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Abstract

Exploring Ensemble Coding in Retina

by

Christopher J. Warner II

Doctor of Philosophy in Biophysics

University of California, Berkeley

Professor Friedrich Sommer, Co-chair

Professor Marla Feller, Co-chair

Computational models founded on the prevailing paradigm of retinal processing, while able to
replicate the coarse structure of responses to white noise stimulus, fail to replicate responses to
natural stimuli. The textbook view of retina, which posits independent filters that decorrelate
stimulus features, reduce representational redundancy [barlow1961] and encode local features
in retinal ganglion cell (RGC) spike rates, leaves severe puzzles, unexplained about observed
retinal anatomy and activity. We present, here, an addendum to the prevailing paradigm
hypothesizing that perhaps, the retina reduces uninformative correlations in stimulus with
outer layers, as claimed, in order to reintroduce informative correlations, observed in RGC
responses to ethologically relevant stimuli, with the circuitry in the inner retinal network
(bipolar, amacrine, ganglions). Rather than strict independent coding and redundancy
reduction, a notion which Barlow himself amended [barlow2001], we explore ensemble
coding in retina and what information beyond the traditional view might exist in the retinal
code. This work is in two related, yet independent parts. First, we develop a proof-of-concept
abstract computational model of image segmentation using phase coding in the retina,
hypothesizing that fine-time correlations in spike trains are induced by phase interactions
influenced by the visual stimulus and that these fine-time correlations, informative about
segments in an image, are multiplexed into spike-trains along with rate-coded local stimulus
features. Following, we present a latent variable statistical model that aims to detect cell
assemblies, or groups of cells that fire are often co-active, possessing fine-time correlations
irrespective of their source and apply it to retinal spike-trains responding to both white noise
and natural movie stimulus. The work presented here is novel and controversial and therefore,
worth a read.
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1.1 Image Segmentation Model: (a) Input image with superimposed retinal receptive
fields (dashed cyan circles). (b) Network of retinal neurons. The neural firing rates ri

represent local contrast in the receptive fields. The phase interactions Kij are displayed
by the links between neurons. Line thickness represents the strength of the interaction
which is set by the similarity of local features. Recurrent propagation in the network
produces the phase structure �i of the periodic spike trains. (c) Resulting spike trains.
Information about local features is represented in firing rates and segmentation is
represented in phase structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Performance and benchmarking: Input image patch and associated human drawn
ground truth boundaries (gT) provided by BSDS is displayed in the green box. The
operations performed by model are displayed in the blue box. Other steps of model
evaluation are illustrated in the remainder. (a) Filtering the raw image patch with a
Gaussian kernel (� = 1). (b) Phase relaxation in the network (Fig. 1.1b) produces
a phase map. (c 1) Spatial gradient operation (�/�r) and normalization resulting in
probabilistic boundary map (pb 2 [0, 1]). (d) Thresholding pb map at several values
yielded binary boundary (bb) maps. (e) Match set was computed for each bb-gT pair at
different distance tolerances, dt. (f) Precision, recall and F-measure were computed by
ratios of boundary pixel sets. (c 2,3) To assess the performance of network models relative
to baselines, we repeated steps (c) - (f) on Gaussian RF and image pixels independent
sensors models, comparing F-measures by subtraction. . . . . . . . . . . . . . . . . 7

1.3 Hyper-parameter optimization: Network neighborhood graph structure rM and
coupling spring-constant scaling ks are important meta parameters of the algorithm,
discussed in Sections 1.2 and 1.2 respectively. We plot mean and standard deviation
across 500 image patches of �F-measure relative to Gaussian RF independent sensors
for the 2D topographic modularity network. Colors indicate pixel distance tolerances dt

(see Fig. 1.2 for explanation). Left panel shows performance at three ks values, with
rM fixed at optimal. Right panel shows performance at four rM values, with ks fixed at
optimal. Fig. 1.4 shows the effects of the different parameters on a single example image
patch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Effect of hyper-parameters, single image patch example: Probabilistic bound-
ary maps shown for resulting phase distribution from TM 2D method for combinations
of 3 ks (rows) and 4 rM (columns) hyper-parameters. . . . . . . . . . . . . . . . . 12
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1.5 Modularity null models & space: In the null model of Newman’s modularity
[newman2006] (panel a) the average weight between nodes i and j is proportional
to the product of their node degrees (Di · Dj). The topographic modularity’s null
model (panels b & c) additionally includes a distance-dependent factor, Rij , which
is the average edge weight between all node pairs in the graph separated by the same
distance that separates nodes i and j. Panel b illustrates Rij for a schematized 1D
graph, shown with edges colored based on distance between the nodes they connect.
Inset plot shows geometric factor in the topographic null model. Each term in R

(1D)
ij is

an off-diagonal sum in the adjacency matrix. Panel c shows the mask associated with a
single geometric distance in a 2D image. Here R

(2D)
ij at 1 pixel separation has a complex

structure in the Adjacency matrix for even the simple binary image shown in the inset. 13
1.6 Null model consistency: Top row from left to right shows image patch, the

adjacency (black) constructed from the patch with rmax = 5, and null models for
modularity (blue), 1D topographic modularity (green) and 2D topographic modularity
(red), with colorbar indicating edge weight. Models represented by line colors in plots
as well. Center plot shows average node degree (row sums in each matrix) sorted by
strength in adjacency. Bottom plot shows average edge weight as a function of distance
in the image plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Modularity performance comparison: Each scatter point represents one image
patch. Newman’s modularity (M) in blue, 1-dimensional topographic modularity (TM
1D) in green and 2-dimensional topographic modularity (TM 2D) in red. Points above
the unity line indicate image patches with improved image segmentation with network
phase relaxation over-and-above Gaussian RF independent sensors. P-values quantify
the difference between F-measure distribution across 500 image patches before and after
network computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Spectral methods vs. Kuramoto Net Examples: Two example image patches
(top two rows and bottom two rows) show probabilistic boundaries found by different
network (TM, M, AA, GL) and baseline models (ImPix, GaussRF, ISO). Network
models are segmented using eigen-methods (1st and 3rd row) and Kuramoto Net phase
relaxation (2nd and 4th row). Qualitatively, boundaries found with spectral methods
are less crisp and more localized than those found with Kuramoto Net phase relaxation. 17

1.9 Spectral methods vs. Kuramoto Net Statistics: F-measure computed across 500
image patches, mean and standard error errorbars. Colors indicating different network
and baseline models are used consistently throughout this paper. Circles indicates that
F-measure for each image patch taken for maximum matching GT and x’s shows mean
value across all GT’s. Network models built with Gaussian RF features are segmented by
the best combination of the top 3 eigenvectors on the x-axis and by the phase distribution
after Kuramoto Net relaxation on the y-axis. The dashed unity line indicates equal
performance and the independent sensors baseline models (magenta and cyan) do not
deviate from it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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1.10 Gaussian RFs improves segmentation: Performances of 4 anisotropic diffusion
and 3 baseline models are compared using raw image pixel features and Gaussian RF
features, center and right columns respectively, lines representing average and bars
standard error across 500 BSDS image patches. ( a) Colors indicate different models
and line styles indicate ground truth comparison as in Fig. 1.9. ( b) Optimal spread, �,
of Gaussian RF’s chosen by maximizing change in F-measure relative to the independent
raw pixels baseline model, �Fi, averaged across all image patches. Recall dt is the
"distance tolerance" when computing the pixel match set, Fig. 1.2. Optimal performance
for all dt values obtained for Gaussian RF � = 1. ( c) F-measure and ( d) �Fi when
models receive raw image pixels as features. ( e) F-measure and ( f ) �Fi when models
receive Gauss RF activation as input features. . . . . . . . . . . . . . . . . . . . . 19

1.11 �F-measure model comparison: Violin plots show �FG distribution with moments
of �Precision, �Recall and �F-measure distributions across 500 image patches in red,
blue and green, respectively. �F relative to Gaussian RF Independent Sensors model.
Optimal hyper-parameters(rM ,ks), statistical significance, p-values and distribution
moments indicated above each method. Performance of ISO, TM-1D and TM-2D models
relative to Gauss RF are statistically significant, as determined by Mann-Whitney U
(aka rank-sum) test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.12 Precision & Recall model comparison: (a) F-measure, (b) precision and (c) recall
across 1000 image patches for Gaussian RF independent sensors baseline model and 4
network models with optimized parameters and dt = 2. Distribution µ and � denoted
above. Note colors same as in Figs. 1.9&1.10. . . . . . . . . . . . . . . . . . . . . . 22

1.13 �Precision and �Recall with TM-2D model: In panel a, arrows show change in
P & R for 467 image patches where network increased F-measure. Arrow tails indicate
values before network relaxation and heads values after. Surrounding are distributions
showing P,R,F before network (in cyan) and after (in blue). Panel b shows the same
for 33 image patches where network decreased F-measure. Distributions before network
in magenta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.14 Representative image patches: Each row shows one example image patch ordered
by change in F-measure between Gaussian RF independent sensors baseline and TM
models (indicated on left). Columns show image pixels, gT boundaries and pb maps
obtained from raw pixels, Gaussian RF and 5 network models. Mean F-measure value
across all gT’s noted below each pane is red if �FG > 0. . . . . . . . . . . . . . . . 24
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1.15 Examples of TM 2D model performance: Top panel scatters F-measure in
Gaussian RF independent sensors model vs. �-F after 2D topographic modularity
network phase relaxation. Out of 500 total image patches, 467 show positive improvement.
Best fit line to scatter points in magenta. Colored numbers indicate randomly sampled
image patches (shown in bottom panel) where �-F performance is best (#1-4), average
(#5-8) and worst (#9-12). Bottom panel shows image patches with best matching
ground truth boundaries, in black. Yellow points indicate pixels found to be boundaries
both by the Gaussian RF independent sensors model and the topographic modularity
network model. Cyan number and points indicate F-measure under Gaussian RF model
and boundaries found only by it. Red number and points indicate �-F after TM 2D
network phase diffusion and boundaries found only by TM-2D. Note that image patches
are shown at 1/2 contrast to highlight boundaries found. . . . . . . . . . . . . . . . 25

1.16 Two examples of cartoonization: Original images on left and resulting phase of
TM-2D network computation on right . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Schematic of Cell Assembly model: Observed spikes within spike-words ~y
arise from two sources. First, each cell has some probability of firing without any
cell assembly activity, expressed by N -vector ~Pi. The second cause of cell activity
is cell assembly activity, expressed by the P̄ia matrix and ~z. Finally, the scalar Q
parameter sets a binomial prior on the activity in the latent variable, ~z. . . . . 32

2.2 Fitting synthetic model to spike-word moments: Comparison of spike-
word moments from synthetic data fit to natural movie responses in red, retinal
responses to white noise in green, and natural movie in blue. Top row from left
to right shows probability density functions for spike-word length, |~y|, average
single-cell activity, hyii. and, pairwise cell coactivity, hyi · yji. Bottom row shows
quantile-quantile (QQ) plots - a pair of cumulative density function plotted against
each other. See legend, left plot. QQ values measure average deviation from the
unity line, larger values indicating differences in distributions. . . . . . . . . . . 42

2.3 Cosine similarity between models: for synthetic natural movie responses
(a) and real retinal responses to white noise(b). Within each panel, left column
shows matrix of cs values between all cell assembly pairs across a pair models.
Top, with arbitrary order due to learning algorithm stochasticity. Bottom, with
cell assemblies matched across models based on cs. Right of each panel shows
the pair of P̄ia matrices with columns, cell assemblies, aligned to maximize cs
across all matched pairs. cs for each match is shown in blue bars in panel bottom
right. Panel b illustrates the necessity of a null model for the cs quality metric.
Although both panels illustrate similar cs values after CA matching (0.75 vs 0.72),
the improvement from null model before matching (0.13 vs 0.58) is quite different. 44
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2.4 Modelling synthetic responses to natural movie vs. white noise stim-

ulus: Cosine similarity for 6 learned models and ground truth (GT) for synthetic
natural movie responses (a) and synthetic white noise responses (b). Value and
color in each box indicate improvement above null model after CA matching.
Details for box at intersection of Mod2 and Mod1B (0.61) in panel a are illustrated
in Fig 2.3a. Each model’s overlap with the GT is roughly correlated with the
model’s overlap with other models. This correlation is further unpacked for Mod2
and Mod1B in panel a and for Mod2 and Mod1 in panel b in Fig 2.5a and 2.5b
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 CA structure in multiple models matches GT. In panel a, for synthetic
natural movie responses and in panel b, for synthetic white noise responses. Within
each panel, left plot shows cs between each matched CA in a model pair on the
x-axis and between each model’s CA and its matching GT CA on the y-axis. One
model is in blue, the other in green, with red ’o’ indicating smaller cs between
model and ground truth. Black diamond indicate where two models agree on
same ground truth CA. Larger blue and green ’+’ show error bars mean and std
of each model’s CA population. Right plot in panel shows distribution of points
from the unity line. Mass near zero indicates CA triplets that share similar cs
values, that is where structure in the GT is robustly found by multiple models and
structure found by only one model is not in the GT. The CA match is stronger
between model pair as well as between ground truth and each individual model
with natural movie vs white noise model. Pearson correlation coefficients for three
scatter groups in left plots are shown in legend on the right. . . . . . . . . . . . 46

2.6 Comparing Models learned on synthetic data fit to different stim re-

sponses: natural-movie-like (a) and white-noise-like (b) responses. Within each
panel, top boxes show P̄ia matrix in GT and learned model, columns indicating
CAs and y-axis, cells. Right bottom shows the signed error between GT and
learned P̄ia’s. Note sigmoid colorbar to accentuate small differences. Unfilled
boxes in learned P̄ia and error show active cells in GT CAs. Left bottom scatter
plot shows Q, in green, and ~Pi, in blue, parameters in learned model (y-axis) vs.
GT (x-axis). Points near y = x indicate correctly learned parameters. Parameter
initialization are shown in gray. Cyan points in left middle show the number of
times each CA was inferred across all data after model learning. In the white
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from 1 and below y = x line) to account for increased spike-word variability. This
model is more difficult to learn because cell assembly participation is weaker,
lighter gray squares in GT P̄ia. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 PSTHs and RFs of Off-Brisk Transient RGC: Color indicates #Trials in which
an offBT neuron (y-axis) spiked during a 1ms interval of stimulus presentation (x-axis).
Top, responses to white noise. Bottom, responses to natural movie. Geometric RF
relationships in visual space maintained in cell ordering, panel b. . . . . . . . . . . 48
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Introduction

The complexity of the brain is staggering, even at its outermost sensory periphery. The
retina is a favorite model system because of its relative simplicity; there is no direct top-down
feedback from the rest of the brain. It is often modeled, taught and thought of as an
oversimplified caricature in which a bank of simple independent, linear filters decorrelate
stimulus features in space and time, reducing redundancy and [barlow1961] encoding local
contrast in the spike rates of retinal ganglion cells (RGC) [kuffler1953]. However the com-
plexity and heterogeneity of the retinal tissue has been heavily documented [masland2011],
[masland2012a], [werblin2011], [gollisch2010]. Simple linear spatio-temporal filtering re-
quires only a handful of cell types in the outer retina, leaving > 50 and nearly the entire inner
retina extraneous. Further, textbooks fail to account for complex phenomena such as precise
spiking of RGCs relative to the phase of network oscillations in the gamma range (50-80Hz)
[neuenschwander1996] [koepsell2009]. Finally, the most advanced computational models
founded on the textbook view fail to predict retinal responses natural and ethologically
relevant stimuli [chichilnisky2016]. The hypothesis that ties both parts this work together
is the following: Perhaps, the retina reduces uninformative correlations [pitkow2012] in
stimulus with outer layers (photoreceptor, bipolar and horizontal cellls) in order to reintroduce
informative correlations in precise spike timing with inner layers (bipolar, amacrine and
ganglion cells).

The first half of the statement forms the basis for the textbook retinal model. The second
is deeply controversial. Herein, we present two projects that address this hypothesis from
different directions. While connected to and inspired by the retina, each chapter stands on
its own apart from the retina as well. Additionally, while related to one another by retina
and more general ideas of phase coding well established in other neural systems [fries2007]
[singer2009] [buzsaki2013], the two parts are also distinct from one another. In chapter 1,
we explore image segmentation using phase coding in the retina, hypothesizing that fine-time
correlations in spike trains are induced by phase interactions influenced by the visual stimulus
and that these fine-time correlations, informative about segments in an image, are multiplexed
into spike-trains along with rate-coded local stimulus features. In chapter 2, we explore
a statistical model that aims to find cell assemblies, or groups of cells that fire are often
co-active, possessing fine-time correlations irrespective of their source.

In chapter 1, we present an abstract proof-of-concept computational model of image seg-
mentation in retina. Following and expanding on previous work, we cast image segmentation
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as a graph clustering problem [shi2000], constructing a network from feature similarity in
an image, and grouping together nodes based on interactions in a networks of phase-coupled
oscillators [arenas2006]. Broadly, similarity between pairs of local features in the image
determines the strength of phase interaction between the periodic structure in the spike trains.
Phase diffusion through the network does not change firing rates but produces sets of neurons
with similar spike times on a fine time scale. These sets of synchronous neurons represent
spatially extended image features, image segments. The resulting spike trains multiplex
two types of information, local contrast in individual spike rates, and image segments in
sets of neurons that fire nearly synchronously [koepsell2009]. We make design choices
to connect the model to retina, for example Gaussian receptive field image feature inputs
determine coupling strength and phase initialization. However, this algorithm provides a
general, distributed mechanism by which any objects with similar features can be grouped
together in phase, and simultaneously separated from dissimilar ones.

Then in chapter 2, we introduce a novel probabilistic latent variable model, based on the
Noisy-OR concept [heckerman1990], to detect "Cell Assemblies" (CAs), noisy repeats of
groups of nearly synchronous cells, in observations of binary spiking neural data. Given a
corpus of observed "spike-words", the task is to infer the sparse activity of a set of binary
latent variables, CAs. If there are noisy repeats of the same firing configurations in the
observation dataset, this repeating pattern is represented by a latent component. We apply
our model to spiking responses recorded in retinal ganglion cells during stimulation with a
movie. Again though applied in the current work to retinal data, the latent cell assembly
model is completely general and can be leveraged to find ensembles of nearly synchronous
neurons in other brain regions.

In fact it can be applied to any binary data.
We must stress that these two projects are separate in some key ways. While it may be

tempting to connect cell assemblies in chapter 2 to segments in chapter 1, the cell assembly
model is purely statistical in nature. It has no access to the stimulus and is cause agnostic,
reporting the existence of noisy repeats but saying nothing about whether they are induced
by stimulus or the anatomical retinal network or something else entirely. Further, there is no
notion of phase or even time beyond spike-word binning. The model is trained by randomly
sampling from the spike-word data corpus. The two projects are unified in that they challenge
the textbook model of retina as a bank of independent, linear spatio-temporal filters that
preprocesses images to reduce redundancy and remove uninformative correlations in the
neural signal. Chapter 1 proffers a possible computation which reintroduces informative
correlations back into the neural signal. And chapter 2 develops an algorithm to detect
correlations, regardless of information content or source.
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Chapter 1

Image Segmentation in Retina

1.1 Background

For decades the commonly accepted view of retinal processing has been that it provides
a bank of independent, linear filters that decorrelate stimulus features in space and time,
reducing the redundancy in the retina’s representation [barlow1961]. Linear spatio-temporal
filters factorized into center-surround spatial and biphasic temporal components followed by
pointwise non-linearities encode local stimulus features in the spike rates of retinal ganglion
cells (RGC) [kuffler1953]. There remain, however, severe puzzles, unexplained by the
textbook view of retina.

First, for retinal ganglion cells it would be inefficient to use spikes exclusively in a
rate code with rather long integration window. This assumption is in conflict not only
with theoretical principles, such as the efficient coding hypothesis [atick1992], but with
experimental observations. For example, it has been shown that time to first spike in RGCs
can be very reliable, containing nearly as much information about the stimulus as spike rates
[gollisch2008].

Second, the circuitry in the anatomical retinal network is exquisitely complex, consisting
of >60 distinct neuron types stratified into at least 12 parallel and interconnected circuits
providing roughly 20 diverse representations of the visual world, discussed at length in
[masland2011], [masland2012a], [werblin2011], [gollisch2010]. Simple linear spatio-
temporal filtering requires only a handful of cell types in the outer retina, leaving the rest of
the network unexplained. By "occam’s razor", the simple textbook view must be at least
incomplete.

Third, the textbook model of retina fails to account for complex phenomena such as
precise spiking of RGCs relative to the phase of network oscillations in the gamma range
(50-80Hz) [neuenschwander1996] [koepsell2009]. Although the function of retinal oscil-
lations is yet unknown in mammals, they have been observed in mouse [menzler2011], cat
[neuenschwander1999] and primate [ogden1973]. Further, gamma-band retinal oscilla-
tions have been causally connected to the perception of spatially extended stimuli in the frog
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[ishikane2005] Specifically, it has been observed that neurons in the cat lateral geniculate
nucleus (LGN) often receive periodic retinal spike trains in the gamma band. Estimates of
information rate in LGN spike trains suggest that in cells with periodic inputs, the spike
train could mulitplex two different types of information. While rate modulation in a courser
time window encodes local stimulus contrast, a significant fraction of the total information is
encoded by spike timing at a fine time scale, conveying the phase of the gamma frequency in
the neurons input [koepsell2009].

Fourth, computational models reflecting the text book view, such as the linear nonlinear
Poisson (LNP) model and independent generalized linear model (GLM), predict RGC re-
sponses to a simple white noise stimulus [schwartz2006] with reasonable accuracy. However,
looking more closely, one observes pairwise correlations in retinal activity, even in the absence
of stimulus (correlations) [schneidman2006]. Taking into account these pairwise activity
correlations improves decoding of retinal responses to white noise [pillow2008] – but does
not explain why the retina introduces such correlations to begin with. The situation with
ecologically relevant natural movie stimuli, in which pixels possess dependencies across space
and time, is even more puzzling. The model prediction by independent encoding models
becomes rather poor [schwartz2006], and even encoding models that include second-order
correlations fail to replicate responses to natural movie stimuli [chichilnisky2016]. We
suggest to take these mismatches between retina and its current computational models as an
encouragement to design and investigate novel computational models of retina.

Here we approach the challenge to design better retina models from a computational
perspective and ask: "What type of image analysis could be computed in an array simple
sensors with access to (center surround) image features, like found in retina, above and
beyond independent sensors proposed in the textbook model?" Specifically, we follow the lead
suggested in the discussion of experimental work [ishikane2005] and investigate whether,
in addition to encoding local image features, the retinal network can also extract spatially
extended visual features and multiplex the extracted information into the retinal output
using phase synchrony in periodic spike trains [koepsell2009].

To concretely design a sensor network model with this function we build on contributions
provided in various streams of earlier work, the insight that image segmentation (IS) can be
cast as a graph clustering problem [shi2000], and the insight that, in addition to spectral
methods, graph clustering can be efficiently solved in networks of phase-coupled oscillators
[arenas2006]. To evaluate the performance of the model, the Berkeley Image Segmentation
Dataset (BSDS) was essential. While the motivation for this work is highly retinal, it should
be noted that the network model we propose is still quite abstract. The model aims to
serve as a proof of principle that the network computation could be efficiently performed by
biological retinas, and not intended as a neurobiolocically detailed circuit model.

A coarse overview of the model is given in Fig. 1.1. The firing rate ri in a coarse time
window represents the local image contrast in the classical receptive field of neuron i. The
similarity between pairs of local features in the image determines the strength of phase
interaction between the periodic structure in the spike trains. Phase diffusion through the
phase couplings does not change firing rates but produces sets of neurons with similar spike
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times on a fine time scale. These sets of synchronous neurons represent spatially extended
image features, image segments. The resulting spike trains multiplex two types of information,
local contrast in individual spike rates, and image segments in sets of neurons that fire nearly
synchronously [koepsell2009]. In our example, two image segments are represented by
groups of neurons with different phases. Note that in this study, we only consider models of
the phase dynamics, omitting aspects of spikes and spike rates.

Figure 1.1: Image Segmentation Model: (a) Input image with superimposed retinal receptive
fields (dashed cyan circles). (b) Network of retinal neurons. The neural firing rates ri represent
local contrast in the receptive fields. The phase interactions Kij are displayed by the links between
neurons. Line thickness represents the strength of the interaction which is set by the similarity of
local features. Recurrent propagation in the network produces the phase structure �i of the periodic
spike trains. (c) Resulting spike trains. Information about local features is represented in firing rates
and segmentation is represented in phase structure.

The remainder of this paper is structured as follows. The Methods section describes
prerequisites for our study from the literature. Section 1.2 concisely defines the putative
computation of our retina model, image segmentation (IS) using simple image features
available in retina, local contrast values or local center surround image features. The
evaluation pipeline proposed in the BSDS image segmentation database [martin2001] is
explained, which is essential to quantitatively compare the performances of different models.
Following [shi2000], section 1.2 describes how image segmentation can by cast as a graph
clustering problem, and how an adjacency graph is constructed for a particular image.
Section 1.2 describes three common graph clustering methods from the literature, average
association, graph Laplacian and modularity, that we will compare in our image segmentation
experiments. Section 1.2 describes how, as an alternative to the spectrum of a graph edge
matrix, relaxation of phase-coupled oscillators can be used to solve graph clustering problems.
This step is critical in mapping the computation of image segmentation to the network model
in Fig. 1.1b.
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The Results section contains original contributions of our study. Section 1.3 describes to-
pographic modularity, a novel graph-clustering method based on modularity [newman2006]
that we propose for clustering multigraphs. For image segmentation the clustering of multi-
graphs is important because the graph representing local features of an image is a multigraph
with two types of edges, one type representing feature similarity and the other geometric
vicinity of the features in the image plane. Section 1.3 compares the performance of image
segmentation of commonly used eigenvector-based "spectral methods" [chung1997] for graph
clustering to the method of phase relaxation [arenas2006]. We find that phase relaxation
generally outperforms spectral methods, independent of the choice of a particular image
graph or receptive field structure. Thus, our further experiments focus on phase relaxation,
the method that also has the advantage of being easily implementable as an oscillation-based
computation [koepsell2010]. The central experimental results of our study are described in
section 1.3. We compare segmentation performances of different network models to a baseline
segmentation algorithm based on thresholding image feature histograms, a computation
which does not require a network. While the standard graph clustering methods are not able
to significantly outperform histogram thresholding, one model stands out significantly, the
network implementing topographic modularity. Section 1.3 describes experiments to elucidate
why the network with topographic modularity outperforms the competitor models. We
find that phase diffusion through a network defined by topographic modularity quantifiably
improves image segmentation, increasing edge precision at the expense of recall.

In the Discussion section we describe the various implications of the presented results.
We describe the predictions our model makes for future neuroscience experiments and its
potential for applications of image processing with coupled sensors.

1.2 Methods

Berkeley Segmentation Data Set
Image segmentation is a challenging and important problem in computer vision and the
Berkeley Segmentation Data Set (BSDS) is a standard benchmarking data set for many
computer vision image segmentation algorithms [martin2001, arbelaez2011]. It consists of
500 large (⇠ 400x300 pixels) color images each with multiple (⇠ 5) human drawn boundary
contours (green box in Fig. 1.2), as well as code provided for standard benchmarking and
comparison of algorithms. Since image segmentation is closely related to boundary detection
and quantification of boundary detection performance is more straightforward than that of
image segmentation, segments in images are often recast as boundaries for benchmarking.
Binary boundary pixel locations are compared to human drawn boundaries using the precision,
recall, f-measure framework. In this context, "Precision" is the proportion of image pixels
hypothesized by a method to belong to segment boundaries that agree with the ground truth.
"Recall" is the percentage of ground truth boundary pixels that are found by a method.
F-measure is the harmonic mean of Precision and Recall.
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Figure 1.2: Performance and benchmarking: Input image patch and associated human drawn
ground truth boundaries (gT) provided by BSDS is displayed in the green box. The operations
performed by model are displayed in the blue box. Other steps of model evaluation are illustrated
in the remainder. (a) Filtering the raw image patch with a Gaussian kernel (� = 1). (b) Phase
relaxation in the network (Fig. 1.1b) produces a phase map. (c 1) Spatial gradient operation (�/�r)
and normalization resulting in probabilistic boundary map (pb 2 [0, 1]). (d) Thresholding pb map at
several values yielded binary boundary (bb) maps. (e) Match set was computed for each bb-gT pair
at different distance tolerances, dt. (f) Precision, recall and F-measure were computed by ratios of
boundary pixel sets. (c 2,3) To assess the performance of network models relative to baselines, we
repeated steps (c) - (f) on Gaussian RF and image pixels independent sensors models, comparing
F-measures by subtraction.

In order to leverage the BSDS resource, we must first convert the output of a segmentation
model - a phase, spectral or feature activation map (blue box in Fig. 1.2) - into binary
boundaries. Intuitively, a good segmentation of an image has been achieved if the model
output map has very similar values within segments and large discontinuities at boundaries.
We compute spatial derivatives (�/�r) in the output map and normalize the values between
0 and 1, allowing us to interpret resulting probabilistic boundary (pb) as the algorithm’s
confidence that there is a boundary between segments at a particular image location. We
can threshold pb’s at multiple values and compare each resulting binary boundary map (bb)
to each human drawn ground-truth boundary map (gT), generating a pixel match set by a
logical AND operation. Because human drawn boundaries are not precise down to the pixel,
we allow small misalignment between gT and bb pixel including a pair in the match set if
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they are within dt pixels of one another.
We compared the ability of different phase coupled oscillator models to segment images

from the Berkeley Segmentation Dataset (BSDS) [martin2001]. The models differed in the
phase couplings. One baseline model contained isotropic couplings, while the couplings in
the other models AA, GL, M and TM were the transformations of the adjacency of features
described above. We set the parameters �f , �d and �! to adequate common values and
performed for each method a parameter grid search in neighborhood connectivity RM and
scale Ks to maximize the average �Fb across 500 image patches. The oscillator frequency
was 60 Hz (typical for retinal gamma oscillations) and we gave the networks 300ms to relax
the phases, corresponding to an interval between saccades.

Image segmentation as a problem of graph clustering
Within a stage of visual processing, in which a set of local visual features is extracted, image
segmentation can be viewed as a graph clustering problem [shi2000]. Consider an image and
its corresponding neural representation in retina or LGN, in which the activity in individual
cells represent the strength of local center-surround features. Image segmentation consists of
clustering sets of local image features that share properties and thus likely correspond to larger
objects in the image. However, much more efficient than clustering pixel values, is to apply
clustering on more sophisticated local image features, e.g., center-surround, edges, multi-scale
textures, as done in state-of-the-art segmentation methods [shi2000, sarkar1998].

The problem of graph clustering, that is finding “cliques” of strongly connected nodes in a
graph, is obviously related to finding pixel sets with similar local features. To recast image
segmentation in terms of graph clustering, one first uses kernels to construct an adjacency
matrix, in which an element is large whenever two features have similar values and lie nearby
each other in the image plane [shi2000, sarkar1998]. The segmentation of the image
corresponds to finding the communities (subsets of nodes) that are strongly interconnected
within the community, and well separated from nodes outside. The goal then is to find
non-trivial subsets of nodes that can be separated from one another by cutting through the
minimum weight of edges, know as the "mincut" problem. Though a brute force, optimal
solution to this problem would be combinatorically intractable, approximate solutions can be
found efficiently by leveraging the machinery of "spectral graph theory" [chung1997].

Following [shi2000], we define a graph for segmenting an image by the adjacency matrix:

Aij = e
�

(fi�fj)
2

2�2
f · e�

(ri�rj)
2

2�2
r ·

✓
1�H(

q
(ri � rj)2 �RM)

◆
(1.1)

with H(x) the Heaviside step function. The first factor reflects the dissimilarity of the local
features fi and fj, in our case local contrasts. It was found experimentally that �f = 0.2
provides reasonable dynamic range in adjacency weight distribution. The second and third
terms reflect the distance between the local features in the image plane. Since we are
interested how well segmentation can be performed in networks with local neighborhood
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connectivity and for simplicity, we we null out the second term by setting �r = 1 and add
the third term, a binary rectangular Heaviside function 1 - H(

p
(ri � rj)2 �RM) that is 1

within a maximum radius, RM , and 0 outside. We explored RM values of 1,3,5 and 10.

Three common graph clustering methods
The simplest strategy of graph clustering, referred to as average association (AA), is to
analyze the adjacency matrix directly [sarkar1998]. Eigenvalues of the adjacency quantify the
amount of correlated structure and the associated eigenvectors characterize the location of the
correlated structure in the image. Other methods of graph clustering utilize transformations
of the adjacency matrix, often incorporating the node "degree", di =

P
j Aij , which captures

the total weight of connections to each node from all other nodes in the network. One
such transformation we considered is the normalized graph Laplacian (GL) or Kirchhoff
matrix: L = D�1/2(D � A)D�1/2 with diagonal matrix Dij = �ij

P
k Akj, �ij the Kronecker

symbol. This strategy, combined with more sophisticated image features, forms the basis
of a very successful image segmentation algorithm, the “Normalized Cut” [shi2000]. The
eigenvectors and associated smallest eigenvalues of the Laplacian matrix find divisions in the
input characterized by large feature differences.

A second transformation we considered is modularity (M) [newman2006], which has
successfully discovered community structure in social and information networks, outperforming
the graph Laplacian in these tasks. The modularity matrix can be written as

Q = A�N with Nij = DiDj and Di :=
dip
2m

(1.2)

where Di and Dj denote the “degree ” of nodes i and j respectively, normalized by the total
weight of edges in the graph, 2m =

P
k dk. Importantly, the null model matrix, N , contains

the expectation of the weight value between each node pair Nij based on the strength of
connectivity of both nodes. In this way, an expected graph is constructed by assuming an
otherwise random graph with node degrees constrained (an Erdos-Renyi random graph).
Comparing the observed adjacency graph to the null model by subtraction reveals graph
structure beyond what could expectedly be introduced by heterogeneous node degrees. In
section 1.5, we discuss modularity further and introduce an extension, called topographic
modularity (TM), with null model adapted for graphs embedded in space.

Once an associated matrix representing a graph is constructed, spectral methods have been
predominantly used within the graph clustering community to find clusters within because
eigenvalues and eigenvectors efficiently find an approximate solution to the combinatorially
intractable "mincut" problem. It has been observed on simple networks that the eigenvalue
spectrum of an associated matrix resembles the temporal progression of clusters discernible
from phases of nodes in a Kuramoto network [arenas2007], this time evolution of clusters
forming a hierarchical clustering of a network. Given this observation, we compute the
time evolution of a phase coupled oscillator network dynamical system as an alternative to
eigenvector-based graph clustering methods.
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Kuramoto Phase Relaxation Model
The described graph clustering methods in 1.2 compute the eigenvectors of the associated
matrices [chung1997] which, in essence, is assessing anisotropic diffusion in these networks.
This process has also been related to the path a random walker would take through the
graph where edge weights represent transition probabilities and the distribution of electrical
potentials on nodes in a resistor network where an edge weight represents the conductance
of a particular resistor [grady2006]. A further parallel has been between eigenvector
based methods for graph clustering and the "fundamental mode(s) of a spring-mass system"
[shi2000]. To rigorously investigate this last claim, we simulate phase relaxation in a
network of Kuramoto coupled oscillators [kuramoto1984] with networks defined by methods
described in 1.2.

Here we followed [arenas2007] and assessed diffusion properties by relaxing a network of
phase-coupled oscillators :

��i = !i +
X

j

Kijsin(�i � �j), Kij = ksMij (1.3)

with each node’s natural frequency !i = 60Hz and where Mij is one of the graph matrices
mentioned above. For intuition, Eq. 1.3 loosely simulates a lattice of oscillating masses
connected by different size and signed springs. The lattice is shaken at initialization and
through the relaxation dynamics, masses connected by strong positive springs are attracted
in phase while strong negative springs repel one another. In the original Kumamoto model
[kuramoto1984], couplings K were set to be uniform, supporting isotropic diffusion. As a
baseline, we also investigated the effects of isotropic diffusion (ISO) for image segmentation.
Unlike the uniform network, a network with heterogeneous weights relax to stable states
containing multiple distinct clusters of phase aligned oscillators.

In the implementation of the model, the overall positive scaling factor ks is critical. If
coupling weights are too large, phasers will spin wildly in response to even small phase
differences. Conversely, if too small, oscillators will adjust their phase too slowly and the
relaxation will not converge in time. Importantly, the phase relaxation was limited to 300ms
or 20 periods of the 60Hz signal, which is the average duration of fixation before a saccade
brings the eye’s gaze to a new point, refreshing the input and beginning the computation
once again. The value for the ks parameter was set for each graph individually based on
mathematical considerations in equation 1.3. A middle value kmid

s was chosen so that the
phase change of the node with largest degree Dkmax is limited to ⇡/2 radians in one full period
of the 60Hz signal when all its neighbors are aligned ⇡/2 radians away and exerting maximal
pull.

kmid
s = 60Hz · 2⇡

⇡/2
·Dkmax (1.4)

We then bracketed that value above and below by an order of magnitude.
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The final result of the phase relaxation simulation is a phase map with a phase value,
�i 2 [0, 2⇡], associated with every node, i, in the network and corresponding location i in the
image. Spectral methods also yield a value associate with each location, i, in the image with
vi 2 [�1,1]. In order to compare our results to other algorithms using the BSDS resources,
we convert these maps to probabilistic boundaries and recast the image segmentation problem
as a boundary detection one as discussed in Section 1.2 and illustrated in Fig. 1.2.

In practice, two meta parameters, rM defining the neighborhood structure of the Adjacency
graph and ks defining an overall scaling on the strength of phase interactions in the network,
impacted image segmentation performance. They were optimized for each method and results
shown are with optimized parameters, shown in Fig. ??. To optimize parameters for each
method, we performed segmentation of 500 image patches with four rM values ranging from
1 to 10 and bracketing ks as discussed above and chose the parameter settings with best
average performance across all images and across dt. Fig. 1.3 illustrates the procedure for
one particular method. It shows average performance across ks values for optimal rM on the
left and performance across rM values for optimal ks on the right. Fig. 1.4 shows the effect
of different parameter settings on one example image patch.

(a) (b)

Figure 1.3: Hyper-parameter optimization: Network neighborhood graph structure rM and
coupling spring-constant scaling ks are important meta parameters of the algorithm, discussed in
Sections 1.2 and 1.2 respectively. We plot mean and standard deviation across 500 image patches
of �F-measure relative to Gaussian RF independent sensors for the 2D topographic modularity
network. Colors indicate pixel distance tolerances dt (see Fig. 1.2 for explanation). Left panel shows
performance at three ks values, with rM fixed at optimal. Right panel shows performance at four
rM values, with ks fixed at optimal. Fig. 1.4 shows the effects of the different parameters on a single
example image patch.
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Figure 1.4: Effect of hyper-parameters, single image patch example: Probabilistic
boundary maps shown for resulting phase distribution from TM 2D method for combinations of 3 ks

(rows) and 4 rM (columns) hyper-parameters.

1.3 Results

Modularity null models for images
An image can be described by a multi-graph, in which pixels or local image features are
represented by nodes and each pair of pixels has two different types of edges connecting
them. One edge type represents geometric distance in the image plane and the other edge
type represents feature differences. The two types of edges are given by adjacency matrices,
resulting from the two types of distances and corresponding kernel functions (like a Gaussian
kernel), as in Eq. 1.1. Shi and Malik [shi2000] proposed a way to collapse this multi-graph
of an image to an ordinary graph by forming the Hadamard product of the two adjacency
matrices. An entry in the resulting single adjacency matrix A represents the two distinct
similarities between pixels, geometric proximity and feature similarity by a single number.
Specifically, an entry in A can only be large, if both, distance and feature differences are
small in the corresponding pair of pixels. In order to find image segments, researchers then
used "spectral" graph clustering methods on the matrix A [sarkar1998, shi2000].

For some graph clustering methods, such as modularity [newman2006], the collapsing of
the multi-graph into an ordinary graph destroys information, which is critical for segmenting
images. The modularity matrix consists of the difference of the adjacency matrix and a null
model. The null model represents an average adjacency value. In the standard modularity
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method, Eq. 1.2, the average is computed from the degrees of the two nodes involved, the
row and column sum of the collapsed graph. However, in natural images, the average feature
similarity of a pair of pixels is a function of geometric distance [ruderman1994], see also
Fig. A.4 in supplemental section A.2. Thus, an appropriate null model for images should also
depend on the geometric adjacency matrix.

Figure 1.5: Modularity null models & space: In the null model of Newman’s modularity
[newman2006] (panel a) the average weight between nodes i and j is proportional to the product
of their node degrees (Di ·Dj). The topographic modularity’s null model (panels b & c) additionally
includes a distance-dependent factor, Rij , which is the average edge weight between all node pairs in
the graph separated by the same distance that separates nodes i and j. Panel b illustrates Rij

for a schematized 1D graph, shown with edges colored based on distance between the nodes they
connect. Inset plot shows geometric factor in the topographic null model. Each term in R

(1D)
ij is

an off-diagonal sum in the adjacency matrix. Panel c shows the mask associated with a single
geometric distance in a 2D image. Here R

(2D)
ij at 1 pixel separation has a complex structure in the

Adjacency matrix for even the simple binary image shown in the inset.

To address this issue, we devised a novel graph clustering method called topographic
modularity (TM) in which the null model takes topographic distance in the image plane into
account. Like the standard modularity [newman2006], see Fig. 1.5a and Eq. 1.2, an entry
of the topographic modularity matrix, QT , is the difference between the entry Aij and the
expected connectivity, captured by the null model, Nij . Here, the topographic null model NT

accounts for distance dependent factors in feature similarity with the Rij term in addition to
node degree heterogeneity.

QT
ij = Aij �NT

ij where NT
ij = Di ·Dj ·Rij (1.5)

The Rij factor represents the average connectivity between all node pairs that are separated
by the same geometric distance as the nodes i and j. For a network in space along a
1D line, Fig. 1.5b, the distance dependent contribution to the null model can be written
mathematically as

R(1D)
ij = (

1

n� L
)
n�LX

k=1

Ak,k+L (1.6)
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where L is the distance separating nodes i and j (i.e., L = ri � rj) and n is the total number
of nodes (or pixels or features in the image). In 1D, the average connectivity of all nodes
separated by a distance L is equal to the mean along the L’th diagonal.

For networks with 2D grid-like geometry, like Adjacency graphs constructed from images,
the computation of R(2D)

ij is more involved, yet the interpretation is the same. Reshaping a
2D image into a 1D vector so that similarity relationships can be represented in a 2D matrix
introduces discontinuities in spatial relationships between entries in the matrix. Weights
between nodes separated by a particular distance can be labeled by a mask specific to the
dimensions of a particular image. Fig. 1.5c shows the weights between all neighboring nodes
(L = 1) in the network derived from the 11 x 11 binary image in the inset. For completeness,
we show R(2D)

ij masks for other pixel separations in supplement section A.2 Fig. A.3.
Before comparing the different null models in an image segmentation we compare how well

they capture the structure of an adjacency matrix of an image. The null model in Newman’s
modularity, by construction, is a "consistent" estimator of node degrees [chang2012], ensuring
that

P
j Nij =

P
j Aij (blue line in Fig. 1.6 middle). However, it is clearly the wrong null

model for natural image Adjacency graphs for two reasons. First, the null model incorrectly
contains positive diagonal weights in proportion to D2

i , although the diagonal elements of
the adjacency matrix are zero. Second, it does not capture the distance dependence of
the adjacencies, thereby underestimating average adjacency between proximal nodes and
overestimating it for distant node pairs. Both problems manifest in the difference between
the blue and the dashed lines in Fig. 1.6 bottom.

While the TM-1D and TM-2D null models are not strictly consistent in node degree
or distance dependence, they are nearly so (green and red lines respectively in Fig. 1.6).
Introducing distance-dependent statistics into the TM-1D null model corrects for the spatial
"inconsistency", vastly improving estimates of edge-weight over M. TM-2D offers improvement
over TM-1D due to further refinement of its null model, see Eq. 1.6 and surrounding text.
Further discussion of null model consistency and bias in the supplemental section ??.
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Null Model Consistency

Figure 1.6: Null model consistency: Top row from left to right shows image patch, the
adjacency (black) constructed from the patch with rmax = 5, and null models for modularity (blue),
1D topographic modularity (green) and 2D topographic modularity (red), with colorbar indicating
edge weight. Models represented by line colors in plots as well. Center plot shows average node
degree (row sums in each matrix) sorted by strength in adjacency. Bottom plot shows average edge
weight as a function of distance in the image plane.

Importantly, the difference between an adjacency value and its average in the modularity
can become negative. In a Kuramoto net relaxation, these negative weights mediate phase
repulsion and introduce targeted phase desynchronization, see Sec. 1.2, at boundaries in
an image where gross image statistics change. In contrast, if the modularity value between
a node pair is positive, it contributes to phase synchronization. Fig. 1.7 illustrates image
segmentation performance before and after phase relaxation through connections defined by
M (in blue), TM-1D (in green) and TM-2D (in red). While M does not significantly change
image segmentation performance over Gaussian RF independent sensors, TM-1D does so
(p-value ⇠ 0.004) and TM-2D does so even more (p-value ⇠ 4 · 10�7). With TM-2D, we see
improvement for ⇠460/500 image patches.
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Figure 1.7: Modularity performance comparison: Each scatter point represents one image
patch. Newman’s modularity (M) in blue, 1-dimensional topographic modularity (TM 1D) in green
and 2-dimensional topographic modularity (TM 2D) in red. Points above the unity line indicate
image patches with improved image segmentation with network phase relaxation over-and-above
Gaussian RF independent sensors. P-values quantify the difference between F-measure distribution
across 500 image patches before and after network computation.

Broad comparison of models on image segmentation
Following [koepsell2010], we investigate the idea whether a phase-coupled network of simple
sensors of local image features, similar to those in the retina, could at the same time represent
local and contextual image features in its output. Specifically, phase interactions mediated
through heterogeneous network edges which are influenced by local features similarities can
segment an image, grouping regions within a segment into the same relative phase and
introducing phase breaks at segment boundaries. In a biological system, the contextual image
information encoded by phase can be represented by the timing of spikes and be multiplexed
into spike trains, whose rates represent the local features Fig. 1.1.

This idea is tested on images provided in the Berkeley Segmentation Data set (Sec. 1.2).
For an image patch, we construct a graph based on local features in the image (Sec. 1.2)
and segment the image by either computing eigenvectors or by performing anisotropic phase
diffusion in a Kuramoto net. Computing a spatial derivative on either eigenvectors or the
final phase distributions and normalizing values between 0 and 1 converts the output into
probabilistic boundaries, which can be quantitatively compared to assess relative performance
of different image segmentation methods.
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We ask whether a phase-coupled sensor array can add to an image segmentation that
can be done based on the independent sensor measurements alone. Thus, the network
computation must outperform two baseline methods. The first method computes normalized
spatial gradients on the raw image pixels (magenta, RawPix). In the second method the image
pixels are first convolved with Gaussian receptive fields, roughly similar to those measured
in retina (cyan, GaussRF). As a third baseline method, we include isotropic diffusion in a
network with homogeneous phase couplings between nearest-neighbor nodes (black, ISO).

Figure 1.8: Spectral methods vs. Kuramoto Net Examples: Two example image patches
(top two rows and bottom two rows) show probabilistic boundaries found by different network
(TM, M, AA, GL) and baseline models (ImPix, GaussRF, ISO). Network models are segmented
using eigen-methods (1st and 3rd row) and Kuramoto Net phase relaxation (2nd and 4th row).
Qualitatively, boundaries found with spectral methods are less crisp and more localized than those
found with Kuramoto Net phase relaxation.

Probabilistic boundaries (pb) can be interpreted as the algorithm’s confidence that a
boundary exists between two segments at a particular location in the image. Fig. 1.8
shows pb’s resulting from the segmentation of different networks constructed from the same
image patch, either by computing eigenvectors and by performing Kuramoto net relaxation.
Qualitatively, we observe that eigenvectors seem to focus a spotlight on a region of the image
patch while information propagated through the Kuramoto Net covers all parts of the image
patch. Regardless of the network method used, boundaries found with the Kuramoto net
are crisper and extend further across the image patch than do those found by computing
eigenvectors.
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Figure 1.9: Spectral methods vs. Kuramoto Net Statistics: F-measure computed across
500 image patches, mean and standard error errorbars. Colors indicating different network and
baseline models are used consistently throughout this paper. Circles indicates that F-measure for
each image patch taken for maximum matching GT and x’s shows mean value across all GT’s.
Network models built with Gaussian RF features are segmented by the best combination of the top
3 eigenvectors on the x-axis and by the phase distribution after Kuramoto Net relaxation on the
y-axis. The dashed unity line indicates equal performance and the independent sensors baseline
models (magenta and cyan) do not deviate from it.

To assess whether this trend in image segmentation performance is statistically significant,
we calculate Precision, Recall and F-measure across 500 image patches, shown in Fig. 1.9.
Plotting F-measure statistics for network and baseline models segmented by Kuramoto-net
and Eigen-methods, we find that segmentation without network computation (magenta and
cyan) outperforms the results from the best combination of the top 3 eigenvectors, regardless
of the model. We also find that all scatter points lie above the unity line, indicating superior
image segmentation performance of anisotropic phase diffusion in a Kuramoto net verses the
spectral clustering methods. As a consequence of this observation, we focus in the reminder
on the superior methods based on Kuramoto Nets.

Influence of receptive fields choice
We further observe that the features from which networks are constructed influence seg-
mentation performance achieved. This comes as no surprise since state-of-the-art image
segmentation algorithms rely on a combination of sophisticated spatially-extended features.
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We constrain our investigation to the relatively simple and local stimulus features that
retina is supposed to have access to. Specifically, we investigate the difference in segmentation
caused by switching between raw pixels and Gaussian receptive fields with different radii.
Again, we compare the segmentation performance of networks with phase relaxation to
baseline models representing independent sensors, and a model with isotropic diffusion
through a homogeneous neigbor connections. We find that Gaussian receptive field features
provide better segmentation than raw image pixels both when used as independent sensors
and to construct phase interaction networks. Fig. 1.10 shows the segmentation performance
(F-measure and the change in F-measure relative to the independent sensors image pixels
baseline model) as a function of pixel match distance tolerance (dt).

Figure 1.10: Gaussian RFs improves segmentation: Performances of 4 anisotropic diffusion
and 3 baseline models are compared using raw image pixel features and Gaussian RF features,
center and right columns respectively, lines representing average and bars standard error across 500
BSDS image patches. ( a) Colors indicate different models and line styles indicate ground truth
comparison as in Fig. 1.9. ( b) Optimal spread, �, of Gaussian RF’s chosen by maximizing change
in F-measure relative to the independent raw pixels baseline model, �Fi, averaged across all image
patches. Recall dt is the "distance tolerance" when computing the pixel match set, Fig. 1.2. Optimal
performance for all dt values obtained for Gaussian RF � = 1. ( c) F-measure and ( d) �Fi when
models receive raw image pixels as features. ( e) F-measure and ( f ) �Fi when models receive Gauss
RF activation as input features.

For small tolerances dt in the F-measure (see section 2.2) the simpler isotropic phase
diffusion model was a surprisingly strong competitor, even beating some of the anisotropic
networks (black lines in Fig. 1.10c and d). Isotropic diffusion with optimized parameters
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provides mild smoothing of image structure, which operates indiscriminately within and across
segments. To introduce the effect of smoothing in other models, we introduced Gaussian RF
features. The filters corresponded to optical blur and the extended (centers of) receptive
fields in retinal ganglion cells. Fig. 1.10b shows segmentation performance as a function
of the width of the Gaussian filter, �, and tolerance parameter, dt. We find that Gaussian
RF features with � = 1 were beneficial and near optimal across different tolerance values.
Interestingly, the size of the optimal Gaussian coincides with the size of retinal ganglion cell
receptive fields measured in primate retina [croner1995]. See supporting information A.1
for further discussion.

Fig. 1.10e and 1.10f show the improvement in segmentation performance using Gaussian
features above using image pixel features. In particular the method TM displayed a significant
increase in �Fi which became more prominent for larger pixel match distance tolerances dt.
Among all methods TM was able to improve segmentation performance the most, compared
to that achievable with the Gaussian RF independent sensors model.

Detailed model comparison between most promising models
To assess the overall performance of different models on the diverse input images, each
model was run with optimized parameters. Fig. 1.11 shows image segmentation performance
improvement from Gaussian RF independent sensors. Here the models TM-1D, TM-2D
and ISO were significantly different from the three other methods that stayed near baseline
�F = 0. ISO stayed below baseline because the input kernels provide near optimal blur and
therefore additional isotropic blurring deteriorated the segmentation performance. TM-1D
performs well too, but not as well as TM-2D. This is because the null models are increasingly
accurate, section 1.3. Shown results are with best matching ground truth. Results hold with
average across all human drawn ground truths, though less pronounced.
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Figure 1.11: �F-measure model comparison: Violin plots show �FG distribution with
moments of �Precision, �Recall and �F-measure distributions across 500 image patches in red,
blue and green, respectively. �F relative to Gaussian RF Independent Sensors model. Optimal
hyper-parameters(rM ,ks), statistical significance, p-values and distribution moments indicated above
each method. Performance of ISO, TM-1D and TM-2D models relative to Gauss RF are statistically
significant, as determined by Mann-Whitney U (aka rank-sum) test.

Segmentation performance via anisotropic phase diffusion in a Kuramoto net depends
critically on the structure of the phase couplings. Kuramoto nets using the graph Lapla-
cian, average association or Newman’s modularity as the phase couplings do not improve
segmentation performance significantly over the independent sensors Gaussian RF baseline
model. Only the Kuramoto model with the topographic modularity as phase couplings
increases segmentation information over baseline independent sensors, homogeneous network
and competitor heterogeneous network models, as quantified by the F-measure.

Why is the Kuramoto model with topographic modularity superior?
The F-measure combines the performance measures Precision and Recall, each with intuitive
interpretations described in section 1.2. To analyze the differences between our different
models, we separately plot the precision and recall distributions in Fig. 1.12. Note the position
of curves for each network method relative to the independent sensors Gaussian RF baseline
model (cyan dashed curve). Focusing first on the F-measure, in panel a, three of the network
models (AA in yellow, GL in green, M in blue) did not show significant differences. The ISO
model (black) degraded segmentation performance while the TM models (red & magenta)
improved relative to the Gaussian RF baseline. In panels b and c, the precision distribution
of both TM models shifts significantly to higher values while the recall distribution shifts
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only slightly to lower values. Thus, the performance improvement of the TM model is mainly
caused by increased precision, reflecting superior ability to suppress spurious boundaries,
texture or "noise" in the probabilistic boundary maps.

(a) F-measure (b) Precision (c) Recall

Figure 1.12: Precision & Recall model comparison: (a) F-measure, (b) precision and (c)
recall across 1000 image patches for Gaussian RF independent sensors baseline model and 4 network
models with optimized parameters and dt = 2. Distribution µ and � denoted above. Note colors
same as in Figs. 1.9&1.10.

To better understand the computation in the TM-2D model, we visualize changes to
Precision and Recall together for individual image patches in Fig. 1.13.

(a) Improved segmentation: �F > 0 (b) Degraded segmentation: �F < 0

Figure 1.13: �Precision and �Recall with TM-2D model: In panel a, arrows show change
in P & R for 467 image patches where network increased F-measure. Arrow tails indicate values
before network relaxation and heads values after. Surrounding are distributions showing P,R,F
before network (in cyan) and after (in blue). Panel b shows the same for 33 image patches where
network decreased F-measure. Distributions before network in magenta.
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The TM-2D network relaxation improved segmentation for ⇠ 93% of all image patches,
in blue, panel a. Clear positive shifts in the precision and F-measure distributions can be
observed from the independent sensors Gaussian RF model (dashed cyan) to the phase
output from the TM-2D network relaxation (solid blue). No clear trend emerges for the
recall distribution with improved images. No clear trend exists for images where the network
relaxation decreased performance. For some precision increased, and recall decreased. For
others, vice versa.

Visual assessment of model performances
Finally, to provide some intuition what a �F value means for individual images, some
examples are shown in Fig. 1.14. Compared to the results from other methods, the TM model
produces probabilistic boundaries (pb’s) that are often thinner and cleaner.
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Figure 1.14: Representative image patches: Each row shows one example image patch ordered
by change in F-measure between Gaussian RF independent sensors baseline and TM models (indicated
on left). Columns show image pixels, gT boundaries and pb maps obtained from raw pixels, Gaussian
RF and 5 network models. Mean F-measure value across all gT’s noted below each pane is red if
�FG > 0.

Further, in Fig. 1.15, we show samples of image patches with varying image segmentation
performance relative to the Gaussian RF independent sensors model.
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Figure 1.15: Examples of TM 2D model performance: Top panel scatters F-measure in
Gaussian RF independent sensors model vs. �-F after 2D topographic modularity network phase
relaxation. Out of 500 total image patches, 467 show positive improvement. Best fit line to scatter
points in magenta. Colored numbers indicate randomly sampled image patches (shown in bottom
panel) where �-F performance is best (#1-4), average (#5-8) and worst (#9-12). Bottom panel shows
image patches with best matching ground truth boundaries, in black. Yellow points indicate pixels
found to be boundaries both by the Gaussian RF independent sensors model and the topographic
modularity network model. Cyan number and points indicate F-measure under Gaussian RF model
and boundaries found only by it. Red number and points indicate �-F after TM 2D network phase
diffusion and boundaries found only by TM-2D. Note that image patches are shown at 1/2 contrast
to highlight boundaries found.
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1.4 Discussion

In this work, we have shown that phase relaxation in coupled oscillators receiving inputs
from simple image sensors (with unoriented Gaussian receptive fields) can provide image
segmentation performance above and beyond the baseline, the segmentation performance
that can be achieved by just using local contrast measurements. First, we have demonstrated
that the type of graph clustering matters, the common spectral methods do not perform as
well as relaxation in a Kuramoto model (Arenas). Second, we have demonstrated that the
graph derived from the image structure matters. Specifically, we introduced topographic
modularity, a modularity matrix that can capture the distance dependence in the statistics
of image features. We find that a Kuramoto model using the topographic modularity matrix
as phase couplings was the only network model that significantly outperformed the baseline.

A critical element of the successful model are its negative phase coupling weights, which
introduce phase desynchronization at segment boundaries. Interestingly, we saw the best
segmentation results with Gaussian receptive fields sizes similar to those measured in retina
[croner1995]. In essence, the successful segmentation model provides a "cartoonization"
[yin2005] of images - smoothing texture and variation within segments while maintaining
crisp segment boundaries. Examples of phase relaxation results on two sample images are
shown in Fig 1.16. Note the halos at the base of the lizard tail and surrounding the elk,
where low contrast segment boundaries have been accentuated.
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Figure 1.16: Two examples of cartoonization: Original images on left and resulting phase of
TM-2D network computation on right

We quantify performance on the BSDS and show that anisotropic phase diffusion through
the TM-2D improves F-measure significantly, in general, by increasing Precision while slightly
deteriorating Recall. However, there are caveats with BSDS. First, BSDS is designed for
state-of-the art image segmentation methods that requires combinations of sophisticated
image filters, etc. In contrast, context extraction in the retina can only use the simple image
feature extraction in retinal cells. Second, human segmenters that provide the ground truth
in the BSDS databas can take advantage of the full image in color, while our model has only
access to a 100x100 pixel image patch in greyscale. Third, human segmenters use consciously
and unconsciously high-level semantic information to draw boundaries while our algorithm
just uses information from the image patch.

The model presented in this work is abstract and does not aim to directly capture biological
features of retina. However, some evidence supports the plausibility of such a computation
in retina. Ganglion cell spike trains have been observed to be periodic in the Gamma
frequency [neuenschwander1996] and the phase of that frequency is transmitted with high
precision through the thalamus to cortex along with precise spike times [koepsell2009].
The time to first spike in ganglion cells is quite precise [gollisch2008] and provides a
possible mechanism for phase initialization following global suppression during eye saccades
[roska2003]. Phase coupling without amplitude coupling could result simply from weak
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retinal interactions, that slightly advance or delay spikes without adding or removing them.
Both, phase synchronization and desynchronization through positive and negative weights in
the model can be mapped onto excitation, inhibition and inhibition-of-inhibition circuits in
retina. A retinal mechanism for fast adaptation of phase couplings to a particular stimulus
image remains unclear. The spatial null model’s distance dependent term, Rij term in Eq. 1.2,
which requires global knowledge in the model could be implemented in retina via sampling
through long distance inhibitory interactions from polyaxonal amacrine cells [olveczky2003]
or through eye movements implementing a temporal null model based on comparing feature
similarity at a current stimulus location to feature similarity at a previous fixation.

Given the results of the model on BSDS and observations cited in the previous paragraph,
we hypothesize that a coarse image segmentation or grouping/clustering of image features
could be computed at the first stage of visual processing, in retina. While individual cell
spike rates encode local stimulus contrast features through Gaussian-like receptive fields of
ganglion cells, fine-time spike relationships across the cell population encode extra-classical
receptive field features, such as extended segments. Fine-time correlations are multiplexed
into ganglion cell spike-trains alongside with the rate-coded local stimulus features. Perhaps,
the retina reduces uninformative correlations [pitkow2012] in stimulus with outer layers
(photoreceptors, bipolars and horizontals) in order to reintroduce informative correlations in
precise spike timing with inner layers (bipolar, amacrine, ganglions).
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Chapter 2

Probabilistic Cell Assembly Model

2.1 Background

In this work, we introduce a novel, probabilistic latent variable model to detect "Cell
Assemblies" (CAs) in spiking neural data. Given a corpus of observed sparse binary variables,
"spike-words", the task is to infer the sparse activity of a set of binary latent variables,
CAs. CAs are noisy repeats of groups of nearly synchronous cells, commonly coactive
within a small time window, in observations. Our model is based on the "Noisy-OR model"
[heckerman1990], used previously for disease and topic modelling. Analogous to binary soft-
clustering, we wish to assign probabilistic binary observations to binary latent states. Each
component in the latent state, if set to one, reduces the probabilities of certain populations
of neurons to be silent. Thus, if there are noisy repeats of the same firing configurations in
the observation data set, this repeating pattern is represented by a latent component. The
conditional probability kernels of different latent components must be learned from the data
in an expectation maximization scheme, involving inference of latent states and parameter
adjustments. We apply our model to spiking responses recorded in retinal ganglion cells
(RGCs) during stimulation with a movie.

State-of-the-art models of retina describe the function of (RGC) retinal ganglion cells,
the output neurons in retina, as a bank of linear filters and pointwise nonlinearities that
decorrelate stimulus features in space and time, reducing the redundancy in the retina’s
representation [barlow1961]. The ganglion cells encode local stimulus features in the spike
rates [kuffler1953]. Computational models reflecting the text book view, such as the linear
nonlinear Poisson (LNP) model and independent generalized linear model (GLM), predict
RGC responses to a simple white noise stimulus [schwartz2006] with reasonable accuracy.
Considering nearest-neighbor, pairwise activity correlations improves decoding of retinal
responses to white noise [pillow2008]. However, model prediction by independent encoding
models becomes rather poor [schwartz2006], and even encoding models that include second-
order correlations fail to replicate responses to ecologically relevant natural movie stimuli
[chichilnisky2016].
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In addition to the explanatory gap between theory and observed activity, anatomical
observations beg explanation. Circuitry in the retinal network is exquisitely complex, con-
sisting of >60 distinct neuron types stratified into at least 12 parallel and interconnected
circuits providing roughly 20 diverse representations of the visual world [masland2011],
[masland2012a], [werblin2011], [gollisch2010]. Simple linear spatio-temporal filtering
requires only a handful of cell types in the outer retina, leaving the bulk of the network
unexplained. By "occam’s razor", the simple textbook view must be at least incomplete.

We approach the topic from a statistical stand point, seeking hallmarks in retinal neural
activity that cannot be explained by standard retinal modeling. We apply unsupervised
learning to find repeating patterns of co-activity in neural activity. These found patterns will
then be visualized and further analyzed in terms of underlying mechanisms and computational
function. The application to retinal data is presented as an example, our unsupervised learning
model can be applied to any spiking neural recording data, or any similar clustering problems
involving binary data.

In this work, we present the model, and validate its performance on synthetic data,
building up a performance assessment framework that can be applied to real data, which
lacks correct answers. We then use the model to extract latent structure in retinal spiking
responses to different types of stimuli. We show biological results which, while early and
incomplete, point to activity in retinal spike-trains beyond local contrast representations
independent encoded in RGC spike rates. The remainder of this paper is structured as follows.
In section 2.2, we motivate the model and derive the math which underlies it, clearly stating
assumptions and design choices. Section 2.3 we explain how the model parameters are learned
from spike-word observations using an iterative expectation maximization algorithm. We
describe a greedy approximate inference procedure for the latent variables and derive learning
rules for model parameters. In section 2.4, we provide a procedure for validating the model’s
performance on synthetic data. We provide details for model synthesis and data generation
procedures, including a discussion of parameters and pseudocode. We synthesize two models
to match moments in distributions if the spike-words they generate to those observed in
spike-trains recorded from population of 55 offBriskTransient ganglion cells from in vitro
rat retina responding to white noise and natural movie stimuli. Interestingly, we find that
parameters for best fit models to the two stimuli differ in interpretable ways, with responses
to natural movie containing stronger cell assembly activity. Further, we show that a model
trained on synthetic data matched to natural movie responses correctly learns CA structure
and does so robustly across multiple models trained on the same data corpus. This last fact
allows us some measure of confidence in the structure discovered in real neural data.

In section 2.5, we apply the algorithm to real spike-trains collected from a diverse
population of retinal ganglion cell-types responding to both white noise and natural movie
stimuli. We compare models trained on responses to different stimuli as well simulated data
from a GLM responding to the natural movie stimulus. We develop a battery of intuitive
and informative metrics along the way, with which we can quantify and characterize CAs
discovered. Using these metrics to guide our exploration, we find a number of crisp CAs with
temporally precise responses to natural movie stimulus that are reliable from trial-to-trial.
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We also find some CAs with elongated structure, revealing structure in retinal activity beyond
pairwise nearest-neighbor correlations previously proposed. We provide a few tantalizing
examples of CAs that cross the ON-OFF cell-type boundary and align with prominent large
scale stimulus features shortly before activation. Interesting CAs are learned robustly across
multiple trained models (and even redundantly within individual models). Spike-words
observed during CA activations have low probability under an independent GLM null model.

Finally, in the Discussion section, we address factors which limit our analysis in the
current data set, collected before the advent of the model. We consider other neural data to
which this model might be successfully applied. We speculate what additional questions could
be asked with more complete data, and suggest additional experiments to further explore the
model and the correlational structure of retinal activity.

2.2 Cell Assembly Model

A standard approach in analyzing spike rasters is to bin the data in time, with a bin width
small enough so that the resulting data is binary, i.e., for every neuron a time bin has either one
or zero spikes. Thus the observation data are sequences of binary vectors ~y(1), ~y(2), ..., ~y(T ),
with T the number of observations.

Here we design a probabilistic latent variable model to analyze the structure in observation
vectors. The latent variables in the model are also binary. Each component of the latent
vector ~z is an indicator that in a time bin a cell assembly is active, which probabilistically
causes a certain subset of cells to fire. We assume that observations in all time bins can be
modeled with a fixed set of cell assemblies. In other words, we assume that cell assemblies
can be switched on and off over time but their individual structure is stationary across the
observations. Figure 2.1 shows a schematic of the model.



CHAPTER 2. PROBABILISTIC CELL ASSEMBLY MODEL 32

Population
Likelihood:

Fit model with MAP estimation on Log Joint using Expectation Maximization.

M

"⃗

. . . . . .

# = %("' = 1)

N

*⃗
M x N 

→, -' = %(*- = 0|"' = 1)
→, - = % *- = 0 " = 0

.

Single-Cell
Likelihood:

Population
Joint:

B). Latent Variable Model for Cell Assembly Detection

Figure 2.1: Schematic of Cell Assembly model: Observed spikes within spike-words
~y arise from two sources. First, each cell has some probability of firing without any cell
assembly activity, expressed by N -vector ~Pi. The second cause of cell activity is cell assembly
activity, expressed by the P̄ia matrix and ~z. Finally, the scalar Q parameter sets a binomial
prior on the activity in the latent variable, ~z.

The model assumes that different cell assemblies which are active simultaneously, increase
the firing probability of a cell, according to a noisy-OR combination. Specifically, the
generative model for an observation vector is given by the product

p(yi = 0|~z) =
MY

a=1

p(yi = 0|za = 1)za · p(yi = 0|za = 0)1�za (2.1)

Note that (2.1) is a noisy version of the OR function yi = f(z) = 1�
Q

a za. A similar model
was proposed for analyzing relationships between diseases and symptoms by Heckerman
[heckerman1990].

Second, the latent causes of observations are assumed to be sparse, that is, each observation
vector is explained by a few active cell assemblies. This means that the majority of cell
assemblies are inactive in any particular observation and it allows us to reduce the number of
free parameters in the model by applying a mean field approximation. We assume that if cell
assemblies are inactive, they all have the same (average) influence on the generation of a data
vector, there are no individual differences between inactive assemblies. Rather than modeling
the influence on each cell yi by a vector of conditional probabilities, it can be modeled by a



CHAPTER 2. PROBABILISTIC CELL ASSEMBLY MODEL 33

single parameter for each component of the data vector:

Pi := p(yi = 0|~z = ~0) =
MY

a=1

p(yi = 0|za = 0) (2.2)

and with this definition, equation (2.1) can be approximated as:

p(yi = 0|~z) = P

�
1� |~z|

M

�

i

MY

a�1

(Pia)
za (2.3)

where ~Pi 2 [0, 1]M is the vector of free parameters describing probabilities that cells are
silent given no cell assembly is active. Further, P̄ia 2 [0, 1]NxM is the matrix of free model
parameters describing the conditional probabilities of cells to be part of a cell assembly. That
is, Pia = p(yi = 0|za = 1).

A third model assumption is conditional independence of an observation vector ~y, given a
vector of latent variables ~z. With this, the conditional probability of an arbitrary observation
vector can be written:

p(~y|~z) =
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A fourth model assumption is that the activation of different cell assemblies is uniform
and independent. Thus the prior on ~z is given by a binomial distribution:

p(~z) =

✓
M

|~z|
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·Q|~z| · (1�Q)

�
M�|~z|

�
(2.5)

with scalar parameter Q = p(za = 1) << 1 2 [0, 1] the probability that any individual cell
assembly za is active. Combining prior (2.5) and likelihood (2.4), yields the joint probability
p(~y, ~z) which, for fixed data probability, is proportional to the posterior probability p(~z|~y):

p(~z|~y) / p(~y, ~z) = p(~y|~z)p(~z) (2.6)

The joint probability for a single cell’s activity yi and a latent vector ~z is given by:

p(yi, ~z) =

✓
M

|~z|

◆
·Q|~z| · (1�Q)

�
M�|~z|

�
P

�
1� |~z|

M

�

i

MY

a=1

(Pia)
za

�(1�yi)
1� P

�
1� |~z|

M

�

i

MY

a=1

(Pia)
za

�yi

(2.7)
Taking the natural logarithms, we get:
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log p(yi, ~z) = log
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Observing that models often did not use all available cell assemblies, we explored an
alternative prior on cell assembly activation that allows individual cell assemblies to have
a different activation probability. The "Homeostatic Egalitarian" prior [perrinet2010]
encourages all elements of ~z to be active an approximately equal number of times by
decreasing each p(za = 1) proportional to its previous activation. We define ~Q 2 RM where
an element Qa = p(za = 1) << 1 2 [0, 1]1 is the probability that cell assembly a is active.
This yields:

p(~z) =
MY

a=1

p(za) =
MY

a=1

Qza
a (1�Qa)

(1�za) with Qa = Q
1
M

PM
a0=1 ra0(t)

ra(t)
(2.9)

where Qa is a weighted version the still scalar Q parameter and ra(t) is the activation rate
of cell assembly a at time t, i.e. the number of times it has been inferred active during the
EM learning algorithm. With the new, slightly more general activity-dependent prior, the
activation probability cell assembly a is scaled by the prior activation history of that cell
assembly. Taking the natural logarithm of Eq. 2.9, changes the first line in the log joint in
Eq. 2.8 to
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(2.10)

2.3 Model Training

The model is trained using Expectation Maximization to perform iterative gradient ascent
procedure on the log joint. Model parameter values are initialized to nearly silent with some
small Gaussian random variability. For each observed spike-word ~y, learning proceeds in two
steps. First, the latent variables (~z) are inferred with the current fixed model parameters,
Sec. 2.3). Then, model parameters are adjusted to maximize the derivative of the log joint
Eq. 2.8 with respect to each parameter, Sec. 2.3.
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Inference of latent variables
Given a fixed model and a single observed ~y, we run the model in reverse to infer the most
likely latent state ~z that generated the observed state. Generally, finding the optimal binary
latent vector ~z for a given binary observation ~y is a combinatorial problem that can only
be solved by an exhaustive search over all possible latent states, which quickly becomes
computationally prohibitive as the length of ~z grows. For tractability, we solve a greedy
relaxation of this problem, which finds the a small number of the best cardinality-1 ~z solutions
and chooses the combination of za’s which maximizes the joint in that smaller subset using
combinatorial search.

Specifically, the greedy inference algorithm proceeds as follows: We compute the joint
probability in Eq. 2.8 of all M 1-hot ~z’s as well as the ~z = ~0 solution. Sorting the M+1
values in descending order, we form combinations of cell assemblies that individually yield
higher joint probability than the ~z = ~0 solution. Two parameters of the inference procedure
allow us to adjust the number of 1-hot solutions to include when trying combinations of
za’s. The first, I0, allows a number of za’s with joint probability lower than ~z = ~0 into the
combination step. The second parameter, Imax, sets a maximum on the number of za’s to
include in the combination step. With this smaller set of cell assemblies, we can tractably
compute the joint probability of pairs, triplets and higher-order combinations of those za’s
that form solutions with |~z| > 1. The resulting inferred ~z is the one which maximizes Eq. 2.8
out of all combinations checked.

We choose parameters I0 = 9 and Imax = 10, which uses the top 10 1-hot cell assemblies
in the combination step. While the inference procedure would be faster with smaller values,
it is more likely to infer a sub-optimal ~z. This procedure acts as an interpolation between the
full combinatorial search of all possible ~z’s and the efficient but greedy approach of taking the
best 1-hot / 0-hot ~z. Note that full combinatorial search results from choosing I0, Imax > M .
The best 1-hot / 0-hot ~z solution is obtained by setting Imax = 1. If one chooses I0 = 0
and Imax = M , the the inference procedure only considers 1-hot ~z’s that have higher joint
probability than the ~z = ~0 solution. While this is a heuristic procedure, it works well in
practice - correctly inferring ground truth ~z’s and learning ground truth model parameters
in synthetic data as well as inferring non-trivial ~z’s and learning interesting cell assembly
structure in real retinal data.

Learning model parameters
Given an observed ~y and an inferred ~z at each iteration of the EM algorithm, we adjust each
parameter in the model to increase p(~y, ~z) via gradient ascent. We compute derivatives of
Eq. 2.8 w.r.t. each individual model parameter in Eqs. 2.13,2.14,2.15 and 2.16. In order to
perform unconstrained gradient ascent, we use a logistic parameterization for all variables
that describe probability values

P = �(⇢) =
1

1 + e�⇢
(2.11)
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where capital P ’s 2 [0, 1] indicate probability values and lower-case ⇢’s can take any real
value. With the logistic parametrization and the binomial ~z prior, Eq. 2.8 can be rewritten
as:

log p(yi, ~z) = log
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Derivatives with respect to each model parameter are shown below. We leave the
calculation of derivatives to the reader.
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The learning rule for q with the alternative "Egalitarian Homeostatic" prior in Eq. 2.10 is

@ log p(yi, ~z)
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1�Qa

�
(2.16)

where Qa is defined in Eq. 2.9.

Inspection of the learning rules reveals some nice symmetry and intuitive interpretations.
Ci is just p(yi = 0|~z), the conditional probability that cell yi is silent given its participation
in all active cell assemblies (Pia and ~z) as well as its own inherent chattery-ness (Pi). The
C-ratio ( C

1�C ) in Equations 2.14 and 2.15 can be seen as the relative probability (or “log
odds”) that a cell is silent rather than active. These ratios contribute to the derivative with a
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negative sign to decrease a parameter value, either ⇢i or ⇢ia when the cell is active (yi = 1)
with a strength proportional to the models misprediction that the cell should be silent. The
derivative with respect to ⇢ia in Eq. 2.15 is gated by whether a cell assembly is active (i.e.,
za = 1) and the derivative with respect to ⇢i in Eq. 2.14 is weighted by the probability
that cell assemblies are inactive (1� |~z|/M). That is, parameters in column a of ⇢ia are only
changed when za has been active. Further, since the ⇢i parameters are modeling cell activity
in the absence of cell assembly activity, the changes to ⇢i are weighted by how many cell
assemblies are inactive.

With the learning rule for the "Homeostatic Egalitarian" prior on ~z in Eq. 2.16, Qa =
p(za = 1) and is directly analogous to Ci. Its ratio is the relative probability that cell assembly
a is active rather than inactive and it contributes with a negative sign, decreasing the scalar
q parameter, when za is inactive. For the binomial prior on ~z, the derivative with respect to
q in Eq. 2.13 contains two terms with opposite signs that represent discrepancies between
model and observations. The first term, which is proportional to the number of active cell
assemblies |~z| and to the model’s prediction that cell assemblies are inactive (1� �(q)), tends
to increase the value of q to predict more active cell assemblies. The second term decreases q
when the model overpredicts the number of active cell assemblies.

2.4 Model Validation on Synthetic Data.

As a key initial step, we validate how well the model is able to learn known structure embedded
into synthetic data because we can not be certain that neural data structure discovered by
the model reflects true causal structure since neural data does not provide ground truth. We
construct a realistic synthetic ground truth (GT) model by setting parameters to fit moments
of generated spike-words to those observed in retinal spike trains. With the data corpus of
generated (~y, ~z) pairs, we learn model parameters and infer ~z activity, as described in section
2.3. Post-learning, we assess model performance by comparing learned model parameters and
inferred ~z activity to the ground truth values used to generate the data. We demonstrate that
structure learned by multiple models trained on different partitions and random samplings of
the same data reflects structure that also exists in the ground truth with high probability.
For reference, we provide a table of model synthesis and data generation parameters with a
short description of their effect on model parameters here in table 2.1. They are discussed in
greater detail within.
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Hyper-parameter Effect on synthetic model parameters (P̄ia, ~Pi, and Q) and data generation

N number of cells or elements in ~y
M number of cell assemblies or elements in ~z

K number of active cell assemblies. Truncated binomial probability
Kmin minimum number of active cell assemblies in data generation |~z| ⇠ [Bin(K)]Kmax

Kmin

Kmax maximum number of active cell assemblies in data generation

C number of cells per cell assembly. Truncated binomial probability
Cmin minimum number of cells per cell assembly. cells/CA ⇠ [Bin(C)]Cmax

Cmin

Cmax maximum number of cells per cell assembly.

µPia mean difference from deterministic values in Pia. Truncated normal distribution.
�Pia std in difference from deterministic values in Pia. i.e. [N (µPia , �Pia)]

1
0

µPi mean difference from deterministic values in Pi. Truncated normal distribution.
�Pi std in difference from deterministic values in Pi. i.e. [N (µPia , �Pia)]

1
0

�Q std of truncated Gaussian on Q with mean = K/M

Table 2.1: Hyper-parameters used for model synthesis and data generation.

Model Synthesis
A trained model can only discover structure that is embedded in the data. Therefore, to avoid
embedding pathological structure into the training data due to variance on binomial and
normal distributions, the procedure for ground truth model synthesis and data generation is
somewhat involved. We carefully balance randomness by setting reasonable bounds on the
resulting model and generated data statistics and resampling from distributions when bounds
are exceeded. With the additional bounding and resampling steps, we ensure structure similar
to what we expect to see in real retinal data, avoiding cell assemblies which are too large or
too small as well as probability values greater than 1 or less than 0.

A brief overview of the model synthesis, data generation procedure is provided here
and unpacked below. Dimensions of the system are determined with N , number of cells
and M , the number of cell assemblies. Each of N neurons is driven by its own internal
activity/processes (represented in the ~Pi parameter vector 2 [0, 1]N) and its participation in
M cell assemblies (represented in the P̄ia parameter matrix 2 [0, 1]NxM ). First, deterministic
cell assembly structure is built into the binary P̄ia matrix, with columns resampled to ensure
reasonably sized cell assemblies with minimal overlap. Then, stochasticity is added by varying
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binary values based on a normal distribution truncated at 0 and 1. Next, single cell noisiness
is built into the ~Pi vector by similarly drawing values from a truncated normal distribution.
Finally, the independent Bernoulli probability that any single cell assembly will be active
(represented in the scalar Q parameter 2 [0, 1]) defines the cardinality in the latent variable
vector, that is |~z|.

Construction of P̄ia, defining which cells participate in which cell assemblies, is a multistep
process. In addition to a description here, we provide pseudo-code detailing how P̄ia is
constructed from model hyper-parameters {C,Cmin, Cmax, µPia and �Pia}. First, C defines a
Bernoulli probability of drawing a 1 for each element in the binary cell assembly membership
matrix, p(yi = 1|za = 1) 2 {0, 1}, which is equivalent to 1� P̄ia. Because a Bernoulli random
process has a variance of C(1�C), it is possible to generate data with pathological structure
- like cell assemblies containing  1 active cells. The Cmin and Cmax parameters determine
lower and upper bounds on the number of cells in any given assembly. When the sum of a
column in 1� P̄ia exceed these bounds, the N values within that column are resampled. After
ensuring that CAs are of reasonable size, we implement an iterative procedure that shuffles
cells within cell assemblies to minimize the overlap between different cell assemblies and
which encourages all cells to participate in approximately the same number of cell assemblies.
On each iteration, we activate a cell which participates in few cell assemblies in a random
CA and inactivate one of the cells in that CA. We compare the average overlap of all cell
assemblies and keep the change if that value was decreased (see pseudo-code for further
details). Given deterministic cell assemblies of reasonable size with minimal redundancy,
values in the deterministic P̄ia matrix are replaced by values drawn from a truncated normal
distribution where P̄ prob

ia = [P̄ det
ia ±N (µPia , �Pia)]

1
0 and samples which exceed the truncation

values are resampled. The result of this procedure is a probabilistic ground truth model and
noisy data generated stochastically from that model on which to train.

Pseudo-code for ground truth model P̄ia matrix construction

1. Generate deterministic, binary P̄ia:
(a). construct sparse binary matrix, ensuring reasonable #Cells per CA

– draw elements in P̄ia from binomial with probability, p(1) = C

– redraw column while not Cmin <
P

a Pia < Cmax

(b). change cells in CAs to minimize CA overlap and equalize cells’ participation
across CAs

compute overlap matrix, OV La, for all CA pairs
while count < maxCount:

randomly draw CA j from M
compute CperA, N-vector of number of CAs per cell
find cell i that participates in few CAs. Sort CperA



CHAPTER 2. PROBABILISTIC CELL ASSEMBLY MODEL 40

if cell i not active in CA j:
activate cell i
randomly inactivate an already active cell in CA j

compute OV Lb

if mean(OV Lb) < mean(OV La):
keep the change
OV La = OV Lb

2. Add stochasticity into P̄ia.

for each element, p, in P̄ia:
q = -1 # to enter while loop
while not 0  q  1:

draw q from normal distribution N (p± µPia , �Pia)

replace p with q; i.e., Pia = q

3. Invert P̄ia so that P̄ia := p(yi = 0|za = 0).
P̄ia = 1� P̄ia

The ~Pi vector defines the probability that each cell i will be active without being caused
by cell assembly activity, p(yi = 1|z = 0) = 1 � ~Pi. Values in ~Pi are drawn from a trun-
cated normal distribution similar to values in P̄ia. That is, ~Pi ⇠ [1�N (µPi , �Pi)]

1
0. Finally,

the scalar Q parameter represents the probability that any single cell assembly is active,
p(za = 1), assumed independent of the activity of other cell assemblies. Q is drawn from a
truncated normal distribution with mean K/M and variance �Q, i.e., Q ⇠ N (K/M, �Q). The
K hyper-parameter determines the sparseness of the latent ~z or how many cell assemblies are
active in any single observation.

Data Generation
Once the GT model is synthesized (Q, ~Pi, P̄ia parameters fixed as described in 2.4), we
construct training and test data ~y, ~z pairs to learn a model and validate its performance. A
sparse binary ~z is generated by independently sampling each za from a Bernoulli distribution
with p(za = 1) = Q. Recalling that Q is itself drawn from a Gaussian distribution with
mean K/M, ~z will be K-hot on average, that is having K nonzero values. Due to variance in
binomial distributions, which determines the sparsity of ~z, we set reasonable bounds on the
number of nonzero entries or active cell assemblies in ~z with the Kmin and Kmax parameters.
If a sampled ~z falls outside these bounds, it is discarded and resampled.

za ⇠ Bern(Q) subject to Kmin  |~z|  Kmax
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From the sampled ~z, the GT model is run in the generative direction to produce a vector of
probabilities, p(yi|~z). From these probabilities, binary spike-word ~y is then constructed by
independently sampling the state of each cell i from a Bernoulli distribution with parameter,
p(yi = 1|~z). See Fig. 2.1 for an illustration of the generative process.

yi ⇠ Bern( p(yi = 1|~z) ) where p(yi = 1|~z) = 1� Pi

MY

a�1

(Pia)
za

Fitting Model parameters to spike-word statistics
Early experiments showed that models were more easily learned when their parameters were
nearly deterministic, values close to 0 and 1, and when single cells were not noisy, ~Pi ⇡ 1.
With increased stochasticity and single-cell noise, models learned fewer cell assemblies and
required more data to fully sample the probability distributions from observed binary spike
words.

To test the performance of these models on data similar to neural data, we set parameters
for the synthetic model in order to match some key moments of spike word distributions
measured from in vitro rate RGC responses to white noise and natural movie stimuli. Data
obtained from the G. Field lab at Duke University consists of spike trains 55 off brisk transient
cells responding to white noise and natural movie stimuli. The data are described fully in
section 2.5. Spike trains are binned at 5ms to generate spike-words, generally sparse binary
vectors representing cells which are coactive. We measure distributions of single cell average
activity, average pairwise coactivity and spike-word length.

Performing a grid search over model parameters K, Kmin, Kmax, C, Cmin, Cmax µPia ,
�Pia , µPi , �Pi , we select values that minimize a linear combination of QQ values for the three
distribution moments. QQ values capture the average difference between a pair of cumulative
density functions, with near-zero values indicating very similar distributions. Figure 2.2
shows distributions for spike-word length (left), single cell activity (center) and pairwise
coactivity (right) for measured and the data generated by the synthetic model which best fits
retinal responses to natural movie stimulus, blue. Note closer matches between red and blue
curves as compared to red and green in top plots, that blue curves are closer to unity line
in bottom plots and that blue QQ values are smaller than green. While spiking statistics
from synthesized model are not a perfect match to observed data (indicated by differences in
blue), these synthetic model parameters provide both a challenging, realistic data set with
which to test our algorithm and ground truth with which to validate its performance.
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Figure 2.2: Fitting synthetic model to spike-word moments: Comparison of spike-
word moments from synthetic data fit to natural movie responses in red, retinal responses to
white noise in green, and natural movie in blue. Top row from left to right shows probability
density functions for spike-word length, |~y|, average single-cell activity, hyii. and, pairwise cell
coactivity, hyi · yji. Bottom row shows quantile-quantile (QQ) plots - a pair of cumulative
density function plotted against each other. See legend, left plot. QQ values measure average
deviation from the unity line, larger values indicating differences in distributions.

Additionally, an interesting and interpretable result emerges from the difference in the
synthetic model hyper-parameters fit to activity of the same RGC population in response to
these two types of stimuli. The best-fit parameters, shown in table 2.2, reveal that, under
the assumptions of the model, responses to natural movie stimulus contain fewer active
cell assemblies (smaller K) in any observed spike-word, while each individual cell assembliy
contains more cells (larger C) with stronger membership or participation (smaller µPia) in
that assembly, when compared to responses of the same cell population responding to white
noise stimulus.
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Stimulus K Kmin Kmax C Cmin Cmax µPia �Pia µPi �Pi

Natural Movie 1 0 4 6 2 6 0.3 0.1 0.04 0.02
White Noise 2 0 4 2 2 6 0.55 0.05 0.04 0.02

Table 2.2: Hyper-parameters fit to offBriskTransient RGC responses to white noise and
natural movie stimuli. Key differences highlighted in red.

Performance assessment and results on synthetic data
With each synthetic data set, we independently train multiple models on different splits and
samplings of the data and compare models both to one another and to the ground truth model
in order to assess the validity of structure that the model discovers. The cosine similarity (cs)
measure between a pair of cell assemblies gives a normalized measure of the angle between
them. In the special case of probabilities, since cell assemblies are vectors in RN 2 [0, 1]N ,
cosine similarity is non-negative, being 0 if vectors are orthogonal and 1 if parallel. Computing
cosine similarity for all cell assembly pairs in two equal-sized models yields an MxM matrix.
Since the specific order of cell assemblies in a model is arbitrary due to initialization and
sampling stocasticity, it is necessary to uniquely match cell assembly pairs. For this, we
leverage the Hungarian algorithm [Kuhn1955], which permutes matrix columns to minimize
the trace of 1�cs. The mean value along the diagonal of the matched cs matrix yields a single
number to quantify the match between models. Figure 2.3a illustrates the process of match-
ing up cell assemblies and quantifying a the match between a learned model and ground truth.

cs(Pia, Pib) =
Pia · P T

ib

kPiakkPibk
(2.19)
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(a) Synthetic natural movie model (b) Real white noise model

Figure 2.3: Cosine similarity between models: for synthetic natural movie responses
(a) and real retinal responses to white noise(b). Within each panel, left column shows matrix
of cs values between all cell assembly pairs across a pair models. Top, with arbitrary order
due to learning algorithm stochasticity. Bottom, with cell assemblies matched across models
based on cs. Right of each panel shows the pair of P̄ia matrices with columns, cell assemblies,
aligned to maximize cs across all matched pairs. cs for each match is shown in blue bars
in panel bottom right. Panel b illustrates the necessity of a null model for the cs quality
metric. Although both panels illustrate similar cs values after CA matching (0.75 vs 0.72),
the improvement from null model before matching (0.13 vs 0.58) is quite different.

Raw values of this average cosine similarity can be biased by the statistics of vectors
compared. Specifically, the measure can take systematically larger values for populations
of random vectors with near-zero elements because it includes division by vector norms.
This effect is particularly pronounced in models trained on retinal responses to white noise
stimulus because P̄ia is initialized with small random noise and cell assemblies do not change
from that initialization when they are rarely inferred due to lack of structure in training
data, see figure 2.3b. Thus, it is important to compare the cosine similarity measure averaged
across all matched cell assemblies to a null model, which characterizes the expected average
value for a random matching of the same group of vectors. We use the diagonal mean in the
cosine similarity matrix prior to cell assembly matching (compare right top panel of figure
2.3b to same in figure 2.3a) for a null model.

In real retinal data, ground truth cell assembly structure and activity does not exist.
Regardless, we can build confidence in the cell assembly structure discovered by the algorithm
by a cross-validation protocol. Here, with synthetic data, we show that structure found
reliably and robustly by multiple models trained independently on different splits and random
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samplings of data also exists in the ground truth model with high likelihood. Fig. 2.4 shows
the average CA cosine similarity between pairs of models as well as between each model and
the ground truth. When multiple models have significant overlap, they also overlap with the
ground truth to a similar degree in both the natural movie and white noise cases. Fig. 2.5
shows that this is also true for individual cell assemblies.

(a) Synthetic natural movie model (b) Synthetic white noise model

Figure 2.4: Modelling synthetic responses to natural movie vs. white noise

stimulus: Cosine similarity for 6 learned models and ground truth (GT) for synthetic
natural movie responses (a) and synthetic white noise responses (b). Value and color in
each box indicate improvement above null model after CA matching. Details for box at
intersection of Mod2 and Mod1B (0.61) in panel a are illustrated in Fig 2.3a. Each model’s
overlap with the GT is roughly correlated with the model’s overlap with other models. This
correlation is further unpacked for Mod2 and Mod1B in panel a and for Mod2 and Mod1 in
panel b in Fig 2.5a and 2.5b respectively.
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(a) Synthetic natural movie model

(b) Synthetic white noise model

Figure 2.5: CA structure in multiple models matches GT. In panel a, for synthetic
natural movie responses and in panel b, for synthetic white noise responses. Within each
panel, left plot shows cs between each matched CA in a model pair on the x-axis and between
each model’s CA and its matching GT CA on the y-axis. One model is in blue, the other in
green, with red ’o’ indicating smaller cs between model and ground truth. Black diamond
indicate where two models agree on same ground truth CA. Larger blue and green ’+’ show
error bars mean and std of each model’s CA population. Right plot in panel shows distribution
of points from the unity line. Mass near zero indicates CA triplets that share similar cs
values, that is where structure in the GT is robustly found by multiple models and structure
found by only one model is not in the GT. The CA match is stronger between model pair as
well as between ground truth and each individual model with natural movie vs white noise
model. Pearson correlation coefficients for three scatter groups in left plots are shown in
legend on the right.

Directly comparing models fit to retinal response statistics to natural movie and white
noise stimuli, we find interpretable differences in parameters of those fit models (end of section
2.4). Under the assumptions of the model, natural movie stimuli activate fewer cell assemblies
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which contain more cells that more consistently participate in the assembly. By contrast,
responses to white noise stimuli are captured in a model with noisier, smaller cell assemblies,
more of which must be active on average to explain observed spike-words. Moreover, training
models on data generated from these two synthetic models, we find difference in the model’s
ability to learn the structure in these data. Data containing larger and stronger cell assemblies
fewer of which are active at any given time is understandably easier to learn. In figures
?? and ??, we compare single learned models trained on data generated from synthetic
natural-movie-response-like and white-noise-response-like models, respectively. We observe
that structure is more easily found in synthetic responses to natural movies. Finally, we
also observe that ground truth structure is more robustly learned across multiple trained
models for synthetic natural-movie-like responses than for synthetic white-noise-like responses,
compare figures 2.4a and 2.4b.

(a) Synthetic natural movie model (b) Synthetic white noise model

Figure 2.6: Comparing Models learned on synthetic data fit to different stim

responses: natural-movie-like (a) and white-noise-like (b) responses. Within each panel, top
boxes show P̄ia matrix in GT and learned model, columns indicating CAs and y-axis, cells.
Right bottom shows the signed error between GT and learned P̄ia’s. Note sigmoid colorbar
to accentuate small differences. Unfilled boxes in learned P̄ia and error show active cells in
GT CAs. Left bottom scatter plot shows Q, in green, and ~Pi, in blue, parameters in learned
model (y-axis) vs. GT (x-axis). Points near y = x indicate correctly learned parameters.
Parameter initialization are shown in gray. Cyan points in left middle show the number of
times each CA was inferred across all data after model learning. In the white noise model,
fewer cell assemblies are learned as indicated by more blue and red in the signed error. The
model also relies on noisier ~Pi parameters (blue o’s further from 1 and below y = x line) to
account for increased spike-word variability. This model is more difficult to learn because cell
assembly participation is weaker, lighter gray squares in GT P̄ia.
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2.5 Retinal Data Exploration

Outline
We apply the model to spike trains collected from in vitro rat retinal ganglion cells (RGCs).
Activity from 329 cells of 11 different cell types was recorded using a multielectrode array
by the lab of Greg Field. We used data from 55 Off-Brisk Transient (offBT), 39 Off-Brisk
Sustained (offBS) and 43 On-Brisk Transient (onBT) cells. The remaining 8 cell-types did
not have data from a sufficient numbers of cells for our analysis. Cell receptive fields (RFs)
were fit using responses to 1 hour presentation of white noise stimulus. The data we analyze
consists of RGC spike-train responses to 200 trial repeats of 5 second clips of white noise and
natural movie stimulus. Natural movie stimulus from the "Cat Cam" data set [betsch2004].

Responses from offBT cells to white noise and natural movie, shown in Fig. 2.7, are clearly
different visually. Loosely, responses to natural movie are more smeared out in time and
more structured spatially across the cell population. Importantly, the geometric organization
of cell RFs in 2D visual space is maintained in the cell ordering shown. That is, nearby RFs
are adjacent on y-axis. Though individual cells seem less reliable in time under natural movie
stimulation, our analysis aims to uncover whether trial-to-trial variability is shared across
the population. In other words, we search for groups of cells within temporal smears in the
bottom of Fig. 2.7, varying together so that population spike-words remain within single
trials even if the precise time of spike-words relative to the stimulus changes. We call these
groups, "cell assemblies" (CAs).

(a) responses
(b) receptive fields

Figure 2.7: PSTHs and RFs of Off-Brisk Transient RGC: Color indicates #Trials in which
an offBT neuron (y-axis) spiked during a 1ms interval of stimulus presentation (x-axis). Top,
responses to white noise. Bottom, responses to natural movie. Geometric RF relationships in visual
space maintained in cell ordering, panel b.

Raw spike trains are binned at 1, 3 and 5ms to form spike-words, wider bin widths allowing
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for detection of near-synchronous activity, to construct a data corpus of between 500k and
1M spike-words. Sample distributions of spike-word statistics are shown in Fig. 2.2 for offBT
cells show both white noise and natural movies, in green and blue respectively. After binning,
spike-words are randomly sampled, ignoring activation time and stimulus, to train a model
using EM algorithm, as described in section 2.3. We choose the latent dimension (~z) to be
the same size as the observed dimension (~y) and explore both binomial and "Egalitarian
Homeostatic" priors.

First, looking only at models trained on each data set, we inquire: "Is CA structure
different in white noise responses vs. natural movie responses vs. GLM simulated responses?"
We focus our discussion here on models fit to 55 offBT RGC responses to both stimuli and to
simulated responses to natural movie from a GLM model fit to these cells. Similar results
were found for models trained on responses from [offBT,offBS] and [offBT,onBT] cell-type
combinations as well. Cell assembly structure discovered in natural movie responses was
qualitatively different from both models trained on white noise responses and GLM simulated
natural movie responses, while the two others resembled one another. Fig. 2.8 shows three
typical Pia matrices trained on each data set. They clearly indicate that the model trained
on natural movie responses in (b) has learned more CAs with varied structure than model
trained on white noise responses from the same cells in (a) or to model trained on GLM
simulated responses to the natural movie in (c).

(a) white noise responses (b) natural movie responses (c) GLM simulated responses

Figure 2.8: Models trained on responses to different stimuli: Pia matrices for models trained
on retinal responses to white noise stimulus(a), natural movie stimulus (b) and GLM simulated
responses to same natural movie stimulus (c). Cell ID on y-axis, CA ID on x-axis. Yellow indicates
cell membership in CA, p(yi = 1|za = 1) ⇠ 1.

Following the cross-validation framework laid out in section 2.4, we split spike-words in
half and train one model on each split, using the other half for cross-validation. We repeat
this process 3 times, training a total of six models for each data set. In synthetic data, we
observed that structure found by multiple models matched embedded ground truth with high
probability, see Figs. 2.4 & 2.5. We propose that CA structure discovered reliably across
multiple models reflects valid structure in real spike-trains as well. Comparing Fig. 2.9 (b)
to panels (a) & (c) indicates that models trained on natural movie responses have learned
valid higher order structure, while the other two have not. First, models trained on natural
movie responses are changed more from their initialization, vector of �Init in (b). Latent za’s
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are activated more often and change to represent commonly occuring structure in natural
movie responses. Second, models independently trained on natural movie responses share
more structure, evinced by higher values in matrix off diagonals in (b). Finally, the average
conditional probability of data in the cross-validation set, p(~y|~z), is highest for models trained
on natural movie responses. These provide three clear indications that CA structure is
discovered in natural movie responses, that multiple models robustly learn that structure
and that each model generalizes to data that was not used to train it.

(a) white noise responses (b) natural movie responses (c) GLM simulated responses

Figure 2.9: Repeatable structure in responses to different stimuli: Similarity of CA
membership structure across model pairs for six models trained on each of three spike-word data
sets. Note relationship to Fig. 2.4. Models trained on white noise retinal in responses (a), natural
movie responses in (b) and GLM simulated responses to same natural movie stimulus in (c). Within
each panel, matrix off-diagonal elements shows average �cs (relative to null without CA matching)
between all matched CA pairs within a model pair. Here diagonal value indicates average between a
model and all other models, i.e. the average across a row. Numbers on left show average conditional
probability computed on hold out set of half of all spike-words, i.e., cross-validation. Vector on right
shows average change from initialization for all CAs in model, defined as 1� cs.

Given these findings, we focus our analysis to models trained on natural movie responses
and models trained on GLM simulated responses to natural movie for significance assessment.

With real data, each CA can be placed in space because cell RFs have been fit using
reverse correlation on white noise responses, see Fig. 2.7b. Further, after a model is trained,
CA activations can be placed in time by inferring latent activity with fixed model for each
observed spike-word in the entire data corpus. Because CAs can be placed in space and time
with real data, we can further probe the spatial membership structure and temporal activity
of CAs in retinal responses to natural movie stimulus, asking questions such as:

1. How big are CAs? Are their membership boundaries crisp?

2. Are individual CAs found robustly across models, with similar spatial membership
structure and similar temporal response profiles?
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3. Are spike-words observed during CA activity significantly different from what the
textbook retinal model would predict for the same stimulus?

4. Qualitatively, what shapes do CAs take in the image plane?

5. In models trained on multiple cell-types, do CAs cross cell-type boundaries?

6. Do CAs seem to activate in response to certain stimulus features?

The remainder of this section is organized as follows. We first introduce four metrics
that will be leveraged to address some of the questions listed above. We present the model’s
findings on retinal responses, relying on statistics and metrics developed. We conclude by
showing some intriguing example CAs with structure more complex than believed to exist in
retina. We remind the reader that this is the first time this method has been applied to real
neural data and the results, while inconclusive, are encouraging. Finally in the discussion
section, we place the method and results in a broader context, highlighting remaining model
development, future experiments and data analysis.

Metrics for cell assembly model assessment
Here, we motivate and construct 4 metrics establishing a framework to assess the types,
quality and significance of cell assemblies discovered by various models. Note that each
metric is computed for single cell assemblies, not full models as done above. Along with the
formulae, we provide a brief description of the structure each captures along with illustrative
examples from CAs discovered in retinal data.

(M1). Membership Crispness (CM) provides a measure of how well defined CA
"boundaries" are. Based on a d0 metric, from Signal Detection Theory, CM quantifies how
separable a signal distribution (cells determined to be "in" a CA) is from a noise distribution
(cells "out" of CA), both assumed normal. Three illustrative examples of CAs with varying
CM values are shown in Fig. 2.10. CM is computed as

CM =
µin � µoutp
�2
in + �2

out

(2.20)

with µin and �in the mean and standard deviation of Pia values of cells determined to be
"in" the CA, the remained of cells being labeled as "out". The method we use for defining
cells that are "in" a CA is based on ordering membership probabilities, Pia column values,
computing derivatives in sorted values, �P and choosing elements that pass µ+ � of both
Pia and �P . Thus, based on Pia values, we can determine which cells are members of a CA
and quantify how sharp are its’ boundaries.
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(a) CM = 0.2 (b) CM = 0.6 (c) CM = 0.9

Figure 2.10: Membership Crispness CM examples: CAs ranging from diffuse (a) to
crisp (c). In each panel, numbered ovals represent cell RFs with redness indicating strength
of CA membership. Legend above. Corresponding column in Pia shown on right.

(M2). Cross-validation Robustness (RX) quantifies how reliable or repeatable cell
assembly membership structure and temporal activations are across multiple models trained
on the same data. For a single CA, average membership cosine similarity (csM ) with matching
CAs in other models can be computed as discussed in section 2.4. Additionally, for real data
where CA activations occur in time, the analogous temporal quantity (cs⌧ ) can be computed
by binning CA rasters and computing cosine similarity between the PSTHs of matched
CAs. Observing that membership and temporal hcsi across models are highly correlated, see
Fig. 2.11c, we combine them into a single Robustness measure,

RX =
p

hcs⌧ iX · hcsMiX (2.21)

where hcsiX indicates average similarity across matching CAs in other models trained on the
same data. RX is bounded between 0 and 1, obtaining large values only when temporal and
membership similarity across matching CAs in multiple models are both high.
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Figure 2.11: Cross-validation Robustness RX example: (a). Raster plot time vs. trial. CA
activity in red and member cell spikes in other colors. (b). PSTH from shown CA on top line and
PSTHs from matched CAs in other models below, (model, CA id) indicated on the left. PSTHs
normalized with total number of activations in white on right. (f). Columns of Pia matrices for
shown CA, on left, and its counterparts in other models. (c). Membership vs. temporal cosine
similarity for each CA in model with matching CAs in 5 other models, averaged across 5 matches.
For clarity, hcsM iX on x-axis computed from panel f and hcs⌧ iX on y-axis computed from panel
b. (d). Cross-validation Robustness RX vs. Membership Crispness CM metrics for all CAs in one
model. CA shown here highlighted with red "50" in panels c & d. (e). Cell RFs, redness indicates
CA membership strength, Pia value, and outline colors match raster colors in panel a.

(M3). Cell-type Heterogeneity (H) is a measure of how mixed the membership of
a cell assembly is across a pair of cell-types. We define heterogeneity as

H =
min(#ct1,#ct2)

avg(#ct1,#ct2)
(2.22)

where #cti is the number of cells of type i participating in the CA. Method for defining CA
members discussed in section on membership crispness metric. H is bounded between 0 and
1, requiring mixed CA participation to be nonzero, and taking a maximum value of 1 when
each cell type contributes half of the cells to the CA. A sample of a cell assembly involving
offBT and offBS cells with high heterogeneity value is shown in Fig. 2.12.
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Figure 2.12: Cell-type Heterogeneity H example: Two cell assemblies with high hetero-
geneity. (a) Single CA comprised of offBT (red, left) and onBT (blue, right) cell types. Ovals
indicate cell RFs and color intensity indicates membership strength, i.e., Pia value. Legend
above.

(M4). Difference from Null (�Py) is a measure of the significance of a CA. It
captures the degree to which observed cell firing associated with a CA differs from predictions
of the textbook independent, rate-coding retinal model. We employ an independent GLM
null model where each cell has access to the stimulus within its RF and its own spike-history.
For each observed spike-word ~ys during each za activation, we compute p(~ys)null at every
point in time based on GLM simulated spike-rates and ~ys. Averaging across all spike-words
observed while za is active yields hp(~ys)nulli8~ys|za=1, the green curve in Fig 2.13. PSTH for
za is shown in red. Differences highlight spike-train structure captured by za in the latent
variable model which is not explained by rate-coded stimulus correlations. We quantify the
difference at a particular time resolution by binning PSTH and p(~ys)null and computing the
cosine similarity between their traces. Specifically,

�Py = 1� cs⌧ (PSTH(za), hp(~ys)nulli8~ys|za=1) (2.23)

where cs⌧ is the temporal cosine similarity (see Eq. 2.19) between the PSTH of za and the
probability of spike-words observed during za activation under the GLM null model. Binning
at different time resolutions reveals temporal dependencies between synchronous activity and
spike-rates, not nearby large peaks in Fig 2.13 and decreasing �Py for coarser binning. There
are some caveats for this metric, the discussion of which we save for supplemental material.
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Figure 2.13: Difference from Null �P (y)null example: PSTH of za in red. In green, p(~y) under
GLM null model for all ~y observed when za = 1. Binning curves at [1,10,50,100] ms yields �Py =
[.79,.78,.61,.51]. In blue, KL-divergence between N-dimensional multivariate Bernoulli distributions
of p(yi)null and p(yi|za = 1, z6a = 0), discussed further in supplemental section B.

Results: Exploratory Data Analysis
Although we can show clearly that structure is discovered in retinal spike-train responses
to natural movie stimulus, it is unclear what that structure represents and what induces it.
It would be premature at this stage to draw strong conclusions or make general statements
from the model results because CAs found are quite varied and the stimulus presented was
limited. Rather here, armed with the metrics developed above, we attempt to catalog cell
assemblies discovered in retinal responses to natural movie and showcase some intriguing
examples of CAs demonstating spatial membership structure and temporal activity beyond
what is believed to exist in retina.

Statistics of these metrics computed for all CAs in one typical model trained on [offBT,
onBT] responses to natural movie are shown in Fig. 2.14. Statistics shown look very similar
for other models trained on [offBT, onBT] responses, and qualitatively similar for models
trained even on offBT responses and [offBT,offBS] responses to natural movie. Here, CA sizes
range from 2-20 cells (out of 94 cells total). In models trained on [offBT] responses alone, with
55 cells, the upper end was around a dozen cells, distributions of CA sizes resembling (a), with
proportionally more small and crisp CAs. Sorting and coloring CAs by size reveals that CM is
correlated with CA size, evinced by the vertical color gradient in (c) and qualitative difference
from left to right in the sorted Pia matrix in (b). Many CAs are robustly learned across
models (c) and significantly different from GLM predictions on fine and coarse time-scales
(d). Finally, although the majority of CAs do not cross cell-type boundaries, a number of
heterogeneous CAs are found as well (e).
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Figure 2.14: Statistics of CA metrics in typical model trained on natural movie responses
from 94 [offBT,onBT] RGCs. (a). Sorted CA sizes, colors consistent throughout. (b). Pia matrix,
white line indicates break between population offBT below and onBT above. (c). Membership
Crispness CM vs. Cross-validation Robustness RX , each point a CA. Cross shows µ & � across all
CAs. Note that vertical color gradient indicates correlation between CM and CA size. (d). Difference
from Null �Py with 1ms binning vs. with 100ms binning. (e). Heterogeneity H metric histogram.

Here, we share the exploratory data analysis process, showing examples, discussing of
trends observed and noting unresolved issues. We resist the urge to present the results as
crystalline because the process and bird’s-eye view will be most useful if the work is to be
extended in the future. First we sorted CAs based on one or a few of these metrics. Then we
characterized their performance in the other metrics searching for correlations. We visualized
the spatial and membership structure of participating cells as well as temporal responses of
CAs themselves, searching for covariates in stimulus and GLM-predicted firing rates. Though
posed separately, we address the questions at the beginning of this section in parallel because
much of the insight to be gained about structure discovered emerges in their interactions.

We begin by addressing issues of CA crispness, cross-validation robustness and statistical
significance relative GLM null model predictions within a single cell-type population. In
responses from the [offBT] population, we find a variety of CAs from crisp nearest neighbor
pairs (a) to large diffuse groups (c). Fig.2.15 shows 9 CAs discovered in 3 different models.
Although we find robust CAs that are significantly different from null predictions at all
crispness values, reflecting perhaps limitations in the independent GLM null model and in
the �Py metric (see supplement section 7), we focus on CAs with crispness values between



CHAPTER 2. PROBABILISTIC CELL ASSEMBLY MODEL 57

0.5 and 0.9, expecting interesting and interpretable CAs to contain a few well defined cell
members.

(a) Crisp (CM > 0.9) (b) (0.8 > CM > 0.6) (c) Diffuse (CM < 0.5)

Figure 2.15: CAs Membership Crispness examples: From 3 separate models trained on
[offBT] natural movie responses. In each panel, colored ovals RFs of cell members from 3
separate CAs with similar CM values. Small inset scattters RX on x-axis vs. CM on y for all
CAs in each model with shown CAs highlighted in matching color.

Looking further into z16 and z27 the green and blue colored CAs in Fig. 2.15b respectively,
Fig. 2.16 shows that they represent elongated, horizontally oriented correlated fine-time firing
among groups of 4 & 5 neighboring cells. Both CAs have crisp, well-defined membership
and are robust under cross-validation paradigm (c). �Py computed at 1ms vs 100ms time
resolutions scattered in (d) indicates that both CAs are involved in activity significantly
different from GLM predictions. Significant differences persist at coarser time-scales. Temporal
response traces in (e) & (f) reveal that even though the CAs are close in proximity and share
horizontal orientation, CA activations in red and GLM predictions in green are different.
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Figure 2.16: Two elongated, yet crisp sample CAs: RFs from CAs z16 and z27 in panels
(a) & (b) are same as green and blue ellipses in Fig. 2.15b. In (c), crispness and robustness
scattered for all CAs in model with two shown highlighted in red. In (d), �Py at 1ms vs
100ms scattered in (a). Temporal response traces of CA PSTH in red and GLM hp(~y)i
predictions in green shown in (e) & (f).

Fig. 2.17 showcases six out of more than a dozen visually interesting CAs found in a single
model with high cross-validation robustness and associated with activity significantly different
from GLM-predictions. These were discovered by sorting CAs by RX and �Py100ms and
examining high ranking results. Metric values are scattered in bolded box upper center with
shown CAs highlighted by color. While all CAs featured take only modest crispness values
(0.4 < Cx < 0.6), visual inspection reveals reasonably discernible boundaries. Moreover,
several CAs resemble elongated shapes, edges or curves (specifically z34, z32, z35, z11), possibly
encoding for extended edges in the natural movie stimulus. Recall that activity is more
synchronous that predicted by a rate-code model and therefore can not be explained simply
by stimulus correlations alone.
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Figure 2.17: Six robust CAs with high �Py in one model: Each surrounding panel
shows RFs of [offBT] cells with redness reflecting strength of membership in CA. CA id in
colored number in bottom left of each panel. Scatter plots in bolded box show metric values
for each CA in model with shown CAs highlighted in colored numbers matching id.

To our knowledge the question has not been asked yet whether fine-time correlated spiking
activity exists across mixed populations of retinal cell-types responding to natural movie
stimulus. We now shift focus to models trained on multiple cell types to investigate whether
learned cell assemblies cross cell-type boundaries. Fig. 2.18 contrasts two typical models
trained on mixed cell-types. For each data set, the other 5 models trained resemble those
shown. In both data sets, the majority of CAs learned segregate within one or the other
cell type. In responses of [offBT, onBT] cells, we find more heterogeneous indicated by the
slight shift in the distribution to higher heterogeneity values in panel (b) relative to (a).
Though subtle, this trend towards more heterogeneous CAs crossing [offBT,onBT] cell-types
is consistent across others models learned.
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(a) [offBT,offBS] (b) [offBT,onBT]

Figure 2.18: Heterogeneity of CAs across cell-types: (a). Model trained on natural
movie responses from 55 offBT and 43 offBS RGCs. (b). Model trained on responses from 55
offBT and 39 onBT RGCs. In each panel, Pia matrices shown on top with columns indicating
CAs. Dashed white line shows boundary between offBT cells below and other type above.
Bottom shows histogram of H metric values for all CAs in model. Black arrow indicates
consistent difference across multiple trained models.

We find a number of interesting heterogeneous CA within the [offBT,onBT] populations.
They tend to form extended regions on and off cells that border one another, perhaps
performing some sort of push-pull computation or edge enhancement. Some of these CAs
are largely explained by spike-rates and some are not. It is unclear the difference between
them other than the �Py metric. Fig. 2.19 shows four heterogeneous CAs learned in a single
model. All are learned robustly across models and moderately crisp right top. All four have
similar structure with clusters of on cells bordering clusters of off cells. Two however are
significantly different from null model predictions and two are not. At present, it is unclear
why.
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Figure 2.19: Heterogeneous [offBT,onBT] CAs: Four strongly heterogeneous CAs
learned within a single model are shown on bottom. Each boxed plot represents one CA,
red ovals showing RFs and participation of offBT cells and blue ovals, onBT cells. Scatter
plots above show Rx vs. CM on right and �Py at 1ms and 100ms time resolutions on left.
Shown CAs are highlighted in color. Green labeled CAs are significantly different from GLM
predictions and red labeled CAs are not.

Below, we present the four heterogeneous CAs displayed in Fig. 2.19 along with their
temporal responses and stimulus frames during and ⇠ 333 ms prior to their activation.
Figs. 2.20, 2.21, 2.22, 2.23 show precise and repeatable activation across trials in bottom



CHAPTER 2. PROBABILISTIC CELL ASSEMBLY MODEL 62

PSTH trace and the spatial layout of offBT (red) and onBT (cyan) RFs in top center.
Combined RFs of member cells appear to form extended shapes within cell-type which are
interleaved across cell-types. Moreover, they appear to be loosely oriented with prominent
features, changes and/or movement directions in the stimulus shortly before activation.
Stimulus frames during and ⇠ 333 ms prior to activation are shown on top right and left of
each figure respectively. The effect appears more pronounced in the two CAs with low �Py
values, Figs. 2.20, 2.21, it is also there in the two CAs with high �Py values. We do not
understand this, and leave it to future investigation to sort out.

Figure 2.20: CA z68 and stimulus: Not significantly different from GLM null model.
Within each panel, Center top shows cell RFs of offBT (red) and onBT (cyan) member
cells. Box matches image dimensions approximately. Bottom shows PSTH of CA activation.
Right top shows stimulus at time of CA activation, blue peak in PSTH. Left top shows
stimulus ⇠ 333ms prior to CA activation.

Additionally, the time-lag found here is interesting considering that the temporal responses
of individual cells are ⇠ 150ms. See Fig. 2.24. This time difference circumstantially supports
the hypothesis presented in chapter 1 that spike alignment through phase relaxation is encoding
extended stimulus feature grouping, i.e., a coarse image segmentation. The relaxation has
only ⇠ 1/3 second to occur since that is the average fixation time between eye saccades. The
computation introduces large spatial and temporal correlations into spike trains, which are
then strongly suppressed during saccades to allow for a repeat computation at the next
fixation point. To explore this computation, a useful stimulus for future work would be
one which includes simulated eye saccades in natural movie/image stimulus. Though the
evidence presented here is qualitative and anecdotal, it is intriguing and encourages further
investigation. It points to the possibility that synchrony introduced into spike-trains of these
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Figure 2.21: CA z67 and stimulus: Not significantly different from GLM. Explanation in
Fig.2.20.

Figure 2.22: CA z5 and stimulus: Significant difference from GLM. Explanation in Fig.2.20.

cells might facilitate some sort of push-pull computation or edge enhancement, encoding a
non-local gist representation of the stimulus.

Some final notes. Heterogeneous CAs were also found in [offBT,offBS] responses (not
shown) but the interpretation of observed CAs spanning two off cell-types is murkier because
it is unclear what they are expected to look like. Their analysis remains for future work.
Also, analysis to connect [offBT] CA activity to stimulus has not been carried out rigorously
either and it will likely yield some similarly tantalizing, yet inconclusive results. Further EDA
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Figure 2.23: CA z19 and stimulus: Significant difference from GLM. Explanation in
Fig.2.20.

Figure 2.24: Measured temporal response profiles by cell type: Units of x-axis are
stimulus frames or ⇠ 16ms.

investigations should be performed on this data and more rigorous analysis on future data
collections.

2.6 Discussion

In this work, we introduced a novel probabilistic latent variable model to detect cell assemblies
in spiking neural data. We extended the "Noisy-OR model" [heckerman1990] to allow
individual variability in observation vectors, adding Pi parameters. We also extend the
Bernoulli prior on latent activation to a "Homeostatic Egalitarian" prior and find improvement



CHAPTER 2. PROBABILISTIC CELL ASSEMBLY MODEL 65

in some cases. The current model is related to binary soft-clustering, where binary data
points in high dimensional space are assigned to cluster centers. It is also related to non-linear
sparse coding [olshausen1996], with the difference, that in our method both observed and
latent variables are binary, not real-valued. Other approaches have previously used latent
variable models to analyze spiking data, for example, restricted Boltzmann machines (RBMs)
[koster2014]. In contrast to an RBM, our model is a directed graphical model, a causal
model of the data where ~z’s can be interpreted as causes of spike-words. We are not aware of
earlier approaches using directed graphical models to analyze neural data.

We have developed several variants of our model, differing in the priors for the latent
representations, and vetted them on synthetic spike data, whose statistics was matched to
neural responses to different types of stimuli, white noise and natural movies. We observed
that our method discovered larger and more crisp cell assemblies, each with lower probability
of being active at any one time, in synthetic data matched to the responses of natural movies,
as compared to synthetic data matched to the responses to Gaussian noise. We validated how
consistently the method found cell assemblies in the synthetic data fit to real spike-trains,
finding that structure in the model fit to natural movie responses was more easily learned.
Finding that ground truth CA structure embedded into the data was robustly learned across
multiple models, we developed some assessment tools which we could then apply to models
trained on real data.

We then applied our method to retinal spike-trains recorded from cells responding to
white noise and natural movie stimulus. We showed biological results which, while early
and incomplete, reveal cell assembly structure in retinal spike trains, inconsistent with the
traditional model of retinal encoding. The CA structure we found was strongly dependent
on the type of stimulation. While little CA structure was found in responses to white noise,
our method discovered large numbers of robust cell assemblies of various sizes and shapes
in retinal responses to natural movies. The crispest CAs often included a few cells which
were nearest neighbors in the receptive field mosaic. The RFs of other cell assemblies formed
elongated edges and curves in the mosaic, the least crisp CAs formed diffuse large clusters.

Using our method to analyze responses from different types of retinal ganglion cells in
parallel revealed interesting results. A large fraction of CAs were entirely homogeneous,
exclusively including one cell type. However, we also found CAs that were heterogeneous. For
example, a few CAs included both offBT and onBT ganglion cells and aligned intriguingly
with structure in the movie stimulus shortly before activation. The temporal response
properties of CAs seemed to correlate with their size and complexity, with smaller pairwise
PSTHs looking closer to single cell PSTHs and larger more complex CAs being activated
precisely at one time in the stimulus. Importantly, spike-words observed during many of the
CA activations had extremely low probability under an independent GLM model learned on
the same data.

The extent of the analysis which could be performed on the retinal data provided was
limited however due to several properties of the experimental data – which were collected
before our method was available. Because both stimuli essentially consisted of only 150 image
frames. Even performing simple reverse correlation of activity onto stimulus was infeasible
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in such a data limited regime. In future experiments, diverse natural movie or naturalistic
stimulus would be shown for longer duration without trial repeats.

What are the potential questions that can be addressed, using our method in combi-
nation with optimally designed experiments? Inspired by the work of [deny2017] and
[koepsell2009] and building on the work discussed in chapter 1, a question that, for example,
could be addressed is how complex natural scenes, correlated in both space and time, are
encoded by retina. The experiment to address this question would collect responses to a
variety of natural or simple naturalistic movies. Scenes should contain objects that move both
laterally and in depth, move relative to one another, and occasionally occlude one another.
Specifically, the stimulus should include frames when nearby cell RFs process a common
segment and frames when the same set of nearby cells is separated by an image segment
boundary. Contrasts and textures should be varied through out the data set to provide a rich
and challenging assortment of complex scenes to parse. Including large and abrupt shifts in
the visual scene which mimic eye movements would provide insight into how the retina uses
or ignores large bursts of activity at stimulus onset or just after a fixation. The experimental
data and the results of the CA analysis could then be compared with predictions of our image
segmentation model of retina described in chapter 1.

Our cell assembly detection method is different from others, for example Unitary Events
Analysis [grun2010], because we learn a real-valued probabilistic representation of cell
assemblies and allow an observed spike-word to be represented by a combination of latent
variables. This allowing us to detect noisy repeats of commonly occuring patterns. UEA
detects only exact repeats of binary patterns and requires many trial repeats to elicit repeat
responses. We do not require stimulus repeats and in fact suggest for future data collection
to do away with stimulus repeats in order to more fully sample the space of natural images
and drive the retinal cell population in a wider variety of ways. UEA assesses the significance
of found patterns by comparing number of observations of an exact pattern relative to the
number predicted by a null model. This key difference prohibits direct comparison to UEA.

Finally, we wish to reiterate that while much of the discussion in this work has focused
on retina, this method is applicable to any neural data where near synchronization of spike
activity is suspected to be meaningful. Of course, our method is agnostic of mechanistic
cause, whether the synchrony is caused by common input, recurrent excitation or other causes.
While much remains to be done in this arena, the work presented here lays a firm foundation
to investigate fine-time ensemble coding in spiking neural data.
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Conclusion

Motivated by the gulf between observed anatomical structure and response complexity in the
retina on one hand and the parsimony in models and our understanding of that system, we
endeavor in this body of work to explore what else this under-appreciated system might be
doing. Modelling RGCs as a bank of independent filters that encode local image features in
the spike rates flies in the face of "occam’s razor" and begs the question what is the function
of the rest, the majority, of the intricate retinal circuitry. That is, why connect neurons
together if they are coding independently? Or perhaps the better question, why hypothesize
a model of independent coding when retinal neurons interact through a complex anatomical
network and demonstrate rich activity unexplained by that model during ethologically relevant
stimulation?

In this work, we approach the topic of ensemble coding in retina in two ways. First
we ask, what visual information exists in the retinal ensemble above and beyond the sum
of independent rate-coded representations of individual ganglion cells? We explore image
segmentation using phase coding in the retina, hypothesizing that fine-time correlations
in spike trains are induced by phase interactions influenced by the visual stimulus and
that fine-time correlations, informative about segments in an image, are multiplexed into
spike-trains along with rate-coded local stimulus features. In the second effort we ask, how
would one find evidence of these fine-time correlations exist in retinal spike-trains if each
latent cause activates observations stochastically, observations from multiple latent causes
can be mixed together and and if these observations are overlaid on top of other noisy signals?
In pursuit, we explore a statistical model that aims to find cell assemblies, or groups of cells
that fire are often coactive, possessing fine-time correlations.

While inspired by and applied to retina, each project stands apart from this system as well.
Grouping related objects through phase interaction has been posited throughout the brain
and is equally relevant in reasoning and cognition, an example being "the binding problem"
as it is in segmenting images. Synchrony and fine time relationships between neural activity
has been studied extensively throughout the brain. Moreover, while they are related to one
another, the two halves of this work stand alone and contribute to the ongoing scientific
conversation about retinal and, more generally, neural coding.

Both efforts lead to interesting results that call into question the textbook model of retina.
In more ways than one, the retina is a window into the brain. It is a relatively simple, model
system isolated from the rest of brain that more readily allows investigation than cortex
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or deeper brains structures. We have shown proof-of-concept in both efforts that warrant
further study both in retina and elsewhere. We hope that the reader agrees and will perhaps
carry on the work.
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Appendix A

Image Segmentation Supplement

A.1 Optimal Gaussian RF size

There are multiple independent sensor models to which we could compare the network models.
We constrain our sensors to have access to relatively simple image features similar to those
which the retina would encode. For comparison, we compute image segmentation using two
independent sensor null models. The first uses raw image pixels and the second passes image
pixels through Gaussian filters that mimic retinal ganglion cell (RGC) receptive fields (RFs).
Center-surround RGC RFs are modelled by a difference-of-Gaussian filter with an excitatory
center and inhibitory surround. Gaussian filters fit to the centers and surrounds of primate
midget and parasol ganglion cells were observed to be strongly center dominant [croner1995].
Thus the receptive field of an RGC can reasonably be modelled by a single excitatory Gaussian
center to first approximation and the optimal Gaussian RF size reasonably matches average
RGC RF sizes measured in primate retina.

In our simulations, the phase initialization of each individual oscillator as well as the
connectivity strength between oscillators are both determined by the cell’s activation - that
is, how closely incoming stimulus matches the filter that is defined as a cell’s receptive field.
We began with the simplest receptive field model, each cell responding to the greyscale pixel
intensity value at its location. Then, motivated by the biological fact that retinal receptive
fields are spatially extended, we extended the receptive field model for each oscillating cell
to be a localized Gaussian RF kernel. To determine the best Gaussian RF size (�), we
numerically explored a range of spread values and kept the one that provided best average
segmentation performance across 500 image patches in the Berkeley Segmentation Dataset
(BSDS) [martin2001]. Segmentation performance was determined by F-measure calculated
on the match between spatial gradients in phase maps output by network models and ground
truth boundaries drawn by human subjects. Interestingly, we determined that a Gaussian
RF kernel with � = 1 pixel performed best empirically, improving the F-measure value by a
modest but statistically significant 0.04 points over raw image pixels.

Motivated further by the excitatory and inhibitory center-surround nature of biological
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receptive fields in retina, we employ difference of gaussian (DoG) filters with parameters
based on retinal physiology [croner1995]. The Croner paper provides parameters fit to DoG
receptive fields for M and P cells in primate retina for eccentricites ranging from 0� 40� in its
Table 1. In contrast with LGN center-surround cells [martinez2014], retinal receptive fields
have very weak surrounds (⇠ 1/100th) compared with the strength of the center portion. From
the many receptive field parameters fit to different cell types at different eccentricities in the
primate retina, we distilled out 4 clusters that were different enough to test via simulations.
In our simulations using DoG filters with P-avg and M-avg parameter values, we did not see
image segmentation improvement over simple Gaussian filter with � = 1.

Rc Rs
Ks/Kc

P-avg 1 8 0.01
P-40� 3 13 0.06
M-avg 3 14.5 0.01
M-40� 5 12.5 0.025

Figure A.1: Primate center-surround RFs: modeled as difference-of-Gaussians. Note: Rc

and Rs in image pixels. Values are given for magnocellular projecting (P) and parvocellular
projecting (M) cells averaged across all eccentricities (avg) and at the visual periphery (�40�)
Image of measured retinal RF size from Croner 1995 [croner1995]

.

Using a simple back-of-the-envelope visual angle calculation, illustrated in Fig. A.2, and
a few reasonable assumptions we approximate the size of retinal receptive field centers and
surrounds in terms of image pixels for our models. The calculation goes as follows: Full
images in the BSDS are 321 x 481 pixels and we assume that the displayed image size is 8.5”
x 11”. Given these assumptions, an image pixel is approximately 0.02” on a side. Next, we
assume that the projection screen is placed 24” away from the eye. Then, the angle that a
single pixel subtends on the retina is approximately 0.05�. Using this relation, we convert
numbers provided in the Croner paper for retinal receptive field sizes into pixels and provide
them in Fig. ??.
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Figure A.2: Visual angle calculation schematic

A.2 Motivating modularity

Homogenization and Null Model as Expected Value of Weight
Most generally, an entry in the modularity matrix (Qij) is defined as the difference in weight
between a pair of nodes in the actual network, characterized in the adjacency matrix (Aij),
and the expected value of that weight (E[Aij ]) in a “homogenized network”, with connections
between nodes made to reflect gross statistics of the network’s connectivity.

Qij = Aij � E[Aij] with E[Aij] =

Z
Aijp(Aij)dAij (A.1)

The expected value of weights is parameterized in the null model (Nij) which is chosen to
reflect the modeller’s knowledge of network structure and connectivity.

Qij = Aij �Nij where Nij = E[Aij] (A.2)

The null model is constrained only by two considerations. First, because the networks
considered have undirected edges, both adjacency and null model matrices are symmetric,
with Nij = Nji and Aij = Aji. Second, it is axiomatically required that the total weight of
edges in the null model are equal to the total weight of edges in the actual network because
Q = 0 when all the vertices are placed in the same partition. This leads to a normalizing
constraint on the null model matrix,
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⌃ =
X

ij

Aij =
X

ij

Nij (A.3)

where ⌃ is twice the total weight of edges in the network to account for double counting in
the double sum over vertices (Note:

P
ij :=

P
i
P

j). Beyond these basic requirements, we
are free to choose from many possible null models, each one containing a different number
of parameters, requiring a different number of computations and capturing the expectation
of edge weights at different levels of homogeneity by calculating different statistics on the
adjacency matrix.

I.I.D. or Homogeneous Random Graph
The simplest null model, based on a Bernoulli or Erdos-Renyi random graph with weights
allowed to take real values ( i.e. are not constrained to be binary), assigns a single uniform
expectation weight to all edges in the network, Ā = ⌃

n2�n , which is the average edge weight in
the actual network. Note that n is the number of nodes in the network and

�
n
2

�
= n2�n

2 is the
number of possible undirected edges that connect them with all-to-all connectivity, barring
self-loops.

E[Aij|
⌃

n2 � n
] =

Z
Aij · p(Aij|

⌃

n2 � n
)dAij =

Z
Aij�(Aij � c

⌃

n2 � n
)dAij (A.4)

Nij = E[Aij|
⌃

n2 � n
] = c

⌃

n2 � n
(A.5)

Solving for c by equation A.3, we find

c =
n� 1

n
. (A.6)

Combining the I.I.D. edge weight assumption with the constraint on total weight strength,
we derive that the null model which assumes Bernoulli random graph connectivity patterns
expects each weight in the network to take the following value.

Nij =
⌃

n2
(A.7)

This is a very simple representation of the network which requires only a single number -
the average edge weight across the entire network (Ā), however it is inadequate to capture
the structure in all but the simplest networks.
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Independent-Vertex or Inhomogeneous Random Graph (N&G
Modularity)
Relaxing the “identical” assumption of the I.I.D. graph null model, the “Independent-Vertex”
model allows the expected value of each weight in the null model network to be different
(inhomogeneous). The expected value of a weight between two nodes is the product of the
degree of each of those nodes. This null model capture the expectation that two strongly
connected nodes are more likely to be connected to one another and two nodes which are
generally weakly connected are unlikely to be connected to one another. Specifically,

E[Aij|
di
n
,
dj
n
] =

Z
Aijp(Aij|

di
n
,
dj
n
)dAij =

Z
Aij�(Aij � c

di
n

dj
n
)dAij (A.8)

Nij = E[Aij|
di
n
,
dj
n
] = c

di
n

dj
n

where di =
nX

i=1

Aij (A.9)

where n is the number of vertices and di is the “degree” of node i or strength of connectivity
from node i to all other nodes in the network, defined as the row (or equivalently column)
sums of the adjacency matrix. Solving for c by equation A.3, we find

c =
n2

⌃
(A.10)

making the full null model

Nij =
didj
⌃

. (A.11)

This requires n numbers or statistics calculated from the network to characterize the null
model, namely the degree of each node. This is the model used by Newman [newman2006]
and works well finding community structure in networks with no inherrent spatial layout or
topography.

Line-Distance Dependent, Independent-Vertex Random Graph in
1D (Mod SKH Adj)
In networks with 1D spatial relationships, where each vertex is more likely or more strongly
connected to nearby vertices than to distant vertices, the independent-vertex null model
which just considers vertex degrees fails to capture this spatial structure and the modularity’s
ability to find communities in such topographical networks suffers. The simplest spatial
arrangement of nodes in a network is along a line in one dimension. Here, we can expand
the vertex-independent null model to include a line-distance dependent (b|i�j|) term which
characterizes the expectation of a weight between nodes separated by a distance (|i� j|).
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Nij = E[Aij|
di
n
,
dj
n
,

b|i�j|

n� |i� j| ] = c
di
n

dj
n

b|i�j|

n� |i� j| (A.13)

where

di =
nX

i=1

Aij and b|i�j| =
n�|i�j|X

k=1

Ak,k+|i�j| (A.14)

Solving for c by equation A.3 yeilds

c =
n2⌃

P
ij(didj

b|i�j|
n�|i�j|)

(A.15)

and the full null model is

Nij =
didj

b|i�j|
n�|i�j|⌃

P
ij(didj

b|i�j|
n�|i�j|)

(A.16)

where di
n is the average weight from node i to other nodes in the network, and b|i�j|

n�|i�j| is the
average weight between a pair of nodes separated by the distance |i � j|. Since nodes are
arranged along a line, their separation distance in 1 dimensional space directly translates into
distance from the diagonal in the adjacency matrix. Namely, the first off-diagonal contains
weights between nodes separated by one distance unit, the second off diagonal by two units,
and so on. This method requires 2n values computed from A to characterize the null model,
the n normalized row (or column) sums and the n normalized diagonal sums. Although it
is not entirely correct for networks arranged on a 2D grid, it can be used and yeilds better
performance than the Independent-Vertex null model.

Grid-Distance Dependent, Independent-Vertex Random Graph in
2D (Mod SKH Euc)
A more correct null model for networks constructed from images admits the arrangement of
nodes in a 2D lattice. The setup follows very closely the construction discussed above in the
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Line-Distance Dependent case with independent contributions from node degrees and from
the connectivity-distance relationship across the entire network. When nodes are arranged
in a two dimensional grid, however, the relationship between distance in the network and
location in the adjacency matrix is no longer simple to express mathematically, as in diagonal
sums of A in the 1D case. Fig. A.3 below shows entries in the adjacency matrix representing
the collection of edges separating pairs of nodes by the distance indicated in each pane in an
11x11 image patch.

Figure A.3: Grid-Distance Dependence: Distance mask in A matrix: Elements within
the adjacency matrix that are separated by distance d = |ri�rj| in an 11x11 network arranged
on a 2D lattice.

For all but |ri�rj| = 0, distances in the image plane translate into patterns in the adjacency
matrix that are more complex than just off-diagonals. Note that each pattern includes some
of the |ri � rj|th off-diagonal, with additional entries resulting from the way which the nxn
image is rasterized to make to form the n2xn2 adjacency matrix. In our implementation, we
do not attempt to express the b|ri�rj | term analytically, rather we algorithmically compute
distances in the image plane and construct an adjacency matrix mask for each distance
that we use to compute the distance-dependent average connectivity. Aside from difference
in implementation, the motivation behind this model is identical to the 1D case. Here
specifically,



APPENDIX A. IMAGE SEGMENTATION SUPPLEMENT 76

E[Aij|
di
n
,
dj
n
,
b|ri�rj |

#b|ri�rj |
] =

Z
Aijp(Aij|

di
n
,
dj
n
,
b|ri�rj |

#b|ri�rj |
)dAij =

Z
Aij�(Aij � c

di
n

dj
n

b|ri�rj |

#b|ri�rj |
)dAij (A.17)

Nij = E[Aij|
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n
,
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#b|ri�rj |
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b|ri�rj |

#b|ri�rj |
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where

di =
nX

i=1

Aij (A.19)

and b|ri�rj | is implemented by masks illustrated in Fig. A.3. Here, the #b|ri�rj | term
refers to the number of non-zero entries in the mask for the given distance. Since edges are
undirected and A is symmetric, the distance mask could also be implemented using the upper
or lower triangular version of the adjacency matrix.

Solving for c by equation A.3 yields

c =
n2⌃

P
ij(didj

b|ri�rj |

#b|ri�rj |
)

(A.20)

and the full null model with the normalization constant is

Nij =
didj

b|ri�rj |

#b|ri�rj |
⌃

P
ij(didj

b|ri�rj |

#b|ri�rj |
)
. (A.21)

Temporal Modularity Null Model
While topographic modularity models are powerful tools for image segmentation, it is difficult
to interpret how they could be implemented in retinal circuitry. The distance-dependent
term b|ri�rj | requires that each edge in the network have access to global knowledge, namely
the average edge weight across the entire network of all edges that span the same physical
distance for the current input stimulus. However, the null model can constructed with only
local information if each neuron pair samples and stores the average edge weight between
them over an ensemble of past stimuli. Hebbian plasticity in the ganglion-amacrine cell
anatomical connectivity network could nicely account for such a computation.
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Figure A.4: Adjacency edge weight vs distance: Average edge weight between node
pairs in the adjacency matrix separated by distance r as a function of distance in image.
Colored lines denote individual image patches and black line with grey error bars indicates µ
and � across 1500 image patches that are 50x50pixels.

Within a single scene or image, this spatial statistic can be converted to a local, temporal
statistic via eye movements in a persistent scene if the timescale of plasticity is shorter than
the scene duration [zenke2017]. For longer Hebbian timescales, the argument holds across
an ensemble of natural scenes in so far as the distance-dependent feature similarity in single
images is captured by an average across the ensemble. Pixel values in images of natural
scenes have been shown to be much more highly correlated for nearby pairs of pixels than for
distant pairs [atick1992].Fig. A.4 shows the average weight in the Adjacency matrix across
all node pairs i and j separated by a distance r = |ri � rj| as a function of r, within single
image patches as colored lines and the mean and standard deviation across an ensemble in
black and grey.

A further advantage of a temporally sampled null model, beyond node degree and distance-
dependence, is that all parameters describing the relationship between cells (such as cell
types and direction) are trivially captured the cell pair itself is used to compute the null
model. Thus the null model effectively controls for all influences to network connectivity
other than image content, which is marginalized out over many samples across time. The
temporal null model has not been explored in this work and is left for future development.
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Appendix B

Cell Assembly Model Supplement

We reserve this supplemental text to catalog and give brief discussion on details of the Cell
Assembly Model. This includes known issues and limitations, work thought about or begun
but not followed through with, pointers to ideas to try in the future for anyone continuing
with this, and other things not mentioned in the body of the chapter 2.

1. We focused our analysis on spike-words with 5ms binning because they yielded the
most robust structure, although some structure was found in 3ms binned spike-words
as well.

2. Run pairwise GLM simulation for groups of cells (⇠ 10 � 20) that participate in
particularly interesting looking CAs.

3. The size of the latent dimension, M , is a hyper-parameter of the model. We did
some initial investigation into over- and under-complete models with synthetic data,
with M > N and M < N respectively. We hypothesize that model completeness will
effect the type of structure discovered by CAs, especially when using the "Homeostatic
Egalitarian" prior.

4. When CAs in the same model are often co-active, do they provide redundant or
synergistic information? Defined by:

S(a, b) = 1�
p

cs⌧ (a, b) · csM(a, b) (B.1)

where cs⌧ (a, b) and csM (a, b) are the temporal and membership cosine similarity between
CAs a and b within the same model. For a single CA, we are most interested in the
minimum S value across the rest of the population. Visualizing individual CAs does not
reveal the full picture because observed spike words can be explained by simultaneous
activity of multiple CAs. We look for CAs within a model that are commonly coactive,
determined by cosine similarity of their PSTHs to determine if they have form interesting
larger shapes. Fig. B.2 shows CA (in red) along with two additional CAs with which
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it shares a large temporal overlap. Red and green CAs have more overlapping spatial
and temporal representation in panel a and more synergistic representation in panel c.
Panel b shows z0 example from above in red. Even this does not reveal the full picture.
These CAs are determined to be temporally coactive by cosine similarity of PSTHs
binned at 50ms. First, this does not indicate that they are necessarily coactive in the
same trials. Second, if coactive in the same trials, they could at different times within
the 50ms bins.

(a) Redundant (b) z6 example above (c) Synergistic

Figure B.1: Coactive CAs can be synergystic or redundant: Bottom PSTH traces show high temporal overlap

between activations of 3 CAs. Top left shows high RF overlap for those CAs as well.

Empirically on the time-scale of individual spike-words, CAs are not often co-active
relative to the number of times they are active individually. Fig. ?? shows a few typical,
randomly sampled examples.

(a) [offBT] (b) [offBT,onBT]

Figure B.2: CA individual inference and coactivity statistics: Two panels show statistics for inference on all spike-

words in data corpus after model is learned and fixed. Cell-type listed in panel caption. In each panel, CAs on x-axis. Blue

points show number of time each CA was inferred across all spike-words. Red points show total number of times it was inferred

with a partner. Top plot shows pairwise inference coactivity with 5 largest values circled in red. Coactivity among CAs is

pretty insignificant.
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5. We construct spike-words with a bin-size of 5ms but a step-size of 1ms. So individual
spikes are used in multiple spike-words. This process introduces noisy repeats into spike
words used introducing a couple of confounds. First, spike-words are used for learning
and introduced noisy repeat structure can be confounded with structure in with actual
noisy repeats from cell assemblies. Second, these spike-words are also used inference, to
construct CA activity rasters. We attempted to do an ISI / Fano factor analysis to
uncover periodic structure in CA activity, but had many 1ms and 2ms ISIs introduced
by how the data set was constructed.

6. �Py is an approximate, imperfect measure that introduces some confounds into the
comparison with the GLM p(y). It correctly obtains high values when a CA is active
and GLM rates predict low synchrony. However, large �Py values (ie. small cosine
similarity values) may also result from GLM predicted activity not observed in za’s
PSTH. This may not reflect real significance because multiple CAs can learn overlapping
cell membership and predicted activity at one moment can be partially or fully subsumed
in the activity of another CA, leaving the first, za, inactive. However, �Py only considers
the PSTH of za, and the high activity at one time in hp(~ynull)i which is unmatched in
the PSTH dramatically changes the angle between vectors in high dimensional space
because it lowers the height or significance of other events in hp(~ynull)i relative to that
max. This results in a low cosine similarity and a high significance in cases where
similar CAs in the same model work together to to represent the activity of cells at
different times. A more complete significance measure would consider the membership
overlap of CAs in a model and allow for additional CAs with similar membership to
absorb some of the GLM model prediction. It is probably not too hard to extend it to
allow the significance comparison to use PSTHs from a couple za’s with very similar
spatial/membership similarity.

7. An additional measure of the difference of spiking activity given za = 1 from null
model predictions is the KL-divergence between N-dimensional multivariate Bernoulli
distributions of p(yi)null and p(yi|za = 1, z 6a = 0), shown and mentioned in Fig. 2.13. It
more explicitly makes the same confounding and faulty assumption that all other z 6a’s
are inactive. It may provide a more straight-forward path to generalize the �Py metric.




