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a  b  s  t  r  a  c  t

Aluminum  is  one  of the  most  common  metal  elements  in  the  earth’s  crust.  It is  not  an  essential  element
for  life  and  has  commonly  been  thought  of  as a  rather  inert and  insoluble  mineral.  Therefore,  it  has  often
been  regarded  as not  posing  a significant  health  hazard.  In  consequence,  aluminum-containing  agents
been  used  in  many  food  processing  steps  and  also  in removal  by flocculation  of  particulate  organic  mat-
ter  from  water.  In recent  years,  acid  rain  has  tended  to  mobilize  aluminum-containing  minerals  into  aQ2
more  soluble  form,  ionic  Al3+, which  has  found  their  way  into  many  reservoirs  that  constitute  residential
drinking  water  resources.  As a result,  the  human  body  burden  of  aluminum  has  increased.  Epidemi-
ological  studies  suggest  that aluminum  may  not  be as  innocuous  as  was  previously  thought  and  that
aluminum  may  actively  promote  the  onset  and  progression  of Alzheimer’s  disease.  Epidemiological  data
is  strengthened  by experimental  evidence  of  aluminum  exposure  leading  to excess  inflammatory  activ-
ity within  the  brain.  Such  apparently  irrelevant  immune  activity  unprovoked  by  an  exogenous  infectious
agent  characterizes  the  aging  brain  and is even  more  pronounced  in  several  neurodegenerative  diseases.
The causation  of most  of  these  age-related  neurological  disorders  is  not  understood  but  since  they  are
generally  not  genetic,  one  must  assume  that  their  development  is  underlain  by  unknown  environmental
factors.  There  is  an  increasing  and  coherent  body  of  evidence  that  implicates  aluminum  as  being  one  such
significant  factor.  Evidence  is outlined  supporting  the  concept  of aluminum’s  involvement  in hastening
brain  aging.  This acceleration  would  then  inevitably  lead to increased  incidence  of specific  age-related
neurological  diseases.

© 2013 Published by Elsevier Ireland Ltd.
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1. The environmental presence of aluminum 35

Aluminum (Al) is the third most abundant element found in the 36

earth’s crust (Priest et al., 1988). In 1825 that this metal was iso- 37

lated in its elemental form by the Danish physicist Hans Oersted 38

(Sigel and Sigel, 1988). Al products have many modern applications. 39

0300-483X/$ – see front matter ©  2013 Published by Elsevier Ireland Ltd.
http://dx.doi.org/10.1016/j.tox.2013.10.008

dx.doi.org/10.1016/j.tox.2013.10.008
dx.doi.org/10.1016/j.tox.2013.10.008
http://www.sciencedirect.com/science/journal/0300483X
http://www.elsevier.com/locate/toxicol
Original text:
Inserted Text


Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
U. S. A

Original text:
Inserted Text
brain senescenceneurological

Original text:
Inserted Text
neuroinflammationand oxidative

Original text:
Inserted Text
Al3+

Original text:
Inserted Text
diseases

Original text:
Inserted Text
Environmental Presence of Aluminum. Aluminum

Original text:
Inserted Text
Exposure to High Levels of Aluminum can lead to Clinical Neurotoxicity.

Original text:
Inserted Text
Inflammation is Elevated with Aging, and Further Intensified in many Chronic Neurological Disorders.

Original text:
Inserted Text
Suggests a Relation between Aluminum Intake and the Prevalence of Alzheimer's Disease.

Original text:
Inserted Text
Neurodegenerative Disorders

Original text:
Inserted Text
Disease.

Original text:
Inserted Text
Animal Models Reinforce an Association between Aluminum and Adverse Neurological Changes.

Original text:
Inserted Text
Molecular Events Underlying Aluminum Neurotoxicity.

Original text:
Inserted Text
Neurotoxic Consequences of Low Levels of Aluminum Remain Controversial

Original text:
Inserted Text
10Declaration of Interest

Original text:
Inserted Text
Corresponding author. Division

Original text:
Inserted Text
Irvine, CA 92697-1825, Phone, 949 824 8077, Fax: +949

mailto:scbondy@uci.edu
Original text:
Inserted Text
Environmental Presence of Aluminum. Aluminum

dx.doi.org/10.1016/j.tox.2013.10.008


Please cite this article in press as: Bondy, S.C., Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and
neurodegeneration. Toxicology (2013), http://dx.doi.org/10.1016/j.tox.2013.10.008

ARTICLE IN PRESSG Model

TOX 51309 1–7

2 S.C. Bondy / Toxicology xxx (2013) xxx– xxx

Adding aluminum sulphate and lime to water causes aluminum40

hydroxide formation, which leads to settling of pollutants. Al con-41

taining agents are also commonly found as food and medication42

additives. Infant formulae are especially rich in aluminum (DabekaQ343

et al., 2010; Burrell and Exley, 2010). Concentrations as high as44

1.8 mM Al can be reached in the juice resulting when acidic fruit45

is boiled in aluminum cookware (Fimreite et al., 1997). The most46

common form of human exposure to Al is by way of the gastroin-47

testinal tract. The rate of absorption here is around 0.2% (Priest48

et al., 1988). Once Al salts are transferred to the vascular system in49

the blood, most of the metal is bound to transferrin (Harris et al.,50

2003). Al3+ can enter the nervous system by transport across the51

blood–brain barrier using receptor-mediated endocytosis of trans-52

ferrin. Approximately 0.005% of the aluminum–protein complexesQ453

enter the brain by this means (Yokel et al., 2004).54

Al in the environment was originally considered to be innocu-55

ous, because Al salts form monomeric hydroxy compounds in water56

which start to form increasingly high molecular weight complexes57

as the solution ages. Because of the formation of these colloidal58

insoluble Al species, its absorption was thought to be restricted.59

However, Al compounds are known to be toxic to both plants60

(Kochian and Jones, 1997) and animals (Sparling and Campbell,61

1997) and there has been an increased disquiet concerning the62

metal’s potentially adverse effects on human health (LaZerte et al.,63

1997). Furthermore, the growing prevalence of acid rain resulting64

from fossil fuel combustion can effect to the discharge of larger65

amounts of Al salts from insoluble minerals, leading to greater66

bioavailability (Smith, 1996).67

2. Transient exposure to high levels of aluminum can lead68

to clinical neurotoxicity69

The possibility of Al being a contributing agent toward the pro-70

motion of neurological disease was initially raised by a number71

of clinical studies suggesting that aluminum compounds present72

within the body, are not harmless. Thus, aluminum-induced dial-73

ysis encephalopathy following hemodialysis is accompanied by74

heightened levels of Al in the brain (Russo et al., 1992). Improve-75

ment of clinical status was expedited by therapeutic use of an Al76

chelator, desferrioxamine (Erasmus et al., 1995). Blood concentra-77

tions of Al as high as 7 �M,  have been found in dialysis patients78

even in the absence of overt dementia (Altmann et al., 1987). Inges-79

tion of Al salts led to the deposition of Al compounds in the brain80

(Bowdler et al., 1979). Aluminum-induced encephalopathy has also81

been found in patients with kidney failure, treated with bladder irri-82

gation using 1% alum (Phelps et al., 1999). A type of encephalopathy83

has been reported in workers in the aluminum industry, charac-84

terized by intellectual deficits, loss of muscle control, tremor and85

spinocerebellar degeneration (Polizzi et al., 2002). These reports86

are evidence that excessive levels of aluminum can have deleteri-87

ous effects on human health. Anomalous neurological signs have88

also been seen in some patients receiving intramuscular injections89

of Al-containing vaccines (Couette et al., 2009). In consequence, the90

World Health Organization (WHO) Vaccine Safety Advisory Com-91

mittee has recognized that there may  be a subset of predisposed92

individuals who may  be sensitive to Al adjuvants (Authier et al.,93

2001).94

In the 1940s and 1950s, inhalation of Al in the form of the pow-95

dered oxide was  used as a prophylactic agent against silicotic lung96

disease of miners (Crombie et al., 1944). Despite the finding that97

human subjects suffering from silicosis, did not significantly benefit98

from this treatment (Kennedy, 1956), the procedure was described99

as beneficial in an animal model of silicosis (Dubois et al., 1988).100

Subsequently the harmful effects of inhaled Al, especially upon101

brain function, were reported (Rifat et al., 1990). More recently, a102

major accidental exposure of a rather large population to Al has103

taken place in Camelford, UK. This was due to the inadvertent 104

release of large amounts of Al sulphate into the local water supply. 105

The neurological consequences from this escape are still being stud- 106

ied but there is already significant evidence of harmful effects on the 107

nervous system in some of the exposed population (Altmann et al., 108

1999). Histopathological examination of a person who was  exposed 109

to Al sulphate in Camelford and subsequently died of an undeter- 110

mined neurological condition, revealed early-onset beta amyloid 111

angiopathy in the cerebral cortical and leptomeningeal blood ves- 112

sels. High Al concentrations were present in the more seriously 113

disturbed regions of the cortex (Exley and Esiri, 2006). 114

Correlative changes are never sufficient to conclusively demon- 115

strate causation. It has been proposed that that Al entry into the 116

brain is a secondary epiphenomenon, consequent to damage to 117

the blood–brain barrier. However, dialysis encephalopathy can be 118

treated with some success using desferrioxamine chelation, and 119

this implies that Al is directly toxic (McLachlan et al., 1991). These 120

early results have not been followed up, perhaps in part due to 121

the adverse side effects of desferrioxamine treatment which com- 122

monly include muscle pain, nausea, and erythema and more rarely, 123

visual deficits. In addition, there may  be a lack of interest by phar- 124

maceutical companies in a drug that is not patentable. Treatment of 125

aluminum-related bone disease using desferrioxamine can mobi- 126

lize Al from deposits in bone, leading to elevated serum Al that 127

led to the initiation of dialysis dementia (Sherrard et al., 1988). 128

While desferrioxamine is not a specific Al chelator, in both of these 129

occurrences, a causal relation between high circulating levels of Al 130

and dementia was indicated. Other evidence of the neurotoxicity 131

of relatively high levels of Al comes from clinical reports. One such 132

case involving a fatal outcome, implicated aluminum-containing 133

cements used in treatment of inner ear disorders (Reusche and 134

Seydel, 1993). Another report concerns a chronic renal failure 135

patient, who was treated phosphate-binding Al-hydroxy gels for a 136

prolonged period. This patient developed Al-induced encephalopa- 137

thy nine months prior to death, and post-mortem neuropathology 138

revealed increased proliferation of microglia and astrocytes in some 139

brain regions (Shirabe et al., 2002). 140

3. Cerebral inflammation is elevated with aging, and 141

further intensified in many chronic neurological disorders 142

Aging of the brain is typically accompanied by increased lev- 143

els of inflammation (David et al., 1997; Sharman et al., 2004). 144

Neuroinflammatory processes become more marked during nor- 145

mal  aging despite the lack of recognizable exogenous immune 146

stimuli (Sharman et al., 2008; Lucin and Wyss-Coray, 2009). A 147

further exacerbation of inflammatory events is thought to signif- 148

icantly contribute to pathogenic changes associated with many 149

age-related neurodegenerative disorders, including Alzheimer’s 150

disease (AD), Parkinson’s disease (PD), amyotrophic lateral scle- 151

rosis (ALS), and multiple sclerosis (MS). The number of activated 152

astrocytes is elevated in AD and these changes are found in con- 153

junction with senile plaques (Cullen, 1997). In the hippocampus 154

of AD patients, there is an up-regulation of expression of pro- 155

inflammatory genes (Colangelo et al., 2002), and concentrations of 156

inflammatory cytokines are also elevated in the brain (Zhao et al., 157

2003) and cerebrospinal fluid (Sun et al., 2003). 158

AD is associated with brain depositions of the toxic amyloid �- 159

peptide (A�), which is produced by proteolytic breakdown of from 160

amyloid-� precursor protein (A�PP). Reactive microglia, produc- 161

ing inflammatory cytokines and acute phase proteins, are found 162

in proximity to A�-containing neuritic plaques (Mrak et al., 1995; 163

Styren et al., 1998) in the AD brain. Aluminum salts can pro- 164

mote A� aggregation in vitro (Exley, 1997; Bondy and Truong, Q5165

1998; Bolognin et al., 2011), and treatment of transgenic mice 166

over-expressing A�PP with Al salts in the drinking water, leads to 167
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oxidative stress, A� deposition, and plaque formation in the brain168

(Pratico et al., 2002). More recent studies on Al and the promotion169

of Alzheimer pathology have led to conflicting results (Akiyama170

et al., 2012). An emerging generalization seems to be that alu-171

minum’s behavioral effects are clearest in normal aging animals172

while harder to detect in mutant strains of animals that are already173

genetically predisposed to plaque formation and exhibit marked174

memory deficits (Ribes et al., 2008).175

PD is a neurological disease whose hallmarks include abnor-176

mally elevated levels of both oxidative and inflammatory events177

(Selley, 2005). This disorder is also characterized by microglial acti-178

vation and high levels of inflammatory cytokines (Nagatsu and179

Sawada, 2005). Non-steroidal anti-inflammatory drugs (NSAIDs)180

may  reduce the possibility of developing PD (Hald et al., 2007).181

When mice are treated with a systemic inflammatory stimulus182

such as lipopolysaccharide (LPS), levels of inflammatory cytokines183

are briefly elevated in serum and liver, but these return to basal184

levels within 1 week. However, after such treatment inflamma-185

tory cytokines are maintained at high levels in the brain for over186

10 months, a significant fraction of the entire mouse lifespan. This187

increase is associated with both microglial activation and continu-188

ing neuronal death (Qin et al., 2007). These findings provide a clue189

as to why the aged brain shows evidence of continuing inflamma-190

tion (Bondy and Sharman, 2010). The consequences of prolonged191

exposure to relatively low levels of Al are difficult to pinpoint of192

transient inflammatory events including infections involving the193

whole body, may  be maintained in the CNS for an extended period194

(Shi et al., 2003; Bilbo et al., 2005; Galic et al., 2008). This sug-195

gests that inflammation can be a self-promoting process and this196

may  play an important role in advancing neurodegeneration (BlockQ6197

et al., 2005; Lucin and Wyss-Coray, 2009). Many age-related neu-198

rological diseases appear to be associated with an even higher level199

of inflammation than that observed in normal brain aging (Bondy,200

2010).201

4. Epidemiology suggests a relation between aluminum202

intake and the prevalence of Alzheimer’s disease203

Early reports of the neurotoxicity of Al such as those with dialy-204

sis dementia involved exposure to relatively high levels of Al. More205

recently and more controversially, the potential health effects of206

more chronic exposures to low levels of Al have provoked appre-207

hension. The finding of high levels of Al in the brains of patients208

with AD relative to controls has been reported [see above] and209

high Al levels are also found in other less common neurological210

disorders including the Guamanian Parkinsonian-ALS complex and211

Hallervorden-Spatz disease (Eidelberg et al., 1987; Garruto et al.,212

1988). This has raised the issue of whether the metal may  play a213

contributory role in the initiation and progression of a variety of214

neurological disorders (Kawahara and Kato-Negishi, 2011).215

Chelation therapy in order to reduce the Al burden in AD patients216

has been reported as beneficial (McLachlan et al., 1991) and new Al-217

specific chelators for potential use in AD treatment have recently218

been developed (Shin et al., 2003).219

The most consistent indication of a link between exposure to220

Al and neurodegenerative diseases is the growing number of pop-221

ulation studies linking the Al content of drinking water as being222

proportional to the degree of incidence of neurological disease.223

An early epidemiological study by McLachlan et al. (1996) corre-224

lated the risk of developing Alzheimer’s disease with residing in225

areas where Al concentrations in the municipal drinking water226

are 100 �g/L or greater. A dose–response relationship between the227

concentration of Al in the drinking water and risk of developing228

AD was found. A more recent work, examining elderly populations229

exposed to Al in drinking water, also reported a similar link between230

exposure and the prevalence of AD (Rondeau et al., 2009).231

The consequences of prolonged exposure to relatively low levels 232

of Al are difficult to pinpoint as they often involve seeking evidence 233

of an altered incidence of relatively common neurological diseases 234

such as sporadic AD. However, a comprehensive literature survey 235

assembling results from many sources and many areas, has found 236

thirteen reports of a significant association between living in areas 237

where Al concentrations in the municipal drinking water supplies 238

are relatively high and an increased incidence of AD (Flaten, 2001). 239

A more recent overview points to the possibility that conflicting 240

results may  in part be due to lack of consideration of silicate levels 241

in drinking water in some reports, which, by complexing Al, could 242

have a protective effect (Krewski et al., 2007). 243

Thus, while the mechanism underlying the means effects by 244

which Al exerts its effects is uncertain, in many instances Al has 245

been shown to promote events connected to neurodegenerative 246

changes in AD. Some occupational epidemiological studies have 247

focused on specific groups of workers such as some groups of 248

welders exposed to high levels of Al. While some reports have 249

found no significant correlation between Al inhalation among 250

welders and neurobehavioral performance (Kiesswetter et al., 251

2009). However, another group has described significant dose- 252

related behavioral deficits in Al welders (Giorgianni et al., 2012). 253

This latter report emphasized that the most susceptible tests 254

involved complex attention and memory performance. 255

The case for a causal relation of the association between Al expo- 256

sure and AD is reinforced by findings of excessive levels of Al in 257

post-mortem analyses of brain tissue from AD patients. The original 258

description of this connection (Perl and Brody, 1980) was  disputed 259

due to the problem of obtaining accurate Al analyses and the prob- 260

ability of sample contamination (Bjertness et al., 1996). However, 261

a range of more advanced analytical procedures including laser 262

microprobe mass analysis (Bouras et al., 1997), instrumental neu- 263

tron activation (Andrasi et al., 2005), an improved graphite furnace 264

atomic absorption method (Xu et al., 1992) or energy-dispersive X- 265

ray spectroscopy combined with transmission electron microscopy 266

(Yumoto et al., 2009), have all essentially confirmed the origi- 267

nal report. Laser microprobe mass analysis revealed the Al to be 268

largely situated within the neurofibrillary tangles associated with 269

AD (Bouras et al., 1997). The relation between AD and Al seems to be 270

stronger than that for other neurological diseases but this may  be 271

because of the much higher prevalence of AD relative to most other 272

neurodegenerative diseases, which allows more precise analysis of 273

epidemiological data on AD than is the case with less common dis- 274

orders. However, AD is also associated with other metal imbalances 275

such as major depression of copper levels and the issue of causality 276

remains elusive (Akatsu et al., 2012; Exley et al., 2012). 277

5. Aluminum and neurodegenerative disorders other than 278

Alzheimer’s disease 279

The connection between Al and other less prevalent neurolog- 280

ical disorders is uncertain. There is however a series of clinical 281

articles reporting that use of vaccines may  be associated with 282

increased incidence of multiple sclerosis. Most vaccines either 283

contain alum or are used in conjunction with alum-containing 284

adjuvants (Girard, 2005; Sutton et al., 2009; Chang et al., 2010; 285

Alvarez-Soria et al., 2011; Shoenfeld and Agmon-Levin, 2011). Al 286

excretion has been reported as elevated in MS  patients (Exley et al., 287

2006). On the other hand, Al-containing adjuvants within a vac- 288

cine have also been suggested to have prophylactic value in the 289

treatment of MS  (Wållberg et al., 2003). 290

There is also evidence linking Al and Parkinson’s disease, PD. An 291

association has been made between the frequency of gastric ulcers, 292

and PD, and it has been proposed that this linkage might be due 293

to the higher usage of Al-containing antacids by those suffering 294

from ulcers (Altschuler, 1999). Other indirect evidence in support 295
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of a connection between Al and PD is the ability of Al to activate296

monoamine oxidase B. This enzyme is elevated with age and further297

raised in PD (Zatta et al., 1999) and monoamine oxidase B is able to298

promote alpha-synuclein fibril formation (Burke et al., 2008). It has299

been proposed that this may  account for the association between300

neurotoxic metals and PD (Uversky et al., 2001). The triggering of301

inflammatory processes by activation of the transcription factor NF-302

�B was found to occur in a synergistic manner after simultaneous303

treatment of experimental animals with a dopaminergic neuro-304

toxin, MPTP and low levels of Al in drinking water (Li et al., 2008).305

Neuropathological changes and motor deficits resembling those306

found in ALS have been have been found in aluminum-dosed ani-307

mal  models. Specifically, injection of Al-containing adjuvants at308

levels comparable to those that are administered to human adults,309

resulted in the death of motor neurons, impairments in motor func-310

tion, decrements in spatial memory capacity in young mice and311

significant increases in activated astrocytes and microglia (Petrik312

et al., 2007; Shaw and Petrik, 2009). Blood and urine levels of Al may313

also be elevated in ALS (Perl et al., 1982) but there is disagreement314

concerning this (Qureshi et al., 2008).315

6. Findings from animal models reinforce an association316

between aluminum and adverse neurological changes317

Numerous experimental animal models where systemically318

administered Al caused behavioral deficits, support clinical319

findings on aluminum neurotoxicity. These include reports of in-320

coordination (Bowdler et al., 1979), and changes in reactivity and321

neuropathological changes reminiscent of those found with brain322

aging (Miu  et al., 2004).323

Many of these studies have involved treatment with quan-324

tities of Al that are not commonly come across among human325

populations. However, some studies that better reflect common326

human exposures have been performed using relatively long treat-327

ment with levels of Al found in some water supplies or dietary328

exposures paralleling human intake. One such study found evi-329

dence for elevated levels of inflammatory activity within brain330

tissue (Campbell et al., 2004), which included heightened levels331

of inflammatory cytokines, nitric oxide synthetase and glial fib-332

rillary astrocytic protein (GFAP) a marker of astrocytic activation333

(Yokel and O’Callaghan, 1998; Walton, 2009a). These changes were334

found after Al salts had been in the drinking water of mice for three335

months at concentrations below those found in some residential336

drinking water supplies. Additional persuasive data on the prob-337

able harmfulness of Al, comes from observations of cognitive and338

neuropathological changes characteristic of AD in aged rats after339

chronic exposure to Al equivalent to Al intake by some human340

populations (Walton, 2009b,  2012; Walton and Wang, 2009).341

If the progressive inflammatory changes that characterize neu-342

rosenescence were further promoted by the extended presence of343

low levels of Al, this could further elevate the excess inflammatory344

events associated with the progression of many age-related neu-345

rodegenerative disorders. Al may  act principally by promoting the346

rate of brain aging. This acceleration could form a platform to sec-347

ondarily facilitate an increased incidence of a wide range of specific348

neurodegenerative diseases.349

7. Physiological and molecular events underlying350

aluminum neurotoxicity351

The development of a clear mechanistic understanding of the352

mechanisms underlying Al neurotoxicity remains elusive. Despite353

the chemical inertness of its salts, there are many potential mech-354

anisms by which Al can promote neurotoxic events (Tomljenovic,355

2011). The induction of glial activation and initiation of macrophage356

responsivity by Al complexes has been described several timesQ7357

(Evans et al., 1992; Gorell et al., 1999; Platt et al., 2001). These 358

outcomes resemble the neuropathological findings at autopsy of 359

a patient who had developed dialysis encephalopathy (Shirabe 360

et al., 2002). Since aluminum salts can provoke inflammatory glial 361

responses in isolated systems as well as in intact animals, it is likely 362

that they can act directly upon responsive cells (Campbell et al., 363

2002). 364

Overall, there is a significant boy of literature showing that Al 365

exposure leads to higher levels of inflammatory activity within the 366

brain. It is especially striking that when TNF-� is raised in many tis- 367

sues by a systemic inflammatory stimulus, it remains elevated in 368

brain much longer than in other organs and does not return to rest- 369

ing levels for an extended period (Qin et al., 2007). In consequence, 370

the aging brain can gradually accumulate evidence of prior insults 371

until a permanently damaging degree of inflammatory activity is 372

reached and maintained. 373

Aluminum is also capable of promoting free radical generation, 374

despite the fact that it is not a valence-labile metal and does not 375

have a strong affinity for sulfhydryl radicals. It may act by cat- 376

alyzing the redox activity of trace amounts of iron. This ability to 377

potentiate the pro-oxidant properties of iron can even be found in 378

the absence of all biological tissue or protein (Bondy et al., 1998). 379

Its mechanism of action may  by involve providing a colloidal sur- 380

face for the sequestration of iron leading to Fenton transformations 381

(Bondy, 2009). Such promotion of iron’s pro-oxidant potential by 382

an apparently inert mineral has also been shown for silica fibers 383

(Napierska et al., 2012). It has been proposed that, since aluminum 384

has an unusually high charge density (Z2/r), this can account for its 385

ability to compact A-T rich chromatin domains leading to repres- 386

sion of specific genes (Lukiw, 2010) 387

8. Why  do the neurotoxic consequences of low levels of 388

aluminum remain controversial? 389

Interest in this subject is continuous but never breaks through to 390

an unequivocal recognition of the hazards of environmental Al and 391

for the need to take more regulatory action. An examination of the 392

history of lead toxicity can give clues that may  help understanding 393

of some of the reasons behind this failure to reach a “critical take- 394

off velocity.” Lead has been used in manufacturing for over 3000 395

years and has been intermittently known to be neurotoxic since 396

700 B.C. Its prevalence has risen greatly in the last 200 years and, 397

in the last two  decades the harmfulness of even low levels of lead 398

has been widely recognized. Now, major legislative efforts to mini- 399

mize lead exposure have been effected. However, this was preceded 400

by a period of heated controversy during which the lead industry 401

accused leading scientists conducting low level lead research, of 402

bias and fraud (summarized in Needleman, 2008). 403

In contrast, Al has only had widespread industrial use for just 404

over a century. As in the case of lead, the neurotoxicity of high 405

levels of Al is not disputed. However, also paralleling the situa- 406

tion for lead, the toxicity of low levels of Al is fiercely contested 407

since major economic forces are concerned. Currently, no major 408

efforts to minimize Al levels in food or drinking water are being leg- 409

islatively considered. The much shorter history of Al usage means 410

that we may  be at an earlier stage of perception of its hazards to 411

human health than is the case with lead. It is to be hoped that the 412

next step in the evolution of the recognition of the neurotoxicity of 413

environmental aluminum, will soon emerge. 414

9. Conclusions 415

Although the capacity of ingested aluminum to further the onset 416

and progression of neurodegenerative disease remains unsettled, 417

the following conclusions are pertinent and indisputable. 418
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(i) Al is widespread in the environment, absorbed by humans and419

can reach the brain.420

(ii) A relatively short exposure to high levels of Al can lead to clear421

cut clinical signs of damage to the CNS.422

(iii) Levels of intrinsic inflammatory activity increase with brain423

aging and this is further aggravated in many age-related neu-424

rodegenerative conditions.425

(iv) Low levels of Al in the drinking water of experimental animals426

that parallel those found in some human exposures can elevate427

of inflammatory activity within the brain.428

The median age in the United States is lengthening leading to429

the prospect of a growing incidence of extended neurodegenera-430

tive ailments including AD, PD ALS and MS.  These are in the main,431

non-genetic, idiopathic disorders. This indicates that they are often432

initiated by unknown environmental factors. The causative agent of433

none of these diseases has been identified. Long latent periods may434

take place between exposure to a harmful environmental agent435

and the materialization of clinical symptoms. This can complicate436

the identification of the original factors initiating the disease pro-437

cess. Since aging forms an indispensable basis for the development438

of neurodegenerative disorders, an acceleration of changes tak-439

ing place during normal brain aging, could speed up the time of440

the onset and thus the incidence of all such disorders. A possible441

sequence of events by which Al could further age-related neuro-442

logical changes are suggested in Fig. 1.443

One of the most promising approaches to alleviation of the soci-444

etal consequences of progressive neurodegenerative diseases lies445

in the recognition and remediation of those environmental factors,446

which hasten changes accompanying normal brain aging.447

The simplest way of accounting for much of the data concerning448

Al neurotoxicity is the concept that Al can accelerate the evolu-449

Fig. 1. Postulated sequence of events by which Al could enhance progression of
age-related neurological changes.

tion of the aging process. This acceleration could give a reason for 450

the epidemiological relation between Al and Alzheimer’s disease, 451

which affects a large proportion of the very elderly. It could also 452

account for the more tenuous connection that has been proposed 453

between Al and a range of less common age-dependent neurolog- 454

ical diseases. The premise behind this overview is that Al drives a 455

non-selective component of senescence, namely an elevated state 456

of immune reactivity leading to extended neuroinflammation. This 457

state of futile inflammatory activity could form a foundation for 458

the enhancement and progression of more distinct neurological 459

conditions. 460
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