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WATER RESOURCES BULLETIN
VOL. 26, NO.4 AMERICANWATERRESOURCES ASSOCIATION AUGUST 1990

LINEAR PROGRAMS FOR NONLINEAR HYDROLOGIC ESTIMATION'

Hugo A. Loaiciga and Richard L. Church2

ABSTRACT: The minimization of the sum of absolute deviations
and the minimization of the absolute maximum deviation (mini-
max) were transformed into equivalent linear programs for the esti-
mation of parameters in a transient and linear hydrologic system.
It is demonstrated that these two methods yield viable parameter
estimates that are globally optimal and reproduce properly the tim-
ing and magnitude of hydrologic events and associated variables
such as total runoff. The two linear estimation methods compared
favorably with the popular least-squares nonlinear estimation
method. The generality of the theoretical developments shows that
linear program equivalents are adequate competitors of nonlinear
methods of hydrologic estimation and parameter calibration.
(KEY TERMS: hydrologic model; model calibration; parameter esti-
mation; linear programming; least-squares.)

INTRODUCTION

The process of calibrating a hydrologic model is of
great importance in applied hydrologic studies. In
general terms, hydrologic model calibration consists
of determining the values of model parameters that
satisfactorily (i.e., in some well-defined sense) repro-
duce sets of hydrologic observations. Such parameters
must also satisfy various constraints on the possible
values that they can take to comply with physical fea-
sibility principles. The techniques for parameter esti-
mation are numerous and range from simple eye-ball
curve fitting to complex statistical estimation algo-
rithms (Amorocho and Espildora, 1973; Mays and
Taur, 1982; Unver and Mays, 1984; Patry and Marino,
1985; Loaiciga and Marino, 1987; Sorooshian, 1988).
This paper presents an application of optimization
theory for the estimation of hydrologic-model parame-
ters. The objective of this work is to pose complex,
nonlinear, parameter estimation problems as equiva-
lent linear programming problems. The advantages of
linear programming parameter estimation vis a vis

nonlinear estimation and the choice of a suitable
criterion (objective function) in hydrologic parameter
estimation are examined in this work. The concept of
reparameterization in hydrologic model calibration is
introduced in this work. The developments of this
paper are illustrated with the estimation of
Muskingum routing parameters.

ON THE CRITERION OF HYDROLOGIC
PARAMETER ESTIMATION

The choice of suitable criteria for hydrologic param-
eter estimation has been and still is the subject of
substantial research interest. This paper focuses on
the optimization (i.e., mathematical programming)
approach to parameter estimation. Formally, a hydro-
logic (or hydraulic) model yields a single or multiple
hydrologic output, denoted by h, that depends on a set
of parameters (p) and data (z), through an empirical
or conceptual model (f). Mathematically, this is denot-
ed as

h=f(p;z)

If the measurements of the hydrologic variable are
denoted by b, then the parameter estimation problem
can be expressed as

minimize I Ih—bI

where the minimization is with respect to p. The dou-
ble vertical bars represent a norm or measure of
agreement among hydrologic observations and hydro-
logic predictions. In general, there may be restrictions

'Paper No. 89075 of the Water Resources Bulletin. Discussions are open until April 1, 1991.
2Respectively, Assistant Professor and Professor of Geography, Department of Geography, University of California, Santa Barbara,

California 93106.
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on the parameters in which case those must be
appended to Equation (2) for a complete expression of
the estimation problem.

Equation (2) is more general than what it might
seem at first. Many statistical estimation problems
(e.g., maximum likelihood, ordinary or generalized
least-squares) can be expressed in the form of
Equation (2) where the norm is the (weighted) sum of
squared deviations between predicted and measured
values of the hydrologic variable of interest, i.e., the
least-squares (or weighted least-squares) criterion
(Yeh et al., 1983; Can-era and Neuman, 1986). Least-
squares is one of the most commonly used criteria in
hydrologic parameter estimation studies in spite of
the fact that it is not necessarily adequate in some
hydrologic applications. Using runoff prediction as an
example, the least-squares approach places a larger
weight on the larger deviations between predicted
and measured flows. This uneven weighting leads in
many instances to relatively inaccurate flood volume
estimation (e.g., estimation errors exceeding 15 to 10
percent). Empirical evidence in this regard was pre-
sented in a classical paper by Amorocho and
Espildora (1973).

Interestingly, there are attractive alternatives to
least-squares estimation in hydrologic model calibra-
tion that do not suffer from the functional scaling
problem cited previously. The minimization of the
maximum absolute deviation and the minimization of
the sum of absolute deviations between predicted and
measured hydrologic variables are natural alterna-
tives to least-squares; yet, with few exceptions (Dein-
inger, 1969; Mays and Coles, 1980; Padmanaban and
Williams, 1987), they have not been used in applied
hydrologic studies. The popularity of least-squares
estimation does not have a hydrologic justification.
Rather, it is explained primarily by reasons of compu-
tational convenience. Chief among those reasons was
the early appearance of algorithms for least-squares
minimization problems, e.g., the Levenberg-
Marquardt method (Levenberg, 1944; Marquardt,
1963), that provided a vital impetus for the
widespread popularity of least-squares estimation.

It will be shown below that certain nonlinear
hydrologic estimation problems can be transformed
into equivalent linear programming problems. The
importance of these transformations cannot be
overemphasized. There is reliable, well-tested, and
well-documented software for solving linear program-
ming problems. Equally important is the fact that lin-
ear programming theory provides a rich set of results
for determining the nature and properties of the solu-
tion(s) to a linear programming problem. Issues con-
cerning (1) the existence of feasible solutions to a
linear programming problem, (2) whether the solution

is unique and globally optimal or just one among an
infinite number of solutions, and (3) the sensitivity of
a solution to changes in parameters or variables in
the hydrologic model can be fully resolved within a
linear programming framework. The nature of the
aforementioned linearizing transformations and
applications to hydrologic parameter estimation fol-
low.

MINIMAX, THE SUM OF ABSOLUTE
DEVIATIONS, AND LEAST-SQUARES

The sum of absolute deviations criterion is given by

minimize — b j
i= 1

(3)

and the maximum absolute deviation (minimax crite-
rion) is expressed as

minimize (maximum Ih(p)_bI), 1,2,..., fl

(4)

In Equations (3) and (4) the subscript i denotes the
ith component of either vector h or b, and the mini-
mization is with respect to the parameter vector p. In
addition, there may be various (linear or linearizable)
constraints on p. In some instances, the hydrologic
output h may be nonlinear on the parameters. At
times, one can recourse to reparameterization of the
hydrologic model in terms of a new set of parameters
upon which the hydrologic model turns out to be lin-
ear. This powerful idea of reparameterization (in fact,
a transformation of the parameter space) is illustrat-
ed in a section below that addresses the estimation of
parameters in a nonlinear model.

The sum of absolute deviations is well-suited for
the calibration of hydrologic models for hydrograph
generation or flood routing when the key concern is
runoff volume prediction for the purpose, say, of reser-
voir storage design. The minimax criterion seeks to
minimize the largest deviation between observed and
predicted runoff. Minimax provides an overall accu-
rate reproduction of an observed hydrograph, and, in
particular, it provides accurate reproduction of hydro-
graph peaks, where the largest deviations tend to be
concentrated.

WATER RESOURCES BULLETIN 646
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Linear Programs for Nonlinear Hydrologic Estimation

The Sum of Absolute Deviations

In order to transform Equation (3), which is a non-
linear function, into an equivalent linear program-
ming problem, it is necessary to introduce the
following constraints:

h—b i =

or equivalently,

where

xy�0, 1,2,...,n (7)

A problem whose objective function is to

n
minimize (x.÷y.)

subject to Equations (6) and (7) (and possibly other
linear or linearizable constraints on p) is equivalent
to the minimization introduced in Equation (3). The
minimization in Equation (8) is with respect to x, y1,
and p. The equivalence of the problems of Equations
(6) to (8) and Equation (3) is proven in the Appendix.
Notice that no requirement has been made on the
mathematical structure of the model f (see Equation
(1)) relating h and p, and the proof in the Appendix is
rather general in this regard. However, from a practi-
cal standpoint, it is desired that the transformed
problem be linear, for otherwise it would be simpler to
work directly with the original problem of Equation
(3). The linearity of the problem of Equations (6) to (8)
occurs when the output h depends linearly on the
parameter vector p. For such class of hydrologic (or
hydraulic) models the estimation problem of
Equations (6) to (8) is a linear programming problem,
the type of estimation problem that is the subject of
this study. The transformation equality of Equation
(5) for h1 linearly dependent on p has been known for
a number of years in the operations research litera-
ture (Wagner, 1975).

Hydrologic (or hydraulic) models that are linear
with respect to the parameters are not uncommon
and represent a fairly important spectrum of process-
es of interest (Eagleson et al., 1966). The Muskingum
routing model, applied in a following section, is an
excellent example of a linear hydrologic model. Unit-
hydrograph models of runoff are also classical exam-
ples of linear hydrologic models (Amorocho, 1963).
Confined-aquifer flow problems (Yeh et al., 1983);

Loaiciga and Marino, 1987) are examples in ground
water hydrology where the piezometric potential
depends linearly on transmissivity.

The Minimax Criterion

(5) The minimax estimation problem is given by
Equation (4). It seeks to minimize the maximum abso-
lute deviation between the predicted and measured
values of a hydrologic variable. Equation (4) will be

(6) transformed into an equivalent linear programming
problem for the class of hydrologic models that are
linear on the parameters (briefly discussed earlier).
First, notice that

I h — b I = maximum(h1 — b, bL — hL) (9)

Next, the following constraints can be introduced:

(8) h—b�y, i= 1,2,...,n (10)

b1 —h �y, i = 1,2,...,n (11)

where

y�o (12)

The objective function

minimize y (13)

subject to Equations (10) to (12) defines a minimiza-
tion problem that is equivalent to Equation (4). The
minimization in Equation (13) is with respect to y and
p. The equivalence of Equation (4) and Equations (10)
to (13) is obvious since the minimization of (13)
ensures that the largest absolute deviation, expressed
by (10) — (11), will reach a minimum (nonzero) value
not exceeding y. Problem (10) — (13) is known in the
operations research literature as the Chebyshev crite-
rion (Wagner, 1975). If the hydrologic output h1 are
linear on p then (10) — (13) is a linear programming
problem. This is the type of hydrologic estimation
problem of interest in this work.

Least-Squares Estimation

In a good number of hydrologic estimation prob-
lems, the objective is to minimize the sum of square
deviations (i.e., the least-squares criterion)

2
minimize J= (h ,(p) — b.)

647 WATER RESOURCES BULLETIN
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c - K-Kx-U5M
2 K—Kx+Q5At

0.5it [1—C0! C1]Xx =

KxX

1+ C0 / C1

Implicit in Equation (14) is that the norm of the
deviations is small (in some sense) and that n, the
number of observations, is much greater than the
dimension of p; otherwise, any arbitrary model would
give a close fit to the data. This second condition also
applies to the sum of deviations and minimax meth-
ods. However, the smallness of the deviations in
Equation (14) plays a particularly important role in
the selection of a suitable solution algorithm of the
least-squares problem. Specifically, if the sum of the
deviations is small, then specialized algorithms such
as the Levenberg-Marquardt method are quite effi-
cient. Otherwise, one must recourse to general uncon-
strained optimization algorithms, of which the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) method (Gill et
al., 1981) is a good example. For the purpose of this
study, we take advantage of the fact that the hydro-
logic output h is linear on the parameters or on a
reparameterized form of them. In such a case, and
especially when the number of parameters is relative-
ly small, Equation (14) can be solved by applying the
Kuhn-Tucker conditions of optimality directly. The
result is a set of linear equations on the parameters
that can be solved regardless of the magnitude of the
norm of the deviations. The set of linear equations is
derived from

j=1,2,..,m (15)

This approach, embodied in Equation (15), will be
used in the APPLICATIONS section below.

ESTIMATION OF MUSKINGUM
ROUTING PARAMETERS

The Muskingum routing model has been chosen to
illustrate the applicability of the equivalent linear
programming problems of Equations (6) to (8) and
Equations (10) to (13) presented above and to com-
pare them with least-squares estimation. The back-
ground for the Muskingum routing model can be
found in any book on hydrology (see e.g., Viessman et
al., 1989). According to the Muskingum model, the
outflow hydrograph (0) at the downstream end of a
channel reach is linearly related to the inflow (I) at
the upstream end of the channel reach by the expres-
sion

01+1 = C011÷1 + C111 + C201 (16)

for all times (t). The coefficients C0, C1, and C2 are
given by

c = —Kx+0.5M (17)0 K—Kx+Q5t\t

c — Kx+Q5i\t (18)1 K—Kx+0.5it

(19)

where

C0+C1+C2=1 (20)

in which K is the storage time constant for the chan-
nel reach (units of time), and x is a weighting factor
that varies between zero and one-half (dimension-
less); & is the time step chosen in the routing simula-
tion.

Equation (16) is a linear dynamic model in the
sense that the current output is a linear combination
of present and previous inflows and previous outflow.
The actual model parameters are K and x, which are
related to the model coefficients in Equation (16)
through Equations (17) to (19). The reparameteriza-
tion embodied in Equations (17) to (19) in terms of
C0, C1, and C2 is the key for the application via linear
programming in the Muskingum routing model. First,
the estimation problem will yield the coefficients C0,
C1, and C2 and subsequently, the parameters K and x
will be obtained from the following expressions (all
derived from Equations (17) to (19)):

(21)

where Lt is specified and the coefficients C, C1, and
C2 are calculated from the linear programming prob-
lems (presented in Equations (26) to (28) and
Equations (29) to (32))

Kx(C —1)—U5t(C +1)K= 2 2
(22)

C2-'

(23)

Equations (21) to (23) are applied sequentially so that
after calculating Kx in Equation (21), K can be
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Linear Programs for Nonlinear Hydrologic Estimation

calculated from Equation (22) and x can be derived
from Equation (23).

The idea of (1) reparameterization (see Equations
(17) to (19)), (2) linear estimation, and (3) subsequent
inversion (Equations (21) to (23)) to obtain actual
model parameters is quite powerful. An otherwise
highly nonlinear model and parameter estimation
problem can be reduced to the most basic estimation
(i.e., linear programming) and closed-form inversion
to yield the hydrologic parameters of interest.
Conceptually, an estimation problem in terms of a
parameter set (p) expressed by

minimize I Ih(p)—bI I (24)

subject to all pertinent constraints on p is reparame-
terized and rewritten as follows,

minimize I I h(r)—b I I

where r is the reparameterized (parameter) set relat-
ed to p by some suitable transformations such as
those in Equations (17) to (19). In the Muskingum
routing model, r is composed of the coefficients C0,
C1, and C2 that relate outflow and inflow hydrographs
via Equation (16). The parameter set p is composed of
K and x. The equivalent linear programming estima-
tion problems (see Equations (6) to (8) and Equations
(10) to (13)) are applied to the Muskingum model
below.

The Sum of Absolute Deviations

According to Equations (6) to (8) the minimization
of absolute deviations between observed and model-
estimated outflows is given by (the sub-index t
replaces the sub-index i in the following equations)

n

minimize (x + y )

subject to

initial values). In Equation (26) the minimization is
with respect to x, (t = i,2,...,n), Ce), C1, and C2 (the
latter three coefficients are unrestricted in sign). The
outflows (0) and inflows (I) constitute the data avail-
able for parameter estimation. The linear program-
ming problem of Equations (26) to (28) is equivalent
to the (nonlinear) minimization of the sum of absolute
deviations between preicted and observed outflow
ordinates. Upon estimation of C0, C1, and C2, the
Muskingum routing parameters K and x are obtained
from Equations (21) to (23). A computational example
is given below.

The Minimax Criterion

The equivalent linear programming problem that
minimizes the maximum absolute deviation between

(25) observed and predicted outflow hydrograph ordinates
according to the Muskingum routing model is to

minimize y

subject to

(29)

CI +CI+CO—O �y,t=0,i,...,n—i0 t+1 1 t 2 t t+1

(30)

o —CI —CI —CO �y, t=i,2,...n—it+1 0 t+1 1 t 2 t

C0 + C1 + C2 = 1

(31)

(32)

where y � 0 and C0, C1, and C2 are unrestricted in
sign. The minimization in Equation (30) is with
respect to y, C0, C1, and C2. Upon solution of
Equations (29) to (32), the calculated values of C0,

(26) C1, and C2 are used to obtain the Muskingum routing
parameters using Equations (21) to (23). An applica-
tion of the minimax approach and a comparison with
the results corresponding to the sum of absolute devi-
ations formulation follow in the next section.

(CI +CI+Co)—x +y =
0 t+1 1 t 2 t t+1 t-i-1

t= 0, 1,., n— 1

Co+ Ci+ C2= 1

(27)

(28)

where x, Yt � 0, t = i,2,...,n. In Equations (27) to (28)
the index t runs from zero to n—i (Io and 00 are the

Least-Squares Estimation

Using Equation (15), where

2
J= [C0I÷ C1I + C2O 1 °tl

(33)

649 WATER RESOURCES BULLETIN
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Loaiciga and Church

and realizing that the C's are linearly dependent
through the expression

Co + Cl + C2 = 1 (34)

one can write the partial derivatives of J with respect
to any two of three coefficients C to obtain a two-by-
two linear system of equations. Upon its solution, K
and x follow from Equations (21) to (23). Results from
least squares estimation and a comparison with the
minimax and sum of deviations methods follows next.

Example 1: Calibration

APPLICATION

The sum of absolute deviations and minimax prob-
lems (Equations (26) to (28)) and Equations (29) to
(31), respectively) were solved by linear programming.
The least-squares problem was solved by means of
Equation (15) applied to Equation (33). The outflow
and inflow values were obtained from the data set
presented in Table 13.3 of Viessman et al. (1989). The
streatnflow hydrograph (input and output in the
channel reach) is bimodal, with two discernable peaks
occurring at times t = 11 and t = 18, possibly caused
by a multievent precipitation pattern dominated by
two predominant periods of high-intensity rain. Model
calibration in this example is tantamount to the esti-
mation of the Muskingum parameters K and x accord-
ing to the sum of deviations, minimax, and
least-squares methods.

The globally optimal values of the coefficients C0,
C1, and C2, and the Muskingum routing parameters
K and x are shown in Table 1. Evidently, the solutions
obtained from the minimization of the sum of absolute
deviations and the minimax linear programs differ
but are within the same order of magnitude in their
respective values. In spite of the radically different
formulations of these two alternative estimation prob-
lems, the hydrologic estimates K and x are robust. In

contrast, the least-squares estimate of x is an order of
magnitude less than that obtained by the linear esti-
mation methods. The least-squares estimate of the
storage time constant K is in close agreement with
the estimates derived from the two other methods.
Viessman et al. (1989), used an iterative (visual)
graphical procedure to approximate the Muskingum
routing parameters, and their calculated values were
K = 2.0 days and x = 0.3, in good agreement with the
linearly optimized values presented in Table 1. The
choice of an estimator amongst a set of alternative
values depends on a variety of hydrologic factors. In
the context of hydrograph routing, one must consider
individual factors such as the timing and magnitude
of flood peaks, as well as generalized parameters such
as total runoff volume. These hydrologic criteria are
discussed next.

Inflow data were routed with the two alternative
sets of parameter estimates and the outflows are pre-
sented in Table 2 with observed outflow values. The
results in Table 2 indicate that: (1) observed outflows
are consistently underestimated in the rising limb of
the hydrograph and at the two peaks of the bimodal
hydrograph; (2) observed flows are consistently over-
estimated in the falling limb of the hydrograph;
(3) the timing of the first hydrograph peak was cor-
rectly predicted by all of the estimation approaches,
whereas the time to the second peak was predicted
two days earlier than its real occurrence; and (4) the
largest flow prediction deviation was produced with
the sum of absolute deviations method (prediction at
time t=16), but this method yielded a better overall
hydrograph reproduction than that achieved with
minimax and least squares. A summary of statistics is
given in Table 3, from which it is apparent that:
(1) there was a good runoff volume prediction by all
estimation methods, with the method of sum of abso-
lute deviations predicting total runoff within —1.0 per-
cent of the observed value; (2) the prediction of flow
peaks showed estimates within —10 percent of actual
values by the sum of deviations and minimax meth-
ods, while least-squares peak estimates were within
—11 percent; and (3) the overall hydrograph fit

TABLE 1. Results of Parameter Estimates: Calibration Results.

Estimate
(1)

Sum of Deviations
(2)

Minimax
(3)

Least-Squares
(4)

Viessman eta!., 1989
(5)

CO 0.109710 0.092841 0.152962 —0,052632
Cl 0.329771 0.238153 0.225840 0.578947
C2 0.560519 0.669006 0.621261 0.473684
K(day) 2.026 3.241 2.237 2.0
x 0.124 0.222 0.043 0.3

WATER RESOURCES BULLETIN 650
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Linear Programs for Nonlinear Hydrologic Estimation

TABLE 2. Predicted Values and Deviations: Calibration Results.

Predicted Flows Deviations
Observed Least

Day Flows SD Minimax Squares SD
(1) (2) (3) (4) (5) (8)

Least
Minimax Squares

(7) (8)

1 4,180 —— —— —— ——

2 6,970 5,300 5,058 5,346 —1,670
3 7,560 8,392 8,078 8,405 832
4 14,200 10,741 10,033 10,744 —3,459
5 18,300 17,024 16,332 16,663 —1,276
6 18,500 19,750 19,416 19,690 1,250
7 21,300 21,651 20,967 21,747 351
8 29,300 28,735 27,133 29,043 —565
9 39,700 41,571 38,617 40,301 1,871

10 48,700 48,700 46,375 46,867 0
11 53,300 49,383 49,118 48,739 —3,917
12 48,700 46,886 48,286 46,722 —1,814
13 37,100 38,109 40,699 39,433 1,009
14 35,800 32,834 34,075 34,497 —2,966
15 35,800 39,183 38,441 39,252 3,383
16 35,800 41,657 40,159 40,550 5,857
17 42,700 39,262 38,341 38,404 —3,438
18 44,100 39,691 40,314 39,419 —4,409
19 35,400 35,400 37,437 35,972 0
20 25,200 26,545 28,692 27,547 1,345
21 16,400 19,333 20,759 20,016 2,933
22 11,500 13,443 14,151 13,728 1,943
23 9,380 9,770 10,176 9,888 390
24 7,860 7,794 8,175 7,957 —66

—— ——

—1,912 —1,624
518 845

—4,167 —3,456
—1,968 —1,637

916 1,190
—333 447

—2,167 —257

—1,083 601
—2,325 —1,833
—4,182 —4,561

—414 —1,970
3,599 2,333

—1,725 —1,303
2,641 3,452
4,359 4,750

—4,359 -.4,296
—3,786 —4,681

2,037 572
3,492 2,347
4,359 3,616
2,651 2,228

796 508
315 97

Notes: 1. All flows and deviations in cfs (1 cfs =0.0238 rn3/s).
2. Column (2) adapted from Table 13.3 from Viessman et czl., 1989.
3. Deviations are predicted minus observed flows (Columns (5) and (6), respectively).
4. SD in Columns (3) and (6) stands for sum of deviations.

TABLE 3. Summary of Hydrologic Estimates: Calibration Results.

Estimate Sum of Deviations Minimax
(1) (2) (3)

Least-Squares
(4)

Maximum Absolute Deviation (cfs) 5,857 4,359
(14.0) (26.5)

4,750
(13.3)

Total Volume (cfs-day) 641,154 640,832
(99.0) (98.9)

640,930
(98.9)

Deviation at Peak (cfs)
Peak 1 —3,917 —4,182

(7.3) (7.8)
—4,561

(8.6)

Peak 2 —4,409 —3,786
(10.0) (8.6)

—4,681
(11)

Sum of Absolute Deviations (cfs-day) 44,744 54,104
(6.9) (8.4)

48,612
(7.5)

Notes: 1. 1 cfs = 0.0238 m3/s; 1 cfs-day = 2,447 m3.
2. Deviations are predicted minus observed flows (see Table 2).
3. The numbers within parentheses denote the pereentage that the estimate represents from the cxrresponding observed flow (in

cfs) or from the total observed volume (= 647,775 cfs-day).
4. The hydrograph is bimodal with two peaks.
5. The observed times to the hydrograph peaks are 11 and 18 days for the first and second peaks, respectively. The three estimation

methods yielded times to peak of 11 and 16 days for the first and second peaks, respectively.
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Loaiciga and Church

provided by the method of sum of absolute deviations
(and measured by the sum of absolute deviations) was
superior to that obtained with the minimax and least-
squares methods, with the sum of absolute deviations
being only 6.9 percent (of total actual volume) for the
sum of deviations method, and 8.4 percent and 7.5
percent, for the minimax and least-squares methods,
respectively. Based on the calibration results of this
application the sum of absolute deviations method
has yielded the better hydrologic estimators according
to the full spectrum of criteria previously examined. It
shall be noticed, however, that the previous results
were obtained by fitting the flow data with parame-
ters that were calibrated with that same data set. In
order to compare the estimation methods within a
more realistic framework, we proceed to verify the
model with data different to those used in the calibra-
tion procedure.

Example 2: Simulation Experiment

Calibration is a procedure by which parameters are
estimated based on observed data. Verification, on the
other hand, consists of evaluating the performance of
a calibrated model with data different to those used in
the calibration process. In order to test the three esti-
mation methods we conducted a simulation experi-
ment in which flows were generated by means of the
following equation:

o =CI +CI+CO+vt+1 0 t-+-1 1 t 2 t (35)

where C0, C1, and C2, have values —0.0526532,
0.578947, and 0.473684, respectively (see Table 1),
that correspond to the parameters K = 2.0 and x = 0.3
of the channel reach used in the example given by
Viessman et al. (1989); Ut is a Gaussian, uncorrelated,
error term used to simulate the outflows (0). The
error term v has zero mean and a standard deviation
of 2,000 cfs. The value of the standard deviation of u1
was chosen to avoid generating negative outflows, and
it was set equal to roughly 15 percent of the standard
deviation of observed flows. With the standard devia-
tion of the error term u1 at a level of 2,000 cfs, the
probability that u1 exceeds the absolute value of the
smallest observed outflow (see Column (2) of Table (2)
is less than 10 percent. The inflows (I) in Equation
(35) were the same as those specified in Column 2 of
Table 13.3 of Viessman et al. (1989). The simulation
experiment was conducted by generating variates v1
and using Equation (35) to produce 100 synthetic out-
flow hydrographs, each of a length of 24 days (to
match the length of the hydrograph specified in Table
13.3 of Viessman et al., 1989). Parameter estimates

(C0, C1, and C2, K and x) were derived from each syn-
thetic hydrograph using the sum of absolute devia-
tions, minimax, and least-squares methods. The
simulation experiment, therefore, produced 100 sets
of parameters (C0, C1, and C2, K and x) for each esti-
mation method. Representative parameter values for
each estimation method were calculated by means of
an arithmetic average taken over the 100 sets of esti-
mates. For instance, the representative storage time
constant for, say, the minimax method was calculated
by the equation,

100

K=(1/100) K.
1

(36)

where the overbar denotes arithmetic average and K1
is the ith estimate of K using the minimax method.
Analogous definitions hold for the other representa-
tive parameter estimates in all estimation methods.

The results of parameter estimation in the simula-
tion experiment are reported in Table 4, that also con-
tains the parameter values used in the simulation
(via Equation (35)) in Column (5). In addition, Table 4
reports the relative error (RE) of parameter estimates
for each estimation method. The relative error in
Table 4 is also an (arithmetic) average value obtained
over a sample of 100 estimates as suggested by
Equation (3For each synthetic hydrograph the rel-
ative error (RE) is defined as follows:

I Ip__p*I I/I jp* I (37)

The numerator in Equation (37) is the Euclidean
norm of the difference between the estimated vector
of parameter (p=(C0, C1, and C2, K, x)) and the "true"
parameter vector, p', given in column (5) of Table 4;
The denominator in Equation (37) is the Euclidean
norm (or vectorial magnitude) of the parameter vector
p* The results of Table 4 show that the sum of
absolute-deviations method provided the most accu-
rate parameter estimates with a relative error of 5.83
percent, well below the relative errors of 17.4 percent
and 32.6 percent corresponding to the minimax and
least-squares method. The higher accuracy of the
method of sum of absolute deviations revealed by the
simulation experiment corroborates the findings
obtained in the calibration process. However, the sim-
ulation experiment strongly suggests a much sharper
ranking of the estimation methods, with the sum of
absolute deviations given the best fit and least-
squares ranking at the bottom in terms of its perfor-
mance, with a dismal relative error of 32.6 percent,
almost six times as large as that of the sum of abso-
lute deviations.
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Linear Programs for Nonlinear Hydrologic Estimation

TABLE 4. Results of Parameter Estimates: Simulation Results.

Estimate Sum of Deviations Minimax Least-Squares
(1) (2) (3) (4)

Viessman et al., 1989
(5)

CO 0.005723 —0.003588 0.155647
Cl 0.488942 0.435983 0.191110
C2 0.505335 0.567605 0.653243

1(day) 2.010 2.321 2.435
x 0.243 0.219 0.021
RE (percent) 5.83 17.4 32.6

—0.052632

0.578947
0.473684
2.0
0.3

Notes: 1. RE = relative error (in percentage).
2. The overbar in Column (1) denotes an arithmetic average taken over 100 estimates.

TABLE 5. Summary of Hydrologic Estimates: Simulation Results.

Estimate Sum of Deviations Minimax
(1) (2) (3)

Least-Squares
(4)

Maximum Absolute Deviation (cfs) 7,840 6,133
(15.0) (18.0)

7,546
(14.0)

Total Volume (cfs-day) 642,317 641,832
(99.0) (97.3)

638,715
(97.0)

Deviation at Peak (cfs)
Peak 1 —3,843 —4,215

(7.1) (8.0)
—4,833

(9.1)

Peak 2 —4,003 —3,700
(8.2) (8.1)

—5.018
(12.3)

Sum of Absolute Deviations (cfs-day) 45,639 55,787
(6.7) (8.7)

49,657
(8.9)

Notes: 1. 1 cfs = 0.0238 m3/s; 1 cfs-day = 2,447 m3.
2. Deviations are predicted minus synthetic flows.
3. The numbers within parentheses denote the percentage that the estimate represents from the corresponding synthetic flow (in

cfs) or from the total synthetic volume (in cfs-day).
4. All figures in Table 5 are averages over 100 synthetic hydrographs.
5. All of the estimation methods predicted the times to peaks one and two correctly for all simulations.

Table 5 provides a summary of the performance of
the estimation method based on their capability to
reproduce certain hydrograph characteristics.
Hydrograph characteristics examined in Table 5
include the maximum absolute deviation, total hydro-
graph volume, time(s) to hydrograph peak(s), and the
sum of absolute deviations. The results in Table 5
were derived from the simulation experiment previ-
ously described. The parameter estimates obtained
from each synthetically generated hydrograph were
used to reconstruct the hydrograph according to
Equation (16). The differences between the generated
and reconstructed hydrographs provided a basis for
calculating the "mismatch" statistics, such as the
maximum absolute deviation, percent difference in

tota). hydrograph volume, and so forth. The procedure
was repeated for each of the 100 synthetic hydro-
graphs, and for all the estimation methods. Finally,
representative hydrograph characteristics were
obtained by averaging the statistics (arithmetically)
over the 100 synthetic realizations. Those representa-
tive characteristics are reported in Table 5. The fig-
ures in Table 5 are much more definitive in revealing
the relative merits of the three estimation methods
than the calibration results of Table 3. In fact, Table 5
reaffirms unambiguously some of the problems with
the least squares method already seen in Table 3.
Specifically, Table 5 shows that: (1) least squares pro-
vides the largest bias in estimating peak flow values,
and (2) it underestimates the total hydrograph
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Loaiciga and Church

volume more than the two other estimation methods.
The peak flow and total flow are important hydro-
graph characteristics, especially with regards to flood
control. The larger biases in peak and total flow esti-
mation by least squares can be explained by the
uneven scaling introduced by squaring the differences
between predicted and observed flows, as discussed
previously. The results of Table 5 also indicate that
the method of sum of absolute deviations provides the
more accurate and consistent (i.e., over all simulated
hydrographs) reproduction of the key hydrograph
characteristics, except for the maximum absolute
deviation. The latter variable, however, is of minor
relevance since it does not impact neither directly, nor
significantly, the timing and magnitude of peak flows
or the total flow volume.

methodology to other types of linear hydrologic esti-
mation problems.

APPENDIX A

It is shown herein that (see Equation (3))

n

minimize h 1(p) — bgl

is equivalent to (see Equations (6) to (8))

minimize (X + y

(Al)

(A2)

SUMMARY AND CONCLUSIONS subject to

Three nonlinear methods for hydrologic parameter
estimations have been presented and compared in
this work. The minimization of the sum of absolute
deviations and the minimization of the maximum
absolute deviations (minimax) were transformed into
equivalent linear programs for the estimation of
Muskingum routing parameters. It was found that
based on various hydrologic criteria such as time to
flood peak, peak-flood magnitude and total runoff pre-
diction, these two estimation methods yielded ade-
quate parameter estimates that compared very
favorably with the third estimation method, the popu-
lar least-squares estimator. Calibration results and
an extensive simulation experiment indicate that the
method of least squares is less accurate than the sum
of absolute deviations and minimax problems in
reproducing hydrograph characteristics such as peak
flow and hydrograph volume. This is attributed to the
scaling imposed by the method of least squares, where
the weights attached to larger deviations is in many
instances orders of magnitude larger than those
imposed on medium to small deviations.

The approach followed in this work indicates that
the sum of absolute deviations and minimax methods
applied in this work are suitable for linear hydrologic
systems, both steady-state and transient. The linear
programming formulation of these two methods (i.e.,
sum of absolute deviations and minimax) overcomes
the problem of having to specify initial parameter
estimates when these are unknown, and bounds on
estimated parameter values are straightforwardly
included. In addition, parameter estimates from the
linear programs are globally optimal. These advanta-
geous features should provide enough incentive for
more widespread application of the presented
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h(p)_x+y=b,t=l,2,...,n (A3)

x,y�O, t=l,2,..,.n (A4)

The proof below is applicable to hydrologic outputs h
that are either linear or nonlinear on the parameters
(p). In order to prove the equivalence of Equation (Al)
and Equations (A2) to (A4) it is sufficient to show
that, at the minimum, the following equality holds,

h(p)_ b_—
(Xt+Yt)

(A5)

so that the minimization of the left and right hand
sides of Equation (A5) leads to the same value for the
optimal p.

The proof proceeds by examining the following
cases.

Case 1

h1—b1> 0

Assume:

(1) xg>Oandyg=0
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Linear Programs for Nonlinear Hydrologic Estimation

From Equation (5), Case 3

Ih—bI = IXt—ytI b ——0

— Xt Assume:

=x+y (A6) (1) ==o
(2) xt>Oandyt>0 From Equation (5),

From Equation (5),
Ihrbct = tXrytl

Ihg—bgl =
=xt+yt (AlO)

< IxI + Yt'
(2) x1=y1�0

=xt+yt (A7)
From Equation (5),

From Equations (A6) and (A7) above, it is seen that
when h—b is positive then xt+yt is bounded below by I I = Ixg— I

I with equality holding when x1 > 0 and Yt = 0.
< iXu + 'Yt

Case 2 = Xt i-y1 (All)

From Equations (AlO) and (All) it follows that if
<0 h—b equals zero then Xt+yt is bounded below by

I I with equality holding at Xt and Yt being equal
Assume: to 0.

Cases 1 to 3 examined above showed that, given
(1) X1 = 0 andyt> 0 the equality constraint (Equation 5), x Yt is bounded

below by I hç-b I for all times t with equality holding
From Equation (5), when either Xt or Yt , or both, equal zero. Therefore

Equation (A5) holds and the minimization of
I h—b I = I I Equation (3) is equivalent to the minimization of

Equations (6) to (8) as hypothesized earlier. Q.E.D.
= tYcI

=x1+y1 (AS)
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