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We present an analytical model for calculating the entropy at melt of monatomic liquids. The model is motivated by 
the concept of a rough potential energy surface (PES). It offers a simple, physical explanation for Richard’s Melting 
rule, and provides a material-dependent correction to Trouton’s Vaporization rule.  Without employing any adjustable 
parameters, the model agrees closely with experimental entropy of melting values for monatomic liquids. When 
combined with the phonon theory of liquids, it allows for estimation of entropy over the entire liquid range.

Due to the difficulty associated with a general theory of liquid 
thermodynamics, it has been common practice to use empirical 
rules to estimate thermodynamic quantities. Empirical rules, such 
as Richard’s Rule of Melting or Trouton’s rule of Vaporization, 
are practical but lack physical insight and granularity. In this 
work, we use physical arguments to arrive at a model for the 
entropy of melting of monatomic liquids that offers material-
dependent corrections but reduces to the simpler rules in its limit. 
Such a model is needed to offer scientists and engineers insights 
into reaction kinetics, macroscopic thermodynamic cycles, and 
material design for phase change-based thermal storage material 
among other applications.  The derivation of our model is 
motivated by Stillinger and Weber’s work in the  early 
1980s  [1,2], which used molecular dynamic simulation (MDS) to 
introduce and characterize a multi-minimum potential energy 
surface (PES) of liquid systems. These studies determined that the 
PES of a liquid system is rough, i.e., contains many shallow local 
minima. The corresponding dynamics associated with a rough 
PES include (1) lattice vibrations, which are solid-like, except 
they generally exhibit anharmonicity due to large displacements 
from meta-stable equilibrium: (2) large scale diffusion (𝑠𝑙𝑜𝑤) 
transition), which is gas like and describes the hopping motion of 
the atom from one equilibrium lattice point to another as described 
by Frenkel  [3]: (3) small scale diffusion (𝑓𝑎𝑠𝑡) transition) 
corresponding to the local re-distribution of equilibrium positions 
by traversing small energy barriers on the PES  [4,5].  

Trachenko, Brazhkin, and coworkers [3,6–8] recently re-
introduced J. Frenkel’s picture of liquid dynamics  [9]. A 
simplified version of this picture describes the microscopic view 
of atoms in liquids as vibrating around equilibrium points at short 
time scales and hopping to neighboring equilibrium points at 
larger time scales. By considering large scale diffusion (s), this 
"phonon theory of liquids" model accurately predicted the 
decrease in heat capacity at constant volume (𝐶!) as a function of 
temperature (T) by accounting for the loss of transverse phonons 
with frequencies less than the Frenkel frequency (wF). However, 
this theory is not able to predict the absolute entropy of liquids, 
only the relative entropy changes in the liquid state, so it cannot 
be used to determine the entropy of melting.  

Thus, there exists a need to develop a model that can 
predict the entropy of melting rather than determining it from 
experimental data and/or empirical rules. In this manuscript, we 
propose a simple model that employs the Debye approximation  
to offer a physical explanation for Richard’s melting rule  [10], 
and material-dependent corrections for more accurate 
calculations. We then employ the phonon theory of liquids to 
account for the temperature dependence of that correction and 
show how it can provide material-dependent corrections to 
Trouton’s rule of Vaporization [11].    
 We begin by considering the solid-like local vibrations 
of a particle about its instantaneous equilibrium point for times 
less than the Maxwell relaxation time (𝑡 < 	 𝜏"). In general, liquid 
particles vibrate in a potential well described by both harmonic 
and higher order (anharmonic) terms that act to soften the spring 
constant at larger displacements. The anharmonicity associated 
with lattice vibrations in liquids is not well understood, but it has 
been shown that it can be neglected for calculating the total 
entropy near melting [12] , so for now we will assume the particle 
vibrates in a harmonic potential.  Anharmonicity is later included 
as a correction factor for T > Tm where Tm is the melting 
temperature.  

Next, we address the large-scale, slow diffusion by 
describing the hopping motion of the atom from one lattice cage 
to another, resulting in a large and lasting change in the atoms 
neighbor list. The hopping rate is described by the Maxwell 
relaxation time  [3] (also known as the Frenkel frequency), 
𝜔#(𝑇) =

$
%(')

, where 𝐺 is the high strain rate shear modulus and 
𝜂(𝑇) is the temperature-dependent shear viscosity  [6]. At Tm , 
the viscosity of metallic liquids is very high; under these 
conditions, the hopping frequency is small compared to the 
Debye frequency, 𝜔), and has been shown to be on the order of  
*!
+,

  or less [3,6,13]. Thus, at Tm, we assume the dynamics are 
dominated by small-scale 𝑓𝑎𝑠𝑡 diffusion and lattice-like 
vibrations and we neglect large-scale diffusion in our model. We 
emphasize that for liquids with 𝜔) ≈ 𝜔# at melt, this 
assumption fails, as is the case for noble gasses where density 
changes are large upon melt [6]. When 𝑇 >	𝑇", large-scale 



diffusion will be accounted for using the phonon theory of 
liquids. 

Finally, we consider small-scale, fast diffusion, or the hopping of 
small energy barriers (< kBT) corresponding to the particles' 
changing center of oscillation  [4,14,15]. The particle’s equation 
of motion can be written as 𝑚𝑥-̈ =	−𝑘∇𝑈 and expanded such 
that 𝑚𝑥-̈ 	= 	−𝑘<𝑥-(𝑡) − 𝑥.(𝑡)= where 𝑥-(𝑡) describes the 
position of the particle, and 𝑥.(𝑡) describes the time-dependent 
position of the center of the particle’s potential well. Describing 
the particle coordinate with respect to its displacement from the 
center of oscillation (Δ𝑥), 𝑥-(𝑡) = 𝑥.(𝑡) + Δ𝑥(𝑡)	, the equation 
of motion becomes 𝑚(𝑥.̈ + Δ𝑥̈) = 	−𝑘Δ𝑥(𝑡). Small-scale fast 
diffusion is responsible for changing 𝑥., giving it its time 
dependence  [4,14,15].  
 
The particle undergoes simple harmonic motion about its center 
of oscillation, so a harmonic trial solution is chosen such that 
Δx(𝑡) = 𝐴𝑒/*"##0.  The trial solution of 𝑥.(𝑡) is more nuanced; 
molecular dynamics simulations have demonstrated that the 
center of oscillation also oscillates [4,14,15] with similar 
amplitude to the particle’s vibration. The hopping of small 
barriers that give rise to this oscillation does not significantly alter 
the character of the system configuration. Indeed, Rabani et al. [5] 
were unable to distinguish between the small-scale diffusion and 
solid-like vibrations when observing the decay of neighbor list 
correlation functions. Provided that the small-scale diffusion 
energy barriers are small, they thus lumped these mechanisms 
together, both being local perturbations occurring within the 
domain of a particular particle’s local minima. Our model is 
motivated by MDS that have shown rapid re-crossing of these 

small barriers on time scales associated with lattice vibrations. In 
these simulations, a particle’s neighbor list correlation function 
returns to its initial state after 𝑡 ≈ 12

*!
  [5,14,16], thus we choose 

𝑥.(𝑡) = 𝐴𝑒/*"##0 as an ansatz. Plugging this into the equation of 
motion yields 𝑚(𝐴 + 𝐴)𝜔3441 = 𝑘(𝐴). We note that k, the 
intermolecular spring constant, is governed by the nature of the 
intermolecular bond and is therefore fixed.  The frequency of the 
oscillation then becomes 

 

𝜔344 =
1
√2

F𝑘
𝑚 =

1
√2

𝜔)5  (1) 

 
 Where 𝜔)5  is the Debye frequency characterizing the atomic 
vibration in the liquid phase. We remark that this result is 
equivalent to putting two springs with spring constants 
corresponding to the Debye frequency in series. Thus, we argue 
that the dynamics of the particle near melting can be simplified by 
modeling the small-scale diffusive translational motion as a 
harmonic spring in series with harmonic lattice-like vibration. 
   

 Using the Debye model, we can calculate the entropy associated 
with the effective Debye frequency at melt as 𝑆'$ =

FIG 1: Predicted vs experimental liquid entropy at melt. 
The solid red line represents equivalence and the dashed 
lines represent 10% error. In order of increasing 
experimental entropy entropy, the dots represent Li, Ga, 
Na, Hg, Al, Mg, In, K, Zn, Cu, Rb, Ag, Si, Cs, Pb, and 
Au. 

FIG 2: Predicted vs experimental entropy of fusion using 
equation 3. The blue asterisks denote exact predictions 
using liquid Debye frequencies from  [20,21]. The black 
circles represent approximate predictions where the 
liquid and solid Debye frequencies were evaluated at 
their respective densities. In order of increasing 
predicted enthalpy of fusion, the dots represent Li, K, 
Cs, Na, Rb, In, Pb, Ag, Cu, Mg, Hg, Au, Zn, and Al. The 
solid red line is the 45𝑜 line, and the dashed lines 
represent 10% error.  
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'$ Q	, where 𝜃),344 is the effective 

Debye temperature corresponding to weff  in Eq. 1 and D is the 
Debye function. We emphasize that the Debye model is used for 
its simplicity, and note that the Debye approximation is a 
simplification of the real density of states of monatomic liquids, 
which in reality exhibits a much flatter transverse phonon 
dispersion for small wavevectors at high temperatures  [17].   
Because we are modeling the liquid state, we can use the high 
temperature Debye expansion to obtain the entropy of the liquid 
at melt: 

 

 

𝑆'$ = 4𝑅 + 3𝑅𝑙𝑛 P
𝑘9𝑇"
ℏ𝜔344

Q (2) 

 

A comparison of the entropy at melt (equation 2 with 𝜔344 from 
equation 1)  to experimental data from Selected Values of the 
Thermodynamic Properties of the Elements  [18] for 16 
monatomic liquids is plotted in Figure 1.   Debye temperatures 
evaluated at the crystal melt and density were taken from  [12] , 
and we observe that with just this single input property equation 
2 predicts entropy at melt to within 10% of experimental values 
for 14 of the 16 liquids. The notable outliers are silicon and 
gallium. Wallace identifies silicon, as well as Ge, Bi, Ga,  and Sb, 
as  “anomalous melting” elements because they are shown to 
undergo significant change in electronic structure from crystal to 
liquid  [12,19], which impacts the Debye frequency and our model 
does not account for this.  

In addition, equation 2 can be combined with the Debye 
model for crystals to calculate the entropy and enthalpy of fusion: 

 

∆𝑆: = 3Rln P
ω;,<(
=

𝜔3445 Q = 3Rln P
√2ω;,<(

=

𝜔),'$
5 Q		 (3) 

 
where 𝜔),<(

>  is the Debye frequency in the solid state and 𝜔),<(
5  

is the Debye frequency in the liquid state at melt. It has been 
shown  [20]) that for many metals  ω;,<(

? ≈ ω;,<(
= . In this case, 

equation 3 reduces to ΔS ≈ 1.1R which is the empirical value used 
in Richard’s Melting Rule [10].  
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FIG 3: Theory and experimental entropies of various monatomic 
liquids versus temperature. Experimental entropy values were 
taken from Selected Values of the Thermodynamic Properties of 
the Elements[18] at a pressure of 1 atm. Solid lines represent 
theory, whereas dots represent experimental data. Input 
parameters and their sources are provided in SI section 4. 

 

FIG. 4: Predicted vs experimental entropy of vaporization. 
The solid red line is the 45. line, and the dashed lines 
indicate 10% error. The black dashed horizontal line shows 
Trouton’s Rule.   In order of increasing predicted entropy, 
the dots represent Ga, Sn, Pb, In, Cs, Rb, Hg, Na, and K. 
 



The true value for ΔS of metals ranges from 0.8R-1.5R. Equation 
3 converges to a single value (1.1R) when we assume ω;,<(

? ≈
ω;,<(
= .  In reality, ω;,<(

? 	differs from that ω;,<(
=  because of the 

density changes on melt, and the nature of the liquid dynamics 
change from that of the solid. The true liquid Debye frequencies 
for Ar, Cs, Rb, K, Li, and Na were determined in  [20,21], and 
were used to evaluate equation 3 without approximation. Figure 2 
compares the exact predictions of equation 3 with experimental 
values (identified by blue asterisks), The exact predictions give a 
root mean squared error of 1.64%, showing excellent agreement 
with experimental entropy of fusion values. When the exact value 
of  ω;,<(

?  is not available, equation 3 can be evaluated using the 
quasiharmonic phonon approximation, whereby the change in 
Debye frequency can be related to the change in density from the 
solid to the liquid state. For small density changes, this can be 
approximated as 𝜃)(𝜌) ≈ 𝜃(𝜌.) L

@
@)
M
A
, where 𝜌. is the density at 

which the original Debye temperature was evaluated, 𝜌 is the 
density at which the new Debye temperature is to be evaluated, 
and 𝛾 is the grüneisen parameter  Debye frequencies evaluated at 
liquid state densities are tabulated in  [20] and were used to 
evaluate equation 3. The approximate results are shown in figure 
2, identified by black circles, and excluding the elements for 
which exact predictions were made (Ar, Cs, Rb, K, Li),  the 
approximate predictions give an RMSE of 6.35%,  compared to a 
19.1% RMSE given by Richard’s rule. Thus, equation 3 provides 
an excellent material dependent correction to Richard’s rule of 
melting. The results for enthalpy of fusion Δ𝐻", given by ∆𝐻: =
𝑇:∆𝑆: are shown in the SI. 	
 
 We note that the viscosity of Ar is low at melt such that 
ωB,<( ≈ ω;,<(, so large scale diffusive dynamics should become 
important. However, although our model neglects the large-scale 
diffusion, it still predicts the entropy of fusion of Ar with less than 
1% error, suggesting that the large scale diffusion does not 
strongly influence the entropy at melt in this case.   More accurate 
values for ω;,<(

?  , which can be computed from Molecular 
Dynamics  [20], are needed to test this model against a larger set 
of the known 0.8R-1.5R entropy jump seen in metals. 

Our model for the entropy at melt does not explain 
thermodynamic properties at higher temperatures. To do this, one 
can incorporate prior models for the temperature dependent heat 
capacity of liquids  [22,23]. To illustrate this, we use the results 
of Trachenko, Brazhkin, and coworkers’ phonon theory of liquid 
thermodynamics to predict the thermodynamic properties at T >
TC under constant pressure. We must include the entropy increase 
due to expansion and anharmonicity, and the entropy decrease 
associated with the loss of transverse phonons, which account for 
the effect of large-scale diffusion. This can be written as S(T) =
𝑆'$ +	∫

D*
'
𝑑𝑇'

'$
, where 𝐶- = 3𝑅 + 𝐶3E-	+	𝐶FGHFI".G/J −

𝐶K.LL.[20] Expansion heat capacity is expressed as 𝐶3E- =
	𝑀𝐵𝛼M1𝑇	where M is the molar volume, B is the fluid's bulk 
modulus and 𝛼M is the fluid’s volumetric thermal expansion 
coefficient. The anharmonic heat capacity can be approximated as 

𝐶FGHFI".G/J = 3𝑅𝛼M𝑇.[10,21] The heat capacity associated with 
the large-scale diffusion, or the loss of transverse phonons is 

𝐶K.LL =
N
N'
d𝑅𝑇 L*+(')

*!
M
O
e.[10]   Therefore S(T) can then be written 

as:    

S(T) = S<( + 3Rln f
T
TC
g +MBαP1(T − TC)	

	+3RαP(T − TC) − Rk l
1
T	
d
dT nRT f

ωB(T)
ω;

g
O

op dT
<

<(
				

 (4) 

  
with S<( from the model described in this work. The phonon loss 
term (final term in equation 4) can be approximated as 𝑆5.LL(𝑇) =
	−𝑅 L*+(')

*!
M
O
  with less than 2% total  

error on S(T) (see supplementary information, (SI) section 1). All 
other thermodynamic properties of interest can be determined 
using appropriate thermodynamic relations with (4). For S(T) at 
constant volume, the expansion term (3rd term) in Eqn. 4 should 
be neglected. Details on calculation of wF, including differences 
from values used by Trachenko and Brazhkin  [6], are provided in 
the SI. Comparison of equation 4 to experimental entropy data as 
a function of temperature is plotted in Figure 3. Besides gallium, 
which also has a significant change in electronic structure like 
silicon  [12], there is excellent agreement between experiment and 
model.  Constant pressure and constant volume heat capacities 
evaluated as CQ,P = TLR=

R<
M
P,Q

 are compared to experimental data 

in SI section 2 based on our calculation of wF.  
  

To demonstrate that the previous results are valid even 
near the boiling point, we compare our combined model with 
experimental data for the entropy of vaporization (DSV), which is 
typically given by the well-known Trouton’ rule  [11] that states 
DSV ≈	88 J/mol –K. We used  experimental entropy data for the 
gas phase [18] and subtracted it from equation 4 evaluated at the 
boiling temperature to predict Δ𝑆M, as plotted in Fig. 4. 
Examination of Fig. 4 reveals that our model predicts DSV very 
well (mean absolute error of 2.42 J/mol-K) whereas Trouton’ rule, 
which is independent of material properties, gives a constant 
value. Thus, we have shown that equation 4 gives accurate 
thermodynamic values over the entire liquid range at atmospheric 
pressure.  

In summary we have developed a simple analytical 
model to predict thermodynamic properties of monatomic liquids. 
It requires input of the Debye frequency in the liquid state for 
precise evaluation, or density-corrected Debye frequencies for 
approximate use. Data for 𝜔)5  is rare, and future efforts in 
determining 𝜔)5  are needed to more accurately test the model for 
such liquids. In addition, our model uses the Debye 
approximation, but future modelling efforts should focus on more 
realistic dispersion for transverse phonons, which in reality are far 
more complex  [17].   Our model also assumes 𝜔# ≪	𝜔) at melt 
so that large-scale diffusion is much slower than interatomic 
vibration, which may break down for low viscosity liquids. 
Moreover, we restricted our analysis to monatomic systems to 



isolate the thermodynamic contributions from the inter-molecular 
interactions, and therefore make a simpler and more meaningful 
comparison to our model. Further work must be done to include 
the effects of intra-molecular interactions in order to test the 
model for multiatomic systems. This can be done by modeling 
intra-molecular degrees of freedom as Einstein oscillators, for 
example, or by combining equation 4 with group contribution 
methods for quick estimates of thermodynamic functions.   

 
Supplementary Information 

The supplementary Information discusses an approximation for 
the entropy loss associated with the loss of transverse phonons, 
compares constant pressure and constant volume heat capacity 
predictions to experimental data, tabulates the model input 

parameters, and includes an additional comparison to the 
enthalpy of fusion for the elements listed in Fig. 2. 
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