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The Size-Weight Illusion is not
anti-Bayesian after all: a unifying
Bayesian account
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1Department of Psychology, University of California, Los Angeles, CA, United States
2Center for Neural Science, New York University, New York, NY, United States
3Department of Psychology, New York University, New York, NY, United States
4Department of Bioengineering, University of California, Los Angeles, CA, United States

ABSTRACT
When we lift two differently-sized but equally-weighted objects, we expect the larger
to be heavier, but the smaller feels heavier. However, traditional Bayesian approaches
with ‘‘larger is heavier’’ priors predict the smaller object should feel lighter ; this
Size-Weight Illusion (SWI) has thus been labeled ‘‘anti-Bayesian’’ and has stymied
psychologists for generations. We propose that previous Bayesian approaches neglect
the brain’s inference process about density. In our Bayesian model, objects’ perceived
heaviness relationship is based on both their size and inferred density relationship:
observers evaluate competing, categorical hypotheses about objects’ relative densities,
the inference about which is then used to produce the final estimate of weight. The
model can qualitatively and quantitatively reproduce the SWI and explain other
researchers’ findings, and also makes a novel prediction, which we confirmed. This
same computational mechanism accounts for other multisensory phenomena and
illusions; that the SWI follows the sameprocess suggests that competitive-prior Bayesian
inference can explain human perception across many domains.

Subjects Neuroscience, Psychiatry and Psychology, Computational Science
Keywords Size-Weight Illusion, Hierarchical causal inference, Bayesian inference,
Heaviness perception

INTRODUCTION
When we lift two objects of the same mass but differing sizes, we expect the larger to be
heavier, but instead the smaller feels heavier. This Size-Weight Illusion (SWI) has been
studied from perceptual, computational, and sensorimotor perspectives, but has yet to be
satisfactorily explained. One possibility is that observers expect larger objects to be heavier
than smaller objects, and so ‘‘overlift,’’ i.e., generate greater force in preparing to and
lifting larger objects. Although this would indeed lead the larger object to feel lighter than
the smaller (Gordon et al., 1991), in fact motor forces scale quickly and appropriately to
the true weight of items while the SWI persists (Buckingham & Goodale, 2010; Flanagan
& Beltzner, 2000; Flanagan et al., 2001; Grandy & Westwood, 2006). The SWI also persists
when grip size, rotational inertia, and lifting style are controlled (Ellis & Lederman, 1998;
Kawai, Henigman & MacKenzie, 2007). Therefore, this illusion cannot depend entirely on
motor-system explanations, instead representing a perceptual phenomenon.
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Early models that simply described the SWI (e.g., Anderson, 1970; Cross & Rotkin, 1975)
do not satisfactorily answer the question of why it occurs. Thus, in more recent years, many
have reexamined the SWI utilizing Bayesian decision theory: the expectation that smaller
objects are lighter than larger ones is formalized as the prior, while the sensory evidence
that the two objects actually weigh the same is the likelihood. The two objects’ heaviness
relationship is then represented by the posterior, arrived at via Bayes’ rule:

p(w|s)=
p(s|w)p(w)

p(s)
. (1)

Thus, the probability of two objects’ relative weights w given their sizes s, p(w|s), is a
function of the sensory evidence p(s|w) and the prior probability of their weight relationship
p(w) , with p(s) a normalization constant. This framework has successfully explained
numerous perceptual phenomena (e.g., visual motion perception (Weiss, Simoncelli &
Adelson, 2002), audiovisual localization (Körding et al., 2007; Wozny, Beierholm & Shams,
2010), and visuohaptic percepts of stiffness versus brightness (Ernst, 2007)). Unfortunately,
Bayesian decision theory in this form fails badly at predicting the SWI, instead predicting
precisely the opposite: the prior expectation that larger objects are heavier would shift the
perception of the larger object to feeling heavier than the smaller object (see Supplemental
Information, available online, for more detail). For this reason, the illusion has been called
‘‘anti-Bayesian’’ (Brayanov & Smith, 2010). However, such simple formulations neglect the
relevance of a factor long-described as critical to the sense of heaviness: density.

Density is not immediately observable, defined only as the relationship between two
other properties: volume and mass. It is thus hidden from immediate access for human
observers, but has been repeatedly shown to be crucial in heaviness estimation (Buckingham
& Goodale, 2013; Cross & Rotkin, 1975; Ross & Di Lollo, 1970). It has also been shown that
visual estimates ofmaterial affect predictions of an object’s weight (Ellis & Lederman, 1998),
and that visual size estimation alone can play a role in density estimation prior to lifting
an object, such that smaller objects are judged to be denser than larger objects even when
visual material is held constant (Peters, Balzer & Shams, 2015). Other investigations have
reported that well-learned material-density priors interact with sensorimotor memory
of previous lifts in producing heaviness percepts (Baugh et al., 2012), and that a single
representation of typical object density based on visual size alone may underlie the SWI
(Buckingham et al., 2016; Buckingham & Goodale, 2013).

In contrast, how density should computationally affect heaviness percepts has not yet
been settled, but causal inference (competitive prior) models may provide some answers. In
these models, the perceptual system evaluates the relative probabilities of several competing
causal scenarios in addition to evaluating incoming sensory evidence (Yuille & Bülthoff,
1996). These competing scenarios typically reference secondary or hidden variables (the
cause of sensory experiences), which the observer does not necessarily estimate explicitly
but which nevertheless influence the variables s/he is estimating. For example, in order
to interpret the shape of an object, secondary variables must also be evaluated: is the
object’s surface material Lambertian (matte) or specular (shiny)? Only once determination
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about the object’s material has been made do other visual cues to object geometry become
interpretable (Yuille & Bülthoff, 1996).

Yuille & Bülthoff (1996) proposed a competitive-hypothesis framework to solve
this problem, carving the continuous space of surface reflectance into two categories,
Lambertian and specular. A mathematically equivalent framework explains the perception
of slant, in which the brain estimates the angle of a slanted plane (Knill, 2003; Knill, 2007)
in part by partitioning the continuous space of the hidden variable of possibly isometric,
rounded shapes into two qualitative categories: oval and circle. Another version defines
as its categorical secondary variable the cause of sensory information as a single versus
multiple sources: congruentmultisensory signals are integrated, while incongruent ones are
segregated (Körding et al., 2007), explaining the ventriloquist illusion (Wozny, Beierholm
& Shams, 2010), sound-induced flash illusion (Wozny, Beierholm & Shams, 2008), and
rubber-hand illusion (Samad, Chung & Shams, 2015). Similarly, in the SWI the estimation
of an observed variable (weight) depends on the inference about a secondary unobserved
variable (density), and therefore Bayesian causal inference about competing, categorical
hypotheses on density may explain perception of weight.

MATERIALS & METHODS
General behavioral methods
General stimuli
Stimuli for all experiments consisted of four sizes of tagboard cubes (three of each size)
covered in thin balsa wood, with wooden handles affixed to the top. The cubes were of
5.08, 7.62, 10.16, and 15.24 cm on a side, thus having volumes of 131.10, 442.45, 1048.77,
and 3539.61 cm3 (cubes A, B, C, and D, respectively). Three sets of differently-weighted
cubes (weighted with combinations of steel pellets and cotton) were used, with each set
comprised of one cube of each size. Sets thus differed only in weight, so each cube in the
Light (L) set weighed 150 grams, those in theMedium (M) set weighed 350 grams each, and
those in the Heavy (H) set weighed 550 grams each. Weight was measured with 0.1 gram
precision (LB-1000 Scale, American Weigh Scales), which is well below just-noticeable
differences (JNDs) for weight perception (between 1.03 and 6.34 g (Kawai, Henigman &
MacKenzie, 2007)). Cubes were fitted with handles such that grip size was identical for all
cubes in all sets regardless of size and weight.

General procedures
All experimental procedures were conducted in accordance with theDeclaration ofHelsinki
and approved by the UCLA Institutional Review Board (UCLA IRB Approval #11-000527).

On each trial, cubes were presented two at a time, placed side by side in front of the
participant. The cube to the participant’s left was given a reference weight of 10 units,
and the subject was instructed to verbally report his or her perception or expectation
regarding the cube on the right, forming a ratio referencing the left cube’s weight. Subjects
could experience Lifting sessions (Experiments 1 and 2), in which they lifted the cubes
sequentially and judge the Perceived Weight (PW) of the second cube, and/or Expectation
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sessions (Experiment 2), in which they guessed the weight of the second cube (Expected
Weight, EW) without touching either cube.

In both Expectation and Lifting sessions, cubes were presented in a full factorial
design, including all six combinations of the four sizes. Thus, the possible pairings were:
A:B, A:C, A:D, B:C, B:D, C:D, (small/left-big/right, S-B); B:A, C:A, D:A, C:B, D:B, D:C
(big/left-small/right, B-S). Expectation sessions also included trials in which the two cubes
were identically sized as a control: pairs A:A, B:B, C:C, D:D (identically-sized, I-S). In
Lifting sessions, following 10 practice trials subjects completed 144 test trials (4 trials of
each S-B and B-S pairing). In Expectation sessions, subjects completed 10 practice trials,
followed by 128 test trials (8 trials of each S-B and B-S pairing, and 8 trials of each I-S
control condition). Box pairs in Lifting sessions were always of the same weight (i.e., it
was never the case that the boxes possessed different weights). No feedback was given in
either Lifting or Expectation sessions. While the experimenter was placing or removing the
cubes, subjects closed their eyes to avoid any cuing effects regarding the possible weight
of the cubes. Cubes not in use on a given trial were hidden behind a black curtain. The
experimenter also remained hidden from view.

Experiment 1 methods
Participants
Thirty-five healthy participants (mean age: 19.97, range: 18–26, 16 men, 32 right-
handed) gave written informed consent to participate in the study. Five subjects (1
man) were excluded due to technical difficulties (stimuli breaking) or noncompliance with
experimental procedures or instructions. As a result, 30 subjects participated in this study.

Procedure
Behavioral procedures followed the general procedures for Lifting sessions.

Statistical analysis
After log transform, the mean response for each condition of interest for each subject was
calculated, collapsing across S-B and B-S orderings. We did not collapse across weight class
(L, M, H).

Experiment 2 methods
Participants
Thirty-five subjects (mean age: 20.07 years, range: 18–27 years, 14 men, 31 right-handed)
gave written informed consent to participate in this study. Five subjects (2 men) were
excluded due to technical difficulties (stimuli breaking) or noncompliance with experi-
mental procedures or instructions. As a result, 30 participants participated in this study.

Procedure
On Day 1 subjects were instructed that when the two objects were different in size, the
smaller one was denser than the larger one; when they were the same size, subjects were
instructed to assume they had the same density. No other information was given about
the actual density of the items to participants, or about how much denser a smaller object
might be than a larger object. Day 1 behavioral procedures followed the general procedures
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Figure 1 Depiction of the competitive prior framework. The ‘‘agreement’’ between the sensory
evidence p(x|w) and competing expectations of w—depicted by the shaded regions, or p(x|Ri,y)—is
greater for R2 than for the other Rs. When p(x|R2,y) is multiplied by the a priori probability of R2 to
produce p(R2|x,y), it is clear that the expected weight relationship between the two objects under R2

will exert the most influence on the ultimate percept, ŵ . In log space, values above 0 represent a felt or
expected weight ratio in the SWI range (smaller is heavier). For an extended version of the graphical
depiction, see the Supplemental Information.

for Expectation sessions: subjects were instructed to provide their Expected Weight (EW)
reports without touching or moving the cubes in any way. Day 2 consisted of a Lifting
session, in which participants lifted the cubes and provided responses regarding their
Perceived Weight (PW).

Statistical analysis
Due to the nature of the dependent measure as a ratio (and in keeping with studies
on relative mass in intuitive physics (Sanborn, Mansinghka & Griffiths, 2013)), the log
transform of each data-point was computed, as was the mean log ratio for each subject
for each cube pair. Following log transform, the mean EW response for each condition
of interest for each subject was calculated, collapsing across S-B and B-S orderings, and
excluding I-S control pairings. We then additionally collapsed across weight classes to
determine the mean SWI magnitude (ln(PW)) for each pair, and correlated the ln(EW)
and ln(PW) responses for each pair produced by each subject.

Computational model
To apply the causal inference concept to the SWI, we assume that the brain evaluates the
relative probabilities of three ‘‘density relationships’’ (R) given incoming haptic information
of two objects’ weights, and then evaluates that incoming sensory information in light of
the inferred density probabilities (Fig. 1). This density relationship between two objects
A and B with volume relationship VA <VB can belong to one of three categories: (R1)
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dA = dB (e.g., the same material); or (R2) dA > dB; or (R3) dA < dB with d denoting the
density of each object. Note that R2 and R3 are qualitative relationships only (Knill, 2003;
Knill, 2007; Yuille & Bülthoff, 1996), and do not specify how much the densities will differ.

The SWI model begins with a joint probability over volume and density ratios which
varies by density relationship R, p(v,d|R). When paired with visual estimation of volume,
these priors give rise to expectations of weight, which are compared to and combined
with the haptic sensation of weight (Fig. 1). In our experiments, participants report a
value representing the felt heaviness of two objects in the form of a ratio (see ‘Materials &
Methods’: ‘General behavioral methods’). So, because the state variable of interest in our
model, w , is a ratio, measurement noise can be assumed to be log-normal. (See Table S1
for graphical depiction of the generative model.)

Priors
For each density relationship R, we define a prior over the joint probability of volume
ratios v = ln VA

VB
and density ratios d = ln dA

dB
. As in prior research (Knill, 2003; Yuille &

Bülthoff, 1996), we assume that the nervous system represents the continuous space of
density relationship categorically, for computational efficiency. We therefore assume the
space of joint probabilities of volume and density can be represented by three bivariate
Gaussian distribution with µ= [0,0] and each having 6i=

[
σ 2
v ρiσvσd,i
ρiσvσd,i σ 2

d,i

]
, with ρR2 < 0

and ρR3 > 0 such that

p(v,d|Ri)=N (v,d;[v = 0,d = 0],6i) with σd,2= σd,3 and σd,1= 0. (2)

We then define a joint prior as the sum of each of these prior distributions weighted by
their a priori probabilities (for each volume relationship), i.e.,

p(v,d)= p
(
v,d|R1,y

)
p
(
R1,y

)
+p

(
v,d|R2,y

)
p
(
R2,y

)
+p

(
v,d|R3,y

)
p
(
R3,y

)
with p

(
R1,y

)
+p

(
R2,y

)
+p

(
R3,y

)
= 1. (3)

This joint probability of a density relationship and volume relationship p(R,y) is defined
in line with previously reported data (Peters, Balzer & Shams, 2015).

Incoming sensory evidence
Upon seeing the two objects placed side by side, the brain estimates their volume ratio. It
is known that volume is systematically underestimated by an exponent of∼0.704, i.e., that
V̂average ≈ V (.704) (Frayman & Dawson, 1981), therefore we set the mean of the visual

volume measurement to be v∗= ln
(
VA
VB

)(.704)
. We then define visual variance σ 2

y , giving

p
(
y|v
)
=N

(
y;v∗,σ 2

y

)
. Likewise, we define the haptic estimate of the weight ratio x to be

distributed normally, with mean w = ln wA
wB
= 0 as the estimate of weight ratio should be

unbiased, and variance σ 2
x , such that p(x|w)=N

(
x;w = 0,σ 2

x
)
. Note that w = ln wA

wB
= 0

denotes cases where the objects physically weigh the same; for other weight ratios, the
haptic estimate mean changes accordingly.
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Competing hypotheses
The posterior probability of the log weight ratio under each scenario Ri is computed using
Bayes’ Rule as follows:

p
(
w|R,x,y

)
∝ p

(
w,x,y|R

)
= p(x|w)

∫∫
p
(
y|v
)
p(w|v,d)p(v,d|R)dvdd. (4)

Because theweight of an object is deterministically defined by the combination of its volume
and density, we take the probability of a weight relationship between two objects given their
density and volume relationships, p(w|v,d), to be a delta function, δ(w−(d+v)), which
is 0 at all impossible combinations of volume and density for a given weight relationship.
This posterior mean of the log weight ratio under density hypothesis Ri will be:

ŵi=

∫
wp
(
w|x,y,Ri

)
dw. (5)

When no haptic information is available, the estimate of the weight ratios is computed as
the maximum a posteriori (MAP) estimate:

ŵnoLift = argmaxw

3∑
i=1

p
(
w|Ri,y

)
p
(
Ri,y

)
. (6)

In the case where haptic information is available, this information is also used in the process
of arbitration among the competing hypotheses. The posterior probability of each causal
scenario Ri is therefore calculated according to Bayes’ Rule as follows:

p
(
R|x,y

)
=

p
(
x|R,y

)
p
(
R,y

)
p(x)

(7)

with the likelihood (the probability of a haptic estimate given a density relationship and
volume relationship) p(x|R,y) obtained via:

p
(
x|R,y

)
=

∫
p(x|w)p

(
w|R,y

)
dw (8)

with p(w|R,y) equivalent to p(w|R,x,y) with no haptic information present, as described
above. The system’s optimal estimate of the felt weight ratio, ŵ , is found through the MAP
estimate as before:

ŵlift = argmaxw

3∑
i=1

p
(
w|Ri,x,y

)
p
(
Ri|x,y

)
. (9)

We estimate most parameters of the model according to findings in the literature
(see below). We are then left with the following parameters: the visual variance, σ 2

y ;
the haptic variance, σ 2

x ; the elements of the covariance matrix governing the a priori
relationship between volume and density for each of the density relationships R,
6i=

[
σ 2
v ρiσvσd,i
ρiσvσd,i σ 2

d,i

]
; and the a priori probabilities for each density-volume relationship R,

with p
(
R1,y

)
+p

(
R2,y

)
+p

(
R3,y

)
= 1.
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Setting model parameters
Wemake the following assumptions about model parameters, although the presence of the
SWI is robust to most reasonable parameter values. For the simulations, we set σ 2

y = 0.10,
σ 2
x = 0.50, σ 2

v = 0.85, σ 2
d = 1.2, ρR2 =−0.95, ρR3 = 0.95, p(R1,y)= 0.8, p(R2,y)= 0.15,

and p(R3,y)= 0.05. These a priori probabilities p(R,y) for the three R relationships are
qualitatively consistent with the everyday object data collected by Peters, Balzer & Shams
(2015), with the change that in the real world objects are rarely the same density if they
have different sizes. However, in SWI studies the material of the objects is visually similar,
which artificially inflates the probability that they will have the same density. (Note that
this would not be the case under the material-weight illision, in which objects’ visual
material is manipulated; see also the ‘Discussion’ for more). The model is extremely
robust to perturbations of these parameter estimates, with the illusion occurring even
when 0.1<σ 2

x < 0.7, 0.05<σ 2
y < 0.7 (with the exception that at σ 2

y = 0.05 the illusion
does not occur for pair BC, or the two objects that are closest in volume), 0.9<σ 2

d < 2,
0.6<σ 2

v < 1.1, 0.75<ρ < 1 (with the exception that at ρ = 0.75 the illusion does not
occur for pair BC), and many different combinations of [w1,w2,w3]. These values should
not be taken as the limits of the possible parameters, but as illustration of the range over
which the model is extremely robust to reasonable perturbations of parameter values.

RESULTS
According to the proposed model (see ‘Materials & Methods’: ‘Computational model’),
the relative probabilities of three competing ‘‘density relationships’’ R are first evaluated in
light of incoming visual and haptic information, and their relative probabilities are then
used to arrive at the percept of heaviness. For two objects A and B, where A is smaller than
B (VA<VB), these density relationships are: the objects have equal density (R1: dA= dB);
the smaller object is denser (R2: dA > dB); or the larger object is denser (R3: dA < dB);
with d denoting each object’s density. The weight relationship between the two objects in
the form of a ratio, wA

wB
, can then be estimated based on the inferred density relationship.

wA
wB
> 1 indicates the presence of the SWI (the smaller object feels heavier). In the behavioral

experiments, we measured the magnitude of the SWI in two groups: one group to provide
a pure estimate of SWI magnitude, and another to test the model’s predictions. Data are
available online.

Experiment 1: measurement of Size-Weight Illusion magnitude
We quantitatively measured the magnitude of the SWI for various size/weight conditions.
Participants lifted pairs of objects and reported their felt heaviness ratio. Data from this
experiment may onto the distribution of ŵ in the model.

A 3 (weight class: L, M, H) × 6 (pair: A:B, A:C, A:D, B:C, B:D, C:D) repeated measures
ANOVA revealed the expected main effect of box pair (F(5,145)= 110.282, p< .001)
indicating the larger the size difference between the two cubes, the larger the illusion,
and an additional main effect of weight class (F(2,58)= 16.974, p< .001) indicating SWI
magnitude is significantly larger the heavier the objects’ weight. Further, an interaction was
revealed between weight class and pair (F(10,290)= 8.777, p< .001), showing that the
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Figure 2 (A) Means of felt heaviness responses in Experiment 1 (green), compared to model predicted
SWI magnitudes (black). Although analyses were done on log-transformed data, these results are
presented in ratio form for ease of interpretation. Values above 1 indicate illusion. Error bars denote the
standard error of the mean. (B) Correlation between Day 1 predicted density asymmetry and Day 2 felt
heaviness ratios, as predicted by the model.

amount by which size difference (i.e., pair) influences SWI magnitude increases as weight
increases (Fig. 2A). These results mirror the oft-reported finding that the SWI grows with
more discrepant size differences between objects (Buckingham & Goodale, 2013; Cross &
Rotkin, 1975; Flanagan & Bandomir, 2000; Flanagan & Beltzner, 2000; Flanagan, Bittner &
Johansson, 2008). Although there is a difference in mean illusion strength as a function
of weight class, there is no consistent pattern in the variability of subjects’ responses. The
magnitude of the illusion is also quite consistent across individuals in the current study,
with the average between-subjects variability for the mean response to each size-weight
condition (σ = 0.1214) smaller than the average within-subjects variability across multiple
trials of the same condition (σ = 0.2103).

Model results
The model’s predicted reports under Expectation and Lifting conditions were made with
the same parameter settings under both conditions (σ 2

y = 0.10, σ 2
x = 0.50, σ 2

v = 0.85,
σ 2
d = 1.2, ρR2 =−0.95, ρR3 = 0.95, p(R1,y)= 0.8, p(R2,y)= 0.15, and p(R3,y)= 0.05),

with the exception that the Expectation condition was assumed to have infinite haptic
variance (i.e., no haptic information is present, or σ 2

x =∞). Crucially, without any haptic
information, the model reasonably and expectedly predicts that the estimated weight
relationships ought to closely match visually estimated volume relationships: from smallest
volume ratio to largest, the predicted weight ratios without lifting are [0.01, 0.23, 0.23,
0.43, 0.43, 0.55].

Model predictions for Lifting sessions are shown in Fig. 2A, superimposed on
the data collected in Experiment 1. As can be seen the model provides remarkably
good explanatory power for the measured SWI magnitudes, and the expected SWI
magnitude is robust to reasonable perturbations in parameter value selection. The
model demonstrates the well-known finding that illusion magnitude grows with
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larger size differences between the two items, which is derived from the oft-reported
finding that perceived heaviness decreases as a power function of volume with
weight held constant (Cross & Rotkin, 1975; Flanagan & Beltzner, 2000; Flanagan et
al., 2001; Grandy & Westwood, 2006; Ross & Di Lollo, 1970; Stevens & Rubin, 1970).
Thus, these results demonstrate that a Bayesian model can capture the SWI.

Model prediction 1: effect of exposure to unusual density relationships on
the illusion
Due to its competitive prior nature, the model predicts that if an alteration is made to
the distribution of expected weight relationships under R2 (smaller is denser) such that
this probability distribution becomes increasingly incongruous with incoming sensory
information, the other two competing density relationships will become relatively more
probable a posteriori. This is because underR2 (‘‘smaller is denser’’) with default (everyday)
priors, the model predicts that a smaller, denser object will be denser by a factor of two
or three. However, if via training this prior is altered such that a smaller, denser object is
expected to be denser by a factor of 10 or even 100, the expected weight relationship under
R2 will bear no resemblance to the (noisy) haptic evidence centered at wA

wB
= 0. Because the

remaining scenarios predict that the large itemwill be heavier (R1; ‘‘equal density’’) ormuch
heavier (R3; ‘‘larger is denser’’) than the smaller, their growing relative agreement with the
incoming sensory information predicts attenuation and ultimately reversal of the SWI. This
prediction matches the behavioral finding reported by Flanagan and colleagues (2008), in
which trainingwith ‘‘inverted’’ objects ultimately reverses the SWI. Although themagnitude
of the reversal predicted by the model may change with differing assumptions (e.g., about
the effect of training on mean and variance of expected weight ratios under R2), logically
the reversal occurs eventually for any pair of objects. And indeed, the reversal may never
reach the strength of the original SWI itself, as R2 will continue to exert influence even if it
becomes less probable; this qualitative trend matches the behavioral findings reported by
Flanagan and colleagues (2008).More studies should be done tomeasure the exact influence
on the R2 prior with such inverted object training and to make quantitative predictions.

Model prediction 2: effect of individual differences in density expectations
According to our model, the degree of the SWI depends partly on the assumed density of
the two objects ( dAdB ). The model predicts that as the assumed density asymmetry increases
illusion magnitude should also increase in most cases: before weight predictions under
scenario R2 increase to the point of becoming ‘‘too incongruent’’ with incoming sensory
data to be probable, R2 continues to exert influence on the magnitude of the experienced
SWI. According to the model, the degree to which an observer believes the smaller object
will be denser should exhibit a direct relationship with the individual’s perceived SWI
illusion (ŵ). This prediction was tested and confirmed in Experiment 2.

Experiment 2: relationship between prior expectations and illusion
magnitude
To test this novel prediction, we relied on examination of individual differences. A new
group of subjects reported Expectations (Expected Weight, EW) about objects’ weight
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relationships with the instructions that the smaller cube would be denser than the larger
by some unspecified amount. These participants then returned within one to two days to
undertake Lifting sessions and report their the SWI experience (Perceived Weight, PW).

For EW, most subjects reported believing the smaller cube should weigh more than
the larger one, for all six box pairs (# of subjects expecting the smaller cube to be heavier:
nA:B= 25, nA:C = 23, nA:D= 20, nB:C = 26, nB:D= 22, nC :D= 25). This corresponds to a
belief that under R2, the smaller box is not only denser than the larger one, but by an
amount that is so extreme as to make it actually weigh more than the larger one.

For the PW data, a 3 (weight class) × 6 (pair) repeated measures ANOVA on the mean
natural log responses revealed the expected main effect of box pair (F(5,145)= 110.282,
p< .001) and an additional main effect of weight class (F(2,58)= 16.974, p< .001).
Further, an interactionwas revealed betweenweight and pair (F(10,290)= 8.777, p< .001),
showing the amount bywhich size difference (i.e., pair) influences SWImagnitude increases
as weight increases as well (Table S3). These results mirror those of Experiment 1.

To evaluate our prediction, we correlated EW reports (Day 1) with PW reports from the
same individual (Day 2). This analysis revealed significant positive correlations between
expectations under unequal density and perceived SWI magnitude for five of the six box
pairs, with the remaining correlation borderline significant (Fig. 2B). On average, those
who believed the smaller object was only slightly denser than the larger experienced smaller
SWI magnitude, whereas those who believed the smaller object to be much denser than
the larger experienced larger SWI magnitude. These results confirm the predictions of
our model.

DISCUSSION
Previous attempts to account for the SWIwith Bayesian decision theory had only considered
sensory evidence and prior expectations about heaviness—for example positing that an
additional ‘‘smaller is heavier’’ prior is created due to the illusion’s occurrence on a previous
lift (Buckingham & Goodale, 2010), which cannot account for the illusion on the first lift.
Here, we show that percepts of heaviness in the SWI rest not only just on sensory evidence
and expectations about heaviness, but also on expectations about density. Bayesian causal
inference about the most probable hidden state of the world (the objects’ categorical
density relationship) can provide a compelling account for the illusion: the model can
account well for data obtained from two experiments in the present study and more in the
literature, namely that the magnitude of the illusion grows as the size discrepancy between
objects grows (Anderson, 1970; Cross & Rotkin, 1975; Flanagan & Beltzner, 2000; Flanagan
et al., 2001; Grandy & Westwood, 2006; Ross & Di Lollo, 1970; Stevens & Rubin, 1970),
and that the illusion attenuates and ultimately reverses when observers are trained with
small-heavy and large-light objects (Flanagan, Bittner & Johansson, 2008). Importantly,
the model also makes a novel prediction that was confirmed by new data (Experiment 2),
that density asymmetry expectations positively correlate with experienced SWI magnitude.
Taken together, these findings provide compelling support for the proposed Bayesian
competitive-prior model accounting for the SWI.
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In the proposed model, the competing density hypotheses are qualitative in nature. One
may ask why a continuous space should be partitioned into a categorical representation.
First, categorical representation of continuous variables has been successful in accounting
for human perception. For example, in order to determine the shape of an object, one must
first determine its surface reflectance (Yuille & Bülthoff, 1996). But an observer does not care
about the exact value of the reflectance, only whether the object is shiny or matte. Likewise,
in determining the slant of a surface, the nervous system must determine how much to
use compression cues (a circle appearing as an ellipse) (Knill, 2003)—not by deciding how
‘‘ellipse-like’’ an object is, but by partitioning the continuous aspect ratio space into ‘circle’
and ‘ellipse’ categories (Knill, 2003). We propose that the brain may represent density in a
similarly efficient way. Maintaining a probability distribution over the quantitative density
relationship between two objects could require considerable resources, and so instead a
simpler categorical representation may be employed: either objects have equal density, or
their density is directly or inversely proportional to their volume. That relative density, not
absolute density, is important to the SWI is also supported by the recent finding that SWI
magnitude does not change whether objects appear to be made of polystyrene or metal
(Buckingham & Goodale, 2013).

It should be noted that the present model is not only valid when two objects are being
compared side by side, but is also extensible to situations where one is judging the heaviness
of just one or more than two objects: even if only a single object is presented, when we
lift it we compare its felt heaviness to an implicit or remembered standard for objects of
a given size. It has been shown that humans do represent and use such a remembered
standard or prototype in estimates of objects’ weights (Peters, Balzer & Shams, 2015).
In the present study two objects were used so as to control the size and weight of the
standard, as such a remembered standard is also somewhat variable across individuals.
Finally, as the magnitudes of illusion reported here are also consistent with others’ findings
(e.g., Flanagan, Bittner & Johansson, 2008; Buckingham et al., 2016), the presented model is
likely extensible to other sizes, shapes, and numbers of objects.

We also believe a similar competitive prior mechanism may also explain the Material-
Weight Illusion (MWI), in which the denser-looking of two identically-sized and identical-
mass objects is felt to be lighter—for example, a lead-looking cube feels lighter than a
polystyrene-looking cube of the same mass. Similarly to the SWI version, the key is the
degree of overlap, or ‘‘agreement’’, between the incoming haptic sensory information
and expectations under different density relationship scenarios. Because the sensory
information (that they weigh the same) categorically does not agree with the most likely
prior (i.e., that polystyrene ought to be significantly less dense than lead and by a very
specific amount based on experience, or the equivalent of a very narrow p(w|R3)), one of
the other possible density relationships must end up being the most probable a posteriori.
Further, because the objects possess the same size, their expected weight relationship given
equal density p(w|R1) will also be extremely certain: they ought to weigh exactly the same.
In contrast, the expected relationship given that perhaps the polystyrene-looking cube is
denser than the lead-looking cube (i.e., under R2) will likely be very uncertain, leading to
large overlap or ‘‘agreement’’ between a relatively broad p(w|R2) and the incoming haptic
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sensory information—larger, potentially, than the ‘‘agreement’’ between a noisy haptic
likelihood and a very certain (narrow) weight expectation given equal density, p(w|R1).
Such a scenario would lead to the polystyrene-looking cube feeling heavier, or the MWI.
Future studies should quantitatively investigate whether the competitive prior framework
(outlined here) can indeed account for the MWI, and to explore how competitive priors
may explain other weight illusions as well (e.g., effects with familiar objects). Indeed, this
computational strategy for representing variables may be a common strategy used by the
brain in optimizing efficiency in representation and computation.

Importantly, the proposed model is computationally equivalent to Bayesian causal
inference models that have been shown to account for a number of other multisensory
perceptual phenomena—including the sound-induced flash illusion (Wozny, Beierholm &
Shams, 2008), ventriloquist illusion (Wozny, Beierholm & Shams, 2010), and rubber hand
illusion (Samad, Chung & Shams, 2015)—spanning numerous modality combinations and
tasks. It is also mathematically similar to other Bayesian competitive prior models that
can account for visual perception in very different tasks (Hedges, Stocker & Simoncelli,
2011; Knill, 2003; Knill, 2007; Wozny, Beierholm & Shams, 2008; Yuille & Bülthoff, 1996).
Therefore, it appears that SWI is governed by the same computational strategy that has
been shown to govern many other perceptual phenomena, meaning this illusion is no
longer as esoteric and counter-intuitive as it may have appeared in the past but results
from optimal statistical inference. Our findings strongly suggest that even in the realm of
counterintuitive and illusory percepts, Bayesian hierarchical causal inference can provide
a parsimonious and unifying account of the human perceptual system.

ACKNOWLEDGEMENTS
We thank Hongjing Lu, Dario Ringach, and Angela Yu for helpful discussions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research received no specific grant from any funding agency in the public, commercial,
or not-for-profit sectors. MAKP was supported by the National Science Foundation
Graduate Research Fellowship Program. LS was supported by National Science Foundation
grant BCS-1057625. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Science Foundation Graduate Research Fellowship Program.
National Science Foundation: BCS-1057625.

Competing Interests
The authors declare there are no competing interests.

Peters et al. (2016), PeerJ, DOI 10.7717/peerj.2124 13/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.2124


Author Contributions
• Megan A.K. Peters conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
prepared figures and/or tables, reviewed drafts of the paper.
• Wei Ji Ma contributed reagents/materials/analysis tools, reviewed drafts of the paper,
contributed theoretically and conceptually to the computational model and conceptual
design.
• Ladan Shams conceived and designed the experiments, performed the experiments,
contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or
tables, reviewed drafts of the paper.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

All experimental procedures were conducted in accordance with the Declaration of
Helsinki and approved by the UCLA Institutional Review Board (UCLA IRB Approval #
11-000527).

Data Availability
The following information was supplied regarding data availability:

The raw data has been supplied as Data S1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.2124#supplemental-information.

REFERENCES
Anderson N. 1970. Averaging model applied to the size-weight illusion. Perception &

Psychophysics 8(1):1–4 DOI 10.3758/BF03208919.
Baugh LA, KaoM, Johansson RS, Flanagan JR. 2012.Material evidence: interaction

of well-learned priors and sensorimotor memory when lifting objects. Journal of
Neurophysiology 108(5):1262–1269 DOI 10.1152/jn.00263.2012.

Brayanov J, SmithMA. 2010. Bayesian and ‘‘anti-Bayesian’’ biases in sensory integration
for action and perception in the size–weight illusion. Journal of Neurophysiology
103:1518–1531 DOI 10.1152/jn.00814.2009.

BuckinghamG, Goodale MA. 2010. The influence of competing perceptual and motor
priors in the context of the size–weight illusion. Experimental Brain Research
205:283–288 DOI 10.1007/s00221-010-2353-9.

BuckinghamG, Goodale MA. 2013. Size matters: a single representation underlies
our perceptions of heaviness in the size-weight illusion. PLoS ONE 8(1):e54709
DOI 10.1371/journal.pone.0054709.

BuckinghamG, Goodale MA,White JA,Westwood DA. 2016. Equal-magnitude size-
weight illusions experienced within and between object categories. Journal of Vision
16(3):25 DOI 10.1167/16.3.25.

Peters et al. (2016), PeerJ, DOI 10.7717/peerj.2124 14/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.2124/supp-2
http://dx.doi.org/10.7717/peerj.2124#supplemental-information
http://dx.doi.org/10.7717/peerj.2124#supplemental-information
http://dx.doi.org/10.3758/BF03208919
http://dx.doi.org/10.1152/jn.00263.2012
http://dx.doi.org/10.1152/jn.00814.2009
http://dx.doi.org/10.1007/s00221-010-2353-9
http://dx.doi.org/10.1371/journal.pone.0054709
http://dx.doi.org/10.1371/journal.pone.0054709
http://dx.doi.org/10.1167/16.3.25
http://dx.doi.org/10.7717/peerj.2124


Cross DV, Rotkin L. 1975. The relation between size and apparent heaviness. Attention
18(2):79–87.

Ellis RR, Lederman SJ. 1998. The golf-ball illusion: evidence for top-down processing in
weight perception. Perception 27(2):193–201 DOI 10.1068/p270193.

Ernst M. 2007. Learning to integrate arbitrary signals from vision and touch. Journal of
Vision 7(5):1–14 DOI 10.1167/7.5.7.

Flanagan JR, Bandomir CA. 2000. Coming to grips with weight perception: effects
of grasp configuration on perceived heaviness. Perception and Psychophysics
62(6):1204–1219 DOI 10.3758/BF03212123.

Flanagan JR, Beltzner MA. 2000. Independence of perceptual and sensorimotor
predictions in the size–weight illusion. Nature Neuroscience 3(7):737–741
DOI 10.1038/76701.

Flanagan JR, Bittner J, Johansson RS. 2008. Experience can change distinct size-
weight priors engaged in lifting objects and judging their weights. Current Biology
18(22):1742–1747 DOI 10.1016/j.cub.2008.09.042.

Flanagan JR, King S, Wolpert DM, Johansson RS. 2001. Sensorimotor prediction and
memory in object manipulation. Canadian Journal of Experimental Psychology/Revue
Canadienne de Psychologie Expérimentale 55(2):87–95 DOI 10.1037/h0087355.

Frayman B, DawsonW. 1981. The effect of object shape and mode of presentation
on judgments of apparent volume. Perception & Psychophysics 29(1):56–62
DOI 10.3758/BF03198840.

Gordon AM, Forssberg H, Johansson RS,Westling G. 1991. Visual size cues in the
programming of manipulative forces during precision grip. Experimental Brain
Research 83(3):477–482 DOI 10.1007/BF00229824.

GrandyM,Westwood DA. 2006. Opposite perceptual and sensorimotor responses to a
size-weight illusion. Journal of Neurophysiology 95:3887–3892
DOI 10.1152/jn.00851.2005.

Hedges JH, Stocker AA, Simoncelli EP. 2011. Optimal inference explains the
perceptual coherence of visual motion stimuli. Journal of Vision 11(6):1–16
DOI 10.1167/11.6.14.

Kawai S, Henigman F, MacKenzie C. 2007. A reexamination of the size–weight
illusion induced by visual size cues. Experimental Brain Research 179:443–456
DOI 10.1007/s00221-006-0803-1.

Knill DC. 2003.Mixture models and the probabilistic structure of depth cues. Vision
Research 43:831–854 DOI 10.1016/S0042-6989(03)00003-8.

Knill DC. 2007. Robust cue integration: a bayesian model and evidence from cue-
conflict studies with stereoscopic and figure cues to slant. Journal of Vision 7(7):5
DOI 10.1167/7.7.5.

Körding KP, Beierholm U,MaWJ, Quartz S. 2007. Causal inference in multisensory
perception. PLoS ONE e943.

Peters MAK, Balzer J, Shams L. 2015. Smaller= denser, and the brain knows it: natural
statistics of object density drive weight expectations. PLoS ONE 10:e0119794
DOI 10.1371/journal.pone.0119794.

Peters et al. (2016), PeerJ, DOI 10.7717/peerj.2124 15/16

https://peerj.com
http://dx.doi.org/10.1068/p270193
http://dx.doi.org/10.1167/7.5.7
http://dx.doi.org/10.3758/BF03212123
http://dx.doi.org/10.1038/76701
http://dx.doi.org/10.1038/76701
http://dx.doi.org/10.1016/j.cub.2008.09.042
http://dx.doi.org/10.1037/h0087355
http://dx.doi.org/10.3758/BF03198840
http://dx.doi.org/10.3758/BF03198840
http://dx.doi.org/10.1007/BF00229824
http://dx.doi.org/10.1152/jn.00851.2005
http://dx.doi.org/10.1167/11.6.14
http://dx.doi.org/10.1167/11.6.14
http://dx.doi.org/10.1007/s00221-006-0803-1
http://dx.doi.org/10.1007/s00221-006-0803-1
http://dx.doi.org/10.1016/S0042-6989(03)00003-8
http://dx.doi.org/10.1167/7.7.5
http://dx.doi.org/10.1167/7.7.5
http://dx.doi.org/10.1371/journal.pone.0119794
http://dx.doi.org/10.1371/journal.pone.0119794
http://dx.doi.org/10.7717/peerj.2124


Ross J, Di Lollo V. 1970. Differences in heaviness in relation to density and weight.
Perception & Psychophysics 7(3):161–162 DOI 10.3758/BF03208648.

SamadM, Chung AJ, Shams L. 2015. Perception of body ownership is driven by Bayesian
sensory inference. PLoS ONE 10:e0117178 DOI 10.1371/journal.pone.0117178.

Sanborn AN, Mansinghka VK, Griffiths TL. 2013. Reconciling intuitive physics and
Newtonian mechanics for colliding objects. Psychological Review 120(2):411–437
DOI 10.1037/a0031912.

Stevens J, Rubin LL. 1970. Psychophysical scales of apparent heaviness and the size-
weight illusion. Perception & Psychophysics 8(4):225–230 DOI 10.3758/BF03210210.

Weiss Y, Simoncelli E, Adelson EH. 2002.Motion illusions as optimal percepts. Nature
Neuroscience 5(6):598–604 DOI 10.1038/nn0602-858.

Wozny DR, Beierholm U, Shams L. 2008.Human trimodal perception follows optimal
statistical inference. Journal of Vision 8(3):24 DOI 10.1167/8.3.24.

Wozny DR, Beierholm U, Shams L. 2010. Probability matching as a computational
strategy used in perception. PLos Computational Biology 6(8):e1000871
DOI 10.1371/journal.pcbi.1000871.

Yuille AL, Bülthoff HH. 1996. Bayesian decision theory and psychophysics. In: Knill DC,
Richards W, eds. Perception as Bayesian inference. New York: Cambridge University
Press, 123–161.

Peters et al. (2016), PeerJ, DOI 10.7717/peerj.2124 16/16

https://peerj.com
http://dx.doi.org/10.3758/BF03208648
http://dx.doi.org/10.1371/journal.pone.0117178
http://dx.doi.org/10.1037/a0031912
http://dx.doi.org/10.1037/a0031912
http://dx.doi.org/10.3758/BF03210210
http://dx.doi.org/10.1038/nn0602-858
http://dx.doi.org/10.1167/8.3.24
http://dx.doi.org/10.1371/journal.pcbi.1000871
http://dx.doi.org/10.7717/peerj.2124



