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Abstract 

Magnetism and Gravity as Clues to the Thermal Histories of the 
Moon and Mars 

 
Rachel E. Maxwell 

This dissertation thesis is a combination of three projects on magnetism and 

gravity studies of the Moon and a magnetism study of Mars, each with a heavy focus 

on uncertainty estimation. The goal of each chapter is to elucidate some portion of the 

thermal history of the Moon and Mars. Analysis of crustal magnetic fields can explain 

past dynamo behavior, which is tied to the amount of heat within a planet and how 

long it retains that heat. Elastic thickness, determined from correlations between 

gravity and topography, indicates the heat flux at the time of load emplacement and 

we can use the elastic thickness of a region to determine its formation age. The results 

from this thesis place constraints on the ancient dynamo behavior of the Moon and 

Mars (magnetism studies) and on the formation ages of portions of the farside of the 

Moon (gravity studies). 

Chapter 1 focuses on lunar crustal magnetic anomalies. The Moon no longer 

has an active global magnetic field, but evidence of an ancient field can be found in 

portions of the crust, which have been magnetized in the presence of intense fields 

thought to be generated by an extant dynamo. Quantifying the magnetization 

directions of these anomalies elucidates the behavior of the paleo-magnetic field by 

determining the magnetic paleopole (i.e., the orientation of the dipolar axis). 

Previously, distinguishing between paleopole locations was impossible because of 



 ix 

their large uncertainties. Without distinguishing between paleopole locations, 

determining the history of the lunar dynamo is impossible. 

I propose an alternative method of estimating uncertainty using a Monte Carlo 

method to add synthetic noise to the best-fit modeled fields, which allows us to 

determine how easily perturbed the magnetization direction is in the presence of noise 

(i.e., uncorrelated anomalies). The new method more accurately describes the 

uncertainty of the inversion method and allows for better discernment of paleopole 

locations. I determined that the dipolar axis of the lunar dynamo must have been 

misaligned with the spin-axis at some point in lunar history, or that there were 

significant multipolar components to the magnetic field. 

Chapter 2 focuses on gravity and topography studies of the Moon. I use 

admittance analysis to determine the lunar elastic thickness and how it varies across 

the Moon. Elastic thickness allows us to determine the heat flux at the time of load 

emplacement, which in turn elucidates the thermal history of the Moon. Regions of 

low elastic thickness indicate high heating at the time of loading, and we can infer 

these locations formed earlier in lunar history than areas with higher elastic 

thicknesses. However, as in Chapter 1, variations in elastic thickness are meaningless 

without a clear estimate of uncertainty to distinguish between values. 

In this chapter, I describe how to determine elastic thickness using the spectral 

domain and the Markov chain Monte Carlo (MCMC) technique. Careful 

consideration is given to where these techniques are valid, including an analysis of 

the uncertainties from the MCMC technique using synthetic testing. I find that there 
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are several locations on the Moon with low elastic thickness, implying these regions 

formed very early (<200 Myr) after the lunar magma ocean solidification. I also find 

one region with higher elastic thickness, which may be recording loading events as 

late as 3.5 Ga. 

Chapter 3 focuses on martian crustal magnetic anomalies. Like the Moon, 

Mars no longer has a global magnetic field, but there is evidence of a dynamo-

generated field in the presence of widespread crustal magnetism. The issue of martian 

paleopole locations has plagued the magnetism community for two decades, many of 

the inferred paleopole locations do not correlate with each other, and several 

paleopole locations do not correlate with inferred paleo-spin axes calculated by other 

geophysical means. Additionally, there has not been a thorough paleopole analysis of 

crustal magnetic anomalies since the release of new magnetometer data from the 

NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission. 

I use the methods described in Chapter 1 to determine the magnetic paleopole 

locations and uncertainties of ten martian crustal magnetic anomalies. I then use the 

Maximum Angular Deviation (MAD) technique to quantify the degree of clustering 

of our paleopole uncertainty ellipses and find significant clustering around a low 

latitude (45°N), which corresponds with a paleo-spin axis found through paleo-

shoreline analysis (Perron et al., 2007). I show that the wide spread of other paleopole 

locations cannot be explained by a multipolar field or a hemispherical dynamo. 
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Chapter 1: Evidence for an ancient near-equatorial lunar dipole 

from higher precision inversions of crustal magnetization 

 

Abstract 

Studies of lunar paleopoles have been used to make a variety of inferences about past 

episodes of true polar wander and the orientation of the ancient dynamo field. However, 

the large and variable uncertainties commonly reported for such studies make robust 

conclusions difficult. To make further progress, we used synthetic magnetic anomalies to 

assess a common method to estimate magnetization direction uncertainty. We find that 

with this method, magnetic anomalies with higher inclinations have systematically higher 

uncertainties than lower inclination anomalies. We call this effect inclination bias. A 

similar effect is found for declination, but it is weaker. We also find this method often 

produces overly conservative uncertainty estimates. To avoid these effects, we use Monte 

Carlo methods to determine magnetization direction uncertainty. We apply our methods 

to five lunar magnetic anomalies with a wide range of reported magnetization directions 

and paleopole locations. We find that inclination bias partly explains the previously 

reported anomalously high and low direction uncertainties for two of these anomalies: 

Reiner Gamma and Airy. Our more robust uncertainties allow us to conclude that four 

paleopoles are located near the equator. Such low latitudes cannot be explained by true 

polar wander inferred from other independent datasets, such as the lunar gravity field and 
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the polar hydrogen distribution. This in turn implies that the dynamo axis was once offset 

from the spin axis. 

 

1 Introduction 

Rocks that cool in the presence of a planetary magnetic field can produce crustal 

magnetic anomalies observable from ships, aircraft, and spacecraft. Such anomalies are 

seen on Earth, the Moon, Mars, and Mercury, and may one day be detected on other 

bodies. Similarly, very high-resolution magnetic microscopy can produce two-

dimensional maps of magnetization in thin sections of rocks (Glenn et al., 2017; Lima & 

Weiss, 2016). Magnetized materials can be analyzed for their magnetization direction, 

which can provide constraints on numerous geophysical processes. For example, on the 

Moon, the magnetization direction of crustal anomalies can control their interaction with 

the solar wind plasma (Deca et al., 2020; Hemingway & Garrick-Bethell, 2012; Poppe et 

al., 2016). The magnetization direction also places constraints on the local orientation of 

the paleomagnetic field at the time of anomaly formation. If one assumes a dipolar spin-

aligned paleomagnetic field, the paleopole location (i.e., ancient spin axis pole) can be 

inferred (Irving, 1964). 

Numerous studies of lunar magnetic paleopoles have been performed, starting 

with work by Hood (1981)and Runcorn (1983). Takahashi et al. (2014) found at least two 

clusters of paleopoles and interpreted them to represent true polar wander. Arkani-Hamed 

and Boutin (2014) also found clustered paleopoles and interpreted some of them to 

represent reversals. Oliveira and Wieczorek (2017) found paleopole locations similar to, 
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or within the range of uncertainty of, paleopoles found by Takahashi et al. (2014) and 

Arkani-Hamed and Boutin (2014). They interpreted these paleopoles to represent motion 

of the dynamo dipole axis. Additional work has found more complicated patterns of 

paleopole locations. For example, crustal magnetic anomalies in and around the South 

Pole-Aitken Basin are widely distributed (Nayak et al., 2017), and several anomalies 

within the Crisium Basin have different paleopole locations, despite sharing a common 

geologic origin (Baek et al., 2017, 2019). 

Independent estimates of lunar true polar wander from the Moon's gravity field 

and polar hydrogen distribution limit the largest principal moment of inertia deviation to 

<36° of colatitude (Garrick-Bethell et al., 2014; Keane & Matsuyama, 2014; Siegler et 

al., 2016). This deviation is substantially less the 90° required to explain a magnetic 

paleopole at the equator. Therefore, assuming the gravity and hydrogen studies provide 

reasonable constraints, any verified near-equatorial magnetic paleopoles would suggest 

that the Moon's dynamo dipole axis was offset from the spin axis. This configuration 

could have implications for the dynamo mechanism (Takahashi et al., 2009), as well as 

implications for the formation of polar volatile deposits (Garrick-Bethell et al., 2019). A 

major goal of this study is to reassess, in the context of new uncertainty estimation 

methods, the locations of previously reported near-equatorial paleopoles. 

One major concern of magnetic paleopole analyses is the uncertainty associated 

with the best-fit magnetization direction. Large uncertainties (near 90° in some cases, 

e.g., Oliveira et al., 2019; Oliveira & Wieczorek, 2017; Thomas et al., 2018) make it 

difficult to determine if paleopoles found distant from the present pole truly represent 
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deviation of the dipole axis from the spin axis. Unfortunately, there currently exists no 

consistent method of describing direction uncertainties across inversion methods 

(Maxwell et al., 2017). 

A widely used technique for determining the magnetization direction of crustal 

magnetic anomalies was developed by Parker (1991), herein referred to as Parker's 

Method. This method calculates the best-fit strengths of a two-dimensional grid of source 

dipoles at the surface for an assumed magnetization direction (details in Section 2, 

Methods). Parker's Method was previously used to study the magnetization of Earth 

seamounts (Parker, 1991), and has more recently been used to study crustal magnetic 

anomalies on the Moon (Lee et al., 2019; Oliveira & Wieczorek, 2017; Oliveira et al., 

2017), Mars (Morschhauser et al., 2014; Thomas et al., 2018), and Mercury (Oliveira et 

al., 2019). To determine uncertainty in the magnetization direction, Parker (1991) 

suggests choosing an acceptable root mean squared (RMS, in units of magnetic field) 

difference between the data set and best-modeled field for an assumed direction, called 

the “maximum misfit” (Figure 1.1). All directions with errors less than this maximum 

misfit are considered acceptable, and thus used to estimate direction uncertainty 

(described in Section 2, Methods). 

How to choose the maximum misfit is an open question. Several authors have 

chosen a misfit equal to the RMS of the background field, using the assumption that the 

background field is statistically similar to the unmodeled magnetic field, that is the 

portion of the magnetization that is not a part of the unidirectionally magnetized anomaly 

(Oliveira & Wieczorek, 2017; Oliveira et al., 2019; Lee et al., 2019; Thomas et al., 2018). 
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The instrument noise from magnetometers on Lunar Prospector and Kaguya is less than 

0.1 nT (Lin et al., 1998; Tsunakawa et al., 2010). This value is substantially smaller than 

the typical background crustal field strength, allowing authors to generally ignore it as 

major source of uncertainty (Oliveira & Wieczorek, 2017). 

Using the background crustal field as the maximum acceptable misfit (Figure 1.1) 

poses challenges in two situations, as described by Oliveira and Wieczorek (2017). The 

first is when the anomaly's magnetic field is low compared to the background field, 

herein referred to as low signal-to-background ratio (SBR). In this case, the RMS error of 

the best-fit solution may be much lower than the RMS background field, possibly 

yielding an unrealistically high uncertainty. Indeed, all of the studies cited above show 

multiple instances of very large direction uncertainties, sometimes encompassing an 

entire hemisphere. The second challenge is when the anomaly's magnetic field is large 

compared to the surrounding field (high SBR). In this case, the 

RMS error of the best-fit solution might be larger than the RMS background field, 

implying no other magnetization directions are acceptable. In other words, the 

uncertainty of the magnetization direction would be unrealistically zero. An example of 

this latter case was found for the Moon's Reiner Gamma anomaly in Oliveira and 

Wieczorek (2017). 
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Figure 1.1: In a map of all possible magnetization directions for a magnetic anomaly 
inversion, the maximum acceptable misfit is a contour of root mean squared error values. 
The equivalent angular uncertainty (dashed line) is defined here as the radius of a 
spherical cap (solid line) with an area equal to the area within the contour defined by a 
maximum acceptable misfit (dotted line). Also shown is the best-fit location (white star). 
All maps of magnetization direction errors in this study are Mollweide projection with 
positive declinations increasing to the right and positive inclinations increasing 
downward. The center of the figure has an inclination of 0° and declination of 0°. 
 

We have discovered an additional issue with estimating direction uncertainties 

using a maximum RMS error to define uncertainty. There is consistently a larger 

direction uncertainty for highly inclined magnetization directions than for horizontal 

magnetization directions. We call this effect “inclination bias.” This bias is also found in 

a simple dipole-fitting routine, indicating this effect is not restricted to just Parker's 

Method. It also occurs regardless of what misfit value is used, for example, a maximum 

acceptable misfit that is equal to the background crustal field (Parker, 1991). Inclination 

bias can affect analyses of paleopoles if uncertainties are so large as to make the result 
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unreliable. For example, Oliveira and Wieczorek (2017) analyzed the Airy magnetic 

anomaly and found a high inclination with a high magnetization direction uncertainty, 

such that they could not include the anomaly in their paleopole analysis. If anomalies like 

Airy cannot be used reliably in paleopole evolution analyses, it is possible that this will 

create a sampling bias where analyses of high-inclination anomalies are omitted and 

result in incorrect inferences about true polar wander or the dynamo orientation. 

We propose a new method of uncertainty estimation that permits including results 

that were previously considered unreliable. This method involves a Monte Carlo 

approach, which has been used in studies of lunar crustal magnetism before (Baek et al., 

2017, 2019; Nayak et al., 2017), but never with Parker's Method. We do not necessarily 

expect the inverted paleopole locations to change greatly, but rather we intend to make 

estimates of their locations more robust, and therefore usable in testing hypotheses about 

the lunar dynamo. 

The objectives of this study are: (1) reassess the evidence for magnetic paleopoles 

near the present-day equator, (2) show that magnetization direction uncertainty is biased 

as a function of inclination, and usually unnecessarily conservative, when using a 

maximum acceptable misfit value to estimate uncertainty (Figure 1.1), (3) quantify how 

the strength of the background field (i.e., changes in SBR) affects the range of acceptable 

magnetization directions, and (4) suggest a new method of estimating uncertainties with 

Monte Carlo methods. To achieve these objectives, we first study isolated synthetic 

anomalies of several shapes. We then apply Parker's Method to invert for their 

magnetization direction and determine their uncertainty using a maximum misfit method. 
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We also add smaller, random synthetic magnetization sources to our analysis, to quantify 

how maximum misfit is affected by SBR. Finally, we apply Parker's Method and our 

Monte Carlo method to five lunar magnetic anomalies, whose geologic origins suggest 

unidirectional magnetization, in order to achieve a higher precision estimate of their 

paleopole locations. 

 

2 Methods 

2.1 Synthetic Anomalies 

We begin by generating six different isolated synthetic patterns of magnetization 

to demonstrate the problems of using a maximum acceptable misfit to quantify 

uncertainty: A dipole, a rectangle, a square, a triangle, a circle, and a random assortment 

of 14 dipoles (example fields from all anomalies are shown in Appendix Figure A1). The 

synthetic shapes are comprised of multiple dipoles of constant magnetization strength on 

a regular 0.25 ° x 0.25° grid and the magnetic field is calculated at each location on a 

0.25 ° x 0.25° grid at 20 km altitude above the source (see Table 1.1 for details). The total 

magnetic moment is fixed for all shapes, though the number of dipoles used to create 

each shape varies. The choice of altitude is arbitrary in this case because the field is 

known perfectly (noise-free) and all inversions without noise perfectly recover the 

magnetization direction. However, we remark that in the case of real anomalies, varying 

the altitude of the measurements may vary the SBR, since the background and signal 

source bodies may each have different source depths. 
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Synthetic shapes with additional random background fields are also made to test 

the effect of scattered nonunidirectionally magnetized background anomalies, that is 

changes in SBR, on inclination bias. These background anomalies are dipoles on a grid, 

the size of the synthetic data set with 0.25 ° x 0.25° resolution and the field is measured 

at the same altitude as the synthetic anomaly. These anomalies are created with a uniform 

random distribution of magnetization strength and direction per dipole. The maximum 

magnetization strength increases to meet the SBR value we wish to model. SBR values 

are calculated by taking the maximum value of the total field of the anomaly divided by 

the RMS of the total field of the synthetic background field (prior to adding it to the 

anomaly). The synthetic nonunidirectional background field is then added to the synthetic 

anomaly field (Appendix Figure A2). Different values of SBR for a given anomaly shape 

are created using the same background dipoles (i.e., preserving their location and 

magnetization direction), though the strength of each dipole is chosen randomly each 

time a data set with a new SBR value is generated. In addition, to ensure that our 

conclusions were not affected by the location and magnetization direction of the 

background dipoles, we repeat our entire analysis with a set of dipoles with different 

locations and orientations (Appendix Figure A3). 

 

Anomaly Dimensions Number of 
Dipoles 

Moment per 
dipole (Am2) 

Maximum Total 
Field Strength 

for 0° inclination 
(nT) 

Dipole Single point 1 1 x 1013 118.1 
Rectangle 0.5° x 2° 18 5.56 x 1011 54.5 

Square 2° x 2° 81 1.23 x 1011 18.2 
Circle 2° radius 61 1.64 x 1011 22.9 
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Triangle H = 2°, B = 2° 49 2.04 x 1011 26.0 

Random Randomly 
placed 14 7.14 x1011 51.4 

Table 1.1: Parameters used to create each of the synthetic datasets (see also Appendix 
Figure A1). Total moment for each anomaly is 1 x 1013 Am2 and the burial depth is 0 m. 
The dipole and rectangle anomalies are discussed in detail in the main text. For the 
Triangle case, H = height of the triangle and B = base of the triangle. Dipoles are placed 
on a 0.25° x 0.25° resolution grid within the dimensions listed, centered at 0° N, 0° E. 
Here, dimensions of 1° » 30 km of distance. 
 

2.2 Parker's Method 

Parker’s Method places dipoles on a regular grid, within a specified area on a 

surface above the source body, to obtain the best-fitting magnetization distribution for a 

magnetization direction tested. It makes no assumption about the geometry of the 

magnetic source body but does follow the unidirectional assumption that all source 

material has the same magnetization direction, while allowing for a variation 

magnetization strength across an anomaly. Formally, this method models magnetization 

within some volume V as a unidirectional magnetic field whose magnetization strength m 

is an arbitrary function of position within the body, modeled on the surface of V. The 

magnetization is written as  

𝑴(𝒔) = 𝒎' 	𝑚(𝒔),𝑚(𝒔) ≥ 0. 

where 𝒎'  is the magnetization direction and s is the location. Observations taken outside 

of V are approximated as the field component along 𝑩/!, the direction of the main 

magnetic field in the vicinity. In this work, we follow the precedent set by (Oliveira and 

Wieczorek, 2017) and use radial component of the magnetic field. We have confirmed 
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the tests done by Oliveira and Wieczorek (2017) showing that the field component used 

in Parker’s Method does not substantially affect the results. 

From Parker et al. (1987), No observations dj made at positions rj can be calculated as the 

sum of contributions from Nd dipoles located at si. 

𝑑" =1𝑔"(𝒔#)𝑚(𝒔#)
$!

#%&

, 𝑗 = 1,… ,𝑁' 

where the contribution from a single dipole at location i is given as 

𝑔"(𝒔) =
𝜇!
4𝜋 :

3𝒎' ∙ =𝒓𝒋 − 𝒔@𝑩/! ∙ =𝒓𝒋 − 𝒔@

A𝒓𝒋 − 𝒔A
) −

𝒎' ∙ 𝑩/!
A𝒓𝒋 − 𝒔A

*B 

From this, we can use the matrix G, which depends on the dipole locations i = 1, 

…, Nd and j = 1, …, No, to find the magnetization strength of the source dipoles by 

solving the non-negative least squares technique as developed by (Lawson and Hanson, 

1974). 

min
+,!

‖𝒅 − 𝐺𝒎‖- 

Note that the user must choose a test-dipole spacing resolution and their spatial 

coverage. They may have to adjust these values based on initial results. Following 

Oliveira and Wieczorek (2017), we use circular magnetic field datasets (Appendix Figure 

A4), with the radius of the data circle set larger than the circle of permissible source 

dipoles to avoid unwanted edge effects. We then test magnetization directions over a unit 

sphere equally spaced by ~4° for every iteration of Parker’s Method. When synthetic 

datasets are used, we place test dipoles exactly where the synthetic dipoles are located. 
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Hence, the best-fit solution will have exactly zero RMS error at the synthetic anomaly’s 

true magnetization direction, in the absence of added random background fields. 

 

2.3 Single Dipole Fit 

To compare Parker's Method to the simplest possible inversion method at the 

simplest possible anomaly, we use a single dipole fit method to recover the magnetization 

direction of a synthetic, isolated single dipole. No synthetic nonunidirectional 

background field is added. We test magnetization directions over a unit sphere equally 

spaced by ∼4°. RMS values of the difference between the data set and model are then 

calculated for each direction tested, for each magnetization component. We assume 

perfect knowledge of the dipole magnetization strength, location, and depth and therefore 

do not test these parameters. Hence, the uncertainty in magnetization direction obtained 

from this idealized analysis is a best-case scenario. 

 

2.4 Calculating Uncertainties for Synthetic Anomalies 

Arbitrary maximum acceptable misfits (e.g., RMS error 1, 2, etc., nT) and a 1-σ 

maximum acceptable misfit are used to estimate uncertainties for the synthetic tests 

without added background fields. Here 1-σ is the standard deviation of the errors for all 

magnetization directions tested on a unit sphere. When a synthetic nonunidirectional 

background field is added, or real anomalies are analyzed, the arbitrary maximum misfit 

chosen is the RMS background field. Whatever the misfit used to determine the direction 

uncertainty, we calculate the fractional area within the unit sphere of directions that is 
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less than the maximum acceptable misfit: the “acceptable area.” Next, we equate this area 

to the area of a spherical cap, and the angular radius of this cap is taken to be the 

“equivalent angular uncertainty” (Figure 1.1). Converting the range of acceptable 

magnetization directions into to single angular radius (the equivalent angular uncertainty) 

in this manner simplifies the interpretation of the uncertainty and facilitates comparisons 

across different model parameters. 

 

2.5 Monte Carlo Approach to Estimating Magnetization Direction Uncertainties 

Because Parker's Method adequately estimates the magnetization direction in the 

presence of modest background random fields (eventually demonstrated in Figure 1.8b), 

our suggested approach to estimate uncertainty is to: 

1. Compute a best-fit model of an anomaly (e.g., from spacecraft data). This model 

is derived from observations that are contaminated by background crustal fields. 

This contamination produces a “perturbation” of the best-fit result away from the 

true, unknowable direction. 

2. Add synthetic nonunidirectional random background fields to the model in Step 1 

to produce a SBR similar to that of the real-world anomaly. This step adds 

background fields to a model that is already contaminated by background fields 

(step 1). Hence, our addition of background fields is a second perturbation of the 

system away from the true direction. However, if the background fields are 

sufficiently low (high SBR), on average, this second perturbation will be of the 

same magnitude as the first (see cartoon of this assumption in Figure S6). 
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3. Perform a Parker's Method inversion for the background-field-added data set from 

step 2. 

4. Repeat steps 2 and 3 with a new background-field. Each repetition of this step 

represents one iteration of the Monte Carlo approach. In other words, each 

repetition is a new random perturbation of the solution away from the step 1 

model. On average, we expect these perturbations to have a scatter, quantified as 

angular standard deviation, that comes close to encompassing the actual true 

direction, based on the reasoning in step 2. 

5. Compute the angular distance between the best-fit model (step 1, “best-fit” 

direction) and each best-fit direction of the synthetic cases generated in step 4 

(“perturbed directions”). We take each of these angles to be θΔ. The angular 

standard deviation, s, of all of the θΔ angles is be taken as a measure of the 

uncertainty (calculated using Fisher statistics).  

Using this method in practice at lunar magnetic anomalies, we first obtain a best-

fit model from the Tsunakawa et al. (2015) lunar magnetic field model (surface vector 

mapping [SVM] method). Other magnetic field maps have been published (e.g., Purucker 

and Nicholas 2010; Ravat et al., 2020), but we expect the SBR values for each of these 

datasets to be similar, such that our uncertainty estimates will also be similar. We then 

create synthetic random background-field-added datasets (such that the SBR is similar to 

the real- world SBR, within ±1 SBR units) in the manner described in Section 2.1. In 

practice, one could also add other random background fields that represent instrument 

noise, though we ignore these herein as they are less than ∼0.1 nT (above). We perform 
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20 background-field-added inversions for each anomaly (step 4) and calculate the 

anomaly's direction uncertainty via the precision parameter k and angular standard 

deviations (Bulter, 1992; Nayak et al., 2017, Appendix Text A1). We assume that the 20 

best-fit directions are Fisher distributed. The original best-fit value (step 1) is reported as 

the final direction, with uncertainty s, the angular standard deviation (Table 1.2). 

 

2.6 Lunar Magnetic Anomalies and Selection Criteria 

A crustal magnetic anomaly must be isolated from other anomalies and 

unidirectionally magnetized (defined as all magnetization in the same direction, but not 

necessarily with uniform intensity) to ensure the best-fit solution is well constrained. 

Thomas et al. (2018) found that anomalies should be a distance of at least twice their 

radius away from other anomalies to avoid unrelated sources that could increase the 

maximum acceptable misfit value. Gerhards (2016) showed that magnetizations cannot 

be determined uniquely when the magnetization is nonzero outside a finite region (i.e., 

the anomaly must be isolated). Vervelidou et al. (2017) reached similar conclusions and 

discussed the problems with nonunidirectionally magnetized sources. 

We analyze five lunar magnetic anomalies (Appendix Figure A4) that have been 

previously analyzed (e.g., Oliveira & Wieczorek, 2017). All anomalies are isolated, such 

that they likely formed in a discrete, relatively short-lived event and therefore acquired 

unidirectional magnetization. Three of these anomalies (Reiner Gamma, Airy, and Abel) 

are associated with lunar swirls, which likely indicates a shallow source (Hemingway & 

Tikoo 2018). In particular, the magnetic source material for Reiner Gamma has been 
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proposed to be a melt sheet or floor deposits from an oblique impact crater (Garrick-

Bethell & Kelley, 2019). A shallow source would cool quickly and therefore be more 

likely to record a unidirectional field. 

The other anomalies we test, Hartwig and Sylvester, do not exhibit swirls, but 

could still be reasonably assumed to have formed in a discrete, short-lived event and 

therefore record a unidirectional field. Specifically, both anomalies are located in the 

lunar highlands, where a major hypothesis for their origin is the deposition of impact 

ejecta (Hood et al., 2001; Wakita et al., 2020; Wieczorek et al., 2012).  

Four of these anomalies may have near-equatorial paleopoles: Abel, Airy, 

Hartwig, and Sylvester (Table 1.2), based on prior work. A fifth anomaly with a polar 

paleopole, Reiner Gamma, was also included, for comparison. All five anomalies have a 

diverse range of real-world SBR values and inclinations. 

To test the robustness of our results (and to ensure the magnitude of the calculated 

background fields are not significantly interfering with our inversions) we repeat analyses 

for each anomaly with a different sized data extent. We use the radial distances from the 

center of the anomalies chosen by Oliveira and Wieczorek (2017) as well as smaller radii 

(except Sylvester for which we chose a larger radius to capture all of the anomaly). The 

data in the 30 km altitude Tsunakawa SVM map have a spacing 0.5° and we choose a 

spacing of 0.4° for our inversions, following Oliveira and Wieczorek (2017). 
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Table 1.2: Summary of crustal magnetic anomalies analyzed. Location of the anomaly in 
latitude (ls) and longitude (js), radii of observations (ro) and test dipoles (rd), the SBR 
value associated with each observational extent, the inclination (Inc) and declination 
(Dec) resulting from Parker’s Method, paleopole latitude (lp) and longitude (jp), the 
precision parameter (k), and angular standard deviation (s) from the 20 Monte Carlo 
simulations to estimate uncertainty, and the paleopole ellipse semi-axes, dm and dp, 
derived from s. All are in units of degrees, except for SBR and k which are unitless. Note 
that all center latitudes and longitudes are the same except for Abel which has a different 
central latitude. 
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To calculate the paleopole locations from our magnetization directions, we use the 

equations from Irving (1964) (see Appendix Text A1), and also the description in 

Takahashi et al. [2014]). We derive the paleopole error ellipse from the angular standard 

deviation s (above), which is characterized by the semi-axes dp and dm, such that dp is 

along the great circle that connects the anomaly location with the paleopole location and 

dm is perpendicular to that great circle. We note that confidence intervals cannot be yet 

be calculated with present methods, as a confidence interval is based on the number of 

samples. Here, we do not have a variety of samples but rather a group of similar non-

independent datasets with added random background fields. 

 

3. Results 

3.1. Inclination Bias in Both Parker's Method and the Single Dipole Fit Method 

Applied to Single-Dipole Sources 

We find that the equivalent angular uncertainty (Figure 1.1) of a single dipole is a 

function of inclination. For both the single dipole fit method (Figure 1.2) and Parker's 

Method (Figure 1.3), a dipole that is north-pointing (0° inclination) has lower 

uncertainties than a dipole that is radially pointing (90° inclination, Figure 1.4), when 

using a maximum acceptable misfit value to compute the uncertainty. The effect is 

present in all cases of chosen misfit value (RMS error of 1, 2, 3, 5, and 7 nT). Histograms 

depicting the frequency of RMS error values help demonstrate the origin of the 

inclination bias (Figures 1.2 and 1.3). More acceptable magnetization directions are 

found for the same maximum acceptable misfit for higher inclinations versus lower 
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inclinations, for both inversion methods. Inclination bias also holds for a maximum 

acceptable misfit value chosen to be 1-σ of the RMS error of all directions tested (not 

shown in Figure 1.4). Finally, we note that in this example there is no noise or additional 

background field in these tests. 

Given the fact that our analysis will now deal with shapes more complex than a 

single dipole, we stop our study of the single-dipole single dipole fit method. 

 

 
Figure 1.2: Maps and histograms of root mean squared (RMS) errors of tested 
magnetization directions for inversions for a single dipole's direction using the single 
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dipole fit method. The area of the error map is greater for higher inclinations, for a given 
maximum misfit (i.e., RMS error 1, 2, 5 nT). Shown are results using the radial magnetic 
field component only, for brevity. The results are similar for the north and east 
components. These maps are a Mollweide projection of magnetization directions tested, 
with declination on the y-axis and inclination on the x-axis, similar to Figure 1.1. 
 

 
Figure 1.3: Maps and histograms of root mean squared (RMS) errors of tested 
magnetization directions for inversions for a single dipole's direction using Parker's 
Method. The area of the error map is greater for higher inclinations, for a given 
maximum misfit (i.e., RMS error 1, 2, 5 nT). The 1-σ maximum misfit is coincident with 
the 5 nT value for the 90° inclination case and is therefore not visible. Shown are results 
using the radial magnetic field component only, for brevity. The results are similar for the 
north and east components. These maps are a Mollweide projection of magnetization 
directions tested, with declination on the y-axis and inclination on the x-axis, similar to 
Figure 1.1. 



 22 

 

 
Figure 1.4: Equivalent angular uncertainty associated with inversions for the 
magnetization direction of a single dipole source, using the single dipole fit method 
(Figure 1.2), Parker's Method (Figure 1.3), and Parker's Method applied to a rectangle 
source (Figure 1.5). The uncertainty is always higher for 90° inclinations (i.e., the circles 
are always above the stars), except for a maximum misfit of 7 nT for the rectangular 
anomaly for the 0° inclination case (see text). Not shown are the equivalent angular 
uncertainties for a 1-σ maximum misfit, where in all cases the uncertainty is higher for 
90° inclination. 
 

3.2 Inclination Bias in Parker's Method Applied to Different Source Shapes 

Single Dipole Fit, 0° Inclination
Single Dipole Fit, 90° Inclination
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Inclination bias persists regardless of the shape of the magnetic source. We apply 

Parker's Method to each shape (Appendix Figure A1) and repeat the inversion for 19 

different source inclinations (−90° to +90° inclination in 10° increments, all with 0° 

declination). The equivalent angular uncertainties for all shapes are larger for higher 

magnetization inclinations for nearly all of the maximum acceptable misfits chosen 

(RMS error 1, 2, 3, 5, and 7 nT, Figure 1.4). The only exception is a 7 nT maximum 

acceptable misfit for the rectangular source, which is 97.5% of the maximum RMS error 

for all test directions for the synthetic anomaly with 0° inclination. Hence, it is possible 

that at very large maximum acceptable misfit values, inclination bias may not appear. 

However, in practice one would never apply a maximum acceptable misfit so close to the 

maximum error in the inversion.  

The origin of the inclination bias can be seen in the error histograms for the 90° 

inclination, which are flatter than the 0° inclination case, yielding a wider range of 

acceptable magnetization directions (Figure 1.5). Inclination bias also holds for a 

maximum acceptable misfit equal to 1-σ of the RMS error of all directions tested. Again, 

note that in this example, there is no noise or random background fields.  
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Figure 1.5: Maps and histograms of root mean squared (RMS) errors of tested 
magnetization directions for inversions for a rectangular source using Parker's Method 
(sources shown in supporting information). The area of the error map is greater for higher 
inclinations, for a given maximum acceptable misfit (i.e., RMS error 1, 2, 5 nT). Shown 
are results from Parker's Method using the radial magnetic field component only, for 
brevity. The results are similar for the north 
and east components. These maps are a Mollweide projection of magnetization directions 
tested, with declination on the y-axis and inclination on the x-axis, similar to Figure 1.1. 
 

The bias in recovering the magnetization direction remains regardless of what 

magnetic field component is used in Parker's Method. To demonstrate this, we used a 2 

nT and 1-σ maximum acceptable misfit and calculated the equivalent angular uncertainty 

of the best-fit magnetization direction of a dipole and rectangular shape, using all three 
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magnetic components separately (Figure 1.6 and Appendix Figure A7). In all cases the 

uncertainty increased as the source body inclination increased. Finally, this finding also 

holds regardless of shape of the magnetic source (Appendix Figure A8). 

Declination also has an effect on uncertainty, but is much smaller in magnitude. 

For example, a maximum of 15° uncertainty is produced from a dipole source and 30° for 

our rectangle source, compared to maximum of 75° inclination for both, using similar 

model parameters as for the inclination analysis (Appendix Figure A9). Furthermore, the 

uncertainty does not monotonically increase between 0° and 180°, unlike the monotonic 

increase with inclination from 0° to 90°, so we will not emphasize the effect of 

declination in the remainder of the paper. 
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Figure 1.6: Higher inclinations give systematically higher uncertainties, referred to 
herein as inclination bias. Results shown here are for Parker's Method applied to the 
dipole and rectangle anomalies (with a constant 0° declination for all tests) using a 
maximum misfit of 2 nT (top rows) and 1σ (bottom rows). Negative inclinations are not 
shown, as the results are identical to those for positive inclinations. Note that some blue 
or red dots are occasionally obscured by yellow ones. 
 

3.3. Inclination Bias in the Presence of Noise With Parker's Method 

We find that inclination bias remains when a random background field is added to 

the source. To demonstrate this, we add a variety of background fields to the synthetic 

rectangular case for a series of datasets with SBR values up to ∼35 (examples shown in 
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Figure 1.7), for 0 and 90° inclination magnetizations, and invert for the magnetization 

direction with Parker's Method (Figure 1.8 and Appendix Figure A3). The equivalent 

angular uncertainties for anomalies with 90° inclination (Figures 1.8c and 1.8d, unfilled 

circles) are greater than those with 0° inclination (Figures 1.8c and 1.8d, filled circles) at 

each SBR. Additionally, inversions show that using a maximum acceptable misfit value 

equal to the RMS background field (Figure 1.8c) have a greater variability in equivalent 

angular uncertainty than using 1-σ (Figure 1.8d) to define the maximum misfit. However, 

it is important to note that both choices of misfit value give larger uncertainties as the 

background field strength increases (SBR decreases). Examples of these differences can 

be seen in Figure 1.9.  
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Figure 1.7: Synthetic background field oscillations added to the synthetic rectangular 
anomaly. Examples are for signal-to-background ratio (SBR) values of ∼23 (like at the 
Reiner Gamma anomaly), ∼8 (like at the Airy anomaly), 4, and 1. These cases were 
created by adding dipoles of random strength and direction to the synthetic rectangle 
anomaly data set (see Figure 1.4). The synthetic anomaly modeled here is at 0° 
inclination, 0° declination. These fields are calculated at 20 km altitude. Points within the 
data set are on a 0.25° x 0.25° grid. 
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Figure 1.8: Inclination bias across different SBR values for a rectangular source with 0 
and 90° magnetization inclination. (a) The best-fit root mean squared (RMS) value for 
differing signal-to-background ratio (SBR) values. The instrument SNR (Signal-to-Noise 
Ratio) at Airy is 8.3. (b) The angular difference between the true and best-fit directions 
θΔ. (c) The equivalent angular error for a maximum misfit equal to the RMS background 
field. (d) The equivalent angular error for a maximum misfit equal to 1 σ. The SBR 
values associated with the actual Reiner Gamma and Airy magnetic anomalies are 
denoted by vertical black lines at 23 and 8, respectively. All test cases have a declination 
of 0°. Label “A” on panel (c) indicates the test case most like the Reiner Gamma anomaly 
and label “B” indicates the test case most like the Airy anomaly. 
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Figure 1.9: Error maps for selected cases indicated in Figure 1.8d (synthetic rectangular 
anomaly). The best-fit direction is close to the true direction, while the acceptable area 
within the maximum misfit (here equal to the background noise and 1-σ) grows as signal-
to-background ratio (SBR) decreases. The black stars are the true directions, the white 
stars are best-fit directions; the angular difference between them is θΔ (Figure 1.8). Here, 
only the radial component is used in Parker's Method. 
 

Our most essential finding is that regardless of the maximum acceptable misfit 

value chosen, the equivalent angular uncertainty (i.e., the uncertainty obtained from using 

a maximum misfit value) is always higher than the angle between the true and best-fit 

directions, θΔ, indicating that the maximum misfit method is overly conservative. For 

example, SBR values of 10–30 have equivalent angular uncertainties of ∼10°–100° when 

using a maximum acceptable misfit (Figure 1.8c, depending on the field component used 

and anomaly inclination), while the true capability of Parker's Method has θΔ values of 
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only ∼10°–30° over the same SBR range for all components (Figure 1.8b and Appendix 

Figure A3). There is no strong dependence on field component or inclination value, but 

there is a slight suggestion of a ∼10° magnitude increase in θΔ with higher inclination for 

one field component (Figure 1.8b and Appendix Figure A3b). Ultimately, determining if 

θΔ depends slightly on inclination will require many more simulations with Parker's 

Method and will be the subject of future work. Regardless, we can summarize the 

preceding observations as follows: The uncertainties estimated using a maximum 

acceptable misfit are not only biased by inclination but are also unnecessarily 

conservative compared with the values of θΔ. 

We show this effect visually in the error maps shown in Figure 1.9. Synthetic 

anomalies with 90° inclination have much larger uncertainties, as defined by maximum 

misfit, than the anomalies with 0° inclination. While θΔ from the 90° inclination 

anomalies are slightly larger compared to the 0° inclination cases (at least in this example 

of background-added data), the uncertainty from using a maximum misfit is much 

greater. In addition to our tests of precision, we assessed the accuracy of Parker's Method. 

That is, we checked that there was no directional bias in the deviation of the best-fit 

direction from the true direction. We started with a synthetic rectangle and produced 40 

background-field-added test cases, for four SBR and magnetization direction conditions 

(0° and 90° inclination magnetizations each with 8 and 23 SBR, Appendix Figure A5). 

We found no evidence for obviously high levels of inaccuracy, at least for the cases 

explored, and hence we continue to focus on precision in the rest of the paper. 
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3.4 Lunar Magnetic Anomalies 

We present in Figures 1.10, 1.11, Appendix Figure A4, and Table 1.2 the 

inversion results and Monte Carlo trials at Airy and Reiner Gamma, respectively, while 

relegating the others (Abel, Hartwig, and Sylvester) to the Supporting Information 

(Appendix Figures A10–A12). One interesting result is that Airy has an inclination 

higher than all of the other anomalies, and an uncertainty (standard deviation, s) ∼5–10° 

higher than the other anomalies. This may reflect the slight increase in uncertainty with 

inclination, as suggested by our studies of a synthetic anomaly (Figures 1.8 and 1.9, 

above). Overall, we find substantially smaller uncertainties for all anomalies compared to 

Oliveira and Wieczorek (2017), with the exception of Reiner Gamma. 
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Figure 1.10: Magnetic field map of the Airy magnetic anomaly at 30 km altitude using 
the surface vector mapping (SVM) data set (Tsunakawa et al., 2015), the best-fit model 
of Airy from Parker's Method, the best-fit model plus background field appropriate for 
Airy (signal-to-background ratio [SBR] ≈ 8), and the bestfit model from Parker's Method 
applied to the model plus a background field. All datasets are at a 0.5° x 0.5° grid 
resolution. 
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Figure 1.11: Magnetic field map of the Reiner Gamma magnetic anomaly at 30 km 
altitude using the surface vector mapping (SVM) data set (Tsunakawa et al., 2015), the 
best-fit model of Reiner Gamma from Parker's Method, the best-fit model plus 
background field appropriate for Reiner Gamma (signal-to-background ratio [SBR] ≈ 
23), and the best-fit model from Parker's Method applied to the model plus a background 
field. All datasets are at a 0.5° x 0.5° grid resolution. 
 

Paleopoles and their estimated uncertainties are shown in Figure 1.12. We also 

plot the paleo-spin axis locations from Garrick-Bethell et al. (2014); Keane and 

Matsuyama (2014); and Siegler et al. (2016) (Figure 1.12). Only Reiner Gamma overlaps 

with the range of estimated paleopoles, in particular, with the hydrogen paleopole extent 

discussed by Siegler et al. (2016). All four of the other magnetic paleopoles, Abel, Airy, 

Hartwig, and Sylvester, are closer to the equator. 
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 36 

Figure 1.12: Paleopole plot showing our results for Abel, Airy, Hartwig, Reiner Gamma, 
and Sylvester over Lunar orbiter laser altimeter topography data (Smith et al., 2010). 
Solid lines represent the larger of the two data extents tested for each anomaly while 
dashed lines represent the smaller (see Table 1.2 for details). The dm and dp values for 
the uncertainty ellipses are obtained from the 1-σ angular uncertainties, s, in Table 1.2. 
Paleopole location reported by Garrick-Bethell et al. (2014), Keane and Matsuyama 
(2014), and Siegler et al. (2016) are also shown. (a) Is a Mollweide projection centered 
on 0°N, 0°E. (b) Is a polar projection centered on the north pole with a latitudinal extent 
from 0°N to 90°N. 
 

4 Discussion 

4.1 Uncertainty Estimation 

4.1.1 Maximum Acceptable Misfit versus Monte Carlo Methods 

A combination of inclination bias and different SBR values helps explain 

particularly large differences in direction uncertainty at two lunar magnetic anomalies 

studied by Oliveira and Wieczorek (2017). They found a much lower uncertainty for the 

magnetization direction of the low-inclination Reiner Gamma magnetic anomaly (similar 

to the synthetic example in Figure 1.9b) compared to the high-inclination Airy anomaly 

(similar to the synthetic example in Figure 1.9c) when they used the RMS background 

field to define the maximum acceptable misfit. The synthetic tests in Figure 8c suggest 

that one would expect a magnetization direction error (θΔ) of ∼20° at Reiner Gamma 

(SBR ≈ 23, filled circle for radial component, label A) using such a method. However, 

Oliveira and Wieczorek (2017) reported an uncertainty of zero. Their zero uncertainty 

comes from the fact that the RMS error of their best-fit solution at Reiner Gamma (0.61 

nT) was larger than the RMS background field (0.56 nT, using the radial component). 

This is a general problem in using the background field to define the maximum misfit 

when the SBR or Signal-to-Noise Ratio values are high and the anomaly is well-modeled 
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as unidirectional. In contrast, our synthetic tests (Figure 8b) suggest that we would expect 

an uncertainty of <10° using θΔ, and indeed we find an s value of 3°–5.5° with our Monte 

Carlo simulations (Table 1.2). 

As for the high-inclination Airy magnetic anomaly, Figure 1.8c suggests one 

would find an uncertainty of ∼75° using the RMS background field using a maximum 

misfit (SBR ≈ 8, unfilled radial component circle, label B). This is consistent with the 

large uncertainties Oliveira and Wieczorek (2017) reported for the high-inclination Airy 

anomaly (their Figure 3c). In fact, the uncertainty they found was so high that Airy had to 

be excluded from their paleopole analysis for statistical reasons. In contrast, our synthetic 

tests predict an uncertainty of ∼10°–20° using θΔ, and indeed we find an s value of 15°–

17° with our Monte Carlo simulations (Table 1.2). 

Overall, we can compare our results with what typically qualifies as “good,” 

“fair,” and “poor” results from the paleomagnetism community. Butler (1992) uses s 

values of roughly, 7°, 12°, and 25° for each of these adjectival ratings, and states that s > 

15° (or k < 30, where k is the precision parameter) is typically viewed as unacceptable. 

Our results range from s = 3° at Reiner Gamma to s = 17° at Airy, and hence would 

typically be viewed as good to almost poor. However, for our purposes, even 

uncertainties that border on poor still enable us to assess the hypothesis that the lunar 

dipole was misaligned from the lunar spin axis (Section 4.2). 

 

4.1.2 Additional Sources of Uncertainty 
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When testing how the radius of data used in Parker's Method (Methods Section 

2.6) affects our results, we find that two anomalies, Abel and Hartwig, do not produce the 

same magnetization direction within their uncertainties. Abel, for example, has an 

angular difference of 19° between the two data radii used, while their uncertainties (s) are 

8.8° and 5.6° (for radii 6° vs. 8°, Table 1.2). The chosen data radius also affects the 

properties of the background field (SBR), which in turn is used in the Monte Carlo 

simulations. Interestingly, Abel and Hartwig have both large differences in SBR values 

for their data radii (the SBR value for Abel with 8° is 1.5 times the SBR for 6°, while the 

SBR value for Hartwig with 9° is 1.8 times the SBR for 6°), and low SBR values. In 

contrast, Reiner Gamma whose SBR values are high for both radii (SBR = 14.3 and 

22.9), shows much lower variability in its best-fit paleopole, despite SBR values with a 

factor of 1.6 difference between the two data radii chosen. Developing a formal 

framework to deal with these effects of data radius is a goal for future work. 

 

4.2 Evidence for Near-Equatorial Lunar Paleopoles and a Nonaxial Lunar Dipole 

The relatively small (dm < 25°) paleopole uncertainties (Figure 1.12) strengthen 

the argument that some magnetic paleopoles are indeed near the present-day equator as 

found by Oliveira and Wieczorek (2017). Using the degree-2 gravity and topography of 

the Moon, Garrick-Bethell et al. (2014) and Keane and Matsuyama (2014) independently 

estimated the extent of true polar wander on the Moon since as early as crust formation 

and found co-latitude changes of <36°. Siegler et al. (2016) also estimated the extent of 

true polar wander back to the Moon's later differentiation phase and found a maximum 
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co-latitude change of ∼30° (Figure 1.12). Given that four of the paleopoles we report are 

far from the gravity and polar-hydrogen derived paleopoles, and almost all are closer to 

the equator within their uncertainties, we suggest that these four magnetic anomalies do 

not represent the ancient spin-axis, and therefore do not trace true polar wander. This 

implies that the dynamo dipole axis was decoupled from the spin axis, which could have 

implications for the dynamo mechanism. For example, Takahashi et al. (2009) suggested 

that the magnetic pole could reach low latitudes if the core-mantle boundary heat flux 

was heterogenous. Interestingly, Abel and Airy both have paleopoles overlapping, 

suggesting that this was possibly not a short-lived event, or that these anomalies formed 

contemporaneously. Based on a comparison with similar low-latitude magnetic 

paleopoles on Earth, Baek et al. (2019) also argued that it is not likely that lunar near-

equatorial paleopoles are formed during transient dynamo axis motion, such as during 

reversals. On Earth, transition periods are much shorter than required cooling timescales 

(Meert et al., 1994; Mitchell et al., 2011; Symons & Chiasson, 1991). These transition 

periods are therefore less likely to be observed in the paleomagnetic field record (Halls et 

al., 2015). 

The ages of lunar magnetic anomalies are not well determined. Reiner Gamma's 

age has been bounded between ∼3.5 and −3.9 Ga (Kelley & Garrick-Bethell, 2020). 

However, the other four anomalies we analyzed have no published ages. Until such ages 

are obtained, it will be difficult to test for evidence of sustained epochs of equatorial 

magnetic poles. Finally, we note that it is unlikely that the field arises due to a 

quadrupolar component of the dynamo field, since such a component would decay to 
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∼17% of the dipole term at the surface due to the small size of the lunar core (assuming a 

∼300 km radius).  

There may also be other geophysical implications of low latitude magnetic poles. 

Garrick-Bethell et al. (2019) studied how the ancient dynamo field would have interacted 

with the early solar wind. They showed that an equatorial dipole would channel solar 

wind hydrogen over a substantial fraction of the surface as the Moon spins, in contrast to 

a spin-aligned dipole, which would block solar wind access from most of the Moon. If 

the Moon's polar hydrogen deposits are related to a global-scale “water cycle” related to 

solar wind hydroxylation of the entire lunar surface (Li and Garrick-Bethell, 2019; Li & 

Milliken, 2017; Pieters et al., 2009), then a near-equatorial dipole could have facilitated 

their accumulation. 

 

5 Conclusions 

1. Estimating uncertainty in magnetization direction using an a priori measure of 

maximum acceptable misfit (Figure 1.1, e.g., based on background crustal 

magnetic field oscillations or instrument noise) introduces bias depending on the 

anomaly magnetization direction: Higher inclination magnetizations have 

systematically higher uncertainties. 

2. Estimating uncertainty in magnetization direction using an a priori measure of 

maximum acceptable misfit is also conservative: Parker's Method can recover 

nearly the correct magnetization direction for any inclination, in the presence of 

Gaussian background fields, for reasonable SBR values (Figure 1.8b). In contrast, 
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using the RMS background field as the maximum acceptable misfit value 

artificially increases uncertainty estimates substantially (Figure 8c vs. Figure 

1.8d). A slightly higher uncertainty for high inclination anomalies may persist 

within Parker’s method (Figures 1.8b and Appendix Figure A4b), which merits 

further study. 

3. Manifestations of both conclusions 1 and 2 are believed to be responsible for the 

large direction uncertainty at the Airy anomaly (high inclination and lower SBR) 

and zero direction uncertainty at the Reiner Gamma anomaly (low inclination and 

higher SBR) in Oliveira and Wieczorek (2017). Hence, maximum acceptable 

misfit is not the appropriate means of quantifying uncertainty. Instead, the 

uncertainty should be estimated based on an estimate of the typical strength of the 

background non-unidirectionally magnetized sources in the region, as discussed in 

this study, and other sources of noise (e.g., instrument, not included in this study), 

if applicable. These estimates should then be used in Monte Carlo simulations that 

propagate each source of error through many instances of Parker's Method applied 

to a best-fit model of the anomaly in question. If the anomaly background 

contains smaller, discrete sources magnetized in a different direction (Thomas et 

al., 2018), then the user must avoid such sources in their data selection or 

somehow incorporate estimates of their properties into their Monte Carlo 

simulations (not considered here). 

4. We find four paleopoles near the lunar equator when including uncertainties. Two 

paleopoles, Abel and Airy, overlap with each other, within their uncertainties. 
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Based on prior studies that estimated the extent of true polar wander from the 

lunar gravity field and polar hydrogen distribution, we conclude that these 

paleopole locations are not likely to be the result of true polar wander. Rather we 

interpret them to be due to a nonaxial dipole, as proposed by Takahashi et al. 

(2009) and Oliveira and Wieczorek (2017). 
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Chapter 2: Variations in Lunar Elastic Thickness from Admittance 

Spectral Analysis 

 

Abstract 

We infer the elastic thickness of regions of the Moon by performing an admittance 

analysis on GRAIL gravity and LOLA topography data. Reliable results are generally 

confined to the lunar farside, away from larger mare deposits. We find that elastic 

thickness varies between 9 km and 60 km, with a mean elastic thickness of 30 km. The 

highest reliable elastic thicknesses are found north of 60°N latitude while the lowest 

elastic thicknesses are found in the equatorial farside and within the South Pole-Aitken 

basin. Our findings suggest that much of the loading on the Moon must have taken place 

within the first 200 Myr of after lunar magma ocean solidification, though some areas 

(Te>40 km) may be recording events as late at 3.5 Ga. We find no correlation between 

elastic thickness and crater density, crustal density, or crustal thickness in areas where 

reliable estimates of elastic thickness can be made. We also demonstrate that smaller 

localization windows can lead to systematically lower elastic thickness estimates. 

 

1 Introduction 

Characterizing how the surface of a planet supports loads reveals the physical 

mechanisms controlling its surficial responses and can provide insight into a body’s 

thermal history. For example, Sori et al. (2018) have shown that the lunar highlands 
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could be supported via Airy isostasy and that the highlands likely formed early in lunar 

history, before the development of a thick elastic lithosphere. One way to validate the 

results of that study is to determine the effective lunar elastic thickness (Te) and how it 

varies across the Moon. 

The effective elastic thickness (Te) is the minimum elastic thickness since the time 

of load emplacement. Determining the elastic thickness at a particular time in the Moon’s 

history can elucidate its thermal history. If the time of loading can be estimated, then 

values of effective elastic thickness can be used to estimate the thermal gradient at that 

time (e.g., McGovern et al., 2002). For example, if the effective elastic thickness is high, 

that implies there was a low heat flux. This makes effective elastic thickness a useful way 

to place constraints on the thermal evolution of the Moon. 

Effective elastic thickness can be measured using spatial features, i.e., the flexural 

wavelength of tectonic features, or spectral features, i.e., the transition from long-

wavelength isostatic support to short-wavelength flexural support. In this paper, we focus 

on the spectral domain. Spectral analyses are common throughout planetary science, with 

examples on the Moon (discussed below), Mars (e.g., Ding et al., 2019), and Venus (e.g., 

Maia and Wieczorek, 2022). 

Early analyses of the lunar elastic thickness include Arkani-Hamed (1998), 

Sugano and Heki (2004), and Crosby and McKenzie (2005), which all generally agree 

that the lunar elastic thickness required to support large impact basins at the time of their 

emplacement is between 20 km and 60 km. These studies used Clementine gravity data 

(Arkani-Hamed, 1998) and line of sight accelerations from Lunar Prospector (Sugano and 
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Heki, 2004; Crosby and McKenzie, 2005). More recent work has been done to analyze 

the elastic thickness in areas other than large impact basins, focusing mainly on small, 

localized areas. Huang and Wieczorek (2012) used Kaguya gravity model SGM100i 

(Goossens et al., 2011) and LOLA topography data (Smith et al., 2010) to analyze several 

locations where topography and gravity are correlated and find elastic thickness values 

between 5 km and 63 km, though these results are subject to large uncertainties. Zhong et 

al. (2014) analyzed gravity model CEGM02 (which uses measurements from Chang’E-1, 

Kaguya, and historical tracking data; Yan et al., 2012) and LOLA topography data to find 

elastic thickness values between 8 km and 97 km for various locations on the Moon, 

though they do not provide uncertainty estimates. Satya Kumar et al. (2018) use GRAIL 

(Gravity Recovery and Interior Laboratory) gravity model GL0990D (Konopliv et al., 

2014) and LOLA topography data to analyze the farside highlands using the Maximum 

Entropy Method and find an elastic thickness of 19 km (uncertainty not provided). Zhong 

et al. (2019a) used GRAIL gravity model GL0990D and LOLA topography data to 

analyze the elastic thickness of Clavius crater (also analyzed by Crosby and McKenzie, 

2005) and found an elastic thickness of 7 km (uncertainty not provided). Zhong et al. 

(2019b) used a GRAIL gravity model GL1500E (Park et al., 2015) and LOLA 

topography data to analyze the elastic thickness of Moscoviense and found a value of 18 

km (uncertainty not provided). A majority of the analyses listed above fit a narrow range 

of spherical harmonic degrees in order to isolate particular spatial features. As we will 

argue below, such a restricted range has the potential to miss the most distinguishing 

features of an admittance spectrum. 
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The only prior effort to globally map elastic thickness was produced by Audet 

(2014) using the SGM100h gravity model (Matsumoto et al., 2010) and topography 

model LALT360 (Araki et al., 2009), both from the Kaguya-SELENE mission. Audet 

(2014) uses a wavelet analysis approach to find elastic thickness values between 10 km 

and 50 km with typical standard deviations of less than 5 km. He finds that elastic 

thickness varies globally with lower elastic thicknesses for the farside and higher elastic 

thicknesses under the Procellarum KREEP Terrane (PKT).  

Few authors have explicitly calculated the uncertainties associated with their 

results, which poses two risks. The first is that, in the absence of uncertainties, one cannot 

determine whether apparent variations in parameter values are real or not. The second 

risk is that values which are unreliable (i.e., have large error bars) may be taken as 

reliable if the uncertainties are not stated. Error bars can also potentially flag cases when 

the underlying assumptions made are simply inappropriate.  For example, a two-layer 

admittance analysis would be inappropriate in areas with mare volcanism, given that 

mare is effectively a third, denser layer than the underlying crust. In this work, we expend 

considerable effort on uncertainty estimation. 

To our knowledge, no mapping of effective elastic thickness has been performed 

globally using updated GRAIL gravity models. Here, we make use of the spectral domain 

using the GRAIL gravity model GRGM1200A (Lemoine et al., 20141) and LOLA 

topography data to map effective elastic thickness values across the globe. We also 

 
1 Lemoine et al., 2014 describes gravity model GRGM900C. Gravity model 
GRGM1200A was released in 2016, and at the time of release, the best citation for this 
data product was Lemoine et al., 2014. 
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discuss the uncertainties associated with our results and whether the resulting variations 

in elastic thickness are real.  

 
2 Methods 

2.1 Admittance and coherence observations 

The admittance is the ratio of gravity to topography at a specific spherical 

harmonic degree l: 

𝑍(𝑙) = 	."
#$

."
$$  (1) 

where Z(l) is admittance at a particular degree l, Dgh is the cross-correlation (equation 2) 

between free-air gravity (g) and topography (h), and Dhh is the autocorrelation of 

topography. Auto- and cross-correlations are defined as 

𝐷/0 =	∑ 𝐶1+/ 𝐶1+
0 + 𝑆1+/ 𝑆1+

01
+%!   (2) 

where Clm and Slm are spherical harmonic coefficients of degree l and order m. 

Traditionally, admittance has units of mGal km-1. However, lunar topography is 

sufficiently rugged such that lunar gravity is not well approximated by the thin sheet 

model, and thus a series approach that considers the finite amplitude of the topography is 

used instead (Wieczorek and Phillips, 1998). It is therefore useful to consider a 

dimensionless version of admittance. Dimensionless admittance can be obtained by using 

gravity calculated from topography (units of mGal, and assuming a given crustal density) 

in the place of topography. Now that admittance is dimensionless, the theoretical 

maximum admittance value becomes one (Figure 2.1). Equation 1 then becomes 

𝑍′(𝑙) = 	."
#%

."
%%  (3) 
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where b is gravity-from-topography. The gravity-from-topography is found by using a 

9th-order finite-amplitude correction (Wieczorek & Phillips 1998) where the topography 

is from LOLA (Smith et al. 2010) and the density assumed is 2500 kg m-3 (Lemoine et al. 

20142). We use an updated GRAIL (Zuber et al., 2013) gravity model from Lemoine et 

al. (2014) for free-air gravity. It is important to note, however, that the gravity-from-

topography model assumes a constant crustal density of 2500 kg m-3 (Lemoine et al., 

2014). Crustal density is not constant across the globe (Wieczorek et al., 2013), and thus 

equation 3 will produce admittance values greater than one in areas where the crustal 

density has been underestimated. We will need to account for this when modeling 

admittance (see next section). 

It is also useful to describe how well gravity and topography (or gravity-from-

topography) are correlated. Here we use coherence (g2), which is the square of 

correlation. This can be written as 

𝛾-(𝑙) = 	."
#%."

#%

."
%%."

##  (4) 

To calculate the standard errors associated with admittance and coherence, we 

follow Bendat and Piersol (2010) and use the following equations: 

𝜎2(𝑙) = 	 T
2(1)
5(1)
T U&65(1)&

-1
  (5) 

𝜎5(𝑙) =
&65(1)&

√-1
   (6) 

 
2 Lemoine et al., 2014 uses a crustal density of 2560 kg m-3 to calculate their Bouguer 
Gravity Model. The .lbl file for GRGM1200A cites a crustal density of 2500 kg m-3. We 
use the value cited in the .lbl file. 
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where 𝛾 is correlation. However, we are using coherence instead of correlation, so we use 

the chain rule to calculate the standard error of coherence as 

𝜎5&(𝑙) = 2 5
&

5
&65(1)&

√-1
  (7) 

In order to map the variations in elastic thickness, we must perform localized 

analyses. However, there is a tradeoff between spatial and spectral resolutions 

(Wieczorek and Simons, 2005). Smaller localization windows lose the information held 

in wavelengths that are larger than the window, but larger windows decrease the spatial 

resolution of the observation. We choose a localization window in the form of a spherical 

cap with a radius 𝜃= 25° and perform localized analyses every 15° on a grid of latitude 

and longitude. We discuss the effect of varying the window size in Section 4.1.  

In addition to choosing the size of the localization window, we also apply the use 

of multitapers. Multitapers gradually filter out data from outside the region. We choose to 

use a single, well-concentrated (e.g., 𝜆 ≥  99%, where 𝜆 the concentration factor) taper 

and thus we choose the lowest spectral bandwidth that produces only one such taper. For 

our window size of radius 𝜃= 25°, this requires that our spectral bandwidth (Lwin) be 10. 

For this work, we use the spatiospectral localization technique of Wieczorek and Simons 

(2005). This is done using the SHTOOLS package (Wieczorek and Meschede, 2018). 

Given our choice of Lwin, we fit the observed admittance and coherence starting at 

lmin = Lwin = 10 and ending at lmax = 60, where admittance and coherence generally begin 

to asymptote at unity. We also ignore gravity coefficients at l = 2 in order to exclude the 

effects of the rotational and tidal contributions to degree 2 from our analysis. 
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2.2 Admittance and coherence modelling 

The dimensionless version of admittance, assuming only surface loading and a 

Cartesian geometry, can be modeled as 

𝑍8(𝑙) = 1 −	:𝑒69:' ;<
()*
# =;<

B  (8) 

𝑘 = 	U1(1=&)
>&

 (9) 

where k is the wavenumber (units of m-1), tc is the crustal thickness (units of m), ∆𝜌 is the 

difference in crustal and mantle densities (units of kg m-3), D is the flexural rigidity (units 

of N m), and g is gravity (units of m s-2) (e.g., McKenzie, 2003). D is defined as  

𝐷 =	 ?@+,

&-(&6A&)
  (10) 

where E is Young’s Modulus (units of Pa), Te is the elastic thickness (units of m), and 𝜈 

is Poisson’s ratio (dimensionless). In our modeling, we use crustal thickness and crustal 

density values from Wieczorek et al. (2013). We keep the following variables constant: 

mantle density (3220 kg m-3, [Wieczorek et al., 2013]); Young’s Modulus (100 GPa); 

Poisson’s ratio (0.25); and lunar gravity (1.62 m s-2 at the lunar surface where R is 1737.4 

km). 

Examples of admittance and coherence spectra resulting from surface loading 

only are shown in Figure 2.1a. As elastic thickness increases, the admittance increases at 

lower spherical harmonic degrees (longer wavelengths). For instances with only surface 

loading, the coherence is one at all degrees, given that gravity is necessarily correlated 

with topography when all the loads are at the surface. 
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Figure 2.1: a) Dimensionless model admittance (thick lines) and coherence (dashed 
lines) at Te = 5 km (black), 15 km (blue), and 25 km (green) for top loading (F1 = 1). 
Model spectra shown were calculated using a Young's modulus of 100 GPa, a crustal 
thickness of 30 km and mantle and crustal densities of 3300 and 2550 kg m-3, 
respectively. b) same as in (a) but for equal parts top and bottom loading (F1 = 0.5).  

 

It is also possible to have subsurface loading, either instead of or in combination 

with surface loading. If extra material is added to the base of the crust, the crust will flex 

upward by some amount depending on its rigidity. This causes admittance to be negative 

(while surface loading produces positive admittance). We adopt a relatively simple model 

of subsurface loading, based on McKenzie (2003), in which the surface and subsurface 

loads are assumed to be uncorrelated, and the geometry is Cartesian. The admittance 

from subsurface loading is given by 
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𝑍-8(𝑙) = 1 −	:𝑒69:'
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where rc is the crustal density. We define a loading fraction where F1 is the fraction of 

surface loading and F2 is the fraction of subsurface loading. Adding F1 and F2 together 

will always equal one. We now label the admittance from equation 8 as Z1’ and the total 

admittance becomes 

𝑍8 = ∑C-
&D-

&2-
∑C-

&D-
& 	   (12) 

where Yi are parameters dependent on the rigidity and defined in McKenzie (2003) as 
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where 𝜌G is the density of the crust, 𝜌+ is the density of the mantle, and 𝜌H is the density 

of the overlying crust (which in this case is zero because we are assuming a model with 

only two-layers). Total coherence becomes  
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&IJ28- 28F K
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Examples of admittance and coherence spectra resulting from a mix of surface 

and subsurface loading are shown in Figure 2.1b. As before, when the elastic thickness 

increases, the admittance increases at lower degrees. However, the coherence is not one 

at all degrees, and the dip in coherence shifts to lower degrees as elastic thickness 
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increases. As the loading fraction decreases (i.e., subsurface loading increases), the dip in 

coherence increases. 

It is possible that there are additional loads in the subsurface that generate gravity 

anomalies without producing any corresponding topography (McKenzie, 2003). The 

existence of these loads is debated (Kirby and Swain, 2009; Audet, 2014), but if they do 

exist, then coherence will necessarily decrease further (Figure 2.1b). 

We note here that we choose to use coherence over correlation for this analysis 

for two reasons. The first is that, because we have assumed a priori that surface and 

subsurface loads are uncorrelated, the sign of the correlation is not so relevant. The 

second is that, as the square of correlation, coherence is more sensitive to deviations from 

unity. This sensitivity is particularly desirable in determining the ratio of surface and 

subsurface loading.  

Missing from this analysis is a careful consideration of the phase of surface and 

subsurface loading. In principle, we could solve for this phase lag as an additional free 

parameter (e.g., Wieczorek, 2006). However, this approach has not in general been 

attempted, and we do not do so here. Locations where surface and subsurface loads 

would be correlated are areas where there is a combination of subsurface loading in the 

form of moho uplift (such as in craters) and surface loading in the form of mare infill. As 

we show below, such areas do not produce reliable elastic thickness estimates using our 

approach. 

Recall from our discussion of dimensionless admittance that some observed 

admittance spectra will have values greater than one in areas where the crustal density 
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assumed (2500 kg m-3) underestimates the actual local density. We use an amended 

admittance model in order to account for the density differences. We multiply equation 

12 by a ratio of local crustal density (derived from the short-wavelength admittance in 

Wieczorek et al., 2013) to the model crustal density used in Lemoine et al. (2014), so 

admittance becomes: 

𝑍∗ = <'
<%
𝑍′  (16) 

where 𝜌N is 2500 kg m-3 (Lemoine et al., 2014). This allows our model to fit admittance 

values while taking observed variations in crustal density into account. 

 

2.3 Markov Chain Monte Carlo Approach 

To determine the elastic thickness (Te) and loading fraction (F1) that best fit the 

observed admittance and coherence spectra with models, we use a Markov chain Monte 

Carlo (MCMC) approach, using the emcee package from Foreman-Mackey et al. (2013). 

We use a posterior distribution to estimate the posterior probability: 

𝑃d𝑋|𝑍'NO(𝑙), 𝛾-,'NO(𝑙)g ∝ 𝑃(𝑋)𝑃(𝑍'NO(𝑙), 𝛾-,'NO(𝑙)|𝑋)  (17) 

where P(X) is a uniform distribution such that Te is allowed to vary between 0 km and 

200 km and F1 is allowed to vary between 0 and 1 with no bias toward a particular value. 

We use an exponential form of the chi-squared function 𝜒-(𝑋) for the posterior 

likelihood 𝑃(𝑍'NO(𝑙), 𝛾'-,NO(𝑙)|𝑋), assuming that observational errors are independent 

Gaussian distributions with standard deviations of 𝜎2'NO(𝑙)	and 𝜎5-'NO(𝑙) (from equations 5 

and 7). 
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In our MCMC inversions, we fit both the admittance and coherence spectra 

(equation 19) from degree 10 to degree 60. The lower bound of lmin = 10 is so we avoid 

fitting degrees that do not fit within the localized window, as described in Section 2.1. 

The upper bound of lmax = 60 is chosen somewhat arbitrarily, as admittance and 

coherence spectra tend to asymptote well before degree 60. Note that equation (19) gives 

equal weight to the admittance and coherence in terms of goodness-of-fit. We also use a 

combined root mean square (RMS) of admittance and coherence to measure the 

reliability of our results, which we define as: 

𝑅𝑀𝑆G'+N#TUV =	U
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where N is the total number of degrees l modeled. 

Examples of results from an MCMC inversion at two different locations can be 

seen in Figure 2.2. The standard deviations in elastic thickness and loading fraction are 

quite low, regardless of the goodness of fit for each inversion. The standard deviation in 

elastic thickness at -15°N, 180°E (Fig. 2.2a), 0.38 km, is larger than the standard 

deviation at 45°N, 45°E (Fig. 2.2b), 0.05 km, despite the former having lower chi-

squared and combined RMS values than the latter. This implies that, in some instances, 

the standard deviations provided by the MCMC inversions are unreliable indicators of 

uncertainty, most likely because the uncertainties are neither Gaussian nor independent. 
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Note that here the uncertainties are not due to uncertainties in the gravity or topography 

coefficients themselves; rather, they arise from “geologic noise”: the lumping together of 

different terranes into a single region, the existence of lateral variations in density, elastic 

thickness or loading fraction, variations in phase between surface and subsurface loading, 

and so on. We therefore perform tests on synthetic datasets in order to determine which 

values from our MCMC inversions are realistic and whether the standard deviations 

obtained from an MCMC inversion can be used as reliable indicators of the true 

uncertainty. 

 
Figure 2.2: a) Observed admittance and coherence spectra (thick black and blue lines, 
respectively) with the best-fit model admittance and coherence (dashed lines) for a region 
centered on -15°N and 180°E. The combined RMS value is 0.152, so we would accept 
the derived parameter values as reliable (see text). b) Corner plot showing the distribution 
of combinations of elastic thickness (in meters) and loading fraction tried by the MCMC 
inversion. The blue target indicates the best-fit combination, which is modeled in (a). 
Black lines indicate the 1-, 2-, and 3-𝜎 levels. c) Same as in (a) but at 45°N and 45°E. 
The combined RMS value is 0.443, beyond the threshold at which the derived parameter 
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values become unreliable. d) same as for (b) but for a region centered on 45°N and 45°E. 
Note that in both cases, the best-fit model admittance asymptotes to values greater than 1 
because we use the local crustal density based on Wieczorek et al. (2013), which is 
greater than 2500 kg m-3, the density assumed in the gravity models (Lemoine et al., 
2014). 

 

2.4 Synthetic Noise Tests 

Though the MCMC approach provides a measure of uncertainty, we tested the 

robustness of this uncertainty measurement by creating synthetic admittance and 

coherence spectra. To do this, we multiply a model admittance spectrum (e.g., equation 

12) by the gravity-from-topography to generate synthetic gravity data. We then add noise 

iteratively to the synthetic gravity coefficients in increments until the synthetic coherence 

spectrum matches the observed coherence spectrum within the standard error of 

coherence. The amount of noise added in each iteration is chosen from a gaussian 

distribution with a standard deviation equal to the error estimated for each coefficient 

from the equation  

Δ𝐶1+ = 1.96	𝐶1+ d
5"
8&6&
-1=&

g
&
-F
  (21) 

where 1.96 is from Munk and Cartwright (1966). Noise for the S coefficients is calculated 

similarly. In some cases, the synthetic coherence is lower than the observed coherence for 

a particular degree before any noise is added. Adding more noise to coefficients at these 

degrees would only decrease the coherence more, so in these cases, we do not add noise 

and use the synthetic coherence value, regardless of how well the synthetic matched the 

observed value. 
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We test 13 locations with varying fits (as described by the combined RMS of the 

difference between the observed and modeled spectra from l=10 to l=60). We create 20 

such noise-added synthetic spectra for each location we test and use the MCMC approach 

to determine how much variability in the derived best-fit elastic thickness and loading 

fraction values arises due to the stochastic noise added. The variability in the derived 

best-fit values indicate how uncertain these values are, while any offset from the known 

(input) parameter values is an indication of systematic bias.  

Figure 2.3 shows two examples of these noise-added spectra. In the first case (Fig. 

2.3a), the mean best-fit elastic thickness is 15.3 km with a standard deviation across our 

20 realizations of 0.21 km, while the actual (input) elastic thickness is 14.8 km, with an 

MCMC-derived standard deviation of 0.38 km. The mean best-fit loading fraction is 0.62 

with a standard deviation of 0.001, as compared with the actual fraction of 0.644, with an 

MCMC-derived standard deviation of 0.007. Note that here, the standard deviations 

derived from the 20 synthetic spectra are smaller than the MCMC-derived standard 

deviations. In the case of elastic thickness, the best-fit value from the observed data 

agrees with the mean best-fit value from the synthetic spectra within 2.5 standard 

deviations from either method. The best-fit (from observations) and mean (from synthetic 

spectra) loading fractions, however, only agree within 3 standard deviations if we use the 

MCMC-derived standard deviation. 

In the second case (Fig. 2.3b), the mean best-fit elastic thickness is 30.8 km with a 

standard deviation of 2.7 km, while the actual (input) elastic thickness is 32.3 km, with an 

MCMC-derived standard deviation of 0.05 km. The mean best-fit loading fraction is 
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0.289 with a standard deviation of 0.021, as compared with the actual fraction of 0.289, 

with an MCMC-derived standard deviation of 0.001. Here, the MCMC-derived standard 

deviations for elastic thickness (0.05 km) and loading fraction (0.001) are unreasonably 

small, while the standard deviations from the synthetic values appear reasonable (𝜎@+ = 

2.7 km and 𝜎C& = 0.021). The combined RMS value for this result is 0.443, which is high 

compared to the combined RMS of the other location (0.152) and suggests that these 

results may simply be unreliable. Therefore, it is important to determine what combined 

RMS values we would consider acceptable in order to distinguish whether a result is 

reliable. 
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Figure 2.3: Synthetic admittance (black) and synthetic coherence (dark blue) with 
corresponding MCMC-derived best-fit admittance (red) and best-fit coherence (cyan). 
Twenty iterations of synthetic and corresponding best-fit spectra are plotted together for 
an indication of how variable the synthetic cases can be when perturbed by noise. a) 
Synthetic spectra based on an elastic thickness of 14.8 km and loading fraction of 0.644 
(the best-fit solutions for real-world data at -15°N and 180°E). The mean best-fit elastic 
thickness is 15.3 km with a standard deviation of 0.21km. The mean best-fit loading 
fraction is 0.620 with a standard deviation of 0.001. b) Synthetic spectra based on an 
elastic thickness of 32.3 km and loading fraction of 0.289 (the best-fit solutions for real-
world data at 45°N and 45°E). The mean best-fit elastic thickness is 30.8 km with a 
standard deviation of 2.7 km. The mean best-fit loading fraction is 0.289 with a standard 
deviation of 0.021. 

 

For the 13 synthetic tests we performed, the standard deviation in best-fit elastic 

thickness and loading fraction values increases as the combined RMS value (from the 

inversion of the real data) increases (Figure 2.4). This is unsurprising, given that 

examples with higher RMS values tend to have lower coherence spectra, which 

necessarily increases the noise (equation 21). In both elastic thickness and loading 

fraction, a clear jump can be seen in the standard deviations from these noise-added tests 

at a combined RMS value of approximately 0.4. Below this value, the standard deviations 

in elastic thickness from the noise-added tests are generally within a factor of two of the 

standard deviation provided by the MCMC inversion (Appendix Figure B1). This result 

suggests that the MCMC uncertainties can in fact provide a reasonable assessment of the 

actual uncertainties, given that the fits to the spectra are reasonable. We therefore use the 

standard deviations from the MCMC inversions as a measure of uncertainty, but only in 

locations where the sum of admittance RMS and coherence RMS has a value of 0.4 or 

lower. Areas with combined RMS values above this cutoff are deemed unreliable, and we 

do not consider the results at these locations further.  
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Figure 2.4: a) One standard deviation in the best-fit elastic thickness values from 
synthetic noise-added spectra compared with the combined root mean square (RMS) 
values for admittance and coherence fits (from fits to observations). b) Same as in (a) but 
for loading fraction. The red dashed line denotes a sharp increase in the synthetic-derived 
standard deviations at a combined RMS value of 0.4. 
 

3 Results 

We map the variations in elastic thickness and loading fraction across the globe 

(Figure 2.5a and 2.5b, respectively) and report only the results that produced a combined 

RMS of less than 0.4 (Figure 2.5d). Notably, areas that have combined RMS values >0.4 

are in the same regions where the mean correlation (between l = 20 and l = 30; Figure 5c) 

is less than ~0. Such areas imply the presence of extensive mare volcanism. However, 
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there are some results below the cutoff value that are in mare regions, which we discuss 

in the next section. 

 
Figure 2.5: Best-fit results from MCMC inversions of admittance and coherence spectra. 
Values are on a grid of 15° spacing. Shown here are a) best-fit elastic thickness values, b) 
best-fit loading fraction values, c) mean correlation from l = 20 to 30, d) combined RMS 
values (RMS of the admittance fit plus RMS of the coherence fit), e) standard deviations 
in elastic thickness, and f) standard deviations in loading fraction. All except panel c) are 
masked to show results only with RMS values <0.4 (see text). The red outline in (a) 
represents the extent of the spherical cap used for localized analyses (25° radius). The 
blue outline in (a) shows the extent of the South Pole-Aitken (SPA) basin. SPA and the 
Procellarum KREEP Terrane (PKT) are labeled. 

 

Best-fit elastic thickness values range from 9 km to 60 km. The mean elastic 

thickness value across all regions is 28.4 km, and the standard deviation is 12.9 km. 

Standard deviations in elastic thickness from the MCMC approach for an individual 

region are typically on the order of a kilometer, though a few locations have standard 
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deviations up to 2.4 km. The highest loading fraction values are centered on the farside, 

around the northern edge of South Pole-Aitken (SPA) basin, where elastic thickness tends 

to be low. A summary of our results with a combined RMS below the cutoff value of 0.4 

can be found in Table B1 in Appendix B. 

Examples of best-fit results from two MCMC inversions can be seen in Figure 

2.2. The first result (Figure 2.2a) is the best-fit modeled admittance and coherence for the 

observations at -15°N, 180°E. The best-fit Te is 14.8 ± 0.38 km, the best-fit F1 is 0.644 ± 

0.007, and the combined RMS value is 0.152. This location is in the lunar highlands on 

the farside of the Moon, which is an ideal location for a localized admittance analysis. 

The observed admittance and coherence are well-modeled by the best-fit parameters with 

low standard deviations (Figure 2.2b). Also shown is the best-fit modeled admittance and 

coherence for the observations at 45°N, 45°E (Figure 2c), which has a best-fit Te of 32.4 

± 0.05 km, F1 of 0.289 ± 0.001. This location contains mare infill, which violates the 

two-layer model we used to calculate the best-fit elastic thickness. Its combined RMS is 

0.443, which is above the acceptable bound and thus, we do not consider this result to be 

reliable (despite the apparently small error bars).  

 

4 Discussion 

Based on our error analysis, the variations in elastic thickness we find (Fig 2.5a) 

are real, and may be compared with other observed spatial patterns, as discussed in more 

detail below (Section 4.3). We focus on the farside because the abundance of nearside 
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mascons renders the admittance approach ineffective there. Example admittance profiles 

are shown in Figure 2.6. 

 
Figure 2.6: Select examples of observed admittance and coherence (thick black and blue 
lines, respectively) with the best-fit model admittance and coherence (dashed lines). a) 
Example fit for the northern high Te values, centered on 75°N and 165°E. b) Example fit 
for the northern high Te values, centered on 60°N and 210°E. c) Example fit for the 
equatorial low Te values, centered on 15°N and 120°E. d) Example fit for the SPA low Te 
values, centered on -30°N and 180°E. e) Example fit for the moderate Te values, centered 
on -45°N and 15°E. f) Example fit for the high Te values affected by mare volcanism, 
centered on -45°N and 105°E. 

 

The northern hemisphere has relatively higher elastic thickness values (>20 km) 

with a few regions with even higher elastic thicknesses. The high (>40km) values to the 

west of the Procellarum KREEP Terrane (PKT) have a combined RMS close to the cutoff 
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(Fig 2.5d) and are likely spurious, the result of inclusion of regions of mare volcanism. 

However, the high values between 90°N and 60°N cannot be explained by mare 

volcanism and thus indicate a real increase in elastic thickness (Fig 2.6a and 2.6b). The 

mean elastic thickness value for the regions at 60°N or higher is 40.9 km, with a standard 

deviation of 11.3 km. 

In general, the equatorial region of the farside (north of SPA) has relatively low 

elastic thickness values (<20 km, Fig 2.6c). One location, 0°N, 150°E, has an 

anomalously high elastic thickness (35.7 ± 1.9 km) despite the apparent lack of nearby 

maria; other areas (e.g., -15°N, 240°E) are likely contaminated by mare deposits (in this 

case, Orientale).  

The SPA region is similar, with low elastic thicknesses (<20km) both inside and 

outside of SPA (Figure 2.6d). One location within SPA, -45°N, 180°E, has an 

anomalously high elastic thickness (27.4 ± 0.8 km). This area is in the center of the mare 

within SPA, suggesting that the admittance estimates may have been affected by mare 

volcanism.  

The areas to the east and west of SPA are characterized by moderate elastic 

thickness values (15 km < Te < 30 km, Fig 2.6e). Notably, the lower elastic thickness 

values are found close to SPA, and elastic thickness generally increases with distance 

from the basin. There are a few areas of high elastic thickness (> 40 km, Fig 2.6f) in the 

southern hemisphere, but these are characterized by RMS values near the cutoff and are 

all in areas that include mare volcanism (e.g., Mare Australe, Mare Humorum, Mare 
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Nubium, and Orientale). We conclude that admittance estimates in these areas have 

likewise been contaminated by mare volcanism. 

Figures 2.5a and 2.5b show that there is an inverse correlation between loading 

fraction and elastic thickness. Thus, for instance, the region of low elastic thickness 

within SPA is also characterized by high loading fractions (F1~0.8).  

 

4.1 Comparisons with Previous Work 

Our lower elastic thickness results are slightly lower than obtained by Arkani-

Hamed (1998) and Sugano and Heki (2004), but otherwise the majority of our results 

agree well with their ranges of 20 km < Te < 50 km (Arkani-Hamed, 1998) and 20 < Te < 

60 km (Sugano and Heki, 2004). 

Crosby and McKenzie (2005) evaluated the elastic thicknesses of rectangular 

regions in the southern highlands (centered on Clavius crater) and north of Mare 

Imbrium. For Clavius crater, Crosby and McKenzie found a range of best-fit elastic 

thickness values depending on whether the area was modeled as an elastic plate or thin 

shell. Our results for the region surrounding Clavius crater suggest a broad area of 

variable elastic thickness, with some areas having high elastic thickness values (>40 km, 

which may be due to contributions from Mare Nubium). However, our results at -60°N, 

330°E, approximately the center of the region analyzed by Crosby and McKenzie (2005), 

indicate an elastic thickness of 24.9 ± 0.8 km and a loading fraction of 0.636 ± 0.005, 

which agrees with their results when modeling the area as an elastic plate: Te = 20 ± 8 km 

and F1 = 0.5 ± 0.1. However, it does not agree with the results of Zhong et al. (2019a), 
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who found a best-fit elastic thickness of 7 km (uncertainties not provided) and a loading 

fraction of -0.194 (uncertainties not provided), which in their notation indicates primarily 

surface loading. Zhong et al. (2019a) use a much smaller area when calculating the 

admittance and coherence spectra (𝜃= 5°), focusing on the crater itself, and thus are more 

limited in the range of spherical harmonic degrees they can model (l = 56 to 149). Based 

on our analysis, it appears that the small window size used causes the elastic thickness to 

be underestimated (see Appendix Figure B2). 

For the region north of Imbrium, Crosby and McKenzie again find variable elastic 

thicknesses, depending on the method of modeling. For an elastic plate, they find that 

elastic thickness must be >80 km. Our closest result with an acceptable RMS cutoff value 

is at 60°N, 345°E, where we find a best-fit elastic thickness of 29.3 ± 0.8 km and a 

loading fraction of 0.636 ± 0.005. However, our fit is rather poor (combined RMS of 

0.394), so the apparent disagreement may simply be indicating that the admittance 

technique is not reliable here. 

Satya Kumar et al. (2018) use the Maximum Entropy Method to investigate the 

elastic thickness around the farside basins Hertzsprung, Dirichlet-Jackson, and Korolev. 

Their region spans a rectangular area from -15°N to 45°N and 180°E to 255°E. They find 

a best-fit elastic thickness of 19 km (uncertainties not provided). This region is also 

analyzed by Huang and Wieczorek (2012), who found an elastic thickness of 19 km 

(lower bound of 0 km and an upper bound of infinity) with subsurface loading at 20°N, 

230°E (and 63 km if all surface loading, with a lower bound of 16 km and an upper 

bound of infinity), and Zhong et al. (2014), who found an elastic thickness of 14.53 km at 
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19°N, 240°E (uncertainties not provided). Our results are in approximate agreement with 

all of these papers, with elastic thicknesses of 15.3 ± 0.4 km at 15°N, 240°E and 17.6 ± 

0.3 km at 15°N, 225°E. 

Huang and Wieczorek (2012) determine best-fit bulk density, elastic thickness, 

and porosity in areas only where gravity and topography are very well correlated. This 

allows them to analyze nine locations if they include subsurface loads or 26 locations if 

they assume surface loading only. They find a range of elastic thickness values between 5 

km and 63 km, though their uncertainties are sometimes unconstrained – occasionally the 

upper bound is infinity and the lower bound is 0 km. Because their localized areas are 

rather small (𝜃= 12° or 20°, compared with our 25°) and the spectral bandwidth they use 

is quite large (Lwin = 21 or 13, compared with our 10) their admittance spectra lack 

information at large wavelengths. Additionally, they model only the degrees where 

correlation is close to one and thus the range of spherical harmonic degrees they evaluate 

is limited to high degrees (e.g., l = 32 to 60 for region 7 in their Table 1) where 

differences in admittance at higher elastic thicknesses are minimal (Figure 2.1). This may 

lead to underestimated best-fit elastic thickness values (Appendix Figure B2), and indeed, 

many of the locations they test (18 of 26) have lower best-fit elastic thicknesses than our 

closest analog. Another possible explanation for the differences in our results is that our 

wider localized areas occasionally necessarily overlap multiple geologic terranes (e.g., -

30°N, 120°E, which includes mare volcanism, SPA ejecta, and a portion of the SPA 

basin). 
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Zhong et al. (2014) also investigate lunar elastic thickness in certain regions under 

the assumption that the lithosphere can be modeled as a thin elastic spherical shell. They 

use admittance and coherence to estimate elastic thickness and loading fraction, as well 

as crustal thickness, load depth, and crustal density. As with Huang and Wieczorek 

(2012), the localized areas they use to calculate admittance and coherence spectra are 

smaller than the regions we use (𝜃= 10°, compared with our 25°), and as a result they 

exclude the long-wavelength admittance data (Lwin = lmin = 26), which may lead to 

underestimated elastic thickness values (Appendix Figure B2). Though they provide 

information about the misfit of their best-fit values in figures (e.g., their Figure 2), they 

do not report a range of acceptable misfit, and thus do not provide uncertainties for their 

results. There is little correlation between their elastic thickness estimates and ours. The 

areas where our results do agree tend to have low to moderate elastic thickness values (10 

km < Te < 24 km). 

Finally, we compare our results with those from Audet (2014). Areas where our 

results indicate high elastic thickness (>40 km) have higher values than those from Audet 

(2014), though these are the frequently areas we noted above, where the RMS values are 

close to the cutoff and mare deposits influence the admittance and coherence spectra. Our 

best-fit loading fraction results generally agree with those from Audet (2014) (though 

here we note that we use a different notation and thus our loading fraction is inversely 

proportional to his), with the region north of SPA having the highest amounts of surface 

loading, and the surrounding areas having higher amounts of subsurface loading. Our 
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uncertainties in elastic thickness and loading fraction are systematically lower than those 

in Audet (2014), which we discuss in the next section. 

 

4.2 Magnitude of Uncertainties 

On the basis of our synthetic testing (Section 2.4) we argued that the MCMC-

derived uncertainties are a realistic representation of the true uncertainties only for cases 

when the combined RMS<0.4. However, the actual uncertainties we find (of order 1 km 

for elastic thickness) are small compared with previously published estimates.  

We think that there are several possible reasons for this discrepancy. First, in 

some cases the uncertainties are estimated in fundamentally different ways. For instance, 

Crosby and McKenzie use a cutoff of 0.3 from their misfit function (inferred from their 

Figure 2) but do not justify this cutoff in statistical terms. Second, we are fitting only two 

parameters (Te and F1), which will automatically result in lower uncertainties than for 

other works where more parameters are fitted (e.g., Huang and Wieczorek, 2012). Third, 

we require our best-fit models to fit both admittance and coherence, while many other 

papers require their models to fit admittance only (e.g., Crosby and McKenzie, 2005; 

Huang and Wieczorek, 2012; Zhong et al., 2014). Fourth, our localized areas are larger 

than those in Huang and Wieczorek (2012), Zhong et al. (2014; 2019a; 2019b), and 

Audet (2014), and thus we fit a different (and often wider range) of spherical harmonic 

degrees. Fitting both admittance and coherence – and fitting them to a wider range of 

degrees – will tend to decrease the uncertainties. 
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4.3 Correlation with Geologic Trends 

In general, our results do not correlate with many geologic trends, such as crustal 

density, crustal thickness, or mean elevation. Figure 2.7a shows moderate correlations 

between elastic thickness and loading fraction (as expected, given their tradeoff 

relationship). Figures 2.7b and 2.7c show that the lowest crater densities tend to be 

associated with high elastic thicknesses (and low loading fractions). However, given that 

two of the four lowest points have RMS values very close to the cutoff value of 0.4, we 

do not view this result as significant. Crater densities were calculated using craters >20 

km (Head et al., 2010) in regions of our spherical cap (𝜃=25°). There are no obvious 

correlations with either crustal thickness (Figs 2.7d, 2.7e) or density (Figs 2.7f, 2.7g), 

values from Wieczorek et al. (2013). 
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Figure 2.7: Scatter plots of elastic thickness and loading fraction versus crater density (b-
c), crustal density (d-e), and crustal thickness (f-g). Results are color-coded by their 
Combined RMS values. Crater densities are calculated using craters >20 km (Head et al., 
2010) in each localized area. Crustal density and crustal thickness values are from 
Wiecorek et al. (2013), averaged over each localized area. 

 

4.4 Implied Heat Flux 

The elastic thicknesses reported here are the elastic thicknesses at the time of load 

emplacement. We can therefore make a crude estimate of the heat flux associated with 

these time periods using the heat flux equation F = k DT/Te where F is the heat flux, k the 

(a)

(b)

(d)

(f)

(c)

(e)

(g)
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thermal conductivity, and DT the temperature contrast between the surface and the base 

of the elastic layer. On Earth, the elastic thickness of oceanic lithosphere is defined by the 

depth to the 300 – 600 °C isotherms, based on a cooling plate model (Watts et al., 2012). 

The mean surface temperature of the Moon is approximately 250 K, but 4 Gyr ago when 

the Sun was 30% fainter it would have closer to 230 K. If we use the latter value and a 

thermal conductivity of 2 W m-1 K-1 (as in Maurice et al., 2020), then a 20 km elastic 

thickness implies a heat flux of 34-64 mW m-2 and a 40 km elastic thickness implies a 

heat flux of 17-32 mW m-2.  

For the farside equatorial and SPA regions where Te<20 km, the implied heat flux 

of >34 mW m-2 is quite high. In the preferred model of Laneuville et al. (2013), such a 

high farside heat flux would only arise during the first 200 Myr after lunar magma ocean 

(LMO) solidification. Likewise, Kamata et al. (2015) have shown that a high inferred 

heat flux (Te = 20 km) would have only persisted for <200 Myr after the LMO solidified. 

Conversely, the northern polar regions with Te ≈ 40 km could be recording events as late 

as 3.5 Ga. Large areas of the farside thus experienced the last loading event early (<200 

Myr) in after LMO solidification, but elsewhere geological activity may have been more 

prolonged. 

 

5 Conclusions 

We find that elastic thickness (at the time of loading) varies across the Moon 

between 9 km and 60 km with a mean elastic thickness of about 30 km. The highest 

reliable elastic thicknesses can be found north of 60°N while the lowest elastic 
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thicknesses can be found in the equatorial farside and within SPA. Our results can be split 

into four broad categories: 1) the low elastic thickness values in the equatorial farside, 2) 

the low elastic thickness values in and around SPA, 3) the moderate elastic thickness 

values to the east and west of SPA, and 4) the moderate to high elastic thickness values in 

the northern farside. We find no correlation between elastic thickness and crater density, 

crustal density, or crustal thickness in areas where reliable estimates of elastic thickness 

can be made. 

The low elastic thickness values that we find (<20 km) imply heat fluxes in excess 

of 34 mWm-2. These values suggest that much of the loading on the Moon must have 

taken place within the first ~200 Myr after LMO solidification, though some areas (Te>40 

km) may be recording events as late at 3.5 Ga. 

We also demonstrate that smaller localization windows can lead to lower elastic 

thickness estimates (Appendix Figure B2), which may explain some of the differences 

between this work and previous work. We caution future workers that utilizing windows 

that do not fully capture longer wavelength information may bias their elastic thickness 

estimates. 
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Chapter 3: Martian Paleopole Locations from Crustal Magnetic 

Anomaly Analysis 

 

Abstract 

We analyze 10 martian crustal magnetic anomalies to determine the magnetic paleopole 

locations at the time the anomalies were magnetized using Parker’s method (Parker, 

1991). We use an updated method of estimating paleopole location uncertainty and 

perform this analysis on multiple datasets to ensure accurate results. We use the 

Maximum Angle of Dispersion (MAD) developed by Kirschvink (1980) to state the 

dispersion of our paleopole results. Our results imply at least one cluster of paleopole 

locations (at approximately 45°N, 0°E), suggesting either the dipolar axis was stable for 

an extended period or that some of the anomalies we analyze were magnetized 

contemporaneously. This cluster of paleopole locations correlates with the paleo-spin 

axis calculated by Perron et al. (2007) using the paleo-shorelines of the Arabia shoreline. 

This supports the true polar wander history put forth by Perron et al. but does not 

necessarily rule out other true polar wander histories, as we cannot confirm the timing of 

the polar wander. We rule out multipolar fields and a hemispherical dynamo as 

explanations for the wide spread of paleopole locations, though the numerous paleopoles 

that do not correspond to the current or ancient spin-axes are still unexplained. 

 

1 Introduction 
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Though Mars currently lacks a global, dynamo-generated magnetic field, 

spacecraft measurements (e.g., Acuña et al., 1999) have found evidence of widespread 

crustal magnetism. These crustal magnetic anomalies contain information about the 

ancient fields that existed at the time of magnetization. Careful analysis of these 

anomalies can elucidate the thermal evolution of Mars, such as when the dynamo was 

active and how strong it was. Crustal magnetic analyses can also be used to constrain the 

path of true polar wander, given that in most dynamos we see, the dipolar magnetic field 

axis is generally aligned with a planet’s spin axis (e.g., Mercury, Earth, Jupiter, and 

Saturn). 

True polar wander on Mars has been studied extensively through analysis of the 

fossil bulge (Matsuyama and Manga, 2010; Bouley et al., 2016) and analysis of paleo-

shorlines (Perron et al., 2007; Chan et al., 2018). However, these analyses provide 

conflicting results. Fossil bulge analyses (Matsuyama and Manga, 2010; Bouley et al., 

2016) find a paleopole of 71°N, 259.5°E. This implies a small amount of true polar 

wander (<20°) as a result of the formation of the Tharsis volcanic complex near the 

equator. 

Analyses of paleo-shorelines find a wider range of possible paleopoles, with 

paleopoles at 40°N, 334°E; 79°N, 337°E (Perron et al., 2007); and 75°N, 327°E (Chan et 

al., 2018). These paleopole locations lie on a great circle 90° away from the paleopole 

found by fossil bulge analyses, which imply that these true polar wander events occurred 

after the formation of Tharsis and consistent with the requirement that Tharsis remain at 

the equator. 
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The analysis of crustal magnetic anomalies offers an alternative method of 

determining the ancient spin axis of Mars and could distinguish between the proposed 

polar wander histories. Many authors have previously performed analyses on crustal 

magnetic anomalies in order to determine their magnetization directions and paleopole 

locations (Sprenke and Baker, 2000; Arkani-Hamed, 2001; Hood and Zakaraian, 2001; 

Richmond and Hood, 2003; Frawley and Taylor, 2004; Arkani-Hamed and Boutin, 2004; 

Hood et al., 2005; Boutin and Arkani-Hamed, 2006; Hood et al., 2007; Langlais and 

Purucker, 2007; Quesnel et al., 2007; Hood et al., 2010; Milbury et al., 2012; Plattner and 

Simons, 2015; and Thomas et al., 2018). As shown in Figure 3.1, despite good agreement 

between many analyses of individual anomalies, there is very little consensus on the 

location of any ancient magnetic poles, suggesting a complex magnetic history.  

Figure 3.1: Compilation of published paleomagnetic pole locations plotted over Mars 
Orbiter Laser Altimeter (MOLA) data (Smith et al., 2001) in a mollweide projection 
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centered on 0°N 0°E. All paleopoles have been converted to south poles. Paleo-spin axes 
from Perron et al. (2007), Matsuyama and Manga (2010), and Chan et al. (2016) have 
been included in yellow: the dotted line corresponds to the axis of rotation described in 
Perron et al. (2007), the dash-dotted ellipse corresponds to the uncertainty from 
Matsuyama and Manga (2010), and the dashed ellipse corresponds to the uncertainty 
from Chan et al. (2018). 
 

Several authors claim to have found evidence for true polar wander based on 

paleopoles that are not aligned with the current spin axis (Arkani-Hamed, 2001; Hood 

and Zakharian, 2001; Arkani-Hamed and Boutin, 2004; Frawley and Taylor, 2004; Hood 

et al., 2005; Boutin and Arkani-Hamed, 2006; Langlais and Purucker, 2006; Hood et al., 

2007; Quesnel et al., 2007; Milbury et al., 2012; Thomas et al., 2018). Many authors 

(Arkani-Hamed, 2001; Arkani-Hamed and Boutin, 2004; Frawley and Taylor, 2004; 

Boutin and Arkani-Hamed, 2006; Milbury et al., 2012; Thomas et al., 2018) also argue 

for at least one polar reversal event to account for antipodal paleopoles. However, a 

majority of the paleopoles found from magnetic analyses do not correlate with the paleo-

spin poles found from analyses of the fossil bulge (Matsuama and Manga, 2010; Bouley 

et al., 2016) and paleo-shorelines (Perron et al., 2007; Chan et al., 2018), nor has there 

been an attempt to state the statistical significance of any of the common paleopoles 

found from magnetic analyses. 

The number of anomalies available for study is limited, given that most martian 

crustal magnetic anomalies are not perfectly isolated (i.e., there are other, potentially 

unrelated crustal magnetic anomalies in the vicinity). To determine the paleopole from 

crustal magnetic anomalies, one must assume the anomaly is unidirectionally magnetized 

(i.e., has only one magnetization direction). Inclusion of unrelated anomalies could break 
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the assumption of undirectionality and could make any recovered magnetization 

directions meaningless.  

Some work has been done to quantify both how isolated an anomaly needs to be 

and how much “noise” (uncorrelated anomalies) may be in the system. Thomas et al. 

(2018) show that anomalies ought to be separated from other anomalies by at least twice 

the radius of the anomaly of interest. Maxwell and Garrick-Bethell (2020) show that 

Signal-to-Noise Ratios (SNR) greater than 5 are required to determine the magnetization 

direction of an anomaly within reasonable uncertainties. They also show it is possible to 

obtain accurate magnetization directions of anomalies with SNRs <5, albeit with 

increased uncertainty. To mitigate the negative effects of low SNR values and validate 

our results, we perform analyses on each component (east, north, and radial) of multiple 

datasets, including recent MAVEN magnetometer data (Connerney et al., 2015). 

This paper improves upon previous work in several ways. It follows Thomas et al. 

(2018) in using Parker’s method (Parker, 1991), a state-of-the-art inversion method 

capable of determining the magnetization direction of an anomaly without making 

assumptions about the anomaly’s source geometry. We also use an updated method of 

estimating directional uncertainty from Maxwell and Garrick-Bethell (2020), which 

allows for more robust determinations of paleopole locations. We perform these 

inversions on multiple datasets: the Morschhauser et al. (2014) spherical harmonic model 

(also analyzed in Thomas et al., 2018), the Langlais et al. (2019) spherical harmonic 

model, and the MAVEN-MAG dataset (Connerney et al., 2015). In this paper, we make 

extensive use of MAVEN data to confirm the topology of magnetic fields from the 
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spherical harmonic models and to verify the paleopole locations recovered using 

spherical harmonic models (e.g., Morschhauser et al., 2014; Langlais et al., 2019). 

This work also improves upon previous work by explicitly quantifying the degree 

of clustering of paleopoles with error ellipses. We use the Maximum Angle Dispersion 

(MAD) method (Kirschvink, 1980) to determine how tightly clustered paleopoles are and 

we compare our results to what would be expected from random locations of uncertainty 

ellipses. Our results imply a complex history of the martian dynamo. 

 

2 Data 

This analysis makes use of three datasets: two spherical harmonic models of the 

crustal field by Morschhauser et al. (2014) and Langlais et al. (2019), and calibrated 

tracks of MAVEN magnetometer data (Connerney et al., 2015). Here we describe each 

dataset in detail. When performing our uncertainty analyses (described in the Section 3), 

we use only the Langlais dataset, as it is the most recent spherical harmonic model. Given 

the varying altitude of MAVEN tracks, as well as daily and seasonal variations in field 

strengths, we are unable to calculate a constant SNR for MAVEN data, which is required 

for estimating uncertainty with the method proposed by Maxwell and Garrick-Bethell 

(2020). 

The Morschhauser et al. (2014) dataset is a spherical harmonic model of the 

crustal field to degree and order 110 based on an L1 normalization fit to Mars Global 

Surveyor (MGS) magnetometer data from the beginning to the end of its operation (1997 

– 2006). From here on, we will refer to this model as SH-M14. We expand the model 
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onto a regular grid with data points every 1.33° at 120 km altitude. This resolution is 

lower than the model’s resolution (~0.8° spacing), but we have found that higher 

resolution maps do not produce better fit results (Appendix Figure C1) and are sometimes 

detrimental to efforts to determine the magnetization direction because of the inclusion of 

small scale “noise” (i.e., smaller, uncorrelated anomalies). Our choice of data resolution 

corresponds to half the resolution of the Langlais et al. (2019) dataset.  

The Langlais et al. (2019) dataset is a spherical harmonic model of the crustal 

field to degree and order 134, where they model the data with an Equivalent Source 

Dipole approach using MGS magnetometer and Electron Reflectometer data from 1997 

to 2006 and MAVEN magnetometer data from 2014 (beginning of operation) to 2019. 

From here on, we will refer to this model as SH-L19. As with the SH-M14 model, we 

expand the model onto a regular grid with data points every 1.33° at 120 km altitude. 

While this resolution is lower than the model’s resolution (0.66° spacing), we show in 

Appendix C that our expansion is appropriate. 

The MAVEN dataset consists of calibrated MAVEN-MAG tracks from the 

beginning of the mission (2014) to today. These data are available from the NASA PDS 

(Connerney et al., 2015). We limit the tracks we use to only data that were taken between 

7 p.m. and 5 a.m. local time (e.g., on the opposite side of Mars from the sun) in order to 

avoid effects from the interplanetary magnetic field. We also only use tracks below 200 

km altitude to better ensure variations in field strength are from the crustal fields rather 

than the interplanetary magnetic field. For some anomalies we analyze, coverage is good 

enough that we are able to use only data below 150 km or 170 km. No effort is put into 
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averaging or down sampling the available data, though we do manually remove a few 

spurious data tracks when it is clear the tracks do not match the majority of the data. 

These spurious tracks within our chosen range for each anomaly are listed in the 

Appendix (Appendix Table C1). We accept variations between tracks, given that our 

inversions that fit these data will necessarily average out any daily or seasonal variations. 

 

3 Methods 

To model the crustal magnetic fields, we use a common inversion method 

developed by Parker (1991), hereafter referred to as Parker’s method. Though initially 

used to analyze magnetized seamounts on Earth (Parker, 1991), this method has also been 

used on the Moon (Oliveira and Wieczorek, 2017; Lee et al. 2019; Maxwell and Garrick-

Bethell, 2020), Mercury (Oliveira and Wieczorek, 2019), and Mars (Thomas et al., 2018).  

Parker’s method places model dipoles on a regular grid, within a specified area on 

a surface above the source body, to obtain the best-fitting magnetization distribution for a 

particular magnetization direction. It makes no assumption about the geometry of the 

magnetic source body but does follow the unidirectional assumption that all model 

dipoles have the same magnetization direction, while allowing for variable magnetization 

strength across an anomaly. Each possible direction is tested (a unit sphere equally 

spaced by ~2°) and the lowest root mean square (RMS) between the observations and the 

model is taken to be the best-fit direction. We will describe the uncertainty later in this 

section. Formally, this method models magnetization within some volume V as a 
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unidirectional magnetic field whose magnetization strength is an arbitrary function of 

position within the body, modeled on the surface of V. The magnetization is written as  

𝑴(𝒔) = 𝒎' 	𝑚(𝒔),𝑚(𝒔) ≥ 0. 

where 𝒎'  is the direction of magnetization and m(s) is the strength of the model dipole at 

location s. Observations taken outside of V are approximated as the field component 

along 𝑩/!, the direction of the main magnetic field in the vicinity. In this work, we test 

each component of the magnetic field (east, north, and radial) separately as a method of 

validating the results. 

From Parker et al. (1987), No observations dj made at positions rj can be 

calculated as the sum of contributions from Nd dipoles located at si 

𝑑" =1𝑔"(𝒔#)𝑚(𝒔#)
$!

#%&

, 𝑗 = 1,… ,𝑁' 

where the contribution from a single dipole at location i is given as 

𝑔"(𝒔) =
𝜇!
4𝜋 :

3𝒎' ∙ =𝒓𝒋 − 𝒔@𝑩/! ∙ =𝒓𝒋 − 𝒔@

A𝒓𝒋 − 𝒔A
) −

𝒎' ∙ 𝑩/!
A𝒓𝒋 − 𝒔A

*B 

From this, we can use the matrix G, which depends on the dipole locations i = 1, 

…, Nd and observation locations j = 1, …, No, to find the magnetization strength of the 

source dipoles by solving the non-negative least squares technique as developed by 

(Lawson and Hanson, 1974) 

min
+,!

‖𝒅 − 𝐺𝒎‖- 

Note that the user must choose a model dipole spacing resolution and their spatial 

coverage. For this work, we choose a dipole spacing of 1°, which allows for more dipoles 
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than observations (data spacing is 1.33°). The dipoles are equally spaced using the polar 

coordinate subdivision method (Katanforoush and Shahshahani, 2003). Choosing a finer 

spacing of model dipoles does not improve the best-fit direction from Parker’s method 

(Appendix Figure C1b). 

We choose the extent of data to encompass a spherical cap (e.g., a circular 

dataset), with the radius of the observations (ro) set larger than the radius of model 

dipoles (rd) to avoid unwanted edge effects. The extents vary for each location we test 

(Table 3.1). We make an effort to improve the Signal-to-Noise Ratio (SNR) of the data 

by choosing observation and model dipole radii to exclude nearby magnetic anomalies 

from the inversion. SNR is calculated as the maximum field strength within the 

observation extent divided by the mean of the absolute value of the data between the 

observation radius and the model dipole radius. 

These inversions are performed on all components (east, north, radial) for the SH-

M14, SH-L19, and MAVEN datasets for a total of nine inversions per anomaly. For each 

component, if the inversions from the three datasets do not match, we discontinue the 

anomaly. This is better quantified by our uncertainty estimation method, and we expand 

upon our choice of anomalies later in this section. 

There are two accepted methods of citing uncertainty for a recovered 

magnetization direction. The first, from Parker (1991), is to calculate the RMS of the 

difference between the model and the observations for each direction tested and accept all 

directions with an RMS lower than the mean background field strength (i.e., the mean of 

the field interior to ro and exterior to rd). This method has two major risks, as discussed 
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by Oliveira and Wieczorek (2017) and Maxwell and Garrick-Bethell (2020). The first is 

that the mean background field might be smaller than the RMS of the difference between 

the model and observed fields, resulting in an uncertainty of exactly zero. The second risk 

is that the anomaly’s field strength might be comparable to the background field strength 

(i.e., a low SNR), resulting in a wide range of acceptable directions, sometimes on the 

order of a hemisphere, as in Oliveira et al. (2019). Maxwell and Garrick-Bethell (2020) 

show that such large uncertainties are overly conservative and unfairly biased against 

high inclinations. They demonstrate an alternative method of estimating uncertainty that 

both produces a more robust estimate and removes this inclination bias. 

The second method of estimating the directional uncertainty, and the one used 

herein, is to use a Monte Carlo method of simulating the background field, as proposed 

by Maxwell and Garrick-Bethell (2020). They create twenty realizations of synthetic 

“noise” on the order of the observed background field (with in ± 0.5 SNR units) and add 

the best-fit model of the anomaly to these realizations of noise. They then perform 

Parker’s method inversions on each of these synthetic datasets and determine the standard 

deviation s of the recovered directions. This standard deviation is then taken to be the 

uncertainty as it describes how easily perturbed the best-fit direction is in the presence of 

a background field. They use this standard deviation to calculate an uncertainty ellipse 

(Butler, 1992), and note that their ellipses indicate one standard deviation rather than a 

95% confidence interval. The axes of such an ellipse are calculated as 

𝑑𝑝 = 𝑠 a
1 + 3𝑐𝑜𝑠-𝑝

2 b 
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𝑑𝑚 = 𝑠 m
sin 𝑝
cos 𝐼n 

where dp is the axis along the site-to-pole great circle, dm is the axis perpendicular to dp, 

I is inclination, and p is calculated as 

𝑝 = 	 cot6&
tan 𝐼
2  

This uncertainty can also be quantified using the precision parameter k, calculated 

as  

𝑘 = 	
𝑁 − 1
𝑁 − 𝑅 

where N is the number of iterations (here, 20) and R is the length of the sum of all best-fit 

magnetization direction unit vectors. High k values imply high precision estimates. 

Maxwell and Garrick-Bethell (2020) do this for only the best component (i.e., the 

component with the lowest SNR) given that results should not vary between components. 

However, we have found that a few of the anomalies we analyzed look reasonable (i.e., 

well isolated with low noise) in one component, but not in the other components. 

Alternatively, sometimes the SNR in two components are equal to each other, yet the 

recovered magnetization directions are slightly different. To ensure a fair analysis of each 

anomaly, we perform the uncertainty estimation method on all components of the SH-

L19 dataset. If the results completely disagree across components (i.e., none of the 

uncertainty ellipses overlap), we discontinue analysis of that anomaly. Additionally, if 

neither of the inversion results using SH-M14 and MAVEN do not agree with SH-L19 

within the calculated uncertainty for a given component, we discontinue the anomaly. 
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In Figure 3.2, we show two examples of this method of removing anomalies from 

analysis. One anomaly (A1) appears to be well-suited for analysis as it is isolated and has 

a high SNR, but the results across components and datasets do not agree. The other 

anomaly (A3) is less well-isolated and has a lower SNR, but its paleopole locations agree 

in each component and dataset. A1 is an anomaly we analyzed but do not keep in this 

work, given that its results do not agree within the calculated uncertainties, and we are 

unable to determine which component and dataset is most accurate. A3 provides an 

example where all inversions agree within the uncertainty ellipse of the corresponding 

component (east, north, or radial), except for the north component of MAVEN. There are 

several cases (A2, A3, P2, Claritas Rupes, and Bosphoros Planum) where one component 

of the MAVEN data does not agree within the uncertainty ellipse, but this is always 

limited to only one component, which we find acceptable. Paleopole results for each 

component and analysis of acceptable anomalies can be found in Appendix C (Appendix 

Table C2-C4 and Appendix Figure C2). 
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Figure 3.2: (top) Field components of A1 (left) and A3 (right). (below) Best-fit 
paleopole locations for each component and dataset plotted over MOLA data (Smith et 
al., 2001) in a mollweide projection centered on 0°N 0°E. 
 

4 Results 

We apply the methods from Section 3 to ten crustal magnetic anomalies. We 

perform Parker’s method on each component (east, north, radial) of each dataset (SH-

M14, SH-L19, and MAVEN) individually. We report the results using the radial 

component of SH-L19 in Table 1, as the radial component produces the best SNR in all 

cases. Note that all paleopole locations listed in this paper are south paleopoles. Figure 3 

shows the radial field observations, best-fit model field, the residual field (i.e., the 
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difference between the observations and the model field), and the model dipole 

placement for each anomaly. The results using the east and north components of SH-L19, 

all components of SH-M14 and all components of MAVEN datasets can be found in the 

Supporting Information (Appendix Figure C2 and Appendix Tables C2-C4).  
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Table 3.1. Summary of crustal magnetic anomalies analyzed. Location of the anomaly in 
latitude (ls) and longitude (js), radii of observations (ro) and model dipoles (rd), the SNR 
(radial component) value associated with each observational extent, the inclination (Inc) 
and declination (Dec) resulting from Parker’s method, south paleopole latitude (lp) and 
longitude (jp), the precision parameter (k), and angular standard deviation (s) from the 20 
Monte Carlo simulations to estimate uncertainty, and the paleopole ellipse semi-axes, dm 
and dp, derived from s. All are in units of degrees, except for SNR and k which are 
unitless. CR = Claritas Rupes, AM = Amazonis Mensa, TS = Terra Sirenum, MT = 
Margaritifer Terra, and BP = Bosphoros Planum. Note that rd is always 1° smaller than ro, 
except for Claritas Rupes and Terra Sirenum, which are 1.5° smaller than ro. 
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Figure 3.3: Visual summary of Parker’s method for each anomaly. (first column) 
Observed radial field component of SH-L19. (second column) Model radial fields based 
on best-fit from Parker’s method. (third column) Residual fields (i.e., the difference 
between observations and the model). (fourth column) Best-fit dipole arrangement. Solid 
lines indicate the extent of data used in the inversion (ro) and dashed lines indicate the 
extent of dipoles (rd). Figures are in the Lambert projection. 
 

All anomalies discussed here have been previously analyzed by various authors, 

except A3b. Anomalies A2, A3, P1, and P2 use the naming convention from Thomas et 

al. (2018). Thomas et al. also analyzed anomaly A1 (Figure 3.2a), but our analyses 

suggest that, while well isolated, this anomaly is not well-suited to an inversion Parker’s 

method, as described in Section 3. We do not include the Australes Montes anomaly, also 
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analyzed by Thomas et al. (2018) because the anomaly location is not consistent between 

the SH-M14 and SH-L19 datasets, and the SNR is quite low (<4). Though five anomalies 

in this study are labeled after the most distinct geologic feature in the region, in general, 

the geologic explanation for the existence of martian magnetic anomalies is not known. 

For all anomalies, the magnetic field components (east, north, radial) are 

consistent for all three datasets, as required by the methods described in Section 3. The 

SH-M14 fields for P2 are approximately 5 times stronger than in SH-L19 or MAVEN, 

though inversion results using Parker’s method indicate that this strength difference does 

not impact the recovered magnetization direction, as the results from SH-M14 are in 

proximity to those from SH-L19 and MAVEN. We compare our results to those reported 

in the literature (Appendix Figure C2). 

Anomaly A2 was identified by Morschhauser et al. (2014) and analyzed by 

Thomas et al. (2018) to determine its paleopole location. Our results are consistent with 

the results from Thomas et al. (2018). 

A3 was identified by Morschhauser et al. (2014) and analyzed by Thomas et al. 

(2018) to determine its paleopole location. This anomaly is moderately well isolated, with 

a significant secondary anomaly to the south, termed A3b. Our results are consistent with 

the results from Thomas et al. (2018). 

A3b was not analyzed by Thomas et al. (2018), but we include it here given its 

proximity to A3 and that it appears to be a separate anomaly. A3b is associated with the 

northern tip of Phlegra Montes. It is moderately well isolated, with anomaly A3 to its 
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north. The paleopole location for this anomaly is distinctly different from the paleopole 

for A3, confirming that these are in fact separate anomalies. 

Anomaly P1 was identified by Thomas et al. (2018), who also found the 

associated paleopole location. There are significant crustal fields to the north and 

northeast, however our choice of observational extent excludes these (presumably) 

unrelated crustal fields. Our results are consistent with the results from Thomas et al. 

(2018). 

Anomaly P2 was identified by Thomas et al. (2018), who also found the 

associated paleopole location. There are significant crustal fields to the southwest, 

however our choice of observational extent excludes these (presumably) unrelated crustal 

fields. Our results are consistent with the results from Thomas et al. (2018). 

The Claritas Rupes (CR) magnetic anomaly has been analyzed by several authors 

(Frawley and Taylor, 2004; Arkani-Hamed and Boutin, 2004; Hood et al., 2005; Boutin 

and Arkani-Hamed, 2006). There are significant crustal fields to the southwest, though 

our choice of observational extent excludes these (presumably) unrelated crustal fields. 

Our results are near results from Frawley and Taylor (2004), Arkani-Hamed and Boutin 

(2004), and Boutin and Arkani-Hamed (2006), though the reported literature values are 

outside our uncertainty ellipse. Our results using the east component of SH-L19 (the 

second highest SNR for this anomaly) is consistent with the reported value from Hood et 

al. (2005). 

The anomaly in south Amazonis Mensa (AM) has been analyzed by several 

authors (Arkani-Hamed, 2001; Richmond and Hood, 2003; Frawley and Taylor, 2004; 
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Arkani-Hamed and Boutin, 2004; Hood et al., 2005; Boutin and Arkani-Hamed, 2006). 

This anomaly is the strongest in its immediate vicinity (within an arc distance of 10 

degrees). There are significant crustal fields to the east, south, and west, however our 

choice of observational extent excludes these (presumably) unrelated crustal fields. Our 

results are consistent with the reported locations from Boutin and Arkani-Hamed (2006). 

Our results using the east component of SH-L19 (the second highest SNR) is consistent 

with the reported locations from Arkani-Hamed (2001), Richmond and Hood (2003), 

Arkani-Hamed and Boutin (2004), Hood et al. (2005), and Boutin and Arkani-Hamed 

(2006). The reported location from Frawley and Taylor is at much higher latitudes, 

though it is consistent with our results using the north component of SH-L19 (the lowest 

SNR).  

An anomaly in Terra Sirenum (TS) has been studied by three authors (Frawley 

and Taylor, 2004; Hood et al., 2007; Quesnel et al., 2007). Though it is surrounded by 

(presumably) unrelated crustal fields on all sides, it is distinct from the surrounding fields 

as a separate crustal magnetic anomaly. Our results are consistent with the results from 

Quesnel et al. (2007). Our result for the north component of SH-L19 is consistent with 

Quesnel et al. (2007) and Hood et al. (2007). Our results are not consistent with Frawley 

and Taylor (2004). 

The Margaritifer Terra (MT) anomaly has been studied by two authors (Arkani-

Hamed, 2001; Richmond and Hood, 2004). Though it is surrounded by (presumably) 

unrelated crustal fields to the west, north, and east, it is distinct from the surrounding 

fields as a separate crustal magnetic anomaly. Our results are not consistent with the 
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previously reported results. Our results for the north component of SH-L19 produce an 

uncertainty ellipse that is just outside of the reported location of Richmond and Hood 

(2003). 

Bosporpos Planum (BP) anomaly has been studied by several authors (Frawley 

and Taylor, 2004; Arkani-Hamed and Boutin, 2004; Hood et al., 2005; Boutin and 

Arkani-Hamed, 2006). It is in Bosporos Planum, to the south of Thaumasia Planum and 

to the northwest of Argyre basin. There are significant crustal fields to the northeast, 

however our choice of observational extent excludes these (presumably) unrelated crustal 

fields. Our results are near the reported location from Arkani-Hamed and Boutin (2004), 

though their value is outside of our uncertainty ellipse. Curiously, the reported locations 

from Boutin and Arkani-Hamed (2006) are antipodal to our results, which may be an 

error in reporting, given that the same group finds a paleopole opposite of this value 

(Arkani-Hamed and Boutin, 2004). Our results are not consistent with the reported 

locations from Frawley and Taylor (2004) or Hood et al. (2005).  

4.1 Dispersion of Anomalies 

A collection of paleopole uncertainties for each anomaly is shown in Figure 3.4 

(left column). We assume magnetic reversals occurred, and we therefore show a 

combination of north and south paleopoles to indicate the best clustering of anomalies. 

The right column of Figure 3.4 condenses the information from the left column into a 

heat map of uncertainty ellipses to better show clustering of paleopoles. Heat maps are 

calculated by determining the latitudes and longitudes within the uncertainty ellipses and 

assigning each location a value equal to the number of ellipses present at that point. We 
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show results from the best component only (Figure 3.4, top row), from only the best two 

components (Figure 3.4, middle row), and from all components (Figure 3.4, bottom row). 

Note that the SNRs of the second best and worst components for several anomalies are 

<4 (Appendix C Table C2-C3), which should be considered unacceptable, but we show 

the results here for completeness. 

 
Figure 3.4: Paleopole results for the ten crustal magnetic anomalies analyzed. Shown are 
paleopole uncertainty ellipses plotted over MOLA data (Smith et al., 2001) (left column) 
and heat maps of ellipses (right column) for the best component only (a-b, total of ten), 
the best two components (c-d, total of twenty) and all three components (e-f, total of 
thirty). For (c) and (e) only the furthest extent of ellipses from each anomaly are shown.  
Heat maps indicate the number of ellipses in a particular location. Shown here is a mix of 
north and south paleopoles: north paleopoles have dashed ellipses and south paleopoles 
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have solid ellipses. Mollweide projection is used, centered on 0°N 0°E. CR = Claritas 
Rupes, AM = Amazonis Mensa, TS = Terra Sirenum, MT = Margaritifer Terra, and BP = 
Bosphoros Planum. Paleo-spin axes from Perron et al. (2007), Matsuyama and Manga 
(2010), and Chan et al. (2016) have been included in yellow: the dotted line corresponds 
to the axis of rotation described in Perron et al. (2007), the dash-dotted ellipse 
corresponds to the uncertainty from Matsuyama and Manga (2010), and the dashed 
ellipse corresponds to the uncertainty from Chan et al. (2018). 

 

To quantify the clustering from our results, we make use of the Maximum Angle 

of Dispersion (MAD) as described in Kirschvink (1980), which uses principal component 

analysis to describe the angular dispersion of a set of points on a sphere. The latitudes 

and longitudes (equally spaced to ensure no oversampling at the poles) contained within 

each ellipse are converted to cartesian coordinates, which are then used to create matrix 

H, whose center is forced through the origin. The eigenvalues and eigenvectors of matrix 

H determine the principal components. The eigenvector with the largest corresponding 

eigenvalue indicates the “center of mass” of the points, i.e., the axis around which the 

uncertainty ellipses cluster. We then calculate the MAD as in Kirschvink et al.: 

𝑀𝐴𝐷 = tan6&�
𝜆#T: + 𝜆+#T
𝜆+X/

 

where 𝜆+X/ is the maximum eigenvalue, 𝜆#T: is the intermediate eigenvalue, and 𝜆+#T is 

the minimum eigenvalue. This method of citing dispersion is not dependent on magnetic 

reversals as paleopoles that are antipodal to one another will have the same angular 

distance from the “center of mass” axis, and thus using only south paleopoles or a 

combination of north or south paleopoles will have the same result. 

We use a Monte Carlo method to determine the expected MAD for a random 

assortment of uncertainty ellipses. To ensure a fair comparison between our results and 
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the randomly generated ellipses, we use the calculated dp and dm from our uncertainty 

analysis of SH-L19 data to create random ellipses of the same size as our uncertainty 

ellipses. We allow the location of these ellipses to be random within a Fisher distribution 

and then calculate the MAD for the randomly placed ellipses. We repeat this 1,000 times 

to determine the distribution of expected MAD. 

For the best component of each anomaly (total of ten ellipses), the MAD is 37.3°, 

which we show in Figure 3.5 is below 1-s of what would be expected of randomly placed 

uncertainty ellipses of the same sizes. For the two best components (total of twenty 

ellipses), the MAD is 47.0°, and for all three components (total of thirty ellipses), the 

MAD is 48.1°. The sharp increase in MAD from the best component only to including 

multiple components is due to the increase in size of the uncertainty ellipse – uncertainty 

is expected to increase as SNR decreases – as it increases the number and spread of 

points used in the MAD calculation. These MADs for the best two components and for 

all components are within 1-s of what would be expected of randomly placed uncertainty 

ellipses of the same sizes, though both are still below the expected mean. 

 
Figure 3.5: Histograms of Maximum Angle of Dispersion (MAD) for random 
arrangements of (left) the best components only (ten uncertainty ellipses), (b) the best 
two components (twenty uncertainty ellipses), and (c) all components of SH-L19 (thirty 



 101 

uncertainty ellipses). Dashed black lines indicate the MAD of the uncertainty ellipses, 
solid black lines indicate the expected (mean) MAD, calculated from 1000 iterations of 
random ellipse placements. Solid blue lines indicate 1-s (top) and 2-s (bottom). Note 
that the ellipses generated in these random tests are of the same size as the uncertainty 
ellipses in our results for accurate comparison. 
 

5 Discussion 

5.1 Clustering 

Using the MAD as a proxy for how well clustered a set of anomalies are, we have 

shown (Figure 3.5) that that the MAD of the uncertainty ellipses from this analysis is 

lower than the expected MAD at the 1s level from an assortment of randomly located 

ellipses of a similar size, suggesting a clustering of paleopoles. This can be seen visually 

in Figure 3.4, where the heat maps of uncertainty ellipses overlap in several areas, with at 

least one clustering area if we assume the results from the best component are the true 

paleopole locations. If we accept the second or third best components as truth, we find 

clusters in two locations (approximately 45°N, 0°E and 30°N, 90°E). 

The cluster seen in Figure 3.4b correlates with the paleo-spin axis found by 

Perron et al. (2007). This cluster consists of four uncertainty ellipses (Figure 3.6), which 

are exceedingly well clustered with a MAD of 26.3° – more than 2-s from the expected 

MAD for randomly placed ellipses of the same size. We discuss this further in Section 

5.2. 
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Figure 3.6: (a) Heat map of the four best clustered anomalies. Paleo-spin axes from 
Perron et al. (2007), Matsuyama and Manga (2010), and Chan et al. (2016) have been 
included in yellow: the dotted line corresponds to the axis of rotation described in Perron 
et al. (2007), the dash-dotted ellipse corresponds to the uncertainty from Matsuyama and 
Manga (2010), and the dashed ellipse corresponds to the uncertainty from Chan et al. 
(2018). (b) Histogram of MAD for randomly arranged uncertainty ellipses of the six best 
clustered anomalies. Anomalies included in this clustering: A3, P1, Claritas Rupes, and 
Terra Sirenum. Dashed black lines indicate the MAD of the uncertainty ellipses, solid 
black lines indicate the expected (mean) MAD, calculated from 1000 iterations of 
random ellipse placements. Solid blue lines indicate 1-s (top) and 2-s (bottom). Note 
that the ellipses generated in these random tests are of the same size as the uncertainty 
ellipses in our results for accurate comparison.  

 
Clusters of paleopoles suggest that either the dipolar axis was stable for an 

extended period or that some of the anomalies we analyze were magnetized 

contemporaneously. Without knowledge of the age of the crustal magnetic anomalies, we 

cannot distinguish between these possibilities, though locations where there are 

overlapping north and south poles provide evidence for at least one pole reversal event in 

the time the dipolar axis was stable. 

5.2 True Polar Wander 

A few of the individual anomalies we analyze appear to be consistent with the 

current or past spin axes. A2 is consistent with a dipolar axis aligned with the current spin 

axis. A3 and Terra Sirenum are consistent with a dipolar axis aligned with the paleo-spin 
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axes calculated by Perron et al. (2007), Matsuyama and Manga (2010), Bouley et al. 

(2016), and Chan et al. (2018), though the uncertainty ellipses are too large to distinguish 

between the different axes. 

The cluster of six anomalies (Figure 3.6) appear to correlate with the paleo-spin 

axis calculated by Perron et al. (2007). This implies a large amount of true polar wander, 

given the low latitude of the paleopoles (~45°N), which is in conflict with the relatively 

smaller amount of true polar wander expected from the creation of Tharsis Rise (e.g., 

Matsuyama and Manga, 2010). However, given that the cluster is statistically significant 

(outside of the 2-s MAD expected for randomly placed paleopoles), we find it important 

to emphasize this correlation.  

5.3 Alternative Scenarios 

5.3.1 Multipolar Fields 

One possible explanation for the lack of agreement in all magnetic paleopole 

locations is that the ancient magnetic field of Mars was multipolar. Paleopole calculations 

inherently assume a dipolar magnetic field axis so if the field were multipolar, the 

calculated paleopole locations would be incorrect. We show here that this is unlikely to 

be able to explain the wide spread of paleopole locations by calculating the amount a 

dipolar field would be perturbed by a quadrupolar component. 

Dynamo-generated magnetic fields are produced at the core-mantle boundary 

(CMB) of planet. These fields are attenuated as the distance from the CMB increases, and 

this attenuation is different for each order term (e.g., dipolar and quadrupolar). The 

attenuation of a field at the surface of a planet can be written as 
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𝐴1 =	a
𝑅YZ[
𝑅O\]^XGU

b
6(1=-)

 

where l indicates the order of the field. For a dipolar term, l = 1, and for a quadrupolar 

term, l = 2. 

As we can see in the equation above, higher order terms are attenuated away 

much faster than lower order terms. Therefore, quadrupolar fields will be fractionally 

weaker than dipolar terms at the same distance from the CMB. This fraction f can be 

written as 

𝑓 =
𝐴&
𝐴-

 

In addition to having higher attenuation, the quadrupole term is also weaker than 

the dipolar term at the CMB. We label this fractional strength a. We estimate a to be 

approximately 0.2 for the Earth (Stacey, 1985), and assume the martian dynamo behaved 

similarly to Earth’s current dynamo field. We can now compute the strength of 

quadrupolar field Bq (with respect to the strength of the dipolar field Bd) as  

𝐵_ =	𝐵V ∗ 𝑓 ∗ 	𝛼 

Finally, determining the amount a dipolar field would be perturbed by a 

quadrupolar component depends on the angle of the quadrupolar term with respect to the 

dipolar axis, which we label as f. The quadrupolar field can be split into two 

components: parallel to the dipolar term and perpendicular to the dipolar term. 

𝐵_,∥ =	𝐵_ cos𝜙 

𝐵_,a =	𝐵_ sin𝜙 
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We can now determine the angle q by which the dipolar field is perturbed by a 

quadrupolar term (i.e., the amount a magnetization direction would be perturbed by a 

quadrupolar field). 

𝜃 = 	 tan6&
𝐵_,a

𝐵V + 𝐵_,∥
 

The maximum angle of perturbation (f = 90°) is 6.2° while the mean angle of 

perturbation (f = 0° to 90°) is 3.7°. These angles are quite small, and indeed much 

smaller than our angular standard deviations (Table 1). 

We therefore rule out multipolar fields as an explanation for the wide spread of 

paleopole locations based on the assumption that the martian dynamo field behaved 

similarly to the Earth’s field. However, some work has been done to suggest that the 

martian dynamo did not behave as the Earth’s does, which we discuss in the next section. 

5.3.2 A Hemispherical Dynamo  

To explain the dichotomy of crustal magnetism on Mars, one paper suggests that 

Mars may have had a hemispherical dynamo (Stanley et al., 2008). This could be 

achieved by a degree-1 pattern of mantle circulation resulting from mantle convection or 

radial viscosity variations (Zhong and Zuber, 2001; Roberts and Zhong, 2006), early 

magma ocean crystallization resulting in overturn (Elkins-Tanton et al., 2003; Elkins-

Tanton et al., 2005), superplumes resulting from destabilization of the mantle lower 

thermal boundary layer (Ke and Solomatov, 2006), or a giant impact (Wilhelms and 

Squyres, 1984) that could produce a degree-1 temperature anomaly in the mantle or at the 

CMB (Watters et al., 2009). Their numerical simulations show that a stable one-
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hemisphere dynamo could be produced for sufficiently long enough to cause significant 

magnetization in the southern hemisphere and weaker magnetization in the northern 

hemisphere. Such a magnetic field would render paleopole analyses useless given that 

paleopole calculations rely on the assumption of a dipolar magnetic field. 

Our results do not support such a dynamo. Although paleopole locations may be 

useless under this scheme, such a dynamo would require the magnetization direction of 

anomalies near one another to be in approximately the same direction. Anomalies A3 and 

A3b are located 9° apart but their magnetization directions are different by 99°. Such a 

large difference in magnetization direction could not be explained by a stable 

hemispherical dynamo. 

 

6 Conclusions 

We analyze 10 martian crustal magnetic anomalies to determine the magnetic 

paleopole locations at the time the anomalies were magnetized using Parker’s method 

(Parker, 1991). We use an updated method of estimating paleopole location uncertainty 

and perform this analysis on multiple datasets to ensure accurate results. We use the 

Maximum Angle of Dispersion (MAD) developed by Kirschvink (1980) to state the 

dispersion of our paleopole results. 

Our results imply at least one cluster of paleopole locations, suggesting either the 

dipolar axis was stable for an extended period or that some of the anomalies we analyze 

were magnetized contemporaneously. The largest cluster of paleopole locations correlates 

with the paleo-spin axis calculated by Perron et al. (2007) using the paleo-shorelines of 
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the Arabia shoreline. This supports the true polar wander history put forth by Perron et al. 

but does not necessarily rule out the histories posited by Matsuyama and Manga (2010), 

Bouley et al. (2016), or Chan et al. (2018). However, we cannot confirm the timing of the 

polar wander from our magnetic analyses, as the age of the crustal magnetic anomalies in 

this study is not known. 

We rule out multipolar fields and a hemispherical dynamo as explanations for the 

wide spread of paleopole locations, though the numerous paleopoles that do not 

correspond to the current or ancient spin-axes are still unexplained. 

 
 
 
 
 
  



 108 

Appendix A: Supplementary Information for Chapter 1 

Text A1: 
In order to calculate paleopole locations, follow Irving (1964) and Butler (1992).  We 
first find p, the magnetic colatitude by  
 

𝑝 = 	 tan6&
2

tan 𝐼 
 
where I is inclination. We then find the paleopole latitude, lp, using 
 

𝜆b = sin6&(sin 𝜆O cos 𝑝 + cos 𝜆O sin 𝑝 cos𝐷) 
 
where ls is the latitude of the anomaly and D is the declination. To find the paleopole 
longitude, fp, we calculate the longitudinal difference between the paleopole and 
anomaly location, b which is calculated as 
 

𝛽 = 	 sin6& a
sin 𝑝 sin𝐷
cos 𝜆b

b 

 
If  
 

cos 𝑝 ≥ 	 sin 𝜆O sin 𝜆b 
 
Then 
 

𝜑b =	𝜑O + 𝛽 
 
where fs is the longitude of the anomaly. But if  
 

cos 𝑝 < 	 sin 𝜆O sin 𝜆b 
 
Then 
 

𝜑b =	𝜑O + 180 − 𝛽 
 
We can calculate the angular standard deviation, s, and angular variance, s2, of the 20 
magnetization directions from the noise-added Monte Carlo simulations at each anomaly: 
 

𝑠- =
1

𝑁 − 11Δ#-
$

#%&
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where N is the number of unit vectors and Di is the angle between the i-th direction and 
the calculated mean direction. Note that here, the angular standard deviation is for 63% of 
all values, as opposed to the 68% in traditional statistics. We can also calculate the 
precision parameter, k (Butler, 1992): 
 

𝑘 = 	
𝑁 − 1
𝑁 − 𝑅 

 
Where R is the resultant vector. Higher values of k mean lower uncertainty. 
 
The paleopole error ellipse derived from s is characterized by the semi-axes dp and dm, 
such that dp is along the great circle that connects the anomaly location with the 
paleopole location and dm is perpendicular to that great circle. We can then calculate dm 
and dp, which describe the uncertainty ellipse for a given uncertainty:  
 

𝑑𝑝 = 	𝑠 a
1 + 3 cos- 𝑝

2 b 

 

𝑑𝑚 = 	𝑠 m
sin 𝑝
cos 𝐼n 

 
Typically, in the paleomagnetism community the 95% confidence interval is used in 

place of s. Since we are unable to calculate a confidence interval at this time, we use s 

that we obtain from our Monte Carlo simulations, as described above. 

 

Text A2: 

Our uncertainty estimation method relies on a Monte Carlo method wherein we use 

Parker’s method on a number of synthetic cases based on an original Parker’s method 

inversion on spacecraft data. As described in the text, we test synthetic models with 

added synthetic background fields that have a similar Signal to Background Ratio (SBR) 

to the real-world case. As seen in Appendix Figure A5, this variance in synthetic 

background fields creates a spread in best-estimate magnetization directions. This spread 

centers around the true direction (the direction known before adding a synthetic 

background field). One can imagine that the initial Parker’s method inversion would be 

one of the blue dots seen in Figure S5, which is not necessarily the true direction. 

Applying a Monte Carlo style of inversions based around this initial finding would then 
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not only encompass this direction, but also the true direction that we sought in the first 

inversion. This is the key to our method. The result from Parker’s Method might not 

necessarily be accurate, but the accurate direction does lie within the precision of the 

uncertainty estimation method we describe (Appendix Figure A6). 
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Figure A1. Test cases with varying shapes as described in Table 1.1. Shown are 0° 
inclination and 0° declination cases. These fields are calculated at 20 km altitude. Points 
within the dataset are on a 0.25° x 0.25° grid. 
 
 



 113 

 
Figure A2. Example of how background field oscillations are added to synthetic 
anomalies. (a) A synthetic dataset with a rectangular shape is added to (b) a background 
field map generated from a grid of dipoles with random directions and magnetization 
strengths to create (c) a synthetic dataset with the background field added. See the 
Methods section for further details. 
 

 
Figure A3. Inclination bias across SBR values for a rectangular source. Same as Figure 
1.8 but using different synthetic background field datasets to generate SBR values. 
Synthetic background field datasets were generated with the same grid of dipoles but 
with different magnetization directions and magnitudes. (a) The best-fit RMS value for 
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differing SBR values, (b) the angular difference between the true and best-fit directions, 
qD, (c) the equivalent angular error for a maximum misfit equal to the mean background 
field, (d) the equivalent angular error for a maximum misfit equal to 1 s. The SBR values 
associated with the Reiner Gamma and Airy magnetic anomalies are denoted by vertical 
black lines at 23 and 8, respectively. All test cases had a declination of 0°.  
 

 
Figure A4. Boundaries of data used for inversions at Abel, Airy, Hartwig, Reiner Gamma, 
and Sylvester. Dashed lines represent the smaller data extent while solid lines show the 
larger extent (Table 1.2). Shown is the total magnetic field in stereographic projection 
centered on the anomaly. Note that the data radii for Abel are centered on two different 
locations (see main text). 
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Figure A5. Best-estimate directions from inversions for the magnetization direction of a 
synthetic rectangular anomaly to assess the accuracy of Parker’s Method (in contrast to 
its precision). Red points shows the rectangle’s true direction and blue dots show the 
result of an inversion with background fields added. (a) SBR of 8 and inclination of 0°; 
(b) SBR of 23 and inclination of 0°; (c) SBR of 8 and inclination of 90°; and (d) SBR of 
23 and inclination of 90°. All declinations are 0°. Each case was tested 40 times (blue 
points); some blue points overlap. Note that (c) and (d) are polar projections, centered on 
90° inclination, extending to 50° inclination. 
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Figure A6. Cartoon showing how hypothetical Monte Carlo simulations described in 
Section 2.5 are, on average, expected to encompass the true direction for relatively high 
SBR values. The green dot is the true direction, the red dot is the “best-fit” direction from 
an inversion with Parker’s Method, and the blue dots are the “perturbed directions” after 
adding background fields to the best-fit model. Blue dashed line represents the 
uncertainty estimation, which on average expected to include the true direction. 
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Figure A7. Similar to Figure 1.6. Higher inclinations give systematically higher 
uncertainties, regardless of the declination. Results shown here are for Parker’s Method 
applied to the dipole and rectangle anomalies (with a constant 90° declination for all tests) 
using a maximum misfit of 2 nT (top rows) and 1s (bottom rows). Negative inclinations 
are not shown, as the results are identical to those for positive inclinations. 
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Figure A8. Higher inclinations give systematically higher uncertainties, regardless of the 
shape of the anomaly. Results shown here are for Parker’s Method applied to square, circle, 
triangle, and randomly shaped anomalies (with a constant 90° declination for all tests) 
using a maximum misfit of 2 nT (top row) and 1s (bottom row). Only the radial field 
component is used. The magnetic fields of the source shapes can be seen in the Figure A1. 
Negative inclinations are not shown, as the results are identical to those for positive 
inclinations. 
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Figure A9. Uncertainties also vary with declination, though on a smaller order of 
magnitude. Results shown here are for Parker’s Method applied to the dipole and rectangle 
anomalies (with a constant 0° inclination for all tests) using a maximum misfit of 2 nT (top 
rows) and 1s (bottom rows). Negative inclinations are not shown, as the results are 
identical to those for positive inclinations. Compare with Figure A6. 
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Figure A10. Magnetic field map of the Abel magnetic anomaly at 30 km altitude using the 
SVM dataset (Tsunakawa et al., 2015), the best-estimate model of Abel from Parker’s 
Method, the best-estimate model plus noise appropriate for Abel, and the best-estimate 
model from Parker’s Method applied to the model plus noise. All datasets are at a 0.5° x 
0.5° grid resolution. 

Model + 
Background

Model from Model + 
Background
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Figure A11. Magnetic field map of the Hartwig magnetic anomaly at 30 km altitude using 
the SVM dataset (Tsunakawa et al., 2015), the best-estimate model of Hartwig from 
Parker’s Method, the best-estimate model plus noise appropriate for Hartwig, and the best-
estimate model from Parker’s Method applied to the model plus noise. All datasets are at 
a 0.5° x 0.5° grid resolution. 
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Figure A12. Magnetic field map of the Sylvester magnetic anomaly at 30 km altitude using 
the SVM dataset (Tsunakawa et al., 2015), the best-estimate model of Sylvester from 
Parker’s Method, the best-estimate model plus noise appropriate for Sylvester, and the 
best-estimate model from Parker’s Method applied to the model plus noise. All datasets 
are at a 0.5° x 0.5° grid resolution. Stereographic projection centered on the anomaly. 
 

 
 
  



 123 

Appendix B: Supplementary Information for Chapter 2 

Text B1: Best-Fit Elastic Thickness and Loading Fraction 
 
Latitude Longitude Te (km) 𝜎 Te (km) F1 𝜎 F1 Combined RMS 

90 0 47.6 0.653 0.596 0.003 0.301 
75 15 24.87 0.221 0.355 0.002 0.383 
75 75 24.18 0.579 0.508 0.004 0.341 
75 90 24.22 0.559 0.529 0.004 0.303 
75 105 23.68 0.555 0.575 0.005 0.31 
75 120 51.9 1.609 0.604 0.005 0.384 
75 135 57.88 1.597 0.63 0.005 0.275 
75 150 57.7 1.58 0.642 0.005 0.245 
75 165 49.03 1.591 0.648 0.004 0.239 
75 180 26.27 1.162 0.664 0.004 0.329 
75 195 27.91 1.137 0.669 0.004 0.333 
75 210 29.49 0.899 0.667 0.004 0.306 
75 225 28.35 1.028 0.657 0.004 0.292 
75 240 28.44 1.253 0.627 0.005 0.322 
60 105 20.62 0.234 0.466 0.003 0.323 
60 120 16.24 0.447 0.566 0.005 0.326 
60 135 15.64 0.446 0.653 0.006 0.323 
60 150 20.58 0.844 0.671 0.006 0.327 
60 165 37.82 0.809 0.555 0.004 0.276 
60 180 47.68 0.206 0.423 0.001 0.263 
60 195 47.14 0.201 0.442 0.001 0.374 
60 210 42.75 0.409 0.525 0.002 0.249 
60 225 38.94 0.396 0.491 0.003 0.315 
60 345 29.31 0.484 0.234 0.003 0.394 
45 105 16.65 0.618 0.605 0.007 0.391 
45 120 14.2 0.371 0.614 0.007 0.374 
45 135 14.09 0.25 0.59 0.007 0.323 
45 150 15.12 0.402 0.609 0.006 0.336 
45 165 21.42 0.791 0.58 0.006 0.313 
45 180 25.38 0.613 0.465 0.004 0.312 
45 195 19.68 0.555 0.493 0.005 0.387 
45 210 31.48 0.838 0.502 0.005 0.28 
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45 270 51.02 1.301 0.413 0.005 0.378 
30 75 34.48 0.277 0.408 0.001 0.293 
30 120 14.13 0.366 0.54 0.007 0.362 
30 195 14.61 0.329 0.565 0.005 0.322 
30 210 18.47 0.48 0.568 0.005 0.229 
30 225 24.68 0.705 0.608 0.005 0.398 
30 240 45.06 0.885 0.559 0.004 0.281 
30 255 55.75 1.079 0.495 0.004 0.359 
15 105 18.49 0.498 0.549 0.005 0.352 
15 120 18.45 0.453 0.643 0.006 0.17 
15 135 15.85 0.539 0.838 0.01 0.373 
15 195 16.1 0.307 0.589 0.005 0.242 
15 210 13.33 0.213 0.694 0.007 0.24 
15 225 17.6 0.284 0.638 0.01 0.383 
15 255 33.93 1.117 0.529 0.006 0.189 
0 105 22.36 0.735 0.529 0.006 0.369 
0 120 18.67 0.862 0.706 0.006 0.211 
0 135 14.08 0.389 0.892 0.006 0.242 
0 150 35.69 1.913 0.673 0.007 0.189 
0 165 21.88 0.541 0.55 0.005 0.294 
0 180 15.55 0.28 0.561 0.006 0.23 
0 195 11.22 0.163 0.915 0.004 0.249 
0 210 12.93 0.243 0.886 0.005 0.241 

-15 60 22.73 0.258 0.504 0.003 0.398 
-15 120 8.43 0.274 0.823 0.009 0.398 
-15 135 13.28 0.45 0.738 0.008 0.284 
-15 150 10.68 0.271 0.803 0.007 0.31 
-15 165 10.37 0.318 0.751 0.008 0.342 
-15 180 14.84 0.377 0.644 0.007 0.152 
-15 195 9.88 0.223 0.751 0.012 0.219 
-15 210 13.66 0.399 0.812 0.008 0.249 
-15 225 39.78 1.807 0.623 0.01 0.286 
-15 240 59.57 2.073 0.545 0.009 0.317 
-30 0 26.77 0.277 0.401 0.003 0.351 
-30 15 24.53 0.667 0.456 0.005 0.335 
-30 60 25.34 0.597 0.615 0.004 0.335 
-30 120 44.04 1.079 0.547 0.005 0.308 



 125 

-30 135 16.76 0.41 0.613 0.006 0.381 
-30 150 12.86 0.321 0.683 0.008 0.237 
-30 165 10.47 0.255 0.789 0.008 0.239 
-30 180 17.26 0.37 0.68 0.006 0.187 
-30 195 13.24 0.227 0.665 0.008 0.29 
-30 210 11.32 0.182 0.909 0.004 0.347 
-30 225 16.64 0.491 0.686 0.007 0.224 
-30 255 26.27 0.174 0.343 0.002 0.389 
-45 15 24.06 0.594 0.537 0.004 0.225 
-45 30 25.88 0.586 0.52 0.004 0.252 
-45 45 23.55 0.634 0.593 0.005 0.321 
-45 75 43.39 2.368 0.533 0.006 0.348 
-45 90 41.52 0.557 0.519 0.003 0.283 
-45 105 41.78 0.415 0.509 0.003 0.382 
-45 135 15.02 0.88 0.66 0.013 0.36 
-45 150 11.82 0.325 0.703 0.008 0.343 
-45 180 27.37 0.831 0.703 0.007 0.279 
-45 225 12.32 0.234 0.642 0.006 0.281 
-45 240 17.73 0.358 0.542 0.004 0.325 
-45 300 24.64 0.692 0.51 0.006 0.317 
-45 315 40.19 0.847 0.378 0.005 0.307 
-45 330 36.27 0.389 0.425 0.004 0.254 
-45 345 42.41 0.455 0.595 0.003 0.399 
-60 0 17.83 0.329 0.668 0.005 0.386 
-60 15 17.79 0.25 0.545 0.005 0.344 
-60 30 16.22 0.276 0.493 0.005 0.306 
-60 45 14.4 0.315 0.536 0.006 0.32 
-60 60 13.62 0.341 0.565 0.006 0.342 
-60 195 16.33 0.329 0.724 0.008 0.354 
-60 210 14.45 0.304 0.683 0.006 0.238 
-60 225 14.03 0.286 0.651 0.006 0.23 
-60 240 15.15 0.269 0.615 0.005 0.293 
-60 255 16.1 0.269 0.592 0.004 0.379 
-60 270 16.11 0.38 0.6 0.005 0.385 
-60 285 21.06 0.687 0.554 0.005 0.308 
-60 300 33.1 0.885 0.552 0.006 0.231 
-60 315 28.95 0.835 0.582 0.007 0.295 
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-60 330 28.97 0.768 0.549 0.006 0.208 
-60 345 24.94 0.807 0.636 0.005 0.249 
-75 0 18.49 0.58 0.672 0.008 0.207 
-75 15 17.57 0.58 0.657 0.008 0.21 
-75 30 15.94 0.687 0.656 0.009 0.237 
-75 45 11.33 0.372 0.683 0.008 0.333 
-75 60 10.42 0.233 0.673 0.007 0.388 
-75 210 16.48 0.528 0.636 0.006 0.348 
-75 225 17.19 0.422 0.653 0.006 0.243 
-75 240 17.42 0.404 0.678 0.006 0.214 
-75 255 18.75 0.414 0.694 0.006 0.201 
-75 270 21.27 0.463 0.697 0.006 0.192 
-75 285 24.12 0.573 0.69 0.006 0.19 
-75 300 24.54 0.624 0.692 0.006 0.186 
-75 315 23.23 0.597 0.691 0.007 0.183 
-75 330 21.73 0.614 0.686 0.007 0.176 
-75 345 19.8 0.612 0.684 0.007 0.191 
-90 0 31.34 0.835 0.594 0.007 0.325 

Table B1. Results with a combined RMS value less than 0.4. Shown are Latitude (°N), 
Longitude (°E), elastic thickness (km), standard deviation in elastic thickness (km), 
loading fraction, standard deviation in loading fraction, and combined RMS (equation 
20). 
 

Text B2. Synthetic testing 

We find that the standard deviations in our best-fit values from synthetic testing fall 

into two categories. In areas with a combined RMS of <0.4 (from MCMC inversion of 

observed spectra), the synthetic-derived standard deviations agree reasonably well with 

the MCMC-derived standard deviations in both elastic thickness (Appendix Figure B1a) 

and loading fraction (Appendix Figure B1b). Areas with a combined RMS >0.4 produce 

much higher standard deviations in both elastic thickness and loading fraction. Figure 2.4 

in the main text shows that areas with RMS > 0.4 do not yield reliable results. 
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Figure B1: MCMC-derived standard deviations versus synthetic test-derived standard 
deviations for (a) elastic thickness and (b) loading fraction. Results are color-coded by 
their combined RMS values from best fits to observed spectra; values of RMS above 0.4 
are not considered reliable (see text). Blue lines indicate a slope of one. Values below the 
blue line are locations where the MCMC-derived standard deviations were larger than the 
synthetic test-derived standard deviations. 
 
Text B3. Window Testing 
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We test a variety of window sizes at six locations. We calculate the observed spectra 

for each window size (using the largest bandwidth that produces a single taper of 

concentration >99%) and create synthetic spectra using the method described in Section 

2.4 (where we add noise until the synthetic coherence matches the observed coherence). 

We then perform MCMC inversion on each pair of synthetic admittance and coherence. 

For window radii >20° (Appendix Figure B2a-c), the best-fit elastic thickness matches 

the input elastic thickness. Below a radius of 20°, the error in the best-fit elastic thickness 

values increases markedly and is biased towards lower values. We perform all inversions 

in the main text using a window radius of 25°, given that it is slightly better than the 

window radius of 20°. 
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Figure B2: Input (synthetic) Te value plotted against recovered best-fit Te value for 
selected regions, shown for windows of different radii. Window radius dictates the 
smallest degree lmin that can be fit. Dashed lines indicate a slope of one. Note that for 
window radii < 20° the error in the best-fit Te values increases markedly and is biased 
towards lower values. 
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Appendix C: Supplementary Information for Chapter 3 

Text C1: Data and Dipole Spacing Tests 
We tested the effect of data and dipole resolution on synthetic data in order to 

compare the best-fit direction with the known true direction. We tested five different 

cases with synthetic noise added to determine trends.  

While increasing data resolution (decreasing data spacing) does improve the best-

fit direction from Parker’s method, the improvements stop around a data spacing of 

1.33°, regardless of dipole spacing. An example where dipole spacing is kept constant at 

1° is shown in SI Figure 1a. We therefore choose our data spacing of SH-M14 and SH-

L19 to be 1.33°, even though the spherical harmonic models can be expanded to 0.8° and 

0.66°, respectively. 

Counterintuitively, increasing dipole resolution (decreasing spacing) does not 

necessarily improve the best-fit direction. In cases with low noise (green and cyan in SI 

Fig 1b), there is no advantage to using finer dipole spacing. In cases with high noise 

(blue, black, and red in SI Fig 1b), finer dipole spacing can negatively impact the best-fit 

direction. With more dipoles available to model the field, Parker’s method attempts to 

model the small variations in the data. If there is higher noise in the system, these 

uncorrelated fields can heavily influence the field and force Parker’s method away from 

the true direction. We choose a dipole spacing of 1° for this paper as it maintains a good 

resolution while avoiding the worst effects of high noise. 
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Figure C1. (a) Effects of data spacing on recovered best-fit direction. Each color 

represents a different noise case. Our preferred data spacing is 1.33°. (b) Same as in (a) 

but for dipole spacing. Our preferred dipole spacing is 1°. 

 

Text C2. Spurious MAVEN data tracks 

In our use of MAVEN magnetometer data, we found a few spurious tracks of 

data. Here we refer to spurious tracks as data that do not match the surrounding data. 

Listed here are the tracks of data we removed from our analysis. 

Anomaly ro Tracks removed (yyyyddd) 
A2 6° 2016287, 2016288, 2016312, 2016314, 2016325, 2016365, 

2015366, 2020081 
A3 6° 2016290, 2019266, 2019312 
A3b 5° 2016260, 2015059 
P1 7.5° None 
P2 5.5° 2014291, 2015056, 2019256 
CR 7.5° None 
AM 8° None 
TS 7° None 
MT 8° 2017293, 2017304 
BP 7° None 
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Table C1. MAVEN tracks removed from analysis. Tracks are listed according to their 
year and day of year (format: yyyyddd). 
 

Text C3. Results from other components and datasets 

We also use each component (east, north, and radial) of each dataset (SH-M14, 

SH-L19, MAVEN) determine the paleopole locations, though the main text only reports 

the results for the radial component of SH-L19. Table S2 displays the results for the 

remaining SH-L19 results, Table S3 displays the results for SH-14, and Table S4 displays 

the results for MAVEN. We also compare these results with the reported literature values 

for each anomaly (Figure S2). 

 
Anomaly E/N/R SNR Inc 

(°) 
Dec 
(°) 

lp 
(°N) 

jp 
(°E) 

k s (°) dm 
(°) 

dp 
(°) 

A2 East 3.7 -54 27 55.8 70.4 11.8 24.9 34.9 24.4 
 North 5.1 -50 88 28 131.2 3.7 43.9 58.4 38.9 

A3 East 2.6 -30 179 -48.2 167.9 18.8 18.9 21.0 11.6 
 North 4.8 -40 213 -47.8 118 8.1 29.6 35.5 21.3 

A3b East 2.8 -2 308 23 48.4 4.0 41.8 41.8 20.9 
 North 2.7 22 358 52.9 353 21.1 17.9 18.9 10.0 

P1 East 2.9 -20 156 -54.3 166.3 14.5 22.2 23.1 12.1 
 North 3.3 -14 233 -32.6 280.1 4.1 44.4 45.4 23.2 

P2 East 3.5 -56 221 -57.4 108.8 5.1 36.8 52.8 37.9 
 North 6.3 -30 302 15.2 90.9 14.0 22.6 25.1 13.9 

CR East 4.2 -30 110 -10 7.8 14.6 21.4 23.8 13.2 
 North 3.8 -72 18 57.7 55 11.1 24.7 43.4 38.1 

AM East 5.6 -64 316 34.9 72.2 7.6 29.9 47.6 37.8 
 North 4.4 -64 188 -38.5 42.9 7.8 29.5 46.9 37.3 

TS East 2.5 -22 44 44.2 262.3 6.6 32.5 34.3 18.0 
 North 3.6 -40 34 58.2 270.4 14.5 21.5 25.8 15.5 

MT East 4.9 -8 72 17.8 75.9 7.4 31.2 31.4 15.8 
 North 3.2 -40 55 32.4 98.3 6.3 32.9 39.5 23.7 

BP East 4.1 -18 250 -11.7 188.5 12.8 22.9 23.7 12.3 
 North 3.4 -18 266 1.9 198 65.1 10.1 10.4 5.4 

Table C2. Compilation of results for the East and North components of SH-L19. 
Anomaly latitude, longitude, observational extent (ro) and model dipole extent (rd) are the 
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same as in Table 3.1 and not repeated here. Listed here are the component used (east or 
north), the SNR, inclination (Inc) and declination (Dec) resulting from Parker’s method, 
south paleopole latitude (lp) and longitude (jp), the precision parameter (k), and angular 
standard deviation (s) from the 20 Monte Carlo simulations to estimate uncertainty, and 
the paleopole ellipse semi-axes, dm and dp, derived from s. All are in units of degrees, 
except for SNR and k which are unitless. CR = Claritas Rupes, AM = Amazonis Mensa, 
TS = Terra Sirenum, MT = Margaritifer Terra, and BP = Bosphoros Planum. 
 

Anomal
y 

Component SNR Inc 
(°) 

Dec 
(°) 

lp 
(°N) 

jp (°E) 

A2 East 6.9 -52 16.5 56.4 54.2 
 North 6.4 -52 90 29 133.8 
 Radial 16.3 -84 307.1 69.5 236.8 

A3 East 4.5 -32 197.5 -47.5 140.9 
 North 6.9 -48 191.9 -60.3 144.7 
 Radial 6.9 -36 209.5 -46.2 123.8 

A3b East 2.8 8 292.4 18.1 64.9 
 North 2.5 34 357.3 60.4 354.3 
 Radial 4.0 14 296.5 23 63.6 

P1 East 4.3 -18 156 -55.2 165.3 
 North 4.7 -20 225.9 -37.4 273 
 Radial 8.3 -64 156.9 -24.5 192.4 

P2 East 3.3 -42 247.1 -31.6 114.8 
 North 6.1 -52 284.7 -7.6 88.9 
 Radial 5.1 -30 268 -10.7 111.4 

CR East 4.6 -34 118.2 -14.8 14.2 
 North 4.7 -70 333.3 57 103.3 
 Radial 6.6 -54 69.7 30.8 9.9 

AM East 4.3 -62 291.9 19.7 82.1 
 North 4.0 -42 238 -26.3 95.8 
 Radial 8.3 -54 240 -20.8 85.8 

TS East 2.4 -24 41.3 47.3 261.8 
 North 3.7 -40 43.1 50.7 276.4 
 Radial 6.0 -76 60 42.1 338 

MT East 4.8 -2 75.2 14.8 72.77 
 North 3.1 -34 63.2 25.7 92.1 
 Radial 6.3 -24 56.3 33.1 86.3 

BP East 5.1 -18 247.2 -13.6 187 
 North 3.4 -20 264.6 0.9 196.2 
 Radial 11.8 -28 253.3 -5.6 186.2 

Table C3. Compilation of results for the individual components of SH-M14. Anomaly 
latitude, longitude, observational extent (ro) and model dipole extent (rd) are the same as 
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in Table 3.1 and not repeated here. Listed here are the component used (east or north), the 
SNR, inclination (Inc) and declination (Dec) resulting from Parker’s method, south 
paleopole latitude (lp) and longitude (jp). All are in units of degrees, except for SNR 
which is unitless. CR = Claritas Rupes, AM = Amazonis Mensa, TS = Terra Sirenum, 
MT = Margaritifer Terra, and BP = Bosphoros Planum. Note that k, s, dm, and dp are not 
listed here as no uncertainty estimation analysis was performed on the SH-M14 dataset. 
 
 

Anomal
y 

Component Inc 
(°) 

Dec 
(°) 

lp 
(°N) 

jp 
(°E) 

A2 East -14 176.5 -18.5 204.8 
 North -54 92.9 29.6 137.4 
 Radial -82 343.6 79 232.4 

A3 East -10 175.4 -37.4 171.8 
 North -18 91.2 -8.2 259.9 
 Radial -30 186.6 -48.2 156.5 

A3b East 16 320.9 38.3 41.6 
 North 10 346.2 45.4 8.8 
 Radial 16 306.7 30.2 55.5 

P1 East -12 149.8 -52.6 154.6 
 North -8 232.7 -34 283.3 
 Radial -48 140.9 -30.9 170 

P2 East -28 163.3 -64.6 253.9 
 North -6 295.8 19 105.5 
 Radial -42 283.7 -3.2 96.2 

CR East -26 109 -10.2 -95.1 
 North -68 165 -10.9 64.5 
 Radial -36 88.6 9.9 0.9 

AM East -68 339 41.2 53.5 
 North -52 134.1 -32.2 350.3 
 Radial -60 207.3 -37.6 62.2 

TS East -12 38.3 45.6 251.8 
 North -38 49 45.2 277.8 
 Radial -62 34.1 61.3 311.4 

MT East -8 72.2 17.8 75.9 
 North -26 91 -1 85.5 
 Radial -30 57.8 31.1 90.2 

BP East -28 189 -41.7 129.2 
 North -24 231.3 -23.2 173.5 
 Radial -38 239 -12 172.4 

Table C4. Compilation of results for the individual components of MAVEN. Anomaly 
latitude, longitude, observational extent (ro) and model dipole extent (rd) are the same as 
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in Table 3.1 and not repeated here. Listed here are the component used (east or north), 
inclination (Inc) and declination (Dec) resulting from Parker’s method, south paleopole 
latitude (lp) and longitude (jp). All are in units of degrees, except for SNR which is 
unitless. CR = Claritas Rupes, AM = Amazonis Mensa, TS = Terra Sirenum, MT = 
Margaritifer Terra, and BP = Bosphoros Planum. Note that SNR is not listed as it cannot 
be computed for MAVEN data, and k, s, dm, and dp are not listed here as no uncertainty 
estimation analysis was performed on the MAVEN dataset. 
 

 
Figure C2. Paleopole locations for each component of the M14 (square), L19 (circle), 
and MAVEN (star) datasets compared with literature values (smaller circles), plotted 
over MOLA topography data (Smith et al., 2001). Mollweide projection is used, centered 
on 0°N 0°E. 
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