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INTRODUCTION

The workshopbon the Modeling of Electrical and Electromagnetic
Methods was held at the Lawrence Berkeley Laboratory on May 17, 18,
and 19, 1978. It was sponsored by the U.S, Department of Energy
through the University of California, Lawrence Berkeley Laboratory,
Division of Earth Sciences, and the University of Utah; together with
the National Science Foundation (RANN Division) through the University
of Utah. The purpose of the workshop was to bring together active
workers in the field of numerical and scale modeling to discuss progress,
results, and problems associated with the various techniques that apply.
The work reported by many of the invited participants is or was funded
through the DOE geothermal or fossil fuel programs; other participants
from industry and universities are concerned either with mineral explo-
ration or more general crustal studies problems.

The workshop was divided into six sessions: finite element method,
finite difference method, integral equation method, two sessions on
'other techniques', and a conclusion and recommendation session.

Authors were asked to make their presentations quite technical, concen-
trating as much on the problems encountered in their techniques as on
the final results.

Papers originating outside LBL were printed directly from the

manuscripts submitted by the authors.




MAGNETOTELLURIC OBSERVATIONS AT THE ROOSEVELT
HOT SPRINGS KGRA AND MINERAL MTS., UTAH

Philip Wannamaker
University of Utah

Abstract

Twenty-five magnetotelluric soundings in the Roosevelt Hot Springs
area indicate a very complicated, three-dimensional electrical environ-
ment. The assembly of a profile of one-dimensional, transverse electric
interpretations yields a calculated 2-D apparent resistivity-frequency
pseudosection far removed from the observed data. Trial-and-error modelling
improves the fit only a 1little. The most notable difficulty, the presence
in both TE and TM pseudosections of pronounced contrasts in p, persisting
to the lowest observed frequency, may be explained by the discontinuities
in electric field that are found for all directions of wave excitation
for 3-D geometries.

The estimation of electrical strike is also difficult in the 3-D
case since the total fields do not decompose into the two principal exci-
tation modes. Whenever a plane of symmetry exists, the estimated electrical
strike will be normal to it; otherwise an oblique estimation results. The
observed consistency of strike estimation at Roosevelt is Tikely due to the
gross, elongate, resistive horst-structure of the Mineral Mts. in sur-
rounding conductive valley fill. Mode identification and the effects of
near-surface 3-D inhomogeneities pose potential major limitations to the
magnetotelluric method.

* ¥ *

Previous active source electrical and electromagnetic measurements
show a range of interpreted true resistivities spanning 3 to 103 o-m at the
Roosevelt Hot Springs KGRA. Contour pattern lows of first separation
dipole-dipole apparent resistivity values are roughly coincident with
highs of near-surface thermal gradient measurements. During the summer
of 1976, twenty-five magnetotelluric (MT) soundings were obtained in the
vicinity of the Roosevelt Hot Springs in an attempt to describe any possible
deep con?uctive heat source for the conductive hydrothermal system (see
Figure 1).

Sources of electrical conductivity to consider are electrolytic
conduction through pore passages, surface conduction along mineral surfaces,
thermally activated semiconduction, and electrolytic conduction in wet,
partial melts. The Basin and Range tectonic province conductivity model
of W. F. Brace in the AGU Monograph 14 (1971) is used as a rough standard
by which to judge the observed MT results. Petrological work on the
Mineral Mts. rhyolitic volcanics indicated substantial magma chambers existed
at indeterminate depths as 1ittle as 0.5 myrs. ago. Any present-day par-
tially molten magmas may be detected electrically.




As is the standard procedure, 1-D layered and continuous inversions
of the transverse electric (TE) data for several individual sites were
performed. In the conductive Milford Valley graben, values of apparent
resistivity drop to 0.10 9-m for the lowest frequencies of observation
and interpreted true resistivities are below 0.02 @-m. Such results are
unreasonable in the 1ight of established notions about conductivities of
earth materials. Soundings in the Mineral Mts. granodiorite are more
reasonable although, compared to the Brace model, interpreted true resis-
tivities are low by a factor of 5 to 10 while interface depths are too
shallow by a factor of 2 or more.

MuTltifrequency apparent resistivity data for a profile of 12 MT
stations is presented in the form of frequency-distance pseudosections for
both TE and TM modes of wave excitation (see Figs. 2 and 3). The major
difference between the two pseudosections involves the overall level of
p; values. Except perhaps for the westernmost stations on conductive
valley fill, the TM values generally exceed those of TE by a factor of
about ten. One important common characteristic is the presence of pro-
nounced, station-to-station apparent resistivity contrasts enduring to
the lowest frequency of observation at two of the sites. For use as an
interpretational starting point, the best-fit discrete-layer inversion
results for each of the twelve stations in the profile were stitched
together to form a crude, initial 2-D estimate of the resistivity struc-
ture (see Fig. 4). The computed TE, 2-D pseudosection for this ensemble
matches the observed p, section only for the stations in the conductive
graben and for the very high frequency values for the rest of the stations
(see Fig. 5). Trial-and-error attempts at improving the basic model yield
an adequate fit only down to about 0.5 Hz whereafter the degeneration of
agreement is marked (see Figs. 6 and 7). A TM pseudosection calculation
for the 1-D assembly agrees very well with the observed TE contours however
TE modelled does not agree whatsoever with TM observed so a mere mode
misidentification is not the answer (Fig. 8).

Some outcropping, single conductor, multifrequency, TE and TM model
results may explain some of the problems in terms of 3-D effects (Fig. 9).
In the 2-D, TE model, continuity of tangential electric field (E}) parallel
to media boundaries requires a continuous apparent resistivity function
for all frequencies. In the TM model, the electric vector is orthogonal
to the media contacts, normal current density {(J,) must be continuous,
and so the total electric vector at the contacts will be discontinuous
by a factor of (Pj/p2). For the TM case, p; ~ EZ2 so one expects and
observes a (P]/pz)2 discontinuity at vertical contacts for all frequencies.
Please note that the apparent resistivity values within the prism are
greatly depressed below the true value while those outside are only
slightly elevated w.r.t. the true resistivity. The anomaly for a simple,
outcropping, conductive 3-D prism will possess characteristics of both TE
and TM 2-D models (see Fig. 10). Measurements along line A-A' (with E
normal to the resistivity discontinuity) willi_-yield a profile resembling
a TM excitation. Continuity of Jn requires that the (p1/p2)2 discontinuity
in p %e present for all frequencies. Measurements along line B-B'

(wit% parallel to the resistivity discontinuity) will give a profile
resembling a TE situation. Continuity of Et requires a smooth p; curve.



Analogous P53 (w) profiles will appear for an g’po1arization orthogonal

to that depicted. Line A-A' would be "TE" and line B-B' would be "TM".
Hence, finally, a map view of the anomaly of this 3-D body will consist of
pronounced p; contours lasting down to the lowest frequency measured. Since
in the field both Ey and E, are present, then regardiess of which observed
pseudosection (TE or TM) iS chosen, a profile across a conductive prism

of finite strike length will exhibit such exaggerated, persisting con-
trasts in p;. The enclosed pseudosections contain examples of this very
phenomenon and they cannot be fit by any purely two-dimensional model.

Depth of exploration is another problem in 3-D environments. A 2-D,
T™M model of a deeply extending conductive model is very similar to the
previous shallow model and one may reason as above that the 3-D anomalies
will also be very similar. MT soundings within such 3-D conductive prisms
may provide no meaningful information about deeper structures.

The plane wave mode identification (i.e. estimation of electrical
strike) is also difficult in the 3-D case. Standard strike estimation
procedures assume approximate two-dimensionality where the vertical
component of magnetic field, Hz, is 1igear1y related to, or completely
coherent with, only the component of E parallel to strike (say Ex). The
relation is defined by Maxwell's second equation, in the general case, as

Ho - 7:1__[§§£._ éﬁl}
z  iwpg | oYy dx J.

In the 2-D case, 3/5x = 0 so the above reduces to

_ =1 3Ey _
HZ‘ iwp, 3y YZXEX

where Y,x is the admittance. In the field, neither measurement electrode

is likely to be parallel to strike and a component of Ey will be in each
electric record. If x' and y' represent the measurement axes, then one must
write

HZ = sz' EXI + Yzyl Eyl
where Y, + and Y,y1 are the relevant admittance functions determined by
standaré spectral analysis techniques. The patent approach is to rotate
mathematically the measurement axes to maximize Yzx' and the corresponding
x'-direction is estimated strike. In three dimensions, however, H; no longer
depends on a single direction of electric vector. Referring to Fig. 10,
from symmetry observe that along A-A', 3/8y = 0, H; will be wholly related
to Ey and the estimated strike will be along the y-axis. Along B-B',
3/3x = 0, H; will be wholly related to Ey and the estimated strike will be
along the x-axis. Along diagonals of the prism, both derivatives are
important and an oblique estimation will result.

The mode identification for the Roosevelt Hot Springs stations is
pre?ty consistent, however, and parallels the Tong axis of the Mineral Mts.
Regional structure is likely responsible. The mountains form a very elongate,




north-south trending resistive body flanked on the west by deep, very
conductive alluvium and to a minor extent on the east by the same.
Especially for east-west profiles across the central portions of this
range, 3/3y >>3/3x where x is the north-south axis of the mountains.
The consistency in the electrical strike estimation does not appear
related to smaller-scale hot-spring structures but instead to the gross
topography of the region.
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APPLICATION OF THE FINITE ELEMENT METHOD TO THE
FINITE SOURCE 2-D EARTH E-M PROBLEM

John Stodt
The University of Utah
Salt Lake City 84112

An outline of the application of the Galerkin finite element method
to the solution of the finite source 2-D earth E-M problem is presented.
The conventions used are the following:

1) sz‘jwt

time dependence

2) Spatial Fourier transform pair:

Fla) = 605" ™k 5 $0={ Flw) b

) Lo
3) Righthand coordinate system with x the strike direction, z positive
down.

Maxwell's equations with electric and magnetic sources may be written

as follows:
() T X E = -jwyl A +Ms]
S . - AR 2
(2) V XH= (6‘+JW£)E +ds = "}E+Js
where

"ﬁs - g(x)g(y) $(2) T = magnetic mament js = 3 §R$(y)§E)
It is possible to treat equations 1 and 2 directly when applying the finite
element technique, or else one can re-formulate the problem in terms of secondary
fields. The advantage of the latter approach lies in the ease with which the
resulting "fictitious" sources may be handled with the finite element
methodology. In addition, the secondary fields are smoother, allowing coarser
meshes to be used. The price one says is that the primary fields must be ‘ii

found at each node point in the earth where 2-D inhomogenieties exist.



To develop the appropriate set of equations let

t = Ep + B
Aeh R,
O(Y:Z) = Op(x) + GS(Y!Z)

where subscripts p, s denote primary, secondary respectively. Let the
primary field be the solution to the finite source layered earth problem.

Equations (1) and (2) become:

(3)  wx(E) + E) = -gwu (A + A+ R

1]

(8) vx(A_+ A)

o A = (0p(2) +ogly.2) + jwe)(Ep +B) + 3

Ep, ﬁp have been defined as solutions to

(5) vxtp

-Jjwu [ﬁp + ﬁs]

(6) vxﬂp = (op(z) + jwe) Ep + 35

Substitution of (5) and (6) into (3) and (4) yields

(7) vxES —jwuﬁs

(8) VxﬁS [o(ysz) + jwe] Es + os(y,z) Ep

These last equations can now be solved for the secondary.fields, due to the
“ficticious" source os(y,z) Ep.

Finite element analysis may now be applied to either egns. (1) and (2)
or (7) and (8). The approach is similar, differing only in how the source
terms are handled. The approach taken will be to Fourier transform the

strike direction out of Maxwell's equations and rearrange them to obtain
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where

Substituting equations 10 into the top two expressions of the set 9,
we obtain two coupled second order equations to be solved simultaneously over

(y,z) at fixed Kx for EXS and HXS. They are:

(11) VXQPKO;: :-jwq}l-j\xS

Il

VXW@ °,_(.: A}Exsi" ssﬁxp

where
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two coupled equations in the unknown fields. The (y,z) dependence of
these equations will then be solved with finite element analysis. The
four field components not in the strike direction may then be found from
inverse transforms of linear combinations of the fields in the strike
direction. A tentative analytic method of evaluation of these four
integrals will be discuésed. If this technique proves successful, it
may be more efficient te obtain EX and HX directly form Maxwell's
equations rather than by a numerical inverse transformation, where a large
number of Kx values may be required.

Re-writing equations 7 and 8 in component form, Fourier transformed

with respect to the strike direction, we obtain (théﬂindicates Fourier

transformation) :

3Ec Moo w1 o i, _ AR S
3%'5 SR jwat Hg | WB- éhys__ 4 Exs + 6Ex,
9 - _ _ Lo
JExs_.EF = ) Y-SR -
Iy = FuEas = -y “ﬁi - ihftag™ 4 B £ 6By
‘ A
. - _ E A o A - A A
JE‘EY5 d Exg :-quH*SI kaHy JHXs:a’il:zs'f' 65E*P

By rearrangement and cross substitution in the bottom four equations of

this set, we obtain expressions for Ey, Ez’ Hy, HZ in terms of the fields in

the strike direction, i.e.

A .-J A 3 L = |
5= -0k 4 42+ jhesEy
(10) stz-w[j—*%%s -4 45 - TR Ey,
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If total fields are being solved for,a similar set of equations
is obtained, i.e.

(12) \V) X(pa OZ = —\’;Wﬂ[ﬁx +§\5»J

TXYD oL = %Ex+ S,

where
6 = :;S'JW"']%—%‘ - j—x 3—-\/—* - RxW‘[MSz - w4 JS)’]
+ »&{'W“]%ﬁy’f -j Fx%% +~,‘WA1MS)' ‘JWﬂJs%]
D= G99 - gy —ifds —jeadMey

Notice that in general, delta function sources occur in equations
12. These need careful handling when the finite element discretization is
obtained. On the other hand, if a solution in terms of secondary fields

is pught, these problems do not arise.

Application of the finite element technique to the solution of equations

11 proceeds as follows. We divide the domain over which a solution is
sought into triangular sub-domains over which the behavior of the fields
is approximated by a linear function of position. The nature of this

approximation is outlined in Figure 1.
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Before element equations are derived the right side of equations

11 are manipulated as follows.

Y - -
recall vV XQPA = WIXA + TVEXA

Application of this identitiy allows us to write
2 - 1 2 L =W
13 VXAeZ + HVQXAZT = lHx

A - i 2 <
v XB ok +*CP~V(?X8°.0 ff(;

i
m
&
+
S|
m
)

Since(f is constant at the element level, the second term on the
Jeft need not be considered when deriving the element equations, as long
as we choose our basis functions so that the known behavior of the fields
(continuity) is preserved at physical property interfaces. We now obtain
discrete element equations by .forcing the inner product of the error of

approximation with the basis functions to be zero, i.e.

ey <N:,E> = SSNSEJS =0 n= iy 4y k

e

where N:— and € are deflned in -ﬂjurc 1.

The domain of integration is over the triangular region e. Three types
of integrals are encountered in evaluating 14:
First Type:
e S, Ne‘)oéds_ VNeXzoz 5[5
((New xhoz ds VXNEA =2 ;
e e =
S - >
gN,?\Qoa{/z — wnEXA oL ([AS
. e
© 0

1

)
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Second Type:
2 g jwﬂ[f&&-‘ka’] ”Hxs N: dS
€
Third Type:

e g 65[RA-H] géxfa N:O!S

The second and third types differ in that HXS is approximated linearly over the
triangular region € in the usual manner whereas Exp is given only at the

nodes. Therefore, two different integral formulas must be used in their

evaluation. They are:

4l el
Type 2: SS N,(',QN,;'NRCJS = _J_‘d"é'é': 4

) (a+4+c +3)!
e s )V Fh 6 ds = [ATTE F RITa 1) [6
g v2) 60y, [!&:HF" FjFﬁ] )
12 1] g
where 1 %k
F(yl%)) G(le) are li"ed/‘ (UM(*I.DIIS Je"l.KQJ oNn
and the -[»pfquﬂa/ar reﬁa'ou e
Vi Zi Y
we |l -
g 3
T %
I Yk 2 y3
N

A= area of -\“,m'anaalar region. 2z
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After the integrations in (14) are carried out, the element
equations shown in fiqure 2 are obtained. These element equations
are then combined in the usual manner. to form the global matrix.
The solution of this large scale linear system after application
of appropriate boundary condidtions gives the approximate Fourier
transformed fields iﬁ the strike direction.

The obvious way to obtain the fidds in the space domain is to
solve the finite element problem for a number of Kx values and then
obtain inverse transforms numerically. Computationally this can be
very expensive, depending on the number of Kx values needed. It is
the purpose of this section to suggest a technique whereby the inverse
transforms may be done with what amounts to a contour integration in the
complex plane. I do not have all the details worked out, so this section

must be considered tentative. Briefly,we desire to evaluate the following

integrals:
® 4 . i . A‘ Qﬂhx
(15) Eyst S(ﬁa_ha)[dw*{%ﬁ "'J x%‘y‘]bd ’(/YX
(-1 o af o dBxe] | dThX
EE%S‘— ~6$ ]?=h3)[J‘~u1%g$§ -+“E;%;?55] e 0!AR
R A 3é7‘s '—h‘_ 9)-:151 ejl‘n'lT,Xp//r
Hyq g_&ch,?-m[ 52 Ty "
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These are all of the form

£(x) = ifg‘jﬂ

We desire to evaluate these integrals at x=0, i.e.

(0) =L 5:[;:(#,) F(m)]d(k

A aj A xﬂ{kx

=k h&'*k

]6 ?
(16) where | = %ﬂ‘ = a‘_Jb 4)670

and K= wlqe - jw4qs

To evaluate (15), make use of the following properties of fourier

transforms:
0 «idnh ® o arhex
k) = Full) +E(R) = { 405 + | 50027
-~ R

where

(17) E—(ﬂ - 3 S "i F(ﬂo(é 2___. }Tx"’J)’ ¥ >0 analytic in

a'ﬂj -® If‘% upper a-plane

- ® F(£) A2 e analytic in
T
and  lim F(2), R = Flk), Flkd

)'-50
We see immediately that the integral 16 is of the form 17. The answer is:

§lo) =2 F(-F) + £(R)]

I hope to be able to use this result to obtain the inverse transforms (15)
with one or at most two Kx values. Once the fields in 15 have been
obtained, the components Hxs’ Exs would be obtained by direct applications
of Maxwell's equations.
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Figure 1: Finite Element Method
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Figure 2: Form of the Element--Equations
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Figure 2--continued
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FLECTROMAGNETIC SCATTERING BY TWO-DIMENSIONAL INHOMOGENEITIES

K. H. Lee
University of California
Berkeley

A numerical solution for electromagnetic scattering by two-
dimensional inhomogeneities has been developed. The system is
excited by a magnetic dipole oriented in the direction perpendi-
cular to the strike, Figure 1.

The theoretical basis is variational principle. A two-di-
mensional version of variational integral has been developed by
transforming out the strike, y, directional depehdence. Using
finite element technique, the secondary electric field has been
obtained in harmonic space. The final solution can be derived
by performing inverse Fourier transformation.

It can be shown (Stratton, 1941) that the variational inte-
gral |, the total electromagnetic energy contained in a volume V

surrounded by S, is written as
I(&A) = Sv(ééﬁz'-\'%ﬁz‘f;f; EX+ 4Rt S5ET)av ()

where Hs and Js'are a magnetic dipole moment and a source current
density respectively. The equation can be rewritten in terms of
H alone or of E alone depending upon the type of solution desired.
Mainly due to the numerical problem (Pridmore, 1978) encountered
at the air-to-earth interface associated with the magnetic field
solution, | have chosen the variational integral expressed in te-

rms of electric field;

where _ _

L o= UxMs (3)
and

RE = WIME =56 WK, (4)

Following variational principTe, it can be shown that the station-
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ary condition imposed upon the total energy I(E) results in the

following vector wave equation in E.
hzi; — UXYXE = \J“ﬁﬁ‘-ik . (5)

In order to eliminate the strike directional dependence from
I(E), E and J have been approximated by Fourier cosine and sine

series expansions;

N f
?)cht,Jé) = '&? €§b‘P(:<’ZL'A) 404.7;:1 ( § )
; N
Q(x,4,3) = = £ Q00LT:,3) oy (7)
where li = 1%;3 The distance L should be long enough to justi-

fy our assumption that the half space is two-dimensional. Subs-
tituting (6) and (7) into (2) and integrating in y over L, we ob~

tain
1| Elxs,3) = T{EEe ) + & T E=7:3)] (8)
where

Lo Blg g, = 1), [ (-2 + 55 - %)

2. 2 > - 2
- 25 | Grns B - O -3 (R
t 5 (—ExTx + By7y — E3F) ] A= d3. (9)

The last equation is the two-dimensional version of variational
integral written for ky = 7 .

A numerical representation for equation (9) has been formu-
lated using finite element technique. The electric field has
been separated into the primary field, a free épace dipolar field,
and the secondary field, so that the direct source jscould be eli-
minated in the formulation process,

The entire cross section, xz plane, is composed of a number

of rectangular cells within each of which a bilinear field beha-
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viour has been forced.

F = a+ bx +e3 +dxg (10 )

Upon substituting equation (10) into the variational integral and
integrating err the rectangular area, we obtain a (12 X 12) ele-
mentary matrix equation. The total system matrix equation can '
finally be constructed by simply stacking up all the elementary

matrix equations consecutively. Hence, we have

I. = L+ (B IK1(E%) + (E%T@®) (1)

%

where (Es) is the unknown secondary electric fields at every no-
dal points and [K] is a sparsely banded symmetric matrix. The
source vector (§) is composed of the prescribed secondary electric
fields at the boundary and the terms basically proportional to the

primary fields multiplied by the anomalous conductivities.

Taking variations of equation (11) with respect to the unkn-
own secondary electric fields, we obtain a set of simu!taheous eq-

uations from which the desired solution can be found by
-1
(8°) = - [k17(B), (12)

The associated magnetic fields have been obtained numerically using
Maxwell's equation. A bicubic spline fit has been used for the
interpolations of the secondary electric fields.

Since our solution has been in ky harmonic space, we must in-
versely Fourier transform the solution into the real space domain.
After properly interpolated in ky’ the harmonic solutions have been
transformed by Fourier integral. The total field solution can be
found by superposing analytically calculated primary field.

A few computer modeling for simple models has been done using
CDC 7600 at Lawrence Berkeley Laboratory. Figure 2 shows an inter=~
nal consistency of thé solution developed here. The model is a 100
ohm-meter half space with a vertical magnetic dipole located at 2
meters above the ground. The frequency of the transmitting dipole
moment is 25 kilocycles/sec. The apparent radial symmetry of the
horizontal secondary electric fields can be observed. A maximum of

5 % difference in magnitude can be seen between the two Cartesian
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components, Ey and -Ex, measured along the two horizontal axes, x
and v. Another test run has been made to insure the reciprocity
of the opposite source-receiver configurations for the same model.
This time the source frequency is 100 cycles/sec and the location
of the source is on the surface of the earth. In the vicinity of
source two solutions differ by a maximum of 10 % in magnitude.
However, the phases of the two solutionsAshow a considerablie amo-
unt of discrepancies mostly confined within the range of a half of
skin depth from the source. The difference obviously has been or-
iginated from the unstable solution obtained in the presence of a
horizontal magnetic dipole especially when the source is close to
or on the air-to-earth interface. The vertical electric field at
the interface seems to have played a major role in causing the in-
stability.

The last model shown here is a half space composed of two qu-
arter spaces; one with resistivity of 100 ohm-meters and the other
of 10 ohm-meters. An array consists of a vertical magnetic dipole
of unit moment and a receiver separated by 200 meters is moving al-
ong the surface in the direction perpendicular to the contact.

The magnitudes and the phases of Ey’ Hx’ and HZ versus the array
center have been plotted in Figure 5, Figure 6, and Figure 7 res-
pectively. The frequency used has been 100 cycles/sec. The most
dramatic change in magnitude across the contact has been observed
in Hx with an increase of one order of magnitude. All three com-
ponents show more or less similar transient phase changes across
the contact. It should be noticed that no anomalous response can
be observed in the ranges towards both boundaries starting from a-

pproximately a half of skin depth away from the contact.
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/ - Figure 1. A geophysical system.
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the ground
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Figure 5.

Contact response on E
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3D FINITE ELEMENT MODELING OF ELECTRIC AND ELECTROMAGNETIC DATA
D. Pridmore
Engineering Geoscience
University of California
Berkeley, California 94720

‘ntroduction

A finite element code was written to solve three dimensional
resistivity and electromagnetic problems. In both cases, the minimum
theorem (Stakgold, 1968, p. 338) was used to give a variational statement.
Results from this code were in satisfactory agreement with those obtained
from Hohmann's 3D integral equation algorithm (Hohmann, 1977, personal
communication) for resistivity modeling, and for electromagnetic
modeling where the conductivity contrasts between the body and the
half space were less than two orders of magnitude. The details of
the finite element technique and the comparison between the different
results are given by Pridmore (1978).

The finite element is well suited for the modeling of earths
with a complex distribution of conductivity, although the flexibility
of the method is achieved at the price of significant computational
effort. Since many realistic earths are characterized by complex
distributions of conductivity the method definitely deserved fUrther
attention. The purpose of this contribution is to outline the problems
encountered in the work by Pridmore (1978) and to offer some general
suggestions for future endeavors. The important problem of imb1ement1ng
a three dimensional finite element code on presently available computer

hardware is not addressed.
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Long, Thin Elements

The most severe problems encountered were the loss of accuracy
and increase in computer time caused by long, thin elements in the
mesh. A typical mesh is illustrated in Fig. 1. The fundamental unit
was chosen to be a brick--either a single hexahedral element, or a
brick assembled from tetrahedral elements. The corresponding inter-
polating functions were tri-linear and linear respectively. It may
be seen from Fig. 1 that long thin elements are found where a mesh
contains both large and small spacings between the nodes. Small spacings
are needed around inhomogeneities where the field variation is rapid,
and large spacings are desirable near the edges of the mesh to minimize
the total number of nodes.

The presence of a significant number of long thin é1ements, with
their very poor interpolating properties, degrades the accuracy of
the result throughout the entire region, and increases the spectral
radius of the associted iteration matrix causing an iterative solution
to the system of equations to converge less quickly and, in some cases,
to diverge. However, a mesh assembled in the fashion illustrated
in Fig. 1 has the following advantages: a) it is easy to define the
mesh and conductivity distribution to the finite element algorithm;
and b) the non-zero elements in the resultant matrix are always in
the same columns, relative to the diagonal (see Fig. 2). This means
that for an iterative solution it is straightforward to calculate
the position of the non-zero entries in the matrix, and for a direct

solution the bandwidth of the matrix is constant.

-
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Mesh designs that would alleviate the long, thin element problem
include:

a) using more nodes, so that large variations in mesh size can
be avoided. Although this treats the symptoms rather than the cause,
it may be the most effective solution.

b) using non-conforming elements. Here, continuity of the unknowns
across element boundaries is not enforced, violating one of the conditions
that guarantees the convergence of a finite element solution (e.g.,
Zienkiewicz, 1971). However, the solution may still converge. A
mesh assembled from non-conforming elements may be easily graded as
illustrated in two dimensions in Fig. 3, where each of the rectangular
elements is a bi-1inear element, There is some evidence to suggest
that this scheme does not improve, significantly, the accuracy of
the result (Gregory and Whiteman, 1974), although it should improve
the convergence of an iterative solution. However, the book keeping
for the alternative (a) is easier.

c¢) grading node density but not element density. Such a mesh,
again in 20, is illustrated in Fig. 4. The outer elements have a
different number of nodes on different sides of the element. This
assembly has good interpolating properties (Gregory and Whiteman,
1974), and presumably the iteration solution is well behaved. The
structure of the resulting matrix is sparse, but quite irregular--
requiring, again, significantly more book keeping than alternative
(a).

d) using a hybrid technique in which only the central part of

the problem is meshed. Discretization is stopped before the behavior
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of the field variables is known, and either Green's functions (W.
Scheen, in this proceedings) or eigen functions (S. Chang, in this
proceedings) are used to get the correct values at the mésh boundary.
Hybrid techniques present a fertile field for research. At the moment
they accommodate the same class of models as do the integral equation
techniques; namely, relatively localized inhomogeneities within a
one-dimensional conductivity'dfstribution. However, accurate solutions
for a large range of simp]e models are not yet available.

3D Finite Element--Finite Difference

The finite element method, implemented with the mesh shown in
Fig. 1, offefs no apparent advantage over the finite difference technique.
The bandwidth of the resultant matrices is almost identical for the
same number 6f unknowns, and several authors have shown that in simple
one- and two-dimensional problems the accuracies of the techniques
are similar (e.g., Harrington, 1968; Finlayson, 1972; Rijo, 1977).
Finite difference techniques lead to fewer non-zero elements in the
system matrix than does a finite element approximation, and thus require
fewer computations per iteration of an iterative solution. However,
jterative solutions appear to converge more slowly (Dorn, 1978, personal
communication).

Neither the present finite element scheme nor the usual finite
difference method can define a sloping conductivity interface exactly.
Results from D modeling experiments (Rijo, 1977, personal communicatfon)
suggest that, for most applications, the ability to model sloping
interfaces below the earth’s surface is not important. Results oVer

a sloping interface are almost the same whether the interface is defined
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exactly by triangular elements, or approximated by a stair-step of
rectangular elements, as would be necessary with a finite difference
technique. Results are not the same for topographic effects, however,
where fewer nodes are required to get an accurate solution with sloping
elements, than with the step approximations of a finite difference
scheme.

The finite element method has an advantage over finite difference
methods for the approximation of topography in three dimensions if
isoparametric elements are used (see, for example, Zienkiewicz, 1971
for a description of isoparametric elements). For instance, the 8-
node brick element illustrated in Fig. 1, as an isoparametric element,
could model sloping interfaces in 3 dimensions.

Very Low Frequency Results

The finite element solution for the electric field problem proceeds

by finding a stationary point of the functional:

/ UXE- UxE -k2E - E dv,
\

where E is the electric field, k% = 7y, 3 = fw, § = 0 + iwe, w is
fhe angular frequency, o is the conductivity, € is the permittivity,
and u is the permeability. The dimensions of the Vx E - ¥x E term
is EZ[L] while the dimension of the k% E + E term is E2 k2 [L]°.

If the earth is discretized an approximately 1/6th of a skin
depth, then the curl term is approximately two orders of magnitude
larger than the E-E term. On increasing the density of elements the

ratio becomes larger. 1In the 3D problem it is not sufficient to have
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the element size tied to the skin depth of the fields, since surface
charges perturb the field behavior. irrespective of strict induction
phenomena. The problem at very low frequencies may be illustrated

by considering a model in which discretization density must be strongly

‘related to charge fields (such as in the static problem). As the

frequency is lowered, the contribution of the E-E term becomes arbitrarily
small until it is lost in the roundoff error of fhe computations.

Lajoie and West (1976) believed a similar effect to be a significant
source of error in their integral equation solution. However, in

the finite element approach, it appears that a roundoff error is not

important for frequencies above 0.1 Hz. The contributions from charge
terms could be carried explicitly by modifying the differential equation

from:
2 - _
Vx VxE-k"E=20

to

Again, the Vy term requires special attention in the computer

code.
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TRANSIENT TIME DOMAIN ELECTROMAGNETICS*

John T. Kuo and Dong-Heng Cho
Aldridge Laboratory of Applied Geophysics
Henry Krumb School of Mines
Columbia University, New York, New York 10027

With externally impressed electric and magnetic sources,
the electric and magnetié field equations may be derived.
from the symmetrical Maxwell's equations. Two variational
principles for the initial boundary'vaiue problem of-
electromagnetics are derived. The first one of the Gurtin
type is‘deduced from the integro-differential equatiohs
equivalent £o the electromagnetic field equations, while the
second one is a simplified version of the first variational
principle.

The Vériational field equations are casted_into the
form suitable for a finite element formulation in space. An
explicit central-differences scheme in time is then apﬁlied
to the finite element variational eqﬁation to yield a
recursive relation for time integration.

The results of the Newmont Electrbmagnetic‘Pulse (EMP)
survey'done in the Mutooroo prospect in Australia is numerical-

ly verified by a Turam approximation.

* This work was supported by the National Science Foundation
through grant EAR-76-24383.
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INTRODUCTION

Considerable advances have been made in recent years
towards the improvement of transient electromagnetic survey
for mineral exploration, notably the Newmont Electromagnetic
Pulse (EMP) system (see the Newmont EMP System, 1976,
presented at the Workshop on Mining Geophysics). For example,
the newest Newmont version, Mark VI, is fully digital and
has been in production use in Australia since the middle
of 1976. It is timely to investigate the transient time
domain electromagnetic problem, particularly in three

dimensions.
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A. Variational Principles for Time-domain Electromagnetics

The numerical scheme we developed is derived from variation-~
al principle for electromagnetics which is directly obtained
from the field equations derived from the Maxwell's equations.

On the basis of the following differential EM field

equations:
E X: E El
"‘YXYX H - M€ ’a""t_z EI - Uag g—t- I;I
] L v ) (l)
3J M Pe
(“ T Y xgp * V¢
32y’ am' :
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where
E = electric field (Volt/m)
H = magnetic field (Ampere-turn/m)
J' = impressed electric current (Ampere/mz)
M' = impressed magnetic dipole moment per unit volume
(Ampere-turn/m)
pé = impressed electrical charge (Coulomb/m3)
pé = impressed magnetic charge (Ampere—turn/mz)

U = magnetic permeability (Henry/m)
€ = electrical permittivity (Farad/m)

0 = electrical conductivity (mho/m)

and the initial and boundary conditions, we derive the
variational integral A of the Gurtin type as
A =[p{E*TE*TF + eup*E

(2)
+ OUF*F + 2G*F}AV

where
E=EorH
G = t*Q - (eu + out)EC - optk®
e . _
Q = source vector; Q = Q- for electric source
Q™ for magnetic source
. o OF°
F° [°= initial conditions: (%= o t =t

* = the convolution

t = time
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Furthermore, introducing A = t*Q, we obtain that the new
functional @ is the equivalent variational integral given as,

2
Q = [(UE*VE + epprdE

3t 3)
+ ouF*3E + 2p*Qlav

Hy

The initial conditions can now be conveniently incorporated
into the formulation. Taking a variation of Q@ with respect

to the nodal values, we obtain 60 = 0.

B. The Finite Element Formulation for the Three Dimensional

Time-domain Electromagnetics:

The finite element discretization of the above varia-

tion equation yields the corresponding matrix equation,

M1{$} + [D1{$} + [KI{e} = {2} (4)
where
M) = [oen[N1T[N]av (rass. )
(0] = fooutn1T(NIav (pamping)
K] = [ 00N, x]T (N, x1+ N,y T (N, ]
(Stifﬁness)
+IN,z1 TN, 2] }av Matrix

{2} = - INT{0)av (hoprs o)

-
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[N] shape function matrix

{6} {6} {¢}

I

unknown electrical or magnetic field and
its first and second time derivatives at nodes.

The matrix equation (4) is solved at each discrete
time step by means of the explicit central differences
scheme, avoiding cumbersome inversions of the global stiff-

ness matrix.

C. Numerical Verification of the Newmont Mutooroco Survey

The finite element.formulation for the three-dimensional
time-domain electromagnetics has been computer
coded. The computer program is successfully tested for an
excitation of an electrical line source in a conductive,
dielectric and permeable wholespace. The source function is
assumed to be bell-shaped. The electromagnetic parameters
are so chosen to test the sensitivity of each parameter.

The numerical solutions to all these test problems are
found to be stable.

Figure 1 shows the electric field strength that might
be observed at a distance of 50 meters from the source
position. 1In case 1 of the conductive whole-space, the
conductivity plays a major role, giving a highly attenuated

received signal; the same is true for Case 2 except the
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the phase difference. Therefore the magnetic permeability
plays essentially as damping as dcoes the conductivity.
Undesired undulating noises are introduced in Case 2 at
about 0.3 time unit, possibly due to inappropriate finite-
element sizes. Case 3 of a medium of common rock shows a
markedly different sighal, which is less attenuated and the
shape of the original signal is fairly well preserved. This
is attributed to the dielectric constanﬁ. The opﬁimum grid
size is a function of the wavelength, ﬁherefore, the skin-
depth of the highest frequency contained in the spectral
density of the original signal; in turn it is a function of
the conductivity, permittivity and permeability of the
medium.

Up to date, the most important result has been the
verification of the‘Newmont EMP results performed in Australia
by a two-dimensional Turam approximation along the line AA’
as shown in Figures 2 and 3, which show theAgeologic and
the field configuration and the EMP result of the Newmont
Exploration Ltd. The present numerical verification is
important in the sense that the Newmont system is perhaps
one of the best EMP systems now in existence. 1In the present
verification, the source is fixed and the data are taken
along the lines perpendicular to the larger dimension of the
rectangular current loop laid on the surface. The physical
and geometrical parameters of the finite element model is
given in Figure 4 together with the geometrical layout. All

-the parameters are also given in dimensionless numbers for
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a matter of generality. Figure 4 shows the secondary
electric field strength scattered by the overlying layer and
the dike together, calculated at successive time intervals
at the receiving stations located on the surface across
the electrical line source. The positions A and B are the
position of the dike and that of the source, respectively.
Almost immediately after the initiation of the trahsient
signal, the secondary field due to the overlying layer
reaches the stations near the source. As the time elapses,
it is built up around the source region but splits into two
parts at about 0.6 time unit. The split signals thereafter
tend to migrate away from the source. The signal scattered
by the dike is expected to show up around the region just above
the dike but it is not explicitly seen in Figure 4. In order
to examine the response of the overburden effect, the response
of the electric field strengths due to the overlying layer and
the half space withoﬁt the dike is calculated as shown in Figure
5. Visually, it is very difficult to distinguish between
the layered medium with the dike of Figure 4 and the layer
medium without the dike of Figure 5. This is because the
signal due to the dike is much smaller than that of the
overburden.

Figure 6 gives the electric field strength scattered
by the dike only, obtained by subtracting the valﬁes for

the layered medium with the dike of Figure 4 from the layer
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medium without the dike of Figure 5. The anomaly peak
occurs above the dike. The arrival of the signal, about
1.1 time unit, is considerably later than that of the over-
burden. Therefore it is recognized that the signal due to
the dike begins to appear while the overburden effect is
migrating away. This remarkable fact indeed confirms the
field work results. Our results of Figures 7 and 8
correspond to the result of the Mutooroo EMP Survey of
Figure 3, Y and 2 components, respectively. The fesponse
of the X component is zero for the Turam approximation, in
fact, the X component of the Mutooroo EMP result is indeed
also small in comparison with the Y and Z components.

In field practice, the response of the electrical
field strengths is rarely measured. Substantial information
can be derived from the response of the electrical field
strength as shown in Figure 6, which possesses a symmetrical

response to the dike.
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EMMMMA, A COMPUTER PROGRAM FOR THREE DIMENSIONAL MODELING

OF ATRBORNE ELECTROMAGNETIC SURVEYS

W.L. Scheen
Kon/Shell Exploratie en Produktie Laboratorium

Rijswijk, Holland

Abstract

EMMMMA stands for Electromagnetic Mathematical Model Mixed Algorithm.
The program calculates the response observed in airborne dipole-dipole e.m.
surveys caused by conductive bodies within a horizontally stratified earth.
Working with a certain mesh consisting of tetrahedrons, the program uses a
variational principle for setting up a set of finite element equations for
the magnetic field. A second set of equations, based in integral relations,
expresses the fields at the boundary nodes of the mesh in terms of those at
the interior nodes. The same integral relation is used to compute the field
at the receiver.

Some results with simple models are shown and problems encountered are

discussed. Two versions of this program are being tested.
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Introduction

EMMMMA is a three-dimensional modeling program. It has been designed
to compute the effect of a conductive body (or conductive bodies) on the
response measured in an airborne electromagnetic survey. The body is (bodies
are) supposed to be embedded in a horizontally stratified earth, consisting
of a substratum overlain by at most six horizontal layers. (It would require
very little effort ﬁo change the maximum qf six layefs intd say twelve or
more.)

The type of e.m. survey that can be modeled by EMMMMA is a magnetic
dipole-dipole survey. Three different orientations of the dipole axes are
taken into account--vertical, horizontal in the flight airection, and hori-
zontal normal to the direction of flight. This means that nine possible
combinations of transmitter and receiver orientations are considered.

Conductivity and dielectric constant may be specified for each layer,
each conductive body, and the air and the substratum. The magnetic perme-
ability, however, is assumed constant and equal to uo over the whole space.

A mesh consisting of tetrahedrons is generated; it covers the conductive
bodies completely. The boundary of this mesh must lie in the regularly lay-
ered part of the earth (+ air).

On the basis of the variational principle:1

2.2 -2 1 2 2
o [+ o s 5w | (88, /6y — 80 /82) %+ (SH, /82 - oH /607 +

+(ou /5% - o /op? J]av =0, w

a set of finite element equations is constructed allowing us to solve for the
magnetic field at the interior nodes of the mesh given the field at the
boundary nodes. If we know the magnetic field, we can also compute the

electric field by the relation:
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E = Zx [va] . (2)

In eqs. (1) and (2) o* stands for § + 2mife .
An integral relation similar to the one used by Hohmannb(l975) provides
a second set of equations:

The magnetic (or electric) field at any point of our space is the
same as we would find in the regularly layered earth without the conductive
bodies, if to the primary dipole sources secondary current sources were added
with a source density equal to

% X = g% - g%
vo Eactual’ vhere Vo 9 body o regular ° (3)

Here Vo* is the conductivity difference between the conductive bodies
and the regularly layered earth, and Eactual is the actual electric fields in

the conductive bodies, which we can derive from the actual magnetic field,

Hactual’ by

-1 )
Eactual T o% [VXHactuaIJ (4)

The required set of equations is obtained from this integral relation
by replacing the integrals over the conductive bodies by products of the
corresponding Greens functions, and expressions of the type (3) by sums of
the contributions of the various tetrahedrons in the mesh.

The same procedure is followed for computing the field at the receiver

location.

EMMMMA, First Version

We shall use the following notations:

N
int

and

number of interior nodes in the mesh

number of boundary nodes
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>
fl

int vector composed of the magnetic field components at the
interior nodes

]

vector composed of the magnetic field components at the

andA

boundary nodes

Note that Xint has 3xNin and and has 3be complex components.

t nd

From the variational principle a set of equations is obtained of the
type:

Axint + BXbnd =0, ()

where ‘A is a symmetric (3Nint)x(3Nint) matrix and B is a (3Nint)x(3and)
matrix.
Both matrices are sparse, i.e., they contain many zeros.

The integral relation gives the second set of equations:

_ (0)
Xnd = ona T Rine 0 (6)

where

Xégg = Field at the boundary nodes for a regularly layered earth with

the primary sources only, and

C is a (3and)x(3Nin ) matrix.

t

Finally, we have the equations expressing Hanom’ the anomalous field at
the receiver in terms of the field in the conductive bodies:
Hanom - DXint: 7
Method of Solution
1. Compute A,B,C. Also compute matrix D for the various receiver
positions.
2, Decompose matrix A by

A=1U, 6

where L is a lower and U is an upper triangular matrix, and compute
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1 .

This step is carired out by a Gaussian elimination procedure without back
substitution and with (3and) right hand sides corresponding to the columns of
matrix B.

3. Compute X by carrying out the back substitution, taking (0) for

int i and
the value of and'
4. Compute new and by eq. (6), using the Xint just found in the right

hand side of these equations. Update X, ., with this new Xb , etc. etc.,
in nd

t
until the changes in the solution have become sufficiently small.

5. Compute Han o by eq. (7).

o
Tests carried out on models involving spheres in empty space, for which
numerical values acquired by an analytical algorithm were available,3 showed
that the accuracy was poor when the transmitter was close to the conductive
body. Comparisons with experimental results for models with conductive dykes

were still worse, even with large numbers of nodes and CPU~times of 14 hours

on a UNIVAC 1106.

Error Estimation
The finite element equations derived from the variational principle (1)
provide a basis for solving the vectorial differential equation

v x [gﬁ VXH] = -2mipufH . (8)

When we consider a limited part‘of space, the differential equation has
a unique solution in that part, provided the tangential components of H are
given at the boundary (or, alternatively the tangential components of E or,
even more general, tangential components of H on one part and tangential com—
ponents of E on the other part of the boundary).

The above statement is valid as long as f # 0. If on the contrary f = 0,
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we have to satisfy the additional equation

V(uH) =0 . (9)
Equation (9) follows from eq. (8) if f # 0, but it offers an additional con-
dition when f = 0. If we do not impose this condition in this case, any
gradient field with non-zero divergence, having zero value at the boundary,
can be added to the solution without invalidating it.

In our numerical method it means that for low frequencies, i.e., when
the important parts of the mesh lie in the nearby field, the set of equations
becomes unstable. This leads to the superimposition of a spurious gradient
field on top of the desired solution.

This has little effect on the electric field

E=61;[vxn] ,

as the gradient field is removed by the Vx operator.

Thus it looks as though everything is all right, because from the finite
element solutions only the electric field E is used for the final computation
of the field at the receiver location,

To inspect the situation in more detail, mathematical investigations werg
carried out regarding convergence properties in the proper Sobolew space.

They lead to a result that can be summarized as follows:

For the finite element approach the errors €x and € in H and E at
low frequencies are of the orders
€H2 =~ Ci/f
(10)
where Cl and C2 are geometry-dependent (a.o., they decrease with decreasing

mesh-width) and do not wvanish when f - O. ii

This confirms our previous opinion that though the error in H increases
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out of proportion when f - 0, the error in E remains reasonable.

However, we are considering magnetic dipole sources, and therefore E will
tend to zero when f * 0. Thus we see that the relative error in E will be
very big, if f is small.

What has just been said about the error estimates still holds true when

we consider the F.E.M. solution of the differential equation
1 :
Ve [ & V| = -omiguenn) (11)

with smoothly distributed sources MS in the area covered by the mesh.

The factors C1 and C2 that we obtain in these cases are more or less
proportional to H; i.e., if H is small on the whole, C1 and C2 will also be
small.

This now offers us the following way out of our problem:

Introduce

getat - the field for zero frequency.

Since U does not vary, HStat is simply the field of a dipole in homo-

geneous space.

We have [vastat] =0 . (12)
Further, we define AH = H - gstat . (13)
Then AH = 0(f) for £ > 0 . (14)

Moreover AH satisfies the equation

stat

v [61; vXAH] = -2mifyu(AR+RSTEYY | (15)

This is eq. (11) with AH for H and H°T2C for M.

As H is of the order f, C1 and C2 will also be and

E = 61; [Vxﬂ] = —0—1; [VXAH] (16)

will be approximated with a relative error that remains finite when f - 0.
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EMMMMA, Second Version
The second version of EMMMMA applies the stratagem explained at the end
of the previous section. It also avoids the iterative algorithm described by
steps (3) and k4) of section 2.

The notations in this section are the same as those of section 2, but

. , stat stat __,
Xint and and now refer to AH instead of H itself. Xint and and will be
used for the corresponding vectors formed with HStat.

The variational principle now leads to the set of equations

A ine T 8%, 785 =0 an
where
_ . .stat stat
§ = AXine T BXna - : (18)

A, and B2 are (3Nint)x(3and) resp. (3Nint)x(3and) matrices. They are

part of matrices A and B, in the sense that these matrices can be written as

A

A JEf+ A
1 2 (19)

B 5 *

Bl/f + B

In these latter equations A1, AZ’ Bl’ B2 are independent of f.

The integral equations (6) and (7) remain valid, with the same C and D

as before.

Method of Solution

stat stat
0. Compute Xint and and .

1. As in section 2, but also computing S.

2. As in section 2, but also computing L—ls.

3. Compute A_lB and A_ls by back substitution.

4. Compute I + CA_lB (I represents the identity matrix) and
xég()i - cals.

We will then have computed the matrix and right hand sides of the equation
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(I + czx‘lB)xbnd = xégc)l - cals . (20)

that follows from eqs. (17) and (6).

5. Solve eq. (20) by straightforward Gaussian elimination.

6. Compute Xint by
= a1 -1 _
Xint = -A .Band A TS . (21)
7. Compute Hanom by eq. (7).

Testing is in progress; results look promising so far.
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SCALE MODEL OF THE TEM METHOD

B.R. Spies
Macquarie University
Sydney, Australia
on study leave from
The Bureau of Mineral Resources

Abstract

Scale model studies of the TEM method are being conducted at
Macquarie University, Sydney, using an interactive mini-computer for
timing of waveforms, data acquisition and processing.

In order to construct realistic geological models, it is necessary
to simulate host rock, overburden and mineralization. With TEM modelling
it is not possible to scale time by a factor in excess of about 10. For
these reasons the conventional salt or acid tank is not satisfactory,
and other techniques have had to be developed.

Models used in the Macquarie University facility consist of low-
and medium-melting point alloys (typemetal, Wood's metal, etc.) graphite,
and conductive epoxy resins,

The main difficulty experienced with this modelling setup are:

(1) when time is scaled, sampled times need to be known to

a very high precision. Wide time windows are
unsatisfactory.

(2) It is difficult to determine the electrical continuity

between adjacent materials,
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Summary of Paper

Scale Model Facility

The scale model facility at Macquarie University consists of a 35 K
word Interdata mini-computer which controls the timing and waveform of
the transmitted pulse as well as subsequent data collection and processing.
A wide-band amplifier provides an interface between the computer and
small hulti~turn loops used for model studies. Input and output data
are fed via the computer to a teletypewriter. Final results are stored
on magnetic tape for subsequent plotting. The use of an interactive
technique between the computer and operator enables optimum timing and
amplifier settings to be easily determined for each model.

A schematic diagram of the computer equipment is given in Figure 1.

Model Materials

Some materials used for constructing models are listed in Table 1.
High-conducting materials are used so that models can be kept relatively
small. For example a block of typemetal 10 cm thick can simulate a
homogeneous halfspace for times up to 5 ms. By consideration of the
electromagnetic modelling relation it can be shown that to simulate a

halfspace with salt water over the same time range would require a tank

35 m deep.
TABLE 1 MODEL MATERIALS

Material Cond%g;iyity
Copper 3 -5.5x 107
Brass 1 -2 x 107
Aluminium 1.6-3.7 x 10
Typemetal (M.P. 230°C)" 2-4 x10°
Low-Melt Alloys (M.P. ~ 70°C) 10° - 5 x 10
Graphite 0.3 - 2 x 10°
Conductive [Lpoxy Resins 103 - 105

Satd Salt Water 20
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Problems of Electrical Continuity

.

A hajor consideration in using the above materials for model studies
is the problem of electrical continuity between the various materials.

Two metal sheets pushed together will in fact only be touching in
a few places, and the lateral electrical conductivity will be greatly
different from the bulk conductivity. For this reason materials such as
typemetal and Wood's metal are used, since they have a positive coefficient
of expansion upon solidification. They therefore form a very close bond
with other model materials they are in contact with,

Conductive epoxy resins can also be used to join materials. The
most conductive resin on the market has a conductivity of 105 S/m, and thus
forms an ideal interface between graphite and other materials.

Note that the problem of electrical continuity may arise with
tank modelling, for example where aluminium is used as the one model.
Resistive oxides of aluminium on the surface of the model can have a
large effect on the modelled response.

Amplifier Requirements

The major problem in designing an amplifier is the requirement of
wide bandwidth and high gain. With small models, gains of up to 100,000
are desirable. The effect of a band-limited amplifier on the shape of
an exponential decaying waveform can be analysed by the use of the
Laplace Transform. It can be shown that for a low-pass filter with a

single real pole, the requirement for a 1% error is:

w,T = 100
where W, is the 3 db point, and
T is the time constant of the exponential decay.
For example, if it is desired to measure a transient with a time Gi

constant of 0.1 ms the 3 db point of the amplifier would need to be at

150 kHz.
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The amplifier used in the Macquarie University  facility has a
variable gain of 10, 100, 1000, 10000 and a 3 db point of 500 kHz.

Errors in Measurement

In addition to errors introduced by a frequency-limited amplifier,
there are also errors introduced from other sources. These are particularly
troublesome for conditions of early times, large conductivity, and large
loop size. For example, a 1% error in the measured voltage or sample
time could cause a 40% error in apparent conductivity. At later sample
times the error is greatly reduced.

Model Results - TEM One-loop Configuration

It will be assumed that the reader has a basic knowledge of the TEM
method. Descriptions of field equipment, field results and early model
stuides are given by Velikin and Bulgakov (1967), Spies (1976 a and b).

2-layered earth response and depth of penetration

fodels of a 2-layered earth have been studied with different loop
sizes. Results for several cases are shown in Figures 2 and 3. As the
thickness of the top layer increases, the departure from the homogeneous
ground response of the top layer occurs later in time. The departure
time depends on the conductivity and thickness of the layer and the loop
size. A feature of the curves is an overshoot effect, which is greatest
for thin layers and large loops. This effect is ascribed as being due
to interference or resonance effects between layers.

An interesting results is the effect of loop size on depth of
penetration. For many years it was assumed that the depth of penetration
increased with the size of the loop. However, it can be seen from Figure
4 that at a given sample time, the apparenf conductivity derived for
the smaller loop is generally closer to the true conductivity of the
lower layér, than for the larger loop. Thus, over a 2-layered ground,
smaller loops would appear to have a greater depth of penetration than

larger loops.
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In practice, the depth of penetration is often controlled by the
signal/noise ratio and the sensitivity of the TEM instrument. An examplg
of this is given in Figure 5, which shows the TEM response at 1.1 ms
of a graphite model of the Woodlawn orebody (New South Wales), as a
function of depth of burial. If the noise léevel is assumed to be
proportional to loop area, it can be seen that a larger loop will be
able to detect the orebody at a greater depth than with a smaller loop.

Effect of Host Rock

The presence of a conducting host rock was simulated by embedding a
copper,and brass, cylinder in typemetal. The resultant transient decay
curves (shown in Figure 6) show that at early times the response is due
solely to the host rock. In the medium time range the effect of the
cylinder is seen, and at very late times the halfspace response again

predominates.

Two-1loop TEM response of a Homogeneous Ground

In order to examine the response of a homogeneous half-space with a
two-1loop TEM system a model was constructed out of typemetal. The .
response of a 1 ohm-m uniform ground with varying loop separations is
shown in Figure 7. The curves change sign at a time which depends on
their separation and the conductivity of the ground. It can be seen
that one-loop response is simply the "late time" assymptote of the two-loop
response as the loop-separation goes to zero.

By varying the loop separation, loop size and model conductivity it
was possible to empirically derive an expression for the 2-loop
homogeneous ground response. This result is shown in Figure 8. Several
features of the transient curve are worth noting. Firstly, the fact that
the curve changes sign with ground conductivity means that field results

of 2-loop data will be much more complex than for the one -loop
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configuration. Secondly, for later parts of the transient it can
be seen that the response-conductivity relationship is no longer unique.
This means that it would be difficult to ralculate apparent conductivities.

Future Modelling Work

Model studies are currently being conducted to examine the effect
of magnetic permeability and anisotropy on TEM response. It is planned
to construct several models of specific field targets with conductive
overburden and Bost rock, with the aim of determining the limits of
detectability of various targets.
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A GENERALIZED IMAGE METHOD FOR QUASI-STRATIFIED MODELS

G.F. West

Department of Physics
University of Toronto
Toronto, Ontario M5S1A7,Canada

We have been looking for a method of computing the EM response of
a quasi-stratified earth, i.e., one in which one or more of the layers
has a somewhat irregular shape. To our surprise, we discovered that two
members of the U. of T. Computer Science Department worked on this problem
a few years ago and developed a numerical method which might best be

described as a generalized lmage method*.

The field inside any uniform bounded region can always be described
as the summation of fields generated by an array of point sources in an
infinite medium of similar properties, where all these point sources (with
the possible exception of the true source) lie outside the boundary of
the region. (Fig. 1). In a number of simple cases, such as where the boundary
is a plane or a sphere, the fields can be represented exactly by one or a
finite number of such sources. However, in most cases, an infinite distri-
bution of point sources is required. In the numerical method, one attempts
to find a small set of "image" sources (position and strength) for the
fields in each region such that the fields on the boundary approximately
satisfy the required boundary conditions on a network of test points. The
number of test points is taken considerably larger than the number of unknown
in the image séries and the method of least squares is used to obtain the
parameters of the image series. The minimization problem is non-linear in
the image position coordinates and the Marquhardt algorithm is used to iterate
to the best fit.
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We have not tried the method yet, but it looks interesting and we

plan to test it this summer. It is unlikely that very complicated shapes

can be handled, since this would require many images and the iterative least

squares method usually gets into trouble if the number of free parameters is

large. However, it may be a simple method for handling some important cases.

¥ Johnston, R.L. and R. Mathon, 1977.

Fields in Conducting Media.
of Computer Science, University of Toronto.

Mathon, R. and R.L. Johnston, 1977.

boundary value problems by fundamental solutions. SIAM J. Numer.
Anal. vol. 14, no. 4, pp. 638-650.
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Fig. 1. A generalized image method.
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FINITE DIFFERENCE SOLUTIONS FOR

AXISYMMETRIC PROBLEMS

Roy J. Greenfield and Gordon D. Kraft
Geosciences Dept., Penn State University

The finite element method is applied to modeling D.C. electrical
resistivity surveys on conductivity structures which are symmetric
about an axis. A large class of structures of geophysical interest
can be modeled in this geometry: ore bodies which are spherical
in shape, flat lying ore bodies of eliptical or disk shape, such ore
bodies in areas having layered overburden, complicated well loging
geometries, and axially symmetric conductivity changes associated with
water flooding or coal gasification. The usual approach can give extension
fbr I.P. modeling. Preliminary indications are that finite element
results can also be obtained for electromagnetic sources in this geometry.
The results discussed are from a recent M.S. Thesis at Penn State
(Kraft, 1976). This thesis work, which is being continued, outlines the
method for the general axially symmetric case and obtains a variety of
numerical results for the case when the source is on the symmetry axis.
Recently this problem was also addressed by Bibby (1978).
The potential field for an axially symmetric structure may be expressed

as
x
o(r,z,0) = Vyr,z) + n2fl Yy (x52)+ cos N6 + Uy (r,z) -+ sin N8}
where r,z, and 6 are the cylendrical coordinates. The VN(r;z) and U&(r,z)
are solved as a series of two dimensional problems. This technique,

analogous to the method used by Jepsen (1969), Coggon (1971), and Madden (1967)
for two dimensional structures, requires less computation than the full three

dimensional solution.
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Present results are for sources on the axis. Then only the V, (r,2z)

term is required, hence the subscript will be dropped. The finite element

method requires minimigation og the function .
oV oV I
X = ? brolG) + () ) drdz + [(I/z a V. - BV) dl + ” e 5(r—io)5(z-20)rvdrdz

R c R

The o and R come from general linear boundary conditions of the form
oV

rg = + aVv=-8 = 0
where - indicates the derivative normal to the boundary. The boundary conditions
and resulting o and B used are shown on Figure 1. The conditions on the right
side and bottom of the grid result from the assumption that the direction
of current flow on the boundary is radially outward from the source. The
grids used for the numerical work are formed by dividing the solution region
into rectangles by a series of vertical and horizontal grid lines, which
are placed at the discretion of the user. Full details of the method afe
given by Kraft (1976). The program used to obtain results incorporated
several subroutines developed by Rodi (1976) for magnetic-~telluric modeling.
The direct method described by Greenfield (1965) was used to solve the fiﬁite

difference equations. Typical rumns for a 30 x 30 mesh took 15 seconds on the

Penn State University IBM 370/175 computer.

surface
a=B=0 .
—2Y
source,
ii’rg——"": O (B = O
n £y = o
T L T
o=3=0 (rc + z9)
~N
axis —7
‘{B =0
v a = z0

z (rZ ¥ Z2) 1

Gip Figure 1. Geometry and outer boundary of mesh shown with boundary
conditions indicated for each side of the mesh.
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A variety of tests were made of the accuracy of the method by comparison
of finite element results to analytic model results. Figure 2 shows the
geometry and Figure 3 a comparison of present apparent resistivity results
to those of Snyder and Merkel (1973) for the buried conductive sphere
(conductivity contrast of 5.). Also shown are additional results for source
positions in the sphere. Comparison of results for the resistive sphere gave
comparable accuracy. The only appreciable errors are for the surface source
(n=0 when n is small so that the close electrode is near the source.
The grid used had the same uniform spacing (spacing = a/4) in both the
horizontal and vertical. Additional accuracy tests were made for a uniform
halfspace model and for the model of a layer over a halfspace, with both a
conductive and a resistive layer. In all cases accuracies of a few percent
or better were obtained, except when a potential electrode was within 4 grid
points of either the source electrode or the mesh boundary.

Results were calculated for the series of models shown in Figure 4. This

series of models shows the effect, on apparent resistivity, of the horizontal

extent of the burried conductive body, A series of curves, not included in
this summary, shows apparent resistivity versus potential electrode distance,
r, for each body. In Figure 5 a composite curve, for fixed potential electrode
distance, is given for all the bodies.

Results were run to analyze the possibility of monitoring water flooding
of a layer with a conductive fluid. The model is shown in Figure 6; the
conductivity model included a steel well casing. The apparent resistivity
results for several values of D, the raduis of the flooded zone, are shown
in Figure 7.

These water flooding calculations were done using a mesh that had very
small radial spacing (Ar = 0.06 mm) at the axis (location of pipe) with the
spacing increasing by approximately 50% at each node until the node spacing
at the outer boundary was Ar = 944 m. The vertical mesh spacing was uniformly
60 m:except for a spacing of 30 m at the layef. Accuracy tests were made
using this mesh for the problem of a layer over a halfspace (no pipe) and
for the finite length infinitely corductive pipe in a unifovm halfspace
(compared to the solution of Van Nostrand and Cook, 1966, pp. 28~29). The
results showed that this mesh gives results that were accurate to better than.

a few percent.

-
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Figure 2.

a
Q' z = 1l.52

E€lectrode array geometry of the buried sphere target.
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———— ANALYTIC MODELS (SNYDER & MERKEL) Pl
00 O FINITE ELEMENT FIT TO ANALYTIC MODELS / — o 2.

[~ —@—©—6— ADDITIONAL FINITE ELEMENT MODELS

.1 1 10

Figure 3 . Test of finite element calculation using known analytic solution
to apparent resistivity over a conductive sphere in a half-space.
Parameters are specified in Figure 2.
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Flgure 5. Apparent resistivity at a point 45m from the axis versus source
depth, presented-for the sphere, ellipsolds, and layer of Figure 4.
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FINITE DIFFERENCE SOLUTIONS TO THE

THREE-DIMENS IONAL~SOURCE AND TWO-DIMENSIONAL- EARTH
ELECTROMAGNETIC PROBLEM

Charles H. Stoyer
Geophysics Department
Colorado School of Mines

Introduction

The numerical solution of the problem concerning geophysical prospecting
over structures of infinite strike length with point sources has held the
author's interest since about 1972. TFollowing the work of Swift (1967, 1971),
the method and software have been developed to extend Swift's purely two=
dimensional approach to one which allows the electromagnetic fields to be
three dimensional in character.

Since virtually all of these results have been previously published
elsewhere (Stoyer, 1974; Stoyer and Greenfield, 1976; Greenfield and Stoyer,
1976; Stoyer and Wait, 1976; Stoyer, 1976) this summary will be a literature

review.

The Method

The basis for the method is straightforward. The strike direction is
parallel to the x-axis (z is positive downward) and the field components are
written as an un-normalized Fourier integral. Substitution of this into
Maxwell's equations produces a set of equations in which the x-dependence of
the fields is specified as exp (jkx). Since the y- and z-components can be
expressed in terms of derivatives of Ex and Hx (in the k-domain), these two
components are used as potentials. Two coupled equations in Ex.and Hx are
then developed; these are coupled only at material boundaries. The finite-
difference approximation of these two equations can be easily developed,'and Gi

both magnetic and current dipole sources are allowed.
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Boundary conditions at contacts between media of different electrical
properties are automatically taken care of since the equations for inhomogen-
eous media are used. At the edges of the finite-difference grid, the magneto-
telluric terminal impedance, similar to that used by Swift (1967) at the grid
bottom, is used for the boundary condition at all grid edges.

The finite difference equations are solved (presently for the total
field) for several values of k, logarithmically spaced and spanning about two
orders of magnitude, and the inverse transform is carried out by integrating
the Lagrange interpolation of the fields in the Fourier integral. The specific
values of k are determined from tests with simpler structures, such as a
homogeneous or plane-layered earth. Note that the required k values are dif-
ferent for electric and magnetic sources. Solutions cost between $20 and

$200, depending on the machine and rate structure used.

Validity of Results

Unfortunately, no absolute test of validity for two-dimensional structures
-using truly electromagnetic fields has been carried out as yet. This is
because a "standard" result (such as scale-model) does not seem to exist.
However, comparisons have been made with homogeneous half-spaces, three-
dimensional scale models, the perfectly conducting half-plane, field data
taken by the author, and direct-current two~dimensional results. There has
never been any reason to suspect the validity of the resﬁlts, except in cases
where obvious mistakes, such as using too coarse a grid or the wrong k values,

have been made.

Summary of Published Results

Full details of the method are described by Stoyer (1974). These results

are strictly for magnetic dipole sources, and the measurement of tilt angle
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and ellipticity (for the magnetic polarization ellipse) is considered almost

exclusively. Results include the response of buried bodies in layered

dimensional results with a three-dimensional scale model and with the half-

and Greenfield (1976).
Publications that describe the surface fields of a buried vertical mag-
netic dipole (for trapped-miner applications) include Greenfield and Stoyer,

1976; Stoyer and Wait, 1976; and Stoyer, 1976. The first of these is a con-

contour maps on the surface of various field components. Some of the more
interesting of these show contour maps of vertical and horizontal elliptici-
ties. These seem to be quite indicative of the position of the more conduc-
tive portions of the subsurface.

Recently, results have been generated for the électromagnetic fields of
current dipole over a two-dimensional structure. These results are not yet

compiled, as they require the combination of two sources in order to match

involve fields along a line which is oblique to strike. The results should

appear in the future literature.

Final Remarks

several approximations must be made, including finite grid size (15x50 nodes),

;_—‘__A‘A;_A _———— o e o - N i,»..\- TN

structures (generated for field data interpretation), comparison of the two-.

plane solution, and the surface fields of a buried dipole source. Comparisons
with field data, taken by the author using equipment designed and constructed
by the author, are also presented and resulting interpretations are discussed.

A condensed version of Stoyer (1974) is presented in the more accessible Stoyer

densed version of the material from Stoyer (1974). The second and third show

a

the field situation for which data interpretations are to be made. Also, they

The finite~difference solution to the three-dimensional source and two-dimensional

earth electyomagnetic prospecting problem has been obtained. Inorder to do this,

q
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incorrect grid boundary conditions, numerical differentiation to obtain auxil-
liary field components, and a finite number of k values for the inverse Fourier
transform. Solutions in the vicinity of the source and solutions near grid
boundaries are not valid for several reasons. With a little care, however,
valid and viable solutions to the geophysical prospecting problem can be
obtained; the cost is not negligible, but it is reasonable.

Certainly, improvements can be made which promise to improve the accuracy
and/or decrease the cost of the computations. These include solutions for
secondary fields only, direct computatioﬁ of all desired field components in
a specified region (such as the air-earth interface), and improved methods of
calculating the inverse transform using fewer k values. However, even the
relatively crude approach which was introduced in the referenced publications
gives results which are generally useful for model studies and geophysical
interpretations. For inversion applications, however, much faster methods of
computation, such as interpolation into data from a curve catalog, are

definitely necessary.
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2-D INVERSION OF D.C. RESISTIVITY

Alan C. Tripp '
Department of Geology and Geophysics
University of Utah
Salt Lake City, Utah 84112

We will first briefly discuss the two dimensional
D.C. resistivity forward preblem, following Madden (1971)
and C.M, Swift, Jr. (pers.comn.)

Let's assume that the strike direction is along the

Yy - axis. If we Fourier transform out the y-direction, tre
potential equations

Vo = -p(x3)T @

vd =1 Q)

where 1 represents the current scurces, become the transmissicn
surface equations

M = -P(x3) T (x,3) )
a¥ | v
'ii._x_gﬁ): - p063) Ty (03) @)

ATlng), 3Tyy(x3) —()i__ ﬁx(“,‘s)"'Ix(“fé) (s)
CAY 23'%, (’(K:S)
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where the A\ subscripted variables are defined by the cosine

transforms:

$(x4,3) = §>‘(X,'3) coS ()ua) d\

Jx(x;‘a,'g) ‘= -J;x()(,vb)cos( \a) d\

(- -]

J.(x4,3) = § g (%13) C°$03) d\

Tly,3) = | Tatg)cosOoy) db

The standard forms for the transmission surface

equations are

N - -21
" X

2V = -21
63 LS

(6)

()

&)

@)

(o)

()

(2.)
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Comparing equations (3) - (5) with equations (10) - (12)
we note the equivalences

Z= plx3) 03)

il 14
e(%,3) 1)

vz 3, (%3) (5)

T ﬁ'x(x;s) (¢)

Now we wish to approximate the transmission surface by
a network., To do this we must approximate the distriduted
impedance and admittance to ground, 2 and Y , by lumped
circuit elements.

We will follow this computation through for the resistivity
cell (I,J) shown in Figure 1. The network edmittence
element YY or YH may be viewed as equivalent to two lumped
impedance elements in parallel. For example YV(I,:T) is
the parallel combination of the two lumped impedance elements
formed from half of the neighboring CIadﬁfj) and (]5:{) cells:

Z(1,3+1) = e(1,7+41) av(T) (17)
.S AH(T+1)

and

2(1,3) = p(1,3)av(]) v (8)
SAH(T) |
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YV(1,T)= S (AH(IY) + AH(‘J+1)) 12)

Thus
avQa)\ e(3,3)
Similarly
YH(1,3)= =S (AV(I)
AH(T) \ 0(1,7)

e(1,T+1)

+ Av(1+12)  (R0)

e(1+1,3)

The admittance element Y(I,J) from the node (I,T) to
- ground is found by-adding the lumped admittance of Z; of each

of the 4 cells surrounding the (I’ J)

Y(3,3) = .asxi( AH(T) av(T)
e(1,3)

-the node. Thus

AR(T+1) AV(T)
P(I; 3.1‘1)

+ AHE)AV(TH) o AH(U+1)AV(1+1)) (31)

e(1+1,7)

e(1+1,7+1)

We may solve for the valuves of the potentials in the
A domain for the final equivalent network of Figure 1 by
invoking Xirchoff's current law at each node and then

combining the resultant equations imto

a matrix equation.

We will now formulate an inversicn algorithm using the

linearized least squaves technique.

technique requires that we find %@Af;
receiver geometry. Now if we 8pec.1£y

4
Opa | 283(49)
0e(L,9) 9e(1,T)

Utilization of this

for a given transmitter -
nit current we have

(&)
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where Ag’(i,.')) is the drep in voltage at port L due to
unit current at port _) , end K is the geometric factor.
But we may define a current drop in the A domain, Ai’)‘(‘-,:\)'

Then o

Ag(t,j) = SA§)‘(L):)) cos()\a)t‘“\ (&-3)

L4

The partial deri -ative becomes
"

243(1,3) _ f 283, (4,3) o5y d) @4)

20@3) 1 2e(1,3) -
Now we want to find an express;on for w The
chain rule gives: g | ae(lﬁ)

288,(i))) 283,(1,3) a2y,

(2s)
de(13) (=~ 3V, 2e(1,3)

where 9\ indexes the network branches that are connected %e
nodes (I-1)3~3), (1‘1,3), (1,3-‘1.), ov (I,J’) and Y.Q
is the admittance of the 9..."& Thranch. Since for each

the functional dependence of Yg_ - on P(I,ﬁ') is gives by
equations 09), (30))01' (‘2!)) aY,Q/ae(I,I) may be found analytically.
To evaluate aAi)‘(L)ﬁ/EY‘Q‘ we need to cite Cechn's sensitivity
theorem (Nadden, 1972; Fenfield, Spence, and Duinker, 1970).

The theorem states that

dza |

where EQ .is the impedance for the £-4. branch of the
network, J\‘IQ is the current induced in the Q-4  branch by
unit current in the (-t port, and .)\"‘11 is the current
induced in the Q-t&. ‘branch by unit current in the )-‘d\ port,
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Since ._'_, - B‘Q » We may write
Y2

9@\(&,3) _ 258, (4,3 3

a—

CA{! XY 9Ye

= N Vp A

where ﬁﬁ{g is the voltage in the JQ-ii., branch induced
by unit current in the (.<i  port and _A“V 2 is defined
similarly. But we have these quantities from the solution of
the forward problem. |
¥e now have the equations necessary to derive the
derivatives of the potential differences with respect to a
cell resistivity. Computational details should be available soon.
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THREE-DIMENSIONAL ELECTROMAGNETIC SCATTERING

F.W. Jones

Department of Physics, University of Alberta
Edmonton, Alberta, Canada T6&6G 2J1

During the past few years a numerical method has
been used to obtain solutions for the three~dimensional
electromagnetic perturbation problem. Maxwell's equaﬁiohs
have been solved in terms of the electric field, and the
associated.magnetic field is then determined. This approach
leads to restrictions on the orientation of the source field
for models in which conductivity  discontinuities extend to
the boundaries of the region being considered. 1In ofdef fo
make the numerical method more general it would be useful to
be able to solve the equations in terms of the magﬁetic field
initially as well.

If we consider electromagnetic fields with a time
variation exp(iwt) which is sufficiently slow so that displace-

ment currents may be ignored, we can write Maxwell's equations

it

cE (1)

Vx3
V x E = —-iwH . (2)
Combining these two equations by taking the curl of (2) and

substituting from (1) we have an equation in E:

2

V’E - V(V'E) = iwpOE . (3)
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This vector equation may be written as three scalar

equations in Cartesian coordinates:

az,Ex BZEX . [0 SEZ\ )
+ - 2L 4 = in“E
ay2 322 9x \ 9y 9z / X
aZEy SZEZ ., [E, SEZ> ,
+ - ==+ = in“E
sz az2 3y \0x 9z y
o’ 3%k, [eE_  OE > )
+ - =2+ X = in“E
ax2 ay2 9z \9x dy z
where n2 = uoow. These equations may be written in finite

difference form and solved simultaneously for Ex’ E and EZ
by the Gauss-—Seidel iterative technique over a grid of mesh
points which encloses the region of interest. In the finite

difference equations used to represent the scalar equations

2

(4)

(5)

(6)

(4), (5) and (6) nz is replaced by n° , the weighted average

of nz for all the regions surrounding the point being con-
sidered (see Brewitt~Taylor and Weaver, 1976). This implies
that changes in conductivity are made through transition zones
from one conductivity to another and there are gradients in
conductivity in these zones.,. |

The method is straightforward and may be applied to
models with general conductivity distribution. After the
electric fields are determined, the magnetic fields may be

approximated using equation (2).
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The boundary and initial values may.be obtained from
a one—dimensional solution when a uniform or layered medium
extends to the external boundaries in all directions. However,
when lateral discontinuities extend.to the boundaries, a two-
dimeﬁsional model must be employed to obtain the boundary and
initial conditions. For the above E-field approach this implies
that the two-dimensional E-polarization case (Jones and Price,
1970) must be used. However, this restricts the orientation
of the source field that can be used for the model.

In an effort to overcome this limitation on the
orientation of the source field, and thus make the method of
solution more general, we have attempted to solve the equations
in H rather thanm E .

From equations (1) and (2) we can obtain an equation

V2H -V(V-H) - iwp OH + El; (Vo) x (9xH) = 0 . (7)

This equation is similar to equation (3) in E , except for the
last term. This term contains Vo and will be zero in all
regions of uniform conductivity but non-zero in the transition
zones between the different conductive regions.

In the same manner as before we can write equation

(7) as three scalar equations in Cartesian coordinates:



2 2
9 H 9 H oH oH 9H oH
2x + 2x - %_ <8 + Bzz> - iMUOOHx *t s gﬁ <8x ) X>
dy 9z X \9Y y y
oH oH
a0 z X -
Y (— ax + oz > 0 (8)

8#2 322 dy \ 9x dz o) X \ 9x oy
oH 3H_\
e A
+ Z(By 5z )|~ O (%)
2 2
9 H 9°H [ 9H oH 9H oH
z z 9 X vy o 1|30 {_ z p.3
2 + 2 Sz<' X + dy ) 1(Jlmo(ﬂ{z + o] 9x ( ox + 3z )
9x dy
M ,
oo [ OB,  OH V)
- 3; 5;— Y /J =0 (10)

These equafions.may be written in finite difference form and
solve& simﬁltaneously for Hx’ Hy and Hz over the mesh, and the
associated electric fields may be obtained from equation (1).
In this case ghe two-dimensional H-polarization case (Jones and
Price, 1970) may bé used to obtain the boundary and initial
values for tﬁe general case,.

The solu;ion of these H-field equations is not as
straightforward as in the E—field case. The last term is very
sensitive to cbnductivity contrééts, and to grid sizes. Also,
this'term gives rise to diffiéulties just above the surface

of the conducting region where o0=0 and %% is non-zero,.
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To try and determine how some of these difficulties
might be overcome and to see if we might expect.ﬁo obtain
sensible results from calculations of this kind, we have tried
a very ad héc approach. 1In this, we have assigned a conductivity
valué to the level of nodes immediately above our original surface
level. This then produces non-zero O and %% in the last terms
of tﬁe equation (also, this o éhouid be included in the fourth
term as well). The problem then arises in the next higher level.
We mustiat'some po?nt choose %% = 0. The effect is to smear
the boundary even more. There may be some alternative approach
such as one—sidéd differences at the surface (and perhaps at
internal boundaries as well), or some method using a double mesh,
ithough this may be difficuit in practise.

We héve computed and compared E-field and H-field
solutions for both symmetric and non-symmetric models, ;hough
we have fo&nd that so far we must use low coﬂductivity contrasts
in order to obtain reasonable convergence in the H-field case.

In the symmetric model the two methods give H-fields
and E—fields which are comparable. In the more complicated non-
symmétric irregular models, one finds that, as expected, the forms
of the fields differ. It is clear from the resulté that it is
important to consider both cases, and that results from measure-
ments made in non-uniform regions depend greatly on the orienta-

tion of the source field.
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ELECTROMAGNETIC WAVE SCATTERING BY BURIED OBJECTS

Shu-Kong Chang
EMtec Engineering, Inc., and LuTech, Inc.
Berkeley, CA 94701

SUMMARY

A numerical technique is introduced to solve the electromagnetic
wave scattering by localized inhomogeneities buried underground. The
basic idea of the technique is to draw an artificial sphere which
encloses the entire volume of the scatterer. The fields in the interior
of the sphere are solved by the Finite Element Method using the
Dirichlet boundary conditions. A new type of multipole expansion which
satisfies the boundary conditions of the air-ground interface has been
discovered to represent the field outside the artificial sphere. The
expansion coefficients are solved by matching the boundary conditions
on the sphere.

The multipole expansions include a complete series of vertical
electric and magnetic multipoles plus a set of rotating horizontal
multipoles. The purpose of adding the rotating multipoles is to ensure
the convergence of the expansions. The complete multipole fields
satisfying the boundary conditions are derived in terms of the
generalized Sommerfeld integra]é.

One advantage of the technique is the use of analytical expres-
sions of solutions in the entire space outside an artificial sphere.
This enables us to 1imit the effort of the finite element method only
to the interior of the sphere. It is also more efficient than the
integral equation approach for material bodies other than thin wire
structures, because the latter approach usually involves a time-
consuming process of generating the elements of a full matrix which has
to be inverted.
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MODELING OF THREE-DIMENSIONAL D.C. ELECTRICAL
PROBLEMS USING INTEGRAL EQUATION SOLUTTIONS*

L. C. Bartel
Thermal Processes Division
Sandia Iaboratories
Albuquerque, New Mexico 87185

SUMMARY

A Green's function integral equation technique has been developed to
calculate the electrical potentials and apparent resistivities resulting from
three-dimensional structures. The so-called half-space Green's function is

used to teke into account the earth's surface, and is given by
2¢ 1 > > - 317
@) = 5 [6, @3 + e @2
where
-1/2
e, @2 = [x)2+ Gy v @]
G(2,R’) satisfies the equation

v2@,2') = - 5(x-x') 8(3-v") [s(z-z') . a(z+z’)] .

Using Green's theorem, the potential throughout the earth half-space is given

by

*
This work supported by the U, S. Department of Energy.
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. nd}
6() = ¢, + fds' o@3) AL,
0
s

where ¢b is the potential resulting from a source, the surface integral is
over all surfaces of resistivity contrasts (excluding the earth's surface), and
0 is the induced surface charge density on these surfaces. The integral equation

for this charge density is

_) r
OS;! 3¢0(x) ' 8G(§,;') o(x’)
= 2K + ds R
€ s on on £
° 1A A (o}
vhere
K = Pin = Pout
8 pin + pout

The normal derivative of G is an outward normal, the surface integral leaves out
the point %= 2', and "in" and "out" refer to inside and outside the surfaces

of resistivity contrast, respectively. Only time independent (d.c.) solutions

have been addressed to date for both point and three-dimensionel current sources.

For the computer solutions to the integral equation, the surfaces of
resistivity contrast are divided into finite elements where the normal derivative
of the Green's function is integrated over these elements to improve the accuracy
of the calculation, The resulting equations for the charge density at point i

and the potential at:-point k become

- 99, 1 3G(i,3) -
Oi=»2Ki <'5?1:>1.+ S—<< %>JOJ

on,
o] J i

and
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=0y + D 5 <65, Ty
k 7k J

where<:>?_==dé'd8i, 0, = é§-<:a>3, and Si is the surface area of the i-th
i o} _
element. The solution for th% charge density o, along with any constraint

conditions, is obtained by solving a set of linear algebraic equations.

To illustrate the integral equation technique, the results of an
illustrative model calculation are shown in the figure, Shown are responses
for a half-Schlunmberger survey over both an insulating and & conducting buried,

finite-sized, dike-like structure.

The emphasis on the modeling work has been to describe field results from
using electrical methods to monitor the in situ gasification of coal and re-
torting of oil shale and to map hydraulic fractures in the oil shale and natural

gas stimulation programs.
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THE THEORY OF THE MAGNETOMETRIC RESISTIVITY METHOD

R. N. Edwards
Department of Physics
University of Toronto

Toronto, Canada

4 The Magnetometric Resistivity (MMR) method is based on the measurement
of the low level, low frequency magnetic fields associated with non-inductive current
flow in the earth. A component of the magnetic field is measured in the
vieinity of one or more grounded electrodes. The experimental aspects of the
method are described in Edwards (1974) and Edwards and Howell (1976), including
the apparatus, the field procedure, the factors which influence the location
of the current electrodes, the reduction and normalization of the observations

and the interpretation of the 'MMR anomalies’'.

The mathematical aspects of the method are presented in a review paper
by Edwards, Lee and Nabighian (1978). A horizontal-layered earth yields no
MVR anomaly. At first, this seems strange for clearly the current flow in the
ground is perturbed and may even be restricted to a thin layer at the earth's
surface. However, the perturbation or anomalous currents set up are poloidal
and totally enclose the toroidal anomalous magnetic field caused by them.
This toroidal field can only be detected by lowering a magnetic field detector
through the layers.

The contours of the magnetic field amplitude about a single electrode
embedded at the surface of a uniform earth are circles. They are distorted into
elliptical shapes if the earth is laterally anisotropic, the ratio of the semi-
axes of the elliptical figures being the ratio of two complete elliptic integrals
K(k)/E(k), where k is the coefficient of anisotropy. The characteristic
anomalies for vertical and dipping contacts, for thin and thick dikes and semi-
cylindrical and hemispherical depressions as well as 'alpha' media are described

in this paper in some detail.

Gomez-Trevino and Edwards (1978) describe an inexpensive rapid method
for computing all three components of the magnetic field due to current flow
from a point electrode in the vicinity of a conductive anomaly of infinite strike

length and arbitrary cross-section.
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For any three-dimensional structure, the magnetic field may be
written as a sum of surface integrals over boundaries defining changes in
conductivity by a direct modification of the Biot-Savart law. The integrand
of each surface integral includes components of the electric field tangential

to the boundary, viz.

(
) = g | ST

where Ohm's law, in the form d = =-0YU , is obeyed in the volume V.

In the case of a two-dimensional, cylindrical structure, a reform-
ulation of the theory by taking a one-dimensional Fourier Transform along the
strike (y-direction), results in the reduction of the surface integrals
necessary to solve the integral equation for the free charge, and in those
used to compute the potential and subsequently the magnetic field, to line

integrals in wavenumber domain.

The numerical solution closely follows the work of Barnett (1972)
and is described fully in Gomez-Trevino (1977). The final integral for the
anomalous horizontal x-component of the magnetic field at the surface of the
earth Z= 0 looks like

N M
g, 0 . . a
B (x) = (=2 (Eally pon vmo - (B2 5oy g (o)
oq m i=1 i ki K=1 K
where
. ( ’2 42 '.]2—.
Hi(x) = J Kolr { (x-x7) + 2%} %) de” ;
element i
oy is the conductivity of the host medium;
Iy is the conductivity of a cylindrical inhomogensity;
Ng4 is the direction cosine to the vertical of the local
normal to the cylinder;
Vi = clei/I H
V? = oanz/I , Where U; is the difference between the true

potential U and the potential due to the source in a medium of constant

conductivity 9y 3

and I 1s the current from the electrode located at the origin of coordinates.
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The summations i and K are respectively over the contour of the cylinder,
divided into N straight line segments, and the contour of the surface of

the earth, divided into M straight line segments.

There are corresponding expressions for the y and 2z components
of the field. '

About ten wavenumbers, strategically chosen, are sufficient to define
B(A) for most models. The final step in the numerical procedure is to inter-
polate B(XA) in the form 2n (B(A)/A) and then take the numerical inverse

Fourier transform to obtain B(y).

Gomez-Trevino and Edwards compute type curves and characteristic
curves for the model of a circular cylinder buried beneath a thin conductive
overburden. They show that in the presence of overburden, the form of the
MMR anomaly may be predicted in a simple manner from the corresponding anomaly

in the absence of overburden.
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A PIATE CONDUCTOR IN A STRATIFIED SPACE

G.F. West

Department of Physics
University of Toronto
Toronto, Ontario M55127,Canada

J. J. Lajoie and G. F. West have published numerical
model results for the Turam EM method for the case of a vertical,
rectangular, thin plate conductor in a half space of different conduct-
ivities and in a half space under a conductive overburdenlayer (1).
The computation was done by the integral equation method and the scattering
current in the plate was represented by separate scalar potentials for its
solenoidal and irrotational parts. The Green's functions were computed by
the FFT method (2). The model results were well tested and are thought to
be very reliable in form and dependence on induction numbers  although

not necessarily very accurate as to anomaly amplitude.

The work was the Ph.D. thesis of J. Lajoie (3) and the
programs were never developed into general purpose forg so they are not
available for distribution. Considerable hand tuning was required for some

of the electric modes as the edge representation was critical.

Since Lajoie's work, we have been using a numerical method
‘developed by P. Annan (4) for routine caleulation of plate models in free
space. This uses the Galerkin method with continuous basis functions for
solving the integral equation. As an intermediate step, a set of eigencurrents
(non-interacting induced current systems i.e. normal modes) is computed, each
of which has a simple, single pole, frequency response. Thus it has some

important advantages in transforming easily between frequency and time.
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We expect to reconstruct the full plate model this year using

ideas from both these methods. The separation of irrotational and solenoidal

components will be retained, but the choice of potentials may be altered.

The Galerkin method with continuous basis functions will be employed, but the

full orthogonalization procedure used by Annan will not likely be used as it

would have to be redone for each change in host medium.

Lajoie, J.J. and G.F. West, 1976. Electromagnetic response of a conductive
inhomogeneity in a layered earth, Geophysics, vol. 41, no.6A, pp.1133-1156.
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THREE-DIMENSIONAL INTEGRAL EQUATION MODELING

Gerald W. Hohmann

Department of Geology and Geophysics
University of Utah
Salt Lake City, Utah 84112

Introduction

I have been using a three-dimensional (3D) integral equation solution
(Hohmann, 1975) for several years to simulate the response of the earth for
various electrical prospecting methods. The computer program provides good
results for DC applications, and for EM problems at low frequencies and low
conductivity contrasts. However, its application to electromagnetic (EM)
exploration for massive sulfides is limited due to the large amount of
computer storage required for large conductivity contrasts.

Recently we have incorporated the integro-difference method (Harrington,
1968) in the solution for greater accuracy, and have applied it to magneto-
telluric (MT) modeling. Convergence checks and comparisons with 2D models
indicate that the results are valid. Initial caiculations show that 3D models
are required for MT interpretation in complex environments.

In this summary paper I briefly discuss the integral equation formulation,

applications and limitations of the numerical solution, and initial MT results.

Integral Equation Formulation

The details of the integral equation formulation are given by Hohmann
(1975) and will not be repeated here. An inhomogeneity is replaced by a
volume of polarization currents, which are treated as the source of the

secondary field. The secondary electric field then is given by




118

ES =~iop A - V¢, (1)

where A and ¢ are vector and scalar potentials given in the earth by

A r)= [, 05 (r)6(r ') v, (2)
and o(r) = -1 o e us(rt) 6 () oy (3)

where G (r, r') is a scalar, half-space Green's function (different for [2]
and [3]), and where

JS=A0E (4)

is the polarization current, with Ao the difference in conductivity between
the inhomogeneity and the half space, and E the total electric field.

An integral equation for 35 is obtained by adding the incident (homo-
geneous-earth) and secondary electric fields and applying (4). I solve the
integral equation via the method of moments, with pulse basis functions and
delta weight functions (Harrington, 1968). The secondary electric field
outside the body is given by (1), and the secondary magnetic field is given
by
He =7 X A (5)

To achieve greater accuracy it would be desirable, but very difficult,
to use higher-order basis functions. Instead, I have incorporated the integro-
difference technique (Harrington, 1968), wherein both current and charge are
expanded in pulse functions, and the derivatives in (]) are approximated by
differences. This gives an effect similar to that of higher-order basis
functions (Miller and Deadrick, 1975), but is much easier to implement. The

details of the formulation are given by Hohmann and Ting (1978).
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IP - Resistivity Modeling

Resistivity and IP responses can be modeled by setting the frequency to
zero. The DC solution is easier, because the vector potential term drops out,
and Green's functions are simpler. Presumably a surface, scalar integral
equation formulation would be more efficient, but my solution is more general
in that it can account for EM coupling.

Good self-checks and comparisons with other solutions (Hohmann, 1975)
show that the results are valid. For example, Figure 1 illustrates two self-
checks -- convergence and reciprocity -- which any numerical solution must
satisfy. The model is a conductive cube two units (dipole lengths) on a
side; its depth is one unit. IP response, as percent of intrinsic response,
is plotted in pseudosection form. Results are nearly identical when the
body is divided into 8 and 64 cubes, indicating convergence. The transmitter
was to the left and the receiver to the right for each calculation. Recip-
rocity is satisfied: vresults are the same when transmitter and receiver are

interchanged.

Some Useful Approximations

It is not really necessary to calculate apparent resistivity twice or
to double the matrix size by making it compiex in order to compute IP. Since
IP can be modeled by changing slightly (perturbing) the resistivity of a
polarizable body and recomputing apparent resistivity, we can use a pertur-
bation method to avoid the second matrix inversion, as suggested by Ted Madden

(p.c.).
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If we perturb the resistivity of a body, the matrix equation becomes

(R+6K) - (otda) = s, (6)

where AK and Aa are small changes in the matrix and solution, respectively.

Expanding, we obtain

K a+K-na+K=a+sKk- ada=s. (7)

Neglecting second order terms (AK - Aa) and noting that K » a = s
we obtain

TZ-AOL=—AT<-0¢, (8)

which is similar to the original matrix equation. Thus, the perturbation

in the solution is given by

Ax = =K1 (aK - @). (9)

But the time consuming part of a solution is in computing the inverse matrix,
KL, which we already have done to solve the unperturbed problem. Thus we
have obtained a first order solution to the perturbed problem by simple matrix
multiplications which take little computer time.

Two other approximations I shall discuss apply only to integral equations.
Differential equation solutions are "brute force" methods requiring little
mathematical theory, and as such they are easier to program on a computer.

One advantage of integral equation solutions is that the mathematics are
carried further, and there are many possibilities for approximations that
significantly reduce computer time but still yield results that are accurate

enough. If there are no resistivity contrasts in a model, the IP response
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can be calculated very simply even on a programmable calculator, because
only the diagonal elements of the matrix are needed. That is, there are no
significant interactions between cells. There.are no computer storage limi-
tations, and very large models can be handled easily.

Computer time for an integral equation solution involving two or more
bodies can be reduced dramatically if interactions among them are ignored.
Figure 2 shows the errors caused by ignoring interactions between two conduc-
tive 1 x 4 x 5 bodies two dipoles apart. The upper numbers account for the
interactions, while the lower numbers do not. The approximate values are close
enough for geophysical purposes, considering that the earth is more_comp]ex
than these simple models, and that data a1way5‘have some noise. However,
because the full solution réquires double the number of cells, and computer
time increases as the cube of the number of cells, the approximate solution

is much less expensive.

Applications

Interpretation: At Kennecott Exploration, Inc. we used the integral equation

solution for IP-resistivity survey design and routine interpretation for a
number of years. O0ften one needs to interpret a number of lines simultaneously
using an interactive computer terminal. Complex models can be designed by
specifying 1large cells at depth and away from the lines. The cost of such
an 1nterprétat10n js miniscule compared with the cost of co]]ectihg the data.

A systematic catalog of 3D models must be available both for initial field
interpretation and fof insight to apply in the interactive procedure. Some

useful illustrations from such a catalog are given by Hohmann (1977).
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Electric Field Patterns in the Earth: Looking at IP in terms of my mathema-

tical modeling technique provides a nice intuitive feeling for IP behavior.
The measured potential is the sum of two potentials: incident and secondary.
The incident potential is what would be measured over a homogeneous earth of
resistivity p;, while the secondary potential represents the contribution from
the inhomogeneity. The secén&ary potential consists of in-phase and quadra-
ture components; they originate at polarization dipoles distributed through-
out the body or, equivalenty, at surface chargeé on the body. The quadrature
dipoles, as well as the in-phase dipoles for a conductive body, are oriented
in roughly the same direction as the incident field. For a resistive body,
the in-phase dipoles are oriented in the opposite direction.

To illustrate, Figure 3 shows the quadrature electric field (current)
pattern fn a cross section of the earth through the center of a 1 x 1 x 5 body.
A corresponding pseudosection is shown; the bold numbers correspond to the
particular transmitter dipole to which the electric field pattern pertains.
The contoured numbers in the cross section are total electric field phase;
i.e., total quadrature field divided by total in-phase field. In this case
the in-phase field is the homogeneous earth field, because there is no resis-
tivity contrast. Because the intrinsic IP response of the body is 100 milli-
radians (mils), the numbers are B,(%). The solid arrows show the quadrature
field direction, while the broken arrows show the in-phase field direction.

The dipole-dipole array measures the component of electric field along
the 1ine. By convention, the IP response is positive when'the quadrature

(polarization) and in-phase fields are in opposite directions, and negative
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when they are in the same direction. For the transmitter dipole of Figure 3,
there is only one negative IP response: -1 mil when the receiver is at 2-3 to
the left. That is where the quadrature field changes direction. The quadra-
ture current is in the same direction everywhere to the right of the body, |
producing a re]ative]& uniform IP response of 20 mils. Note the positions

of positive and negative surface charges, from which the quadrature field

originates.

Bipole-dipole models: Apparent resistivity patterns resulting from bipole-

dipole electrical surveys are frequently complex and difficult to interpret
intuitively. To gain insight into the interpretation of bipole-dipole data
in geothermal prospecting we have computed a library of model results

for simple prisms.

In addition, we are using the program interactively to interpret field
data from geothermal areas. To illustrate the complexities that can be con-
sidered, Figure 4 shows theoretical results for a complicated hypothetical
geothermal model. The shaded blocks represent resistive portions of the
system, both internal and external to the conductive body. Geologically, the
resistive portions might be due to rock type changes, silicified zones, or
vapor-filled rock pores. A salient extending from the main mass might repre-
sent a fracture zone. Our computer cost for this model was $11.75, at night

rates on the University of Utah Univac 1108 computer.

Downhole-electrode models: As exp]orétion focuses on deeper targets, drill

hole geophysical techniques become more important. Surface IP surveys face
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fundamental Timitations in depth of exploration. These limitations can be
circumvented, however, by placing a transmitter electrode in a drill hole.
Numerical modeling results in Figure 5 illustrate the increase in IP response
as a transmitter electrode is Towered in a drill hole near a responsive,
conductive (pp/p; = 0.1) 1 x 3 x 3 body. These results pertain to total

field measurements with short, orthogonal dipoles at the surface of the earth,
and are shown in plan view. The arrows show the direction of the quadrature
(IP) field, which originates at charges on the surface of the body.

When the electrode is at the surface of the earth, the IP response is
negligible. However, the response is amplified considerably as the electrode
approaches the depth of the body. It is easy to miss a small body in a
drilling program; a drill hole IP survey could mean the difference between
success and failure. Measuraments also can be made in a drill hole with
the transmitter electrode on the surface or in another drill hole. If a drill
hole intersects a sulfide zone, measurements with an electrode in the zone
can determine the direction of increasing mineralization. A1l of these drill

hole methods can be evaluated via numerical modeling.

Magnetic IP: Evaluating new techniques such as magnetic IP is an important
use of numerical modeling. Figure 6, for example, compares electric (conven-
tional) IP and magnetic IP for a conductive prism in an otherwise homogeneous
earth. The prism dimensions are 100 m x 400 m x 500 m (W x DE x L), at 100
meters depth. The transmitter is a 100-meter grounded wire, oriented perpen-

dicular to the 1ine. The results are shown in pseudosection form, except that
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the transmitter and receiver (point measurements for E and H) are located
halfway between the station numbers shown. The transmitter is to the left
for each calculation; because reciprocity does not apply, the results are
not symmetric.

For this case, magnetic IP response is smaller than conventional IP
response. In fact, for all cases I have studied - resistive and conduc-
tive bodies at different depths in an otherwise homogeneous earth -- the
magnetic IP response always is smaller. I have not yet studied the effect of
conductive overburden on magnetic IP response, an obvious area for further
research. The possibilities for airborne IP also should be investigated via

numerical modeling.

CONTROLLED SOURCE EM

Controlled-source EM results have been generally disappointing. Be-
cause of computer storage limitations, not enough cells can be used to
simulate accurately the EM response of a massive sulfide body. Although
incorporating the integro-difference approach improves the accuracy some-
what, the solution still is not very useful for massive sulfide modeling.

Figure 7 illustrates the lack of convergence fér horizontal loop EM.
The in-phase and quadrature responses, in percent of primary free-space
response, are shown for a number of transmitter-receiver configurations,
in pseudosection format. Results are shown for two discretization levels:
I x4 x3-12cells, and 2 x 8 x 6 - 96 cells. The quadrature response

seems to be close to convergence, but the in-phase values are much different
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for the two cell sizes. This lack of convergence is not surprising, because
the Targer cells are two skin depths (in the body) across, while the smaller
cells are one skin depth across. We should not expect the electric field

to be well approximated by a constant over such distances. Results are
worse, of course, for higher frequencies and higher conductivities.

We have checked horizontal Toop calculations with the finite element
results of Pridmore (1978) and with Frishknecht's (p.c.) scale model results,
and obtain reasonable comparisons at low conductivity contrasts (<30). In
comparison with Frishknecht's results, we obtain a smooth peak over a
shallow body rather than his double peak, probably due to the cells being

too large for this shallow body.

EM Coupling: Electromagnetic (EM) coupling can be a serious problem in IP
surveying. Eddy currents are created in the ground to oppose changes in the
electric and magnetic fields generated by the IP transmitter. These eddy
currents vary with frequency, and their effects are similar to those of a
polarizable body. We have calculated EM coupling for a number of three-
dimensional models. Unfortunately, there are no other published cases to
provide a cross check, but our results appear to be reasonable. The program
predicts the negative coupling encountered in the field over very conductive
bodies.

Figure 8, for example, shows theoretica] EM coupling phase over a
2000' x 3000' x 6000" (W x DE x L) prism at a depth of 1000'. Its resistivity
is one ohm-meter, and the background resistivity is 100 ohm-meters; the prism
has no IP response. The dipole length is 1000 feet. Results are shown for

three frequencies: 1.0 Hz, 0.5 Hz, and 0.1 Hz. For comparison, EM coupling
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values for a homogeneous half-space of resistivity 100 ochm-meters are
shown at the side. EM coupling is greater than half-space coupling when
the transmitter and receiver straddle the body at large separations.
However, there are areas in the pseudosection where coupling due to the

prism is negative, i.e., less than half-space coupling.

MAGNETOTELLURIC MODELING

The MT source field is a vertically propagating plane wave impinging
on the surface of the earth. Hence for a simple prismatic model there are
two vertical symmetry planes passing through the center of the body, and it
is only necessary to solve for one-fourth of the total number of unknowns.

Unfortunately, the new matri# is not symmetric as in the general case
for equal-conductivity and equal-size cells. Even so, the computer storage
and computation time are reduced considerably for the MT problem. Without
symmetry planes, 3N(3N + 1)/2 =~ 9N2/2 storage locations are required, where

N is the number of cells. With two symmetry planes, the storage requirement
. 3N _ 3N _ 9NZ?
I I B T3

Figure 9 illustrates the reduction in computer time for a two-symmetry-

less by a factor of 8.

plane problem compared to one with no symmetry. In each case, forming and
factoring (LU decomposition) the matrix account for most of the computer

time. Matrix factorization time is Tess by a factor of about 35 when symmetry'
is invoked. Also, the time required to form the matrix is less for the
symmetric problem, because only one-fourth of the matrix elements need to

be computed.
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In the general case a maximum of 120 cells can be used on the University
of Utah Univac 1108 computer, but for the symmetric problem the limitation
is 340 cells. This increase in the number of cells permits the use of smaller

cells for more accuracy, or, alternatively, the modeling of larger bodies.

Solution Checks

Unfortunately, the only other published 3D MT results are those of Jones
(1974), Weidelt (1975), and Reddy, et al., (1977), all for outcropping bodies
which we cannot model accurately. However, comparisons with Meyer (1976)
and Pridmore (1978) for controlled-source EM, comparisons with other solutions
for zero frequency (Hohmann, 1975), and comparisons with 2D models discussed
later in this paper lend credence to our results. Also, the general behavior
of the 3D MT results is as expected.

The body that we have used to check convergence is shown in Figure 10.

It is a 1 km x 2 km x 2 km conductive prism at 1 km depth, and is elongated

in the y direction. We have checked convergence at points A, B, and C at

four fregquencies, and at three different discretizations: 1x2x2 = 4 cells,
2x4x4 = 32 cells, and 4x8x8 =256 cells. The cell sizes for these three

cases are 1 km, 0.5 km, and 0.25 km, respectively. The two excitation modes -
E11 and E, - are illustrated in Fig. 10a. For E11 excitation the incident
electric field is parallel to the 16ng axis of the body, while for E excita-
tion, the incident electric field is perpendicular to the long axis.

Figure 11 shows the convergence as a function of freqUency at point A

for the E;q mode. Results are given in terms of apparent resistivity (pyx)
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and phase (Ey phase - Hx phase). The solution is convergent, and, as expected,
smaller cells are required to represent the current at the higher frequencies.

At 10 Hz the cell sizesbrepresented in Figure 11 are 2.8, 1.4, and 0.7
skin depths in the body. At 1 Hz, where the solution has converged to the
final result by the middle cell size, the cell sizes are 0.89, 0.44, 0.22
skin depths in the body. Thus it appears that the minimum cell size for
accurate results in this case is about 0.5 skin depths. Of course, larger
cells may be adequate for particular interpretation problems, and computations
would be less expensive. Another cell-size criterion, which depends mainly
on conductivity contrast and depth, is that the cells must be small enough
to accurately represent the current even at very low frequencies, where the
skin depth is large. As a rule of thumb, we require the cells to be no
larger than the depth. As a result, computations for shallow bodies are
expensive.

Convergence for E; excitation is a little faster, as illustrated in
Figure 12.

The significance of these results is that we have been able to halve
the cell size two times and demonstrate convergence for this particular inte-
gral equation solution. In our previous controlled-source modeling there
were no symmetry planes, so that only two discretization levels were possible,
and it was impossible to determine whether the solution is convergent, except
in the simple zero-frequency case. Higher-order basis functions would yield

the same accuracy with fewer unknowns, but they would be difficult to implement.
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COMPARISON WITH 2D MODELS

Another useful check, and one which is enlightening for MT interpre-
tation, is comparison with 2D models. As the Tength of the 3D body increases,
the fields should approach those of a 2D model. Figures 13 and 14 show
comparisons between our 3D results and 2D results computed with Rijo's (1977)
finite element algorithm,  The model is that of Figure 10, with variable
strike Tength (2, 4, 8, « km).

Figure 13 shows the comparison for E11 excitation, which corresponds to
the 2D TE mode. Only Ey, Hx’ and HZ components are present for the 2D model,
but all five components - Ex, Fy, Hx’ ﬁy’ HZ - are present in the 3D case.
Apparent resistivity(py*) and phase (Ey phase - Hy phase) are plotted against
distance from the ceater of the body for the three strike lengths and for
the 2D body.

Because there are no boundaries normal to current flow to generate space
charges in the 2D TE case, whereas there are in the 3D model, the results are
quite different. The difference is particularly great at 0.03 Hz. The
secondary electric field due to polarization charge at the ends of the body
is present even at zero frequency while that due to volume polarization -
current (the only source of secondary field in the 2D case) decreases with
decreasing frequency. The secondary magnetic field, which is due only to
volume polarization current, also has a frequency-independent component.

At 1 Hz and above, apparent resistivities for the 8 km-long 3D body are
very close to those of the 2D model. Phase seems to converge to 2D values
as the lenéth is increased, but a body longer than 8 km would be required

for good agreement.
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Comparisons between our 3D E, results and Rijo's 2D TM results are
shown in Figure 14. Space charges are included implicitly in the 2D TM
formulation, so that the two solutions do not diverge at low frequencies,
as they do for E11 excitation. However, except at the highest frequency,
the 3D solution seems to converge to values slightly different from those
of the 2D solution as the length of the body increases. For example, the
apparent resistivity amplitudes differ by as much as 15 percent at 1 Hz.

This discrepancy in the E, results could be due either to the 2D or 3D
solution. While the accuracy of the 2D finite element TE results has been
verified by cross checks with other numerical solutjons (Hohmann, 1971;
Swift, 1971), we noted some discrepancies in comparing the TM finite element
results with those of Swift. This discrepancy is being investigated, but
the comparison in Figure 14 is adequate to give us confidence in our 3D

results.
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ACCURACY OF METHODS IN GEOPHYSICS MODELLING

- Frank Stenger
Department of Mathematics
University of Utah

1. INTRODUCTION

In this paper we discuss the methods of approximation that have been used
in this conference for the approximate solution of modelling problems, with
emphasis on the order of the methods, especially in the presence of singularities.
While all rates of convergence are given in terms of the order of the number of
points, these rates are nevertheless best possible with regards to order. Some
of the classical methods of approximation are found in Davis [2], the method
based on splines in Ahlberg, Nielson and Walsh [1]. The rate of convergence
of some of these methods are found in Timan [7]. The methods based on sinc
functions and their rates of convergence are found in Stenger [4,5,6], Lundin
and Stenger [3].

Let us briefly summarize the various results. Throughout, we assume that

we are approximating a quantity such as the electric field, by
(1.1) E = -Z E.¢:

where the Ei are constants and the ¢i are functions, depending on the partic-
ular method of approximation that is being used. ‘More specifically, the ¢i
take on one or products of the following forms:
1. Polynomials
2. Splines:
(a) Piecewise constant
(b) Chapeau

(c) Cubic
(d) Triangular or tetrahedronal, linear, or quadratic or cubic
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3.  Trigonometric functions

4. Sinc functions

These functions form the basis for the approximate methods used in modelling.
All of these may be used for purposes of interpolating or approximating alfunction,
or for numerical integration (we simply integrate exactly the-inferpolation or
approximation rule). Finite difference methods are usually obtaihed by means of
local approximation via Taylor's formula. The transmission line model is obtained
if we make piecewise constant approximations in Maxwell's equation. All of the
above functions may be used in éalerkin or moment methods.

Several of the above approximations are used for the approximate evaluation
of transforms. The Fourier transforms is usually evaluated via the FFT method,
which is obtained by termwise integration of the sinc approximation of £ over

(~»,0) , i.e.

. T .
(1.2 f(x) = f(khy ST [ 5 (xkn)]
- %-(x—kh)
N =
h z elkhx x| < %
«© . k= -

(1.3) j Xte ) dt =

0 ’ IXI > -}—7;-

The Hankel transform is usually evaluated by means of the FFT method. To
evaluate the Hilbert transform we may approximate f on (-~,«) by splines
and then take the Hilbert transforms of the approximation, or else, we can

take the exact Hilbert transform of the approximation (1.2), to get
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sin -2% (x-Xh)

. N
ay 2V r SR {COR S
- . k= -N .7:% {(x~kh)

The Laplace transform may be accurately evaluated by means of the formula (based

on sinc approximations)

e N
(1.5) | e Sfac=h ] £ (e exp [Kh-sei
. =" N

2.  ERRORS CF THE APPROXIMATIONS

The errors that one makes in using various approximation schemes can be
readily deduced by looking at the errors that one makes in (1) using any of the
one-dimensional bases listed in the previous section. We state these, as well
as the errors of simple 2 dimensional approximations. In the next section we

shall examine the errors of some 3 dimensional approximations.

2.1 Error in Polynomial Approximation

Let €_ denote the ellipse with foci at 1 and sum of semi-axes equal to

p . Let f be analytic in

e, and set M(p) = max_!f(x)[ .

P €
EZp ._)(c_
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Then

(2.1)  min max £ - p (]g G
' n = n+l
2 -1 <x<L1

Thus the error of approximation of an analytic function with no singularities

by a polynomial of degree n takes the form

(2.2) error = 0

2.2, Error of Approximation by Splines

(a) Piecewise Constant Approximation

n .
(2.3 (0 = ] (5 X
1=1

where

, . i-1 1

1 lf T—'<= x < h_
(2.4) X.(x) =
: 1 i-1 1
: 0 if x ¢[ T s "ﬁ- ]

The error of the approximation (2.3) is

(2.5) error = 0( =)

s

provided that f is differentiable on [0,1] .

(b)  "Chapeau' Spline

Let Si(x) be defined as in the figure, i.e.

(2.6) 8,00 = 1 | -
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n .
v @7 (= [ f(E)ysm
1=0

where X; = }11— . The error for two times differentiable functions on [0,1] 1is

(2.8) error = 0(-—-5)

(c) Cubic Spline

These approximations take the form

n *
1 s 00 ¢ e e

1

(2.9 £

=
where x; = i/n , and where Si and Ti are cubic polynomials. The error
is

(2.10) error = 0(-—)

|

for functions which are 4 times differentiable on [0,1] .

(d) 'Piecewise Linear Triangular Element

Assume that we approximate a function over a finite region in the plane,
with n triangular patches, over each of which the approximation is linear.

The length of an edge of the largest triangle is at least Of —1-1 /2 ) , and the
n

error, by (2.5) is at least O((ll/zjz) , 1.e.
_ n
. e .
(2.1 . error = O(—ﬂ) .

Similarly, using n tetrahedra in 3 dimensional approximations, we get

1
(2.12) erfor = 0(52/3)
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2.3 Approximation by Trigonometric Functions

Let R>1, andlet Ap denote the annulus in the complex plane, located

between the circles of radii 1/R and R .

Let f be analytic in Ap > and let

(2.13) max |£(z)] = MQ) .
ZEAR :
Set
2m 3 .
(2.14) a = %? f £t e MOgg | p =
0
Then
k=-N K = &

That is, the error of n = ZN+1 - term Fourier approximation satisfies
(2.16) error = 0(e ™

2.4 Sinc Functions

Ex. Let D be the region in the figure whose boundary consists of
)
".1 1\ c/);
AY,
W

portions of circles, let f be analytic in Dd , and on (-1,1), let

£ <Ca-x% , o>0 , C>0. Then take ¢(x) = log (%:“__;%) , o

x, = tanh(kh/2) , h = 0a/NY%) , n= 21 . This yields
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| N mn%wuymu 1/2
(2.17) f(x) - ) £(x,) - = 0(e ), -1 <x<1.
= =N glo (x)-Kn]

Next, let us briefly discuss what happens to the above rates of convergence
if singularities are present. Through this section, let o be a positive
constant, such that 0 <a <1 . At the outset, we consider singularities

at an endpoint of an interval.

Ex. 2.1. Polynomials. Let p, be a polynomial of degree < n . Then

(2.18) min max [(1-x)%A+x) - pn(X)l = 0(?%?
<1 n

BEx. 2.2. Splines. All n-point approximations of (l—x)a(1+x) by splines

on [-1,1] have errors Of%b
n

.

Ex. 2.3. Trigonometric Functions. The Fourier polynomial approximation of

(l—x)a(1+x) on [-1,1] satisfies

@-x0%a+ - k_z . 2y e , n = 2N+l

Ex. 2.4. Sinc Functions. The order of convergence of approximation of

fx) = (@-0%@+x) on [-1,1] is given by (2.17).

Notice that sinc functions are the only ones not affected by the occurence
of singularities at endpoints of an interval, and that there is a drastic
change of order for the case of polynomials and trigonometric functions, depending

on whether or not singularities are present.
If singularities occur in the interior of an interval, such as, for the
case of the approximation of |x|a(1-x2) on [-1,11 , then the order of con-

vergence for the various cases of approximation are respectively the same as
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those given in Ex. 2.1, Ex. 2.2 and Ex. 2.3. However, the order of convergence
for the case of approximation of this function by sinc functions is then reduced

also to O(n—a) , n=2N8+1 ., It is thus important to know where singularities -

occur. More will be said about this later.

3. ORDERS OF CONVERGENCE OF METHODS

The rate of convergence of methods is generally the same as the order to
which we can approximate a function. A slight difference occurs for the case
of quadratures, where, in e.g. one dimension the error is smaller by a factor
of 1/n . Whereas the order of convergence of n-point one-dimensional methods
is 0(¢(n)) , the order of convergence of the corresponding n-point three
dimensional methods is O(¢(nl/3]) . The orders of convergence for the various
methods of approximation are summarized in the tables which follow.

The tables show that there may be drastic changes in the orders of convergence,
depending on the methods of approximation that are being used, so that it can
be valuable to know when singularities occur. For the case of linear problems
singularities occur wherever the coefficients of the equation cease to be
analytic. For example, for the case of Maxwell's equations; the solutions are
analytic in each variablé, wherever the coefficients are analytic iﬁ that variable.
Thus singularities occur wherever the conductivity changes abruptly, and wherever
the boundary of the region has corners anduwhereﬁer the data of the problem has
singularities. Although we can determine where the singularities occur, it is
usually not possible to determine the explicit nature of the singularities. In

this latter case no method can converge faster than the sinc methods [6].
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ORDER OF CONVERGENCE IN THE PRESENCE OF

METHODS TOOLS | NO SINGJLARITIES SINGULARITIES
}
, -cnl/ 3 -a
Interpolation Quadrature Polynomials ! O(e )] O(n ™)
T e
Splincs om™® on™)
-;ni7 3, a
Galerkin or Moment Methods B Eiggﬁ_o_rp_e};ic fl_mctions Ofe ) 0(n-")
—enl/6 _I/%
Sinc functions O(e a ) O(e cn ) (sing. at end

points)

3.2

SOLUTION OF DIFFERENTIAL OR INTEGRAL EQUATIONS

ORDER OF CONVERGENCE

METHOD NO SINGULARITIES PRESENT SINGULARITIES PRESENT
F;‘glitg difference om™ o(n™® (@ £ a)
Finite element 0(11'3) O(n“a) (o <)
Transmission line om™® 0(n_-a) (@ < a)
1/3
Trig. functions, 0™ ) 0o(n"™®
Polynomials
. -cnl/ 6 -cnl/ 6
Sinc methods O(e ) O(e ) (sing. at end-points
only)
e l/0
FFT 0™ ) om™)




156

We do not wish to discoufage the use of other methods, at this point. Finite
difference and finite element methods have the tremendous advantage that they

lead to sparse matrix problems, whereas sinc methods lead to fuller matrix problems.
The use of sinc methods in the approximate solution of 3 dimensional PDE problems

is still in the experimental stage, and while some breakthroughs have already been
made, indicating it may be possible to solve such problems with 1/100 of the

effort required by use of other methods, an efficient method is yet to be found

for solving the resulting system of linear algebraic equations. Theoretical
anaiysis of the error indicates that the use of sinc methods should reduce the

amount of effort in solving a problem by two orders of magnitude.



[1]

[3]

[4]

(5]

(6]

[7]
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SOLUTION OF THE 3D SOURCE - 3D BODY ELECTROMAGNETIC
SCATTERING PROBLEM

Bill Petrick
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I. Mathematical Formulation

The most general representation of an electromagnetic field is via

Maxwell's equations.

1. - UXE = 2 Il + ;Rs
2. AV 3 a = 9 Eé + f‘
Where: E = total electric field

H - total magnetic field
iﬁs = magnetic source
j; = electric current source
Z - impedivity (e«
9 = admittivity (€ +awe)

We will consider only spacial changes in conductivity and assign free
space values toy (4,) and € (&) everywhere. With this assumption we can
write 9 for a 3D inhomogeneity in the earth as:

3.0 Y= (Su+nr viwe) = G, +ac

Where ga refers to the material properties associated with a half space
problem.

Substituting 3. into 2. we have:

4. VrH = (§y+a0)E + Js

If we now define E and H as being made up of two components, the first
being E, and H (fields in the vicinity of a conductive half-space of con-
ductivity ¢,), the second being AE and AH due to perturbations of &
accounting for the 3D subsurface structure.

5. E=E,*AE

6. H = ;IH + AW




160

Substituting 5. and 6. into 1. and 4. we have:

7. ~Tx (Ey +AE) = & (Au*tOH) + M
g. I (Wa+aii) = (Se+ aa)(Ey+nE) + Ts
The half-s;ace fields may be solved for analytically via
9. —V%EM: %ﬁ“+-ﬂ‘
10. Tx Wy = ok, + T
The secondary fields then must satisfy
11. - xAE = 20K
12. IxAH = (§u +06)AE * BYE,
By substituting 12. into the curl of 11. we have
13. VU xUx AE -KYAE = - 2AC E
Where: ' = _29 - -3 (3“ v ac)

The inhomogeneous term in 13. (-zcgfgg)may be interpreted as a source
in existence only where A6 is non-zero.

Equation 13. may be solved over any region for which we can obtainv
boundary conditions on AE.

I have chosen to solve equation 13. in the earth only. The values of

at the air-earth interface may than be obtained from

BoUNDAR = 37 - - ToTAL
14. AEO \=S[‘JS<N J.= a0 E
= Vol
Where: Js = the volume scat%ering current density.
f: = half space dyadic Greens function.

Note that 14. need only be evaluated where A€is non-zero. If we
further assume that &8 = 0 at the surface of the earth then 14. is never a

singular integral.

SO UG
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1I. Method of solution of equation 13.

a) Galerkins Method

Consider the equation

15. Lu =g

where L is some integral or differential operator {linear in our case)
u are a set of unknowns and g is a known forcing function attributable to
applied sources or boundary conditions.

We approximate u by some basis function presumably capable of tracking

the unknown throughout the region of interest. Let:
16. U= € le\¥
n

where f is the chosen basis function. Substitute 16. into 15. and use

linearity to obtain
S UnLE =
2 J
Subtracting g from both sides we find the error ol

17. iunLF‘j:OL
[2Y
Take the inner product of A with a set of weights and set this projection
to zero to obtain

18. iu,\SL;wa\/: fqudv

[y r
This equation results in a set of equations for U,. Once obtaining the Un's

-we may calculate u from 16.
b) Choice of Basis Functions

In addition to being capable of adequately describing the behavior
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of the unknown function the choice of basis functions (and weights) is, from
a practical point of view, dependent upon the ease with which the inner
product can be calculated.

For our basis functions and weights we choose sinc functions

s [T (e -kl
S (K. h)e =
(K, h)e €W TN

Where ¥(x) is some map from the particular interval over which a solution

is sought to the interval (-=5 «). For the solution in the earth we have:

=%, e(W=zy , €@ =ln (smh )
Another € (&) map which could be used is

f(%)-—-\nz .
Both the Inz and In (sinh;z) transofrmations specify a higher point

density near z = o but the sinh map has an apparent advantage of becoming
equispaced for large Z. The constant c determines this spacing.
The specific form for the associated inner products have been worked

out by Stenger (1979)*. They are:

u
19. Srtw\ucw)[S(k.M-mw\]Jw = h "f.:‘ti‘.
% Y,K

H ’
, ~ . s :
s"‘“’)U (w) [S(k,k)"‘e(“’)]‘l‘“ = - \‘\g SJ { RELE ,S:. + (r)j Skj}

C y=- ) ’ h

K) +
J:-—“ J - \el

N Y i
Sr(uf) U"(UJ) [S(K,L)of(wﬁéw = &\QQUJ {(_r_ﬂ_)‘.l §°- [Z(f3) e (ra)j 1 }S‘j
C

+ (rg)s ! S“j

) -

(e

*Stenger, F. S. (1979) A "Sinc-Galerkin" Method of Solution of Boundary
Value Problems: to appear in Mathematics of Computation, January 1979.

Y
}

«
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where: r is the coefficient in the differential equation

Cw) map taking £ to -«

3¢ =/ el

5T { 1, © K2 o [Tk
o kyzj Ska= ) Lt Sg =4 c2eni

k.3 »
. klfj J
J-k G-e)t

K#)

The solution to 13. will be analytic over a region if K2 is analytic
over the region. The sinc interpolants are analytic and we consider point
evaluations of &6 (also sinc expanded) so that we are considering conduc-
tivity as being an analytic function in the earth.

II. Numerical formulation and assumptions

Expanding 13. into its vector components we have:

1 ~ !

Zo. AE‘“_ + A53'3 - AE-;_ - AE?; + kK AE = 2 OF E X component
2z ¥d 3 \ Y T ~ 2

AEL, + DE, - OE 4y ~-bE,;, +K At = Z2b0 Ey y component
3 3 ' 2 o3 - 3

AE,, + DE,, - OBy - OB+ K At = 2nf By z component

where - AE;Z = DAE‘/Qjal ete.

We solve this set of equations using Galerkins method with the sinc
basis functions. Implicit in the use of these basis functions are zero
boundary conditions. Since, at z = 0, we have a non-zero boundary condition

C and add to it a boundary

we will solve for a function that is zero at z

term obtained via 14. Define the following

18 -B%
21. AEI=£I+AE e , 1=12,3% 23 0
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Where € is to be solved for and is zero on all boundaries and B8 is a

constant to be chosen.

Continuity of normal J at z = 0 is.

J;\r = JLQ"“"

3
Go E—Zn’ = (N 3 eqr‘HA
3 3 3 E-s )
G‘o(E-iG\r"AEGW) = Oy (E‘ueqr“‘s A €‘4"“’~
Since the secondary fields must satisfy the same boundary conditions

as the primary fields we have

3 . _ 6 3
Ay cart = /o‘“ AE“"’
So we may set AE*%in 21 to zero.

3
o DEL A 7O ot 220

Substitute 21 into 20 and expand

Vo \ T 3 v —-32
221—~E’53+El1 +El3 “K £ - @ [AE

(13
(A

- DY+ (g 0E" |

rEac E:,
22. 2 2 3 ! - ~pZ 19 e L [4:)
En =" Ex3 Y&y +E&y -K€ - ¢ [AEu“AEn*‘(“*Kl)L\E ]

~ 2
+1Q€E“

32 BN ' T T _3 ~ 3
Ew *87_1:'2‘3’5"3—\(5 +z2Aa0 By
If we choose @' = -\(t (this corresponds physically to subtracting out

the planewave solution) then (Qytkr)=“'iﬁf: The equations to which we seek

a Galerkin solution are then:

\ - \ Y 3 1 -pt z ~ \

€0 TTE; +ELvEG K E -0 ib5)+2A(E“

L 2 3 ) R -pe 5 7

i Ew T-Eh tEneg) -Ke - (a5 rzacE]

3 3

] 2 -~
3 *Eqs - K'EY 4 ZOCE,
The 8Sterms are evaluated via the half space Greens dyadic.

4 . v 113 06 ~ \
where 1 AS = AR, - AR - 2A6E, o

=Y P4 B ~ k3
NS = AE“ —-AE:L _ zAfE“
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We define

24. E.ILX.Lj.%) = 2 i g&zk S (%, 4) S(y,3) SR, k)
4

A

Where 5({(«),1) = QmX/ (f("*)-\«ﬂ)]/

€)= A \—_snm\'»i—c ]

() - b))

Substituting 24 into 23 and taking the inner product with similar weight

functions we obtain for typical terms.
N
25, StZZS(X,I)S(g,-J)Zc"an\«:Z' ‘3('(’(2 \() Axc.lﬁ A%

r 53,
“\‘\\’\\r\ltzc‘“\\"‘]g IJ,K[ '}

which can be written as the matrix mu1t1p11cat1on 3
e by g
= '-—El ['2@'"&»\\'\ -Z:-C [E k] [Ij ]

Similarly 3

Jeh swI) S(y7) 2etank 2 SCecal, k) dedyd e
"

VEh St Sya) 2ectanl £ S (€, L)dxdy da

“ RARACIRENY

- _L\\\\«
Where [I‘ l:[Ijl,[I*] Ij] ; and 652'; j are composed of the

previously defined
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"t‘~ . . .
and where the matrices \?,_l I<)\.1,3 contain the unknown coefficients at each

level corresponding to £, in the earth.

We now have the following simultaneous set of matrix equations to solve

o+ v

le\ ] {[1‘;] "y S .L*h;u:l N X R IR

- 9
%, LZJM\«;&&
__ \V\"‘ i ‘-E ) oun. “—)— {I 1\—2 \‘1"_&
chm\n 1 N hy )
LEK
\\; O +\ + \»\‘L e—Pig [AS‘]
— L lEkIsey 5 .
{_zr. aw —_—L—;l\q w
1504-\&—1
) ks tlEv] = W ioa {lel]rE]
) iy - oy Sjlet] = wian el el]
ey ‘ \ \
Cap £ LlEQIS (el
LZC'\’QN e S ‘(K \*\)
K

ot l —glt T
+[z% \.}zk {\g RSP e Las?]

L
28. N .. ] _
[Iﬂ\&i] e led) {KI,‘] % « b KJ‘S = 2 MK{[Ek 1+ Ej}
hx o+ k: ~ ? . o+
T g N
N ['Zc.*un\’: :i-:l [ ’32 Lgk] [?c+q“\;\l Ze ] % LE\;} LIJ] Sk,k

Equations 26, 27 and 28 are then solved iteratively for [E‘I(] L1 =1 2,3 G
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Note added 7/78

At the time of the conference I was unable to obtain, iteratively,
a solution of the system represented by equations 26 thru 28. Since that
time 1've determined the problem to be due to the underlined terms in
equations 26 and 27. These terms have the effect of generating large
off-diagonal elements in the system matrix.
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GENERALIZED THIN LAYER APPROXIMATION FOR MAGNETOTELLURICS
AND A MULTIPLE SCALE METHOD OF IMPLEMENTING
THE NUMERICAL CALCULATIONS

Theodore R. Madden and Rambabu Ranganayaki

Department of Earth and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

The thin sheet analysis introduced by Prof. Price can
be generalized by making the sheet anisotropic to model the
effect of layers within the sheet of different conductivity and
also by generalizing the boundary conditions. Calculations
and analytic solutions for such models show that the resistivity
thickness product of the sheet has a profound effect on the
magnetotelluric field and this effect influences the telluric
field over very large distances. To accurately model
magnetotelluric responses one must include regions many
hundreds of kilometers away. A multiple scale approach to
these calculations is very appropiate as only average
properties and fields are needed to describe the influence of

distant zones.
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AN APPLICATION OF THE MODE MATCH
METHOD TO BORE HOLE INDUCTION LOGGING

A. Q. Howard, Jr.
Department of Electrical Engineering
University of Arizona
Tucson, Arizona 85719
Abstract

The mode match method relies on local orthogonality of

modes. The approach is a specialized integral equation

method which results in a matrix form of an integral equation.

The expansion functions are total range and have exponential
convergence properties when n, the number of modes is larger

than lk4D, when k, is the complex awave number of the host

4
rock and D is the largest dimension of the anomaly that
requires the ussof integral equations. The application here
is to obtain the dipole fields of the bore hole environment.
The magnetic transmitter and receiver loops are in a vertical

plane to best excite eddy currents in cracks around the bore

hole which are also oriented vertically.

Introduction

For the purposes of this workshop, the emphasis of this
paper 1s placed on method rather than results. It is true
that the mode match formalism is not as general as direct
finite element methods or finite difference methods. However
when the modes can be introduced they result in an economy
in computer usage along with an improvement in accuracy. The
price that must be paid is an increased amount of matrix

element computation analysis and perhaps over simplified
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geometric models.

Thus direct application of these methods is limited to
highly specialized geometries and also as an analytic model
which more general methods could be compared.

However it is becoming apparent that direct computation
and modelling of geometries of practical interest are
straining our largest and fastest computers and that often
the desirable halving of patch sizes or node lengths when
we are approaching relative convergence on these machine
codes 1is impossible.

Hybrid methods which combine the best features of two
or more methods will play a role of increasing importance in
future electromagnetic modeling. An important example is
the unimoment method of Professor K.K. Mei.l His former
student S. Chang applied the method to the buried sphere at
this conference and discussed how it can be applied to more
general buried bodies by circumscribing the body with a
mathematical sphere. Qutside the sphere, known eigenfunction
expansions are used and inside finite element methods are
applied.

In this context mode matching takes on new relevance.
An example is that of the buried dyke. To surround this
structure by a sphere may be very inefficient compared to a
rectangular volume or truncated cylinder. If a mode match
solution could be obtained for such structures, the unimoment
method could be efficiently applied to the general dyke

problem. Some work [1,2] indicates that this may be possible.

.
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Theory
The bore hole problem has sufficient symmetry to render
the mode matching, at least formally, to be rather straight

forward. The purpose of the calculation is to correct mag-

netic loop measurements to account for the source cavity as shown

in Figure 1. The cavity is assumed to be filled with air. In
region 1, the magneto-static fields of the loop dominate the
primary fields. However, the bore hole is filled with a highly
conductive fluid so that there is a strong axial component
of the secondary electric field.

For a time dependence e—iwt, the primary magnetic field

is due to a loop as shown in the figure is computed as follows:

H = iwe, (T + V; ) « F
k)
(1)
F = —lmulmo lm g.

Here, in (2) and (3) e€;,u, and kl are the dielectric constant,
permeability, and wave number appropriate for the cavity or
gap region. The quantity my = 7 b2 IO is the magnetic dipole
moment of the loop and im is the orientation unit vector of
the loop as shown in Figure 1.

The function g satisfies the conditions.

2

(v + x5 g =-8(% - %)
(2)
_%9 _
892 =0
z =t 1/,

The appropriate solution to g when D/a is large is given

approximately by:
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: 1 1
g = - g (a, 2/2) 3, (a, & /2) £(z,2)

2ra o

f(z,z') - cos h{a(D/2-z >) cos h(aZ«<) o =a /a

sinh (aD/2)

and a = 2.4048 ... 1is the first zero of Jo'
1

The interior scattered fields are represented by a Fourier
series:

H® = 1/u, ¥ x A°, AS = i_ 3

(4)

s _ _
® —mgo bm cos (xmz) I, (st) cos ¢

where

_ 2 2
By = (Am - (kl )

5 27

m D

’ Re(sm) 2 0, A m. And,

Il is a modified Bessel function of the first kind of order 1.
The exterior fields (p =z a) are expressed as a Fourier trans-

form on 2z with -an unknown Fournier amplitude a(h).

=]

A

(x)= iz cos ¢ [_m a(h) kl(Bo) eihz

dh (5)
2 2
= - 3
B= (h" = ky )% pe(p) = 0.

The solution for the unknown mode amplitudes bm as defined in
(4) are obtained by matching H¢ and EZ on p = a. One obtains
the following matrix equation.

2 1L a =f¢ (6)

n=o M0 n m
where a_ = B 2 I, ( ) b

€% 1'fna’ Pn
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I.(8_a)
emBm l' m m cos(kméx) Jo(aoT) (7)
f = = — =Ty
m b2 I (B,a) o 1(mn;?+ y2 J,(ao )
n
. L . anDe4Bn Il(Bna) .
mn nm 2me ! nm
I, (Bna)
0 ' (8)
k
: - o Tn(x) T, (%) l(u) i
nm ukl(u)
o}
u = (x2A2— a2)%, A = 2a/D, o = k4a.
T (x) = (-l)mx sin x
m 2 2
x = (mm)

Details of the solution and numerical information will be

published elsewhere. (4)

N\
e
] I 4
:.4. lll‘
2a — , REGION3' -~
k3 L "

(L - =%

Z:ZT— .
~ of -
A ~ REGION 4
ky
kg REGION 1
- N q- 7=_0D
k_______/, Z=- /2
¢ 1 0 &
LI ’ -

A Y

Figure 1 Model Geometry d
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(2) Howard, A.

(3) Howard, A.

(4) Howard, A.
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Introduction

The calculation of magnetic fields produced by steady-state
current distributions has appiicationv in several geophysical
techniques. The usual method of éalculating the-magnetic field is
to use Ampere's law when the problem is sufficiently symmetric, or
the Biotésavart law for problems lacking the requisite symmetry.
The volume integration required by the Biot-Savart law can be
quite expensive when done numerically. 1In this paper, a technique
will be demonstrated which reduces. the calculation of the magnetic
field to the evaluation of surface integrals over all conductivity

boundaries, thereby reducing the computational effort. “An added

benefit of this formulation is that the components of the magnetic
field that will be produced can be determined simply by inspection

of the conductivity structure.

Theory
The magnetic field produced by a steady-state current system

is given by the Biot-Savart law
B = vx|{(d a3
B= ﬂVV " (1)
Using operator notation, (1) can be rewritten as
Té: Vx PO{-}JJ (2)

where the potential operator is defined by

pet )= ﬂgj" e (3)
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and T =%’ - X where X’ = (x’,y’,2’) is the magnetic field
observation point and ¥ = (x,y,2z) is the source 1location.
Numerical evaluation of the volume integration in (2) can be
expensive. We now follow an exercise first described by Heaviside
{1892}, which provides a means of simplifying the computation.
More importantly, the alternative formulation very clearly shows
what controls the magnetic field.

Consider a divergence~free vector ?, from which a chain of

vectors is constructed by taking the curl of the previous element

of the chain.

R = sz
o - - (4a)
B = VxA= VrVx2= -V'Z
. . (4b)
¢ = ViB = VxVxA = -V'A (4c)
= - ra - V_.':-Vlﬁ‘
D = VxC VxVxRB (44)

ol

A, B, anc are replaced by their curl representation

[ 3 . - —' -2
respectively, i.e., Vx 2, Vx A, and Vx B. The expression
2

VxVzx ( ) becomes -Vz( ) since Ve¢( ) = Recognizing that

(4b-d) are vector Poisson's equations, the solutions are given by

M

= pet B (5a)
B = Pc“‘ D (5¢)

Thus, we have established that the operator Vx Vx ( ) is the
inverse of pot ( ).

Substituting (48) into (5¢) and (5b) into (4b) gives,
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respectively,

pot B = pot VxT

= Vi

; (DL _
0

D=

N y 2 (6a)
=~ Vxpot C

A P (6b)

proving the commutativity of pot ( ) and Vx ( ). Note the only

assumption made is that the vectors involved are divergence - free.
For the case of the magnetic field we can write

§= V*po’\;(pj): ?O)f'Vx(}JJ) (M

For the non-operator-inclined

reader this

‘ result can
alternatively be proved by starting with (1).

Then,

; . p Jm = (230 Jm) |
B (%)= VxA(X)= v XJ.B’JV jﬁ‘;v Yre (8)
where V' denotes differentiation wlth respect to

"the observation
coordinate. Recognizing that

Vs = --V(llr ) gives

B(x') _UP »J(x) V() _ﬁjjvpl(i')xvu__) oy

V'x 3(x) = Q and

Yy

The integrand in (9) can be written as

S 1 - LI__(._:.) - 1z
P'_j(x) x V(%) = V"K == ) - VX(/“J(X)) (10)
thus we get

B00) - o TR - fffv v (55

Finally, using a generalized Gauss theorem [Nadeau,

(11)

p. 16, 1964] .
on the rightmost term gives



179

D. V. Fitterman

8= ma V x (w I (n J(3)) _ fggﬁx (#—8}) (12)

t}Trr

where S is a surface enclosing all current and f is the outward to
this surface. As the volume of integration becomes infinite, the
surface integral vanishes, since the current density approaches
zero at least as fast as 1/r, yielding the same result as in (7).
To demonstrate the advantage of this formulation, we write
the current density as
J=-cV$ (13)
Taking the curl of (13) gives
Vri= -VoxVé (14)
For Earth models constructed of homogeneous regions of differing
conductivity, Vx 3 will be zero except at conductivity,

boundaries. The magnetic field is then given by

ag; A AGT A j
‘é(a");jggow Bl - -2 fgs =i X6 . 2 flosms 0,
< S¢

where S; represents the conductivity boundaries, A%y is the

change in conductivity at the boundary, ¢ is the conductivity on
the side of the boundary where J is>specified, and N is the unit
normal to S;. Notice thét the computation has been reduced from a
volume 1integration to a sum - of éurfacé» integrations--a
considerable computational savings. From (14) we see that two
orthogonal components of B will be produced by a planar boundary.
The magnetic field will be increased by orienting the current

sources such that most of the current 1is flowing parallel the

conductivity boundary.
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An Example--Electrokinetic Currents

The flow of fluid through geologic matefials résults in a
charge separation because of the differential interaction of the
ionic species 1in solution with the.charged mineral grains. This
generation mechanism is called streaming potential. For geologic
materials, the pressure field is independent of eléctric'effects;
therefore, the electric field can be solved for from a known
pressure distribution. An anaiysis of the governing equations can
be found in Nourbehecht [1963] or Fittérman [1978a, 1978b}. We

will consider the case of two quarter-spaces in contact with each

other occupying the region z > #. (See Figure 1.) For a pressure

source of constant intensity within the region a { z < b and

-1/2 < x-< 1/2, the surface potential is given by

- Se
"i(x,xj,o\-m {1[(%,-5}:,9/2) - $lxyg, a0, 202)

(16)
_§txgd, ~Ha + Slrg,0,- 1))
where '
S(x‘ ' - _L ~! (X+°k)§ ‘
Y, P) on H[(%'P"JL*' 3‘L+?1] /2 (17)

S, is the source intensity, and the conductivity Jg takes the
J

value J; for y > 0 and G} for vy < 9.

On the surface of the half-space, V x 3 = —? Jj + ?'Jx and

the resulting magnetic fields are given by

(x,y',0) = ————Ja jd g
By. X,4',0) urn’-oo 7(-003 o} (18a) G
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and
By(¥y.0) = ZA ﬁlj:y Pt
9T ) R (18b)

where ﬁz = (x’ -x? + (y’ —y?’ and the subscript and comma denote
differentiation. Equation (18) is evaluated numerically using

adaptive Gaussian and Gauss-Laguerre quadratures. The singularity

at R =0 1is analytically integrated. At the contact between the

quarter-spaces the curl of .'f is ,1\ (Jﬁ - Jzz) -Jl\c (J” = Jax ) -

The contribution due to this sarface can be analytically

integrated to obtain
Soti 1 E{Q(-fQ/z).ﬂj OO + (x-&-.”zﬂ[ («'- 212)24-3 +\3 + ‘ﬂ ap/z)]

B"(’" 10) = T (S5 4T
T [‘1@ S eytre o0~ S el + (X )] (g0

and

B, g S a5+ vo ] Ui thfeg iz 0]
27 o +‘75.) [((x'q-ﬂ[z%'*_‘dm_r \;“‘ -+ \)]&\l (X'—QIL)‘L&S‘L-\,Z’: -\-c.:] (195

The self-potential and magnetic field component maps are shown in
Figures 2, 3, 4, and 5. In Fiqure 2 we see that’the largest
gradient of q: is in the y-directoon. From (14) we know this will
produce an x-component of magnetic field (Figﬁre 3). The
x-component of field produced by the vertical interface is small

compared to the contribution of the horizontal sur face.
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Extension To 2-dimensional MMR Anomalies

Magnetometric resistivity (MMR) anomalies have been
calculated for some rather simple geometries using symmetry
conditions [Stefanescu, 1958; Stefanescu and Nabighian, 1962;
Edwards, 1974; Edwards and Howell, 1976]. The téchnique
described above 1is well suited for the calculation of these
anomalies. Let us consider a 2-D conductivity structure (constant
along strike) that is represented by rectangular regions bounded
by vertical and horizontal surfaces. Following a1 technique
described by Madden [1971], the currents along the edges of the

rectangles can be determined. Then, from (15) it follows that the

magnetic field produced by a horizontal interface is

h o ac
B"::,-:,-TSA# gég o —5— (20a)
- o
o b . »
W_ M I (28b)
gh- A A,Xag AT Zx
3 V"}i o R
while a vertical interface produces the following components
4
Y — (-
By = ;(-’;-Sd* }'33 o Jy (28¢)
' -y ¢ o R
- d
gé: AB:" g‘*ﬁ [S RS (204)
PR J o R

where the vertical interface occupies ¢ < z < d and the horizontal
interface lies in the range a ¢ x < b.
Assuming the currents are constant in the x and z directions

along the edges of a cell, (28) can be integrated thus:
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> Vs '
8> - ”““‘Ja ANO) ﬁ«\(Q“"“‘\J-‘ﬂ*Cj (y'-%) (21a)
e {(K'~X)1+(\3'-C~)1+C’“ +(3'-o)
th {:1}' Sd Al (X)ﬂm‘l (x'- x)+(3-b)+cﬁ- (lj' L) (21b)
I ﬁ xJ +{y'- oyt - (\j -o)
B,L "ffwf:x.\ x) 2. VO (' bP L4t +d (21c)
-0 'Y 7‘)1-1'(‘5-\::) 1~ xC
N = %{& dx \\ (x) Lﬂ\’—*ﬂ +(y’- rdt +d (214)

4fx-i)+(3 RGPS
i1t should be kept in mind that the current densities are described

by inverse cosine transforms; therefore, (21) actually involves

double integration.

Conclusions

A new method of calculating the magnetic field has been
discussed which requires surface integration along conductivity
boundaries. This method has the advantage over the classic
Biot-Savart formulation in that the order of integration |is
reduced by one dimension. It 1is by no means a panacea for
calculation of magnetic field, as the resulting surface integrals
are usually done numerically with alliof the attendant problems.
There are situations, however, when one or more of the
integrations can be done analytically, thus reducing the computer
time required. The most important advantage of this approach to
the calculation of magnetic fieldsvis that by inspection one can
determine the components of the field that will be produced for a

given orientation of a conducting boundary.
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Figure 2

constant-source model. Depth extent is 1, length is 1,
and depth is 1. The conductivity is 1 S/m on both sides
of the contact. The source intensity is 1 V. The.
contour interval is 5 mV. Distances are dimensionless.
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By surface map. Parameters are the
Contour interval is 1 nT.

same
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‘Figure 2.
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Figure 5 Bz surface map. Parameters are the same as Figure 2.
Contour interval is 2.5 nT.
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SUMMARY

D.F. Pridmore
W.R. Sil11

The bulk of the presentations covered the application of the
classical numerical modeling techniques (i.e., finite element, finite
difference, integrél equation, and mode matching) to the problems
addressed at the workshop. Of the twenty-three presentations on
modeling, only one author discussed scale modeling; the other papers
dealt with some aspect of numerical modeling. We feel that this
ratio reflects the relative amount of research being carried out on the

two types of modeling.

Solutions to the three-dimensional electromagnetic scattering
problems were reported in all the sessions on the classical techniques.
Don Pridmore showed solutions obtained with the finite element method,
Walter Jones discussed solutions obtained with the finite difference
method, and Jerry Hohmann and Ed Mozley presented results from integral.
equation methods. All the authors reported computational difficulties
arising from the large matrices which need to bé assembled and inverted,
although the difficulties were not too severe in the integral equation

solution for models characterized by compact bodies with low conductivity
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contrasts. Most of the authors noted that higher-order basis functions
would be a useful extension of their work, although none were optimistic
that such functions would remove the computational difficulties asso-
ciated with the three-dimensional problem.

Solutions using the differential equation techniques were reported
for the three-dimensional-source, two-dimensional-earth problem. John
Stodt and Ki Ha Lee discussed their work with the finite element method,
and Charles Stoyer reported on his earlier work with the finite differ-
ence method. It was clear that the essential difficulty in this
problem is making an effective choice for the values of the Fourier
transform variable.

Gordon West presented results, obtained with an integral equation
method, for a thin plate of finite length-extent, excited by a three-
dimensional source.

Alan Howard showed a solution to a rotationally symmetric electro-
magnetic problem, a dipole in a borehole environment, using the mode
matching method.

John Kuo presented the formalism for the general three-dimensional
time-domain problem using finite element, and gave some results for the
scaler problem of an infinite dyke excited by a line source.

Several solutioﬁs to the D.C. electrical problem, using the classi-
cal techniques, were discussed. Louis Bartel reported on a three-
dimensional solution using an integral equation method, and Roy
Greenfield presented a finite difference solution tolthe axisymmetric
problem. Dave Fittermaﬁ and Nigel Edwards showed how magnetic fields

could be calculated from the scalar electric potential. The authors
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vpointed out that the integ;ationé required to evaluate the magnetic
fields need only be carried out where the gradient of the conductivity
is non~-zero.

Several presentations were made on what might be called non-~
classical techniques. Will Sheen and Steve éhang presented hybrid
soiutions to the electromagnetic scattering problem. "The use of finite
eleéments in a cent;al core, and termination of the finite element mesh
before the behavior of the field variables is known, were the common
features of the two papers. Scheen solved tﬁe three-dimensional problem
using the appropriate Green's function to evaluate the boundary fields,
while Chang used an eigen-function expansion in the exterior region tb
obtain a solution to the rotationally symmetric problem.

Frank Stenger summarized the different species of basis functions

“which may be used in numerical methods, concluding that the relatively

obscure sinc functions offer the best order of approximation. Bill
Petrick reported on how these sinc functions may be applied to the
three-dimensional electromagnetic scattering problem. The sinc function
approach is fundamentally different from most of the other numerical
techniques described at the workshop in that the basis functions are
non-zero over the whole domain, instead of being non-zero over just a
small section of the domain.

Gordon West briefly described an image technique which might be
useful for calculating the electromaghetic response of a layered earth
in which one or more of the layers have a somewhat irregular shape.
West expected this approach to be significantly cheaper than the

analysis carried out by a full finite-element or finite-difference
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solution. Ted Madden illustrated the profound effect of a resistive
lower crust on magnetotelluric measurements, and pointed out that a
"multiple scale" approach is an important aid for calculation of such
effects,

Phil Wannamaker*illustrated the inadequacy of one~ and two-
dimensional solutions in the interpretation of a detailed set of magneto-
telluric observations made in a geothermal area in southern Utah.

Al Tripp showed how Cohn's sensitivity theorem may be used to
calculate, trivially, the perturbation in D.C. potential due to a
perturbation in the conductivity structure, once the solution for the
unperturbed model is known. The important application of this result
is in the inverse problem, where such derivatives are required.

Terry Killpack presented the results of an investigation into the
sultability of mini-computers for multi-dimensional modeling algorithms.
The author pointed out that the limited addressing capabilities of most
mini-computers would make it impossible to simply transfer a working
program from a large main-frame computer to most miniwcomputers. How-~
ever, the recent development of mini-computers with virtual memory
removed this restriction. Killpack noted that it was difficult to
determine, élgriori, the cost effectiveness of a mini-system, but a
crude analysis indicated that a large minifcomputér, such as the
VAX 11/780, may be the most cost-effective approach,

Brian Spies reported on a novel approach to scale modeling of
transient electromagnetic data. By using materials with a relatively
high conductivity, Spies noted that it was possible to simulate earth

conditions in a relatively small laboratory facility.
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Our conclusions on the state-of-modeling of electrical and electro-
magnetic -modeling are as follows:

(i) The cléssical techniques give satisfactory solutions to the
scalar electromagnetic problems, and one-, two~, and possibly three-
dimensional resistivity problems. By satisfactory, we mean that the
solutions are relatively well documented in the literature, and that
they can be solved on available computers, without excessive effort.
Solutions to the vector electromagnetic problems, such as the three-
dimensional-source, two-dimensional-earth, and the full three-dimensional
problem, can require significant computational resources when approached
via the classical techniques. Research into hybrid techniques, the use
of different basis functions, and special methods for certain restricted
models, is urgentiy needed for this class of problem.

(ii) It is clear that, in the near term, accurate solutions to a
wide class of three-dimensional models will come only from either scale-
model studies or from numerical solutions generated by using unprece-:
dented aﬁounts of computer time.

The participants drew up a set of recommendations, which follows.
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RECOMMENDATIONS

The following recommendations and comments were made and approved

by participants at the workshop.

1.

Dedicated Mini-Computers for Modeling

Preliminary investigations indicate that 32-bit mini-computers
(such as the VAX 11/780 might offer a more cost-effective way to
conduct large modeling exercises than the fast main-frame computers
(such as the CDC 7600). It was agreed that a careful and complete
cost/benefit study and comparison is needed. It was also agreed
that a dedicated mini-computer had to be accessible via remote
terminals to many users, and that it be located at a facility where
continuity and support of operations is assured, e.g., a National
Laboratory.

Full Differential Equation Methods Should Be Pursued

Although differential equation methods (e.g., finite element,
finite difference, sinc-galerkin methods) usually reﬁuire greater
computational effort than integral equation, hybrid, and analytic
methods, it is this ciéss of solutioﬁs which is- amenable to the
complex geological conditionssmbét often found in nature.

Integral Eguatién, Hybriq;and Analytic Methods Should Be Pursued

These methods are preferred to the full differential equation
methods for relatively simplé geometries, since they are less
expensive, computationally, and are very useful for gaining an

understanding of the physics of the problem.




196

Encourage the Development of Innovative and Inexpensive Techniques
to Handle Special Problems

Increase Scale Modeling Efforts

Scale modeling efforts need to be increased to obtain an under-
standing of the physics in these problems and as a check on the
numerical modeling algorithms.

Standard Model Suite

A standard model suite was adopted for the purpose of comparing
calculated results from different programs. It included the same
three models suggested during the Workshop on "Electromagnetic
Exploration in Deeply Weathered Terrains" held in Sydney,
Australia in November 1977. 1In addition, a rotationally symmetric
model was added to this set. The models are shown in Figures 1,
2, and 3.

Technology Transfer Should Be Improved

A major effort is needed to refine, optimize, and document existing
programs, so that they are readily useable at centers other than
the development site. It was-agreéa that not enough is being done
to document programs at present. Programs are often lost or are’
unuseable when graduate students depart, and follow-on students
must either start all over or do a major program revision.

Explore Inverse Problems

Simple yet direct, low-cost inverse solutions should be sought

for the low-frequency electromagnetic problem,
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Crossed E dipoles

Figure 1: Standard models adopted by the workshop. The rectangular
geometry is easily approximated by the usual three-dimensional
modeling algorithms. These models are based on the work by

Hohmann.
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Body 4
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d = 30m, 60m
0y = 1 s/m
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Frequency = 30, 100, 300, 1000, 3000 Hz
Slingram spacing = 30, 60, 120 m

Gi; Figure 3: Standard models adopted by the workshop. Rotationally
symmetric model which can be easily approximated by the

usual two-dimensional modeling algorithms,
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