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Abstract 

This study helps understand how the anticipated emergence of autonomous vehicles will affect 
various aspects of society and transportation, including travel demand, vehicle miles traveled, 
energy consumption, and emissions of greenhouse gases and other pollutants. The study begins 
with a literature review on connected and automated vehicle (CAV) technology for light-duty 
vehicles, the factors likely to affect CAV adoption, expected impacts of CAVs, and approaches to 
modeling these impacts. The study then uses a set of modifications in the California Statewide 
Travel Demand Model (CSTDM) to simulate the following scenarios for the deployment of 
passenger light-duty CAVs in California by 2050: (0) Baseline (no automation); (1) Private CAV; 
(2) Private CAV + Pricing; (3) Private CAV + Zero emission vehicles (ZEV); (4) Shared CAV; (5) 
Shared CAV + Pricing; (6) Shared CAV + ZEV. The modified CSTDM is used to forecast travel 
demand and mode share for each scenario, and this output is used in combination with the 
emission factors from the EMission FACtor model (EMFAC) and Vision model to calculate 
energy consumption and criteria pollutant emissions. The modeling results indicate that the 
mode shares of public transit and in-state air travel will likely sharply decrease, while total 
vehicle miles traveled and emissions will likely increase, due to the relative convenience of 
CAVs. The study also reveals limitations in models like the CSTDM that primarily use 
sociodemographic factors and job/residence location as inputs for the simulation of activity 
participation and tour patterns, without accounting for some of the disruptive effects of CAVs. 
The study results also show that total vehicle miles traveled and vehicle hours traveled could be 
substantially impacted by a modification in future auto travel costs. This means that the 
eventual implementation of pricing strategies and congestion pricing policies, together with 
policies that support the deployment of shared and electric CAVs, could help curb tailpipe 
pollutant emissions in future scenarios, though they may not be able to completely offset the 
increases in travel demand and road congestion that might result from CAV deployment. Such 
policies should be considered to counteract and mitigate some of the undesirable impacts of 
CAVs on society and on the environment.  
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Executive Summary 

As the autonomous vehicle revolution is on the horizon, questions on the changes that this 
revolution will bring to transportation and society remain. Researchers and transportation 
stakeholders are beginning to consider the potential effects of self-driving technology on 
passenger travel demand, vehicle miles traveled (VMT), energy consumption, and emissions of 
greenhouse gases (GHGs) and other pollutants. This report aims to support the efforts of the 
California Air Resources Board (CARB) in this area and to improve the understanding of the 
potential impacts of connected and automated vehicles (CAVs) on travel demand and on GHG 
and pollutant emissions in the State of California.  

In this report, connected and automated vehicles refer to a combination of vehicle automation 
(i.e., vehicles can steer, accelerate, brake and navigate in traffic with little to no human 
intervention) and vehicle connectivity (i.e., vehicles can communicate with each other, connect 
with traffic signals, signs, and other road items, or obtain data from a cloud) technology, which 
will likely lead to large changes in the use of on-road vehicles and individuals’ relationship with 
privately-owned and/or shared-fleet passenger vehicles. The study uses a travel demand 
modeling framework in combination with emission factors to calculate ranges of impacts of 
CAV deployment on travel demand, energy consumption and criteria pollutant emissions in a 
set of scenarios for the deployment of passenger light-duty CAVs in California by 2050. The 
modeling results highlight how the relative convenience of CAVs could cause a sharp reduction 
in the mode shares of public transit and in-state air travel, while total vehicle miles traveled and 
emissions will likely increase. The study also shows the important role of policies that could be 
implemented to counteract and mitigate some of the undesirable impacts of CAVs on society 
and on the environment, including pricing strategies and policies that support the deployment 
of shared and electric CAVs. Such policies could help curb tailpipe pollutant emissions in future 
scenarios, though they may not be able to completely offset the increases in travel demand and 
road congestion that might result from CAV deployment.  

In the first part of this study, the research team reviewed a wide range of existing research 
projects. The literature offers ample evidence from projects that have focused on the following 
research questions:  

• What are the different components of self-driving technologies and when will partially 
and fully automated vehicles become available to the different segments of the 
population? 

• What are the factors that affect individuals’ adoption and willingness to pay (WTP) for 
CAVs? 

• What are the potential impacts of CAVs on transportation supply, travel behavior and 
demand, land use and urban form/design, pollutant emissions and energy consumption? 

• How can modelers update travel demand forecasting models to forecast ranges of future 
impacts on travel demand deriving from the implementation of CAVs (under various 
deployment assumptions)? 
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New vehicle technologies make CAVs a more viable alternative for the future of transportation. 
Due to the variations in consumers’ attitudes towards new technologies and uncertainties 
about regulatory approval for CAV deployment, there is no consensus on the timeline of CAV 
adoption. Generally, studies suggest the adoption of, intention to use, and WTP for CAVs will be 
primarily affected by socio-demographics, personal attitudes, current travel patterns, and built 
environment factors. There is a potential that early adopters will mainly include the segments 
of the population that are wealthier, younger, more highly educated, and living in cities, though 
adoption patterns will likely be affected by the business models and policies that are 
implemented to regulate CAV deployment.  

The literature review in this report gives special attention to the impacts of CAVs based on the 
sequential spreading effects associated with CAV deployment, including:  

(1) first-order effects, including the possible direct effects of CAVs on factors such as travel 
cost/time, road capacity, and the resulting travel choices;  

(2) second-order effects, including the impacts of CAVs on private vehicle ownership vs. 
willingness to share vehicles that are part of fleets, residential location choices, urban form 
and land use;  

(3) third-order implications of CAVs, including indirect impacts of CAV deployment in 
transportation, such the resulting impacts on energy consumption, GHG emissions, social 
equity, and economy. 

The findings from existing studies have suggested that CAVs will affect both transportation 
demand and supply in various ways. On the transportation demand side, as a result of the 
introduction of CAVs, travel costs and parking costs may be reduced (or, alternatively, the space 
allocated to parking in denser urban areas may be reduced, opening opportunities for 
alternative development in cities). Further, the relationship of drivers (or, more accurately, 
“riders”) with vehicles will change and on-board activities are expected to be rather different 
from the traditional non-CAV settings, as more activities could be conducted while traveling in a 
CAV. This might lead to a substantial modification in the evaluation of the value of travel time 
(VOTT) and the willingness to pay to shorten a trip, as time spent on board a CAV will be less 
tiring and unpleasant, and it will likely lead to higher productivity and/or individual satisfaction. 
Thus, the reduction in the marginal travel cost and the flexibility of CAV use (together with the 
increased comfort and reduced fatigue while traveling) will likely induce more trips and cause 
an increase in VMT, vehicle hours traveled (VHT), and the mode share for passenger light-duty 
vehicles.  

On the side of transportation supply, CAV deployment will likely improve traffic flows assuming 
sufficient penetration rates and connectivity with other vehicles and infrastructure. In the 
interim, however, when mixed flows and interactions between CAVs and non-automated 
vehicles will be the norm, traffic flow may worsen. Thus, in the long run, highway capacity could 
substantially increase on the existing roadway network. However, the capacity of certain 
elements of the network—such as ramp sections, and local roads where pick-ups and drop-offs 
happen—may decrease because of more friction induced by merging and splitting vehicles.  



 

 
x 

Several sources of uncertainties associated with CAV deployment affect these outcomes. First, 
public opinion varies substantially across different cities and countries even though it is 
generally supportive of CAV technology. The public is largely in a wait-and-see position in terms 
of acceptance and use of self-driving vehicles, possibly due to a lack of knowledge and 
uncertainty about the characteristics of CAVs. Second, there are several factors affecting the 
adoption of CAVs, including socio-demographic attributes, personal attitudes, current travel 
behavior, and built-environment variables. Finally, we are uncertain of how people will use 
CAVs, and the resulting modifications in the purposes, frequency, and distance of trips by CAVs. 
All these uncertainties make it difficult to forecast the impacts of CAVs with existing modeling 
tools that have been developed using existing data that predate CAV deployment.  

Decision-makers and transportation professionals are asked to address CAV deployment in 
long-range plans. The equity, environmental, and planning implications related to CAV 
deployment also warrant attention. We note that the difficulty in estimating the changes in 
both transportation supply and demand relates to the uncertainties that propagate through 
many different parts of the planning and modeling processes. Based on the review of the 
scientific literature and modeling practice, one effective way to account for the effect of CAVs 
on the future of transportation is to account for their impacts on the organization of various 
individuals’ activity and travel choices that are included in an activity-based travel demand 
forecasting model and then to simulate a range of different scenarios that might include 
broadly diverse assumptions and contexts. This report attempts to tackle this process, even if 
more research might be needed to substantially expand the scope of the scenario assumptions 
and aspects to consider, as well as compare the application of different modeling approaches. 
Additional research would also be needed to overcome the limitations of specific modeling 
frameworks that might not be well suited to consider the impacts of a brand-new technology 
that is a potential game changer and might push existing travel demand forecasting models 
outside of their range of applicability. 

In this study, we define several future transportation scenarios for the state of California in 
2050, and model the range of potential impacts of CAV deployment under the framework of 
the California Statewide Travel Demand Model (CSTDM), the official statewide travel demand 
model commissioned and maintained by the California Department of Transportation 
(Caltrans). We test a set of scenarios that integrate CAV deployment into various travel demand 
assumptions. We directly target travel demand and network supply impacts of CAVs through 
modifying the CSTDM in the long-term decision, mode choice, travel costs, road network 
capacity, and other related components. Additional modifications include adjustments for the 
availability of (and need for) a driver’s license to use a vehicle, value of time, parking cost and 
vehicle operating cost that could be associated with the availability of passenger light-duty 
CAVs. The resulting travel demand impacts are forecasted for various scenarios through the 
application of the modeling framework, including both its passenger and freight model 
components. Thus, the modifications in the model and scenario inputs result in updated trip 
tables by transportation mode and distance, VMT, VHT, as well as loaded network, traffic flows, 
and related congestion effects. We assume CAVs will use vehicle powertrain technology 
consistent with the forecasts for the future fleet mix available from the California Air Resources 
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Board at the time of this study, unless explicitly specified in the zero-emission vehicle (ZEV) 
scenarios, which assume a faster transition to ZEVs. Using the trip-related modeling results, we 
compute energy consumption and resulting GHG and other pollutant emissions using emission 
factors from the EMFAC and Vision models.  

Based on the findings in the literature and the predicted combination of autonomous, electric, 
and shared vehicles in future years, this study compares six scenarios for the future year 2050, 
as shown in Table ES.1, where ZEV stand for zero emission vehicle and SAV for shared 
autonomous vehicle, respectively. Additional scenarios could be tested using the proposed 
modeling framework in future extensions of the research. The private CAV scenarios focus on 
privately-owned CAVs, where no specific assumptions are made about actions to promote 
carpool or shared use of CAVs. As a comparison, the SAV scenarios refer to the fleet-ownership 
model, where mobility service providers operate the SAV fleet and provide mobility services to 
travelers. All scenarios are modeled for year 2050 and compared to the baseline Scenario 0 
(business as usual, or BAU, in the same year 2050, as if there were no CAVs, based on the 
current official future scenario from Caltrans) in the discussion of the results and implications 
for the future of society. 

Table ES.1. Scenario Design 

Scenario Private CAV  SAV Pricing  ZEV 

0     

1a & 1b √    

2a & 2b √  √  

3a & 3b √   √ 

4a & 4b  √   

5a & 5b  √ √  

6a & 6b  √  √ 

Notes:  
Scenario 0 – BAU (no vehicle automation, year 2050 from Caltrans); 
Scenarios 1a & 1b – Private CAV, lower bound (LB) and upper bound (UB), respectively; 
Scenarios 2a & 2b – Private CAV + Pricing, LB and UB;  
Scenarios 3a & 3b – Private CAV + ZEV, LB and UB;  
Scenarios 4a & 4b – Shared CAV, LB and UB;  
Scenarios 5a & 5b – Shared CAV + Pricing, LB and UB; and 
Scenarios 6a & 6b – Shared CAV + ZEV, LB and UB.  
ZEV, zero emission vehicle; SAV, shared automated vehicle. 

The comparison of the results from the alternative scenarios highlights the potential for 
increased travel demand that could be associated with CAV deployment, when compared to 
the baseline year 2050 scenario (Figure ES.1). In this report, each scenario is presented with a 
lower bound (LB) and upper bound (UB), with the upper bound accounting for additional 
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impacts on vehicle miles traveled associated with induced demand associated with CAV 
availability and repositioning of vehicles, factors that are not directly accounted for in the 
modified CSTDM framework in the LB scenarios. The model results show increases in auto VMT 
for both private CAV and shared CAV scenarios, while a reduction in VMT could happen under 
certain circumstances, as shown in the lower-bound scenarios for both private CAV + pricing 
and shared CAV + pricing scenarios, though these LB scenarios do not consider any of the 
additional impacts on road travel from induced demand and repositioning of vehicles (and 
therefore might lead to an underestimation of VMT in these scenarios). The results from the 
implementation of the private CAV + pricing and shared CAV+ pricing scenarios show how the 
increase in auto VMT could be at least partially offset by the implementation of new road user 
and other pricing policies. Finally, the electrification of CAVs, while in this study is not expected 
to significantly affect the total amount of travel demand in the state, can significantly modify 
CAV environmental impacts and would lead to eliminating their tailpipe vehicle emissions. 
Under the assumption of a clean energy mix in California, that would lead to a substantial 
decarbonization of the road transportation sector. However, other externalities, such as traffic 
congestion, would persist.  

 

Figure ES.1. Range of VMT for Model Scenarios 

It is important to note how the current CSTDM framework is not able to account for certain 
expected impacts of CAV deployment, such as individuals’ modified activity patterns and 
additional trips that might be generated due to the increased travelling comfort, lower fatigue, 
and lower cost of traveling with CAVs, and the deadheading associated with repositioning 
passengers between trips. To accommodate for these factors, we present the results from all 
scenarios in terms of an expected range of outcomes that can be associated with the 
deployment of CAVs. However, additional long-term impacts of CAV deployment, such as 
eventual impacts on land use and residential location choices of individuals, are not accounted 
for in this range of travel demand results and might cause further increases in travel demand 
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beyond these levels. This means that even the upper-bound scenarios in this project might 
underestimate the potential increases in the future demand for car travel in California in a CAV-
dominated future. 

The resulting pollutant emission patterns show an increase reflective of VMT increases in the 
private CAV and shared scenarios, while the private CAV + pricing, private CAV + ZEV, shared 
CAV + pricing and shared CAV + ZEV scenarios yield lower levels of pollutant emissions, thanks 
to the impacts of these strategies on travel demand and on tailpipe emissions. In particular, if 
CAV deployment is coupled with 91% electric vehicle miles traveled (eVMT) in 2050, based on 
Vision model forecast, a dramatic reduction in tailpipe emissions from the auto sector could be 
obtained. The geographic distribution pattern of the emissions is similar to that of travel 
demand, as pollutant emissions in this modeling framework are assumed to be proportional to 
VMT: higher VMT would generate higher criteria pollutants, and the CSTDM framework does 
not account for the impacts that the high penetration of zero-emission vehicles would have on 
travel demand (i.e., the vehicle powertrain is not considered a factor affecting travel costs 
and/or travel patterns). 

The results from this study help inform CARB on the likely impacts that CAV deployment could 
have on transportation and emissions, and inform policy making, including the development of 
Sustainable Community Strategies, the Advanced Clean Cars II regulation, and other 
transportation and CAV planning efforts statewide. The results of this project have several 
policy implications. Specifically, there is a need to consider policy levers that can contain travel 
demand and emissions from transportation in future years. Uncertainty remains about how 
CAVs will be deployed and the details of their impacts on transportation and society. 
Nonetheless, this study implies that if adequate policies are not enacted to coordinate CAV 
deployment with other sustainability-inspired strategies, the deployment of this technology 
could largely derail the effects of many strategies that have been proposed in California to limit 
VMT and GHG emissions from transportation. 

While this study provides an initial set of ranges of forecasts for the potential impacts of CAV 
deployment in California, important limitations might affect its results. In particular, the 
adjustments made to current travel demand forecasting tools may not account for the 
unknown impacts a new technology such as CAVs might have. In the case of the CSTDM, the 
current modeling framework is not well suited to simulate certain impacts of CAV deployment, 
and in particular the impacts of fleet-based CAVs and the potential for vehicle pooling. Further, 
some important questions relate to whether the model might be oversensitive to changes in 
travel costs and not enough sensitive to changes in travel time and other changes CAVs might 
cause on the comfort, fatigue and pleasure associated with travelling by car. Such sensitivity 
errors could lead to an underestimate of the impacts of CAV deployment on travel demand and 
VMT, and an overestimate of the impacts of pricing policies on reducing travel demand and 
VMT. In addition, the current modeling framework assumptions and the existing data available 
for its estimation and update limit the model’s ability to predict changes in activity patterns and 
trip generation that will likely be associated with CAV deployment. Additional research on the 
expansion of the modeling framework, re-estimation of some of its components, and 
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calibration of the relationship between travel behaviors and new technologies might be needed 
to better address these points.

  



 

 
15 

Introduction 

Advances in transportation technology are continuously reshaping our lives and cities. Progress 
in the field of self-driving vehicles has the potential to substantially affect travel demand, with 
eventual large impacts on vehicle miles traveled (VMT), energy consumption, and greenhouse 
gas (GHG) and criteria pollutant emissions. Further, connected and automated vehicles (CAVs) 
could substantially modify the existing transportation system by integrating with other on-
demand mobility services and zero-emission fuels, leading to different outcomes depending on 
the way this technology is brought to the market and the policies that are enacted to regulate 
the field. Understanding the extent of these impacts is crucial and timely to policymakers and 
transportation professionals.  

To date, a wide range of possible effects of CAV deployment have been estimated based on a 
variety of datasets, modeling assumptions, and hypothetical scenarios. The California 
Department of Motor Vehicles (DMV) and the California Public Utility Commission (CPUC) have 
approved driverless vehicles and on-demand passenger testing and services in California.1 
Particularly, California sits at the epicenter of self-driving technology development. It is one of 
the most popular testbeds for many relevant companies (including Waymo, Cruise, Tesla, Lyft, 
and other automotive, technological, and ridesharing companies). However, limited attention 
has been given to evaluating the impacts that CAV deployment could have in the State of 
California on energy consumption, air quality, and regional or local criteria pollutant and GHG 
emissions. There is a pressing need to study the future transportation scenarios related to the 
adoption of CAVs in California.  

This report helps bridge the above-mentioned gaps, supporting the efforts of the California Air 
Resources Board (CARB) to identify the range of potential impacts (in direction and magnitude) 
of the introduction and rapid adoption of CAVs on California’s VMT, energy consumption, and 
GHG and criteria pollutant emissions. The aim of this research project is to address several 
research questions related to the adoption of CAVs in California. This report summarizes the 
state-of-the-art knowledge and the approaches and assumptions that were applied to model 
the impacts of CAV deployment in California as part of the research project, presents the range 
of impacts of CAV deployment on travel demand, GHG and other criteria pollutant emissions 
for a range of future travel scenarios for 2050 in California, and discusses policy implications of 
these findings.  

In the first part of this report, we review the large and expanding literature on the potential 
effects of the widespread adoption of CAVs and look into possible strategies to incorporate 
them in a statewide travel demand modeling framework. The research team compiled the 
results of the related existing scientific papers and research projects as well as the outcomes 
from a two-day workshop with leading modeling experts affiliated with several academic 
institutions; national laboratories; federal, state, and regional planning agencies; and well-

 

1 https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-testing-
permit-holders/  

https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-testing-permit-holders/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-testing-permit-holders/
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established transportation consulting firms. The workshop was organized by the research team 
as part of this project and was held at the Institute of Transportation Studies of the University 
of California, Davis on April 29-30, 2019. Appendix A reports detailed information on the expert 
workshop, including the agenda and a list of the expert participants.  

As part of the project, the research team focused on designing future scenarios associated with 
CAV deployment. A total of six scenarios, each one with a lower bound and upper bound in 
terms of travel demand and emission impacts, was created based on a combination of 
technological, behavioral, and policy assumptions. After developing the scenarios, the research 
team implemented these scenarios in a modeling framework, using modeling assumptions 
informed by the current literature. The research team evaluated a range of potential impacts of 
CAV deployment on travel demand, energy consumption and criteria pollutant emissions at the 
statewide level, through modifying the California Statewide Travel Demand Model (CSTDM), 
and integrating it with the EMFAC and Vision models to compute the related GHG and criteria 
pollutant emissions. Despite some limitations of the CSTDM modeling framework that are 
discussed in later sections of this report, the use of the official statewide travel demand 
forecasting model was found to be the most appropriate approach to produce travel estimates 
from future scenarios at the statewide scale in California.  

The project leverages the insights from ongoing research carried out by our research team and 
many other colleagues at other institutions. The insights refer to the application of statewide 
and regional models to predict the impact of CAVs and the analysis of behavioral data collected 
by other studies. The literature review and a modeling expert workshop at UC Davis in April 
20192 helped define the CAV deployment scenarios, the assumptions to be introduced in the 
modeling framework, and the likelihood of future scenarios. The end products of this project 
include a range of potential impacts associated with CAV deployment in 2050 and policy 
recommendations about ways to mitigate the outcomes of these impacts. We also discuss the 
limitations associated with the limited validity of certain modeling assumptions and how these 
might be addressed in future research.   

 

2 Additional information on the expert workshop is available at: https://3rev.ucdavis.edu/events/cav-model-
workshop 

https://3rev.ucdavis.edu/events/cav-model-workshop
https://3rev.ucdavis.edu/events/cav-model-workshop
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Literature Review 

Overview of CAV Technologies 

Autonomous driving technologies have made great strides forward and might be commercially 
available in the near future. As of November 2017, Waymo’s driverless cars had been driven 
more than 4 million miles on public roads. While it took about eight years to accrue 3 million 
miles in these tests, it took only another six months to hit the 4 million miles mark (Waymo 
Safety Report, 2020). The development of CAVs is contingent on the development of 
connectivity (e.g., 5G, GPS) and automation (e.g., Advanced Driver Assistance Systems [ADAS]), 
which will ultimately make vehicles capable of driving by themselves and communicating with 
each other. Connectivity refers to the real-time communication between vehicles and 
infrastructure, which will help improve the efficiency in using the transportation infrastructure 
and ultimately may lead to an increase in safety and fuel efficiency. Automation refers to self-
driving and vehicle control technologies. 

Vehicle communication and transportation-level control technologies provide more 
opportunities for CAV deployment by improving real-world performance and system-wide 
awareness, but it is the developments in ADAS that make automated driving possible. One of 
the examples of ADAS is the current progress in automated cruise-control ability. For an AV to 
drive smoothly and safely, two decoupled tasks need to be performed simultaneously: 1) 
controlling the speed to maintain safe headway; 2) steering to adjust lateral motions of the 
vehicle (Hatipoglu, Ozguner, and Redmill, 2003). The breakthroughs in vehicle-level control 
technologies, such as Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control 
(CACC), show the potential benefits of incorporating automation into the highway system. At 
the time of this writing, current low-level vehicle automation technologies, such as ACC and 
lane-keeping assistance, have proved the benefits associated with the deployment of such 
technologies. For example, ACC is an important enhancement over longitudinal vehicle cruise 
control that maintains a vehicle's speed while keeping a safe distance from the preceding 
vehicle, measuring the inter-vehicle gap and the preceding vehicle’s speed via sensors. This 
vehicle control technology is expected to bring smoother driving maneuvers, as discussed 
several years ago (Zwaneveld and van Arem 1997). 

A newer version of ACC is CACC, which extends the benefits of ACC with cooperative 
maneuvers. CACC vehicles are equipped with sensors that measure inter-vehicle gap, preceding 
vehicle speed, leading vehicle gap, and leading vehicle speed. For lateral control, such as lane 
change and merging, vehicles equipped with CACC and lane change assistance (LCA) would first 
assess lane-change risk by checking surrounding vehicles and then control the host vehicle to 
complete a lane change in the lateral direction if no risk exists. In addition, CACC allows vehicles 
to form platoons with controlled speed and headway (Wischhof, Ebner, and Rohling 2005). 

Apart from vehicle control, there are many other breakthroughs, such as sensor technology, 
high-resolution GPS, vehicle to infrastructure communication, and software system 
development. Vehicle sensors such as Light Detection and Ranging (LIDAR), camera, and radar 
gather real-world physical information. This information is then processed in combination with 
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GPS geolocation information and information from other vehicles via vehicle communication 
systems for vehicle decision-making processes. All the new technologies make CAV a viable 
potential alternative for the future of transportation. 

Levels of Automation 

The Society of Automotive Engineers (SAE) On-Road Automated Vehicle Standards Committee 
(2020) defines five levels of driving automation and four classes of cooperation for on-road 
vehicles, based on a vehicle’s minimum capabilities on each level. At level 1, the vehicle can 
perform basic tasks like steering and acceleration alone, but everything else needs intervention 
from the human driver. At level 2, vehicle control technology (e.g., ACC), can ensure driving 
safely in some specific scenarios but needs an alert human driver. At level 3, the automated 
driving system is capable of monitoring the driving environment. At level 4, the vehicle is able 
to safely navigate to the destination of the journey without the intervention of a human driver 
in most situations. Level 5 means the automated system can take control of the vehicle in all 
circumstances, and there is no need for any assistance from human drivers. Levels 4 and 5 are 
the only ones that require no human intervention. The relationship of SAE automation and 
Cooperative Driving Automation (CDA) classes is shown in Table 1. Five classes of CDA 
cooperation are defined as 1) no cooperative automation; 2) Class A: status-sharing; 3) Class B: 
Intent-Sharing; 4) Class C: Agreement-seeking; and 5) Class D prescriptive.  
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Table 1. SAE Levels of Vehicle Automation and Relationship with CDA Cooperation Classes (Source: adapted from SAE, 2020) 

  SAE Driving Automation Levels 

  

No 
Automation  

Driving Automation System  Automated Driving System (ADS) 

  

Level 0 
No Driving 
Automation  

Level 1 
Driver 
Assistance 

Level 2 
Partial Driving 
Automation 

Level 3 
Conditional 
Driving 
Automation 

Level 4 
High 
Driving 
Automation 

Level 5 
Full Driving 
Automation 

CDA 
Cooperation 

Classes 

No 
cooperative 
automation 

(e.g., 
Signage 

Relies on driver to complete the 
Dynamic Driving Task (DDT) and to 
supervise feature performance in 

real-time 

Relies on Automated Driving System (ADS) to 
perform complete Dynamic Driving Task (DDT) 
under defined conditions (fallback condition 

performance varies between levels) 

Class A: 
Status-
sharing 
Here I am 
and what I 
see 

(e.g., Brake 
Lights, 
Traffic 
Signal) 

Limited cooperation: Human is driving 
and must supervise Cooperative 

Driving Automation (CDA) features 
(and may intervene at any time), and 

sensing capabilities may be limited 
compared to Cooperative-Automated 

Driving System (C-ADS) 

C-ADS has full authority to decide actions 
Improved C-ADS situational awareness 

beyond on-board sensing capabilities and 
increased awareness of C-ADS state by 

surrounding road users and road operators 

Class B: 
Intent-
sharing 
This is what 
I plan to do 

(e.g., Turn 
Signal, 
Merge) 

Limited 
cooperation 
(only 
longitudinal 
OR lateral intent 
that may be 
overridden 
by human) 

Limited 
cooperation 
(both longitudinal 
AND lateral intent 
that may be 
overridden by 
human) 

C-ADS has full authority to decide actions 
Improved C-ADS situational awareness 

through increased prediction reliability, and 
increased awareness of C-ADS plans by 

surrounding road users and road operators 
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Class C: 
Agreement 
seeking 
Let’s do this 
together 

(e.g., Hand 
Signals, 
Merge)  

N/A  N/A 

C-ADS has full authority to decide actions 
Improved ability of C-ADS and transportation 
system to attain mutual goals by accepting or 

suggesting actions in coordination with 
surrounding road users and road operators 

Class D: 
Prescriptive 
I will do as 
directed 

(e.g., Hand 
Signals, 
Lane 
Assignment 
by 
Officials) 

N/A  N/A 

C-ADS has full authority to decide actions, 
except for very specific circumstances in 

which it is designed to accept and adhere to a 
prescriptive communication 
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A Roadmap for Successful CAV Deployment 

In 2014, the US DOT identified five major areas that needed further research in the period of 
2015-2019 to facilitate CAV implementation, including enabling technologies, safety assurance, 
transportation system performance, testing and evaluation, and policy and planning 
(Barbaresso et al. 2014). Dokic et al. (2015) illustrated a roadmap for developing and deploying 
CAVs, which includes five entities, namely: technology, society, economics, human factors, and 
legal aspects. The linkages among those entities are (1) invention; (2) customer demand; (3) 
business model; (4) user needs; (5) product design; (6) norm; (7) regulation. Accelerators for 
the process of development and deployment of CAVs are (a) demonstration; (b) sandboxes; (c) 
co-creation; and (d) living labs. Technology has accelerator correlations with the other four 
entities. Whereas society is directly influenced by technology development, it has strong 
linkages with economics, human factors, and legal aspects. Remarkably, a linkage between legal 
and technological aspects is a critical path in this roadmap. This path closes the circle by 
translating requirements, needs, and expectations from society to technology creators through 
regulations. 

Factors Affecting Adoption and Willingness to Pay for CAVs 

This section briefly summarizes the key factors that will likely affect the success (or lack thereof) 
of light-duty passenger CAV deployment. It also discusses the prices that consumers are willing 
to pay for owning CAVs or using self-driving services. 

Willingness to Pay and Adoption of Automated Vehicles  

First, privacy sensitivity, time sensitivity, and interest in productive use of travel time contribute 
to the monetary value of travelling alone compared to riding with strangers. For example, 
Lavieri and Bhat (2019) found that 43% of surveyed participants found it not socially acceptable 
to switch to CAV technology, while 20% would consider reducing their household car ownership 
if they could access shared automated vehicles (SAVs), which might lead to an increase in 
empty vehicle travel for the pick-up and drop-off of passengers. Individuals are generally willing 
to travel longer distances when not in intense traffic congestion. 

The number of studies that focus on understanding the factors affecting adoption and an 
individual’s willingness to pay for AV technologies has grown exponentially over the past few 
years. Each of these studies covers somewhat different objectives and targets different 
research questions focusing on either the general population or specific groups. As discussed by 
Gkartzonikas and Gkritza (2019), several common themes emerged from these studies, 
including the process and the likelihood of AV adoption, the perceptions of various aspect of 
AVs and individuals’ attitudes toward them, individual’s willingness to pay (WTP) for 
connectivity and various levels of automation (including the preferred modes of operation for 
AVs), and perceived benefits and major concerns regarding AV deployment. These studies can 
be differentiated by the type of research questions and pursued objectives, approach, 
methodologies, and target populations.  
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Becker and Axhausen (2017) and Gkartzonikas and Gkritza (2019) extensively reviewed AV-
related studies and discussed their similarities and differences. Here, we summarize and update 
some of their findings. From a data collection perspective, most of the existing studies, and 
those discussed in this section, employed an online survey, while a handful of studies adopted 
different approaches. For example, Begg (2014) interviewed transportation experts in London, 
UK, to explore their opinions on how soon AVs would become a reality and found that about 
30% of experts believe that AV Levels 4 and 5 will become operational in the UK by 2025 and 
2040, respectively. Similarly, other studies conducted interviews to better understand the 
underlying reasons for the use of AVs, the factors limiting their use, and the functional forms 
for the utility and the parameters explaining the reported preferences and choices towards CAV 
adoption from stated preference studies (Daziano, Sarrias, and Leard 2017; Zmud, Sener, and 
Wagner 2016; Payre, Cestac, and Delhomme 2014). There are only a few studies conducted 
before-during-after a demonstration project or a field experiment (Piao et al. 2016; Xu et al. 
2018).  

Several studies investigate the frequency of use of various levels of connectivity and 
automation (Bansal, Kockelman, and Singh 2016; Bansal and Kockelman 2018; Nazari, 
Noruzoliaee, and Mohammadian 2018) or ask the respondents to rate the acceptance of AV 
technology (Payre, Cestac, and Delhomme 2014; Kyriakidis, Happee, and de Winter 2015; 
Zmud, Sener, and Wagner 2016). Other studies looked at future mode choice under various 
scenarios. These scenarios discussed the AV market penetration rate and business models for 
the diffusion of AVs with and without incentives (such as designated lanes for AVs) or pricing 
policies in place (Silberg et al. 2013; Krueger, Rashidi, and Rose 2016; Daziano, Sarrias, and 
Leard 2017; Haboucha, Ishaq, and Shiftan 2017; Shabanpour et al. 2018). 

Overall, the results of these studies showed that the public is in general supportive of AV 
technology. However, public opinion varies substantially across different cities and countries. 
The public is in a wait-and-see position in terms of acceptance and use of self-driving vehicles, 
possibly due to a lack of knowledge and uncertainties about various characteristics of AVs. For 
example, Bansal, Kockelman, and Singh (2016) found that only 14% of Texans would buy or 
lease an AV as soon as it becomes available; that group is followed by 15% and 32% of Texans 
who reportedly would adopt AVs only after 10% and 50% of their friends/family adopt these 
technologies, respectively. Similarly, Zmud, Sener, and Wagner (2016) analyzed and classified 
early adopters as Enthusiasts or Pragmatists, with Laggards who were grouped as Rejecters or 
Traditionalists. The authors found that perceived safety benefits and data privacy can affect AV 
adoption. Wang and Akar (2019) analyzed the data from the 2015 and 2017 Puget Sound 
Regional Household Travel Studies and found that commuters surveyed in 2017 were less likely 
to be interested in shared AVs compared with their 2015 counterparts. Kelley, Lane, and 
DeCicco (2019) found, in their study in Michigan, about one-third of respondents were 
unwilling to make their non-commuting trips in the future by using personally-owned AVs or 
self-driving (shared) services (assuming privately-owned AVs or self-driving “robo-taxi” services 
were available). Kim, Circella, and Mokhtarian (2019) also found that some population 
segments are more favorable toward AV options. For example, the “AV over flight” group is 
more likely to replace some medium- and longer-distance trips that they would otherwise make 
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by airplane with the use of AVs. In addition, they also point out that the way people prefer AVs 
over other modes is significantly influenced by the perception of the advantages and/or 
disadvantages of AVs technology.  

How Adoption, Intention to Use and Willingness to Pay Vary? 

Researchers have shown how the adoption and willingness to pay to own and/or use an AV vary 
significantly across different segments of the population. In this section, we summarize how 
various (1) socio-demographic attributes, (2) personal attitudes, (3) current travel behavior, and 
(4) built-environment variables can drive or hinder adoption and WTP for AVs. Some 
researchers have employed basic descriptive statistics to shows the association between AV 
acceptability and various exogenous factors, while others used more sophisticated statistical 
models to quantify this relationship while controlling for the impact of other exogenous factors. 
Table 2 presents a summary of findings from studies on AV adoption and WTP, using various 
methodologies and datasets.  

Table 2. Research on Adoption and Willingness to Pay 

Source Methodology Characteristics of 
the Sample 

Findings 

Silberg et al. 
2013 

Type of study: 
Focus group (of vehicle 
owners) 
Type of analysis: 
Descriptive analysis 

N = 32, 
Context = US 

Investigated factors affecting 
purchasing AVs; the median 
willingness to pay for the self-
driving features of their vehicles 
can be as high as 4,500 USD. 

Howard and 
Dai 2014 

Type of study: 
Paper survey (after in-
person meeting and 
watching a video clip) 
Type of analyses: 
Descriptive statistics, and 
logistic regression 
models 

N = 107, 
Context = 
Berkeley 
Museum visitors, 
CA 

75% of respondents found safety 
as the most attractive feature of 
AVs. Other important attributes 
are multi-tasking and 
convenience.  
Most concerning AV factors: 
Safety, liability, and lack of control 

Payre, Cestac, 
and Delhomme 
2014 

Type of study: 
Semi-directive interview 
and online survey 

N = 421, 
Context = France 

The acceptance rate of AVs varies 
depending on the type of driving, 
such as usage of highway driving, 
presence of traffic congestion, and 
difficulty of finding parking. 
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Source Methodology Characteristics of 
the Sample 

Findings 

Kyriakidis, 
Happee, and 
de Winter 2015 

Type of study: 
Online survey  
Type of analysis: 
Descriptive statistics 

N = ∼5,000. 
Context: 109 
countries 

22% participants did not want to 
pay for add-on AV driving 
technology while 5% of them 
would pay as much as $30,000, 
and 33% indicated fully 
automated driving feature would 
be highly enjoyable. Travel-related 
multitasking linearly increases by 
changes in the vehicle level of 
automation. 

Krueger, 
Rashidi, and 
Rose 2016 

Type of survey: 
Online survey 

N = 435 Investigated the characteristics of 
the users of shared AV; 36% of 
respondents will shift their travel 
model to SAVs. Model results 
indicate that younger travelers 
and current carsharing users are 
more likely to prefer SAVs with 
ridesharing. If the respondent had 
used public transport for his/her 
recent trip, mode switching was 
less likely. 

Piao et al. 2016 Type of study: 
Online survey/phone 
interviews 
During-after 
demonstration of 
automated bus project 

N = 425, 
Context=La 
Rochelle, France 

75% are interested in owning AVs 
and only 25% in using an SAV. 
Security found to be the most 
concerning factor during 
nighttime. 

Zmud, Sener, 
and Wagner 
2016 

Type of study: 
Online survey and face-
to-face interviews 

N = 556 online 
survey, and 44 
face-to-face 
interviews 
Context = Austin, 
TX 

Discussed the impact of various 
factors on the adoption of AVs 
including personality and 
psychological measures, 
preventive driving factors, travel 
behaviors. Seven major factors 
were associated with likely 
adoption: safety; lower stress; 
mobility enabling for aging 
seniors; travel-related multi-
tasking; trust of the technology; 
comparability to public transit 
experience; and attraction of new 
technology. 
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Source Methodology Characteristics of 
the Sample 

Findings 

Hohenberger, 
Spörrle, and 
Welpe 2016 

Type of study:  
Online survey 

N = 1,603 
Context = 
Germany 

Estimated the willingness to use 
AVs and identified potential 
differences among gender and age 
groups. 
This study finds that the 
differential effect of sex on 
anxiety toward CAVs becomes less 
significant as participants’ ages 
increase. 

Bansal, 
Kockelman, 
and Singh 2016 

Type of study:  
Online survey 
Type of analysis: 
Bivariate ordered Probit 
model 

N = 347 
Context = Austin, 
TX 

Looked at the factors affecting 
adoption, WTP, and adoption 
timing; at a cost of $5,000, 24% 
and 57% of respondents were 
willing to add partial and full 
automation, respectively, to their 
next vehicle purchase. 
Average WTP: can be as much as 
$3,300 for partial and $7,253 for 
full automation per vehicle. 

Daziano, 
Sarrias, and 
Leard 2017 

Type of study: 
Online survey (online 
opinion panel) 
Type of analysis: 
Semi-parametric discrete 
continuous mixture 
model 

N = 1,260, 
Context = U.S. 

WTP: On average, $3,500 and 
$4,900 for partial and full 
automation, respectively. 

Haboucha, 
Ishaq, and 
Shiftan 2017 

Type of study: 
Online survey (recruited 
via social media and 
LinkedIn) 
Options: No change, 
privately owned AV, and 
shared AV 
Type of analysis: 
Nested logit-kernel 
model 

N = 721, 
Context = Israel 
and North 
American 

Factors that increase adoption: 
- higher level of education 
- higher pro-AV and pro-
technology attitudes 
- regular and less frequent trip 
pattern 
- high annual VMT 
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Source Methodology Characteristics of 
the Sample 

Findings 

Bansal and 
Kockelman 
2018 

Type of study: 
Online survey 
Type of analyses: 
Descriptive statistics of 
weighted sample. 
Interval regression and 
ordered Probit model of 
WTP and interest in 
connectivity and 
automation level 2-4  

N = 1,088 
Context = Texas, 
U.S. 

WTP varies from $127 for 
connectivity, $2,910 for level 2 
automation, $4,607 for level 3, 
and $7,589 for level 4. 

Hulse, Xie, and 
Galea 2018 

Type of study: 
Online survey 
Type of analysis: 
Descriptive statistics 

N = 1,048 
Context = UK 
residents 

The perceived risks vary 
significantly across road users and 
types of cars; the factors affecting 
perceived safety are road-user 
type, gender, age, and tendency 
for risk-taking behavior. 

Shabanpour et 
al. 2018 

Type of study: 
Online survey 
SP survey (profile-case 
best-worst scaling) 
Type of analysis: an 
innovation diffusion 
model 

N = 1,013 
Context = 
Chicago 
metropolitan 
area 

People are more sensitive to the 
purchase price of AVs, policy 
incentives (e.g., provision of 
exclusive lanes for AVs), and 
regulation (e.g., liability in case of 
accident), than to other cost 
components (e.g., fuel cost) or 
other limiting or encouraging 
factors (e.g., safety, energy 
efficiency), 

Nazari, 
Noruzoliaee, 
and 
Mohammadian 
2018 

Type of study: 
Online survey 
Type of analysis: 
Multivariate ordered 
model 
 

N = 2,726 (for 
daily travelers) 
and 1,755 (for 
commuters) 

Jointly modeled the interest in 
private AVs vs. various SAVs; those 
who are more reliant on private 
car use are less likely to use SAVs. 
Those with limited ability to drive, 
including elderly people and 
people without driving licenses, 
are more likely to use shared AVs. 
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Source Methodology Characteristics of 
the Sample 

Findings 

Nordhoff et al. 
2019 

Type of study: 
Review paper 
Type of analysis: 
Descriptive statistics. A 

multi-level model of 

automated vehicle 

acceptance 

 

N = 124 
Context = 
worldwide 
studies 

28 influencing factors are 
classified into seven categories: 
socio-demographics (28%), 
domain-specific system evaluation 
(22%), travel behavior (15%), 
personality (14%), moral-
normative system evaluation 
(12%), exposure to AVs (6%), and 
symbolic-system evaluation (4%). 
The percentages represent the 
number of studies that 
investigated the factors.  

Kelley, Lane, 
and DeCicco 
2019 

Type of study: 
Face-to-face interview 
Type of analysis: 
Descriptive statistics and 
logit model 

N = 233 
Context = 
Michigan, USA 

36% of respondents were willing 
and 31% unwilling to use privately 
owned AVs or self-driving services 
for non-commuting trips. 

Asgari and Jin 
2019 

Type of study:  
Online survey 
Type of analysis: 
Structural equation 
model 

N = 1,198 
Context = Florida 
and 10 US cities 

WTP: $652 for basic vehicles; 
$1,192 for advanced features; 
$1,542 for partial automation; and 
$1,769 for fully automated 
alternatives. 

Jing et al. 2019 Type of study:  
Literature review and 
online survey 
Type of analysis: 
Structural equation 
model 

N = 906 
Context = China 

Top two influencing factors of 
choosing AV or SAVs are 
knowledge about AV technologies 
and perceived risk. 

Zhang et al. 
2019 

Type of study: online 
survey 
Type of analysis: 
Structural equation 
model 

N = 216 
Context = China 

Trust has a positive effect, while 
perceived risk has a negative 
effect on the acceptance of level 3 
AVs. 

Potential Impacts of CAV deployment 

In this section, a comprehensive review of various studies on the potential effects of CAV 
deployment is discussed. We grouped CAV impacts into five large groups of effects, which each 
correspond to a subsection below: transportation supply, transportation demand and travel 
behavior, vehicle miles traveled (VMT), land use and urban design, and energy consumption and 
GHG emissions. 

In each subsection below, we summarize the findings of the expert workshop held at UC Davis 
in April 2019, and then we describe findings from the literature. Then, we expand the 
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discussion on CAV impacts across different aspects, e.g., impacts on transportation supply, 
travel demand and behavioral choices. 

Insights from the Expert Workshop  

Changes in transportation capacity, travel times and corresponding activity patterns might 
be the results of a combination of factors. Travel time could increase, decrease, or remain 
unchanged depending on which factors prevail: 

• Travel time could increase, if 
o formerly outside-the-trip activities are brought within-the-trip 
o free time is used for more travel 

• Travel time could decrease, if 
o trips are efficiently chained 
o empty cars are given assigned tasks 
o the price of travel increases 
o new outside-the-trip activities are generated 

• Travel time could remain constant, if 
o better/more/new within-the-trip activities are generated 
o formerly outside-the-trip activities are brought into within-the-trip and allow 

new outside-the-trip activities to be generated 

CAVs, as a new transportation mode, share some features with ridehailing services and 
private vehicles. The shared features could lead to impacts similar to those that 
ridehailing has had on car ownership and transit use. If privately-owned CAVs prevail, the 
results are more likely to be similar to an increase in the use of current privately-owned 
vehicles.  

Both short- and long-distance travel would be affected by CAV deployment in the 
following ways: 

• Smaller airports might suffer the most and be shut down because of the higher 
attractiveness of longer trip distance by CAV 

• Travel group size in long distance trips need to be reconsidered 

• Dead-head trips might be worse due to empty-vehicle trips 

• Scheduled intercity CAV services may be deployed 

• Road congestion could increase market for air travel mode (counteracting some of the 
other AV impacts reducing demand for medium-distance air travel) 

Willingness to share is another key point in understanding SAV adoption. Privacy 
sensitivity, time sensitivity, and interest in productive use of travel time contributes to the 
monetary value attributed to travelling alone versus with strangers. People are generally 
willing to travel longer distances when not exposed to traffic congestion. 

Impacts on Transportation Supply  

On the impacts of CAVs on transportation supply, as on the other groups of impacts addressed 
in the subsections below, the insights gained from the expert workshop are largely consistent 
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with the findings from the reviewed literature. With sufficient penetration and connective 
ability, CAVs will likely improve traffic flow. Even automation alone, without connectivity, will 
likely improve traffic flow. From the system design perspective, safety and efficiency are two 
main concerns when designing an automated vehicle control system. The improved traffic flow 
and efficient traffic or vehicle control influence traffic capacity. However, this influence on road 
capacity by CAVs varies based on road types. With a certain penetration rate, increased 
highway capacity could be a direct benefit of vehicle automation (Shladover, Su, and Lu 2013). 
In addition, a more stable traffic flow can be achieved as fewer breakdowns would be expected. 
However, on connection roads (e.g., ramp) and local roads, where frequent pick-up and drop-
off of passengers occur, the capacity may decrease because of more friction induced by 
merging and splitting of CAVs. 

Impacts of CAV Deployment on Travel Demand and Behavioral Choices 

This area of research has received a lot of attention from researchers who wanted to quantify 
the impacts of CAVs on the way people travel and engage in activities, and on the 
transportation system as a whole. Many hypothetical studies have been done. A noteworthy 
finding is that government (non-)intervention will play a significant role on the impact of CAVs 
on travel demand and choices, by influencing factors such as congestion and accessibility 
(Cohen and Cavoli 2019). 

Travel Cost (Out-of-Pocket and Travel Time Cost) 

Out-of-pocket travel cost is considered one of the most important variables in travel demand 
models. AVs can change both the fixed out-of-pocket costs of car ownership and the variable 
transportation costs, usually defined as a distance-based costs. In the short term, the initial 
purchase price for AVs is higher than that of a conventional vehicle, at least in the early stage of 
AV deployment. The additional equipment required for operation of CAVs (e.g., sensors, 
automated controls, wireless network, and navigation system) can increase the vehicle 
purchase prices and impose additional annual fees. Furthermore, AVs need to be checked on a 
regular basis to avoid any technological failures that could lead to serious crashes. Other 
additional costs may be imposed by additional in-vehicle security features, such as cameras and 
enforceable behavior equipment, as well as the cost of frequent interior cleaning and repair.  

Fagnant and Kockelman (2015) describe how the price of AVs might be several times higher 
than that of standard conventional vehicles at the earliest stage; however, the additional price 
would gradually decrease to $3,000 or even lower with mass production and other 
technological advances. In another study, IHS Automative (2014) predicted that these necessary 
technologies would increase vehicle prices by an average of 20%. However, this additional cost 
can be offset to some extent by insurance and fuel cost savings (Stephens et al. 2016). Further, 
not all costs are usually featured in the daily decisions about traveling, as the marginal costs of 
the additional trip has a stronger impact on everyday travel choices, while acquisition costs are 
more relevant in affecting long-term decisions such as vehicle purchase and the overall level of 
vehicle ownership in a household. 



 

 
30 

Further, equipping vehicles with additional features (such as office equipment or bedroom 
facilities) enables more productive time of traveling. Current studies have a great interest in 
evaluating the potential impacts of AVs based on the assumption that individuals are more 
likely to use their time more efficiently in the future. These studies are more likely to have 
lower valuation of their (in-vehicle) travel time. For example, Gucwa (2014) estimated the 
changes in travel demand could be induced by changes in the value of travel time, using a San 
Francisco Bay Area activity-based travel demand model.  

On the other hand, we expect that out-of-vehicle time may change due to automation. For 
example, AVs may reduce walk access/egress time if AVs are allowed to park by themselves 
after dropping off the passenger. In case of SAVs, a range of wait times may add up to out-of-
vehicle time. Individual perceptions of out-of-vehicle time may also change as a result of AV 
deployment. In current travel demand models, the value of out-of-vehicle time is usually 
considered to be a multiple (twice or three) times of the value for in-vehicle time (National 
Cooperative Highway Research Program (NCHRP) 2012), reflecting a higher weight that 
travelers put on out-of-vehicle travel time. Few studies looked at the impact of AVs on 
perceived out-of-vehicle time. For example, Krueger, Rashidi, and Rose (2016) found that value 
of waiting time is a critical service attribute of SAV operation and can vary across different 
service types. In another study, Kolarova et al. (2018) found that waiting time for AVs was 
perceived less negatively than waiting time for public transportation. Malokin, Circella, and 
Mokhtarian (2019) also found that the ability to integrate productive activities into commuting 
trips will affect the value of travel time and mode choice, leading to a potential AV future with 
much increased use of drive-alone modes, at the expense of public transportation and rail 
modes in particular. More studies are required to better understand the impact of AVs on the 
perceived cost of the out-of-vehicle travel time. 

Changes in Activity Patterns and Time Use 

The possibility of conducting new activities while traveling may lead to a re-arrangement of 
daily activity patterns. But what kind of activities can be conducted in AVs and how can this lead 
to re-arrangement of other activities? To answer these questions, Pudāne et al. (2018) 
conducted five focus group studies (N=27). The authors concluded that desired AV on-board 
activities can be divided based on their priority and novelty. The on-board activities can be 
classified into four main groups: (I) new high-priority activities: including work, business, sleep, 
food preparation, self-cleaning, childcare and administration; (II) current high-priority activities, 
including work, study, eat and apply make-up; (III) current optional activities, including read 
news, check phone/internet, relax, make phone call etc.; and (IV) new optional activities, 
including exercise, play games, watch movies, etc. People who experience time pressure more 
often are more likely to conduct activities in groups I and II. For those with a short travel time, 
current optional activities (type III) might be viable, as they can finish those activities when 
using CAVs. New optional activities (type IV) would be a suitable choice for those who seek 
leisure activities, possibly for those who do not have a suitable time or place in their schedule 
to conduct these activities. The time saved by transferring some activities to travel-time can 
substantially change individual schedules and activity patterns via a “saved time” effect. The 
freed time can be spent on new activities. Or activities or travel might be extended, swapped, 
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or reshuffled. Further, in the future, individuals may be able to dispatch an empty AV to 
perform some activities (e.g., running errands), which ultimately leads to more freed time and 
increases the “save time” effect. Pudāne et al. also found that almost all participants agreed 
that AVs offer major gains for non-regular and long-distance trips, indicating the potential 
changes that AVs will have on long-distance trips.  

The changes in the activity patterns and travel demand were explored in a naturalistic 
experiment mimicking private ownership of an AV by offering study participants 60 hours of 
free chauffeur service (Harb et al. 2018). Although the results are based on analyses of very 
small number of households (N=13) and may not be generalizable to the entire population, they 
have been largely confirmed by an extension of this study to a larger sample and in another 
area of California (Harb et al., forthcoming). The results show a significant shift in individuals 
and household activity and trip patterns. For example, people took more vehicle trips, in 
particular during evenings, and trips tended to be longer in distance.  

Increase in Mobility of Individuals with Physical and/ or Age-related Driving Limitations 

CAVs can increase mobility for many groups of people, including those with physical or age-
related limitations that prohibit them from driving, including those without drivers licenses. 
Brown, Gonder, and Repac (2014) estimated that new demand from underserved populations 
could increase VMT by as much as 40%, using the 2009 NHTS and the 2003 ‘‘Freedom of Travel” 
study. This upper bound is estimated by assuming that each population segment from age 16–
85 begins to travel as much as the top decile or travelers. Wadud, MacKenzie, and Leiby (2016) 
estimated that vehicle automation could increase VMT by 2% to 10% due to increased travel by 
new user groups and the rates of driving among existing users. This driving rate was derived 
from the differences between the actual age-driving curve and the linear extrapolation of the 
driving patterns for people between the ages of 44-62 years old. The naturalistic experiment 
from Harb et al. (forthcoming) also showed that seniors and individuals with disability are 
among those more likely to benefit from CAV deployment through the increased ability to 
travel and the participation in additional activities that would otherwise be avoided if CAVs 
were not available. 

Travel-related Choices 

Many changes can happen to individual travel-related choices, due to efficiency gains in the 
system (mainly due to higher network capacity, and fewer crashes), decrease of in-vehicle value 
of travel time and other travel-related out-of-pocket costs (e.g., parking), and increases in travel 
by non-drivers and other underserved populations. There is a consensus among all studies that 
AVs can increase the demand for traveling with a car and potentially reduce the share of other 
alternatives such as public transportation and active modes. Additionally, the possibility of 
dispatching an empty vehicle to conduct some activities (e.g., running errands) or to drive 
around the block to find parking or give a ride to another member of the households can lead 
to more VMT. People are also likely to choose more distant locations for living, working, leisure 
activities, among others, resulting in a significant growth in the amount of time spent in the car. 
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Thus, various changes could derive, including modifications in mode choice, vehicle ownership, 
and trip distance. 

Vehicle Miles Traveled 

Several published studies have estimated how VMT could change with the future emergence of 
CAVs. However, the results depend on the data and assumptions used for modeling VMT, as 
most of these studies are based on modeling simulations rather than on the analysis of travel 
behavior data and the causes of changes in travel choices. Below we summarize the findings of 
some of these studies, the majority of which are based on simulation and the use of a trip-
based or an activity-based model (ABM). Gucwa (2014) used the Metropolitan Transportation 
Commission (MTC) activity-based model to evaluate the impact of changes in roadway capacity 
and travel time cost in a future dominated by AVs. The author found that an increase in road 
capacity (by 100%) can increase VMT by 2%, while a decrease in the value of time by half can 
increase VMT by 13%. Rodier et al. (2019) used the same model and showed that new drivers 
can increase VMT by 2% in the San Francisco Bay area. To model the impacts of new drivers, 
Rodier et al. relaxed the driving restriction for individuals between the ages of 13-16 years old.  

In another study, Childress et al. (2015) found that increasing the road capacity by 30% can 
increase VMT by 3.6% and reduce VHT by 2.1%. Coupling road capacity increase with a 35% 
reduction of value-of-time (VOT) can lead to a 5% increase in VMT and 2.1% decrease in VHT. 
Correia, Homem, and van Arem (2016) showed that changes in parking policy (especially 
pricing) can affect the share of empty kilometers to great degree. The authors showed that, in a 
scenario with paid parking everywhere, the share of empty kilometers can reach its maximum 
(87.4% of vehicle kilometers traveled). Similarly, in the scenario where free parking was 
available only at peripheral nodes, the share of empty kilometers would be 64.8% of total 
vehicle kilometers traveled. In another study, Kröger, Kuhnimhof, and Trommer (2018) found 
that overall VMT can increase even at lower AV penetration rates. The authors found that 
context plays an important role in changes that will be brought by AVs. For example, even 
though a higher penetration rate is expected in Germany compared to the US, the increase in 
VMT induced by AVs will not be higher in Germany than in the US.  

Auld, Sokolov, and Stephens (2017) provided a potential feasible bound for the effects of AVs, 
and investigated how increased VMT can vary by changes in VOT, roadway capacity, and AV 
penetration rate, using an activity-based model for the Chicago metro areas and random 
assignment of travelers to CAV technology. The authors showed that the elasticity of VMT with 
respect to road capacity is 0.05. Similarly, a decrease in the value of travel time (VOTT) can lead 
to more VMT: depending on AV market penetration rate (20% vs. 75%) VMT can increase by 
18%–59% for a 75% reduction in the value of travel time. For an AV penetration rate of 100%, 
combined with a VOTT reduction of 25 or 75%, the increase in VMT was 21% or 79%. In another 
study, Van den Berg and Verhoef (2016) investigated the impact of AVs using a dynamic 
equilibrium model of congestion to study three main elements: the increase in road capacity, 
the decrease in the VOT, and the resulting changes in the heterogeneity of VOT. They showed 
that AVs could have both positive and negative externalities through increases in capacity and 
decreases in the value of time, although net positive externalities seem more likely, according 
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to their analysis. One of the key changes that may affect VMT in the future is the ability of AVs 
to reposition themselves. For example, in a case where individuals face higher parking price 
they may send the car back to home and ask it to pick them up later when they need it. This 
situation may happen if the cost of fuel is lower than the cost of parking. Using a multi-class 
trip-based model, Levin and Boyles found that a significant increase in VMT (about 271%) is 
expected, about half of which can be attributed to vehicle repositioning. A household may 
decide to reduce its number of vehicles and instead use AVs more efficiently to maintain the 
current level of mobility. Zhang, Guhathakurta, and Khalil (2018) found that although only 18% 
of households could experience this mobility benefit from vehicle reduction, the system impact 
would not be desirable from an environmental lens because these households would lead to a 
negative externality of a system-wide increase in VMT by 29.8%, as empty vehicles relocate to 
fulfill the demand of various household members. 

Studies also looked at the impacts of different AV operational models on VMT. Under the 
synthetic setting where 1,715 SAVs are used to serve 56,324 trips, Fagnant and Kockelman 
(2018) showed that VMT can increase by 8.7%, due to empty miles traveled for passenger pick-
up and drop-off. This amount can be reduced by half if pooled SAVs are allowed. The 
International Transport Forum (2015) developed an agent-based model to examine the impact 
of various types of SAVs (regular vs. pooled ridehailing) in Lisbon, Portugal, and found that the 
impact of SAVs can be moderated in presence of high-capacity transit service: SAVs can 
increase vehicle kilometers traveled (VKT) by 6% in the presence of high-capacity transit 
services, while this rate can reach as high as 90% in the absence of these services. In another 
study, Fagnant, Kockelman and Bansal (2015) replaced only 1.3% of the regional trips in Austin, 
TX with 1,977 SAVs and found that one SAV could be used in place of about nine conventional 
vehicles just in exchange for an average waiting time of one minute, however this can lead to 
an 8% increase in VMT, mainly due to empty vehicle driving for passengers’ pick-up and 
relocation. Chen, Kockelman, and Hanna (2016) showed that the empty vehicle miles would 
increase if the SAVs were electric, as they would need to travel frequently to and from charging 
stations in-between serving passengers. They also noted that electric SAVs can generate 7.1%–
14% empty travel miles for relocation required for both charging and passenger pickups (almost 
twice the upper bounds found in their previous studies).  
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Land Use, Location Choice, and Urban Design 

Insights from the Expert Workshop  

• Location choice will likely be different in an AV era than it is now. Integrated land-use and 
travel demand forecasting models can help to envision the potential changes, though 
limitations in operational models still limit the applicability of this approach.  

• Among the potential changes in land use and travel patterns, parking is one of the most 
important factors. The behavior of driving, idling, and parking can be determined by 
relative utilities, which could be affected by parking cost, parking availability, activity 
duration, ownership, operating costs, infraction risk, linear vs. non-linear cost behaviors, 
etc.  

• The changes in the value of travel time, as well as in parking availability and use, might 
modify the demand and supply in urban and non-urban areas, eventually modifying real-
estate prices and creating opportunities for redevelopment of certain areas in cities. 

• Long-term choices about residential location can be significantly affected by the lower 
friction of travel, eventually leading to more sparse settlements in low-density areas and 
increased suburbanization, if individuals are less sensitive to the travel distance to their 
trip destinations, altering the space (and price) vs. accessibility balance that is behind 
location choices.  

CAVs are very likely to alter the built environment, including roadway design, urban form, and 
building design in far-reaching ways (Chapin et al. 2016). However, these impacts—positive or 
negative—are not fully predictable. The impact of AVs may be similar to those that occurred 
during the rise of the private automobiles in the early 20th century (Crute et al., 2018). 

The impact of AVs on land use can expand to both macro (regional) and micro (local) spatial 
scales. For example, AVs will affect accessibility at the macro level, and parking, road design, 
and building landscapes at micro level. People can overcome some of the spatial and temporal 
constraints that they have to deal on a daily basis, as they can use their time more productively 
while traveling and dispatch AVs to conduct some activities for them (e.g., running errands, 
picking up children). As a result, the burden of spending time for traveling may decrease, 
leading to increases in travel distances for different purposes. Below we summarize a few 
studies that investigate the impact of AVs on land use, location choice and urban design. 

From the macro level perspective, most studies expect AV to produce increased urban sprawl 
(e.g., Fagnant, and Kockelman 2015; Meyer et al. 2017; and Crute et al. 2018), possibly due to a 
reduction in the disutility of longer distance traveling. Environmentally conscious people may 
justify their travel and residential choices because AVs will probably be electric in the future 
(Duarte and Ratti, 2018). The impact of AVs can also extend to the urban form. Zakharenko 
(2016) found that one of the advantages of AVs is the reduced need for parking in dense areas, 
relieving/freeing downtown areas for other uses.  
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Hawkins and Nurul Habib (2019) reviewed various integrated land use and transportation 
models and argued that the introduction of AVs would bring revolutionary changes and require 
significant modifications to modeling frameworks (e.g., in the trip generation steps) and 
toolboxes. AVs are expected to significantly affect regional accessibility: Meyer et al. (2017) 
used a Swiss national transport model to simulate the impact of AVs on accessibility (which is 
measured based on travel times) of the Swiss municipalities. The authors ran three different 
scenarios and evaluated the impacts of AVs if (1) AVs can only operate in extra-urban situations 
(i.e., transition scenario); (2) operate fully in every situation, but only private ownership is 
allowed; and (3) operate fully in every situation and SAVs are allowed. As expected, AVs were 
found to substantially change accessibility in Switzerland; however, the impacts varied by 
region types: the strongest positive impact on accessibility was observed for well-connected 
exurban and rural municipalities. (The accessibility in these areas has been degraded by 
congestion on arterial roads and highways during peak hours.) In contrast, accessibility 
remained unchanged (if not degraded) in larger cities, because the relative increase in demand 
often exceeds the relative increase in road capacity since the travel demand is increased.  

The enhanced regional accessibility might encourage people to use the cost that they can save 
on transportation for other purposes, including working, shopping, or recreating further away 
from home. Enhanced accessibility can also lead to shifts in individuals’ residential location 
choices: Zhang, Guhathakurta (2018) and Kim et al. (2019) discussed how the massive 
deployment of SAVs might lead to more distance between residence and workplace, possibly 
due to the low cost and high convenience of SAVs. The authors discussed that some households 
would move to neighborhoods with more appealing property attributes and better schools. At 
the same time, compact development may become more appealing as the waiting time would 
be lowest in dense neighborhoods. Their simulation results showed that older population 
would relocate closer to central business district (CBD), while younger people are likely to move 
away from downtown areas (within 25 miles of CBD) (Zhang & Guhathakurta, 2018 and Kim et 
al., 2019).  

As discussed by Milakis, van Arem, and van Wee (2017), enhanced accessibility may also affect 
the development of new centers. For example, suburban employment centers may change to a 
pole for peripheral growth, to serve demand for employment and parking structures. Further 
studies are required to understand the impact of AVs at macro/regional levels. 

At the local scale, AVs can lead to changes in the number of required parking spots and the 
location of off- and on-street parking, streetscape, building landscape, and urban design. For 
example, the International Transport Forum (2015) showed that SAVs can completely remove 
the need for on-street parking and can lead to the removal of 80% of off-street parking spaces. 
In another study, Zhang et al. (2015) used an agent-based model to simulate the impacts of 
SAVs on urban parking demand, varying SAV fleet size, an individual’s level of use of SAVs, 
waiting time, and empty vehicle cruising strategies in a hypothetical gridded-like city, ignoring 
the differences in networks attributes. The authors showed that 90% of parking demand can be 
eliminated even at a low market penetration rate (2%). To address these problems with the 
results of previous studies, Zhang and Guhathakurta (2017) simulated the operation of SAVs in 
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Atlanta, Georgia by using Atlanta’s real parking inventory, the estimated origin-destination 
demand table from an Atlanta region activity-based model, and the detailed transportation 
networks with the corresponding link travel speed. The authors found that parking can be 
reduced by about 4.5% if 5% of trips within Atlanta are served by SAVs, indicating that each SAV 
can reduce the need for approximately 20 parking spaces.  

Bahrami et al. (2021) studied the parking choices of private AVs in the downtown area. An 
equilibrium-based formulation was used to model the parking behavior based on the individual 
parking cost. They found that AVs are very likely to cause more congestion due to extensive 
cruising. However, an extra time-based congestion pricing can help mitigate the congestion in 
the area. Moreover, AVs along with other emerging transportation services provide unique 
opportunities for thinking about how streets are used—by whom, by what modes, and for 
access to what locations (Schlossberg et al, 2018). AVs offer the possibility of freeing up a 
significant amount of space for other public uses (e.g., sidewalk space) by reducing the number 
of travel lanes, reducing the amount of on-street parking, reducing the widths of some travel 
lanes and through deploying bi-directional lanes (Snyder, 2018).  

Crute et al. (2018) discussed how the potential impacts of AVs on street and urban design can 
be extended (but not limited) to: 

● Right-of-ways 
● Access management  
● The form and function of traffic signage and signalization 
● Pedestrian and bicycle networks 
● Design and location of parking 
● Redevelopment opportunities in urban and suburban locales.  

Table 21 in the appendix summarizes the findings from previous studies. This table provides a 
big picture of how CAV technologies will likely transform cities in several aspects including 
urban form, road capacity, lane design, parking demand, and infrastructure. In addition, most 
studies showed that lanes (both number and space) might be reduced, as AVs are able to 
operate in a narrower lane and potentially share opposite-direction lanes when available. The 
degree to which lane widths could be reduced will depend on the design of AVs. In another 
study, Ambühl, Ciari, and Menendez (2016) simulated the impacts of AVs on-road space and 
found that road space can be reduced by 11–12%. However, this required creating actual 
bottlenecks that reduce the efficiency gained in highway capacity. For more details about the 
discussion in street design under CAVs scenarios, please refer to Table 24 in the appendix.  
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Emission, Energy Consumption, and Environment 

Insights from the Expert Workshop 

To represent the potential changes in energy consumption and emissions of GHGs and 
criteria pollutants in a travel demand forecasting model, modelers need to identify and 
fully understand all the changes from these three main streams: 

• Technological change 
o Level of automation 
o Market penetration 
o Fuel type and fuel economy 

• Behavioral change 
o Mode choice 
o Activity pattern 
o Value of time 

• Policy change 
o Business model  
o Private AV vs. shared AV  
o Carpooling 

Depending on penetration rates, CAVs can reduce pollutant emissions and fuel consumption 
because automation and connectivity will lead to more efficient traffic flows, assuming the 
travel demand remains at the same level. Changes in emission and energy consumption are 
believed to be results from mixed aspects. 

Pollution or emission mainly comes from three sources: 

● Travel demand factors 

● Vehicle factors 

● Driving behavior factors 

Wadud, MacKenzie and Leiby (2016) estimated emissions using the ASIF framework, i.e., 
Activity Level & Modal Share & Energy Intensity & Fuel Carbon Content), which is a common 
method for measuring the impact of automation on emissions. The factors considered are 
activity level, modal share, energy intensity, and fuel carbon content. The authors classified all 
potential effects into three categories: energy intensity effects, travel demand effects, and fuel 
mix changes, as shown in Table 3. 
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Table 3. Categories of Changes in Emission and Energy Consumption 

Categories Effects 

Energy intensity effects Congestion mitigation 

Automated eco-driving 

Platooning 

Changing highway speeds 

Reduced emphasis on aspects of vehicle performance, 
e.g., acceleration 

Improved crash avoidance 

Right-sizing of vehicles 

Increased feature content (in-vehicle activity) 

Travel demand effects Increased travel from reduced cost of driver’s time 

Increased travel due to new user groups 

Changes in mobility service models 

Fuel mix changes Unattended refueling at alternative fuel stations 

Vehicles refueling/recharging themselves frequently to 
bypass low volumetric energy density and high storage 
costs 

Good candidates for high-capital-cost advanced vehicles 
(especially for car-sharing) 

Several studies proposed vehicle control strategies based on fuel-economy optimization. Eco-
driving, one of the common vehicle control objectives, has also been developed to increase 
vehicle fuel efficiency and improve transportation system sustainability. In essence, eco-driving 
aims at finding optimal decisions for energy efficiency and emission intensity (Sivak and 
Schoettle, 2012). Barkenbus (2010) summarized three approaches to promote eco-driving: 1) 
accelerating moderately and avoiding sharp starts and stops; 2) maintaining a smooth driving 
pace; and 3) eliminating excessive idling. Ma et al. (2019) showed that a proposed eco-driving 
system could save more than 20% of fuel consumption. 

In some studies, fuel-consumption based optimization was carried out to deal with vehicle 
control and driving tasks. For example, Wu, Zhao, and Ou (2011) designed a fuel-economy 
optimization system (FEOS). The authors found that the drivers with FEOS consumed 
significantly less fuel than those without FEOS in all acceleration conditions (22–31% overall gas 
savings) and the majority of deceleration conditions (12–26% overall gas savings). In another 
study, Wang et al. (2015) proposed a nonlinear model predictive control (MPC) approach for 
emission mitigation via longitudinal control of intelligent vehicles in a congested platoon. This 
study showed that an instantaneous emission optimization software application significantly 
reduces emissions without increasing travel time. In addition, emission mitigation and traffic 
stabilization increase with the penetration rate of intelligent vehicles, as this higher penetration 
allows for larger vehicle platoons. Also, note that when the market penetration rate reached 
70%, the emission reduction effect is almost as good as that achieved under 100% penetration 
rate. Kamalanathsharma and Rakha (2016) proposed a trajectory optimization to minimize the 
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vehicle’s fuel consumption level in the vicinity of signalized intersections. Modeling of the 
trajectory optimization in 30 top-sold vehicles in the United States demonstrated fuel savings 
within the vicinity of signalized intersections in the range of 5 to 30%. Ala, Yang, and Rakha 
(2016) developed an eco-CACC system and proved that energy and environmental benefits 
increase with penetration rate of CACC vehicles and overall fuel consumption savings can be as 
high as 19% with a 100% penetration rate. However, the algorithm may produce higher fuel 
consumption levels with penetration rates less than 30%. Choi and Bae (2013) believed that the 
use of connected vehicles can reduce CO2 emissions. Simulation results showed that for lane 
changing from a faster to a slower lane, the reduction in CO2 emissions of the connected 
vehicle was in the range 4770–54,291 g/km in comparison to the manual vehicle. For lane 
changing from a slower to a faster lane, the CO2 reductions were in the range 40,788–91,884 
g/km. Similarly, Elham et al. (2020) and Jaller et. al. (2020) found that CAV-enabled mechanisms 
such as eco-driving can lead to positive environmental impacts, e.g., over 30% reduction in 
CO2 emission reduction.  

Several other studies discussed the potential impact of CAVs on GHG emissions and fuel 
consumption based on macroscopic methods. For example, Fagnant and Kockelman (2014) 
evaluated the energy use and emission outcomes from the deployment of SAVs, assuming the 
same trip patterns and demand. The authors found that volatile organic compounds (VOC) and 
carbon monoxide (CO) emissions would significantly decrease if SAVs were constantly in 
operation and had fewer vehicle starts. Similarly, PM10 would decrease but by less. Liu et al. 
(2017) estimated the energy consumption and emission of SAVs for different fare points, 
including both macroscopic (e.g., life cycle, parking, vehicle starts, traffic control) and 
microscopic estimates (i.e., those related to driving cycle). The results showed that the total 
energy savings for SAVs from conventional cars is 22.4% (Table 4). Similarly, emissions would 
decrease by 16.8% to 42.7% (Liu et al. 2017). In addition, Chester and Horvath’s (2009) life-cycle 
inventory estimates were used to evaluate the SAV system’s emissions and energy 
consumptions. An investigation of life-cycle inventories and emission inventories showed that 
the overall emission saving is promising. 

Table 4. Fuel Consumption and GHG Emissions if Average SAVs Replaced Conventional Cars 
(Source: Liu et al. 2017) 

Sustainability Elements Fuel consumption 
(%) 

GHG (%) PM (%) CO (%) NOx (%) SO2 (%) 

Macroscopic estimates 
(life cycle based) 

-12 -5.6 -6.5 -34 -18 -19 

Microscopic estimates 
(driving cycle based) 

-11.8 -11.9 -19.1 -13.2 -15.5 -6.6 

Total saving (distance 
based) 

-22.4 -16.8 -24.3 -42.7 -30.7 -24.3 

Note: Greenhouse gas (GHG), Particulate Matter (PM), Carbon Monoxide (CO), Oxides of Nitrogen (NOx), Sulfur 
Dioxide (SO2) 
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Further, to more precisely estimate of effects of SAVs on energy consumption and emissions, 
other factors directly affected by SAVs should be considered, including: VMT, parking search 
activities, reduction of delays associated with crashes, eco-driving/eco-routing, and platooning. 
Of note, all of the discussed potential changes in energy consumption and GHG emissions 
depend on model assumptions and the scale and type of each model. For example, the changes 
in emissions and energy indicators were significantly higher in a that used a network-based 
model (e.g., Fagnant, Kockelman, and Bansal (2015)) rather than a grid-based model (Fagnant 
and Kockelman (2014)). 

Apart from the first-order effects directly associated with energy consumption (e.g., energy 
intensity and travel demand), life-cycle effects also play important roles in predicting 
environmental implications. For example, Wadud, MacKenzie and Leiby (2016) found that AVs 
could operate with significantly lower embodied energy. AVs can operate on narrower lanes 
with more advanced vehicle control technology, i.e., a lane width from 2.7 m (9’) to 3.6 m (12’) 
can be reduced to 2.7 m (9’) for AV operation. This can reduce the footprint of the U.S. road 
system by 16%. Besides, with higher lane capacity, the number of lanes required can be 
decreased. Thus, 5% of the footprint can be saved by reducing lane-kilometers. Combining the 
road construction and vehicle operation energy use, the life-cycle energy use of the road 
system can be reduced by 2-4%.  

Equity Impacts of CAV Deployment 

AVs are believed to have the great potential to improve mobility and accessibility for children, 
elderly people, and individuals with physical disabilities or other impairments to driving (Adnan 
et al., 2018; Harb et al., 2018, forthcoming). Many studies have explored equity issues 
associated with emerging innovative technologies, such as AVs. This field of research also 
examines how disadvantaged and underserved populations fit into the big picture of future 
transportation planning, and in particular new transportation systems and infrastructure that 
are dedicated to automatic, electric vehicles and shared mobility. The studies in this area 
emphasize the importance of equitable planning in transportation infrastructure development, 
including during this new era of transportation.  

Lin (2016) raised an important consideration on how CAVs benefit society as a whole instead of 
specific population subgroups. Among other aspects, in his book, he discussed how the 
potential reduction or shifting of parking-space caused by CAVs may lead to negative effects on 
fresh suburbanization. Cohen et al. (2017) urged that local governments should not only deploy 
CAV technologies quickly but also should put more weight on those who really need this new 
technology, in order to harvest the benefits that this technology could bring to the individuals 
that are currently more limited in their access to mobility. Bills (2020) compared current 
methodologies to access potential impacts of CAVs on disadvantaged communities. In this 
report, he argued that current studies assessing equity implications associated with travel 
behavior applied traditional four-step travel demand models, which cannot handle individual-
level measures of equity. Noah (2014) focused on the ethical challenge in decision making when 
facing possible crashes. Equity implications of CAV deployment are clearly important. 
Accordingly, Alexander et al., 2021 discussed how incentive programs for shared CAV projects 
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targeted at elderly and/or physically-impaired individuals can reduce the barriers of CAV 
deployment and efficiently allocate technology recourses.   
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Modeling CAV Deployment  

We open this section with a brief summary of findings that emerged from the discussion in the 
expert workshop that was organized as part of this project. The experts’ suggestions on how to 
incorporate CAV deployment into models helps us identify assumptions and parameters for the 
modeling part of the project.  

Insights from the Expert Workshop 
Metropolitan planning organizations (MPOs) and planning consultants have begun to add 
components to models to account for recent changes in transportation, including new 
modes such as ridesharing/ridehailing and those that will emerge with CAVs. For example, 
the Sacramento Area Council of Governments (SACOG) modified the DaySim model under 
the SACSIM framework to deal with AV/ridehailing options, as follows: 

• Auto ownership model 
o Different adoption rates for different households—higher for younger, higher-

income households with longer commute distances 
o Households with AVs are less likely to own multiple vehicles 
o Generally, less private vehicle ownership because of shared vehicles  

• Mode choice model 
o Higher usage rate for trips originating from denser areas 
o Higher usage for younger households 
o Mode choice is affected by the availability of shared vehicles 

SACOG found fewer vehicles will be on the road and lower emissions will be generated if 
electrification, automation, and sharing become a reality in the future. Private car 
ownership and the number of privately-owned cars per household could decrease, 
assuming CAVs are deployed as SAVs. Paid ridesharing mobility, with an up to 70% person 
trip mode share, could become a dominant choice. Also, with carsharing and 
ridesharing/ridehailing, people would be less likely to drive alone (10% in person trip 
mode share), while transit trips would likely account for a mode share as low as 0.2%. 

In the Atlanta Regional Commission (ARC) modeling framework, various combinations of 
capacity increase (50%), decrease in travel time disutility (50%), reduction in vehicle 
operating cost (70%), and changes in parking cost have been considered. They project 
daily vehicle trips could increase by up to 2.6% and average trip length would slightly 
increase (from 10 miles in the base case to 12 miles). In addition, daily VHT would change 
by -8.7% to +12.2%. Most importantly, ARC envisions an increase in daily VMT up to 
23.9%. 

Fehr and Peers tested the range of potential changes, assuming private AV ownership and 
50% shared AVs assumptions. They used various models, including trip-based models, 
activity-based models, and limited sensitivity models. Their work showed how results 
could vary based on the modeling framework. Their forecasts show that the increases in 
VMT could range from about 5% to 65% with private AVs and from about 0% to 43% with 
50% shared AVs. Also, the average vehicle trip length could either increase or decrease, 
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with the majority of model applications pointing to an overall increase. Transit trips in 
total, bus transit trips, and rail transit trips in most models are expected to decrease 
under both assumptions.  

As discussed in the previous sections, CAV deployment can affect both transportation demand 
and supply in different ways. Thus, it is important to account for the effect of CAVs on the 
future of transportation in demand forecasting and planning tools. Cottam (2018) reported that 
in 2017 more than 60% of the long-range transportation plans in large urban areas included 
discussion of CAVs; however, the report concluded that the many uncertainties associated with 
CAV deployment were not explicitly discussed or accounted for in long-range plans. 
Furthermore, potential policy and planning implications to shape a future dominated by CAVs 
were absent. On the other hand, the difficulty in estimating the changes in both supply and 
demand propagate through different parts of the planning process. The author further 
discussed that the CAV pilot program is crucial to reducing uncertainties about future 
transportation supply and demand and to calibrating and validating the model parameters. For 
additional details on the uncertainties specific to CAVs and how they propagate in different 
parts of the planning process, please refer to Table 23 in the Appendix.  

The potential factors affecting travel demand and behavior are variable and uncertain. As 
discussed in the National Cooperative Highway Research Program (NCHRP) Report 896 (Zmud 
et al. 2018), several approaches can be used to reduce these uncertainties, such as scenario 
planning that provides information on how near-term policies might shape and be shaped by 
those futures, and assumption-based planning that makes assumptions about the future due to 
the presence of uncertainties. The former approach is limited, as it only considers a few 
scenarios. Kuhr et al. (2017) selected the key factors that are expected to have the most 
influence on CAV planning and discussed how these factors should be either modeled explicitly 
or clearly captured by simplified modeling assumptions. Table 21 (in Appendix A) summarizes 
the behavioral and technological factors to be considered in the modeling of CAVs impacts.  

Zmud et al. (2018) classified the potential impacts of CAVs into five major areas, including the 
impacts associated with the changes in the cost of technology and future transportation 
services, safety, operation/business models, electrification, and personal mobility and 
convenience. Given the limitations of existing modeling tools, particularly those appropriate for 
regional-level analysis, significant simplifications have been employed to represent desired 
assumptions in the early stages of modeling CAVs. Soteropoulos, Berger, and Ciari (2019) 
provided a comprehensive review of several research projects and papers on modeling the 
impact of AVs on travel behavior and land use between 2013 and 2018. The authors confirmed 
that there are several simplifications and modeling assumptions made to assess the potential 
impact of AVs, including: 

• The share of trips, particularly in modeling SAVs (e.g., splitting trips by modes using a 
rule-based approach, or incorporating assumptions on SAVs such as pricing structure in 
the mode choice model) 
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• How SAVs are assigned and relocated to serve the demand (e.g., based on first-come-
first-served or demand-supply balancing) and the acceptable waiting time thresholds  

• Use of simplified network such as gridded-like city  

• Reduction of value of travel time 

• Increase in road capacity 

• The operation and parking cost of AVs (e.g., empty miles) 

• Changes in the mobility of people with age or physically related limitations that prohibit 
them from driving 

Table 22 (in Appendix) summarizes several current modeling studies, the assumptions used in 
scenario developments, and the result of each scenario. As shown in this table, the results are 
largely dependent on model assumptions and framework (i.e., types of models). The changes 
are assumed by analysts and may not be applicable in the future when compared to actual CAV 
use and related behavioral changes. Soteropoulos, Berger, and Ciari (2019) concluded that the 
impacts assessed by the models appear to be particularly sensitive to a reduction in the value of 
time as compared to increases in road capacity or operating costs. Moreover, many of the 
model simplifications could lead to overestimations in the reduction of the number of vehicles 
or parking spaces due to the emergence of SAVs. The authors showed that the context in which 
these services are provided also matters. For example, trip durations and distances vary 
significantly in different cities and neighborhood types. 

Behavioral data also indicates that the changes in the following would be limited: trip/tour 
frequency, length, mode, route, time of day, and other CAV characteristics. Moreover, the 
results from stated preference surveys may involve a large number of uncertainties in the 
estimates due to the hypothetical bias. This is true for the conditions affecting market 
penetration and consumer adoption rate, which are expected to depend on the cost of 
technology, the business/operation model, actual experience and comfort, roadway and 
parking infrastructure, and policy regulations (Zmud et al. 2018). NCHRP Report 896 provides a 
high-level guideline on the methods to account for CAVs in both 4-step (trip-based) models and 
activity-based models. 

Table 24 and Table 25 (in the Appendix) summarize the changes required in the 4-step and 
activity-based models, respectively. To forecast a future dominated by CAVs, the authors 
further discussed current knowledge on the impacts that CAVs have on aggregate speed–flow 
relationships. The use of a simulations that can represent detailed differences in the ways that 
human drivers and AVs will navigate the road networks may be the most promising approach 
for learning how CAVs will influence traffic capacity and congestion levels. The NCHRP report 
shows the benefit of an integration of an activity-based model with dynamic traffic assignment 
(in place of more traditional static equilibrium assignment methods) for the evaluation of CAV 
impacts.  
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Methodology 

As the literature presented in the previous section discusses, CAVs are expected to bring many 
changes to current transportation systems, including in transportation supply, travel demand, 
and land use. Given the multiple sources of uncertainties and possibilities, we aimed to quantify 
the impacts using travel demand forecasting tools.  

In the second part of this report, we present the methodology that we apply to forecast the 
potential ranges of impacts of CAV deployment using the CSTDM framework for the State of 
California. We then present a list of scenarios of future travel demand considering factors and 
parameters rooted in the literature. Using the travel demand and trip related results from the 
modified CSTDM model, we calculated the criteria pollutants and greenhouse gas emissions 
using the emission factors from the EMFAC and Vision models.  

We compare the scenarios with the baseline scenario for 2050 created by the California 
Department of Transportation (Caltrans) and draw some final conclusions on the potential 
impacts of CAVs on mode share, VMT, emission, and other aspects of future society, and the 
implications that these will have for planning processes and future policy making.  

Overview of the CSTDM 

In this section, we describe the activity-based model framework and the EMFAC and Vision 
models that we used to forecast the impacts of CAV deployment. We used the California 
Statewide Travel Demand Model Version 3.0 (CSTDM V3.0). The CSTDM V3.0, a scenario- and 
activity-based travel demand model that forecasts all personal travel made by every California 
resident and all commercial vehicle travel for a typical weekday in fall/spring in a certain target 
year. Each forecasting year is coded as one specific scenario, and the required model input 
includes the scenario-specific files for the corresponding future target year.  

In the CSTDM framework, the entire state of California is divided into 5,454 transportation 
analysis zones (TAZs) for internal travel and 53 external zones to represent entry/exit points on 
the state boundary. The model considers four time periods:  

1) AM peak from 6 am to 10 am;  
2) Midday from 10 am to 3 pm;  
3) PM peak from 3 pm to 7 pm; and 
4) Off-peak from 7 pm to midnight and from 12 am to 6 am of the following day.  

The CSTDM V3.0 is an update based on the CSTDM V2.0, where the majority of model 
components for passenger travel remain unchanged. The CSTDM V2.0 has five major demand 
models: 

1. A Short Distance Personal Travel Model (for intra-California trips) (SDPTM); 
2. A Long Distance Personal Travel Model (for intra-California trips) (LDPTM); 
3. A Short Distance Commercial Vehicle Model (for intra-California trips) (SDCVM); 
4. A Long Distance Commercial Vehicle Model (for intra-California trips) (LDCVM); and 
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5. An External Vehicle Trip Model (ETM) (for trips with an origin and/or destination outside 
California). 

The freight demand models, SDCVM and LDCVM, from version 2.0 have been replaced by the 
newer California Statewide Freight Forecasting Model (CSFFM) in version 3.0. The structure of 
passenger models and external trip model are kept from version 2.0. Personal trips with a 
distance shorter than 100 miles are forecasted by SDPTM, and trips longer than 100 miles are 
forecasted by LDPTM. The SDPTM and LDPTM are calibrated to match the observed travel 
patterns from 2010-2012 California Household Travel Survey (2012 CHTS). The forecasting years 
conducted by Caltrans range from 2015 towards 2050. 

The CSTDM V3.0 model uses input from the zone system, networks, population, employment, 
and zonal properties. Then the major model components—SDPTM, LDPTM, CSFFM, and ETM—
compute lists of trip tables by mode at the zonal level, which are then processed by the 
assignment and skims modules. The outputs of the CSTDM V3.0 include a trip table, loaded 
network, travel cost, and several summary statistics. The framework is shown in Figure 1 below. 

 

Figure 1. The CSTDM V3.0 Modeling Framework  
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The SDPTM component considers eight travel modes: 

1. SOV (single-occupant auto) 
2. HOV2 (high-occupant auto with two persons in the vehicle) 
3. HOV3+ (high-occupant auto with three or more persons in the vehicle) 
4. Walk access local transit 
5. Drive access local transit 
6. Walk 
7. Bicycle 
8. School Bus 

SDPTM is designed to follow the procedure as: 

1. Long term decision (Driver’s license, Household car ownership, Work/School location) 
2. Day patterns (including number, purpose, time of tours, and stops on tours 
conditioned by household) 
3. Primary destination choice 
4. Tour mode choice (logit models) 
5. Secondary destination (the destination of all secondary stops on tour) 
6. Trip mode (logit models) 

The LDPTM component considers five travel modes: 

1. SOV 
2. HOV2 
3. HOV 3+ 
4. Rail (conventional rail and optional high-speed rail) 
5. Air 

LDPTM is designed to follow the procedure as: 

1. Travel choice model (multinomial logit model) 
2. Party formation model (including base party size, primary traveler model, solo 
traveler model, and group size model) 
3. Tour property model (including tour duration model, travel day status model, and 
time of travel model) 
4. Destination choice model (5 logit models for different purposes) 
5. Mode choice model, including main mode choice models and access/egress mode 
choice models (based on California High-Speed Rail Authority high-speed rail model) 

As passenger travel is the focus of this project, we emphasized the related model components 
from the description above. However, the commercial vehicle models in the CSTDM also need 
to be included and run, since commercial trips contribute to roadway congestion, and realistic 
modeling of future travel scenarios should consider both passenger and freight contribution to 
road flows. 
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We ran all final scenario analyses using the CSTDM Version 3.0, which became available halfway 
through the development of this project. The research team initially had access to the CSTDM 
Version 2.0, which was installed on a local machine in a UC Davis research lab, as part of the 
activities for this project. Installing the local copy of the model required finetuning the model 
and computer settings, a process that can be rather tedious and time consuming. This process 
was performed with the support from Caltrans and its transportation modeling consultants. At 
the time the research activities were carried out, the CSTDM Version 2.0 did not include a 
complete scenario for future transportation in California until 2050. Accordingly, the research 
team performed analysis for the scenario year 2040 in the initial stages of the research. 
Following the release of the CSTDM Version 3.0, Caltrans and its consultants were no longer 
able to provide assistance and support for the use of Version 2.0, and a decision to transition to 
the CSTDM Version 3.0 was made. The CSTDM V3.0 includes several upgrades, including an 
updated freight component in the statewide travel demand model, which replaced the 
corresponding component in Version 2.0 (that was actually inherited from the original Version 
1.0). The CSTDM Version 3.0 includes future scenarios until year 2050.  

Access to the CSTDM V3.0 was initially made somewhat difficult by the social distancing 
restrictions during the COVID-19 pandemic in the first quarters of 2020. However, also as an 
effect of the new regulations from Caltrans that do not allow for third-party researchers to 
obtain a local copy of the model now that remote access has been made available, a work-
around solution was designed through gaining access to the Version 3.0 of the model through a 
remote desktop connection to a workstation owned and operated by Caltrans. All final scenario 
runs in this project were performed remotely with the CSTDM Version 3.0 on the Caltrans 
workstation. As documentation to the newer CSTDM Version 3.0 is still rather limited, the 
research team worked in collaboration with the Caltrans modeling staff, and their consultants 
at Cambridge Systematics, to adjust the required settings and parameters in the model (in 
particular for components that were modified in the newer Version 3.0 of the model), and to 
troubleshoot several error messages and discrepancies in the scenario results that were 
obtained. The research team also received assistance from a modeler (now at Fehr & Peers) 
that previously worked on the development of the freight component of the CSTDM Version 
3.0. These consultants helped compare results and troubleshoot some discrepancies in the 
model output that were obtained in some of the model runs. This entire process proved to be 
much more labor-intensive and time-consuming than initially forecasted. In fact, not all 
inconsistencies in some of the scenario model outputs (in particular on the freight side) could 
be worked out and reconciled by the time of writing this report.  

The scenarios were developed prior to the COVID-19 pandemic, and the model coefficients 
were calibrated and validated based on a regular year before the interruption of COVID-19. 
Thus, the results of the application of CSTDM in this project do not take into consideration the 
short- or long-term impacts of the pandemic.  

Expected Impacts and Corresponding Model Components 

CAVs are very likely to affect trip generation, including people’s long-term decisions (such as 
vehicle ownership, residential locations, etc.) and short-term decisions (such as destination 
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choice, mode choice, etc.). In this section, we present the modifications to the CSTDM V3.0 
activity-based model framework that were introduced to incorporate the impacts of CAVs.  

Before we dig into the implementation details, it is worth mentioning some factors that are 
held constant in the modeling framework for this study. For example, the vehicle ownership 
component remains unchanged in our implementation. This is simply because there is only one 
vehicle type for automobiles within the CSTDM, and we cannot differentiate human-driven 
vehicles and CAVs under this setup. Similarly, we do not implicitly add a shared-use SAV 
component. Because vehicle sharing and ride sharing often require a central controller and 
agent-based simulation, our activity-based approach cannot handle the direct modeling of SAVs 
within the CSTDM. Accordingly, we treat the SAV component as a part of post-processing work.  

Other examples of the factors held constant in our modification in the CSTDM are residential 
location and land use, carried out in the population synthesizer and zonal property inputs in the 
model. These factors largely rely on urban planning strategy and policy shift for CAVs for the 
future. Currently, evidence in the literature and practices in the real world can hardly serve as 
strong evidence for us to project future land use impacts of CAVs. In the sections below, we list 
the expected impacts of privately owned and shared use CAVs and our implementation with 
corresponding model components using the CSTDM V3.0. 

Driver’s License 

CAVs are expected to provide better mobility and reduce travel inconveniences for the general 
population, and these would bring changes in their long-term decision making. The population 
segment that is not well served by human-driven vehicles should have more opportunities to 
travel, especially for the young, elderly, and those with physical limitations. 

It is difficult to directly modify the household vehicle ownership module of the CSTDM, since 
determining the cost of buying an AV is still a challenge for both the industry and public sectors. 
Thus, we choose to change the driver’s license module, which is an immediate upstream to the 
vehicle ownership. An individual must obtain a driver’s license to be qualified to own a vehicle.  

We relax the age limitation of obtaining a driver’s license to greater or equal to 12 years old. 
Instead of using a binary logit model to determine whether an individual has a driver’s license, 
we allow anyone 12 years-old or older to have a driver’s license. This would lead to more 
driver’s licenses and higher vehicle ownership in general even though people from 12 to the 
current driver license age typically do not have an income and may not be direct purchasers of 
vehicles. This is used to approximate that CAV would enable more accessibility to vehicles for 
teenagers, senior population, and people with physical constraints to drive a human-driven 
vehicle. We assume that in the future all individuals age 12+ are allowed to ride in a CAV, even 
when traveling alone.  

Value of Time (VOT) 

The availability of CAVs would bring more convenience for traveling and enable various in-
vehicle activities. More in-vehicle activities can be conducted in CAVs than in human-driven 
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vehicles, such as working, sleeping, and consuming entertainment. The convenience of in-
vehicle activities within CAVs would lower people hesitancy to travel or make people less 
resistant to traveling by car. Also, CAVs would then probably make people more tolerant of 
longer in-vehicle travel time. The original coefficients of VOT in the CSTDM are estimated for 
human-driven vehicles, which is not suitable for AVs. Thus, we modified the value of travel time 
to model the change in generalizing cost for mode choice and destination choice. The change in 
the utility function can be passed down to long-term decisions in the next model, since the 
travel cost and disutility would differ due a modified cost structure.  

Parking Cost 

In the CSTDM, parking costs are included in the zonal property database i.e., zonal properties 
associated with each transportation analysis zone in California. Parking cost consists of base 
cost, time-based cost, and additional cost. Base parking cost represents 1/20 of parking 
purchased monthly, where this parameter is used in the STPTM for work and school purposes, 
since parking is typically purchased on a long-term basis. A regression model is developed in the 
CSTDM to calculate daily and hourly costs based on the base price, which is used in the SDPTM 
for other tour purposes. The daily parking cost is also used in the LDPTM. The additional cost is 
used to represent the paid parking for visitors.  

Parking cost would be very different with the availability of CAVs, in terms of both cost 
structure and magnitude. For example, a CAV can wander around on its own after dropping off 
the passenger and then come back to pick up the passenger in the same or different location. 
This behavior would lead to no parking demand generated at the destination. Or the traveler 
can let the vehicle self-park at a farther location at a potentially lower parking cost. Apart from 
parking choice, the land use and curbside management would also be different in the CAV era. 
Local policymakers would likely consider the disruption caused by frequent pick-ups and drop-
offs and make corresponding regulations and policy changes.  

Vehicle Operating Cost 

Operating costs of CAVs would be different due to automated driving technologies, 
electrification, and other cost components that are difficult to measure directly. In the CSTDM, 
the operating cost ($/mile) consists of fuel and non-fuel operating components. The fuel 
component cost is largely based on the motor gasoline price and fuel economy (mpg) forecast 
by the U.S. Energy Information Administration (EIA). The non-fuel component is adapted from 
the California High-Speed Rail Ridership and Revenue model (calibrated in 2006-2007), and it is 
assumed to be 67% of the fuel component operating cost. The non-fuel component is kept as a 
fixed constant ($0.09/mile) throughout the projected years, based on the assumption that non-
fuel operating costs are less volatile than fuel prices.  

To account for the impacts of CAVs, we change the projected auto operating cost provided by 
Caltrans. This consideration includes the assumptions of changes in electrification, vehicle type, 
and road user charges. Electrification would likely decrease the operating cost since an 
increasing number of vehicles (including CAVs) would be electrified, and thus fuel components 
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would be directly reduced. Also, operating cost is a good surrogate for congestion pricing and 
road user charges, meaning extra cost might be imposed when traveling. Thus, in this project, 
we implement pricing strategies by adjusting the operating cost component in the CSTDM.  

Highway Network 

One of the most direct impacts of automation and vehicle technology will be the changes in 
traffic flow in terms of throughput, stability, safety, and so on. However, these advances cannot 
be directly implemented under the activity-based framework since the travel decision-making 
process is not directly affected by vehicle technologies. However, vehicle technology and traffic 
influence travel choices in a higher-order manner, mainly through the change of generalized 
cost and traffic network operations. 

With the automation and connectivity features, traffic flow on the highway would be more 
stable and yield higher throughput. If incidents and congestion are reduced, vehicle travel can 
be faster, safer, and more reliable. This all leads to the increased level of service of 
transportation networks. We choose to model changes in vehicle technology and traffic supply 
by modifying the capacity of the highway network. 

Different changes are implemented based on the corresponding facility type, to quantify 
impacts for different driving environments. There are seven facility types in the CSTDM for 
highway networks, including freeway, expressway, major arterial, minor arterial, collector, 
ramp, and centroid connector (dummy link). We assume the capacity would decrease on ramps 
due to frequent vehicle-to-vehicle interaction. And capacity is assumed to increase everywhere 
else except on dummy links. 

Emissions  

The GHG and criteria pollutants emissions are calculated based on EMFAC and Vision emission 
factors. The emission factors depend on region, fuel type and vehicle categories, consistent 
with EMFAC 2017 fuel types and vehicle categories. We target four criteria pollutants in this 
study: Carbon dioxide (CO2), Nitrogen Oxides (NOx), Particulate Matter 2.5 (PM2.5) and 
Reactive Organic Gases (ROG). The processing method is summarized in Figure 2. Following the 
recommendations from CARB, emission factors from the Vision scenario model are used for 
passenger vehicles. The Vision scenario model is a scenario planning tool that incorporates 
EMFAC 2017 emission rates and scenario-specific forecasted vehicle activities to assess 
emission and energy impact of future technologies and policies. The emission factors used in 
the non-ZEV scenarios and in the ZEV scenario in this study are consistent with the Vision 
inventories supporting CARB’s 2020 Mobile Source Strategy (MSS), respectively, for the 
business-as-usual (BAU) scenario and the MSS main scenario3. The MSS main scenario reflects 
achieving 100% new sales of passenger vehicles being ZEV or PHEV by 2035. In MSS BAU case, 
eVMT contributes 11% to the total VMT in year 2050. In MSS main case, eVMT contributes 91% 

 

3 Vision Data and Results for LDV WTW emissions (November 2020) 
https://ww2.arb.ca.gov/sites/default/files/2020-11/LDV_MSS_supporting_materials_ISAS_Nov2020.xlsx  

https://ww2.arb.ca.gov/sites/default/files/2020-11/LDV_MSS_supporting_materials_ISAS_Nov2020.xlsx
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to the total VMT in year 2050. The emission factors are provided at county level. EMFAC 
emission factors for trucks are retrieved from the EMFAC 2017 Web Database (v1.0.2).4 

 

Figure 2. Emission Processing Method 

Road transportation emissions are calculated separately for passenger vehicles and freight 
trucks. This could help to segregate the impacts for passenger and freight travel, since the main 
target is on the passenger side for this project. We follow the procedure below to calculate the 
emissions for passenger vehicles (auto): 

1. The Vision emission factors originally at GAI level are aggregated into county level by 
taking the countywide averages. (Note that there are 69 GAI areas and 58 counties in 
the state of California.) 

2. The county level VMT results are retrieved from the scenario results from the CSTDM. 
3. Statewide emissions are calculated as the sum of the products of county-level VMT and 

emission factors for CO2, NOx, PM2.5 and ROG. 

The EMFAC 2017 model is used for truck emission calculations. The emission factors from 
EMFAC are separated for different vehicle categories, while the results from the CSTDM have 
only one truck type. Therefore, we derive the weighted average of emission factors, weighted 
by VMT for three different vehicle categories: light, medium, and heavy duty trucks. The EMFAC 
2011 vehicle categories are used to match the categories for the emission factor calculation. 
We use the weighted average of the "one” truck vehicle type to represent truck emissions for 
all of California. As a result, we obtain the statewide average of the emission factors for CO2, 
NOx, PM2.5 and ROG. Similarly, the VMT at the county level is used to as input to calculate 

 

4 https://arb.ca.gov/emfac/2017/  

https://arb.ca.gov/emfac/2017/
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pollutants based on corresponding county-level emission factors from Vision and EMFAC in year 
2050. These results are aggregated at the statewide level. 

Scenario Design and Implementation 

Based on the literature review and experts’ insights from the workshop in April 2019, a set of 
scenarios simulating potential future changes for transportation in California were identified in 
this project and modeled, in addition to the baseline scenario in 2050 provided by the CSTDM 
V3.0, which serves in all cases as the business-as-usual (BAU) comparison for the scenario 
results. The following sections provide the details on how we simulate each scenario in the 
CSTDM V3.0. The scenario design is summarized in Table 5. All scenarios are modeled for year 
2050 and compared to the baseline Scenario 0 in the discussion of the results and implications 
for the future of society.  

We compute lower bound (LB) and upper bound (UB) cases for each scenario to provide the 
ranges of impacts of potential changes due to CAV. Any results within the range are likely to 
happen for the forecasted year. The summary table of scenario design is shown in Table 6. The 
factor inputs include the adjustments introduced in certain model components and factors 
directly coded in the CSTDM V3.0. The off-model post-processing adjustments (b series) are 
based on modifications of the corresponding model outputs for the LB scenarios (a series).  

Table 5. Scenario Design 

Scenario Private CAV  SAV Pricing ZEV 

0     

1a & 1b √    

2a & 2b √  √  

3a & 3b √   √ 

4a & 4b  √   

5a & 5b  √ √  

6a & 6b  √  √ 

Notes:  
Scenario 0 – BAU (no vehicle automation, year 2050 from Caltrans); 
Scenarios 1a & 1b – Private CAV, lower bound (LB) and upper bound (UB), respectively; 
Scenarios 2a & 2b – Private CAV + Pricing, LB and UB;  
Scenarios 3a & 3b – Private CAV + ZEV, LB and UB;  
Scenarios 4a & 4b – Shared CAV, LB and UB;  
Scenarios 5a & 5b – Shared CAV + Pricing, LB and UB; and 
Scenarios 6a & 6b – Shared CAV + ZEV, LB and UB.  
ZEV, zero emission vehicle; SAV, shared automated vehicle. 
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Table 6. Scenario Overview 

No Scenario 
Factor input 
(change compared with Scenario 0 BAU 2050) 

Off-model processing adjustment  

0 BAU 2050 * * 

1a 
Private CAV  
(LB) 

1. Operating cost -25%; 
2. Capacity +50% (-20%); 
3. Parking cost - 25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV,HOV2,HOV3+) VOT -50%. 

* 

1b 
Private CAV  
(UB) 

1. Operating cost -25%; 
2. Capacity +50% (-20%); 
3. Parking cost - 25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV,HOV2,HOV3+) VOT -50%. 

1. TAZ level OD trips +15% induced demand for all 
modes for SD and LD; 
2. SD deadheading trips +20% SOV, +15% HOV2, 
+15% HOV3+. 

2a 
Private CAV + 
Pricing (LB) 

1. Operating cost +50%; 
2. Capacity +50% (-20%); 
3. Parking cost - 25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV,HOV2,HOV3+) VOT -50%. 

* 

2b 
Private CAV + 
Pricing (UB) 

1. Operating cost +50%; 
2. Capacity +50% (-20%); 
3. Parking cost - 25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV,HOV2,HOV3+) VOT -50%. 

1. TAZ level OD trips +15% induced demand for all 
modes for SD and LD; 
2. SD deadheading trips +20% SOV, +15% HOV2, 
+15% HOV3+. 
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No Scenario 
Factor input 
(change compared with Scenario 0 BAU 2050) 

Off-model processing adjustment  

3a 
Private CAV + ZEV 
(LB) 

1. Operating cost -25%; 
2. Capacity +50% (-20%); 
3. Parking cost -25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV, HOV2, HOV3+) VOT -50%. 

1. Post-processing on ZEV emission 

3b 
Private CAV + ZEV 
(UB) 

1. Operating cost -25%; 
2. Capacity +50% (-20%); 
3. Parking cost -25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV, HOV2, HOV3+) VOT -50%. 

1. TAZ level OD trips +15% induced demand for all 
modes for SD and LD; 
2. SD deadheading trips +20% SOV, +15% HOV2, 
+15% HOV3+; 
3. Post-processing on ZEV emission. 

4a 
Shared CAV  
(LB) 

1. Operating cost -25%; 
2. Capacity +50% (-20%); 
3. Parking cost -25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV, HOV2, HOV3+) VOT -50%. 

1. For SD TAZ level OD,  
move 10% of SOV trips to HOV2 (get 60%), and 
HOV3+(get 40%);  
move 40% of PT trips to HOV2 (get 70%) and 
HOV3+ (get 30%); 
2. SD deadheading +10% HOV2, +10% HOV3+. 

4b 
Shared CAV  
(UB) 

1. Operating cost -25%; 
2. Capacity +50% (-20%); 
3. Parking cost -25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV, HOV2, HOV3+) VOT -50%. 

1. TAZ level OD trips +15% induced demand for all 
modes for SD and LD; 
2. For SD TAZ level OD,  
move 10% of SOV trips to HOV2 (get 60%), and 
HOV3+ (get 40%);  
move 40% of PT trips to HOV2 (get 70%) and 
HOV3+ (get 30%); 
3. SD deadheading +20% SOV, +20% HOV2, +20% 
HOV3. 
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No Scenario 
Factor input 
(change compared with Scenario 0 BAU 2050) 

Off-model processing adjustment  

5a 
Shared CAV + 
Pricing  
(LB) 

1. Operating cost +50%; 
2. Capacity +50% (-20%); 
3. Parking cost -25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV, HOV2, HOV3+) VOT -50%. 

1. For SD TAZ level OD,  
move 10% of SOV trips to HOV2 (get 60%), and 
HOV3+ (get 40%);  
move 40% of PT trips to HOV2 (get 70%) and 
HOV3+ (get 30%); 
2. SD deadheading +10% HOV2, +10% HOV3+. 

5b 
Shared CAV + 
Pricing 
(UB) 

1. Operating cost +50%; 
2. Capacity +50% (-20%); 
3. Parking cost -25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV, HOV2, HOV3+) VOT -50%. 

1. TAZ level OD trips +15% induced demand for all 
modes for SD and LD; 
2. For SD TAZ level OD,  
move 10% of SOV trips to HOV2(get 60%), and 
HOV3+(get 40%);  
move 40% of PT trips to HOV2 (get 70%), HOV3+ 
(get 30%); 
3. SD deadheading +20% SOV, +20% HOV2, +20% 
HOV3. 
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No Scenario 
Factor input 
(change compared with Scenario 0 BAU 2050) 

Off-model processing adjustment  

6a 
Shared CAV + ZEV 
(LB) 

1. Operating cost -25%; 
2. Capacity +50% (-20%); 
3. Parking cost -25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV, HOV2, HOV3+) VOT -50% 

1. For SD TAZ level OD,  
move 10% of SOV trips to HOV2 (get 60%), and 
HOV3+ (get 40%);  
move 40% of PT trips to HOV2 (get 70%) and 
HOV3+ (get 30%); 
2. SD deadheading +10% HOV2, +10% HOV3+; 
3. Post-processing on ZEV emission. 

6b 
Shared CAV + ZEV 
(UB) 

1. Operating cost -25%; 
2. Capacity +50% (-20%); 
3. Parking cost -25%; 
4. Driver's license relax to age 12; 
5. Auto (SOV, HOV2, HOV3+) VOT -50%. 

1. TAZ level OD trips +15% induced demand for all 
modes for SD and LD; 
2. For SD TAZ level OD,  
move 10% of SOV trips to HOV2 (get 60%), and 
HOV3+ (get 40%);  
move 40% of PT trips to HOV2 (get 70%), HOV3+ 
(get 30%); 
3. SD deadheading +20% SOV, +20% HOV2, +20% 
HOV3; 
4. Post-processing on ZEV emission. 

Note: * stands for no change based on the reference scenario setup. 
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Scenario 0 – Baseline (BAU) 

We take the 2050 Caltrans scenario as a baseline for comparison with the other scenarios. The 
2050 baseline scenario takes in the projected zonal properties, networks, and lists of socio-
economic data as input. The daily activity pattern is computed from a predetermined day 
pattern pool. Average auto occupancy for HOV3+ vehicles is set as 3.6. In the forecasting year 
2050, the baseline operating cost is $0.20. A high-speed rail option is available in the long-
distance travel model. CAVs are not included in the baseline scenario.  

The outputs include trips by modes by time period at the TAZ level, and this can be further 
aggregated into the MPO, county, and super-region levels. VMT and VHT are also generated for 
separate modes. The following scenarios are built on top of the baseline scenario. 

Scenario 1 – Private CAV 

 

In this scenario, we model the highest penetration of personally owned AVs in the year 2050 
(scenario 1a Private CAV LB). CAVs are assumed to be only available as private options with a 
75% to 100% penetration rate based on the literature specified in previous section. The range 
of CAV penetration rate is dependent on various beliefs about how CAV technology would be 
developed in the future. Such high penetration rates would ensure that most of the benefits 
from the CAV deployment are available to travelers (and minimizing some of the mixed-flows 
disutilities that might be present for lower penetration rates).  

The VOT of using the private car mode is assumed to decrease by 50%. This is generally because 
of the convenience of traveling with a privately-owned CAV, as the “driver” could conduct other 
activities while in the vehicle. Here we assume the VOT is decreased for single occupancy 
vehicles (SOVs), high occupancy vehicles with 2 travelers (HOV2s), and high occupancy vehicles 
with 3 or more travelers (HOV3+). Note that the VOT is kept unchanged for transit users and 
freight vehicles, based on the assumption that most uncertainties come from passenger 

Assumptions on the model components: 

1a LB: 
1. Highway capacity change: increase by up to 50% (or decrease by 20%) based on 

facility types; 
2. Value of time: decrease by up to 50%; 
3. Vehicle operating cost: decrease by up to 25%; 
4. Parking cost: decrease by up to 25%; 
5. Access to AVs: driver’s license available for individuals starting at 12 years old. 

1b UB: 
Same as 1a LB 1-5 
+ Off-model processing: 
1. TAZ level OD trips (induced demand): increase 15% for all modes in SD and LD; 
2. SD deadheading trips: SOV increase 20%, HOV2 increase 15%, HOV3+ increase 15%. 
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vehicles and that the benefits from automated trucks would need to be accounted for in 
different settings (e.g., truck platooning) rather than with changes in the VOT. Scenarios 
involving these modifications in the freight sector are considered outside the scope of this 
project.  

The overall vehicle operating cost per mile in 2010 dollars is set at $0.15; this is the same for all 
passenger vehicles. The network capacity is treated separately for different facility types of the 
highway network. The capacity is assumed to increase by 50% for the majority of the highway, 
including freeways, expressways, major arterials, minor arterials, and collectors. The capacity of 
the ramp section is assumed to decrease by 20%, because of more friction induced by merging 
and splitting of CAV vehicles. The dummy links, acting as centroid connectors, are kept with 
original free-flow speed and infinite capacity. The parking cost, based on the zonal properties 
corresponding to each TAZ, is assumed to decrease by 25%. This treatment is due to two 
assumptions: 1) a lower parking cost would lead to a higher probability of parking, to mimic the 
possibilities that CAVs could park on their own and maybe at a different place (usually farther 
from the CBD area) with a lower cost; 2) a lower parking cost would induce a low total travel 
cost, thus causing more potential travels that would not be made without the availability of 
CAV. The availability of a driver’s license, originally developed as a binary logit model for each 
individual, is now relaxed into a simpler if condition. Anyone with an age greater than or equal 
to 12 years would have access to a driver’s license. Note that having a driver’s license is the 
precondition of owning a vehicle, so we anticipate seeing higher vehicle ownership within the 
model results because of this adjustment.  

Next, based on the model outputs, we study the range of demand expansion and deadheading 
for the upper bound case (scenario 1b Private CAV UB). As shown in Table 22 in Appendix A, 
various studies reported range of potential impacts on extra VMT due to deadheading and 
induced demand that the CSTDM fail to capture. Thus, we create an upper bound case to 
account for the extra VMT and mode share penalty based on the setup for scenario 1a.  

As in the first part of this report, the literature indicates that trip generation will likely differ in 
the CAV era, especially since CAVs will be a brand-new advanced transportation mode. With 
much lower travel costs for CAVs compared to human-driven vehicles on current infrastructure, 
more trip generation is anticipated systemwide. However, the trip generation process in the 
CSTDM mainly depends on sociodemographics and home/work locations. As these factors 
would not change dramatically simply because of the availability of CAV, the total trip 
generation in the CSTDM would also remain constant, which is not realistic and/or consistent 
with the expectations from the literature on a CAV future, which might lead to substantial 
induced demand. In other terms, even with a much lower travel cost due to the availability of 
CAVs, the CSTDM V3.0 is not likely to capture the induced demand associated with CAVs. Thus, 
we apply a 15% increase in demand for all travel modes (including auto modes, transit, rail and 
air) to account for the induced demand. This can be considered an even conservative estimate 
when compared to the findings from recent studies (Harb et al., forthcoming). Further, the 
availability of CAVs would also generate extra deadheading that is not captured in the original 
CSTDM framework. Based on the literature shown in Table 22 in Appendix A, we assume that 
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the impacts of deadheading would translate in increasing SOV trips by 20%, HOV2 trips by 15% 
and HOV3+ trips by 15%. Therefore, based on the assumptions in scenario 1a for the lower 
bound and the assumptions on demand expansion that have just been discussed, we model 
scenario 1b (upper bound), including two main additional assumptions: 

1. TAZ level OD trips (induced demand): increase 15% for all modes in short distance 
model (SD) and long distance model (LD); 

2. SD deadheading trips: SOV increase 20%, HOV2 increase 15%, HOV3+ increase 15%. 

These two adjustments are used as a proxy for the induced demand and extra travel generated 
for zero-occupancy vehicle pickup and return trips.  

Scenario 2 – Private CAV + Pricing  

 

In this scenario, we model a policy with road user charges, based on the Private CAV scenario 
(scenario 1). We assume that only privately owned CAVs are available, with a penetration rate 
of 75% to 100%. Adding road user charges would increase travel costs for travelers by 
automobile. Since there are multiple types of user charge and congestion pricing, and also it is 
still unclear how to determine the geographical boundary of such change, we assume the 
changes are applied to all trips made by passenger vehicles so that the overall vehicle operating 
cost can reflect the system-wide adjustment. The operating cost parameter is assumed to 
increase by 50% over the BAU cost and set as $0.30/mile). Since the operating cost component 
is not directly dependent on the highway network, it is safe to assume that network capacity 
changes by the same amount as in the Private CAV scenario. Similarly, VOT, parking cost, and 
driver’s license are kept the same as in the Private CAV scenario. Similar as in the scenario 1b, 
we make demand expansion and deadheading adjustments for the upper bound case.  

Assumptions on the model components: 

2a LB: 
1. Highway capacity change: increase by up to 50% (or decrease by 20%) based on 

facility type;  
2. Value of time: decrease by up to 50%; 
3. Vehicle operating cost: increase by 50% based on policy assumptions; 
4. Parking cost: decrease by up to 25%;  
5. Access to CAVs: driver’s license available for individuals starting at 12 years old. 

2b UB: 
Same as 2a LB 1-5 
+ Off-model processing: 
1. TAZ level OD trips (induced demand): increase 15% for all modes in SD and LD; 
2. SD deadheading trips: SOV increase 20%, HOV2 increase 15%, HOV3+ increase 15%. 
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Scenario 3 – Private CAV + ZEV  

 

Due to the limitation that only one passenger vehicle type is available in the CSTDM, we choose 
to use postprocessing on emission factors to estimate the potential impacts of electrified CAVs. 
This treatment would ignore the potential changes in travel patterns and travel impedance 
caused by electrification, but it still provides some insights on how emissions would be affected 
in a scenario with wide ZEV adoption.  

We assume total 91% VMT are zero-emission, based on Vision MSS main scenario assumption. 
This scenario is computed by post-processing using various emission factors from the Vision and 
EMFAC emission model in combinations with the model assumptions and results for scenario 1a 
and 1b. 

Assumptions on the model components: 

3a LB 
1. Highway capacity change: increase by up to 50% (or decrease by 20%) based on 

facility type;  
2. Value of time: decrease by up to 50%; 
3. Vehicle operating cost: decrease by 25%; 
4. Parking cost: decrease by up to 25%; 
5. Access to CAVs: driver’s license available for individuals starting at 12 years old. 

+ Off-model processing: 
1. Post-processing on ZEV emission. 

3b UB: 
Same as 3a LB 1-5 
1. Highway capacity change: increase by up to 50% (or decrease by 20%) based on 

facility type;  
2. Value of time: decrease by up to 50%; 
3. Vehicle operating cost: decrease by 25%; 
4. Parking cost: decrease by up to 25%; 
5. Access to CAVs: driver’s license available for individuals starting at 12 years old. 

+ Off-model processing: 
1. TAZ level OD trips (induced demand): increase 15% for all modes in SD and LD; 
2. SD deadheading trips: SOV increase 20%, HOV2 increase 15%, HOV3+ increase 15%; 
3. Post-processing on ZEV emission. 
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Scenario 4 – Shared CAV 

 

The CSTDM V3.0 cannot properly incorporate the shared use of CAVs (i.e., SAVs), especially for 
complicated vehicular behavior for pick-up and repositioning. We assume the SAV fleet provide 
a TNC-like mobility service in this scenario. Everyone could request SAV trips given the 
availability of the service. We divide the potential impacts of SAVs into three categories: 

1. Trip generation: more trips are generated because of lower travel costs and the 
convenience (e.g., no need to park vehicles, and easier access to a vehicle from the fleet 
independent from the mode used for the previous trip) of SAVs. 

2. Mode share: a portion of single-occupancy vehicle trips would shift to shared trips; and 
some of the public transit trips would also shift to auto trips. 

3. Deadheading and repositioning: extra VMT would be generated for zero-occupancy 
vehicle travel. 

For the same reasons that have been previously discussed, additional induced demand would 
be generated with the availability of shared AVs. One thing to note is that the amount of 
deadheading is closely related to the demand density and fleet service provided in the region. 
With more service provided, the VMT caused by deadheading for repositioning would be 

Assumptions on the model components: 

4a LB: 
1. Highway capacity change: increase by up to 50% (or decrease by 20%) based on 

facility types; 
2. Value of time: decrease by up to 50% 
3. Vehicle operating cost: decrease by up to 25% 
4. Parking cost: decrease by up to 25%  
5. Access to AVs: driver’s license available for individuals starting at 12 years old 

+ Off-model processing: 
1. For SD TAZ level OD,  

move 10% of SOV trips to HOV2 (get 60%), and HOV3+ (get 40%);  
move 40% of public transit trips to HOV2 (get 70%) and HOV3+ (get 30%); 

2. SD deadheading: increase HOV2 trips by 10%, increase HOV3+ trips by 10%. 

4b UB: 
Same as 4a LB 1-5 

+ Off-model processing: 
1. TAZ level OD trips (induced demand): increase 15% for all modes in SD and LD; 
2. For SD TAZ level OD,  

move 10% of SOV trips to HOV2 (get 60%), and HOV3+ (get 40%);  
move 40% of public transit trips to HOV2 (get 70%) and HOV3+ (get 30%); 

3. SD deadheading: increase SOV trips by 20%, increase HOV2 trips by 20%, increase 
HOV3+ trips by 20%. 
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proportionally smaller. Based on the Clean Miles Standard analysis from CARB5, the statewide 
average deadheading of TNC VMT is 38.5%. In this scenario, we assume the deadheading 
contributed to 40% of the total VMT for the entire state. If each trip contributes the same 
amount of VMT on average, we have 40% of trips to be the repositioning trips. If we assume 
50% of the SOV trips would be conducted via SAV mode, provided enough SAV fleet supply, the 
extra trips for deadheading would be 20% of the total auto trips. Accordingly, our assumption is 
consistent with CARB’s Clean Miles Standard analysis. Thus, we make the following adjustments 
for upper bound scenario 4b: 

1. TAZ level OD trips (induced demand): increase 15% for all modes in SD and LD; 

2. For SD TAZ level OD,  
move 10% of SOV trips to HOV2(get 60%), and HOV3+ (get 40%);  
move 40% of public transit trips to HOV2 (get 70%) and HOV3+ (get 30%); 

3. SD deadheading: increase SOV trips by 20%, increase HOV2 trips by 20%, increase 
HOV3+ trips by 20%. 

 

5 https://www.dof.ca.gov/Forecasting/Economics/Major_Regulations/Major_Regulations_Table/documents/ 
Clean_Miles_Standard_SRIA.pdf  

https://www.dof.ca.gov/Forecasting/Economics/Major_Regulations/Major_Regulations_Table/documents/Clean_Miles_Standard_SRIA.pdf
https://www.dof.ca.gov/Forecasting/Economics/Major_Regulations/Major_Regulations_Table/documents/Clean_Miles_Standard_SRIA.pdf
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Scenario 5 – Shared CAV + Pricing 

 

In this scenario, we want to evaluate the combination of pricing (scenario 2) and sharing 
(scenario 4) strategies. The assumptions are based on the setup used in the corresponding two 
scenarios.  

Assumptions on the model components: 

5a LB: 
1. Highway capacity change: increase by up to 50% (or decrease by 20%) based on 

facility types; 
2. Value of time: decrease by up to 50% 
3. Vehicle operating cost: increase by up to 50% 
4. Parking cost: decrease by up to 25%  
5. Access to AVs: driver’s license available for individuals starting at 12 years old 

+ Off-model processing: 
1. For SD TAZ level OD,  

move 10% of SOV trips to HOV2 (get 60%), and HOV3+ (get 40%);  
move 40% of public transit trips to HOV2 (get 70%) and HOV3+ (get 30%); 

2. SD deadheading: increase HOV2 trips by 10%, increase HOV3+ trips by 10%. 

5b UB: 
Same as 5a LB 1-5 

+ Off-model processing: 
1. TAZ level OD trips (induced demand): increase 15% for all modes in SD and LD; 
2. For SD TAZ level OD,  

move 10% of SOV trips to HOV2 (get 60%), and HOV3+ (get 40%);  
move 40% of public transit trips to HOV2 (get 70%) and HOV3+ (get 30%); 

3. SD deadheading: increase SOV trips by 20%, increase HOV2 trips by 20%, increase 
HOV3+ trips by 20%. 
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Scenario 6 – Shared CAV + ZEV 

 

As in the electrification scenario for private CAV + ZEV, we use a post-processing approach to 
account for the reduced GHG and criteria pollutant emissions for shared CAV + ZEV. Based on 
the MSS main scenario in Vision model, we assume 91% of VMT from scenario 4 (Sharing) are 
zero-emission VMT.   

Assumptions on the model components: 

5a LB: 
1. Highway capacity change: increase by up to 50% (or decrease by 20%) based on 

facility types; 
2. Value of time: decrease by up to 50% 
3. Vehicle operating cost: decrease by up to 25% 
4. Parking cost: decrease by up to 25%  
5. Access to AVs: driver’s license available for individuals starting at 12 years old 

+ Off-model processing: 
1. For SD TAZ level OD,  

move 10% of SOV trips to HOV2 (get 60%), and HOV3+ (get 40%);  
move 40% of public transit trips to HOV2 (get 70%) and HOV3+ (get 30%); 

2. SD deadheading: increase HOV2 trips by 10%, increase HOV3+ trips by 10%; 
3. Post-processing on ZEV emission. 

5b UB: 
Same as 5a LB 1-5 

+ Off-model processing: 
1. TAZ level OD trips (induced demand): increase 15% for all modes in SD and LD; 
2. For SD TAZ level OD,  

move 10% of SOV trips to HOV2 (get 60%), and HOV3+ (get 40%);  
move 40% of public transit trips to HOV2 (get 70%) and HOV3+ (get 30%); 

3. SD deadheading: increase SOV trips by 20%, increase HOV2 trips by 20%, increase 
HOV3+ trips by 20%; 

4. Post-processing on ZEV emission. 
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Results 

Trips, VMT, and VHT 

We here report the travel demand model results for a regular weekday for the entire state of 
California. The units of VMT are in miles, and units of VHT are in hours, unless otherwise 
specified. As previously discussed, our modeling approach assumes there are no travel behavior 
differences between the zero-emission vehicle scenarios and non–zero-emission vehicle 
scenarios. Accordingly, the travel-related metrics for the ZEV scenarios (3a, 3b, 6a and 6b) are 
not duplicated here (as they are identical to those from the scenarios 1a, 1b, 4a and 4b, 
respectively). We show the total number of trips and number of trips by mode, including auto, 
short distance transit, conventional rail (CVR), high-speed rail (HSR), in-state air and walk/bike. 
We also include the VMT and VHT for autos (passenger travel) and trucks (freight), as well as 
the trips per person and trips per household across all modes. Finally, trip mode share 
comparisons are provided. For each metric, we compute the percentage change compared to 
BAU, and the percentage point (p.p.) change in the mode share results, also compared to BAU. 
The results and the percentage changes compared to BAU are shown in Table 7 to Table 18. 

Table 7. Daily Trips for Scenarios 1a and 1b 

Scenario BAU 2050 
1a. Private 

CAV LB 

1a % 
change 
vs. BAU 

1b. Private 
CAV UB 

1b % 
change 
vs. BAU 

Population 53,407,484 53,407,484 0.0% 53,407,484 0.0% 

Households 19,900,074 19,900,074 0.0% 19,900,074 0.0% 

Total Person Trips  208,484,087 211,988,016 1.7% 283,140,473 35.8% 

Auto Person Trips 181,925,683 190,009,673 4.4% 257,865,378 41.7% 

SOV Person Trips 100,949,045 116,155,011 15.1% 160,252,157 58.7% 

HOV2 Person Trips 47,352,231 43,472,590 -8.2% 57,461,388 21.3% 

HOV3+ Person Trips 33,624,407 30,382,072 -9.6% 40,151,833 19.4% 

Short Distance 
Transit Trips 

7,322,712 4,953,980 -32.3% 5,697,077 -22.2% 

Long Distance Rail 
Trips (CVR + HSR) 

82,079 34,397 -58.1% 39,557 -51.8% 

In-state Air Trips 21,127 6,432 -69.6% 7,397 -65.0% 

Walk/Bike Trips 17,627,299 16,255,805 -7.8% 18,694,176 6.1% 

School Bus Trips 1,505,187 727,729 -51.7% 836,888 -44.4% 

Trips per Person 3.9 4.0 1.7% 5.3 35.8% 

Trips per Household  10.5 10.7 1.7% 14.2 35.8% 

Truck Trips 1,513,800 1,513,800 0.0% 1,513,800 0.0% 
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Table 8. Daily Trips for Scenarios 2a and 2b 

Scenario BAU 2050 
2a. Private CAV + 

Pricing LB 

 2a % 
change 
vs. BAU 

2b. Private 
CAV + Pricing 

UB 

2b % 
change 
vs. BAU 

Population 53,407,484 53,407,484 0.00 % 53,407,484 0.0% 

Households 19,900,074 19,900,074 0.0% 19,900,074 0.0% 

Total Person Trips  208,484,087 211,921,665 1.6% 282,031,638 35.3% 

Auto Person Trips 181,925,683 185,507,411 2.0% 251,655,246 38.3% 

SOV Person Trips 100,949,045 111,543,157 10.5% 153,893,408 52.4% 

HOV2 Person Trips 47,352,231 43,817,426 -7.5% 57,919,405 22.3% 

HOV3+ Person Trips 33,624,407 30,146,828 -10.3% 39,842,433 18.5% 

Short Distance 
Transit Trips 

7,322,712 6,005,806 -18.0% 6,906,677 -5.7% 

Long Distance Rail 
Trips (CVR + HSR) 

82,079 48,231 -41.2% 55,466 -32.4% 

In-state Air Trips 21,127 10,056 -52.4% 11,564 -45.3% 

Walk/Bike Trips 17,627,299 19,590,124 11.1% 22,528,643 27.8% 

School Bus Trips 1,505,187 760,037 -49.5% 874,043 -41.9% 

Trips per Person 3.9 4.0 1.6% 5.3 35.3% 

Trips per Household  10.5 10.6 1.6% 14.2 35.3% 

Truck Trips 1,513,800 1,513,800 0.0% 1,513,800 0.0% 
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Table 9. Daily Trips for Scenarios 4a and 4b 

Scenario BAU 2050 
4a. Shared 

CAV LB 

4a % 
change 
vs. BAU 

4b. Shared 
CAV UB 

4b % 
change 
vs. BAU 

Population 53,407,484 53,407,484 0.0% 53,407,484 0.0% 

Households 19,900,074 19,900,074 0.0% 19,900,074 0.0% 

Total Person Trips  208,484,087 220,696,172 5.9% 287,824,869 38.1% 

Auto Person Trips 181,925,683 200,699,421 10.3% 264,828,606 45.6% 

SOV Person Trips 100,949,045 104,557,666 3.6% 144,244,565 42.9% 

HOV2 Person Trips 47,352,231 56,985,320 20.3% 71,465,683 50.9% 

HOV3+ Person Trips 33,624,407 39,156,436 16.5% 49,118,358 46.1% 

Short Distance 
Transit Trips 

7,322,712 2,972,388 -59.4% 3,418,246 -53.3% 

Long Distance Rail 
Trips (CVR + HSR) 

82,079 34,397 -58.1% 39,557 -51.8% 

In-state Air Trips 21,127 6,432 -69.6% 7,397 -65.0% 

Walk/Bike Trips 17,627,299 16,255,805 -7.8% 18,694,176 6.1% 

School Bus Trips 1,505,187 727,729 -51.7% 836,888 -44.4% 

Trips per Person 3.9 4.1 5.9% 5.4 38.1% 

Trips per Household  10.5 11.1 5.9% 14.5 38.1% 

Truck Trips 1,513,800 1,513,800 0.0% 1,513,800 0.0% 
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Table 10. Daily Trips for Scenarios 5a and 5b 

Scenario BAU 2050 
5a Shared 

CAV + Pricing 
LB 

5a % 
change 
vs. BAU 

5b Shared 
CAV + Pricing 

UB 

5b % 
change 
vs. BAU 

Population 53,407,484 53,407,484 0.0% 53,407,484 0.0% 

Households 19,900,074 19,900,074 0.0% 19,900,074 0.0% 

Total Person Trips  208,484,087 220,720,887 5.9% 286,820,613 37.6% 

Auto Person Trips 181,925,683 196,700,212 8.1% 259,206,892 42.5% 

SOV Person Trips 100,949,045 100,428,134 -0.5% 138,519,460 37.2% 

HOV2 Person Trips 47,352,231 57,412,096 21.2% 71,971,480 52.0% 

HOV3+ Person Trips 33,624,407 38,859,983 15.6% 48,715,952 44.9% 

Short Distance 
Transit Trips 

7,322,712 3,603,484 -50.8% 4,144,006 
-43.4% 

Long Distance Rail 
Trips (CVR + HSR) 

82,079 55,466 -32.4% 55,466 
-32.4% 

In-state Air Trips 21,127 11,564 -45.3% 11,564 -45.3% 

Walk/Bike Trips 17,627,299 19,590,124 11.1% 22,528,643 27.8% 

School Bus Trips 1,505,187 760,037 -49.5% 874,043 -41.9% 

Trips per Person 3.9 4.1 5.9% 5.4 37.6% 

Trips per Household  10.5 11.1 5.9% 14.4 37.6% 

Truck Trips 1,513,800 1,513,800 0.0% 1,513,800 0.0% 
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Table 11. Daily VMT/VHT for Scenarios 1a and 1b 

Scenario BAU 2050 
1a. Private 

CAV LB 

1a % 
change 
vs. BAU 

1b. Private 
CAV UB 

1b % 
change 
vs. BAU 

VMT Total (Autos + 
Trucks) 

1,242,083,300 1,297,255,300 4.4% 1,717,247,500 38.3% 

VMT Autos 1,140,235,200 1,196,268,400 4.9% 1,616,268,400 41.7% 

VMT Trucks 101,848,000 100,986,900 -0.9% 100,979,100 -0.9% 

Auto VMT per Person 21 22 5.2% 30 42.3% 

Auto VMT per 
Household 

57 60 4.9% 81 41.7% 

VHT Total (Autos + 
Trucks) 

30,743,800 30,390,600 -1.2% 43,895,500 42.8% 

VHT Autos 28,840,400 28,623,600 -0.8% 42,061,300 45.8% 

VHT Trucks 1,903,400 1,767,000 -7.2% 1,834,200 -3.6% 

Auto VHT per Person 
(Min) 

32 32 0.0% 47 46.9% 

Auto VHT per 
Household (Min) 

87 86 -1.2% 127 46.0% 
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Table 12. Daily VMT/VHT for Scenarios 2a and 2b 

Scenario BAU 2050 
2a. Private 

CAV + Pricing 
LB 

 2a % 
change 
vs. BAU 

2b. Private CAV + 
Pricing UB 

2b % change 
vs. BAU 

VMT Total 
(Autos + 
Trucks) 

1,242,083,300 1,007,122,600 -18.9% 1,317,964,300 6.1% 

VMT Autos 1,140,235,200 906,346,100 -20.5% 1,217,167,900 6.7% 

VMT Trucks 101,848,000 100,776,500 -1.1% 100,796,300 -1.0% 

Auto VMT 
per Person 

21 17 -20.2% 23 7.0% 

Auto VMT 
per 

Household 
57 46 -20.6% 61 6.8% 

VHT Total 
(Autos + 
Trucks) 

30,743,800 23,867,700 -22.4% 32,783,200 6.6% 

VHT Autos 28,840,400 22,130,400 -23.3% 31,022,000 7.6% 

VHT Trucks 1,903,400 1,737,400 -8.7% 1,761,300 -7.5% 

Auto VHT 
per Person 

(Min) 
32 25 -21.9% 35 9.4% 

Auto VHT 
per 

Household 
(Min) 

87 67 -23.0% 94 8.0% 
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Table 13. Daily VMT/VHT for Scenarios 4a and 4b 

Scenario BAU 2050 
4a. Shared CAV 

LB 

4a % 
change 
vs. BAU 

4b. Shared CAV 
UB 

4b % 
change 
vs. BAU 

VMT Total (Autos 
+ Trucks) 

1,242,083,300 1,275,265,400 2.7% 1,664,822,400 34.0% 

VMT Autos 1,140,235,200 1,174,326,900 3.0% 1,563,847,600 37.2% 

VMT Trucks 101,848,000 100,938,400 -0.9% 100,974,800 -0.9% 

Auto VMT per 
Person 

21 22 3.3% 29 37.6% 

Auto VMT per 
Household 

57 59 3.0% 79 37.2% 

VHT Total (Autos 
+ Trucks) 

30,743,800 29,816,100 -3.0% 42,004,800 36.6% 

VHT Autos 28,840,400 28,051,900 -2.7% 40,182,900 39.3% 

VHT Trucks 1,903,400 1,764,200 -7.3% 1,821,900 -4.3% 

Auto VHT per 
Person (Min) 

32 32 0.0% 45 40.6% 

Auto VHT per 
Household (Min) 

87 85 -2.3% 121 39.1% 

Table 14. Daily VMT/VHT for Scenarios 5a and 5b 

Scenario BAU 2050 
5a Shared CAV + 

Pricing LB 

5a % 
change 
vs. BAU 

5b Shared CAV + 
Pricing UB 

5b % 
change 
vs. BAU 

VMT Total (Autos + 
Trucks) 

1,242,083,300 1,005,663,900 -19.0% 1,286,110,200 3.5% 

VMT Autos 1,140,235,200 904,886,900 -20.6% 1,185,310,300 4.0% 

VMT Trucks 101,848,000 100,777,100 -1.1% 100,799,900 -1.0% 

Auto VMT per Person 21 17 -20.7% 22 4.2% 

Auto VMT per 
Household 

57 46 -20.6% 60 
4.0% 

VHT Total (Autos + 
Trucks) 

30,743,800 23,751,900 -22.7% 31,830,800 
3.5% 

VHT Autos 28,840,400 22,013,500 -23.7% 30,072,100 4.3% 

VHT Trucks 1,903,400 1,738,400 -8.7% 1,758,800 -7.6% 

Auto VHT per Person 
(Min) 

32 25 -21.9% 34 
6.3% 

Auto VHT per 
Household (Min) 

87 66 -24.1% 91 
4.6% 
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Table 15. Trip Mode Share for Scenarios 1a and 1b 

Scenario 
BAU 
2050 

1a. 
Private 
CAV LB 

1a vs BAU 
Absolute 

Difference  

1a % 
change 
vs. BAU 

1b. 
Private 
CAV UB 

1b vs BAU 
Absolute 

Difference  

1b % 
change 
vs. BAU 

SOV 48.42% 54.79% 6.37 p.p. 13.16% 56.60% 8.18 p.p. 16.89% 

HOV2 22.71% 20.51% -2.21 p.p. -9.71% 20.29% -2.42 p.p. -10.65% 

HOV3+ 16.13% 14.33% -1.80 p.p. -11.14% 14.18% -1.95 p.p. -12.07% 
Short 

Distance 
Transit 3.51% 2.34% -1.18 p.p. -33.47% 2.01% -1.50 p.p. -42.71% 
Long 

Distance 
Rail 0.04% 0.02% -0.02 p.p. -58.79% 0.01% -0.03 p.p. -64.51% 

In-state Air 0.01% 0.00% -0.01 p.p. -70.06% 0.00% -0.01 p.p. -74.22% 

Walk/Bike 8.45% 7.67% -0.79 p.p. -9.30% 6.60% -1.85 p.p. -21.91% 

School Bus 0.72% 0.34% -0.38 p.p. -52.45% 0.30% -0.43 p.p. -59.06% 

Table 16. Trip Mode Share for Scenarios 2a and 2b 

Scenario 
BAU 
2050 

2a. 
Private 
CAV + 
Pricing 

LB 

2a vs BAU 
Absolute 

Difference  

 2a % 
change 
vs. BAU 

2b. 
Private 
CAV + 
Pricing 

UB 

2b vs BAU 
Absolute 

Difference  

2b % 
change 
vs. BAU 

SOV 48.42% 52.63% 4.21 p.p. 8.70% 54.57% 6.15 p.p. 12.69% 

HOV2 22.71% 20.68% -2.04 p.p. -8.97% 20.54% -2.18 p.p. -9.58% 

HOV3+ 16.13% 14.23% -1.90 p.p. -11.80% 14.13% -2.00 p.p. -12.41% 
Short 

Distance 
Transit 3.51% 2.83% -0.68 p.p. -19.31% 2.45% -1.06 p.p. -30.28% 
Long 

Distance 
Rail 0.04% 0.02% -0.02 p.p. -42.19% 0.02% -0.02 p.p. -50.05% 

In-state Air 0.01% 0.00% -0.01 p.p. -53.17% 0.00% -0.01 p.p. -59.54% 

Walk/Bike 8.45% 9.24% 0.79 p.p. 9.33% 7.99% -0.47 p.p. -5.52% 

School Bus 0.72% 0.36% -0.36 p.p. -50.32% 0.31% -0.41 p.p. -57.07% 
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Table 17. Trip Mode Share for Scenarios 4a and 4b 

Scenario 
BAU 
2050 

4a. 
Shared 
CAV LB 

4a vs BAU 
Absolute 

Difference  

4a % 
change 
vs. BAU 

4b. 
Shared 
CAV UB 

4b vs BAU 
Absolute 

Difference  

4b % 
change 
vs. BAU 

SOV 48.42% 47.38% -1.04 p.p. -2.16% 50.12% 1.69 p.p. 3.50% 

HOV2 22.71% 25.82% 3.11 p.p. 13.68% 24.83% 2.12 p.p. 9.32% 

HOV3+ 16.13% 17.74% 1.61 p.p. 10.01% 17.07% 0.94 p.p. 5.81% 
Short 

Distance 
Transit 3.51% 1.35% -2.17 p.p. -61.65% 1.19% -2.32 p.p. -66.19% 
Long 

Distance 
Rail 0.04% 0.02% -0.02 p.p. -60.41% 0.01% -0.03 p.p. -65.09% 

In-state Air 0.01% 0.00% -0.01 p.p. -71.24% 0.00% -0.01 p.p. -74.64% 

Walk/Bike 8.45% 7.37% -1.09 p.p. -12.88% 6.49% -1.96 p.p. -23.18% 

School Bus 0.72% 0.33% -0.39 p.p. -54.33% 0.29% -0.43 p.p. -59.73% 

Table 18. Trip Mode Share for Scenarios 5a and 5b 

Scenario 
BAU 
2050 

5a Shared 
CAV + 

Pricing LB 

5a vs BAU 
Absolute 

Difference 

5a % 
change 
vs. BAU 

5b Shared 
CAV + 

Pricing UB 

5b vs BAU 
Absolute 

Difference 

5b % 
change 
vs. BAU 

SOV 48.42% 45.50% -2.92 p.p. -6.0% 48.29% -0.13 p.p. -0.3% 

HOV2 22.71% 26.01% 3.30 p.p. 14.5% 25.09% 2.38 p.p. 10.5% 

HOV3+ 16.13% 17.61% 1.48 p.p. 9.2% 16.98% 0.85 p.p. 5.3% 
Short 

Distance 
Transit 

3.51% 1.63% -1.88 p.p. -53.5% 1.44% -2.07 p.p. -58.9% 

Long 
Distance 

Rail 
0.04% 0.03% -0.01 p.p. -36.2% 0.02% -0.02 p.p. -50.9% 

In-state 
Air 

0.01% 0.01% -0.00 p.p. -48.3% 0.00% -0.00 p.p. -60.2% 

Walk/Bike 8.45% 8.88% 0.43 p.p. 5.0% 7.85% -0.60 p.p. -7.1% 

School 
Bus 

0.72% 0.34% -0.38 p.p. -52.3% 0.30% -0.42 p.p. -57.8% 
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Figure 3 and Figure 4 summarize the range of auto VMT in the various scenarios. The results of 
auto VMT range from 1,196 million vehicle miles to 1,616 million vehicle miles for scenario 1a 
and 1b, where the induced demand contributes to 15% and deadheading contributes to 20% of 
the differences. For 2a and 2b, the results of auto VMT ranges from 906 million vehicle miles to 
1,217 million vehicle miles. Note that the lower bound VMT for this scenario is lower than the 
baseline 2050 scenario, which shows how, according to the CSTDM outputs, the pricing strategy 
could be effective in calming total auto VMT. For scenarios 4a and 4b, auto VMT range from 
1,174 to 1,652 million vehicle miles. The auto VMT of 5a and 5b range from 904 to 1,185 million 
miles.  

 

Figure 3. Range of Auto VMT in the Modeling Scenarios 
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Figure 4. Auto Vehicle Miles Traveled 
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Figure 5. Person Trips by Mode 
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The sociodemographic profiles remain constant in all CAV scenarios compared with the BAU 
scenario for 2050. For both the private CAV scenario and shared CAV scenario, there are slight 
increases in the number of passenger vehicle (auto) trips in LB scenarios. There is a decrease in 
total trips and VMT in scenario 2a private CAV + pricing LB, meaning that, according to the 
CSTDM model forecasts, the increased operating cost would somewhat hinder people from 
traveling, through both a reduction in the number of trips and a reduction of the average trip 
distances.  

We also observe a substantial mode shift towards automobiles from transit for both short- and 
long-distance trips. The number of rail and in-state air trips is largely reduced with the 
availability of CAVs. For the private CAV scenario, the number of trips and VMT of autos slight 
increases compared to the baseline. However, the VMT of auto decreases in the pricing 
strategies scenario, due to the penalty of higher vehicle operating costs. Similar effects on VMT 
are observed in the shared CAV + pricing scenario, in particular in the LB case in which VMT 
decreases to a level that is lower than BAU. This shows the effectiveness of scenarios that 
involve pricing strategies and policies to promote the deployment of SAVs. In particular, the 
scenario results show how person trips in such a situation increase without a sizable in total 
VMT, thanks to a reduction in the average trip distances and an increase in vehicle occupancy.  

The numbers of truck trips are relatively stable, based on the assumption that the truck trip 
generation would not be affected by the popularity of CAVs for passenger travel. The VMT and 
VHT of trucks differ slightly compared to the BAU, mostly due to the changes in network 
capacity and the interactions with passenger vehicles on the road.  

Total trip numbers remain relatively stable across all lower bound scenarios, partially due to the 
design of the CSTDM. The trip generation step largely depends on household and employment 
locations and socioeconomic factors, such as population, age, income, occupation, etc. These 
factors are held constant in all CAV scenarios. The adjusted travel cost functions in our 
scenarios do not have much impact on the upstream trip generation. Rather, they mainly 
appear to have an impact on the mode choice component. However, a difference of 
approximately 50 million person trips separates the lower bound and upper bound cases, 
highlighting the important role that induced demand and extra deadheading will likely cause on 
future travel in a CAV-dominated era. 

Next, we show the spatial pattern of auto VMT differences in terms of absolute value and 
percentage change compared to the baseline 2050 scenario. Figure 6 shows the distribution of 
auto VMT in the BAU scenario, while Figure 7 to Figure 14 show the absolute differences in 
auto VMT and relative differences compared to BAU for all modeled scenarios.  

In the BAU baseline case for the year 2050, most of the auto VMT are generated in the 
Sacramento, the San Francisco Bay Area, the Greater Los Angeles and San Diego regions. 
Relatively small amounts of VMT are forecasted in the remaining lower-population regions.  

Uneven spatial distributions of changes are observed in the private CAV, private CAV + pricing, 
shared CAV and shared CAV + pricing scenarios. For the private CAV and shared CAV scenarios, 
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the majority of the absolute changes in auto VMT compared to the BAU scenario are in areas 
with already high amount of auto VMTs, i.e., Sacramento, the San Francisco Bay Area, the 
Greater Los Angeles and San Diego regions. However, it is the San Joaquin Valley region that 
reports a rather high relative change. This is possibly due to the fact that the networks in high 
auto VMT areas are already running at capacity, and higher demand for CAV would not largely 
impact the already congested network. Instead, the San Joaquin region has more capacity to 
allow more CAV trips and higher VMT, and is also crossed by thru long-distance travel to/from 
other regions in the state.  
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Figure 6. Daily Auto VMT for Scenario 0 (BAU) 
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Figure 7. Changes in Daily Auto VMT for Scenario 1a vs. BAU 
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Figure 8. Changes in Daily Auto VMT for Scenario 1b vs. BAU 
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Figure 9. Changes in Daily Auto VMT for Scenario 2a vs. BAU 
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Figure 10. Changes in Daily Auto VMT for Scenario 2b vs. BAU 
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Figure 11. Changes in Daily Auto VMT for Scenario 4a vs. BAU 
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Figure 12. Changes in Daily Auto VMT for Scenario 4b vs. BAU 
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Figure 13. Changes in Daily Auto VMT for Scenario 5a vs. BAU 



 

 
88 

 

Figure 14. Changes in Daily Auto VMT for Scenario 5b vs. BAU 
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GHG and Criteria Pollutant Emissions  

Based on the results of the travel demand forecasting model, we evaluated the environmental 
impacts of CAV deployment in the State of California. The calculation is based on a combination 
of the Vision and EMFAC model emission factors. Criteria pollutant emission results are shown 
in Table 19 and Table 20. Total statewide results are shown in Figure 15 to Figure 18. The 
absolute differences and percentage changes are shown in Figure 19 to Figure 30. Note that 
only auto pollutants are plotted in the maps. The values used in these plots are point estimates. 
The potential values should lie in the range between the a series of lower-bound cases and the 
b series of upper-bound cases for these scenarios. For the emission visualization, we only show 
the results for CO2 emissions since the other emission factors (e.g., PM2.5, NOx) have a similar 
spatial distribution pattern as CO2. The units of CO2 emissions are megatons per year (MT/yr), 
and the units for NOx, PM2.5, and ROG are tons per day (T/d). We use 347 as the conversion 
factor from daily to yearly measurement.  
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Table 19. Criteria Pollutants for Year 2050 

Scenario 0 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 

CO2 Auto 
(MT/yr) 73.7 77.4 104.5 58.6 78.7 6.7 9.1 75.9 101.1 58.5 76.7 6.6 8.8 

NOX Auto 
(T/d) 18.7 19.6 26.5 14.9 20.0 2.4 3.2 19.3 25.7 14.9 19.5 2.3 3.1 

PM2.5 
Auto (T/d) 0.5 0.5 0.7 0.4 0.5 0.1 0.1 0.5 0.7 0.4 0.5 0.1 0.1 
ROG Auto 
(T/d) 2.1 2.2 3.0 1.7 2.2 0.3 0.4 2.2 2.9 1.7 2.2 0.3 0.4 
CO2 Total 
(MT/yr) 123.2 126.4 153.6 107.6 127.7 55.7 58.1 125.0 150.2 107.5 125.6 55.6 57.8 

NOX Total 
(T/d) 47.9 48.5 55.4 43.7 48.8 31.3 32.1 48.2 54.6 43.7 48.3 31.2 32.0 
PM2.5 
Total  
(T/d) 0.9 0.9 1.0 0.7 0.9 0.4 0.4 0.9 1.0 0.7 0.9 0.4 0.4 
ROG Total 
(T/d) 8.3 8.4 9.2 7.8 8.4 6.5 6.6 8.4 9.1 7.8 8.4 6.5 6.5 
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Table 20. Percentage Change of Criteria Pollutants for Year 2050 Compared with BAU 

Scenario 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 

CO2 Auto 
(MT/yr) 

5.0% 41.7% -20.5% 6.7% -90.9% -87.7% 3.0% 37.1% -20.6% 3.9% -91.1% -88.1% 

NOX 
Auto 
(T/d) 

5.0% 41.7% -20.5% 6.8% -87.2% -82.8% 3.0% 37.1% -20.6% 4.0% -87.5% -83.3% 

PM2.5 
Auto 
(T/d) 

4.9% 41.7% -20.6% 6.7% -86.9% -82.3% 2.9% 37.1% -20.7% 3.9% -87.1% -82.8% 

ROG 
Auto 
(T/d) 

4.9% 41.7% -20.6% 6.7% -87.0% -82.5% 2.9% 37.1% -20.7% 3.9% -87.3% -83.1% 

CO2 
Total 
(MT/yr) 

2.6% 24.6% -12.7% 3.6% -54.8% -52.8% 1.4% 21.9% -1.1% -1.0% -54.9% -53.1% 

NOX 
Total 
(T/d) 

1.4% 15.8% -8.6% 2.0% -34.6% -32.9% 0.6% 14.0% -1.1% -1.0% -34.7% -33.1% 

PM2.5 
Total 
(T/d) 

2.4% 23.4% -12.2% 3.3% -49.8% -47.2% 1.3% 20.7% -1.1% -1.0% -50.0% -47.5% 

ROG 
Total 
(T/d) 

0.6% 9.9% -6.0% 0.9% -22.6% -21.4% 0.1% 8.7% -1.1% -1.0% -22.7% -21.6% 
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Figure 15. Statewide CO2 Comparison 

 

Figure 16. Statewide NOX Comparison 
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Figure 17. Statewide PM2.5 Comparison 

 

Figure 18. Statewide ROG Comparison 
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Figure 19. Comparison of Auto CO2 Emissions in Scenario 1a vs. BAU 
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Figure 20. Comparison of Auto CO2 Emissions in Scenario 1b vs. BAU 
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Figure 21. Comparison of Auto CO2 Emissions in Scenario 2a vs. BAU 
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Figure 22. Comparison of Auto CO2 Emissions in Scenario 2b vs. BAU 
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Figure 23. Comparison of Auto CO2 Emissions in Scenario 3a vs. BAU 
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Figure 24. Comparison of Auto CO2 Emissions in Scenario 3b vs. BAU 
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Figure 25. Comparison of Auto CO2 Emissions in Scenario 4a vs. BAU 
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Figure 26. Comparison of Auto CO2 Emissions in Scenario 4b vs. BAU 
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Figure 27. Comparison of Auto CO2 Emissions in Scenario 5a vs. BAU 
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Figure 28. Comparison of Auto CO2 Emissions in Scenario 5b vs. BAU 
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Figure 29. Comparison of Auto CO2 Emissions in Scenario 6a vs. BAU 
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Figure 30. Comparison of Auto CO2 Emissions in Scenario 6b vs. BAU 
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According to the emission results, we observe a certain increase in auto pollutants in the 
private CAV and shared CAV scenarios, while both the private CAV + ZEV and shared CAV + ZEV 
scenarios yield lower levels of pollutant emissions. With the high penetration rate of ZEVs, we 
observed a dramatic reduction in auto emissions compared to the baseline (BAU) scenario.  

The spatial pattern of emission distribution is similar with that of auto VMT. This is because 
areas with higher VMT would generate higher criteria pollutants, and the CSTDM framework 
assumes that high zero-emission vehicle penetration would not alter travel demand and the 
powertrain option is not considered a factor affecting travel patterns.  

Consistent with the VMT distribution, in the private CAV and shared CAV scenarios, the 
Sacramento, the San Francisco Bay Area, the Greater Los Angeles and San Diego regions yield 
most of the absolute change in emissions (as expected, as these are proportional to the total 
amount of travel). The San Joaquin valley experiences the highest percentage change. The 
private CAV + pricing and shared CAV + pricing scenarios achieve a substantial containment of 
total emissions, though the real abatement of GHG and other criteria pollutant emissions is 
achieved in the ZEV scenarios.  

Discussion 

Many metropolitan planning organizations and other transportation agencies have adopted 
activity-based models to support transportation planning decisions and evaluate infrastructure 
projects. The classical four-step trip-based models (including trip generation, trip distribution, 
model choice, and route assignment) have produced some effective analyses in the past. 
However, as a simplified method for travel demand forecasting, four-step models consider 
aggregated travel choices and cannot entirely reflect the reality of travel-related decision-
making by individuals and households.  

Activity-based models, such as the CSTDM, overcome those limitations, by modeling household 
organization and individuals’ activity participation and travel choices for the entire population. 
In details, these models generate a synthetic population of households and individuals and 
forecast activity participation and travel choices for the entire population in the model area. 
While activity-based models provide many benefits in terms of their increased ability to model 
realistic individual behaviors and forecast the resulting travel demand impacts, they have 
several limitations that affect their use when forecasting the range of potential impacts from 
CAV deployment.  

First, a general limitation in modeling CAV deployment impacts is that while alternatives to 
owning and driving a private vehicle are becoming increasingly available, whether and how 
these services and technologies will be accessible to the various segments of the population in 
different areas remains unknown. Similarly, research to date only provides limited insights into 
the behavioral changes that these alternative solutions might cause.  

Another limitation is rooted in the activity-based modeling framework in general. In this 
project, our assumption is that the statewide activity-based model can capture the impacts of 
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CAVs through the changes in the travel behavior of the population. The fundamental behavioral 
assumptions rely on how people would perceive CAVs in the future and how they would adjust 
their corresponding daily travel behavior. While we implement a number of changes in the 
modeling framework to account for the behavioral changes prompted by CAV availability, we 
hold constant many other functions, estimated coefficients, and constants in the model.  

Third, we use a model that was estimated, calibrated, and validated using survey data from past 
years, while many uncertainties remain about the future. This includes changes in lifestyle, 
technology, urban form, and policy that might modify the underlying behavioral framework 
with which individuals make choices in their everyday life. This is also caused by the 
introduction of new CAV travel modes, which will bring drastic changes to the transportation 
system, household organization, and individuals’ activities and choices. Thus, there is no 
guarantee that the equations estimated for the model using data from the past will hold true in 
the future, given advanced in-vehicle technologies, intelligent transportation systems, and new 
household vehicle ownership options.  

The estimations of the model coefficients usually remains valid for modeling applications to 
scenarios that fit in a certain range of applicability. When we introduce into the model modified 
assumptions and a new technology that will likely cause large modifications in individual 
behaviors, as it is the case of CAVs, the assumptions about behaviors (and calibration 
procedures for the model base year) that form the basis for the model might no longer hold 
true. The model assumptions and calibration practices usually adopted in the development of 
activity-based models might actually limit the amount of change in forecasted travel demand, 
constraining the results to a range that is more conventional and closer to the base scenario. 
This type of problem is not unusual in travel demand forecasting models, especially in cases 
when the model is somewhat over-fitted to replicate the observed traffic volumes in the base 
scenario during the calibration and validation processes. 

Further, if CAVs cause a reduction in the friction of distance in a future dominated by vehicle 
automation, CAV deployment may well lead to modifications in land use that are not accounted 
for in this study. In particular, if traveling in a CAV is easier, more pleasant, more suitable for 
conducting other activities while traveling, and induces less fatigue, individuals may choose to 
live further from work locations and other frequent destinations, if this can lead to lower 
housing costs and/or access to better amenities.  

This relocation phenomenon is not easy to measure today. For example, respondents might 
tend to underreport their intention to move farther away from their regular trip destinations 
when participating in stated preference surveys. However, in the future when facing an 
economic choice and while experiencing the benefits of travel in CAVs, they might modify their 
willingness to pay for housing units vs. location/accessibility. This might lead to further 
increases in travel distances and average VMT that are not accounted for in any of the 
scenarios presented in this project. These effects could be partially compensated, though, by 
the reduced need for parking in a CAV-dominated future. The reduced need for parking could 
open additional land for redevelopment purposes in the central core of cities and allow for 
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more efficient use of space, in particular in US cities where a very high percentage of total land 
is allocated to roadways and parking. Overall, the resulting impacts of land use changes 
associated with CAV deployment likely point to higher VMT and increased auto travel. 
However, as land use effects are not accounted for in this project, all estimates of CAV travel 
impacts in this study are likely a substantial underestimation of the true future impacts of CAV 
deployment.  

It should be also noted that in this project we are ignoring the disruption to transportation and 
the whole society caused by the COVID19 pandemic. Travel behavior choices might be different 
from the pre-COVID era, with long-term effects on telecommuting, car dependency, and activity 
patterns that are still difficult to predict at the time of writing this report. It is possible that 
more telecommuting, private car ownership, and urban sprawl may occur in the near future, as 
a result of the pandemic.  

One additional limitation affecting the results from this study is that the model seems to be 
designed and calibrated so that travel cost is prioritized. However, the impacts of changes in 
travel time might not be fully captured in terms of the decision-making associated with travel 
choices. The results in the mode shifts in the scenarios indicate a substantial decrease in transit 
trips, as well as long-distance rail and in-state air travel, and the model seems to be sensitive to 
factors affecting mode choice. However, the total trip volume in all scenarios does not show 
sizable differences. This is probably because the model is designed to meet total trip volumes, 
and it might over-rely on constants introduced in the calibration stage to fulfill this purpose. 
This limits the amount of change in total trips even if major changes occur in the underlying 
engines of travel in future scenarios. This would not be surprising, considering that one of the 
most important purposes for which travel demand forecasting models are designed and used is 
to forecast the impacts of new travel alternatives on mode choice, while forecasting the 
impacts of a revolutionary technology such as CAVs that might increase the topic amount of 
travel in future scenarios is usually outside of the scope for which these models are designed. 
Additional investigation of these topics and evaluation of the model elasticities and overall 
ability to forecast the potential impacts of CAV deployment are recommended in future 
research. 

Despite the many limitations that might affect our results, this study provides important 
evidence to inform policy frameworks to advance a sustainable CAV deployment in California, 
as well as in other parts of the country and abroad. In particular, the study systematically 
discusses the many impacts that CAVs might have on future society and transportation, 
including those that could not be empirically assessed in the modeling application. The 
discussion of the literature and the range of impacts observed in the scenario forecasts point to 
the importance of policies that can mitigate negative externalities from CAV deployment.  

CAVs might lead to many desirable outcomes, including increased safety, reduced traffic 
fatalities and increased mobility for those with unmet mobility needs, and they will 
considerably increase the quality of life especially of individuals with disabilities and mobility 
impairments. But they might also cause a sharp increase in the use of automobiles, together 
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with the risk of increased car dependence of society, decreased demand for public transit, and 
reductions in active travel.  

It will be important for California policymakers to account for these impacts when designing 
future policies, including in the development and update of the Sustainable Communities 
Strategies mandated by SB 375 and integrated in the Regional Transportation Plans, which also 
focus on the explicit coordination of land use and transportation. While land use impacts of 
CAVs were only discussed in theory in this study and based on the review of the previous 
literature, and could not be empirically modeled in the CSTDM framework, coordinating land 
use development to prevent some of the non-desirable outcomes of CAV deployment—e.g., 
the increase in suburban sprawl and low-density development—will be one of the upmost 
priorities in the future. It will be extremely important to rein in some of the potential 
modifications induced by CAV deployment, that we design strategies to reduce VMT and meet 
the reduction targets in the state. 

More broadly, several potential strategies could be deployed to mitigate the eventual negative 
externalities associated with CAV deployment. These include (Circella et al., 2017): 

• Establish programs that result in driverless vehicle deployment as shared rather than 
privately-owned vehicles, such that they will be subject to the Clean Miles Standard and 
considerably reduce emissions by 2030; 

• For privately-owned CAVs, adopt a rapid timeline for vehicle electrification.  

• Develop a clear incentive system for pricing the climate impacts of travel—consider 
charging drivers using a GHG/passenger-mile basis; 

• Create programs that deploy CAVs to address first-last mile gaps connecting more riders 
to line haul transit; 

• Ensure CAV fleets include a range of vehicle types, so that demand can be right-sized 
and consume less energy; 

• Encourage local planning jurisdictions to work to integrate CAVs into complete streets 
planning, so that CAVs improve livability, safety, and comfort on surface streets; 

• Ensure local planning efforts are rooted in direct community engagement so that 
community members can weigh in on how the introduction of CAVs can improve 
accessibility and affordability to goods and services, particularly among historically 
underserved populations. 

Some of these strategies have been explicitly discussed in this report, including electrification, 
sharing, and pricing. For the reasons discussed previously in this section, the range of travel 
demand forecasts in this project are likely to be affected by the model being too sensitive to 
(and demand too elastic with respect to) travel costs and demand being too inelastic with 
respect to changes in other factors. Still, even if a certain overestimation of the impacts of 
pricing is in place, the direction of the forecasted impacts is certainly correct. The study 
highlights the potential of strategies including pricing to reduce total demand, especially in the 
most congested areas, and of electrification (and/or transition to other zero-emission vehicles) 
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to sharply reduce tailpipe emissions, especially in locations such as the San Joaquin Valley and 
Southern California, which are facing the most dramatic problems with air quality and 
concentration of pollutants. Similar considerations could be derived for other potential policy 
levers that can alter the final impacts that will derive from the deployment of CAVs.  
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Conclusions 

This report presents a detailed review of the scientific literature on the impacts that connected 
and automated vehicles (CAVs) could have on transportation and discusses a set of future 
scenarios including CAV deployment under various assumptions through the application of the 
California Statewide Travel Demand Model. The study was designed to support CARB’s efforts 
to understanding the potential impacts of the introduction and rapid adoption of CAVs in 
California.  

Recent studies have discussed how the development and deployment of CAVs will likely not 
happen as fast as previous studies suggested, because of the many challenges in this process, 
including in the areas of vehicles and technologies, systems and services, and users and society. 
Nevertheless, researchers have been investigating the factors influencing the adoption and 
willingness to pay for CAVs, as well as the likely impacts that CAV deployment will have on 
future travel. CAV availability will remarkably influence society, modifying the way people live, 
travel, shop, socialize, and participate in various activities. Therefore, modeling the impacts of 
CAV deployment is an important step to prepare stakeholders for the changes that this new 
technology will bring.  

CAV deployment will likely cause the sequential spreading of various effects that can be 
summarized into: (1) first-order effects that include the possible effects of CAVs on short- to 
medium-term changes, such as travel cost/time, road capacity, and their resulting travel 
choices; (2) second-order effects that include the impacts of CAVs on medium- to long-term 
choices such as household vehicle ownership and willingness to share, location choices, land 
use, and urban form; and (3) third-order implications of CAV deployment that include indirect 
effects of these changes, including impacts on energy consumption, GHG emissions, social 
equity, and the economy. 

Previous studies have highlighted the likely changes associated with CAV deployment. Those 
studies can inform the likely ranges of forecasted impacts, and then better account for the 
effect of CAVs on the future of our society including land use and environmental impacts. 
Regarding equity implications, this study simulates the impacts on travel behavior of CAVs 
through changes in travel cost, parking cost, drivers’ licenses, value of travel time and road 
capacity, among many other factors. However, the changes in those parameters cannot fully 
capture the responses to CAVs of passengers with disabilities. In the scenario without CAVs, 
individuals with mobility impairments may show less elasticity to the change in travel cost or 
parking cost due to a disability to drive, for example. However, CAVs will free them from 
worrying about these limitations. Thus, the effects of travel cost and parking fees should be 
recalibrated to truly represent their response to CAVs. For example, a dedicated research 
among disadvantaged populations will be important to identify the most challenging barriers 
and their real attitudes toward CAVs before the actual deployment of CAVs. 

In this study, the research team simulated a set of future scenarios for year 2050 using the 
CSTDM Version 3.0 to explore the potential impacts of the deployment of CAVs as well as the 
potential integration of CAV deployment with various travel assumptions and policies, such as 



 

 
112 

high electrification of transportation and the introduction of road pricing. The comparison of 
the travel forecasts in these scenarios with the baseline 2050 scenario (business as usual, or “no 
change”) from Caltrans, highlights some important impacts of CAV deployment: these include 
likely increases in total travel demand, VMT and pollutant emissions. Still, some concerns 
remain on the actual ability of this modeling framework to realistically forecast some of the 
changes associated with CAV deployment.  

The results show how public transit, active modes, long-distance rail and in-state air travel 
could experience a significant reduction in their mode share and total number of trips in a 
future dominated by CAVs, if sufficient policies are not implemented. According to the model 
results, the total number of trips would be less impacted than VMT and VHT, which are found 
to be rather sensitive to auto travel costs. This difference in sensitivity might be partially an 
artifact of the specific modeling assumptions and structure of the CSTDM framework and not 
entirely a realistic feature of future transportation, and more research is recommended to 
investigate the topic.  

Even considering these limitations, the results highlight how the eventual implementation of 
pricing strategies and congestion pricing policies could have a significant impact in mitigating 
the travel demand increases caused by the CAV deployment. The study also shed light into the 
benefit of mitigating emissions that ZEV policies would bring into the transportation system. 
The results from this study help inform the California Air Resources Board on the likely impacts 
that CAV deployment could cause on transportation, and inform policy making, including the 
development of Sustainable Community Strategies, the Advanced Clean Cars II regulation, and 
other transportation and CAV planning efforts statewide. 
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Data Summary 

Products of Research  

This study used three main data and information sources. First, the study conducted a 
comprehensive literature review to identify the key factors to be considered when modeling 
connected and automated vehicles (CAVs). The team identified the factors and used the 
literature to identify quantitative measures for such factors and incorporate them in the design 
of assumptions and modeling scenarios. Second, the team conducted a workshop with experts 
to synthesize the existing knowledge, fill in the gaps from the literature and create consensus 
among team members about the most salient impacts of CAVs. Finally, the team conducted the 
modeling. There are two main components for the modeling exercise. One refers to the use and 
implementation of the California Statewide Travel Demand Model (CSTDM) Version 3.0; and 
the other uses the modeling results to conduct additional analyses and the post-processing of 
the scenarios.  

Following the structure and implementation of CSTDM, the team analyzed the baseline and 
projected scenarios from the California Department of Transportation (Caltrans) for the year 
2050. Additionally, and based on the assumptions and scenarios described in this report, the 
team implemented changes to the CSTDM, and generated the input data to use for the specific 
scenarios. The team implemented the model and analyzed the results. Additionally, there were 
scenarios for which the team did not explicitly run the CSTDM. Rather, the team conducted 
post-processing of the scenario results (e.g., assumption of the use of zero emission vehicles). 
For the various scenarios, the team used emission factor rates from the EMFAC and Vision 
models, and estimated changes in emissions for each scenario with respect to the reference 
year and business as usual scenario. 

Data Format and Content  

There are a number of datasets generated by the project. 

Scenario input data and parameters: 

1. Parameters: This data includes the emission factors per vehicle type (light-, medium-, 

and heavy-duty). The data file uses comma-separated values (CSV) and excel formats.  

2. Scenario input data: For each of the scenarios used in the model, the project generated 

a set of input data for the CSTDM. These sets contain multiple scripts and other files 

required to run and implement the CSTDM.  

CSTDM Output data: These data include the outputs from the CSTDM for the different 

scenarios. The loaded networks are also generated resulting from the traffic assignment step of 

the model. 
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Post-Processing scenarios: As mentioned above, the team also evaluated a number of scenarios 

building on model outputs and scenario assumptions. The post-processing steps are carried out 

mainly using intermediate and final results, including trip tables by mode and loaded networks. 

Shape files: The team used geographic information systems (GIS) to develop geographic 

representation of results. The corresponding shapefiles and maps are generated based on the 

model outputs, using CUBE, ArcGIS and Python. 

Data Access and Sharing  

Interested individuals will be able to access the data available through the Dryad data 
repository and should contact the Principal Investigator, Dr. Giovanni Circella, prior to accessing 
the data. The data should not be hosted in other locations and should only use the data on 
Dryad. There is no private or confidential information in the data generated by this project. 
However, interested individuals must follow Caltrans guidelines when accessing results from 
the CSTDM V3.0. Emission rates from EMFAC and Vision are publicly available from the 
California Air Resources Board. 

Reuse and Redistribution  

Dr. Giovanni Circella and the other co-authors of the work (identified in this final report) hold 
the intellectual property rights to the data generated by the project. CSTDM data and emission 
rates are subject to intellectual property rights from Caltrans and the Air Resources Board. 

Data will not be able to be transferred to other data archives besides the ones approved by the 
PI and Co-PIs.  

The data can be used by anyone with proper referencing to the authors using the suggested 
citation: 

Sun, Ran et al. (2021), Emissions impact of connected and automated vehicle deployment in 
California - model results, Dryad, Dataset, https://doi.org/10.25338/B86926 
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Appendix A 

Table 21. Behavioral and Technological Factors to Be Considered in the Modeling of CAVs 
impacts (Source: Kuhr et al., 2017) 

Category Factor Impact 

Travel demand 

Trip making rates • Total number of trips 

Vehicle ownership 
• Modal split 

• Trip making rates 

Residential choice • Location of home-based-trip origins 

Activity location 
choice 

• Location of trip destinations 

Modal split 
• Trips by mode 

• Number of vehicles on the road 

Traffic 
Assignment 

Route selection 
paradigms for CAVs 

• Path choice &resulting travel times 

• Modal split (indirectly) 

System 
Performance 

Vehicle fleet 
characteristics 

• Arterial and freeway performance 

• Residential location choice (Indirect) 

Automation • Headways 

• Traffic control strategies 

• Safety 

• Indirect: Arterial and highway performance 

• Indirect: Modal Split 

Communications 
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Table 22. Summary of Modeling Practice 

Study Areas Type of Models Research Questions Assumptions Main findings 

Fagnant and 
Kockelman. 
(2014) 

Developed a model 
for a hypothetical 
gridded-like city  

Agent-based-
Model 

Finding the impacts of 
different SAV relocation 
strategies 
Investigate the potential 
impacts of SAVs in 
vehicle ownership, VMT, 
and environment. 

- Changes in trip generation 
(Double, Half, Quarter) 
- Centralization of trip (more 
centralized, less centralized) 
- Service area (Greater vs. 
smaller area) 
- Return-home trip by SAV 
- Peak congestion 
- SAV demand (Greater AM 
and PM Peak) 
- relocation strategies 
- Limiting number of SAVs 

Each SAVs can replace 10-
11 conventional cars, 
serving 31-41 travelers 
par day with average 
waiting time of 20 
minutes 
 
VMT can be increased by 
4.9% to 10.7% 

Gucwa (2014) San Francisco, USA Activity-based 
Model (MTC 
ABM) 

Finding the magnitude 
of the effect from the 
reduced generalized 
cost of travel (in mode 
choice)? 

+100% road capacity +2% VMT 

     -100% VOT for private AVs +13% VMT 

     +10% to 100% road capacity 
and -25% to 100% VOT 

+4% to 15% VMT 

Childress et al. 
(2015) 

Seattle, USA Activity-based 
Model (PSRC's 
SoundCast) 

Finding the range of 
behavioral impacts from 
AVs (Mode and Trip-
Choice Model Capacity 
changes for freeways 
and major arterials) 

30% road capacity (all freeway 
and major arterials) 

+4% VMT, -4% VHT 

    +30% road capacity and -35% 
VOT 

+5% VMT, -2% VHT 

    +30% road capacity and -35% 
VOT and -50% parking cost 

+20% VMT, 17% VHT, -
0.3% in PT share, -1.6% in 
walk share  



 

 
134 

Study Areas Type of Models Research Questions Assumptions Main findings 

    SAVs with the cost of 
1.65$/mile 

+35% VMT, -41% VHT, 
+4% in PT share, +5% in 
walk share 

International 
Transport Forum 
(2015) 

Lisbon, Portugal Agent-based 
model 

Examining the impacts 
of SAVs and pooled SAVs 

Replacement of all motorized 
trips by SAVs (with/without 
high-capacity transit) 

+44% to +89% VKT; −84% 
to −89% parking spaces 
−77% to −83% vehicles 

    Replacement of all motorized 
trips by pooled SAVs 
(with/without high-capacity 
transit) 

+6% to +22% VKT; −93% 
to −94% in parking spaces 
−87% to −90% vehicles 

Zhang et al. 
(2015) 

Hypothetical city (10 
miles * 10-mile city 
with gridded like 
network) 

Agent-based 
model 

Understanding the 
impacts of SAVs on 
urban parking for 
various fleet size and 
passenger wait time 

2% of trips with SAVs -90% parking demand 

Fagnant, 
Kockelman, and 
Bansal (2015) 

Austin, TX, USA Agent-based 
model (MATSim) 
and used the 
sample of trips 
from the regional 
model 

Exploring the impact of 
SAVs at lower market 
penetration 

Replace 1.3% of regional trips SAVs can replace 9 
conventional vehicles, 
+8% VMT 

Levin, and Boyles 
(2015) 

Downtown Austin Multi-class (VOT-
based) four-step 
model 

Exploring the impact of 
AVs on trip, mode, and 
route choice 

Various parking price  

Boesch, Ciari, and 
Axhausen (2016) 

Zurich, Switzerland Agent-based 
model (MATSim) 

Exploring the fleet size 
requires for serving 
different level of 
demand 

Replace all private vehicle trips 
by SAVs 

-90% vehicle 
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Study Areas Type of Models Research Questions Assumptions Main findings 

Chen, Kockelman, 
and Hanna (2016) 

Hypothetical city 
(based on Austin, 
TX) 

discrete-time 
agent-based 
model 

Exploring the 
management of fleet of 
electric SAVs 

10% of trips served by SAVs +7% empty VMT, −87% 
vehicles 

    10% of trips served by electric 
SAVs (with recharge time and 
vehicle range) 

+7% to +14% empty VMT; 
−85% to −73% vehicles 

Correia, Homem, 
and van Arem 
(2016) 

Delft, Netherlands Traffic 
assignment 

Exploring the impact of 
replacing privately 
owned conventional 
vehicles with AVs on 
traffic delays and 
parking demand  

Replacement of private 
vehicles with private AVs in 
households 

+17% VMT, +3% in car 
share, -5.9% in PT trips 

    Replacement of private 
vehicles with private AVs in 
households, Free parking 
everywhere 

20% VMT, +7.8% in car 
share, -14% in PT trips 

    Replacement of private 
vehicles with private AVs in 
households, - %50 VOT 

49% VMT, +9% in car 
share, -21% in PT trips 

LaMondia et al. 
(2016) 

Michigan, USA statewide (trip 
generation and 
mode choice) 

Exploring the impact of 
AVs on long-distance 
trip modal split 

AV cost is twice as the cost of 
conventional vehicle, AV VOT 
is three-quarter of 
conventional car VOT 

401-500 long distance: -
26.2% in personal vehicle 
trip volume and -25.1% in 
airline trip volume 

Meyer et al. 
(2017) 

Switzerland Travel demand 
model 
(macroscopic) 

Investigating the 
changes in accessibilities 
provided by deployment 
of AVs and SAVs? 

+80% road capacity outside 
urban areas, +40% in urban 
areas (private AVs) 

Minor gains in 
accessibility for rural 
municipalities, no 
change/small decrease in 
greater cities 

    +80% road capacity outside 
urban areas, +40% in in urban 
areas (SAVs) 

Moderate accessibility 
gains in rural 
municipalities, decrease 
in larger agglomerations 
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Study Areas Type of Models Research Questions Assumptions Main findings 

Liu et al. (2017) Austin, TX, USA Agent-based 
model (MATSim), 
using the result 
of activity-based 
model as an 
input 

Exploring the impact of 
the operation of SAVs on 
travel mode choice 

−50% VOT, $0.5/mile 
operating costs for SAVs 

50.9 SAV mode share, 
+9.8% empty VMT; SAV 
fleet = 17% of travelers. 

    −50% VOT, $0.75/mile 
operating costs for SAVs 

12.9 SAV mode share, 
+13.2% empty VMT; SAV 
fleet = 15% of travelers. 

    −50% VOT, $1/mile operating 
costs for SAVs 

10.5 SAV mode share, 
+15.7% empty VMT; SAV 
fleet = 13% of travelers. 

    −50% VOT, $1.25/mile 
operating costs for SAVs 

9.2 SAV mode share, 
+15.1% empty VMT; SAV 
fleet = 13% of travelers. 

Zhang and 
Guhathakurta 
(2017) 

Atlanta, USA Agent-based 
model (with 
discrete event 
simulator) 

Examining the impact of 
SAVs on urban parking 

5% of market penetration, 
−100% parking cost, 
$0.5/minute operating costs 
(carsharing) and $0.3/minute 
(ridesharing) 

−4.5% in parking land 

Auld, Sokolov, 
and Stephens 
(2017) 

Chicago, USA Activity-based 
model (POLARIS) 

Exploring the behavioral 
and operational effect of 
CAVs  

+12% to 77% road capacity +1% to +4% VMT 

    −25% to −75% VOT, 20% 
market share of private AVs 

+2% to +18% VMT 

    −25% to −75% VOT, 75% 
market share of private AVs 

+10% to +59% VMT 

    +3% road capacity, −25% VOT, 
20% market share of private 
AVs 

+2.7% in VMT 

    +77% road capacity, −75% 
VOT, 100% market share of 
private AVs 

+79% in VMT 
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Study Areas Type of Models Research Questions Assumptions Main findings 

Kröger, 
Kuhnimhof, and 
Trommer (2018). 

Germany and USA A spatial travel 
demand model 

How different context 
can lead to different AV 
impacts 

-25% VOT for private AVs 
(7.5% market share) 

+3.4% in VKT, +1.3% in car 
share, −0.2% in PT share 

    -25% VOT for private AVs 
(29.3% market share) 

+8.6% in VKT, +3.8 in car 
share, −0.4% in PT share 

    -25% VOT for private AVs 
(10.1% market share) 

+2.4% in VKT, +1% in car 
share, −0.3% in PT share 

    -25% VOT for private AVs 
(37.6% market share) 

+8.6% in VKT, +3.7% in car 
share, −0.9% in PT share 

Zhang, 
Guhathakurta, 
and Khalil (2018) 

Atlanta, USA Activity-based 
model 

Understanding the 
potential for vehicle 
ownership reduction 
through AVs 

Replacement of private 
vehicles with private AVs in 
households determined by 
min. number of AVs to satisfy 
travel demand of household 
members 

+13.3% empty VMT, 
−9.5% vehicles 

Zhang and 
Guhathakurta 
(2018) 

Atlanta, USA Agent-based 
model + 
residential 
location choice 
model 

Examining the potential 
changes in residential 
location choice provided 
by AVs 

(1) AV is not serving other 
household member when the 
current trip departs; (2) There 
is sufficient time for AV to 
relocate from its location to 
the origin of the upcoming 
trip; (3) The potential 
relocation time is obtained 
using Google Maps Distance 
Matrix Application 
Programming Interface (API) 
service. 

(1) more than 18% of the 
households can reduce 
vehicles, while 
maintaining the current 
travel patterns. 
(2) 29.8 unoccupied VMT 
will be induced per day 
per reduced vehicles. 

Rodier et al. 
(2019) 

San Francisco, USA Activity-based 
model 

Evaluating the system 
level traffic effects in 
San Francisco Bay Area 

+100% market penetration, 
+100% roadway capacity 

+1% in drive alone, +8% in 
Transit, -5% in active 
mode, 14% VMT 

    +100% market penetration, -
25% VOT 

+1% in drive alone, -5% in 
Transit, -4% in active 
mode, 3% VMT 
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Study Areas Type of Models Research Questions Assumptions Main findings 

    +100% market penetration, 
reduced per mile cost from 
17.9 cents to 14 cents 

+1% in drive alone, -4% in 
Transit, -4% in active 
mode, 3% VMT 

    +100% market penetration, 
relaxed age restriction 
between 16-13 years old 

+6% in drive alone, -12% 
in Transit, -4% in active 
mode, 2% VMT 

Khan (2019) South Carolina, USA Simulation Optimizes CAV speed in 
a situation-aware left-
turning considering the 
follower driver's 
aggressiveness 

600 veh/hr/lane opposite 
traffic stream  

-61% in VHT 

    800 veh/hr/lane opposite 
traffic stream 

-23% in VHT 

    1000 veh/hr/lane opposite 
traffic stream 

-41% in VHT 
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Table 23. How Self-Driving Cars Will Transform Cities 

Study Area 
Research 
question 

Main findings 

Urban 
form 

Road Capacity Lane 
Parking 
Demand 

Infrastructure 

Guerra, E. (2015). Planning 
for Cars That Drive 
Themselves: Metropolitan 
Planning Organizations, 
Regional Transportation 
Plans, and Autonomous 
Vehicles, Journal of 
Planning Education and 
Research 2016, Vol. 36(2) 
210 –224 

Atlanta 
 

  +50%   Reduced 
operating 
costs and free 
parking 

 

San 
Francisco 

  +10% to +100%    

Seattle   +0% to +30% 

   

Heinrichs, D. (2015). 
Autonomous Driving, 
Technical, Legal and Social 
Aspects. Autonomous 
Driving and Urban Land Use 

 Fathom 
potential 
implications on 
urban form 
and land use of 
a transport 
system with 
autonomous 
vehicles 

 Increasing road 
capacity 

 Reducing 
parking 
demand 

 

DeAngelis, J. (2016). 
Planning for the 
Autonomous Vehicle 
Revolution 

   Increasing 
capacity 

 Parking 
minimums 

Will lead to a 
decline in street 
signs, lane 
striping, and 
traffic signals 

Riggs, M., Boswell, M., 
Ross, R. (2016), Street plan: 
Hacking Streetmix for 
Community-Based 

United 
State 

Inform street 
section 
planning, 
design and 
Traffic 

  Reducing 
and 
combinin
g lanes 
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Study Area 
Research 
question 

Main findings 

Urban 
form 

Road Capacity Lane 
Parking 
Demand 

Infrastructure 

Outreach on the Future of 
Streets. 

modeling / 
simulation 

Sisson, P. (2016). Driverless 
Cars Will Shrink Our Roads 
and Radically Reshape 
Urban Space, 

San 
Francisco, 
United 
State 

       200% 
increase in 
efficiency 

 

Smolnicki, Piotr Marek, 
Jacek Soltys, (2106), 
Driverless Mobility: The 
Impact on Metropolitan 
Spatial Structures, World 
Multidisciplinary Civil 
Engineering-Architecture-
Urban Planning Symposium 
2016 

    Increasing 
urban 
sprawl  

    

Chapin, T., Stevens, L., 
Crute, J., Crandall, J., 
Rokyta, A., Washington, A. 
(2016). Envisioning Florida’s 
Future: Transportation and 
Land Use in an Automated 
Vehicle World. Report 
prepared for the Florida 
Department of 
Transportation. 

Florida, 
United 
State  

Assessing how 
AV technology 
might impact 
the built 
environment in 
the coming 
decades 

   Narrower 
traffic 
lanes, 
reduce 
the 
number 
of lanes 

Increasing 
efficiency  

 

Duarte, F. and Ratti, C. 
(2018). The Impact of 
Autonomous Vehicles on 

 Exploring the 
Impact of AV in 
cars (more or 

Increasing 
urban 
sprawl 

AV will 
require %80 
fewer cars on 

  AVs could double 
the existing 
average road 
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Study Area 
Research 
question 

Main findings 

Urban 
form 

Road Capacity Lane 
Parking 
Demand 

Infrastructure 

Cities: A Review, Journal of 
Urban Technology, VOL. 25, 
NO. 4, 3–18 

fewer cars), 
parking, urban 
form (more or 
less sprawl), 
infrastructure 
(more or less 
road 
infrastructure) 

any given 
highway. 
More efficient 
transportation 
in cities 

infrastructure 
capacity. 
Traffic lights 
could be 
eliminated with 
the 
implementation 
of distributed 
systems of traffic 
data exchange 

Crute, J., Riggs, W., Chapin, 
T., and Stevens, L. (2018). 
Planning for autonomous 
mobility, the American 
Planning Association 

  Increasing 
urban 
sprawl 

 Lane 
widths 
can be 
reduced 
to 8 feet 

Removing on-
street parking 
decline in the 
demand for 
parking 

Investing in 
dedicated AV 
infrastructure 

Snyder, R. (2018). Street 
design implications of 
autonomous vehicles 

   Capacity on 
freeways will 
roughly double 

Reduced 
to 8 or 9 
feet in 
lane 
width 

Reducing the 
amount of 
on-street 
parking 

Vehicle-to-
infrastructure 
(V2I) capabilities 
traffic signals 
may not be 
needed, and 
intersections may 
function like 
virtual 
roundabouts 

Schlossberg, M., W. Riggs, 
A., Millard-Ball, and E., Shay 
(2018). Rethinking the 
street in an era of driverless 
cars 

    Both 
number 
and space 
may be 
reduced 

Parking 
demand on 
streets may 
be reduced 
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Table 24. Potential Trip-based Modeling Changes (Source: Zmud et al. 2018) 

Model Component Trip-Based Model Improvement 

Sociodemographic  
Land use/demographic model Adjust accessibility measures 
Land use/demographic model  Account for parking reuse 
Land use/demographic model  Estimate levels of expanded mobile populations 
Market/Fleet  
Fleet composition models  Estimate and forecast types of vehicles and technology 
Auto Ownership  
Auto ownership model  Estimate and forecast CAV or manual vehicle ownership 
Auto availability model  Estimate and forecast availability of SAVs and carsharing 
Trip Generation  
Trip rates  Estimate and forecast rates for expanded mobile populations 
Trip rates  Account for zero-occupant vehicle trip generation 
Trip rates  Adjust rates within reason for improved accessibility 
Trip Distribution  
Impedance to travel  Estimate network cost matrices reflecting CAVs 
Impedance to travel  Estimate new friction factor matrices if CAVs affect trip 

lengths 
Mode Choice  
Mode choice model  Design new nesting structure including CAVs, SAVs, and SAV 

access to transit 
Mode choice model  Account for MaaS impacts on multimodal tour plans 
Value of time  Account for improved value of time for CAV modes 
Network Assignment  
Supply models  Estimate CAV-enhanced capacity on signalized arterial 

systems 
Network capacity Estimate CAV-enhanced capacity on grade-separated facilities 
Path costs; pricing and tolling  Estimate value of time including discounts for CAV 

passengers 
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Table 25. Summary of Model Improvement for Activity Based and Dynamic Traffic 
Assignment Models (Source: Zmud et al. 2018) 

Model Component Disaggregate AB/DTA Model Improvements 

Sociodemographic  
Population synthesizer  Control for age and income 
Population synthesizer  Add smartphone ownership and education level 
Built Environment  
Urban form  Set place type by area type and development type 
Mobility  
Vehicle ownership  Add CAVs as an option for households to own 
Vehicle ownership  Add purchase cost, incentive policies, parking cost, or 

accessibility variables to distinguish vehicle type 
MaaS  Add carsharing, ride-hailing, bikesharing memberships 
Activity Generation and 
Scheduling 

 

Activity generation  Lift age restrictions for CAVs, add constraints for persons with 
disabilities and seniors using conventional vehicles 

Activity generation  Adjust value of travel time (VOT) and review induced demand 
Activity generation  Add representation of empty car trips 
Destination/Location Choice  
Work/school locations  Integrate with land use model to provide sensitivity 
Mode Choice  
Mode choice  Add new modes (CAVs, TNCs, shared modes, microtransit) 
Mode choice  Adjust VOT for CAVs 
Access/egress  Add access and egress modes (TNCs, shared modes, 

microtransit) 
Mode choice  Add dynamic pricing for new modes, adjust parking costs for 

CAVs 
Mode choice  Adjust age and disability restrictions for CAVs 
Parking choice  Add parking choice model to include off-site parking 
Routing and Traffic Assignment  
Dynamic assignment  Add vehicle-following and speed characteristics for CAVs 
Vehicle operations  Parameterize vehicle operating characteristics 
Vehicle operations  Track empty vehicles and their travel characteristics 
Dynamic assignment  Simulate different levels of CVs in mixed traffic 
Dynamic assignment  Simulate nonrecurring congestion with/without CAVs 
Pricing  
Cost models  Determine cost per mile for each new mode by time period 
Parking costs  Adjust parking cost as demand shifts away from high-cost 

areas 
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Table 26. AV Planning Needs and Requirements (Source: Litman,2018) 

Impact Needs Requirements 
Time 

Period 

Become legal Demonstrated functionality 
and safety 

Define performance, 
testing and data collection 
requirements for 
automated driving on 
public roads.  

2018-25 

increase traffic density by 
vehicle coordination  

Road lanes dedicated to 
vehicles with coordinated 
platooning capability 

Evaluate impacts. Define 
requirements. Identify 
lanes to be dedicated to 
vehicles capable of 
coordinated operation. 

2020-40 

Independent mobility for 
non-drivers 

Fully AVs available for sale  Allows affluent non-drivers 
to enjoy independent 
mobility. 

2020-30s 

Automated carsharing /taxi Moderate price premium. 
Successful business model. 

May provide demand 
response services in 
affluent areas. Supports 
carsharing. 

2030-40s 

Independent mobility for 
lower-income population 

Affordable AVs for sale Reduced need for 
conventional public transit 
services in some areas.  

2040-50s 

Reduced parking demand Major share of vehicles is 
autonomous 

Reduced parking 
requirements. 

2040-50s 

Reduced traffic congestion Major share of urban peak 
vehicle travel is 
autonomous. 

Reduced road supply. 2050-60s 

Increased safety Major share of vehicle 
travel is autonomous. 

Reduced traffic risk. 
Possibly increased walking 
and cycling activity.  

2040-60s 

Energy conservation and 
emission reductions 

Major share of vehicle 
travel is autonomous. 
Walking and cycling 
become safer. 

Supports energy 
conservation and emission 
reduction efforts. 

2040-60s 

Improved vehicle control  Most or all vehicles are 
autonomous 

Allows narrower lanes and 
interactive traffic controls. 

2050-70s 

Need to plan for mixed 
traffic 

Major share of vehicles is 
autonomous. 

More complex traffic. May 
justify restrictions on 
human-driven vehicles. 

2040-60s 

Mandated AVs Most vehicles are 
autonomous and large 
benefits are proven. 

Allows advanced traffic 
management. 

2060-80s 

The Future Street is a conceptual visualization of how our streets of the future may look, and 
arguably will need to include: opportunities created by the introduction of AVs, smart city 
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technology, urban agriculture, and urban landscape imperatives. It tests the possibilities of 
dedicating less public space to cars and returning that space to people to use in ways other 
than driving. Future Street looks at new and different mobility options and ways to live in and 
enjoy our cities and streets.6 

 

 

6 Blueprint for Autonomous Urbanism, Second Edition: https://nacto.org/publication/bau2/  

https://nacto.org/publication/bau2/
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Appendix B 

Table 27. List of Experts of AV Modeling Expert Group Meeting 

Name  Affiliation 

Abolfazl (Kouros) Mohammadian  University of Illinois at Chicago 

Ali Etezady  Georgia Institute of Technology 

Ali Kothawala  University of California, Davis 

Arash Mirzaei  North Central Texas Council of Governments 

Caroline Rodier  University of California, Davis 

Chandra Bhat  University of Texas, Austin 

Cinzia Cirillo  University of Maryland 

Colin Sheppard  Lawrence Berkeley National Lab 

Dan Sperling  University of California, Davis 

David Bunch  University of California, Davis 

David Greene  University of Tennessee 

Deb Niemeier  University of California, Davis 

Elham Pourrahmani  University of California, Davis 

Farzad Alemi  University of California, Davis 

Flavia Tsang  Metropolitan Transportation Commission 

Giovanni Circella  University of California, Davis 

Grant Matson  University of California, Davis 

Greg Rowangould  University of New Mexico 

Guy Rousseau  Atlanta Regional Commission 

Hani Mahmassani  Northwestern University 

Henrik Becker  ETH Zurich 

Hui Deng  Southern California Association of Governments 

Jai Malik  University of California, Davis 

Jeremy Raw  Federal Highway Administration 

Lew Fulton  University of California, Davis 

Lisa Aultman-Hall  University of Vermont 

Mark Bradley  RSG 

Melanie Zauscher  California Air Resources Board 

Michael Gaunt  University of California, Davis 

Michael Zhang  University of California, Davis 

Miguel Jaller  University of California, Davis 

Mike McCoy  Strategic Growth Council, California (retired) 

Monique Stinson  Argonne National Lab 

Niloufar Yousefi  University of California, Davis 

Norman Marshall  Smart Mobility 

Patricia Mokhtarian  Georgia Institute of Technology 

Rachel James  FHWA 
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Name  Affiliation 

Ram Pendyala  Arizona State University 

Ran Sun  University of California, Davis 

Rolf Moeckel  TU Munich 

Ronald Milam  Fehr and Peer 

Rosa Dominguez-Faus  University of California, Davis 

Rosella Picado  WSP 

Roy Abboud  Caltrans 

Scott Hardman  University of California, Davis 

Shengyi Gao  Sacramento Area Council of Governments 

Srinivas Peeta  Georgia Institute of Technology 

Susan Handy  University of California, Davis 

Syche Cai  California Public Utilities Commission 

Thomas Rossi  Cambridge Systematics 

Vladimir Livshits  Maricopa Association of Governments 

Yanmei Ou  Sacramento Area Council of Governments 

Zhuo Yao  California Air Resources Board 
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Table 28. Agenda of Expert Workshop 
 

AGENDA 
AV MODELING EXPERT GROUP MEETING 

April 29th and 30th, 2019 
Hyatt Place Meeting Room, UC Davis 

Monday, April 29th, 2019 

8:30 a.m. Registration and Coffee 

9:00 a.m. Welcome to Participants and Introductions 

9:15 a.m. Session 1: Meeting Introduction - Modeling Travel Demand Impacts of AV Deployment 

• Meeting overview and objectives 

• When AVs become reality: Discussion of AV deployment timeline and next steps 

• Which AV business models: Discussion of various business models 

• What transition years will look like: Discussion of transition paths and future implications 

Short presentations and discussion with expert participants 

10:30 p.m. Coffee Break 

10:45 a.m. Session 2: The Big Picture - Overall Modeling Structure and Planning Applications 

• Do we have the right tools? Discussion of model assumptions, future scenarios and data 
availability 

• What we can model and what we cannot: Model components, limitations and boundaries 

• Applications for planning agencies and dealing with uncertainties: Discussion of 
applications of modeling frameworks for planning agencies 

Short presentations and discussion with expert participants 

12:30 p.m. Lunch Break  

1:30 p.m. Session 3: Impacts on Road Capacity and Changes in the Transportation Network 

• How AVs will affect travel time and safety: Discussion of the changes in transportation 
supply and network capacity  

• The role of connectivity: Opportunities offered by V2V and V2I from intersection to 
network capacity 

• Changes in traffic assignment and network modeling: Modification required to better 
model CAV deployment 

Short presentations and discussion with expert participants 

3:15 p.m. Coffee Break 
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3:30 p.m. Session 4: Value of Travel Time and Time-Use/Activity Patterns 

• Changes in value of travel time: Discussion of the changes in subjective value of time and 
induced demand 

• Individual activity patterns in the era of AV: Discussion of the modifications required to 
model the changes in activity patterns (including individuals with reduced mobility) 

• How people will use their “saved time”: How activity-based and other travel demand 
modeling tools can capture the effects of AVs on individual time use 

Short presentations and discussion with expert participants 

5:15 p.m. Last Thoughts and Wrap-up of Day 1 

6:00 p.m. Dinner at Our House Restaurant, 808 Second Street, Davis, CA 

Tuesday, April 30th, 2019 

8:30 a.m. Coffee 

9:00 a.m. Session 5: Mode Choice 

• How to model mode choice in the AV future: Discussion of modifications to introduce in 
travel demand models to account for AV options 

• New modes enabled by shared mobility and automation: How to model shared vs. 
personally-owned automated vehicles, the future of public transportation, new options in 
individuals’ choice set 

• How to update existing models: Discussion of the steps required to update large-scale 
travel demand models 

Short presentations and discussion with expert participants 

10:45 a.m.  Coffee Break  

11:00 a.m. Session 6: The Future of Vehicle Ownership 

• Early adopters: Discussion of the factors affecting AV adoption and willingness to pay 

• Cost of AV ownership/use: How it will differ from the cost of owning/using a conventional 
vehicle 

• Household vehicle ownership: Discussion of the steps required to update vehicle 
ownership model components 

Short presentations and discussion with expert participants 

12:30 p.m.  Lunch Break 

1:30 p.m. Session 7: Long-distance Travel 

• How long-distance travel will change with AVs: Discussion of changes in long-distance trips  

• The future of air travel: Discussion of conditions under which AVs can become competitive 
alternatives to air travel and other options (e.g. high speed rail) for long-distance trips 

Short presentations and discussion with expert participants  

2:45 p.m. Coffee Break 
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3:00 p.m. Session 8: Land Use and Other Long-Term Decisions 

• How residential location choices might change as AVs become available: Discussion of 
changes in residential location choices for various AV business models 

• Future urban form and location of primary and secondary destinations: What do we know 
about future cities (e.g. retail vs. residential space) and the required changes in destination 
choice models 

• The future of parking: Discussion of the changes in parking infrastructure and curbside 
management 

Short presentations and discussion with expert participants 

4:30 p.m. Wrap-up: Future Travel Demand - GHG, Energy and VMT 

• VMT, GHG and energy impacts: How will they change, and how to model them 

• Future vehicle fleet: What assumptions to make on efficiency standards, ZEV mandates, 
etc.  

Short presentations and discussion with expert participants 

5:30 p.m. Happy Hour and Goodbye 
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