lying within the river bottom.

Clearly the physical nature of the river bottom, e.g. its topology and roughness, stiffness

and the presence of nooks and crannies amenable to being “hooked” will play strong

roles in establishing secure anchorage or generating sufficient forces for propulsion. Now

a cell behaves in a somewhat reversed fashion, yet viewing the cell as a river raft, we
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envision that as anchors fix onto (i.e. bond to) to the ECM (river bottom), talin rods

(ropes) are activated and then bind to integrins and then bind to actin that is driven

by myosin contractile motors. Note that when talin is disconnected either at actin, or

at integrin/ligands, the substrate may relax to its unloaded state. Thus it is clearly

important to know how the substrate will respond, most especially if it is time dependent,

e.g. viscoelastic. The integrin-ligand-substrate anchorage is, however, the starting point

for of mechano-sensitivity and transduction. This, in turn, involves far more than simply

the “bulk stiffness” of the “substrate”. It involves substrate/ECM features such as, inter

alia, substrate topography, including nano-scale texture and roughness, and the patterning

of all such features [10–17]. Indeed, the influence of surface topography has been known

for over half a century [18] and yet there is essentially no mechanistic understanding of it

to date. Hence, there are no clear guidelines for any cellular system for true optimization

of substrate design for achieve specific outcomes. This is clearly a most pointed and vital

area that needs focused attention as has also been pointed out by Lord et al. [10]. Hence,

it is vital to understand the operation of talin and the mechanisms of its binding (i.e.

attachment) to actin and to integrins and their bounding to the ligands of the ECM.

1.3 Talin and connections to actin

Figure. 1.2 shows a schematic representation of talin [7] and its various binding

sites [7, 19]. Integrin binding sites are designated as “IBSi” and actin binding sites by

“ABSi” [7,19]. Actin binding initiates at ABS3 at the C-terminal [20] while integrin binds

at IBS1. Extra binding sites known as cryptic actin-vinculin-talin (VBSs) exist within

the folded domains R1 − R3, R6 − R8 and R10 − R11. Those VBS’s are only exposed

when corresponding domains are unfolded [1,2, 7,19,21,22]. We thus note that talin, an

extended protein composed of multiple domains, undergoes reversible unfolding-refolding

reactions [23]. As such it displays a strongly rate dependent force vs. extension response
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that is highly stochastic. Moreover, and most important, actin bindings sites are located

as cryptic binding sites within the folded domains. This means that in order for talin to

suppoprt progressively increasing forces, as a function of time, unfolding must occur to

expose the required VBS’s to bind talin to actin and thereby support the increasing force

level. A general framework for describing unfolding is presented below and applied to

literature data obtained for talin by way of calibration; this is but one of the stochastic

features of the overall process.

It should be noted that, when domains unfold, talin is extended in length. If an

imposed stretching rate is imposed on talin, for example, this will lead to load, i.e. force,

drops as shown and discussed below.

Figure 1.2. Model for a talin monomer. Note actin (ABS’s), integrin (IBS’s), and
actin-vinculin-talin (VBS’s) binding sites on talin. Note also the various domains R1−R13
that may unfold and expose cryptic vinculin bonding sites that are indicated in various
domains and are marked in red.
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1.3.1 Transition state theory of protein unfolding-refolding

Using various sets of comprehensive experimental results of the force induced

unfolding and refolding of single molecules of talin, a theoretical framework for unfoldings-

refoldings originally developed for spectrin [23] has been calibrated. For example, consid-

ering the transitions between two states f ⇆ u, folded (f) and unfolded (u), separated

by energy barriers ∆Ef→u and ∆Eu→f , the energy barriers can be expressed as, e.g. for

unfolding

∆Ef→u ≈ ∆E0
f→u + ∂∆Ef→u∂f

f
+ ...

∆Ef→u ≈ ∆E0
f→u −f∆xf→u + ...

(1.1)

Formally an activation length for unfolding may be defined as ∆xf→u ≡

−∂∆Ef→u/∂f . Using the usual transition state rate theoretical Arrhenius rate rela-

tion, and if the higher derivatives were neglected in the expansion above, we obtain for

the unfolding rate

kf→u =
→
k k0

f→uef∆xf→u/kT , (1.2)

where
→
k is a frequency term that is related to the attempt frequency of the f→u transition

and k0
f→u is the activation energy at zero F. Here k is Boltzmann’s constant and T is the

absolute temperature. Following a similar approach, the refolding rate can be described as

ku→f =
←
k k0

u→f ef∆xu→f /kT . (1.3)

Now, if we let number of unfolded domains be Nu and total number of domains be

N , ϕu = Nu/N as the fraction of unfolded, we would have balance rates at equilibrium for

the reaction f ⇆ u

7



(N −Nu)kf→u = Nu(ku→f ). (1.4)

This then leads to the relationship between projected end-to-end distance, x, and

thus

x

NLf
= (1−ϕu) xf

Lf
+ϕu

xu

Lu

(
Lu

Lf

)
, (1.5)

with Lf andLu being the contour lengths of the folded and unfolded domains, respectively

and xf andxu being the projections extensions, in the direction of f of folded and unfolded

domains, respectively; N is the total number of folded (Nf ) plus unfolded (Nu) domains.

A freely jointed polymer chain model [24] was then used which leads to the relation

x

NLf
= (1−ϕu)L

(2fpf

kT

)
+ϕuL

(2fpu

kT

)(
Lu

Lf

)
, (1.6)

where L(ζ) = cothζ −1/ζ, and pi is the persistence length of an folded or unfolded domain,

i.e. i = f,u.

Example force vs. time response are shown in Fig. 1.3 for the case where a fixed

stretching rate, ẋ, is imposed. The two cases correspond to two different stiffness of

the substrate to which talin is assumed to be bound. For perspective, it is noted that

retrograde flow speeds are reported to be in the range of 1-600nm/s [25–29]; here we

imposed a constant stretching rate of ẋ = 100nm/s. Variable stretching rate is to be

discussed later in Chapter 2. One end of talin is assumed to be bound with actin in ABS3

and the other end is to be bound with integrin at IBS1.

Two cases are shown here, viz., one where talin is connected to a compliant

substrate with ks = 0.1pN/nm and another to a stiff substrate stiffness with ks = 50pN/nm.

Substrates stiffness affects not only the magnitude of the force that develops but the time

rate at which force develops. As experimentally reported and expected, R3 domains unfold
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Figure 1.3. Force along talin rod vs. time at a stretching rate of ẋ = 100nms−1. Unfolding
events of talin domains are indicated at the associated force peaks.

first at lowest force levels [1, 2, 19]. The load drops mentioned above are clearly noticeable,

and it is also seen that, although the onset of an unfolding event is a random process, the

various domains tend to unfold at their own particular force levels; for example R3 tends

to unfold at lower forces. Note also that R3 unfolds at shorter times with a stiff substrate;

this sort of effect of substrate stiffness is important to ensure that sufficient reinforcement

exists for talin-actin bonding to support the rising force levels; this is discussed in more

detail in Chapter 2.

A comparison of predicted results and experimental results is shown in Fig. 1.4;

note that in this case an imposed force vs. time was used. This sort of data is obtained by

using atomic force microscopy (AFM) techniques to apply a rising force ( or a stretching

rate) to a single molecule of talin bound to a substrate. In this case unfolding leads to

sudden extensions of talin length. The detailed numerical calibrations are discussed in

Chapter 2, Appendix A. As discussed in Chapter 2, Appendix B, the appearance of these

vinculin-actin binding sites then sets the stage for the attachment of the force-bearing
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talin within the force train.

(b)

(a)

Figure 1.4. (a) Unfolding of a full talin rod compared to the experimental measurements
of Yao et al. [1, 2]; unfolding as observed under imposed force rate. (b) Talin domain
refolding.

1.4 Catch bonds

As the results from Fig. 1.3 assume that talin is bound with actin and integrins,

the question arises if these bonds can indeed support the force vs. time response such as

shown there. Note that the bonding dynamics itself, e.g. talin-integrin bond, is stochastic.

Integrin bonds are of a type called catch-bonds. The catch bond is so-called because of its

two-state nature in which the configurational nature of its "state 2", being in an extended

and open nature, is able to support higher forces than when it is in its "state 1" that

supports only lower forces.

In Fig. 1.5a, the energy landscape of the catch bond model is schematically sketched.

Integrins have two minimal energy conformations separated by energy barriers. The two
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Figure 1.5. (a) Energy landscape of an catch-bond model and activation length. (b)
Three conformation states of αIIIbβ3 integrins. Note the transitions between states 1⇆ 2
and those between 1⇆ 0 and 2⇆ 0, all of which are force dependent.

states correspond to two different conformation states of integrins as shown in Fig. 1.5b.

The activation distance is ∆xij , and ∆Eij is the barrier height between states i and j. In

its rest state, i.e. state 0, the bent-closed state, the molecule is inactive. Hence, the energy

barrier from state 0 to state 1 is ∆E01 and from state 0 to state 2 is ∆E02. The transition

rate between state i and state j in the absence of force is k0
ij , which is proportional to

e−∆Eij/kT . When under the application of force, f , these energy barriers decrease by

f∆xij , i.e. ∆Eij = ∆E0
ij −f∆xij , so the transition rate becomes

kij = k0
ijef∆xij/kT , (1.7)

where k0
ij ∝ e−∆Eij/kT . The transition distances, ∆xij , are formally defined as ∆xf→u ≡

−∂∆Ef→u/∂f and are obtained by fitting to experimental data on single molecule bonds.
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The activation distance may be thought of as the "distance" through which the force acts

to achieve the critical state.
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Figure 1.6. (a) Average bond survival time versus an assumed constant force for integrin
bonds compared to the experimental measurements of Kong et al. [3].

We define B1(t) and B2(t) as the probability of occupancy of state 1 and state 2,

respectively. These probabilities are described be a set of coupled ordinary differential

equations are that are parameterized by the transition rates kij as, e.g.

dB1(t)
dt

= k21B2(t)− (k10 +k12)B1(t)

dB2(t)
dt

= k12B1(t)− (k20 +k21)B2(t).
(1.8)

The probability of a bond surviving in either state is B(t) = B1(t) + B2(t). The

expectation lifetime of a bond is computed as

⟨τ⟩ = −
∫ ∞

0
t′(dB(t′)/dt′)dt′ =

∫ ∞
0

B(t′)dt′. (1.9)
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For integrin-ligand catch bonds, we have fitted the catch bond model as described

by Thomas et al. [30] to the data of Kong et al. [3]. With that data used for calibration,

we compute the average bond lifetime for integrin-fibronectin bonds at constant forces

and compare it with experimental measurements of Kong et al. [3] as shown in Fig. 1.6.

1.5 Summary of points

Among the important points to take away from this brief discussion are, inter alia:

1) bonding itself is a stochastic event and is only described by its probability and rate

of occurrence; 2) bond survival, i.e duration, is typically computed by the integration of

coupled ordinary differential equations such as eqs. 1.8; 3) the various probabilities develop

over time in a force-history dependent manner. Individual bonds, in fact, come and go

during time. 4) The response of key structural elements such as talin is itself stochastic,

such as the transitions between folded and unfolded states that mediates talin’s strong

rate dependence and non-linearity; and 5) the time and rate dependence of the response

of nearly all key structural elements is also mediated by the cell’s environment, e.g. the

stiffness and topography of the extracellular matrix (ECM).
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Chapter 2

Mechanosensitivity occurs along the
adhesome’s force train and affects
traction stress

2.1 Introduction

Mechanical forces, i.e. stimuli, transmitted between the intracellular matrix and

its environment, e.g. the extracellular matrix (ECM), determine a wide range of cell

functions such as motility [31], proliferation [32], differentiation [33], as well as vital

processes in cell development [34,35], tumorgenesis [36,37], cell growth [38–40] and wound

healing [41, 42], inter alia. Cells perform these functions and are so regulated via the

formation of focal adhesions (FA’s) [43–46] that anchor the cell either transiently (i.e.

dynamically) or permanently [47,48] to, e.g. the ECM (the substrate). The focal adhesion

complex is formed via the assembly of a number of proteins and has the important ability

to sense (via its mechanosensitivity), and react to (via mechanotransduction), the nature

of the environment, in particular its mechanical stiffness [33, 49–56] as well as surface

topography [10,57–60]. The effect of substrate stiffness, per se, has been exemplified by

observations of cell migration on substrates with stiffness gradients [53, 54]. Precisely

how this happens, however, has yet to be clearly delineated as the interactive, and

coordinated, roles of all the various proteins involved have yet to be described in a holistic
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manner. Hence, no predictive theory or models for traction force development exists as

yet. Accordingly, our goal is to provide more insight into the roles played by the various

molecular participants in this performance with the aim of providing more background

for creating such predictive capability. Our hypothesis was that mechanosensitivity is

manifested at each of the key elements that play vital roles in the generation of adhesion

force; although an intuitively pleasing concept, but yet not demonstrated, this is what we

find and report herein.

The cell’s adhesion complex and its protein components, the adhesome [9, 61],

transmits force generated by retrograde flow of its intracellular actin cytoskeleton (aka

hereafter “actin”) via a series of proteins [7–9] that are bound to each other and ultimately

to the cell’s extracellular matrix. In our case we consider a model adhesome that includes

the plague proteins talin and vinculin; hence our force train consists of actin(myosin)-

vinculin-talin-integrin-ligand(ECM/substrate) [7, 8, 19] specifically suited for β1 integrins.

Although this is a small subset of the full adhesome [9], it accounts for a vital set of

force bearing proteins as required for our analysis of traction force and stress; many other

adhesome members play important roles in their activation and recruitment. The substrate

possesses a clearly defined elastic stiffness and its cell interface has a certain density of

receptors bound to ligands to which talin-integrin bonds. There has been considerable

progress in delineating protein members of the adhesome and their individual properties

and functionality - these are discussed below for our model adhesome as we present, and

incorporate them into, a theoretical framework that follows the force pathway from actin-

to-ECM. Our goal leads us to several pointed observations of how the system functions,

or can function, and to some insights into how certain key correlations come about, such

as the observed effects of substrate rigidity, and points specifically to what quantitative

knowledge is missing and requires resolution in order that further understanding is possible.

Our model system is minimal in that, although it includes major identified “players”,

at least those known to date, is yet deficient as not the entire cast of characters has
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been given sufficient quantitative definition; this theoretical recognition makes the specific

contribution of crisply pointing to needed experimental inquiry. In summary, we find that

mechano-sensitivity-transduction relies on the full array of molecular constituents, at least

for optimal performance and cannot be attributed to any single set of model bonds often

anonymously referred to as “clutch bonds”.

As it happens, mechanosensing actually begins at the anchorage of the force

train via integrin-ligand bonds whose density and survivability depend on ECM stiffness,

viscoelastic response, topology as well as molecular constituency; how all these factors

actually accomplish this is far from clear in a mechanistic sense, yet legions of empirical

observations exist that may, at least provide guidance for focused study. These are

discussed herein. We begin, however, by providing a holistic, yet brief, conceptual overview

of the adhesome considered here that provides a view of the various elements analyzed in

our adhesome force-train.

2.1.1 Plan of the presentation

After a brief overview of key force-train elements, we describe a mechanism in Sec.

2.3 that we believe contributes to, and helps explain, features of integrin clustering as

described, for example, by Cluzel et al. [62] and Changede et al. [63,64]. We then pass to a

description of force development along talin rods in Sec. 2.4; this analysis assumes talin is

bound to integrins and analyzes the stochastic talin-actin bonding and leads to a forecasted

expected force vs. time response along talin dubbed ⟨f⟩(t). In this we demonstrate a

mechanosensing effect not previously described. Individual talin rods are envisioned to

be part of ensembles. It is then necessary to probe the stochastic bonding of talin rods

to integrins under the ⟨f⟩(t) found in Sec. 2.4 to determine the population of talin rods

actually engaged; this is done in Sec. 2.5. Without fidelity in the talin ⟨f⟩(t) response the

analysis of talin-integrin-ligand bonding would lack veracity. Net expectation forces and

traction stresses are then estimated in Sec. 2.6 and discussion follows; the full dynamics of
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adhesion sites are not described herein, as that is left for future study.

2.2 Overview of the force-train’s key elements

Indeed, it is reported that nascent adhesions involve the clustering of integrins even

before they are clearly visualized [62–72] and before traction forces are generated and

hence before mechanosensing occurs [63,64,70,71]. The adhesome is then assembled at the

nascent adhesion. Nascent adhesions may involve integrin densities of O(500−1000/µm2);

this may be a factor of at least 1.5 times the ambient integrin density [66] which indicates

that clusters form. We realize, however, that other reports cite different numbers, yet this

particular numerology appears appropriate for discussion sake. Integrins will be recruited

into nascent adhesions as inactive integrins are converted to a talin bound, relatively

immobile, specie. The resulting activity gradient of inactive integrins will lead to a diffusive

influx. Once formed, diffusion within a mature clustered adhesion becomes occluded and

slow [73] as integrins must diffuse through complex cytoskeleton corals [64, 74]. Thus

integrins naturally cluster, and are under bonding forces, the adhesome is mobilized, and

integrins are coraled within the adhesion. Just below, we describe interactions among

integrins that are (modestly) affected by substrate stiffness (and possible time dependent

response) that promote clustering.

Nascent adhesion clustering is depicted in Fig. 2.1a that outlines mechanisms

and steps described by Cluzel et al. [62] and also consistently with [64, 75–77]. Here

conformational changes in talin induced by PI(4,5)P2 activates integrins that bind to

essentially immobile ligands. Talin heads, and hence integrins, can associate with other

talin-integrin-ligand groups as illustrated. In this Cluzel et al. [62] demonstrate a direct

correlation between integrin activation and the formation of integrin clusters. They further

discuss how “... actin fibers were dispensable for integrin clustering”, but that “talin is

the cytoskeletal protein first recruited to high-affinity β3 and β1 integrins and may play
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Figure 2.1. (a) Integrin-talin cluster within a nascent adhesion; note the co-clustering of
unligated integrins. (b) Depiction of actin in retrograde flow tugging on talin rods bound to
integrins that are bound to the ECM (substrate). Note the multiple connections between
talin and actin filaments and the on-off bond rupture and reformation of integrins. Note
also the depletion of inactive and unbound integrins that induces an influx of integrins
into the adhesion.

a role in their clustering”. We have incorporated these observations into our Fig. 2.1a.

However, once focal adhesions are established and linked to actin-myosin force generation,

additional clustering occurs as observed by Ballestram et al. [65]. Moreover, an additional

driving force for clustering would be the elastic interactions described below.

We now recall that talin binds actin, initially we assume at binding sites dubbed

ABS3 and later at ABS2 and then with vinculin bonds on unfolded R3 domains; this is

described below in Section 2.4. Vinculin is activated, also via stimulation by PI(4,5)P2 [62],

and binds actin as assessed above. This is depicted in Fig. 2.1b. The net behavior of the

adhesome’s force train now depends on integrin bond lifetimes and, of course, on bound

integrin density. Hence, the extent of clustering and all the cumulative effects of substrate

stiffness are important for the magnitude of force generated and its temporal behavior.

The adhesion can then grow by continued integrin influx. As it happens, substrate stiffness

promotes this process as discussed below. We now provide more detailed descriptions of

the force train elements; we begin, however, with additional comments on initial integrin

clustering, i.e. nascent clusters.
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2.3 Integrin clustering: contributing factors and
pre-force

Here we consider contributing factors to initial integrin clustering that are part of

determining integrin density and distribution. We establish certain important realizations,

including the fact that bound integrins are under “pre-forces” that are not dependent on

the forces generated within the force train via actin retrograde flow; that is pre-forces form

in nascent adhesions. These pre-forces do, however, play a role in bond survival and hence

in levels of force and thereby traction stresses that may develop. Indeed, pre-forces have

been experimentally demonstrated to exist due, for example, to the need to compress the

glycocalyx as indicated in Fig. 2.2; in cases of cancer cells this process may play mediating

role [69, 78].

Mechanisms for integrin clustering have been discussed [63,64]. However, clustering

of integrins may be driven by, inter alia, the energetics of cell membrane deformation that

is induced by the local bending deformations that are, in turn, caused by the force of the

integrin bond [69]. This force comes about due to the fact that integrins must “stretch”

to “catch-bond” to ligands [3, 79,80] and induces local membrane and substrate bending

as depicted in Fig. 2.2 showing a pair-wise integrin interaction. Here we present a quite

simple mechanistic analysis of the pre-force that provides specific relations that allow for

quantitative pre-force estimates and naturally reveals the origin of the interaction forces

that promote integrin clustering. The dynamic picture we have presented, i.e. in Fig. 2.1b,

involves talin-integrin bonding and de-bonding from their integrin-ligand attachments

within the ECM. We now recognize that these bonds are under a pre-force and that they

are catch bonds, hence we use catch bond theory [79] to describe their behavior using the

data of Kong et al. [3] for integrin-ligand (viz. α5β1 - fibronection) bonds as outlined in

Appendix B. We compute the probability of bond survival under the actual expectation

forces, ⟨f(t)⟩, generated along talin assuming they are bound to a ligated integrin. Our
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Figure 2.2. (a) Integrins bound to ligands generate an internal force fb that induces local
cell membrane and substrate bending. The interaction via the variation of free energy
with translation of an integrin, e.g. an increase in ξ, the position integrin (1) specifies a
force, fint. (b) Expected integrin density vs. time as nascent clusters form.

goal is to assess the ability of a typical talin rod to sustain such forces and remain bound.

For a linear elastic system we may write for the free energy, G, [81]

G =
∫

V
W (e)dV −

∫
S

TudS

= 1
2{f (1)(δ(1) +u(2))+f (2)(δ(2) +u(1))}−f (1)(δ(1) +u(2))−f (2)(δ(2) +u(1))

= −fδ −fu(1), since here the symmetry of Fig. 2.2 suggests f (1) = f (2) = f.

(2.1)

In eqs. 2.1, W (e) = 1/2σijeij is the strain energy density, T the vertical component

of surface traction, u(x) the net displacement field caused by f (1) and f (2) and δ(i) is the

normal displacement caused solely by f (i) at the site of integrin i. The symbols u(1), u(2)

are the components of displacement normal to the plane of the substrate evaluated at the

points of force f (2) and f (1), respectively; negative u(1,2)’s point downward as do f (1) and

f (2).

The variation in ξ represents a translation in the displacement field of f (1) and

yields, with η being the position of integrin 2 with respect to integrin 1,

δG ∼ −f{u(η)− ϵ
∂u(1)

∂x
|η −u(η)} = f (2)ϵ

∂u(1)

∂x
|η. (2.2)
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Hence the result we seek for the interaction force, fint, is simply

fint = ∂G
∂ξ

= −δG
ϵ

= −f (2) ∂u(1)

∂x
|η. (2.3)

In the scenario of Fig. 2.2, since f (2) < 0 and (∂u(1)/∂x)η > 0, we indeed have fint > 0

which implies the point forces attract. The above analysis provides one mechanism for

integrin clustering that we note is limited by several factors including, for example, steric

interaction among integrins. What is needed now are specific model scenarios of Fig. 2.2

that allow calculation of the displacement fields and δ(i) vs. f (i) relations; we consider two

cases.

Case #1: To estimate magnitudes for this interaction we assume the integrins

reside in a plate-like area of radius comparable to observed cluster sizes, say 100nm ≤ R ≤

150nm; there are 2 plates representing the cell and substrate with bending stiffness κc

and κs, respectively. These dimensions reflect the reports of [63,64] who observe nascent

adhesions with dimensions corresponding to R ≈ 50 − 75nm. Again, assuming linearity

the relevant results are [82], with r being the radial distance from the point force,

u(r) = fb

8πκi
{1/2(R2 − r2)− r2 lnR/r}

∂u/∂r = − fb

8πκi
r lnR/r, if r ≤ R

δi = fbR
2

16πκi
= fb

ki
, or fb = 16πκi

R2 δi = ki δi, i = c,s.

(2.4)

Now we require that a displacement δ⋆ = δc + δs be imposed for integrin bonding and

hence we have

fb = κcκs

κc +κs
δ⋆. (2.5)

For the cell membrane stiffness we take κc = 10−19J. Hence if R = 100nm and δ⋆ = 10nm

[5, 83, 84] we find fb ≈ 3pN if κs → ∞. If, on the other hand the cell is bound to a
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supported lipid bilayer as used in [63, 64] we would have something more like κs ∼ κc and

fb ∼ 1.5pN. Hence, there would appear to be a slight mechanosensing to this interaction,

yet we emphasize that the effect exists regardless of substrate rigidity. This interaction

would clearly promote integrin clustering, yet the effect would tend to dissipate once the

reinforcing displacement fields of clustered integrins strongly overlap. Indeed we would

realize that the force fb within an isolated bound integrin would reduce when it’s required

displacement, δ⋆, is partially provided by the displacement field of a nearby clustered

integrin. This mechanism thereby supports a scenario of initial clustering of a number

of integrins that saturates; the confinement of plaque protein corals would also tend to

stabilize the cluster size; this again would be modestly sensitive to substrate stiffness as

described in [62–64]. We note, in addition, that as talin is recruited in the activation

of integrins, talin would also associate with unligated integrins. Hence, nascent clusters

would contain both ligated and unligated integrins as noted earlier by [85–87] and more

recently by [62–64].

The scenario of Fig. 2.2 is readily reinterpreted to suggest that integrin clustering

will occur by the preferential activation and ligation of integrins to nearby ligated integrins.

Clustering is then not only a natural result but the effect would be self limiting since once

a number of integrins so cluster, with each contributing to the required displacement, the

cluster would look like a single integrin to the far field of other integrins. Hence, these

nascent clusters will form to limiting sizes.

Case #2: We also note that grey regions shown in Fig. 2.2 may indeed represent

the cells glycocalyx. Analysis of this would not alter the essential points made here, but

now the cell membrane and substrate would be modeled as plates deflecting on a deformable

foundation. Glycocalyx properties in this context are, however, far from well established,

but we refer to O’Callaghan et al. [88] and our own theoretical model [89] that accounts

for electrostatic repulsion. For standoff distances of say 10nm ≤ h ≤ 15nm, reasonable

estimates of apparent stiffness would be 0.2kPa ≤ Eg ≤ 1kPa. Force vs. deflection relations
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would now look like

δ(i) = fb
α(i)

3
√

3E⋆
g

, α = 3

√
E⋆

g

κ(i) , κ(i) > 0, (2.6)

with E⋆
g = 1/2Eg/(1 − ν2). As values, or even a precise definition, of Poisson’s ratio ν

are unavailable we take ν = 1/4 and this leads to 1pN ≤ fb ≤ 3pN . The effect of variable

properties such as ν is deemed to be quite small as for most biological materials of this

type Poisson’s ratio is typically taken in the range 0.3 ≤ ν ≤ 0.5 [90]. We note that in this

case the effect of substrate stiffness is reduced somewhat and a larger influence is made by

the glycocalyx properties that are, unfortunately, not accurately known.

An effect that arises from integrin pre-forces, especially when the discussion sur-

rounding Fig. 2.2 is recalled; this concerns the type of initial condition used to assess

integrin catch bond survivability as outlined in Appendix B. Given that talin-integrin com-

plexes exist, perhaps under pre-stress such as with stiffer substrates, that are then linked

to actin-myosin contractility, we expect that the initial conditions are more appropriately

of types II − II ′ as in Appendix B; types II − II ′ assume an equilibrium between states

1 and 2. In contrast, on compliant substrates we expect initial conditions are more like

those described as types I − II. This apparently has not been previously considered.

We pass now to the description of talin’s force vs. time response.

2.4 Force response of talin and its connections to
actin

Fig. 2.3a illustrates a schematic representation of talin [7] and its various binding

sites [7, 19]. Integrin binding sites are designated as “IBSi” and actin binding sites by

“ABSi” [7,19]. Talin has two integrin binding sites, IBS1 and IBS2 and can dimerise as we

shall consider below in Fig. 2.4. Actin binding sites begin at ABS3 at the C-terminal [20];

additional actin binding sites are described as cryptic actin-vinculin-talin (VBS’s) and are

buried within the folded domains R1 − R3, R6 − R8 and R10 − R11. They are exposed
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upon the progressive force-unfolding of ABS containing domains [1, 2, 7, 19, 21, 22]. We

note that detailed and elegant experiments have been carried out that document the

force-induced unfolding and refolding of talin; we have quantitatively described their data

with our theoretical unfolding/refolding model [23] originally developed for spectrin. In Fig.

2.3a the cryptic vinculin binding sites on the talin rod are specifically listed [1,2,7,19,22].

FERM

DD

R1

R2
R3

R4

R5

R6

R7

R8

R9
R10

R11
R12

R13

Talin Domain, w
ith Vinculin binding site 

ABS2 = R4-R8

ABS3 = DD+R13

R3 unfolds at lowest force, f

R11

IBS2

IBS1

R4

R5

R6

R7

R8

R3 unfolds at lowest force, f

R3 unfolds at lowest force, f

ABS2

DD

R13 ABS3

ks
x

Unfolding

  Domain

Exposed Binding Sites

Im
posed

Stretching

(a)

(b)

Figure 2.3. (a) Model for a talin monomer. Note actin (ABS’s), integrin (IBS’s), and
actin-vinculin-talin (VBS’s) binding sites on talin. VBS’s are shown in red in various
domains. (b) Force along talin rod vs. time at a stretching rate of ẋ = 100nms−1. Unfolding
events of talin domains are indicated at the associated force peaks.

The calibration of the unfolding model is described in Appendix A and in Fig. 2.3b

we show a typical talin force vs. time response to the stretching of a full talin rod at a

constant rate of ẋ = 100nm/s; the response at lower rates is considered later. Clearly we

assume here that talin is bound at both its ends, presumably to ABS3 (actin) and to

integrin-substrate at IBS1; these prospects are analyzed later. Rearward actin speeds

have been reported for various cell types and, depending on location within the cell, are in

the range 1-600nm/s [25–29]; here we use fixed rates of order 100nm/s and later variable
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rates between 40-100nm/s.

In Fig. 2.3b the substrate stiffness is taken as ks = 0.1pN/nm or ks = 50pN/nm;

these roughly correspond to elastic moduli of E ∼ 0.4kPa or ∼ 40kPa, respectively as

discussed in Appendix A. As expected, and as already observed, it is common for R3

to unfold early, i.e. at the lowest force levels [1, 2, 19]. The unfolding forces (i.e. the

peak force at unfolding) are modestly dependent on loading rate since the activation

lengths for unfolding are generally large (see Appendix A). Note, however, the example of

unfolding of R4, shown in Fig. 2.3b, that unfolds at a distinctly lower force when talin is

stretched against a compliant substrate. Subsequently, we observe unfolding at domains

within ABS2 (i.e. R4−R8) and R11 (which is also an integrin binding domain). Other

noteworthy features of the unfolding process include the fact that the load drops upon

unfolding are larger with a stiffer substrate and consequently that the unfolded forces

(i.e. the forces after unfolding) can be larger on a compliant substrate. Also it is noticed

that refolding, at low forces, can and does occur (follow R3 at low forces), as long as an

unfolded talin domain contains no vinculin bond as discussed below.

At first glance it may appear that the “general talin force vs. time” is higher with

a stiffer substrate and yet the effect is seen to be modest, due to the strong force buffering

effect of the unfolding of talin, and would not seem to explain the generally larger traction

forces generated on stiffer substrates. We note that although refolding is observed at low

forces, viz. less than ∼ 3−5pN, refolding is not expected at higher forces (see Appendix

A and [1,2]).

Moreover, the responses shown in Fig. 2.3b assume that the talin rod is indeed

bound, say to actin as well as to integrin-ligand-substrate. Hence there is the question of

whether these bonds can support the force vs. time response of Fig. 2.3b. Accordingly,

we next explore this possibility but now assuming only a talin-integrin connection. We

specifically explore the talin-actin and talin-vinculin-actin bonding dynamics.

We take the talin-actin bonds to involve at least three distinct contributions.
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Figure 2.4. A talin dimer shown at various stages of unfolding and bonding, via vinculin,
to actin.

Following Gingras et al. [20] and others [7, 19, 91], we assume an initial connection of talin

to actin at ABS3; this initiates force on actin. However we do not expect this bond to
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survive for forces greater than, say 3-5 pN, or for times greater than say 2-3 s. Hence the

activation of [19, 92], and then the unfolding of, R3 is vital as it activates ABS2 [7, 19, 91]

and then presents an erstwhile cryptic vinculin bond to talin and then to actin.

Vinculin-actin bonds have been quantified in the elegant experimental and analytical

work of Huang et al. [6]; in this they document the behavior of vinculin-actin catch bonds

and provide data that may be used to calibrate the catch bond model as developed

by Thomas et al. [79]. We have thus calibrated the Thomas model [79] as described

in Appendix B. By invoking such an actin-vinculin-talin catch bond, the talin rod is

thereby reinforced against the prospect of a failing ABS3-actin initial bond. Moreover,

the unfolding of R3 serves to activate ABS2 by allowing its conformational change (global

domain, not helix, unfolding) to provide additional talin-actin reinforcement. Hence we

now present Fig. 2.4 that depicts a probable sequence of binding patterns.

Figure 2.4 shows our talin dimer scheme patterned after a scenario suggested by

Klapholz and Brown [7]. We begin with an integrin bond at the IBS1 of one monomer

as in Fig. 2.4a (left side) followed by an ABS3-actin bond as in Fig. 2.4b. This engages

and loads the talin rod [7, 19]. As force grows and R3 unfolds we compute the probability

of a vinculin bond from actin-R3-talin. We then continue stretching and compute the

probability of bond rupture from catch bond theory. The unfolding of R3 activates ABS2

as shown in Fig. 2.4c; this engages another link to actin. We may assume that the dimer

forms another talin-integrin-ligand bond and the process proceeds stochastically on the

other monomer as in Fig. 2.4d.

Now catch bonds are “two state” bonds with state 1 stable at lower forces and

state 2 at higher forces [30, 79, 93–96]. We note that, although unfolding forces tend to be

higher on stiffer substrates, the unfolded forces are comparable on both compliant and

stiffer substrates. This means that if we assume the bonds that form on a newly unfolded

talin domain form in equilibrium with the prevailing force they are likely to form in the

same state on either stiff or compliant substrates - but what are their survival prospects
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Figure 2.5. (a) Evolution of the number of actin-vinculin-talin bonds following talin
unfolding. (b) Results for the time beyond which persistent actin-vinculin-talin bonds
exist, tp, following 100 simulations. The dashed line drawn at 2s is used for discussion
purposes in the text. (c) The computed average forces vs. time, ⟨f⟩, taken over a large
number of simulations such as in Fig. 2.3b but assigning a null result for those that would
be judged not to survive, where tp ≥ 2s. Note that ⟨f⟩ vs. time is seen to continuously
rise here due to the fact that talin-vinculin-actin bonds survive for the limited time period
shown; eventually they will fail, but only after the time periods shown. (d) The number of
bonds formed on R3 and that failed, Nf , in a particular simulation with a stiff substrate.

and how does substrate stiffness affect their survival?

We first describe the kinetics of actin-vinculin-talin bond formation. Following

Huang et al. [6], we take the probability of vinculin bonding to actin to be of the form [97]

P(t) = 1− e−kv
ont, (2.7)

with kv
on ∼ 4−5s−1 and where t is measured from the time of unfolding or the time that
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an erstwhile vinculin bond failed, the latter referring to rebinding. Although empirically

calibrated by Huang et al. [6] for vinculin-actin bonding, the form of eq. 2.7 follows from

the more general analysis of Litinov et al. [97].

We note in passing that as long as a vinculin bond exists on an unfolded talin

domain, no refolding is allowed [1,2]. Once a bond is formed the probabilities of transitions

between states 1⇆ 2 are computed as well as for the failures of either state; ultimately

the probability B(t) of a bond of either state is computed (see Appendix B). In this we

assume that the full force is supported by all vinculin bonds equally, i.e. in parallel. In a

simulation, we then poll each bond for failure. Some results are shown in Fig. 2.5a where

we show the vinculin bonds that come and go only at exposed VBS’s on the unfolded

talin rod; to be sure, the actin-talin bonds at ABS3 and ABS2 without unfolding are

not included in the bond count of Fig. 2.5a. We recall that this process is stochastic and

hence the result of Fig. 2.5a must be seen as one of many random processes. However, to

gain some insight we focus on the result with the stiffer substrate and note that we may

suppose that the jump to 2 bonds just after t ≈ 0.5s is the result of 2 bonds forming on

the 2 VBS’s on the unfolded R3 talin domain. Yet we then observe that these bonds fail

thereafter at about t ≈ 1s; in the interval 0.5s ≤ t ≤ 1s we have bond failure and reforming

events. At about t≳ 1s we have 3 bonds due to the unfolding of R11 with one VBS (R5

which unfolds at this time has no VBS); yet we observe that at a short time after all 3

bonds have failed. Thereafter we form more bonds that persist for the duration of the

simulation. Similar observations can be made regarding the more compliant substrate,

but with rather significant differences. Firstly, the number of persistent bonds vs. time

and the time to establish persistent bonds, tp, are larger with a stiffer substrate. For this

particular simulation tp(stiff) ≈ 1s and tp(compliant) ≈ 1.5s. To explore this further we

performed large numbers of such simulations (100-2000); for clarity we show the results

for tp following 100 such simulations in Fig 2.5b. Such large numbers of simulations are

required for obtaining expectation, or average, force vs. time response as shown next.
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It is indeed noteworthy that we observe distinctly higher values for tp on more

compliant substrates. The line drawn in Fig. 2.5b at tp = 2s suggests that, since the initial

bonds supporting talin are unlikely to survive for times t ≳ 2s, a large fraction of talin

rods would likely fail. To visualize this we compute the force vs. time responses shown in

Fig. 2.5c. In Fig. 2.5c we display the average force, ⟨f⟩, a large group (> 100) of talin

rods would support vs. time assuming that only those with tp ≥ 2s survive. Hence if, say

the original number of talin rods was Nt, then the total force they collectively exert would

be F = Nt⟨f⟩. In this manner we demonstrate that increased substrate stiffness causes an

increased net force.

We note, in passing, that these results demonstrate that without talin unfolding

essentially no talin rods would survive longer than, say, 3 seconds and hence quite low or

no sensible forces would be developed.

The rationale for making the above assumption is based on the dynamics of actin-

talin or actin-vinculin-talin bonds such as exemplified in Fig. 2.5d; this shows the on-off

dynamics of actin-vinculin-talin bonds on the unfolding R3 domain during the simulation

of Fig. 2.3 calibrated as a catch bond using the data of Huang et al. [6]. We cannot, at

present, confirm the veracity of this correlation but we believe that it is representative

enough to establish basic trends of the effect. Errors in time intervals on the order of say

δt ∼ 0.1−0.2s would be considered quite large and yet would not affect our argument in

any measurable way.

Our simulations of the behavior of talin bound to actin and presumably bound to

an anchoring integrin have shown a substantial effect of substrate stiffness in terms of

talin’s ability to transmit force. In particular, the forces are observed to grow faster with

stiffer substrates. We note that, due to the strong force buffering effect of talin’s unfolding,

this effect is not a trivial outcome of talin “pulling on a stiffer spring”; to appreciate

this simply observe the comparable force levels in Fig. 2.3b for both stiff and compliant

substrates.
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We now must complete this force train by specifically considering the effects of the

vital link to the integrin-substrate connection - this is another catch bond.

2.5 Net forces generated on the force train

In analyzing the response of talin we had assumed that talin was bound to an

integrin-substrate complex. This assumption led to the expected force vs. time of Fig.

2.5c. Indeed, it is believed that nascent adhesions involve the clustering of integrins even

before they are clearly visualized [62, 65–69]. The adhesome is then assembled at the

nascent adhesion. We now must consider the expected survival of such catch bonds. These

catch bonds are calibrated in Appendix B using data from Kong et al. [3].

Figure 2.10a and Figs. 2.10c,d show three scenario’s for catch bond behavior,

each for a stiff and compliant substrate. The scenario’s are characterized via the initial

conditions taken for the initial bond types, i.e. bond states 1 or 2, that are called conditions

I, II, or II′ in Appendix B. We note the above discussion regarding the time dependent

recruitment of integrins to the adhesion site and their association with talin and they

are under a pre-force suggests that initial conditions II or II ′ are more appropriate;

this condition was also used by Huang et al. [6]. The significant differences between the

cases using either initial conditions II or II′ and initial condition I are clear from the

probability vs. time plots. In Fig. 2.6a we explore this further and show the probability

B(t) = B1(t)+B2(t) vs. time for a range of integrin pre-force.

We recall that the average bond lifetime, ⟨τ⟩ is computed from the integral in

eq. 2.24 of Appendix B. For that purpose we use the bond rupture function, −dB/dt, to

describe the probability of a bond failing at time t. Note, that from eq. 2.23 we find,

indeed, that

−dB
dt

= k10B1(t)+k20B2(t), (2.8)

is the probable rate of bond rupture at time t. However, to compute the expected force
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(a) (b)

Figure 2.6. (a) Probability B(t) = B1(t) + B2(t) vs. t using type II and II ′ initial
conditions; pre-forces are indicated. (b) Expectation force vs. time with various integrin
pre-forces. Note that force vs. t for a compliant substrate is also indicated, with type II
initial conditions.

surviving along a talin rod we want the bond survival function, viz. B(t). Hence we arrive

at

⟨f⟩(t) = f(t)B(t), with lim
t→∞

⟨f⟩(t) → 0. (2.9)

Clearly, ⟨f⟩(t) vanishes at t → ∞. This is shown, along with B(t), in Figs. 2.6b and 2.6a,

respectively for the case of a fixed ẋ = 100nm/s.

2.5.1 Variable actin retrograde flow speed

To account for the effect of the “back force” the force train exerts on the actin

myosin-motor system, we impose a force dependent stretching speed as given by the

phenomenological form used by Chan and Odde [98] and also by Elosegui-Artola et

al. [4, 99] and Huang et al. [6], viz. we set ẋ to the form

ẋ(t) = ẋ0

[
1−

(
⟨f⟩

fmax

)n]
, (2.10)

where fmax may lie in the range 8pN ≤ fmax ≤ 30pN. In what follows, we take ẋ0 = 100nm/s

and n = 1. We proceed to compute expectation forces as described above for constant

32



ẋ. Two most useful results are shown in Figs. 2.7a,b, for the case of a modest reduction

in stretching speed obtained with fmax = 30pN. In this case we demonstrate that even a

modest forecasted reduction in ẋ leads to an noticeably increased difference in expected

force vs. time between stiff and compliant substrates as shown in Fig. 2.7a. Figures 2.7a,b
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Figure 2.7. (a) Expectation force vs. time with an integrin pre-force of 3pN. Note,
as in Fig. 2.5c, that ⟨f⟩ vs. time is seen to continuously rise here due to the fact that
talin-vinculin-actin bonds survive for the limited time period shown; eventually they
will fail, but only after the time periods shown. (b) Results for the time beyond which
persistent actin-vinculin-talin bonds exist, tp, following 100 simulations. The dashed line
drawn at 3s is used for discussion purposes in the text.

should be compared to Fig. 2.5b for the times beyond which persistent actin-vinculin-talin

bonds exist. As an example, the difference in the forecasted ⟨f⟩ at t = 5s between the stiff

and compliant substrate is approximately a factor of 2 with a fixed speed, but nearly a

factor of 8 with the modestly variable speed we imposed. Part of the reason for this can be

appreciated by examining and comparing to Fig. 2.5b which indicate a nearly 1s increase

in the time beyond which persistent actin-vinculin-talin bonds exist. This is actually a

significant difference that accounts for the reduced number of active actin-vinculin-talin

members in the net force train. This difference is also reflected in the “plateau-like”

behavior of ⟨f⟩ vs. time in Fig. 2.7a. Simply put, as the force rises less rapidly with

decreasing retrograde speed, there is more time for bond failure. We note in passing that,
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in principle, forces on talin would eventually fall to zero, or saturate. Reasons for this

include the understanding that conformational changes in talin under sufficiently large

forces remove vinculin bonding sites (see e.g. [1, 2]). The relevant force ranges we consider

do not reach such levels.

2.6 Net traction stress and assessments

As noted above, we expect the net traction stress, T (t), to be determined by N (t),

the dynamic number of bound talin-integrins (per unit area) and the expectation force,

⟨f⟩(t) as, for example

T (t) = N (t)⟨f⟩(t). (2.11)

T (t) may, indeed, be dynamic and display various forms of temporal and/or spatial

patterns of turnover. We have discussed factors that clearly suggest that stiffer resistance

to force, say arising from stiffer substrates, tend to enhance N (t) and, of course ⟨f⟩(t). If,

for instance, N ∼ O(400−600µm−2) we would forecast T ∼ O(2−3kPa) providing talin

rods are expected to survive ∼ 10s.

To compare the above forecasts with other modeling efforts we observe the following.

To essentially reproduce the results of Elosegui-Artola et al. [4, 99] we would assign to N

a bonded integrin density patterned after their reported measured densities that display a

rather sharp rise at a critical substrate stiffness; this would suffice to explain the observed

traction vs. substrate stiffness. Elosegui-Artola et al. [4, 99] used this empirically observed

behavior to accurately “fit” their data.

The “clutch bond” model of Chan and Odde [98] is more difficult to fit within the

present framework. The model does essentially provide a picture for increasing traction

stresses with increasing “substrate stiffness”; this is due the increasing forcing rate with

actin retrograde flow. The force train is, however, not described except to connect it to a

parallel array of “clutch bonds”of unspecified character.
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Still other recent models are discussed in Section 2.7.3 in relation to the analysis

presented herein.

2.6.1 Steady state traction stresses

We conclude this section with estimating steady state traction stress magnitudes

in a stable FA complex. As noted above, integrins, once activated, bind talin and tend to

cluster as depicted in Fig. 2.1. Clustering may depend on substrate stiffness as discussed

by e.g. [4,99] but to date no explanation of this exists; we first estimate this via a particular

integrin interaction mechanism. Next we use this to estimate expected traction stresses.

Initial estimates of the mean expectation steady state traction stresses

The expected force vs. time curves along a given actin-vinculin-talin-integrin

connection, shown in Fig. 2.6b and 2.7a, provide forecasted forces that would be expected

along the force train as a function of the time that they may be active, i.e. actually

connected all along the force train. However, these connections undergo continuous

stochastic turnover - that is, they come and they go! To assess this we assume that, at

steady state, their numbers remain stationary in that they last their average lifetimes, ⟨τ⟩,

as given by eq. 2.24; these average lifetimes are listed for various cases in Table 2.1.

Table 2.1. Integrin bond expected lifetimes as computed from eq. 2.24 using the force
vs. time responses for the cases of Figs. 2.6a,b and 2.7a. Recall, for these cases the fixed
stretching rate was ẋ = 100nm/s and for the variable, force dependent, rate ẋ0 = 100nm/s
with ẋ(t) given by eq. 2.10 with fmax = 30pN.

Substrate Stretching rate (nm/s) ⟨τ⟩ (s)
compliant ẋ fixed 4.67

stiff II ẋ fixed 3.84
stiff II’ ẋ fixed 4.26

compliant ẋ variable 5.85
stiff II ẋ variable 5.01
stiff II’ ẋ variable 5.60
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Now, as these connections continuously turnover, and if we assume this occurs

in a regular smooth pattern, the average force they contribute to an ensemble of such

connections is ⟨f⟩(t = 1/2⟨τ⟩). We use the case of variable stretching rate and thus we

extract expected forces from Fig. 2.7a. This leads to the following values, viz.

⟨f⟩(t = 1/2⟨τ⟩) =


0.6pN compliant substrate

3.1pN stiff substrate, II’.
(2.12)

We use the measured integrin densities reported by Elosegui-Artola et al. [4, 99] of

dint = 500µm−2 as may exist on compliant substrates and dint = 1000µm−2 as may exist

on stiffer substrates due to the clustering tendencies we described above. This, however,

does not yet fully specify N of eq. 2.11; for our steady state scenario, we may call this

Nss.

To estimate Nss we require the probability, Pb, of integrin binding to substrate

ligands, and recalling they are catch bonds, in either states 1 or 2. We use the experimental

results and accompanying kinetic analysis of Litvinov et al. [97] for αIIbβ3-fibrinogen

bonds enhanced with Mn++. In this they [97] find, with time scales that exceed say 0.5s,

Pb → 0.175 approximately. As this is within our time scales of, say ⟨τ⟩ we use this as an

appropriate estimate and thereby obtain

Nss = dintPb =


88µm−2 compliant substrate

176µm−2 stiff substrate, II’.
(2.13)

In this manner we arrive at the following estimates for the expectation steady state
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traction stresses, viz.

⟨Tss⟩ = Nss ×⟨f⟩(t = 1/2⟨τ⟩) =


52Pa compliant substrate

543Pa stiff substrate, II’.
(2.14)

The traction stresses obtained this way are certainly consistent with those measured by

Elosegui-Artola et al. [4, 99] who, incidently used the data and analysis of Litvinov et

al. [97]. These traction stress levels are also consistent with those reported by Gardel et

al. [25] for PtK1 epithelial cells supported on acrylamide gel substrates with elastic moduli

in the 3-5 kPa range. We note, however, that they [25] also report actin flow rates in the

10-30nm/s range, i.e. considerably lower than used herein. Traction stresses in our above

range < 300Pa are, however, much lower than reported by, e.g., [44, 45, 65, 100] where

traction stresses are in the 1-10kPa range. This is discussed below.

Specific estimates of the mean expectation steady state traction stresses

Elosegui-Artola et al. [4] provide a case study in which they measured traction

stresses with variable substrate rigidity and in which they documented actin flow speed.

The system they studied involved breast myoepithelial cells bound to fibronectin through

either α5β1 (expressed constitutively) or αvβ6 integrins (selectively expressed in cancer

development). Figures 2.8a,b show selected data for measurements performed on cells

expressing one or both integrin types. Specifically, their data from their Figs. 4j,k, along

with our simulated results are shown in Fig. 2.8a for both types of integrins, whereas

their data from their Figs. 4 d,e involving only α5β1 integrins, along with our forecasted

results, are shown in Fig. 2.8b.

We note that we were able to match their actin flow speeds reasonably well by

simply using the variable speed relation given in eq. 2.10 with ẋ0 = 100nm s−1 and with

an exponent of n = 0.8, and our forecasted ⟨f⟩(t). We also note that the expected actin
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Figure 2.8. Traction stress vs. substrate stiffness; comparison between experiments [4]
and simulation. Note that the left-side expected actin flow rate axis has been inverted to
facilitate correlation with the traction stress axis.

flow rate is not ẋ(t) as computed from eq. 2.10 as that rate depends on talin being actually

engaged and under force; rather the expected actin flow rate should be computed using

the bonding survival function, −dB/dt, as

⟨vf ⟩ = −
∫ ∞

0
ẋ(t) dB

dt
dt, (2.15)

where B(t) is computed using the actual forecasted forces along talin (see Appendix B).

The measured, i.e. observed, actin flow rate depends on an ensemble of talin rods bound

to the actin skeleton and to integrins on the ECM. In the ensemble, individual talin rods

that are engaged come and go, of course. We used initial integrin densities vs. substrate

stiffness in accord with those reported in [4] as listed in Figs. 2.8; in particular, we use

integrin densities in the range 500µm−2 ≤ dint ≤ 600µm−2 as indicated in Fig. 2.8a. To

estimate Pb we again use the kinetic analysis of Litvinov et al. [97], whereby we estimate

that for the two catch bond states, i = 1,2,

P(i)
b = 1

1+K
(i)
D /dint

, i = 1,2 (2.16)
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where K
(i)
D = k

(i)
off/k

(i)
on . As we lack sufficiently complete kinetic data for either α5β1 or

αvβ6 integrins we use data for αIIbβ3 integrins [97] who report 2D dissociation constants

K1,2
D = 1.7×104,2.6×103µm−2. From these and eq. 2.16 we estimate Pb = P(1)

b +P(2)
b ∼

0.175 as above. The expected steady state traction stresses so determined are plotted vs.

those reported by Elosegui-Artola et al. [4].

Although the agreement shown in Figs. 2.8a,b is encouraging, we note that although

we use, i.e. in Fig. 2.8b, the measured catch bond parameters for α5β1 integrins [3]

to estimate bond survival (see also Appendix B), we use the same parameters for the

combination of α5β1 and αvβ6 integrins for the case of Fig. 2.8a. This we have done due

to a lack of independently measured catch-bond properties for αvβ6 integrin - fibronectin

bonds. Moreover, although we have adequate catch bond data for estimating α5β1 bond

survival we lack reliable kinetic data to estimate Pb and hence used such data for αIIbβ3

from [97]. We note, however, that Elosegui-Artola et al. [4] measured simple rate constants

kon and koff and found kαvβ6
on /kα5β1

on ≈ 0.5 and kαvβ6
off /kα5β1

off ≈ 30! This they “compensated

for” by also noting that, when observed on the substrate surface, dαvβ6
int /dα5β1

int ≈ 5. This

ad-hoc compensation is far from exact but may help explain the roughly similar behavior

shown in Figs. 2.8a and 2.8b. They reported dα5β1
int ≈ 500µm−2 as indicated in Fig. 2.8a.

Aside from that just mentioned, however, we make little other ad-hoc “fitting”. Below, in

the discussion we point out additional concerns and requirements for improved theoretical

understanding and forecasting of cell adhesion and mechanotransduction.

2.7 Discussion

2.7.1 General discussion & required parameters

The analysis presented above revealed a number of notable features of force trans-

mission along the adhedsome. Among these are that the effects of mechanosensitivity

appear all along what we have dubbed the force-train. Indeed, these effects are directly
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related to the time rate of force development as seen in the behavior of both talin, and

integrin, bonding. Hence, it would seem to be improper to simply relate force development

to one particular set of “clutch bonds” that are envisioned to operate at one, or another,

location along the actin-vinculin-talin-integrin-ligand-ECM train. We now discuss the

various parameters and elements of our model that play important roles in the development

of traction force and stress.

As an example, the response of talin vis-à-vis the actin-vinculin-talin reinforcement

is intriguing, especially as it pertains to the early stage of talin force loading. The response

of talin also illustrates the point made just above that focusing attention on just generic set

of clutch bonds is misleading and renders the force train system ill-described. Specifically,

in Section 2.4 we discussed the presumption that talin is initially “loaded” by actin bonding

to ABS3 and then via the activation of ABS2 upon a conformational change of talin under

modest forces (i.e. before talin domains unfold). The precise behavior of such bonding,

however, is not yet quantitatively understood and hence is a topic of needed future study.

Hence, not a simple parameter per se, the early engagement of talin to the actin skeleton

requires more quantification in terms of bond strength, character, and survivability. We,

in lieu of this quantitative information, made the assumption that actin-talin bonding had

to survive for periods of time in the range of 2-3 seconds so that forces sufficient to induce

talin unfolding (at, say, domain R3) and thereby vinculin reinforcement can be generated.

Recently, Atherton et al. [92] have, however, shed additional light on this phase of the

loading process, as briefly discussed next.

Consistent with our view in Fig. 2.1, Atherton et al. [92] propose that talin is

recruited to the RAP/RIAM complex [101] at nascent adhesions where it binds integrins.

Interaction with integrin renders R3 accessible for vinculin activation and binding and

this leads to unmasking ABS2. At this point (before talin domain unfolding at, say R3)

the focal adhesion is ready to engage the actomyosin engine. We assume that this process

“buys some time” for eventual talin unfolding that then allows for additional talin-vinculin
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bond reinforcement. We assume (see Figs. 2.5b and 2.7b) that this takes 2-3 critical

seconds; this depends on loading rate and thereby on substrate stiffness. Those talin rods

that do not survive such critical seconds are released from the ensemble of talin rods.

Clearly, this phase of the force process requires additional quantitative study as does the

development of integrin density and distribution as discussed next. Indeed, Atherton et

al. [19] have shown that fibroblast cells containing talin ABS2 mutants displayed traction

stresses that were 45-50% less than TalFl. Hence without a full account of the talin force

vs. time response quite misleading results on any assessments would be in error.

Our model analysis makes use of the catch bond theoretical framework of Thomas

et al. [56] and the specific data of, inter alia, Huang et al. [6], Kong et al. [3], and Litinov

et al. [97]. We note, however, that although adequate characterizations of catch bond

survivability are obtainable by the methods described in such work, kinetic parameters

for bond formation are not always readily available, especially since bond formation and

re-formation may occur under non-equilibrium conditions. The work of Litinov et al. [97]

is of specific interest here and hence we used there results as an example, as have others,

e.g. [4, 99].

2.7.2 Integrin density and clustering

Estimations of traction stresses as attempted in Sections 2.6.1 and 2.6.1 illustrate

the vital need for quantitative perspective on integrin density, integrin-ligand bond survival

and, as we believe, on integrin distribution. This will be vital to continue our analysis to

describe the full time evolution of adhesion sites. We comment on several of these aspects

below.

Elosegui-Artola et al. [4, 99] have provided experimental data that showed a signifi-

cant dependence of integrin density (dint) on substrate stiffness. By using this correlation

as input to their simple “clutch bond” model they were able to rationalize their observa-

tions of increasing traction stress - that we call Tss - with increasing substrate stiffness.
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Both the analysis of Sections 2.6.1 and 2.6.1 and our mechanistic reasoning, however,

clearly suggest that this aspect of the adhesion process requires a great deal more at-

tention. This requires accounting for not only integrin type, but also cell type and cell

membrane/glycocalyx structure, and substrate morpholgy/topology. We note just below

that substrate viscoelasticity vs. elasticity needs also to be considered.

Extracellular matrices, e.g. those composed of crosslinked polyacrylamide hydrogels

for one, display essentially elastic behavior characterized by time independent linear force

(stress) vs. displacement(strain) response. Yet reconstructured cell matrices exhibit a time

dependent viscoelastic response, i.e. force (or stress) relaxation when held at a sustained

displacement(or strain) or a relaxed rate of force(or stress) increases at a fixed rate of

stretching (or straining). Indeed, effects of increased cell spreading, proliferation, and

differentiation have been described for mesenchymal(MSC) cells on substrates displaying

increased viscoelastic stress reduction behavior [72,102]. The effects were attributed to

increased integrin density and clustering although no rationale was provided for why, or

how, viscoelastic response contributes to integrin clustering [72,102]. However, such an

effect may be consistent with our model scenario for integrin clustering as shown in Fig. 2.2.

The bonding of integrins to ECM ligands invokes an initially nearly elastic response of the

cell’s membrane/substrate as we envisioned. This leads to enhanced clustering on stiffer

substrates. Yet once clustered, and under force fb, the relaxation of the substrate will lead

to a further reduction in energy and thereby stabilization of the clusters. We expect this

process will reduce the internal force in the integrins, but stabilize their positions.

On the latter point, we note that it now appears clear that ligand/integrin patterning

as well as substrate morphology and topology must be explicitly accounted for. The effects

of topology and patterning are distinct from density per se. The results of Maheshwari et

al. [103] are most relevant here in that they demonstrated how fibroblast cell adhesion

depended quite sensitively on ligand cluster patterns as well as on overall ligand density.

But to put an even finer point on this, we note the reported evidence of the effects of
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surface (nanoscale topology) on adhesion. Examples include, inter alia, the effect of

patterns of nanoscale silica beads [10,57] and the nanoscale protrusions that exist on the

surfaces of nanostructured metals and alloys [10,59].

Herein we have not considered the full time evolution of integrin clustering and

density per se, but computed what we called steady state expectation traction stresses;

these were based on observed integrin densities as used to obtain for example the results

of Fig. 2.8. Indeed although much has been reported on the formation of nascent adhesion

clusters, see e.g. [63,64], there does not exist as yet a fully predictive theoretical framework

for such cluster development. A number of compelling ideas exist, however, which should

eventually emerge into such a framework; examples include the role of membrane and

glycocalyx distortions (see e.g. [69, 78, 104] and the ideas presented herein). Herein we

present a remarkably simple analysis that captures much of the effects and that leads to

a simple pathway to computing integrin interaction forces that are readily incorporated

into simulation models that would, in fact, reveal clustering. But that may not be nearly

enough. Consider, for example, the reports of Cheresh and co-workers, e.g. [105–107],

who uncover important effects on cancer cells of Galectin-3 and, indeed, the localization

of gangliosides such as GD2 and GD3 on integrin aggregation and clustering. These

observations, along with the reported diverse effects of substrate topography [10], cell

glycocalyx [69,78], membrane distortions [104], just to mention a few factors, suggest that

far more study is required to even define a credible pathway for such predictive models.

Such models may be quite system specific as general rules and principles have yet to

emerge, even for say the effects of substrate topography [10].

2.7.3 Concluding discussion

The current study has attempted to follow a minimal, yet detailed, account of

the force-train along a realistic model adhesome. In doing so, the analysis revealed

that mechanosensitivity is manifest at each step, and even sub-step, along the force
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pathway. This, itself, makes the analysis unique and useful in that it illustrates where vital

quantitative perspective is missing and how it would enable more definitive understanding

of how a given system works.

A most vital issue would appear to be the question of integrin/ligand density and

patterning on a given substrate and how these affect integrin bond kinetics. Given the far

reaching implications of how cells sense, adapt, and develop based on their environments [56]

this may well represent a prime focus for future study. We have modeled integrin bonding

using available data, e.g. that of Kong et al. [3], and this would benefit from a more detailed

assessment by looking individually at both the talin-integrin and integrin-ligand bonding

as data becomes available. However, it is critical to understand that this will require

a range of data and information typically unavailable in most published studies. Such

detailed information will include, inter alia, substrate elasticity [33,58](viscoelasticity) [102];

substrate morphology, topography and nanoscale roughness (in both detailed qualitative

and quantitative character) [10]; ligand type, density and patterning [103]; integrin type

and (initial) density [4, 99]; cytoskeleton kinetics [6]; and the presence of plaque proteins

as we have described [7, 19, 92]. Indeed, as we have cited, there are many puzzle pieces of

this grand puzzle to be found in the literature, but these pieces are incomplete and are

often not necessarily from the same puzzle. Hence we support the research suggestion of

Lord et al. [10], viz. the “set up of very well-defined, much reduced model systems that

can be thoroughly analyzed and large scale screening of cellular response to ...”. We add to

this that a single such system will not suffice to navigate through the particularities of any

given system and hence parallel systems are required. Hence a coordinated multi-group

effort may be needed. The framework we have presented herein is indeed adaptable, and

readily expandable, to provide quantitative verification of model concepts.

We conclude by noting that other models exist that consider a model adhesome

such as ours and address questions such as adhesion growth and mechanosensitivity, but

they analyze the adhesome’s elements in fundamentally different ways; an interesting case
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in point are the models of Cao et al. [108,109]. For example, their model elements [108] are

modeled as rate independent, loading (or stretching) history independent, linear elastic,

elements. In contrast, our model explicitly treats each element as a thoroughly non-linear,

stochastic, hence rate and history dependent molecular based element; moreover, we

use a wide range of experimental biophysical data to calibrate each element, including

the stochastic bonding of each element to each other. Hence the two models have an

entirely different composition. Moreover, our results demonstrate quite clearly that simply

replacing linear elastic elements with an “effective non-linear element” derived, for example,

from our model may not produce similar outcomes; for example, and as just one example,

the analysis of just the ⟨f⟩ vs. time results obtained assuming a constant stretching versus

a moderately variable rate of Figs. 5a and 7a illustrate that point clearly. Yet, what may

be possible is to enhance our model adhesome by including a nucleus, as in the Cao et al.

model [108], and pose questions as posed by them. Their framework would seem naturally

suited to our molecular based, stochastic, approach. Likewise, models that describe either

the growth or the survivability of FAs, e.g. [110,111], may be incorporated into a framework

such as ours for a more complete description of the development of traction stress.
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Appendix A. Talin unfolding

We use the framework of Zhu and Asaro [23] to describe the time-force evolution

of folding and unfolding of talin; the parameters are listed in Table 2.2. We consider the

transitions between two states f ⇆ u, folded (f) and unfolded (u) separated by energy

barriers ∆Ef→u and ∆Eu→f . The energy barriers are affected by force and hence, e.g. for

unfolding

∆Ef→u ≈ ∆E0
f→u + ∂∆Ef→u

∂f
f + ...

∆Ef→u ≈ ∆E0
f→u −f∆xf→u + ...,

(2.17)

which formally and operationally defines an unfolding activation distance as ∆xf→u ≡

−∂∆Ef→u/∂f . For the unfolding rate we thus have

kf→u =
→
k k0

f→uef∆xf→u/kT . (2.18)

A similar analysis leads to the refolding rate

ku→f =
←
k k0

u→f ef∆xu→f /kT , (2.19)

where we note that the transition distance for refolding is such that ∆xu→f < 0. The

model continues by defining the end-to-end distance, x, as

x

NLf
= (1−ϕu) xf

Lf
+ϕu

xu

Lu

(
Lu

Lf

)
, (2.20)

with Lf andLu being the contour lengths of the folded and unfolded domains, respectively

and xf andxu being the projections extensions, in the direction of f of folded and unfolded

domains, respectively; N is the total number of foldable plus unfoldable domains.
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A freely jointed chain model [24] was then used which led to the relation

x

NLf
= (1−ϕu)L

(2fpf

kT

)
+ϕuL

(2fpu

kT

)(
Lu

Lf

)
, (2.21)

where L(ζ) = cothζ −1/ζ, and pi is the persistence length of an folded or unfolded domain,

i.e. i = f,u.

(b)

(a)

Figure 2.9. (a) Unfolding of a full talin rod compared to the experimental measurements
of Yao et al. [1, 2]; unfolding as observed under imposed force rate. (b) Talin domain
refolding.

The times steps used were ∆t = 0.01s.

Appendix B. Catch bonds

The model allosteric protein we envision has two minimum energy conformations

separated by an energy barrier; the barrier height above state 1 is ∆E12 and above state 2

is ∆E21. The transition rates between these states in the absence of force are k0
12 and k0

21

where these are in turn proportional to e−∆Eij/kT . Since the protein can bind the ligand

from either state, we assume it can unbind from either state with unbinding energies ∆E10

and ∆E20; this leads to unbinding rates k10 and k20.

Upon the application of force, f , these energy barriers decrease by f∆xij so that
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Table 2.3. Kinetic rate constants for vinculin-actin catch bonds taken from Huang et
al. [6]

Transition Rate constant (1/s) transition distance (Å)
1 → 0 k0

10 = 5.3 ∆x10 = 0
2 → 0 k0

20 = 5.5×10−3 ∆x20 = 1.2
1 → 2 k0

12 = 6.1 ∆x12 = 0.4
2 → 1 k0

21 = 43 ∆x21 = −3.4

the transition rates become

kij = k0
ijef∆xij/kT . (2.22)

To compute bond lifetimes we define B1(t) and B2(t) as the probability of occupancy

of state 1 or state 2, respectively. Hence these evolve from the coupled ODE’s

dB1(t)
dt

= k21B2(t)− (k10 +k12)B1(t)

dB2(t)
dt

= k12B1(t)− (k20 +k21)B2(t).
(2.23)

The probability of a bond in either state be occupied is B(t) = B1(t)+B2(t). Hence eqs.

2.23 must be integrated through a given force vs. time history, subject to initial conditions.

We note that the expectation lifetime of a bond may be computed from the negative

derivative of the survival function, viz. −(dB(t)/dt)dt as

⟨τ⟩ = −
∫ ∞

0
t′(dB(t′)/dt′)dt′ =

∫ ∞
0

B(t′)dt′, (2.24)

where the second equality follows via integration by parts provided lim
t′→∞

{t′B(t′)} = 0. For

actin-vinculin bonds we have fitted the catch bond model as described by Thomas et

al. [79] to the data of Huang et al. [6]. Results are listed in Table 2.3.
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Table 2.4. Kinetic rate constants for integrin catch bonds taken from Kong et al. [3]

Transition Rate constant (1/s) transition distance (Å)
1 → 0 k0

10 = 6.01 ∆x10 = 1.37
2 → 0 k0

20 = 0.021 ∆x20 = 2.112
1 → 2 k0

12 = 0.42 ∆x12 = 0.58
2 → 1 k0

21 = 0.105 ∆x21 = −0.42

B.1 Integrin-fibronectin (ligand) bonds

For integrin catch bonds we used the data of Kong et al. [3] for integrin-ligand

bonds and determined vis-à-vis the catch bond model described by Thomas et al. [79] the

parameters shown below in Table 2.4.

With the calibrations given in Tables 2.3 and 2.4, we compute the average bond

lifetimes at constant forces as shown in Fig. 2.6b for both the actin-vinculin [6] and

integrin-fibronectin bonds [3]. In Fig. 2.10b we plot the probability vs. time curves

computed from the integration of eqs. 2.23 using the force vs. time response of Fig. 2.5c

for an average talin rod of an integrin-ligand bond using the data of Table 2.4. In Fig.

2.10 we plot the probability vs. time curves, again for an integrin-ligand bond using initial

conditions that differ from those used to compute Fig. 2.10b.

The initial condition B0
1/B0

2 = k21/k12 assumes that bond states 1 and 2 equilibrate

as we discuss in the text and has been assumed elsewhere [95]. The survival vs. time

behavior, as we see, is quite sensitive to the initial conditions B0
1 and B0

2 for the initial

probabilities of finding a bond in the low force state 1 and high force state 2. In Figs. 2.10c,d

it is assumed that the bond state transitions 1⇆ 2 equilibrate so that B0
1/B0

2 = k21/k12;

we call these initial conditions II and II ′ designating that the initial force on the bond

is f0
b = 0 or f0

b > 0, respectively. For the case of Fig. 2.10d we used f0
b = 3pN. However,

Thomas et al. [56] point out that “the initial conditions depend on experimental conditions”
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Figure 2.10. (a) Average bond survival times vs. an assumed constant force for both
vinculin and integrin catch bonds. (b) Probability of integrin bond survival vs. time using
the force vs. time responses shown in Fig. 2.5c using initial conditions based on the law of
mass action, i.e. eq. 2.25 [56]. (c) Probability of integrin bond survival vs. time using the
force vs. time responses shown in Fig. 2.5c but using for initial conditions of bonds in
states 1 or 2 the criterion B0

1/B0
2 = k21/k12, and at zero initial force. (d) Same as (c) but

here it is assumed that a pre-force of 3pN exists when integrin bonds are formed.

and for their conditions they used a principle of “detailed balance” to estimate that, e.g.

B0
1 = J1

J1 +J2
= k0

12 ·k0
10

k0
21 ·k0

10 +k0
12 ·k0

20
. (2.25)

This initial condition, dubbed I, was used for Fig. 2.10b.

Here again, the time steps used were ∆t = 0.01s.
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Chapter 3

Nascent cluster

3.1 Introduction

Cells do not live alone (non solus), but instead vigorously interact with the environ-

ment which contains other cells as well as extracellular matrices (ECMs), the properties of

which they sense by adhering and react to. For example, cells sense the mechanical response

of their environment, e.g. stiffness [31,33,49,55,56,58] and even topography [10,15,57,103],

as they proliferate [32], differentiate [33], migrate [31], as well as engage in the vital

processes of cell development [34, 35], including, inter alia, tumorgenesis [36, 37], cell

growth [38–40] and wound healing [41,42], inter alia. Cells perform these functions and

are so regulated via the formation of focal adhesions (FA’s) [43–46] that anchor the cell

either transiently (i.e. dynamically) or permanently [47, 48] to, e.g. the ECM (aka the

substrate); the precursor to FA’s are nascent adhesion clusters as sketched in Fig. 3.1a,

that we analyze herein.

The cell’s adhesion complex and its protein components, the adhesome [9, 61],

transmits force generated by force dependent retrograde flow of its intracellular actin

cytoskeleton (aka hereafter “actin”) via a series of proteins [7–9] that are bound to each

other and ultimately to the cell’s extracellular matrix. In our case we consider the

adhesome to utilize the plague proteins talin and vinculin; hence our force train consists

of actin(myosin)-vinculin-talin-integrin-ligand(ECM/substrate) [7, 8, 19]. This is sketched
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in Figs. 3.1b-c. It is, however, the initial formation of these adhesion complexes that we

focus on here, viz. the formation of nascent adhesion clusters; these are described next,

followed by our plan of study. A basic feature of these is the formation of well defined

integrin clusters of, what appear to be, well regulated sized clusters containing controlled

numbers of integrins of O(∼ 20−60) [63, 64]. How, and why, they form and what controls

their size, of O(100−150nm) in diameter [63, 64], and integrin numbers is a main object

of our study.

3.2 Nascent adhesion clusters: background

Nascent adhesion clusters form in a step wise manner on substrates of all rigidities

and do so within time scales of O(∼ 1−2min) [63,64,71]; they appear, however, to be less

persistent on rigid substrates [63]. They generally attain sizes in the range of ∼ 100±30nm

and contain a number of integrins of O(∼ 20−60) [63,64] as a general rule. It is noted that

clustering does not require myosin driven actin contractility as described most recently for

example by Sun et al. [112], nor generally is such involved in early cluster formation [62–64]

as indicated in Fig. 3.1a. Integrin activation and ligation, via substrate ligands, is part

of the process, yet clusters are observed to contain unligated integrins [63, 64] and this

requires a mechanistic explanation. It is noteworthy that clusters appear to require a

minimum ligand spacing of O(∼ 60nm) to initiate [113, 114] which implies that ligated

integrin interaction occurs at a distance, as in a field that decays with their separation; this

interaction is, however, not short range as it appears to occur over distances of O(≳ 60nm),

although only weakly so at larger distances. Since the integrin footprint is of O(∼ 42nm2),

we envision that the range of interaction is clearly of O(ri ≥ 2
√

42/π ≈ 8−10nm), where

ri is the effective radius of an activated integrin. Hence, once clusters initiate, additional

integrins generally join within increasing their number density.

It is interesting that Changede and Sheetz [64] hypothesize, but do not prove, that “...
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integrins will cluster even in the absence of bound ligands through activation by cytoplasmic

proteins (e.g. talin) or Mn++”. The earlier findings of Cluzel et al. [62] put an overarching

and finer point on the above. They reported, for αvβ3 integrins on mouse melanoma

cells and hamster CS-melanoma cells, that, inter alia, “Mn2+ activation resulted in the

formation of integrin clusters in cellular regions devoid of F-actin”; their de nova clusters

formed after integrin activation with Mn2+ even after treatment with cytochalasin D (cD),

i.e. after “... destruction of the actin cytoskeleton with cD”. Now, immunofluorescence

staining for talin, however, “... revealed an overlap with all clustered EGFP integrins in

Mn2+-treated cells”; EGTP cells, expressing αvβ3 integrins are described by Ballestrem

et al. [65] who studied adhesion in similar cell lines. Consistent with absence of F-actin in

de novo clusters, Cluzel et al. [62] found “... the focal adhesion adaptor proteins vinculin,

paxillin, and FAK, as well as antiphosphotyrosine antibodies, did not associate with the de

novo-formed clusters of activated integrins”.

So far, the above observations may suggest a scenario as depicted in Fig. 3.1a

where a preliminary view is shown that is to be enhanced below. Here activated integrins,

that are associated with at least talin and kindlins, tend to cluster. We assume for now

that they are recruited via their lateral mobility, i.e. by diffusion [115], to cluster from a

certain initial distribution within the cell’s membrane; we take this distribution to be of

various types in what follows and assess the expected trends via a model simulation to be

described. Figure 3.1b illustrates the later adhesion step where engagement with the actin

cytoskeleton occurs and where force is applied via retrograde flow of the cytoskeleton;

Fig. 3.1c illustrates where manotransduction occurs via the nuclear influence felt of the

adhesion’s actin-vinculin-talin-integrin-substrate force train [116–118]. Before we present

the first of our cluster simulation models, we add, or at least emphasize, a few finer points

on nascent integrin clusters.
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Figure 3.1. A rough possible scenario for the temporal pattern of imposed driving force
“a” and venous slit caliber “c” vs. time. Note various time scales discussed in the text.

3.2.1 Finer points regarding the background on nascent
clusters

Integrin activation has been studied extensively [5, 76, 83, 87, 119–125], most partic-

ularly with respect to the role of activating adaptor proteins, such as talin, kindlins and

paxillin [87, 122,126] and also with regard to the potential role of integrin clustering [87].

We refer to Fig. 3.2 for a brief discussion, and we specifically use data and observations

for αIIIbβ3 and αvβ1 integrins.

The three integrin conformational states depicted are known to possess distinctly

different affinity states for binding ligands [5, 87, 119,122] where the extended open (EO)

state affinity is some 5000 fold times greater than that of the bent closed (BC ) state [5].

Extension presents a significant barrier to activation requiring, for example, ∼ 16kJ/mol

for αvβ1 integrins [5]. Hence, in this context, we may refer to the extended states, EC and

EO, as being activated [87, 122]; roughly speaking the physical extension undergone from

the BC to EO state is of O(∼ 10nm) [87]. Ye et al. [87] demonstrated that the association
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integrin activation. (d,e) Binding of THD at the integrin β tail, especially when the TR is
re-associated with the THD, is deformed so as to develop curvature.

of the talin head domain (THD) with the β tail of integrin is sufficient - providing integrins

are embedded in a lipid bilayer and with a talin membrane binding site - to induce integrin

activation; this is indicated in Figs. 3.2b-e as explained below. Saltel et al. [127] have

found that the THD binds to acidic lipids, viz. PI(4,5)P2, which is part of the activation

process; the participation of kindlins is discussed below. In fact, this process is facilitated

by a dissociation with the talin rod (TR) which may re-associate upon its connection to

actin via vinculin; this is depicted in Figs. 3.2d-e. Saltel et al. [127] provide interesting

perspective on this. For example, they point out that one of the consequences of the THD,

sine TR, binding to the intergrin β tail “... is the absence of vinculin recruitment and

uncoupling (i.e. uncoupling) from the F-actin network”. They appear to argue that the

membrane binding of a dissociated THD, via PI(4,5)P2 promotes clustering and then a
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re-association with the TR and the actin cytoskeleton. We hypothesize that may occur

via the schema of Figs. 3.2d-e. The THD binding will induce a membrane distortion as

shown in Figs. 3.2d-e; this is reminiscent of the protein membrane distortions simulated

by, for example, Reynar et al. [128,129] and van der Wel et al. [130] who simulated protein

clustering within lipid membranes. As described below, this provides a mechanism for

integrin clustering.

Binding of the THD to the β tail in integrins has been described early on by

Calderwood et al. [120] and Garcia-Alvarez et el. [121] and, although the applicability of

what has been reviewed here to most integrins is unsettled as yet, we note that Calderwood

et al. [120] had noted that “... there is general agreement that the activity of leukocyte

and platelet integrins are regulated by talin, and talin-mediated activation of integrins

containing β1,β2 and β3 units has been reported in a range of cell types”. We thereby will

take this as a sensible basis for a basic model formulation as detailed below. At this point

we turn to a brief discussion of the important role of kindlins.

The potential role of kindlin association, in collaboration with talin, must be

emphasized as noted by Kammerer et al. [131] and Theodosiou et al. [126] following

Calderwood et al. [122] and Bachir et al. [70]. This is discussed using Fig. 3.3 as a guide as

well as Fig. 3.2. Kindlins co-locate with the THD at the integrin β tail as sketched in these

figures and have been implicated in integrin clustering [126,131]. Theodosiou et al. [126]

have reported on a most interesting study which provides additional perspective on the

role of kindlins, acting in cooperation with talin, in developing both nascent clusters and

mature focal adhesions. Importantly, their study concerns αvβ1 integrin expressed within

mice kidney fibroblasts, demonstrating a parallel with what has been described for αIIIbβ3

integrins. Theodosiou et al. [126] use their observations to pose the hypothesis that “...

not all integrin molecules have to be occupied by talin and therefore low levels suffice,

particularly in NAs (nascent adhesions) ...”. As will be seen below, our model approach is

consistent with this idea and we provide a mechanistic perspective for this observation and
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interpretation. Theodosiou et al. [126] do state, however, “... our study demonstrates that

integrin (viz. αvβ3) affinity regulation (activation) is essential for fibroblast adhesion and

depends on both talin and kindlin-2”; this supports the view of a more common function

of talin and kindlins in integrin activation.

With respect to integrin activation, we note that Bachir et al. [70] have reported

that whereas kindlin is recruited into nascent adhesions during their formation, talin

follows in sequence just after, at least for α5β3 integrins in migrating CHO cells; the

generality of this finding to other systems was unspecified. Whether this corresponds to

the talin rod (TR) or talin head domain (THD) is unclear. Such a sequence, proposed for
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α5β3 integrins for this particular system, does not alter our basic scenario. Changede and

Sheetz [63, 64] have shown that integrin ligation, although not necessarily involving all or

even most integrins within a nascent cluster, is required for nascent cluster formation and

that may be accomplished by the THD or kindlin as discussed above.

Still additional insight was provided by in the most interesting studies of Ye et

al. [87] who studied αIIIbβ3 integrins embedded in liposome membranes and lipid nanodiscs

bearing single or multiple embedded integrins with varying orientations protruding the

nanodisc membranes. In this way they could include cases with and without the presence

of ligands and thereby cases where there were no apparent cause for significant internal

forces generated within the integrins. Ye et al.’s [87] observations using liposomes also

demonstrated that, without ligands, “... there was no gross integrin clustering when THD

activated αIIIbβ3 ...”. Although clustering per se may not have been a focus of these studies,

their observations would appear to support the view that ligand binding was required to

induce clustering. However these observations, taken together with the observations of

Theodosiou et al. [126], lead us to hypothesize that although clusters may require ligated

integrins to form not all integrins attracted to, and incorporated within, formed clusters

are ligated. We indeed suggest a reason why, and how, this may be so.

3.3 Clustering model: outline

We seek an essential model, with sufficient mechanistic detail, yet with optimal

flexibility in that detail to readily allow for a wide range of specific model scenarios. A

basis is the following, explained via the pairwise interaction of two integrins. As integrins

activate, and extend, and bind to ECM ligands, they induce a deformation of the cell

membrane and glycocalyx as well as possibly the ECM, if the latter should possess adequate

compliance. Such deformation creates an internal force within the integrin and an elastic

deformation field as sketched in Fig. 3.3e by the colored dashed lines; the magnitude of
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the deformations and force depends on whether the integrin is either ligated or merely

activated. Now consider the integrins in Fig. 3.3e to be modeled as “point forces”, f , or

as internal body forces, fb, as in Fig. 3.3c acting on, or within, the cell membrane at

some distance, lying at a distance ξ = |ξα −ξβ| apart. The distortions sketched are thereby

δ(ξ;δ0,α) where δ0 can be considered the displacement caused beneath a point body force

acting of integrin α alone. Hence at the left, and right, side integrins

δα(ξ;fα) = δ0,α + δβ(ξ;fβ),

δβ(ξ;fβ) = δ0,β + δα(ξ;fα),
(3.1)

where δi, i = α,β are functions of the spacing ξ and δ0,i = fi/k where k is a linear stiffness

factor that is specified by the particular model used as explained below via example; fi is

the force acting within the integrin which will depend on the pinching amount required to

achieve the fixed amount of distortion. Equations 3.1 simply say that the net displacement

beneath force i = α,β is the sum of what is produced by the prevailing force on integrin i,

fi, and what is contributed at the site of i by the field of the other integrin.

Now, we assume that for an integrin, say α, to be ligated it must create a total

displacement of δ⋆ and in that case δα(ξ;fα) = δ⋆. To be sure, when an integrin, say α, is

nearby another, say β, the internal force within it must induce an additional displacement

δ0,α = δ⋆
α − δβ(ξ;fβ); the required force in α is then fα = k(δ⋆ − δβ(ξ;fβ)); the force fα

is mitigated by the displacement δβ(ξ;fβ) contributed by integrin β at the site of α. It

follows that as more integrins cluster about integrin α, δ0,α is reduced and may indeed

tend to nearly vanish; hence the internal force fα = kδ0,α reduces which provides the

translational force causing integrins to cluster; in fact, if two ligated integrins were to

hypothetically merge, neglecting steric constraints that would bar this, they would appear

as a single point body force in terms of their elastic field.

On the other hand, to ligate an integrin must acquire energy which tends to reduce
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the rate, i.e. probability, of ligating; this means that integrins tend to ligate with greater

rate near already ligated integrins, and in particular near clusters. We find, however, that

this may be insufficient to produce well defined and sustained clusters as will be explained

below.

Now considering Fig. 3.3a-b, i.e. un-ligated integrins, we note that a similar story

holds true. But un-ligated integrins should be considered mobile and hence a translational

force that would bias their otherwise random diffusive motion is required. In fact, such

integins would interact with each other and with ligated integrins for the reasons outlined

above. This means that, given our scenario of Figs. 3.3a-b, un-ligated integrins may be

attracted to ligated clusters as hypothesized by Changede and Sheetz [64].

The effective force that attracts integrins may be uncovered by a variation in the

appropriate free energy upon translation of an integrin, i.e. upon a variation in ξ, or more

precisely in |ξα − ξβ|, in Fig. 3.3e. In this, we view the forces as embedded body forces

as sketched in Fig. 3.3e. We further note that we envision that the field is determined

by the fixed amount of displacement imposed at the sites of the point forces, viz. δ⋆
α and

δ⋆
β. There is no surface traction involved and hence the scenario is one of fixed imposed

displacement; hence the free energy is the Hemholtz free energy, viz.

H =
∫

v
wdv, with w = 1/2σijeij (3.2)

being the strain energy density. We designate x to be a general spatial position vector.

With u(x) being the displacement, eij = 1/2(ui,j + uj,i); further, the the equations of

equilibrium read may be written as σij,j = −bi, with b being the body force density. Given

the symmetry in the Cauchy stress, σ, we may further write that 1/2σijeij = 1/2σijui,j =

1/2(σijui),j +1/2bi, the last equality holding due to the equilibrium equations. Hence H
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of eq. 3.2 becomes

H =
∫

v
{1/2(σijui),j +1/2bi}dv =

∫
s
1/2σijnjui ds+

∫
v
1/2biui dv, (3.3)

with s being the bounding surface to v, the volume; n is the outward pointing normal on

s to v. As there is no traction on s, the first integral vanishes and

H = 1/2
∫

v
biui dv. (3.4)

If ξα,β are the positions of integrin α,β, then we may compute the force between

them as

f = − ∂H
∂|ξα − ξβ|

= − ∂

∂|ξα − ξβ|

∫
v
biui dv where i = α,β. (3.5)

Note that, as this reads, f would be the force tending to separate them, i.e. if f > 0 a

repulsive force. Now, by stipulation the integrins are localized “point forces” and hence

we take

bα,β = fα,β = k
{
δ⋆

α,β − δβ,α(|ξα − ξβ|)
}

δ(x− ξα,β), (3.6)

where the Dirac functions, δ(x− ξα,β), localize the point forces at positions ξα,β . Next, eq.

3.6 is substituted into eq. 3.5 where we note that the integration over volume v is over the

variable x, to obtain

fα⇆β = f = 1
2
{
f⋆

α
∂δβ

∂|ξα − ξβ|
∣∣∣
α

+f⋆
β

∂δα

∂|ξα − ξβ|
∣∣∣
β

}
, (3.7)

where f⋆
α,β = kδ⋆

α,β. To be sure, a term such as ∂δβ/∂|ξα − ξβ|
∣∣∣
α

represents the rate of

change of displacement caused by the β integrin at the site of the α integrin with respect

to the absolute magnitude of their distance, |ξα − ξβ|; as this is negative, the force tending

to separate the integrins is negative, since f⋆
α > 0. This means, in turn, that the integrins

attract.
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For an integrin that is ligated, or attempting to do so, its internal force would

be computed from eq. 3.6, neglecting the Dirac functions of course. Ligated integrins

are assumed to have limited mobility, yet for un-ligated integrins the interaction force is

important in that it biases diffusion in favor or clustering. Un-ligated integrins are biased

toward ligated integrins where the internal force required for ligation is reduced and hence

the rate, i.e. the probability, of ligation is enhanced.

3.3.1 Specific integrin elastic model

We propose a simple model for an integrin as sketched in Fig. 3.3f where the

uniform indentation of δ⋆ is induced within a circular patch of radius r = a. The pressure

under such an uniform indentation is p(r) = p0/(1− (r/a)2)1/2; the net force, as pictured

as f in Fig. 3.3e, is f = 2πa2p0 [132]. The solution for the displacement field outside of

the patch is given by Johnson [132] as

δ(ξ) = 2(1−ν2)p0a

E
sin−1{a/ξ}, for a/ξ ≥ 1, or

δ(ξ) ≈ (1−ν2)f
πE

1
ξ

for a/ξ ≥ 2

f⋆
α,β = πaE

1−ν2 δ⋆
α,β ⇝ k = πaE

1−ν2 .

(3.8)

These relations are used in eq. 3.7 to compute the interaction force and define the stiffness

factor, also of eq. 3.7. In what follows we take a = 3nm to account for the integrin

footprint of 42nm2 [64] and the co-location of kindlin and the THD. As an estimate for

integrin stretching, i.e. δ⋆, we will generally take δ⋆ ∼ 10nm When considering ligation,

δ⋆ will include the need to deform the cell membrane and glycocalyx and will be larger; in

those cases δ⋆
α,β = δ⋆

ℓ , where subscript “ℓ” signifies ligation. To gain perspective on this

numerology, we estimate the magnitude of f from eq. 3.8; we set a/ξ = 1 and with various
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values of E, and with ν = 1/2, we obtain

f =



0.625pN, E = 5kPa

1.25pN, E = 10kPa

2.50pN, E = 20kPa

(3.9)

With E = 5kPa and a = 3nm, for example, we obtain k = 6.28 × 10−5 Nm−1 = 6.28 ×

10−2 pNnm−1. These numbers provide only a quite general, hopefully better than order of

magnitude, perspective on the level of force generated within integrins.

3.3.2 Simulation model: general set up

The basic simulation model can be outlined using Fig. 3.4 where integrins in their

three states are indicated. Note that here we assume a certain initial population of integrins

and not that integrins are introduced in pre-clusters, say for example, from deposition from

released integrin carrying vesicles [133, 134]. Un-activated and activated yet un-ligated

integrins are considered mobile and freely diffuse within the membrane. Activated integrins,

attract

ac
tiv

ate

diffusive

    flow

ligated
attr

actmembrane

Figure 3.4. General set up for a diffusion based integrin clustering based on interactive
integrins. Ligated integrins are relatively immobile, possessing very small diffusivity,
whereas active yet unligated integrins are mobile, with finite diffusivity. Inactive integrins
are mobile but do not interact with either ligated or unligated active integrins. The broken
arrows indicate finite diffusiveness whereas the solid arrow indicates attractive interaction.

64



associated with kindlins and the THD, however interact with ligated integrins that are

considered either immobile or of significantly reduced mobility. The attraction force is

computed by eq. 3.7. Ligation of activated integrins occurs with a probability, that

translates to a rate, that depends on the energy associated with achieving an indentation

of δ⋆
α,β; we take this, as noted above, to be such that δ⋆

α,β ≈ 10nm. But if ligation is to

occur near an already ligated integrin, say integrin α, the additional indentation is reduced

to δ⋆
ℓ −∑

{η} δβ(|ξα − ξβ|) where {η} is the set of all activated integrins not including α;

thus ligation is favored near an existing ligated integrin and clusters of ligated integrins.

Note that the above schema does promote the incorporation of un-ligated, and particularly

activated, integrins into clusters as suggested by Changede and Sheetz [64].

Let the set of all ligated integrins be called {ηℓ}, the set of activated but un-ligated

integrins be {ηuℓ}, and the union be {η} = {ηℓ}+{ηuℓ}. The embedded body forces within

integrins are determined as follows:

δ0,α(fα)+
∑

β={η}
δ(|ξα − ξβ|,fβ) = δ⋆, δ0,α ≥ 0; α ∈ {ηℓ}

δ(0,α) = δ⋆
uℓ, α ∈ {ηuℓ} and then

fα = kδ0,α, α ∈ {ηℓ}+{ηuℓ}.

(3.10)

We note, for clarity, that for unligated integrins what is specified is a fixed δ⋆
uℓ and hence

for an unligated integrin ful
α = kδ⋆

uℓ regardless of the displacement fields of other integrins;

i.e. unligated integrins simply cause a fixed indentation.

3.3.3 Simulation model: force mediated diffusion

For diffusive motion we take the mean square particle distance traveled, in time t,

to be ⟨r2⟩ = 4Dtγ , where D defines a diffusion coefficient and, for free diffusion, γ = 1 [135].

For viscous motion, with velocity v, under an applied force we take a linear relation
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v = 1/ζ f ; the Stokes-Einstein relation [135] provides the link, as

1/ζ = D/kT. (3.11)

We apply a general scheme to simulate particle diffusive-ballistic motion patterned after

Brànka and Heyes [136]; here xi, i = 1,2 are the 2D coordinates of particle, i.e. integrin, i.

To simulate 2D diffusion per se, we write that

dxi

dt
= ẋi = D1/2 ϕi, i = 1,2 and with expectation ⟨ϕi⟩ = 0. (3.12)

Here ϕi is a random force that contains kT and D1/2 as scaling factors, explained below.

When eq. 3.12 is integrated over a short time (step) ∆t we obtain

xi = D1/2ϕi ∆t, i = 1,2, with again ⟨ϕi⟩ = 0. (3.13)

Hence, we may take xi = Wi, with ⟨Wi⟩ = 0. But given that ⟨r2⟩ = ⟨x2
1 + x2

2⟩ = 4Dt, we

find

⟨W 2
i ⟩ = 2Dt, i = 1,2. (3.14)

Now the general equations of motion read

ẋi = 1
ζ

f (i) +D1/2ϕi (3.15)

and hence, using a Runge-Kutta order 2 integrator, we arrive at the explicit iteration

x
(α)
i,n+1 = x

(α)
i,n + 1

2

{
f̃

(α)
i (tn,xn)+ f̃

(α)
i (tn+1,xα,E

n+1)
}

+Wi, i = 1,2, α = {ηa}, (3.16)

where f̃
(α)
i = 1/ζ f

(α)
i is the normalized ith component for interaction force computed from
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eq. 3.7, when summed over all integrins that produce an elastic field and

xα,E
i,n+1 = f̃

(α)
i,n ∆t+Wi, i = 1,2 (3.17)

is the “Euler” estimate of xi at time tn+1 = tn +∆t.

3.3.4 Ligation vs. bond rupture kinetics

We adopt a simple approach to describe the rate of ligation and ligation bond

rupture, viz. we write that

kon = k0
on e−ϕ, (3.18)

where

ϕ =


f{δ⋆ − δ̄β}/kT, δ̄β ≤ δ⋆

0, δ̄β > δ⋆,

and (3.19)

f is the force that would develop within the integrin as it ligates; ligation involves 2 length

scales, viz. δ⋆ and δ̄β. δ̄β is used here to denote the net displacement at the ligating

integrin caused by the displacement fields of all other integrins - i.e. all that have such

fields - and δ⋆ is the total displacement required for ligation; δ̄β is given as

δ̄β =
∑

β={η}ᾱ
δβ, where (3.20)

{η}ᾱ = {ηℓ}+{ηul}−α. To be sure, we have

f = k{δ⋆ −
∑

β={η}ᾱ
δβ}. (3.21)

This approach is equivalent to that adopted by, e.g. Sun et al. [112, 137] that

followed the observations of Erdmann and Schwarz [138] who analyzed the effects of

integrin-ligand separation on cluster formation and and stability. Both approaches leaned
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heavily on the ad hoc formalism of Bell [80,139]. Effectively, the approach assumes that

the rate of ligation is mediated by an activation energy, ∆Gℓ
act, that depends on f , an

internal force on the integrin that opposes integrin extension. This may be written as

∆Gℓ
act = ∆G0,ℓ

act +∆Gℓ
ext, where ∆Gℓ

ext ∼ work of extending the integrin, including deforming

the cell membrane-glycocalyx-ECM system; the latter is related to f and δ⋆ as ∆Gℓ
ext ∼ γfδ⋆,

γ being determined by the particular model used to relate f to δ⋆. Hence we arrive at eq.

3.18 with eq. 3.19. In this, k0
on = K◦ exp{−G0,ℓ

act/kT}, and G0,ℓ
ext represents the additional

work of extension involving the system stiffness; K◦ is a kinetic pre-factor.

To rigorously describe the kinetics of bond rupture, i.e. unligation, we should

account for the catch-bond nature of integrin-ligand bonding via computing bond survival

times [140]; a particularly clear and implementable theory for this has been presented

by Thomas et al. [79,141] and has been implemented for adhesion by Asaro et al. [142].

However, in simulations such as the ones we pursue here such an implementation would

distract us from the salient points to be made in employing a matrix of parameter studies

and would require detailed knowledge of data on catch-bond properties that are rarely

available. Hence we take an alternate route to approximate this by drawing from the

somewhat ad hoc formalism developed by Bell and co-workers [80,139]. Bell’s formalism

has, indeed been used in this context by others, e.g. [69, 78, 137,143]. Toward this end we

write

koff = k0
off eφ, (3.22)

where

φ =


3f/fmax, δ⋆ − δ ≥ 0

0, δ⋆ − δ < 0
(3.23)

and where fmax = kδ⋆. This is often said to be a simple slip-bond whose rupture rate is

monotonically increased by a force like f .

Integrin-ligand bonds are generally described using a two-state energy landscape as
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suggested by the two extended states for activated integrins sketched in Fig.3.2; specifically

they are described as catch-bonds [79,140,141]. As noted above, we use a simpler description

in the current case due to the quite limited range of force level imposed on the integrin-

ligand bonds. Data for such kinetics, e.g. for k0
on and k0

off however, remains both elusive

and disparate, since parameter values have been determined for various systems without

the context of the present cell adhesion. We have chosen values that are reported, and

used in analysis, by a range of studies [69, 78, 137, 138, 143–145] and tended to use median

values that are listed with our case studies. Variations of these have been utilized to

establish sensitivity.

3.3.5 Scaffolding proteins affect clustering: talin

Scaffolding proteins such as talin bind to integrins and promote activation and

ligation as described via Figs. 3.1 and 3.2. In fact, Changede and Sheetz [63, 64] in their

overview reports have proposed that [64] “... the (talin) rod domain contains an integrin

binding site 2(IBS2) required for clustering, which directly binds the activated β subunit

of the integrin domain ...” as sketched in Fig. 3.2e-d. We have included this into our

modeling by specifying a probability of binding of talin rod (TR) to ligated integrins and,

in turn, the binding of unligated integrins to integrin-talin complexes; such unligated

integrins, with reduced mobility, are referred to as “unligated+tailin” in our subsequent

example simulation figures. We take a simple approach to describing these effects of talin

by noting first that binding of talin to an integrin, say an unligated integrin via a vinculin

catch-bond [142] would most likely unjustified and hence a simpler approach is required

to capture the main effects of restricted mobility due to both bonding and corralling

effects of the scaffolding network. Hence we take the view that an unlighted integrin

that migrates within a certain distance, rtalin, of a ligated integrin experiences a reduced

mobility ascribed by Dunligated-talin; these reduced diffusion coefficients are listed in our

case studies to follow, where rtalin is typically taken in the range 15nm ≤ rtalin ≤ 25nm.
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Hence in our simulations we allow such restricted integrins to move by diffusion and viscous

drag albeit with reduced mobility; the effect is they are “encouraged to cluster”, yet can

move out and become free again, or they may ligate with enhanced probability due to the

proximity of nearby ligated, and perhaps clustered, integrins. Our case studies illustrate

ample examples of such choices.

3.4 Results

3.4.1 Effects of parameters

We begin with a few pointed observations concerning the anticipated effects of key

parameters on potential clustering. Specifically, we comment on expected effects of integrin

ligation distance, δ⋆
α,β, diffusion coefficient, D, and cell membrane-substrate stiffness, E.

For δ⋆
α,β , hereafter simply referred to as δ⋆

ℓ , we first recall that the extensional distance of an

activated integrin is of O(10−12nm), hence δ⋆ ≥ 10nm. On the other hand, integrins must

extend beyond the cell’s gycocalyx whose thickness is of O(10−60nm), or thicker [146–149];

hence in our simulations we explore the range 10nm ≤ δ⋆
ℓ ≤ 60nm. For diffusion coefficients,

we note that integrin diffusive mobility has been studied in a number of contexts related

to adhesion, including those specifically related to clustering, e.g. [73, 150–152]; based

on these reports, we may assume 10−15m2s−1 ≤ D ≤ 5×10−13m2s−1; in our case studies,

however, we take D ≤ 2 × 10−14m2s−1. In a most interesting study of integrin mobility

within FAs, Rossier et al. [152] reported variable diffusion coefficients for αvβ3 and α5β1

integrins that depended on the state of confinement within the adhesion; integrins were

defined as being “free” when they were outside FAs and unligated and “immobilized”

when they were ligated and bound to actin binding proteins (ABSs) such as talin. For

ligated and ABS bound integrins we generally take D = Dℓig = 10−18m2s−1 − 10−16m2s−1

to make our model adaptable; with this low value, however, we confirmed that there

were no perceptible differences than when simply assigning Dℓig = 0. For free integrins
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Rossier et al. [152] report that Dfree ∼ 7 × 10−14m2s−1; we generally chose values between

D = 10−15m2s−1 −2×10−4m2s−1 to be more consistent with with a range of reports as

already cited [73,150–152]. In an exploratory simulation, presented in Section 3.4.2, we

take D = 10−17m2s−1 to consider a case of cells supported on supported lipid bilayers

(SBLs) with mobile ligands that allowed for ligated integrin diffusion [63]. With this we

anticipate and explore the following, inter alia, effects.

1. Ligation distance, δ⋆
α,β

generically
⇝

called
δ⋆

ℓ : As the force, f , within an integrin depends on

δ⋆, as does the integrin’s displacement field, we expect this parameter to have a first

order effect on integrin migration and ligation binding lifetime. These effects are,

however, complex due to the cooperative nature of integrin interaction as well as the

stochastic nature of integrin migration and ligation and un-ligation behavior. We

further note that the interaction forces are related to combinations of terms such

as f ∂δ/∂ξ as in eq. 3.7, and as f ∼ E δ⋆
ℓ and ∂δ/∂ξ ∼ 1/E δ⋆

ℓ , the interaction force

between integrins may be expected to dominated by {δ⋆
ℓ }2. However, as the internal

force, f , depends on E, the rate of un-ligation will depend directly on stiffness E.

Hence the effects of E, per se, are not easily anticipated a priori. For example, due

to the attractive forces among the integrins we expect that increased mobilities will

tend to reduce time scales for cluster formation and perhaps affect cluster size.

2. Integrin diffusion coefficient, D: Both the rate of diffusion and viscous motion

depend on the magnitude of D since the viscous mobility, 1/ζ, and D are related

as 1/ζ = D/kT . Hence we expect that D will have a first order effect in promoting

clustering.

3. Cell membrane-substrate stiffness, E: The effect of stiffness has already been noted

and we expect that its main effect will be in determining whether clusters are stable

or not; this is expected due to the effect of large integrin internal forces on the rate

of un-ligation, i.e. koff. In terms of interaction force, the effect of E becomes more
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difficult to anticipate in such a stochastic process as diffusion-interaction driven

clustering. Hence, we might say “we’ll see what happens and try to rationalize after”.

For additional perspective on the meaning and value of the results to be discussed,

we note that they will show the influence of specific system parameters that are not

typically reported, or perhaps even known for a given cellular system where clusters have

been observed. Hence, the value of models of this type is to point to those physical

parameters that require documentation if analysis of clustering events is to be possible.

3.4.2 Simulation results

To begin, we recall the observations of Ye et al. [87] who reported that no “gross

clustering” of integrins was observed in the absence of binding to ligands, this lack of

ligation they achieved by incorporating αIIIbβ3 into liposomes with activation with

the THD. To explore this, as mentioned in Section 3.2, we performed simulations that

mimicked this case by simply precluding ligation, as if ligands were absent; Figure 3.5

displays some results in which we explore two levels of δuℓ and integrin mobility, i.e. D.

Cases #1 and #3 of Fig. 3.5 specify δ⋆
ul = 1.6nm and 3.2nm, respectively; this, in turn,

sets f b
0 = 0.1pN and 0.2pN , respectively. There is, evidently, little or no tendency towards

forming clear distinct clusters despite the mutual pairwise attraction of these active but

unligated integrins as described by eq. 3.7. We also increased D from D = 10−15m2s−1

to D = 2 × 10−14m2s−1 to test the sensitivity to mobility and observed no discernable

differences. Given the physical origins of the pre-force, f b
0 , and its relation to its “driver”,

δ⋆
uℓ, we do not believe that larger values are physically relevant. Hence, these results

appear to be consistent with both the observations of Ye et al. [87] and Changede and

Sheetz [63,64] regarding the need for, at least some, integrins to be ligated to form distinct

nascent clusters.

The underlying reason for this trend lies simply in the relative balance of random

“thermal forces” vs. the relatively weak attractive forces due to type of interaction. Close
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Figure 3.5. Results for a series of simulations where δ⋆
ul = 1.6nm and 3.2nm for unligated

integrins and in which ligation was precluded. Two levels of integrin mobility were used
with D = 10−15m2s−1 and D = 2×10−14m2s−1.
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examination of the integrin distributions at longer times, however, reveals occasional loose,

but transient, aggregations. These aggregates may be accentuated with increased δ⋆
ℓ , but

as noted this would seem to suggest the need for additional experimental justification to

motivate and justify even larger values of δ⋆
ul; we recall from eq. 3.8 that, if f b

0 = 0.1pN,

δ⋆
ul = f b

0/k ∼ 1.6nm and so on with increasing values of f b
0 . For further perspective on

this we again refer to the most interesting simulation studies of Reynwar et al. [128] who

simulated large lipid membrane distortions caused by binding of protein capsids of various

size and curvature.

Figure 3.6 summarizes results from a series of simulations in which we assume that

unligated integrins do not create an elastic field, i.e. where δ⋆
ul = 0; this means unligated

integrins do not interact with the elastic fields of ligated integrins, i.e. they simply undergo

random diffusion wherein they may ligate with enhanced rate if near a ligated integrin or

cluster. All parameters are listed in the figure. Since the diffusion coefficient of ligated

integrins is some 3 orders of magnitude less than that of active but un-ligated integrins, we

expect that the only effect promoting clustering is the enhanced ligation rate, i.e. kon of

eq. 3.18. In all these simulations the initial distribution of integrins was taken as uniform

with a density of dint = 441µm2.

Of the key parameters involved, we observe the influences of δ⋆
ℓ ,E, and D. For

example, for E = 5000Pa we observe that clusters do indeed form over times of O(1−2min)

and tend to remain stable as long as δ⋆ < 30nm; for δ⋆ > 30nm stable clusters do not

survive. This was the case with D = 10−15m2s−1. Yet, and again with δ⋆
ℓ = 40nm and

D = 10−15m2s−1, but with E = 1500Pa, we once again find observe stable clustering. We

note, however, that the clusters tend to be rather small and contain but a few integrins;

typically we observe on order of 5-7 integrins in all of the clusters shown in Fig. 3.6 with

the initial density of dint = 441µm2. Hence clusters do form on substrates of all rigidity as

Changede and Sheetz report [63,64], at least within the range of E,D, and δ⋆
ℓ we use here;

clusters do tend, however, to be less stable on more rigid substrates. Changede et al. [63]
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Figure 3.6. Results for a series of simulations where δul = 0 for unligated integrins; the
frames are snapshots of a continuous simulation for greater that 600s. All parameters are
listed for the 4 cases considered. The initial integrin distribution is is shown in the upper
left.
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noted that nascent clusters tended to be less persistent on stiff, viz. glass, substrates than

on less rigid, viz. supported lipid bilayer (SLB), substrates, an observation consistent with

the observations of Choi et al. [71]. Our observations of the effect of stiffness may provide

the beginnings of an understanding of how that transient process unfolds. Changede et

al. [63] suggest, though, that “... the turnover of the adhesions was a second step that was

stimulated by extracellular traction force”, a step we do yet include in our simulations.

Choi et al. [71] discuss that nascent adhesion turnover is “... independent of myosin II”,

and hence this process will require further study. The clusters so far discussed in our

simulations do tend to be smaller than they report and that requires further inquiry as we

look to next.

Figure 3.7 shows results for a compatible set of cases as Fig. 3.6 where a pre-force

is assumed as described above. As it happens, the differences are not great except for the

observation that the clusters are sightly larger and tend to contain slightly more integrins

on order of 6-8. One observation relevant to reported observations, is that there are now

more unligated integrins found within the clusters; this is in addition to the also consistent

increased size and cluster integrin density. Although the pre-forces, f b
0 , are of quite modest

magnitude we find they do have noticeable effects such as increased cluster size and integrin

number density within clusters. Since the displacement fields of an unligated integrin does

contribute to the net required displacement beneath a ligated integrin, we expect their

proximity to ligated integrins reduces the internal force and helps stabilize the ligation

bond; recall that bond is considered a “slip-bond”, not a “catch-bond”. This effects is,

however, quite modest and at the rather modest level of the internal forces of O(∼ 1pN),

or less, the bond type difference is itself modest. We note in passing, though, that the

difference in bond type would be important when the actin-myosin cytoskeleton forces are

applied as in mature FAs [79,142]. Regarding stable clusters, here again we observe that

when δ⋆
ℓ > 30nm stable clusters are not observed. A quite different picture is obtained,

however, if the the integrin mobility is somewhat larger; we turn attention to the effect of
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mobility next in Fig. 3.8.

Figure 3.7. Snapshots taken from simulations in which a pre-force, f b
0 , is imposed on

unligated integrins. All parameters are listed for each of the 3 cases considered. The initial
integrin distribution is as shown in Fig. 3.6.

In Fig. 3.8 we explore the effects of a larger integrin mobility and, as it happens,

increased integrin mobility appears to have substantial effects with respect to both the

time scales for initial clustering and longer time clustering. With D = 2×10−14m2s−1, for

instance, we note that aggregation of integrins appear only after times ∼ 10s as opposed

to ∼ 300s when D = 10−15m2s−1. It is important to recall that this acceleration is not

merely the effect of diffusion per se, but of an increase in viscous mobility, 1/ζ = D/kT .

Cluster size is also increased, with the number of clusters decreased and the number of

integrins found within clusters increased.
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Figure 3.8. Snapshots of simulations for 4 cases in which the integrin mobility is increased
to D = 2×10−14m2s−1. Note the significant effect increased mobility has on increasing
cluster size while maintaining cluster stability.

Cases #2 and #3 of Fig. 3.8 are particularly interesting in that they display

a reduced number of clusters whose sizes are significantly larger than appears in the

simulations shown above. This effect with enhanced integrin mobility has its roots in one
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of the basic features of our model. Essentially, an explanation would go something like

this. Once initial integrins ligate, they more quickly attract unligated integrins and also

provide significantly higher probability of ligation in their vicinity, that is in the vicinity

of a de novo nascent cluster. Hence, the de novo cluster develops rapidly. Its stability

is assured due to the cooperation among displacement fields of the integrins such that

only quite modest internal forces develop in each integrin within the cluster, i.e. koff is

maintained at a low level. When δ⋆
ℓ is high enough, e.g. when δ⋆

ℓ = 80nm in this case, this

is no longer the case.

Taken together, the above results demonstrate that the proposed mechanisms do

naturally lead to integrin clustering with time scales consistent with reported observations.

However, the details such as cluster size, and the number of integrins found within each

typical cluster, depend on factors such as internal force levels within integrins, integrin

mobility, and to a lesser extent system stiffness per se. These insights certainly suggest that

further quantitative detail is required regarding integrin mobility as well as an assessment

of system stiffness, e.g. what is taken as E herein. System stiffness, moreover, needs

to be viewed in a more holistic manner, e.g. to include at least some assessment of the

potential contributions of the cell’s glycocalyx [78,142]. To gain additional insight we refer

to Fig. 3.9 that shows cluster results for systems of nominally higher integrin density, viz.

dint = 841µm−2.

Figure 3.9 shows results for two cases, both with dint = 841µm−2, δ⋆
ℓ = 20nm, and

E = 5000Pa, but with D = 10−15m2s−1 and D = 2 ×10−14m2s−1. The most obvious, and

perhaps expected, result is a general increase in the size and expected number density of

integrins per cluster; cluster size is of O(100nm), most particulary with D = 2×10−14m2s−1,

i.e. higher integrin mobility. The number density of integrins is in the range of 30-50

integrins per cluster. We note that to approach such cluster sizes with lower dint, larger

δ⋆
ℓ was required as in cases #1 and #2 of Fig. 3.8 showed. The general trends in cluster

formation were not altered with increases in dint but clusters appeared at earlier times
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Figure 3.9. Simulations involving higher initial integrin density and modest integrin
mobility (Case #1) and increased mobility (Case #2). Note the increase in cluster size
and average integrin numbers within clusters with enhance mobility.

which, of course, would be expected. A most notable effects of δ⋆
ℓ was to increase the

eventual stable cluster size, which formed after ∼ 100s, and that appears in the range

dcl = 100±20nm, as determined from range of 20 such simulations.

Cluster-cluster interaction

As a final example we address the question of cluster-cluster interactions; for this we

refer to Fig. 3.10. Here we assume that ligated integrins may possess higher mobility, this

motivated by Changede and Sheetz’s [63] report that clusters on supported lipid bilayers

(SLBs) tend to aggregate. How ligated integrins on an ECM diffuse, however, is unclear

yet on the SBLs they used ligands were reported to be mobile. The effect of increasing Dℓ,

and in fact the effect of allowing mobility of ligated integrins at all, is sigificant indeed. In

Case # 1 of Fig. 3.10, with δ⋆
ℓ = 30nm, we observe very early clusters that take on sizes

∼ 100−200nm and rapidly recruit unligated integrins that ligate with enhanced rate. We

do recall however that, since the internal forces within “would be” ligated integrins are
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modestly reduced, the effect of large clusters is to increase kon toward the value k0
on in

eq. 3.18. The clusters are quite dynamic in that ligated integrins tend to unligate and

re-ligate, unless they should diffuse away unligated; in this particular simulation if an

integrin unligates we reset Dul = 2×10−14m2s−1 and indeed we observe such occasional

motions as described just below. Rossier et al’s. [152] findings on integrin mobility might

suggest a refinement of this by noting that if an integrin unligates while within a cluster’s

interior it may find itself “corralled” and hence less mobile; such refinements are readily

accommodated, yet were not here.

The dynamics of the clusters is such that they tend to drift toward each other as

noted by Changede and Sheetz [63], at least for those clusters whose integrins are bound by

talin rod (TR). This drifting motion, however, occurs not by a discrete motion of clusters

per se. Motion occurs by the slow ligation at those regions on the periphery of clusters

juxtaposing nearby clusters. The simple scenario of this simulation evolves into a single

cluster.

We then reduced Dℓ = 10−17m2s−1 and observed a similar yet temporally different

evolution of clusters that first formed and then drifted toward each other; this is shown in

Fig. 3.10 as Case #2. Note that after 300s the clusters have “grown” by merging to sizes

of O(200−300nm). These clusters drift, typically toward each other, as described below.

To obtain a more detailed look at such cluster dynamics we performed additional

simulations with the same parameters of Case #2 of Fig. 3.10 and extracted snapshots at

time intervals of δt = 0.1s; an example is shown with Case # 2 of Fig. 3.10. This cluster,

that contains at various moments within the 3δt time interval shown approximately 35-37

integrins, is drifting dextra (toward the right) in this scenario. The mechanism of motion

can be seen by the movement of integrin “i”, sinister (to the left) to the cluster where it

becomes bound to the cluster via talin (see figure legends); integrin “i” is expected to then

ligate, at least with a higher probability. In addition, we observe at least two examples

of transitions in state of integrins “j” and “k” between the time 3δt between t = 21.7s
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Figure 3.10. Simulation of nascent cluster interaction visualized by prescribing an
enhance mobility to ligated integrins. All parameters are listed. Clusters tend to attack
due similar force fields as described for individual ligated and activated integrins. Case #2
details cluster drifting and the dynamics of cluster motion and integrin turnover within a
cluster.

and t = 21.8s. Integrin “j” has transitioned from being bound to a ligated integrin via

talin to a ligated integrin on the left edge of the cluster to being unligated (i.e. free); this

is part of the cluster’s drifting dextra. In the meantime integrin “k”, that is within the

cluster, transitions from being ligated and unligated. It is indeed possible to turnover
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large fractions of ligated integrins within a cluster in this manner. Such visualizations also

make it clear how further refinements in specifying character or parameters changes of

integrins may be readily accommodated.

With regard to cluster drifting, however, we note that Changede and Sheetz [63]

have reported that in cells expressing either talin head domain (THD) or the talin rod

(TR) the motility is different; mechanisms for such differences remain to be explained.

What also remains to be described is how nascent clusters de-stabilize, disassemble, and

disappear.

3.5 Discussion

We have presented a framework, and a specific model, for the formation of nascent

adhesions based on reported phenomenology, as cited, and a rather simple physical

description of integrin bonding, via ligation, to substrates. Substrates, in our view, do not

necessarily mean stiff media such as extracellular matrices or organic slides, but may indeed

be soft matter such as supported lipid bilayers (SLBs) as described and used by Changede

and Sheetz [63,64]; the cell’s membrane itself has finite bending stiffness. The idea behind

our approach is also to be found in in the molecular dynamics simulation studies of, for

example, Reynar et al. [128,129] who demonstrated that capsid-like protein “particles”,

bound to lipid membranes, cause local membrane deformations that drive clustering, more

intense deformations, and that may even lead to vesicle formation. The fundamental

driving forces here are similar, namely the reduction in total free energy upon clustering

of those entities, viz. protein capsids in Reynar et al. [128, 129], and integrins herein,

that are the so-called sources of deformation. We note that the simulations of Reynar

et al. [128,129] of interacting proteins were preformed on free membranes that tended to

take on large curvatures; in fact our mechanisms and formalisms is quite applicable to

such curvatures. The cell-substrate interactions modeled in this study, however, occur on
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interfaces of quite modest curvature as affected by the protein distortions we model.

Our model also specifically calls attention to the role of the cell’s glycocalyx, a

feature that has been discussed by Paszek et al. [69,78] with regard to cancer cells; this

important, and ubiquitous, cell component is, unfortunately, to often neglected in such

studies of cell adhesion. Hence, the discussion of Paszek et al. [69, 78] should receive more

attention and has been, e.g. in the considerations of Asaro et al. [142] in describing the

formation of traction force in FAs.

The framework of our model allows, by design, wide flexibility with regard to

including additional features such as, inter alia: 1) patterned ligand distributions; 2)

variable integrin mobility; 3) kinetic descriptions of ligation and unligating; and 4) the

influence of “applied forces” as may arise due to actin-myosin contractility; by simply

extending the model to include actin-myosin forces, the evolution of mature may be

explored. Of course, this will entail a holistic treatment of the stochastic nature of the

adhesome’s force train as considered by Asaro et al. [142]; in that analysis they showed

how mechanosensitivity occurred all along the adhesome and hence attempts to attribute

such to a simple anonymous set of “clutch bonds” is inappropriate and unrealistic.

Our analysis has revealed several noteworthy features of the clustering process, yet

there are many unknowns, as expected. These findings include, inter alia:

1. We have demonstrated that nascent clusters should form on substrates of all rigidities,

a claim made in the title of Changede and Sheetz [63,64]. This basis for their finding

becomes clear upon the realization that a driving force for clustering stems from the

energy reductions that follow clustering as illustrated by attractive pairwise force

between integrins given in, e.g. eq. 3.7. As noted earlier, this force scales directly

with terms such as f⋆
α ∂δ/∂ξ where f⋆

α and ∂δ/∂ξ, respectively, scale as E and 1/E,

E being the system rigidity (stiffness). Hence, the this force does not depend strongly

on system rigidity; the internal force within an integrin, however, does depend on
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system rigidity and that will affect ligation bond survival time. Of course, this basis

may also be appreciated by the simulations of Reynar et al. [128,129] noted above;

in those cases there was no substrate, but only the free energy of the deformed

membrane.

2. Our simulations reveal important quantitative and qualitative effects of integrin

mobility, on clustering as illustrated in Fig. 3.10, and by comparing Figs. 3.10 with

Fig. 3.9, as examples. First, we observe that clusters tend to be larger when the

mobility of unligated integrins is increased; in the specific case studies clusters were

in the size range ∼ 100nm (in Fig. 3.9) and with a factor of 5 increase in Dunligated

were more in the range of ∼ 200nm (in Fig. 3.10) in diameter. Moreover, if ligated

integrins were ascribed a somewhat increased mobility, clusters were observed to

“drift” so that they aggregated. To visualize why this may happen, we noted that

clusters that stand apart by some distance from each other appear as “large point

forces” and hence attract with a force similar in kind to that described by eq. 3.7

for single integrin pairs; this is the thermodynamic force driving the drifting motion.

The actual mechanism for this drifting involves integrin unligation and ligation

at the juxtaposed peripheries of merging clusters as illustrated in the simulation

frames shown for Case #2 of Fig. 3.10. But the question arises: what accounts for

this enhanced mobility of ligated integrins? In the cases studied by Changede and

Sheetz [63], involving cells on supported bilipid layers (SBLs), they reported that the

ligands on SBLs were mobile. For cells adhered to an ECM or an organic substrate

this would remain an open question. Nonetheless, if clusters are observed to aggregate,

this offers a potential mechanism. Clearly, this sort of observation, among others,

suggests that integrin mobility is an important determinant for deciphering cluster

dynamics and hence experimental studies of clustering will be deficient without such

information.
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3. On the question of integrin mobility we note the study of Rossier et al. [152] as a

noteworthy example. Their study was particularly concerned with understanding the

role of, in particular β1 and β3 containing, integrins dynamics on FAs in fibroblasts

on fibronectin substrates. We have used these studies to motivate our variations

in diffusion coefficient as explained in our case studies above. Accordingly, we

“immobilize” integrins upon ligation where we have assumed that the integrins bind

talin, and possibly kindlins as well; this is done by assigning a nearly vanishingly

small value of Dligated ∼ 10−18m2s−1. Rossier et al. [152] defined integrin confinement

within FAs in terms of a radius, rconf, and with that specified diffusion coefficients

accordingly. This sort of detail may be incorporated into a model such as ours for

further refinement.

4. Finally we add that our model helps explain the patterns of integrin clustering

observed in the experiments we have cited, e.g. [63, 64, 71], that are some of the

most comprehensive conducted to date. In particular, we find that the numbers of

integrins that appear in clusters appears to lie in the range of 30-50 which is again

typical to what is observed experimentally [63, 64]; this in itself is a noteworthy and

not obvious trend. However we also note that depending on factors such as the initial

density of integrins and the magnitude of diffusion coefficients numbers outside this

range are indeed possible. For this reason we have made special note that future

studies of nascent clustering should document the mobility of integrins as well as

their expressed numbers.

Further progress may be made by combining the sort of detailed observations of

nascent cluster formation as reported by Changede and Sheetz [63,64] with a more holistic

study of integrin mobility as performed by Rossier et al. [152]; this would provide a better

documented case study to explore the veracity of models of the type we have presented

herein. Cellular details pertaining to cell glycocalyx as well as integrin activation kinetics
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for the identified adhesion integrin-ligand system would, of course, be invaluable. Without

such a quantitative basis, models can only render trends and potentialities, not true

forecasts or explanations. In fact, the immediate value of models such as presented here is

to better define what is needed and why it is needed.

Finally, we suggest that a particularly important feature (mystery?) of nascent

cluster adhesions is their disassembly, i.e. if they fail to mature into FAs. This process

may lie at the heart of our eventual understanding of cell adhesion, mechanosensitivity,

and mechanotransduction. Once the disassembly process has been better understood

in a mechanistic sense, other critical details such as the stochastic, force rate, and time

dependent traction forces that develop due to cytoskeleton contractility may also be better

understood in a modeling sense, e.g. [137,138,142,143]. The same is true for vital processes

such as cell migration which involves both adhesion formation and disassembly.
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Chapter 4

Diffusion-advection within dynamic
biological gaps driven by structural
motion

4.1 Introuduction

Examples are legion of biological systems in which an exchange of solute and/or

solvent across or along the walls of channels or thin gaps, through which fluid solution flows,

occurs. This, of course, suggests that advection coupled to diffusion may play an important

role in the overall transport. Indeed, this underlies a basis of Starling’s hypothesis [153], of

over a century ago, that fluid is filtered at the arterial end of a vessel such as a lymphatic

vessel, and reabsorbed at the venous end through fluid flow. Advection influences have

been assessed within the framework of the standard gradient model for water transport,

inter alia [154,155]. Other examples are found within the Golgi complex, within channels of

epithelial cells, and in the thin gaps between cells during their adhesion. Advective flow of

potentially toxic metabolic by-products within the brain has been recently discussed [156];

the concepts proposed there are similar in part to Starling’s idea. In the brain, this is

thought to occur via the interstitial space and fluid and although detailed models for

this and the energetic sources that drive the process may be yet unknown, evidence for

advection vs. diffusion is compelling [156]. Combined diffusion and advection occurring
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within the interstitial space of tissue has been experimentally explored since at least 1989.

For example, Chary and Jain [157] measured the transport of bovine serum albumin within

chambers implanted in the ears of rabbits. In such cases of larger molecules, experimentally

measured diffusion coefficients of order D ∼ 10−11m2s−1 indeed showed that advection

contributed a vital role in the overall transport. For later reference, we note that Chary

and Jain [157] reported measured fluid velocities in the range v ∼ 0.5−0.6µm s−1; such

velocity range will be referred to below and quite favorably compared to our model’s

forecasted ranges, say v ∼ 0.5 − 1.0µms−1 (see Section 4.3.3, eq. 4.34 and then Section

4.3.1, eq. 4.13).

These combinations of diffusion coefficient and fluid velocity values demonstrate a

definite contribution of advection. To explore this we consider the example of possible

advection coupled to diffusion in the transport of neurotransporters within a synaptic

cleft-like geometry (aka gap) of nerve dendrites [158,159]. Advection within the synaptic

cleft might not be thought as a major contribution to molecular transport due to its

restricted transport distances 200nm≲R≲ 1000nm, yet it provides a quite clear geometry

(Fig. 4.1) to explain the effects of structural motion that reveals an inverse effect of length

scale on transport. For example, with D ∼ 10−11m2s−1,R ∼ 1µm, and v ∼ 5µms−1 we

find a Peclet number Pe ∼ Ru/D ∼ 0.5 which about brings advection about competitive

with diffusion. We explore, however, a vital link between length scale with Pe within our

models via predicted fluid-solid interaction; this links length scale with v in an inverse

relation. In fact, we introduce a number, AD, that compares time scales for advection vs.

diffusion and find AD ∼ 1/R2. This unexpected result for the effect of diffusion distance

is due to the strong R4 dependence of hydrodynamic resistance of our model rigid disc.

Of course, the fluid flow considered herein does not compare with that found in

cytoplasmic streaming in plants discovered over 240 yrs ago [160, 161]. Recent reviews

[162,163] discuss fluid velocities well in the range of v ∼ 1−10µms−1, and even as high

as 40 − 60µms−1 [164, 165]. The flow is driven by the motion of myosin motor proteins
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along actin filaments that carry “cargo” consisting, inter alia, of vesicles, organelles, and

molecular complexes. This, in turn, provides a velocity boundary condition that sets

fluid flow patterns throughout the bulk of the cytosol and vacuoles of the plant cell. As

Pickard [161] pointed out, however, it may not be the advection of fluid fluid flow per

se that is responsible for the more critical transport but the “towing” via the myosin

carriers of vital entities. Two aspects of cytoplasmic streaming in plants are worth noting

here, however. First, the ranges of fluid velocities involved suggest a clear potential for

significant contributions of advection vis-à-vis diffusion for molecular transport, especially

over distances L ≥ 1µ; indeed this has provided perspective on the limits to animal cell

size, as opposed to larger plant cell sizes, if it is assumed that diffusion per se is the most

viable mode of ion and molecular transport in animal cells [162]. Secondly, is the role of

ATP hydrolysis that powers cytoplasmic streaming [162,163]. We will likewise assume that

ATP hydrolysis is necessary to achieve sufficient hydrodynamic flow to render advection

significant.

pre

post

gli
a glia

v

nh

Figure 4.1. Schematic of pre- and post-synapses separated by a synaptic cleft (aka “gap”)
of width h. Also indicated are synaptic vesciles that release glutamate into the cleft. Note
that the synapse has a glial cell sheath that is not explicitly included in our model.

As it happens, in biological systems fluid flow is often described as random flow since

it is driven by thermal fluctuations; hence the advection flow of solutes within the fluid

solutions is a stochastic process. Advection-diffusion precesses have been the subject of

various studies in a general context and it has been shown that under certain circumstances
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advection can indeed have a significant role as compared to diffusion per se [166, 167].

Recent experimental evidence has, in fact, been analyzed and reported for stochastic

advective transport lysomes in motile neutrophil-like cells coupled to diffusion [168]. In

this interesting case the contributions of diffusion vs. stochastically driven advection

were separately identified via the characteristically different time dependence of particle

trajectories. Advection due to the stochastic fluid motion driven by the shape changes

that occurred during the cell’s crawling motion was indeed notable with fitted diffusion

coefficients of the order of D ∼ 10−14m2s−1. This result is consistent with our forecasted

results as noted at the end in Section 4.5. We indeed explore the advection-diffusion

coupling during random flow within the basic structure of the synapse cleft. This is to serve

as a prototypical case study whose insights should pertain to a wide range of scenarios.

Transport has been analyzed within the synaptic gap [159]- [169]; such studies

have focused on events such as spillover [170, 171]. For a complete description of the

transient distribution of neurotransmitters after release within a geometry such as the

synaptic gap account must be taken of the glial cell coverage around the synapse that

may impede extracellular diffusion. Such refinement is not included here where we use a

simple boundary condition at the synapse perimeter. Direct observation of the transient

transmitter concentration profile has proved elusive and hence reliance on theoretical

modeling has been used for forecasts. To date modeling has been concerned with analyzing

diffusion as the only transport mechanism - clearly this is reasonable since published values

for the diffusion coefficients [158,169] would argue for such diffusion general dominance.

However, the influence of advection coupled to diffusion has yet to be explored.

The aim here is to formulate a simple, credible, model for the advection-diffusion

process of transport of glutamate or other molecules within the synaptic cleft, or a cleft-

like geometry, wherein the various physical features, and individual sub-processes, are

well defined and such that each displays a clear role in controlling the overall process.

As it happens, there are parameters linked to particular features that control the time
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scales of advection vs. diffusion, and on the other hand parameters that determine the

potential magnitude of the advection contribution. The latter parameter is dependent

on the energetics driving synaptic motion that causes fluid motion either due to thermal

fluctuations and possible metabolic energy sources, e.g. ATP hydrolysis. This is discussed

in some detail in Section 4.4.1. Thus a main purpose of the model analysis presented

herein is to provide a clear model scenario for what determines the role of advection driven

by structural motion.

4.2 Problem description

The essential geometry of the model, and the boundary value problem, is illustrated

in Fig. 4.2. A neuron(nu) is located above a dendrite(den) at the instantaneous height

h(t). The neuron is modeled as a rigid disc of radius R and of mass m. The neuron is

in thermal motion, in the z direction, relative to the dendrite as modeled in the next

section. The motion is random, composed of white noise via thermal fluctuations and

possible additional metabolic energy input. However, for comparison we shall also consider

deterministic motions including harmonic motion. So much for the geometry. We will

assume, as detailed below, that the geometry in which h/R ≪ 1 allows for a thin film

approximation so that concentrations as well as fluid flow can be thought of as z− averaged,

or resultant quantities.

At time t = 0, a flood of neurotransmitters is ejected into the synapse gap creating

an initial concentration, c(r,0) = c0; the concentration of neurotransmitters outside the

gap is zero. One simple boundary condition to account for this is to set c(R,t) = 0. For

the synapse such a boundary condition may arise via the absorption of neurotransmitters

by the glial cells located at the periphery of the cleft (Fig. 4.1 and [170]). This sort of

model does require further discussion, however, as given below.

To model the motion of the disc above its substrate, we couple it via a linear spring
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Figure 4.2. The synapse is modeled as a disc (nu) oscillating above a fixed half-plane
(den) and restrained by a linear spring (k) and subject to a linear viscous drag (c). See also
Fig. 4.3 and its associated discussion for additional detail. Figure 4.5 shows an alternative
model involving two opposing discs; the associated discussion explains that these two
models are essentially equivalent.

representing a harmonic potential and a damper that is meant to account for viscous

frictional resistance of the surrounding fluid. This is depicted in Fig. 4.2a, the side view

of the system.

The idea is this: the motion of the disc induces a Stokes fluid flow field whose

through thickness average radial component takes the form,

v̄r = − 1
2h

dh

dt
r. (4.1)

As dh/dt oscillates in sign, fluid flows out of and into the gap carrying solute via both

diffusion and advection. When fluid flows out of the gap, which is at higher concentra-

tion, the concentration outside is increased, whereas when fluid flows into the gap its

concentration is lower than c0. One may expect that the net effect is to reduce the gap

concentration via advection. Of course, diffusion will also have the effect of reducing the

gap concentration as well. The effect of advection may then be an enhancement of solute

transport. However, this will be dependent on the temporal pattern of the fluid flow as

created by the disc’s motion. For example, recall that the assumed well ordered Stoke’s

flow is reversible (e.g. [172–174]). Hence, if the disc’s motion is, say harmonic, then the

advection effects will vanish since the same volume elements of fluid with their solute

will be reversibly transferred into and out of the gap over a period of motion. In such
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cases mixing of solute occurs only via diffusion. Indeed, this is similar to a simple particle

random walk or to Brownian particle motion whereby unbiased random jumps lead to a

time average distance, r, traveled ⟨r⟩ = 0 (hereby ⟨.⟩ refers to average in time) yet to a

mean square distance ⟨r2⟩ ∝ t. As shown in Sections 4.3.2 and 4.3.3 if h(t) = h0 + η(t)

where η(t) is a random motion about a mean gap width h0, the time average ⟨dη2/dt⟩

controls the time average of advective flow. Hence our case of a stochastically driven flow

field is not a case of a smooth reversible flow. As particles in a stochastic Brownian motion

are subject to randomly imposed forces, solute particles here are subject to a randomly

imposed fluid flow field that results in net diffusive-like transport [175] (see especially Ch

VIII, Sec. 3).

The above considerations suggest that to observe an advection effect the motion

must somehow be biased and irregular. In fact, the motion of biological membranes is

commonly driven by thermal fluctuations and hence is random. We explore this using a

familiar mechanical model for such motion. We also confirm our comments concerning

regular motion by setting

h(t) = h0 +asinωt, with h0 > 0, |a| < h0. (4.2)

We note that a similar model has been proposed by Pannuzzo et al. [176] and here

we carry such analysis further. Our mathematical development is, however, quite different,

as are our conclusions.

4.3 Mathematical formulations

4.3.1 Fluid flow field

The relevant equations for Stokes flow are

0 = −∇p+µ∇2v with ∇·v = 0, (4.3)
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with v being the fluid velocity and µ the fluid viscosity. Geometry suggests that v is of

the form

v = vrer +vzez, (4.4)

with er and ez unit base vectors, and vθ = ∂(.)/∂θ = 0 by radial symmetry. Dimensional

analysis, noting that h/R ≪ 1, leads to the typical thin film approximation [172] of eq.

4.3, viz.
∂p

∂r
= µ

∂2vr

∂z2 . (4.5)

Integrating eq. 4.5 yields

vr = 1
2µ

∂p

∂r
z(z −h), (4.6)

since no-slip conditions demand, even within the thin film approximation, that vr =

0 for z = 0,h [172,174,177]. Now use ∇·v = 0 in cylindrical coordinates to obtain

1
r

∂

∂r
(rvr)+ ∂vz

∂z
= 0, (4.7)

and then

vz = − 1
2µr

∂

∂r
(r∂p

∂r
)
{z3

3 − z2

2
}
. (4.8)

Since vz(z = h) = dh/dt, we find from eq. 4.7

∂

∂r
(r∂p

∂r
) = 12µr

h3
dh

dt
, (4.9)

which when substituted back into eq. 4.8 yields

vz = −6dh

dt

{1
3(z

h
)3 − 1

2(z

h
)2
}
. (4.10)
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Now from eq. 4.9 we find, upon integration

∂p

∂r
= 6µr

h3
dh

dt
+ y(t)

r
. (4.11)

whence, using eq. 4.6,

vr = −3 1
h

dh

dt
r
{
(z

h
)− (z

h
)2
}
. (4.12)

In eq. 4.11, y(t) = 0 since no singularity is allowed.

At this point we again appeal to a thin film approximation [172,174] and define a

through thickness average radial velocity component

v̄r = 1
h

∫ h

0
vrdz = − 1

2h

dh

dt
r. (4.13)

We also note from eqs. 4.10 and 4.12 that vr/vz scales as Rh−1 and thus the thin

film approximation would justify ignoring vz as compared to vr [172,174].

Incidently, the synapse can be alternatively modeled as two opposing identical disks.

Details about the fluid dynamics of this system are included in Appendix 4.5.

For later reference, we also compute the pressure within the gap by integrating eq.

4.11 to obtain

p = 3µ

h3
dh

dt
r2 +f(t), (4.14)

whereupon we note that at r = R, p = p0, the outside pressure. Hence

p(r) = p0 + 3µ

h3
dh

dt
(r2 −R2). (4.15)

Then form the area integrated pressure difference p−p0, i.e.

f =
∫ 2π

0

∫ R

0
{p(r)−p0}rdrdθ = −3πµ

2
R4

h3
dh

dt
= −ξ

dh

dt
. (4.16)
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The force f is a resistive force, or adhesive force, resisting disc motion. For later use we

note that

ξ = 3πµ

2
R4

h3 (4.17)

serves as a friction coefficient. We note that this result for the drag coefficient may be

extracted from Davis’ analysis [178] of sedimentation of disc-like particles approaching a

rigid plane in the limit where h/R ≪ 1. The fluid velocity field is not readily extracted as

hence is developed here.

4.3.2 Random vibration of the membrane disc

As described in Fig. 4.2a, our model for the disc is the all too familiar damped

oscillator attached to a linear spring, k, and damper, c. We dub ω2
0 = k/m and γ = c/m,

where m is the disc’s mass. We assume, as our numerics for the physical parameters later

describes, that γ2/4 ≫ ω2
0, i.e. an overdamped regime. We let h(t) = h0 +η(t), where h0 is

the average and rest elevation of the disc. Let the disc be driven by a random force, F(t),

caused by thermal fluctuations. This random force can be quantified by coupling the disc

system to a heat bath. Hence one model for F(t), or η(t), is as a Gaussian white noise

variable with a delta correlation satisfying ⟨F(t1)F(t2)⟩ = Γδ(t2 − t1) with Γ the strength

of the force.

However, we note that the mechanical model for our structural system shown in Fig.

4.2 presents constraints on h(t). For example, we require |η(t)| < h0, as clearly h(t) > 0.

To handle such constraints we may postulate that F(t), and later η(t), be described as

random telegraph noise [179] where, for example, η(t) transitions between η = −s to s and

η = s to − s, 0 ≤ s < h0, with rates ν1 and ν2, respectively. This means that the fractions

of time spent in gap compression and opening modes are ν2/(ν1 + ν2) and ν1/(ν1 + ν2),
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respectively. The telegraph noise fluctuations of η(t) are correlated as

⟨η(t1)η(t2)⟩ = 4s2ν1ν2
ν2 e−ν|t1−t2|, (4.18)

with ν = ν1 + ν2, a smoother transition than the delta correlation of Gaussian white noise.

For straightforward connection of our system to a thermal heat bath, as we do below, we

will take ∆ν = ν2 −ν1 = 0 which yields

⟨η(t1)η(t2)⟩ = s2e−ν|t1−t2| ⇝ ⟨η2(t)⟩ = s2. (4.19)

We also note that, as with Gaussian white noise, we will have with ∆ν = 0

⟨η(t)⟩ = −s
∆ν

ν
= 0. (4.20)

For future reference, and study, we observe that with nonzero ∆ν, say ∆ν > 0, we

would be describing scenario’s where the gap spends more time in compression than in an

opening mode; the opposite will be true if ∆ν < 0. For now, we emphasize that with the

view just presented above we will have |η(t)| < h0 and hence h(t) > 0. This is important

for the development of Section 4.3.3 to follow.

With either view for the stochastic description, the equation of motion is

d2η

dt2 +γ
dη

dt
+ω2

0η = F(t)
m

. (4.21)

Recall, that γ is from the previous section, i.e. eq. 4.17,

γ = ξ

m
= 3πµ

2m

R4

h3 ⇝ γ ≈ 3π

2m

R4

h3
0

µ. (4.22)

The 2nd of eq. 4.22 aims to linearize eq. 4.21 in the range where |η| ≪ h0. As η(t) is a
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random motion, driven by F(t), its average is ⟨η(t)⟩ = 0.

The resolution of eq. 4.21 follows standard lines as in brownian motion [180], e.g.

begin by multiplying through by η to obtain

η
d2η

dt2 +γη
dη

dt
+ω2

0η2 = η
F(t)
m

, (4.23)

and note that

ηdη/dt = 1/2dη2/dt, and

ηd2η/dt = 1/2d2η2/dt2 − (dη/dt)2.

(4.24)

This leads to
d2η2

dt2 +γ
dη2

dt
+ω2

0η2 = 2
(dη

dt

)2
+η

F(t)
m

. (4.25)

Now take time average values across eq. 4.25 to obtain

d2⟨η2⟩
dt2 +γ

d⟨η2⟩
dt

+ω2
0⟨η2⟩ =

2⟨
(dη

dt

)2
⟩+ ⟨ηF(t)

m
⟩.

(4.26)

Note that as η and F are uncorrelated, the last term is zero since ⟨η⟩ = 0. To connect our

disc to a heat bath invoke the equipartition theorem [180,181] to obtain

d2⟨η2⟩
dt2 +γ

d⟨η2⟩
dt

+ω2
0⟨η2⟩ = 2 kT

m
. (4.27)

The next step is make a change of variables and set ⟨η2⟩ = q(t)e−γt/2, which leads

to
d2q

dt2 +(ω2
0 −γ2/4)q = 2kT

m
eγt/2. (4.28)

We choose a simple and convenient set of initial conditions that ensure that q > 0, viz.
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⟨η2(0)⟩ = 2kT/ω2
0 and d⟨η(0)⟩ dt = 0. The solution is

⟨η2⟩(t) = 2kT

mω2
0

{
cosh(ζt)+ γ

2ζ
sinh(ζt)

}
e−γt/2

+ 2kT

mω2
0

,

(4.29)

with ζ = (γ2/4−ω2
0)1/2.

The trailing constant in eq. 4.29 is a long time, i.e. stationary, solution in that if,

as we assume, γ2/4 ≫ ω2
0

⟨η2⟩(t → ∞) → 2kT

mω2
0

. (4.30)

To obtain this required analytic solution, we have not constrained the amplitudes

of motion of our mechanical model of Fig. 4.2. We nonetheless note that within the entire

range of values for physical parameters described later in Section we indeed find that

⟨|η2(t)|⟩ < h2
0.

4.3.3 The random flow field

For the flow field of eq. 4.13, we need the following quantity and we note that

1
h

dh

dt
= 1

2h2
dh2

dt
= 1

h

dη

dt
. (4.31)

On the other hand we also note that h2 = h2
0 +2h0η +η2 leads to

dh2

dt
= 2h0

dη

dt
+ dη2

dt
, whereby

dη

dt
= h0

1
h

dη

dt
+ 1

2h

dη2

dt
.

(4.32)
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Now realizing that both ⟨n(t)⟩ = 0 and ⟨dη/dt⟩ = 0, when average values are taken across

the second of eq. 4.32 we find that

⟨1
h

dη

dt
⟩ = − 1

2h0
⟨1
h

dη2

dt
⟩ ≈ − 1

2h2
0

⟨dη2

dt
⟩. (4.33)

Recall, that we have set things up so that h(t) = h0 + η(t) > 0 which helps justify the

above approximation. Using eq. 4.29 we find

⟨1
h

dη

dt
⟩ ≈ kT

mγh2
0

e−ω2
0t/γ . (4.34)

We note that when this is used with eq. 4.13 we find that the forecasted radial

fluid velocities are of order 0.5−1.0µms−1 as was coincidentally found to be representative

in the experimental study of Chary and Jain [157], and as was mentioned in the 1st ¶ of

Section 4.1.

4.3.4 Diffusion-advection equation and its solution

The diffusion-advection equation reads as follows:

∂c

∂t
= D∇2c−∇· (cv), (4.35)

where c is concentration, D diffusion coefficient, and v again is the fluid velocity. We

will transform this to a purely radial equation as follows. To begin we note that we have

assumed radial symmetry, hence c = c(r,z), v = v(r,z). Recall the definition within the

thin film approximation of v̄r in eq. 4.13. The diffusion term involving ∇2c will be clear

enough, but attention to the advective term requires comment.

In cylindrical coordinates, and in component form

∇· (cv) = 1
r

∂

∂r
(rvrc)+ 1

r

∂(cvθ)
∂θ

+ ∂(cvz)
∂z

. (4.36)
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Carrying out the operations and grouping terms into 2 groups we find

∇· (cv) =

c
1
r

∂

∂r
(rvr)+ c

1
r

∂vθ

∂θ
+ c

∂vz

∂z
(= 0)

+vr
∂c

∂r
+ vθ

r

∂c

∂θ
+vz

∂c

∂z
(̸= 0).

(4.37)

The first group is zero since, in this case, ∇·v = 0. The second term in the second group

is zero due to radial symmetry. Hence

∇· (cv) = vr
∂c

∂r
+vz

∂c

∂z
. (4.38)

Now again in the spirit of our thin film approximation, we define c̄ as

c̄(r) =
∫ h

0
c(r,z)dz; (4.39)

hence ∂c̄/∂z = 0. Thus

∇· (c̄v) = vr
∂c̄

∂r
. (4.40)

The diffusion-advection equation thus reads

∂c̄

∂t
= D∇2

r c̄−vr
∂c̄

∂r
with

∇2
r = ∂2

∂r2 + 1
r

∂

∂r
.

(4.41)

Recalling eq. 4.13, eq. 4.41 reads as, with eq. 4.34,

∂c̄

∂t
= D∇2

r c̄+ 1
2
(1

h

dh

dt

)
r

∂c̄

∂r
(4.42a)

∂c̄

∂t
= D∇2

r c̄+ 1
2

kT

mγh2
0

e−ω2
0t/γ r

∂c̄

∂r
(4.42b)
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4.3.5 Resolution of eq. 4.42

The boundary condition c(R,t) = 0, now c̄(R,t) = 0, suggests a separated solution

of the form

c̄(r, t) =
∞∑

m=1
Am(t)J0(λmr), (4.43)

where the λm are chosen such that λmR are the zeros of the Bessel function J0(x), that

is λmR = 2.40483,5.52008, ... (m−1/4)π, form ≫ 1. With this, there is the orthogonality

condition
∫ R

0
J0(λmr)J0(λnr)rdr =


1/2R2J2

1 (λnR), m = n

0, m ̸= n

. (4.44)

Equation 4.42b is rewritten as

∂c̄

∂t
−D∇2

r c̄− 1
2

kT

mγh2
0

e−ω2
0t/γ r

∂c̄

∂r
= 0. (4.45)

The procedure is standard, namely multiply through eq. 4.45 by rJ0(λnr) and integrate

over the range [0,R] using eq. 4.44; we note however that the 3rd term in eq. 4.45 would

be handled by first using the fact that

r
∂

∂r
J0(λmr) = λm

∂

∂λm
J0(λmr). (4.46)

This brings us to a critical step in which

∂

∂λn
J2

1 (λnR) = 2J1(λnR)
{
RJ0(λnR)−R/(λnR)J1(λnR)

}
(4.47)

where, of course, the first term in brackets is zero since J0(λnR) = 0.
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When the terms are assembled we arrive at the ODE for An(t), viz.

A′n(t)+
{

λ2
nD + kT

mγh2
0

e−ω2
0t/γ

}
An(t) = 0, or (4.48a)

A′n(t)+
{

λ2
nD +β e−st

}
An(t) = 0, with (4.48b)

β = kT

mγh2
0
, and s = ω2

0/γ. (4.48c)

The solution to eq. 4.48b is

An(t) = A◦n exp(−λ2
nDt+β/se−st) (4.49a)

with A◦n = An(0)e−β/s (4.49b)

An(t) = An(0)e−β/s exp(−λ2
nDt+β/se−st). (4.49c)

The coefficients An(0) are determined from the initial condition

c0 =
∞∑

n=1
An(0)J0(λnr), (4.50)

which leads to

An(0) = 2c0
(λnR)J1(λnR) . (4.51)

Thus we find

c̄

c0
=
∞∑

n=1

2
(λnR)J1(λnR)e−β/s exp(−λ2

nDt+β/se−st)

J0(λnr), (4.52a)

c̃ = c̄

c0
= e−β/s exp(β/se−st)

∞∑
n=1

2e−λ2
nDt

(λnR)J1(λnR)J0(λnr). (4.52b)

A simple, yet, informative way to visualize this solution is to compute an area
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average of c̃; for this we need

1
πR2

∫ 2π

0

∫ R

0
J0(λnr)dθrdr = 2

λnR
J1(λnR), (4.53)

which when used with eq. 4.52b yields

⟨c̃⟩ = e−β/s exp(β/se−st)
∞∑

n=1

4
(λnR)2 e−λ2

nDt, (4.54)

where here the averaging ⟨.⟩ denotes that average taken in eq. 4.53. Indeed, when t = 0,

we find ⟨c̃⟩ = 1 since

4
∞∑

n=1

1
(λnR)2 = 1, (4.55)

and recalling that the λnR are the zeros of J0(x).

It is of interest to explore a few limits of eq. 4.54. For example, and obviously,

when t → ∞, and D ̸= 0, < c̃ >→ 0 since diffusion guarantees such given the boundary

condition c(R,t) = 0. More revealing, however, is the case where we set D = 0 and thus

suppress diffusion, leaving only advection to transport solute. In this case eq. 4.54 reads

as

⟨c̃⟩ = e−β/s exp(β/se−st) ⇝
t→∞

⟨c̃⟩ = e−β/s, (4.56)

given eq. 4.55. Since β/s > 0, we see that advection indeed leads to a reduction in average

solute concentration. Moreover, we note that the effects of advection are transient, and

are focused on the initial time of the transport event.

Inspection of the simple results in eqs. 4.54 and 4.56 reveals some key aspects of

the advection-diffusion coupling. Clearly the time scales for the two processes can be quite

different. For advection, s determines the time scale whereas for diffusion the exponents

λ2
nD determine time scales. If advection is to couple to, i.e. compete, diffusion s should be

comparable to the λ2
nD, or at least to λ2

1D, where λ1 = 2.40483/R is the first eigenvalue
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of J0(x). Thereby we define AD ≡ s/λ2
1D as a sort of Peclet number.

We note here that the “inverse problem” is of value and is readily generated from

the above solution; the inverse is defined so that the initial concentration is zero within

the gap and c0 outside. Detailed formulations are included in Appendix 4.5.

4.3.6 Regular disc motion: e.g. harmonic motion

Recall, even before exploring more detailed results that eq. 4.54 is based on a model

that describes random motion of the disc and its induced fluid flow field. It is important

to note this with respect to the reversibility of Stokes flow as discussed in connection with

eq. 4.2. Specifically consider such harmonic motion that would specify

h(t) = h0 +asinωt with (4.57a)
1
h

dh

dt
= d lnh

dt
= aω cosωt

h0 +asinωt
. (4.57b)

When eq. 4.57b is used in eq. 4.48b instead of βe−st, we find the following. Consider the

ODE

A′n(t)+p(t)An(t) = 0, (4.58)

and its solution

An(t) = A◦n exp
{

−
∫ t

p(t)dt
}

. (4.59)

In our case

p(t) = λ2
nD + 1

h

dh

dt
= λ2

nD + d lnh

dt
. (4.60)

The solution to eq. 4.59 with eq. 4.60 is

An(t) = A◦n

( 1
h0 +asinωt

)
e−λ2

nDt. (4.61)
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Dimensional consistency is attained when we realize that An(0) = A◦n/h0, hence

An(t) = An(0)
(

h0
h0 +asinωt

)
e−λ2

nDt, (4.62)

where An(0) is obtained via the initial condition as in eqs. 4.50 and 4.51.

Within the context of the simple model posed herein, the result of eq. 4.62

concerning the advection would go something like this: what goes out, comes back in. This

arises due to the reversibility of Stokes flow [172,173] when dealing with smooth reversible

fluid flow. We recall, however, that the time average of the advection flow field is driven by

the average quantity ⟨h−1dη/dt⟩ that we have shown in Sections 4.3.2 and 4.3.3 is nonzero,

yet decaying exponentially in time. Fluid flow in this case is not a smooth reversible flow

but is stochastic in nature, and hence such simple reversibility does not apply [167].

4.4 Results

4.4.1 Numerics for parameters

Figures 4.1 and 4.3 illustrate key structural features of the synapse cleft (i.e. gap)

and the release of neurotransmitters. From Savtchenko and Rusakov [158] we note the

following dimensions (see also Fig. 4.2): 150nm ≤ R ≤ 300nm and 12.5nm ≤ h0 ≤ 20nm.

We take the viscosity, µ, to be in the range ∼ 10−3 Nsm−2 [170]. For the mass, m, we use

the range 10−15 kg ≤ m ≤ 10−15 kg. This places γ, as per eq. 4.22, in the approximate range

108 s−1 ≤ γ ≤ 109 s−1. For D we use values in the range 10−12m2s−1 ≤ D ≤ 10−9m2s−1;

this includes the range identified for glutamate within the synaptic cleft [158,169].

The key parameters within eqs. 4.52a,b, 4.54 and 4.56 can be summarized as

β = αkT

mγh2
0
, s = ω2

0
γ

, β/s = αkT

mω2
0h2

0

ω2
0 = EπR2

a

ℓam
, γ = 3π

2m

R4

h3
0

µ.

(4.63)
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We note that the scaling parameter α equals unity for thermal fluctuations alone as was

originally envisioned in eq. 4.27. However, suppose that we allow for the inclusion of

additional energy input, e.g. from ATP hydrolysis that is known to occur in the process

of vesicle release and recycling in the synapse [182, 183]. For perspective, recall that

the standard free energy of ATP hydrolysis is ∆G = −30.5kJmol−1. This translates to

∆g ≈ −12kT per molecule. Moreover, with typical cell concentrations cATP = 3mM, cADP =

0.8mM, cPi
= 4mM [184], a simple calculation, for the reaction ATP+H2O⇆ ADP+Pi,

shows that ∆G = −48.1kJmol−1, i.e. ∆g ≈ −19kT per molecule. Indeed, for some time

now vibrations of microtubles and actin filaments have been suspected to be driven

by hydrolysis of ATP and/or GTP [185]. More recently, ATP powered nonequilibrium

fluctuations of the human red blood cell membrane have been analyzed [186] and are

thought to be an important influence on cell shape. Hence metabolic energy release per se

could justify α in the range 5 ≤ α ≤ 10, for instance. From the experimental results of

Park et al [186] one would estimate α = 2.

The parameters contained in eqs. 4.63 have been explained via the above devel-

opments with the exception of ω2
0 which is now explained with reference to Fig. 4.3.

h(t)

z R

c0
H(t)

k ξ

pregli
a glia

v

n

la

a

(a)

(b)

Figure 4.3. The synapse is modeled with more detail as a disc attached to a segment
of axon that acts as a linear spring with constant k = EπR2

a/ℓa. Motion of the disc is
also resisted by a viscous drag coefficient, ξ, given by eq. 4.17 and damping coefficient, γ,
given in eq. 4.22.
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Figure 4.3 again illustrates our synapse model but now attached to an elastic axon,

with spring constant k (Fig. 4.3a), whose segment is of length ℓa (Fig. 4.3b) and radius

Ra (not shown to scale). The radius is taken in the range 0.5µ ≤ Ra ≤ 1µ, and its length

in the range ℓa ∼ 100µ. The linear spring constant would then be formed as k = πR2
aE/ℓa

and hence the expression for ω2
0 in eq. 4.63. Again, the disc-like synapse is resisted by a

viscous drag ξ as given in eq. 4.17 that then prescribes γ in eq. 4.63.

As for the elastic modulus, E, we note recent measurements of chick nerve cell

elasticity obtained via afm imaging [187,188]. For chick neurons E was reported in the

range 1kPa ≤ E ≤ 10kPa in vivo [187] whereas in vitro E was reported in the higher range

30kPa ≤ E ≤ 90kPa with a strong peak at E ≈ 70kPa. In what follows we use a value of

E = 7kPa for numerical examples.

The relations in eq. 4.63 can be usefully combined, for use in eqs. 4.52a,b, 4.54

and 4.56, to yield

s = 2
3 E

1
ℓa

R2
a

R4
h3

0
µ

, AM = β/s = αkTℓa

πER2
ah2

0
,

AD = s

λ2
1D

= 2
15

E

ℓa

{
Ra

R

}2 h3
0

Dµ
.

(4.64)

We recall that eqs. 4.52a,b, 4.54 and 4.56 demonstrate that the parameters s and

β/s are pivotal for yielding an influence of advection on solute transport. Equation eq.

4.56 shows that β/s, as in the term e−β/s, defines the prospective “magnitude” of the net

advection contribution, but s controls the time scale, τa = 1/s, on which advection occurs.

Advection is in competition with diffusion occurring with time scales τd = 1/(λ2
nD). Hence

for advection to contribute to solute transport AD should be on the order of unity. The

numerical factor in the last of eqs. 4.64 is obtained by noting that λ1R = 2.40468, i.e.

the 1st zero of J0(x). Since both s and β/s must be large enough for advection to have a

noticeable influence eqs. 4.64 are seen to form a “tight box” in that varying individual

parameters cannot produce arbitrarily optimal values. That is, there is indeed very little
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wiggle room and this feature provides additional credence to the model. Particular case

examples of results from eqs. 4.52a,b, 4.54 and 4.56 provide further insight.

4.4.2 Results for case examples

For most of our cases we set E = 7kPa, ℓa = 100µm, R = 200nm, Ra = 1µm,

µ = 10−3 Nsm−2, kT = 4×10−21, h0 = 20−30nm, and D = 10−14 −10−10m2s−1. Finally,

we set α = 1−10 assuming a modest additional random force input. These values specify

the ranges s ≈ 250 and β/s ≈ 0.25. Also, with these values and for the values of D listed,

AD and AM , fall in the ranges AD = 0.063−0.630 and AM = 0.0202−0.2021.

Figure 4.4 shows < c̃ > vs. t for the parameters listed in each sub-figure; the

following observations can be made. Note that in each set of cases we show results with

D = 0; this illustrates the potential effect of advection alone as described by eq. 4.56.

Clearly when diffusion is relatively fast, i.e. D ≥ 10−10m2s−1, AD is too small to

allow advection to contribute to solute egress from the cleft-like geometry, yet when D

is a low as D = 10−11m2s−1 advection has a definite effect. This can also be appreciated

by observing the time scales for measurable solute transport; with D ≥ 10−10m2s−1 the

time scale is on order of 1ms, whereas if D ≤ 10−11m2s−1 time scales frow to order 10 ms.

On the other hand, if D ≤ 10−12m2s−1 advection is seen to have a quite noticeable effect.

This is seen by the trends shown in Fig. 4.4b. Thus it may be inferred that at least within

the range of structural and physical properties used here advection would contribute to

transport of only larger molecules with such low diffusion coefficients.

It should be noticed, however, that additional energy input, i.e. other than via

thermal fluctuations, can have the significant effect of enhancing advective flow. This is

clear from the trends shown in Fig. 4.4d-f.

Another feature of these results is that when advection does contribute, i.e. com-

petes with diffusion, it happens at early times. This should be clear and anticipated from
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(a)

(c)

(e) (f )

(d)

(b)

Figure 4.4. < c̃ > vs. t for the parameters listed on each of the six panels in the figure.
Note that the effective diffusion coefficient ranges from 10−14 −10−11m2s−1. For the cases
a-c and e, we plot the result with D = 0 to more clearly reveal the effect of advection.

the transient nature of eq. 4.34. It can also be visualized by the larger slopes at short

times for the cases shown in Figs. 4.4c-f.
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4.5 Discussion and conclusions

The findings of Chary and Jain in 1989 [157] should have spurred a line of further

inquiry into coupled effects of advection and diffusion in biological vessels, cells, and

tissue, especially given the Starling’s hypothesis [153] made in the 19th century. Indeed,

earlier Swabb et al. [189] studied such effects in normal and neoplastic tissue and found

that advection can dominate the flow especially for higher molecular weight molecules.

Further note the ideas put forth by Nedergaard regarding advective flow in the brain [156].

We have commented on the fact that the fluid velocity range reported by Chary and

Jain is quite comparable to what we forecast and that indeed when D ∼ 10−11m2s−1,

we predict measurable advection contributions vs diffusion. It is informative to explore

the respective forecasted pressure gradients as well. Chary and Jain report gradients of

order ∂p/∂x ∼ 4mmHg/µm ≈ 5 × 108Pam−1, where this was based on assumed values for

hydraulic conductivity, η, extracted from other literature. The initial value they used

was η = 10−12cm4(dyne − s)−1 = 10−15m4(Ns)−1. They rightly questioned if such high

gradients were sustainable in-vivo and hence proposed that the hydraulic conductivity

could be 2-3 orders of magnitude higher so as to correctly lead to measured fluid velocities

at more reasonable pressure gradients. If our eq. 4.6 is used, as in eq. 4.13, we find

v̄r = − h2

12µ

∂p

∂r
= −η

∂p

∂r
. (4.65)

If we take h = 20nm and µ = 10−3 Nsm−2 we find η ∼ 10−13m4(Ns)−1, i.e. some 2 orders

of magnitude larger that Chary and Jain’s original estimate and that help verify their

proposal of using larger hydraulic conductance. In fact, if we take h ∼ 60nm, i.e. mid-range

of Chary and Jain’s range 30 − 100nm, we find η ∼ 10−12m4(Ns)−1, which is precisely

what they proposed was possible. Thus our analysis indeed provides a pathway to explain,

even quantitatively, experimental observations such as theirs.
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We also note that our analysis shows that the effect of advection becomes significant

when D ≤ 10−13m2s−1 with fluid velocities of order v ∼ 0.5µms−1 as found in Section

4.3.3. This forecast is consistent with the analysis of the experimental results of Koslover

et al. [168] who report that advection effects become important for particle transport with

diffusion coefficients with extracted (via their analysis) values of order D ∼ 2×10−14m2s−1;

their measured fluid velocities were, indeed, in the range v ∼ 0.5µms−1. This again

demonstrates a consistency of our model analysis with experiment in terms of observed

phenomenology and the numerology regarding key parameters such as fluid velocity and

diffusion whose values determine the competition between advection and diffusion.

Reviewing again eqs. 4.64, we see that simultaneously optimizing s,β/s, andAD

is quite difficult. With slightly larger cleft widths, certainly verified for many types of

biological channels, the time scale of advection can be shortened (i.e. quickened) so it

competes more effectively with diffusion. However, this alone would reduce β/s, the

magnitude of the eventual advection effect. To obtain an optimal set of values α, i.e.

additional energy input, is required. This then poses a fundamental question: How does

possible metabolic energy enter into such mechanical phenomena? Is it direct or indirect

such as by participating in molecular restructuring? And, how much energy is involved

and how is it triggered? Thus our model analysis indeed clearly points to the potential

vital role of energetic input into biological transport processes.

Our analysis demonstrates that when advection is driven by structural motion,

there are a rather rigid set of criteria that are required for it to compete with diffusion. It

may be that our modeling of the synaptic-like body as a rigid disc is too restraining and

explicit account should be taken of the flexible synaptic membranes. This would lead to

enhanced structural motion, driving fluid motion, and increased advective solute current.

This remains to be explored, especially in the context of other biological gap-like channels

such as exist within the brain [156] for instance. But even here care must be taken to

identify the energetic sources that drive fluid flow. Aspects of such scenarios have been
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addressed by Bickel [190] who has argued that random motion of opposing membranes

indeed affects particle transport in viscous media.

We also note that our finding that AD ∼ 1/R2 is due to the fact that structural

motion that drives fluid flow is resisted by a drag coefficient that scales as ξ ∼ R4. Péclet

numbers are often defined via dimensional analysis leading to Pe = UL/D, with U being

fluid velocity and L diffusion distance. In our case, however, U is a strongly decreasing

with L and it is this that leads to our AD ∼ 1/R2.

Finally, we comment that our choice of random telegraph noise used to describe

either F(t) or η(t) was based on geometric constraints discussed in Section 4.3.2 and that

this choice provided a simple connection to thermal fluctuations via the equipartition

theorem. Recall that our goal was a model scenario that would allow a clear assessment of

the contributions of advection vs. diffusion and its link to a set of well defined physical

parameters that mediate the system’s response. As noted, however, in Section 4.3.2 the

choice of telegraph noise provides an opportunity to explore cases where the physical

system is biased in that ⟨η(t)⟩ ≠ 0, i.e. ν1 ̸= ν2. Such may well the case where the stimulus

for motion is in the form of energetic bursts or pulses such as exist in the synapse, for

example. This is, indeed, a topic of future research.
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Appendix A: Opposing discs model of synapse

Still another model for the synapse is that shown in Fig. 4.5 in which we envision

the pre- and post synapses as two opposing identical discs. Here we describe the discs
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lying at elevations z = ±h(t); hence the total gap is H(t) = 2h(t). Note that now the no

slip boundary condition reads as vz(r,z = ±h) = 0. The solution to eq. 4.5 is then

vr = 1
2µ

∂p

∂r
(z2 −h2). (4.66)

Incompressibility, via eq. 4.7, now leads to

vz = − 1
2µr

∂

∂r
(r∂p

∂r
)
{z3

3 −h2z
}
. (4.67)

h(t)

z
c
0

H(t)

Figure 4.5. Here the pre- and post synapses are modeled as two identical opposing discs
separated by H(t) = 2h(t).

Following the procedure outlined above, we find that

[p]inout = p(r)−p0 = 3µ

4h3
dh

dt
(r2 −R2) = 3µ

H3
dH

dt
(r2 −R2). (4.68)

Comparing this to the pressure difference in eq. 4.15 we find that the friction coefficient,

ξ, in eq. 4.17 is recovered. Moreover, the through thickness radial fluid velocity is

v̄r = − 1
H

dH

dt
r, (4.69)

and thereby of the same form as in eq. 4.13 as per the total cleft width of either h(t) or

H(t).
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Appendix B: The Inverse problem

The inverse problem is one where the initial and boundary conditions are c(r,0) = 0

within the gap and c(R,t) = c0 on the perimeter of the disc as depicted in Fig. 4.6.

h(t)

z
c

θ

0

c(r,0)    0=

Figure 4.6. The inverse problem assumes that the initial cleft concentration is c(r,0) = 0
and c(R,t) = c0.

In such case we write the solution in the form

c̄(r, t) = c0 +
∞∑

m=1
Am(t)J0(λmr), (4.70)

but as opposed to eqs. 4.50 and 4.51, invoking the initial conditions leads to

−c0 =
∞∑

n=1
An(0)J0(λnr), and (4.71)

An(0) = − 2c0
(λnR)J1(λnR) . (4.72)

Other details are as worked out above for our original problem.
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Chapter 5

Summary and Conclusions

5.1 Summary

The main goal of this dissertation was to provide new insight into number of

fundamental cellular mechanisms. In Chapter 2, a realistic model of cell adhesion and

the development of traction force was presented. There it was demonstrated how the

substrate’s physical characteristics such as stiffness and time-dependent force response

are felt all along the cell adhesome, as opposed to being seen to be localized at a single

anonymous site. The effects of the rate of retrograde flow of the actin cytoskeleton are also

detailed in a novel manner and revealed a number of effects not yet noted. In addition,

to our knowledge, new insights are introduced concerning the role of substrate stiffness

and time-dependent response on the density of integrin clusters and thereby on traction

force levels possible. Model parameters are discussed in terms of what is required for truly

predictive capability of traction stress.

In Chapter 3, we present a flexible and adaptable model to address the basic

clustering nature of nascent adhesion formation. Nascent adhesions are the common

forerunner to the formation of focal adhesions that are a fundamental mechanism for cell

adhesion necessary for cell proliferation, migration, and mechanotransduction. The model

we present provides a clear explanation of how these conserved clustering features come

about. Our model is based on the interaction among ligated and un-ligated integrins that
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arise due to deformations that are induced in the cell membrane/glycocalyx and substrate

system due to integrin activation and ligation. Our simulations reveal effects of various

key parameters related to integrin activation and ligation as well as some unexpected and

previously unappreciated effects of parameters including integrin mobility and substrate

rigidity.

In chapter 4, we examine the significance of advection in the transport within thin

biological gaps. The process driven by stochastic fluid flow caused by random thermal

structural motion, and we compare it with transport via diffusion. The model geometry

chosen resembles the synaptic cleft, which allows for well-defined mechanical and physical

features that control the advection process. Our analysis defines a Péclet-like number, AD,

that quantifies the ration of time scales of advection versus diffusion. Another parameter,

AM , is also defined by the analysis that quantifies the full potential extent of advection in

the absence of diffusion. These parameters provide a clear and compact description of the

interplay among the well-defined structural, geometric, and physical properties vis-á-vis

the advection versus diffusion process. Our model analysis thus provide unambiguous

insight into the prospect of competition of advection versus diffusion within biological

gap-like structures.

5.2 Conclusions

1. A number of notable features of force transmission along the adhesome is presented.

The effects of mechanosensitivity appear all along the force train. These effects are

directly related to the time rate of force development, as seen in the behavior of

both talin and integrin bonding.

2. Various parameters and elements of our cell adhesome model play important roles in

the development of traction force and stress. Both "clutch bonds" and "catch bonds"

theoretical framework are considered in our analysis model.
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3. Estimation of traction stress in cell adhesome is attempted, and the need for quantita-

tive study on integrin density, integrin-ligand bond survival, and integrin distribution

is illustrated.

4. A framework for the formation of nascent adhesions based on reported phenomenology

is presented. The framework of our model allows wide flexibility with regard to

including additional features such as,1) patterned ligand distributions; 2) variable

integrin mobility; 3) kinetic descriptions of ligation and unligating; and 4) the

influence of "applied forces" as may arise due to actin-myosin contractility, by simply

extending the model to include actin-myosin forces, the evolution of mature may be

explored.

5. The driving force for clustering adhesion molecules coming about from the energy

reductions is illustrated by the attractive pairwise forces that exists between integrins.

The attracting force do not depend strongly on the system rigidity(stiffness), however,

the force within an integrin does depend on system rigidity and that will affects

ligation bond survival time.

6. Our simulations reveal important quantitative and qualitative effects of integrin

mobility. For example, clusters tend to be larger when the mobility of unligated

integrins is increased. It is recommend that experimental studies of clustering should

also report this information to be adequate.

7. Our model for motion driven advection-diffusion demonstrates that when advection

is driven by structural motion, the competition with diffusion must be accounted

for to explain a range of phenomena. We show that the effect of advection becomes

significant when D ⩽ 10−13m2s−1 with fluid velocities of order O(0.5µms−1).

8. Our analysis demonstrate unambiguous insight into the prospect of competition

of advection versus diffusion within biological gap-like structures. The importance
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of the random versus a regular, nature of structural motion and of the resulting

transient nature of advection under random motion is made clear in our analysis.
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Figure 5.1. (a) THD and kindlins associate with the integrin β tail causing membrane
distortion. (b) TR re-associates with THD and connects to actin cytoskeleton via vinculin
(shown in Fig. 3.2c-d). (c,d) Two nearby and activated integrins, ligated or not, that
interact via the deformation fields created by membrane distortion. (e) Integrins viewed
as point forces, f , causing distortions; the distortions caused by each alone are sketched
by the respective colored dashed lines. Note the displacement downward, u2(ξ) is called
δ(ξ;δ0) where δ0 is the maximum displacement beneath each point force. For a system
modeled as linear elastic δ0 = 1/kf , k being a specific model dependent constant, and the
total displacement is the linear sum of each dashed line. (f) A circular patch uniformly
depressed, with a net force fb, where fb = kδ0 if this patch is not affected by other integrins.

5.3 Outstanding issues and future studies

As noted in the introduction to Chapter 3, nascent adhesions tend to have a

transient lifetime, that is if they do not mature into focal adhesions [63]. Focal adhesions

are connected to the actin cytoskeleton and experience the force stabilizing influence of

the skeleton’s retrograde flow, as depicted in Fig. 1.1. However, in time nascent adhesions
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tend to dissipate (disappear). It is reported that they persist for longer times on more

compliant substrates. The mechanism for their disappearance is, as yet, unclear and is,

therefore, an important object of future study. Some preliminary ideas follow below.

The initial setup in Fig. 5.2 illustrates a typical distribution of nascent adhesion

clusters; the parameters are listed in the figure and for comparison they reflect the case

shown in Fig. 3.8 Case 2 of Chapter 3. We recall what essentially drives the clustering

process. When integrins activate and bind to ECM ligands, they induce a deformation

of the cell membrane and glycocalyx as well as possibly the ECM. The deformation of

cell membrane creates the pairwise internal attraction force within the integrins and an

elastic deformation field as sketched in Fig. 5.1. Thus, these interaction forces promotes

the integrin clustering.

Since the cell’s glycocalyx as well as the membrane/skeleton complex is visco-elastic,

we expect that with time relaxation will reduce the level of force that exists within ligated

integrins, we have modeled this as a reduction in δ∗. Of the key parameters involved in

time relaxation process, the pre-force, f b
0 , is released to zero since there is no "pinching

force" when membrane relaxation; the Dligated is increased to near the order of Dunligated

due to the relaxation. Considering that the net displacement caused by all other integrins

would also be limited due to the relaxation, the diffusion coefficient, D would increase as

such the ligated integrins would behave more like un-ligated integrins in the time relaxation

nature.

Figure 5.2 shows results for a compatible set of cases as where δ∗ is assumed to be re-

leased as indicated by the values in the figures. As the relaxation of the membrane/skeleton

happens, nascent clusters start to disappear overtime. We can tell, as expected, the nascent

clusters fade away faster when the value of δ∗ is lower. Note that the interaction force

is decreased with δ∗. Although the effect of relaxation time difference is hard to tell in

the preliminary results by comparing cases below, from the Maxwell-Wiechert model for

visco-elastic materials, relaxation time is proportional to 1/E. This agrees with what
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Figure 5.2. Results for a series of simulations where δ∗ is released to indicated values;
the frames are snapshots of a continuous simulation. All parameters are listed for the 4
cases considered. The initial integrins distribution is shown in the upper left.
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Changede et al. [63] mentioned that nascent clusters tended to be less persistent on stiff,

viz. glass, substrates than on less rigid, viz. supported lipid bilayer.

Notwithstanding the relatively limited experiment data supported, these preliminary

results offer valuable insights into the nascent clusters dissipate mechanism. Further

experimental investigations are needed to estimate and provide more definitive evidence.

These new experimental studies should document the magnitudes of integrin mobility, i.e

diffusion rates, as this is seen here to be an important factor.

Further research could usefully explore how the morphology and topology of

extracellular matrix(ECM) could affect the cell adhesions. The results of Maheshwari et

al. [103] are most relevant here in that they demonstrated how fibroblast cell adhesion

depended quite sensitively on ligand cluster patterns as well as on overall ligand density.

Also, the work of Changede et al. [191] showed that ligand geometry is an important

factor in cluster formation and cell spreading. They find that initial nanoclusters form on

"less dense ligand" substrates can not mature into regular focal adhesions. One possible

explanation proposed by Changede et al. is that the liganded integrins are unable to

support forces on unliganded integrins; activate integrins but unligated integrins could

also participate in focal adhesion formations. To verify this possible hypothesis, we must

explore the behavior of the clusters into mature focal adhesions. A reasonable approach

to tackle this topics could be discuss below.

Follow the nascent adhesion clustering model framework in chapter 3, we can

further include the actin-myosin forces into the nascent clusters with our adhesome’s force

train in chapter 2. Notice that the ligands are assumed to be affluent in chapter 3, ligand

densities are not considered. To consider the effect of ligand densities, we might restrain

integrins cannot be ligated in certain regions. On the other hand, the component of talin

dimer must be considered here. Noted that two end of talin dimer cannot be bound under

a certain distance, or it might break the dimer; unliganded integrins can still bind with

talin dimer, but are unable to support forces. With these modification on the model, we

123



should be able to reproduce the experiment results and provide some insights on the role

of morphology and topology of ECM in adhesion formation.
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