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Distributed submodular maximization:
trading performance for privacy

Navid Rezazadeh and Solmaz S. Kia, IEEE member, Senior

Abstract— This paper considers a multi-agent submodular
set function maximization problem subject to partition matroid
in which the utility is shared, but the agents’ policy choices
are constrained locally. The paper’s main contribution is a
distributed algorithm that enables each agent to find a sub-
optimal policy locally with a guaranteed level of privacy. The
submodular set function maximization problems are NP-hard.
For agents communicating over a connected graph, this paper
proposes a polynomial-time distributed algorithm to obtain a
guaranteed near optimal solution. The proposed algorithm is
based on a distributed randomized gradient ascent scheme on
the multilinear extension of the submodular set function in
the continuous domain. Our next contribution is the design
of a distributed rounding algorithm that does not need any
inter-agent communication. We base our algorithm’s privacy
preservation characteristic on our proposed stochastic rounding
method and tie the level of privacy to the variable γ ∈ [0, 1].
That is, the policy choice of an agent can be determined with
the probability of at most γ. We show that our distributed
algorithm results in a strategy set that when the team’s objective
function is evaluated in the worst case, the objective function
value is in 1 − (1/e)h(γ) − O(1/T ) of the optimal solution,
highlighting the interplay between level of optimality gap
and guaranteed level of privacy where T is the number of
communication rounds between the agents.

I. INTRODUCTION

We consider a set of A, |A| = N agents (agents)
with communication and computation capabilities, interact-
ing over a connected undirected graph G(A, E). Each agent
a ∈ A has a distinct discrete policy set Pa and wants to
choose κa ∈ Z≥1 policies from its policy set such that a
monotone increasing and submodular utility function f :
2P → R≥0, P=

⋃
a∈A Pa, evaluated at all the agents’ policy

selection is maximized1. In other words, the agents aim to
solve in a distributed manner

max
R∈I

f(R) s.t. (1a)

I =
{
S ⊂ P

∣∣ |S ∩ Pa| ≤ κa, a ∈ A
}
. (1b)

agents’ access to the utility function is through a black box
that returns f(R) for any given set R ∈ P (value oracle
model). Constraint set (1b) is called a partition matroid,
which restricts the number of policy choices of each agent
a ∈ A to a prespecified number κa. While seeking a
distributed solution for (1), each agent wants to have a
formal guarantee that its final policy choice stays private.
Even though a distributed solution eliminates the necessity
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1For clarity, we provide a brief description of the notation and the
definitions in Section II.

of information aggregation in a central location, inter-agent
communication can still expose distributed network opera-
tions to adversarial eavesdroppers. These adversaries can be
other agents in the network or outside eavesdroppers that
intercept communication messages. Because in problem (1)
the agents have joint utility function, privacy preservation is
particularly a challenging problem. In this paper, the privacy
preservation is defined in the following sense.

Definition 1: Let R̄a ∈ Pa be the policy selected by
agent a ∈ A when the agents use a distributed algorithm
to solve the policy selection problem (1). We say R̄a ∈
Pa is γ-Private where γ ∈ [0, 1], if an intelligent entity
other than agent a, which has access to the inter-agent
communication messages, knows the network topology and
also the distributed algorithm routine, is only able to estimate
p ∈ R̄a with probability of at most γ for all p ∈ Pa

Problem (1) falls in the so-called distributed-constraint
submodular maximization class of problems in networked
systems. In a distributed-constraint problem, there is a shared
utility, but each agent has to choose its strategy from a
local constraint set that is disjoint from other agents and
is only known to the agent [1]–[6]. An example is the
heterogeneous coverage problem where each agent has a set
of heterogeneous sensors while the area to cover is shared
among them [7]. This is different than the distributed-utility
problems such as Welfare problem [8] where the team’s
utility function is the sum of the separable local utilities, and
agents choose their strategies from a shared strategy set [9]–
[11].

Submodular maximization subject to matroid constraint
is an NP-hard problem [12]. However, thanks to the in-
herent properties of submodular functions, suboptimal so-
lutions with quantifiable approximation factors have been
successfully proposed in the literature. The most well-known
result is the sequential greedy algorithm that dates back to
the 1970s by [12], guaranteeing 1/2-approximation factor
solution for problem (1) when it is solved in a centralized
manner. The sequential greedy algorithm presets a sequence,
and each agent chooses its own best local policy given
the choices of the preceding agents in the sequence. The
sequential greedy algorithm can be implemented via sequen-
tial message-passing over a connected graph. However, this
comes with routing overhead to identify the shortest path
that visits every agent. More importantly, in the sequential
greedy algorithm, the agents’ privacy is breached as each
agent passes its local policy set to those proceeding it in the
message-passing sequence.

More recently, another suboptimal solution for submod-
ular maximization subject to matroid constraints with an



improved approximation factor of (1−1/e) was proposed [8],
[13]–[16]. This method relies on continuous relaxation using
a multilinear extension of submodular set functions and
matroid polytope. The continuous relaxation is solved using
a gradient ascent algorithm, and the integer solution then
is rounded using appropriate rounding procedures such as
Pipage rounding [17] or randomized Pipage rounding [13].
Besides its improved optimality gap, this approach has
been shown to be amenable for distributed implementations
that use synchronous inter-neighbor communication both for
distributed-constraint problems [1]–[3] and distributed-utility
problems [9]–[11].

However, none of the existing work in distributed sub-
modular maximization formally addresses the privacy preser-
vation of the agents. Our privacy preservation mechanism
differs from existing methods for distributed algorithms such
as differential privacy [18], [19], which rely on adding
additive noises to the inter-agent communication messages.
Differential privacy has also been the main approach in
centralized submodular maximization problems subject to
cardinality [20], [21] and matroid constraints [22]. Instead
of adding noise to data or inter-agent communications, the
innovation in our work is to base our privacy preservation
mechanism on a stochastic rounding method and tie the
level of privacy to a variable γ ∈ [0, 1]. We show that our
distributed algorithm results in a strategy set such that when
the team’s objective function is evaluated at worst case,
the objective function value is in 1 − (1/e)1−

κmax
√
1−γ −

O(1/T ), κmax = max
a∈A

κa of the optimal solution in value
oracle model, highlighting the interplay between level of
optimality gap and guaranteed level of privacy.

II. NOTATION

For a vector x ∈ Rn, the pth element of the vector is
returned as [x]p. For x ∈ R, its absolute value is |x|. By
overloading the notation, we also use |R| as the cardinality of
set R. Given a set P = {1, · · · , n} the vector x ∈ Rn

≥0 with
0 ≤ [x]p ≤ 1, is referred to as belief vector, and the set Rx is
a random set where p ∈ P is in Rx with the probability [x]p.
Furthermore, for R ⊂ P , 1R ∈ {0, 1}n, referred to as belief
indicator vector, is the vector whose pth element is 1 if p ∈ R
and 0 otherwise. Lastly, ∆f (p|R) = f(R∪{p})− f(R) for
any R ⊂ P and p ∈ P . We denote a graph by G(A, E)
where A is the node set and E ⊂ A×A is the edge set. G is
undirected if and only (i, j) ∈ E means that agents i and j
can exchange information. An undirected graph is connected
if there is a path from each node to every other node in the
graph. We denote the set of the neighboring nodes of node i
by Ni = {j ∈ A|(i, j) ∈ E}. We also use d(G) to show the
diameter of the graph.

III. PROBLEM REFORMULATION

A distributed solution to problem (1) should enable each
agent a ∈ A to choose κa policies from its local policy
set Pa. To propose our distributed algorithm, we assert a
problem reformulation by introducing virtual agents to the
network. We split each agent a ∈ A into κa fully connected
local sub-agents embedded in agent a, see Fig 1, and design

Fig. 1: The extension of an agent with κi = 3 to the sub-agents.

the distributed algorithm such that each sub-agent is respon-
sible to choose a single policy. Without loss of generality,
we index the sub-agent set as AEx = {1, · · · , NEx} where
NEx =

∑
a∈A κa and Aa = {a1, · · · , aκa

} ⊂ AEx .
Hence AEx =

⋃
a∈A Aa. Moreover, we define the ground

set in the extended space as PEx = {1, · · · , nEx}, where
nEx =

∑
a∈A κa|Pa| and the policy set of each sub-agent

i ∈ Aa ⊂ AEx is defined as PEx
i = {p1i , · · · , p

|Pa|
i } ⊂ PEx

and PEx =
⋃

i∈AEx PEx
i . The policy set of sub-agent i ∈ Aa

is defined as a copy of the policy set of the agent a. Hence,
given that pli ∈ PEx

i and plj ∈ PEx
j are the copies of the l-th

policy of agent a ∈ A where sub-agents i, j ∈ Aa then for
any R ⊂ PEx the following holds

∆f (p
l
i|R) = ∆f (p

l
j |R) (2a)

∆f (p
l
i|R ∪ {plj}) = ∆f (p

l
j |R ∪ {pli}) = 0 (2b)

Moreover, we define the policy mapping function
PolicMap(p) = q, p ∈ PEx

i to return q ∈ Pa where
p is a copy of policy q. In this extended space, problem (1)
can equivalently be represented as

max
R∈IEx

f(R) s.t. (3a)

IEx =
{
R ⊂ PEx

∣∣ |R ∩ PEx
i | ≤ 1, i ∈ AEx}. (3b)

Without loss of generality we assume that PEx is ordered
according to AEx in a sense that 1 ∈ PEx

1 and nEx ∈ PEx
NEx .

AEx is ordered in a way that sub-agents of an agent are
ordered sequentially and the sub-agent sets are ordered in
accordance with their corresponding agent order in A. With
the new formulation of the problem in the context of sub-
agents, the optimal solution to problem (3) is equivalent to
the optimal solution of the main problem (1). The equivalent
problem formulation suggests that instead of each agent a ∈
A selecting κa policies, they create κa sub-agents and each
selects only one policy out of Pa.

To solve (3), we use a continuous relaxation method.
Notice that the utility set function f assigns values to all
the subsets of PEx =

⋃
i∈AEx PEx

i = {1, · · · , nEx}. Thus,
equivalently, we can regard the set value utility function
as a function on the Boolean hypercube {0, 1}nEx

, i.e., f :
{0, 1}nEx → R. For a submodular function f : 2P

Ex → R≥0,
its multilinear-extension F : [0, 1]n

Ex → R≥0 is [8]

F (x) =
∑

R⊂PEx

f(R)
∏
p∈R

[x]p
∏
p ̸∈R

(1− [x]p), x ∈ [0, 1]n
Ex
,

(4)



which expands the function evaluation of the utility function
over the space between the vertices of the Boolean hypercube
{0, 1}nEx

. Given x ∈ [0, 1]n
Ex

we can define Rx to be the
random subset of P in which each element p ∈ P is included
independently with probability [x]p and not included with
probability 1− [x]p. Then the multilinear-extension F in (4)
is interpreted

F (x) = E[f(Rx)], (5)

where E[.] indicates the expected value. Then, we obtain [8]

∂F

∂[x]p
(x) = E[f(Rx ∪ {p})− f(Rx \ {p})]. (6)

The partition matroid constraint is also extended to continu-
ous space using the matroid polytope

M =
{
x ∈ [0, 1]n

Ex ∣∣ ∑
p∈PEx

i

[x]p ≤ 1,∀i ∈ AEx}, (7)

which is the convex hull of the vertices of the hypercube
{0, 1}nEx

that satisfy the partition matroid constraint (3b).
Additionally, note that according to (4), F (x) for any x ∈ M
is a weighted average of values of F at the vertices of the
matriod polytope M. Then, equivalently, F (x) at any x ∈
M is a normalized-weighted average of f on the strategies
satisfying constraint (1b). As such,

f(R⋆) ≥ F (x), x ∈ M, and f(R⋆) = F (1R⋆),

which is equivalent to f(R⋆) = max
x∈M

F (x), where R⋆ is
the optimizer of problem (3) [8]. Therefore, to find R⋆, we
can solve the continuous domain optimization problem

max
x∈M

F (x). (8)

IV. DISTRIBUTED PRIVATE POLICY SELECTION

The continuous relaxation (8) of the set value optimization
problem (3) allows us to use a plethora of continuous domain
optimization solvers such a gradient-based algorithms. But
since problem (8) is not a concave problem, a gradient ascent
approach does not necessarily lead to the optimal value.
Nevertheless, in this section, we propose Algorithm 1 as a
γ-private distributed gradient ascent algorithm base on (8) to
find a sub-optimal solution to the problem (1).

Let every sub-sub-agent i ∈ AEx maintain and evolve a
belief state vector as xi(t) ∈ RnEx

. Each entry [xi(t)]p, p ∈
PEx
j , j ∈ AEx of the belief state corresponds to the es-

timate of sub-agent i on the confidence of sub-agent j
about choosing p as the final selected policy. Since PEx =
{1, · · · , nEx} is sorted sub-agent-wise, we denote xi(t) =
[x̂⊤

i1(t), · · · ,x⊤
ii(t), · · · , x̂

⊤
iNEx(t)]⊤ ∈ RnEx

where xii(t) ∈
R|PEx

i |
≥0 is the belief vector of sub-agent i’s own policy with

entries of [xi(t)]p, p ∈ PEx
i at iteration t ∈ {0, 1, · · · , T},

T ∈ Z>0, while x̂ij(t) ∈ R|PEx
j |

≥0 is the local estimate of the
belief vector of sub-agent j by sub-agent i with entries of
[xi(t)]p, p ∈ PEx

j , j ∈ AEx \ {i}. Let

λ =
T

1− κmax
√
1− γ

, κmax = max
a∈A

κa. (9)

Every sub-agent i ∈ AEx initializes at xi(0) = 0 and
implements the propagation and update steps

x−
i (t+ 1) = xi(t) +

1

λ
ṽi(t), (10a)

xi(t+ 1) = max
j∈Ni∪{i}

x−
j (t+ 1), (10b)

where

ṽi(t) = argmax
w∈Mi

w.∇̃F (xi(t)) (11)

Mi=
{
w∈ [0, 1]n

Ex
∣∣∣1.w ≤ 1 , [w]p = 0, ∀p ∈ PEx\PEx

i

}
.

(12)

The value of ∇̃F (xi(t)) is the empirical estimate of
∇F (xi(t)) calculated locally by each agent by using Ki

samples. The distributed sampling and empirical calculation
of ∇̃F (xi(t)) are the same as the method introduced in
[2, Section III.C] and are omitted here for brevity. In the
propagation step (10a) sub-agent i takes a step along a
feasible gradient ascent direction in its own local poly-
tope (12). But because the propagation is only based on the
local information, in the update step (10b), the propagated
x−
i (t + 1) of each sub-agent i ∈ A is updated by element-

wise maximum seeking among its neighbors. Because f is
monotone increasing, we have ∂F

∂[x]p
≥ 0, which leads to

1.ṽi(t) = 1 where ṽi(t) ∈ Mi. Therefore, given λ by
equation (9), at the end of the propagation and update process
at time T , we have

1.xii(T ) = 1− κmax
√
1− γ . (13)

For the rounding procedure it is essential that each sub-agent
has a local belief state vector on its own policy set that
sums up to 1. Therefore, given (13), each sub-agent i ∈ AEx

applies a γ-private operation on its local belief state vector
and generates the local belief vector zi such that

zi = [0⊤, · · · ,x⊤
ii(T ) + y⊤

ii , · · · ,0⊤]⊤ ∈ RnEx
, (14)

where yii is generated privately by sub-agent i such that

1.yii =
κmax
√
1− γ . (15)

We are now ready to propose our distributed rounding
scheme that enables each agent a ∈ A to choose its local
policy set. Our proposed rounding scheme does not require
any inter-agent communication because our design process
leads to 1.(xii(T )+yii) = 1 and consequently 1.zi = 1. Our
proposed rounding method is cooperative in the level of sub-
agents of an agent a ∈ A. This is an acceptable assumption
since the sub-agents of each agent a ∈ A are virtual agents
created by agent a. Given that Aa = {a1, · · · , aκa

} ⊂ AEx,
and defining from T (0) = ∅, each sub-agent i = ak ∈ Aa

of agent a ∈ A, uses the vector zi and a uniformly random
generated variable ζ ∈ [0, 1] to choose a single policy p ∈
PEx
i ⊂ PEx satisfying∑p

l=1
[zi]l ≤ ζ ≤

∑p+1

l=1
[zi]l (16)



Algorithm 1 Distributed γ-Private extension-based algo-
rithm
1: Init: R̄ ← ∅, xi(0)← 0, t← 1,
2: while t ≤ T do
3: for i ∈ AEx do
4: Draw Ki sample policy sets Rxi(t)

.
5: for p ∈ PEx

i do
6: Calculate

[
∇̃F (xi(t))

]
p

by empirically estimate

7: end for
8: Solve for ṽi(t) = argmax

w∈Mi

w.∇̃F (xi(t))

9: Propagate x−
i (t+ 1) = xi(t) +

1
λ
ṽi(t)

10: Broadcast xi(t) to the neighbors Ni.
11: Update xi(t+ 1) = max

j∈Ni∪{i}
x−
j (t+ 1)

12: end for
13: t← t+ 1.
14: end while
15: for i ∈ AEx do
16: Generate yii and form zi
17: end for
18: for a ∈ A do
19: Sample T̄a using zi, i ∈ Aa using Algorithm 2
20: end for
21: Map the policies R̄a = {PolicyMap(p)|p ∈ Ta}
22: Return R̄ =

⋃
a∈A R̄a

to get

T (k) = T (k − 1) ∪ {p}. (17)

Setting T̄a = T (κa), each agent a ∈ A chooses its policy
set from the policy choices of its sub-agents as

R̄a = {PolicyMap(p)| p ∈ Ta}. (18)

Defining R̄ =
⋃

a∈A R̄a to be the collective selected policies
of the agents A, the following theorems assert the guaran-
teed optimality bound and privacy preservation guarantee of
Algorithm 1.

Theorem 4.1 (Sub-optimality gap of Algorithm 1) Let
f : 2P → R≥0 be normalized, monotone increasing and
submodular set function. Let R⋆ to be the optimizer of
problem (1). Then, the policy set R̄, the output of distributed
Algorithm 1, satisfies

α
(
1− 1

e1− κmax
√
1−γ

)
f(R⋆) ≤ E[f(R̄)],

with the probability of at least(∏
i∈AEx(1− 2e−

1
8λ2 Ki)|P

Ex
i |κi

)T

and

α =
(
1−

(
2NEx2d(G) + 1

2
NEx2 +NEx

) 1

λ

)
.

The proof of Theorem 4.1 is given in the appendix.

Theorem 4.2 (Privacy characteristics of Algorithm 1) The
distributed Algorithm 1 used by each agent a ∈ A to
solve the policy selection problem (1) to achieve the policy
set R̄a ∈ Pa is γ-Private in the sense of Definition 1.
Specifically, each policy in Pa can be estimated to exist in
R̄a with probability of at most 1− ( κmax

√
1− γ)κa < γ.

Due to space limitation the proof of Theorem 4.2 appears
elsewhere. Intuitively speaking, notice that the privacy guar-
antees originate from the fact that instead of rounding Xii(T )

Algorithm 2 Distributed rounding
1: Input: a, κa, Aa = {a1, · · · , aκa}, PEx

i , zi, i ∈ Aa.
2: Init: T (0) = ∅, k ← 1,
3: for k ∈ {1, · · · , κa} do
4: Set i = ak
5: Generate a random number ζ ∈ [0, 1] with a uniform distribution.
6: Find p ∈ PEx

i such that
∑p

l=1[zi]l ≤ ζ ≤
∑p+1

l=1 [zi]l
7: end for
8: T (k) = T (k − 1) ∪ {p}
9: Ta = T (κa)

10: Return Ta

Fig. 2: The trade-off between optimality gap and privacy as a
function of κmax when a large value of T is used.

each sub-agent i ∈ AEx rounds Xii(T ) + yii. Notice that
Xii(T ) is exposed due to inter-agent message broadcast,
whereas elements of yii are chosen locally and randomly,
with the only exposed known fact about them being (15).

Theorem 4.1 and Theorem 4.2 highlight the trade-off
between the size of optimality gap and the guaranteed level
of privacy for Algorithm 1. Figure 2 shows the trade-off
when T is set to a very large value to eliminate the effect
of α. Notice, for example, for κmax = 1 and γ = 0.5 the
optimality gap is 0.4, which is a drop from the theoretical
best optimality gap of 1 − 1/e ≈ 0.632 corresponding
to γ = 1.

V. CONCLUSION

We proposed a distributed suboptimal algorithm to solve
a distributed-constraint problem of maximizing a monotone
increasing submodular set function subject to a partition
matroid constraint. The main contribution of this paper was
to design a distributed algorithm that enabled each agent
to find a suboptimal policy locally with a guaranteed level
of privacy. Our algorithm was a distributed solution for the
continuous relaxation of the problem of interest followed by
a fully distributed loss-less rounding procedure that needed
no inter-agent communication. We proposed a novel privacy-
preservation framework that tied the level of privacy to
a variable γ ∈ [0, 1], which determined the maximum
probability that the local policy choice of an agent would
be revealed. We conclude by formally establishing the trade-
off between the worst-case optimality gap and the guaranteed
level of privacy.
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VI. APPENDIX

Proof: [Proof of Theorem 4.1] Let x̄(t) = max
i∈AEx

xi(t).

It follows from [23, Lemma 7.3] and [23, Proposition 5.1]
that

F (x̄(t+ 1))− F (x̄(t)) ≥

∇F (x̄(t)).(x̄(t+ 1)− x̄(t))− 1

2
NEx2 1

λ2
f(R⋆),

which, further from [23, Proposition 5.1] we get

F (x̄(t+ 1))− F (x̄(t)) ≥
1

λ

∑
i∈AEx

ṽi(t).∇F (x̄(t))− 1

2
NEx2 1

λ2
f(R⋆). (19)

Next, we note that by definition, x̄(t) ≥ xi(t) for any ∀i ∈
AEx. Therefore, given [23, Proposition 5.1] and [23, Lemma
7.3], for any i ∈ AEx, and p ∈ {1, · · · , nEx}, we can write∣∣∣∣ ∂F

∂[x]p
(x̄(t))− ∂F

∂[x]p
(xi(t))

∣∣∣∣ ≤ NEx 1

λ
d(G))f(R⋆). (20)

knowing that 1.ṽi(t) = 1, i ∈ AEx. Consequently, using (20)
we can write∑

i∈AEx
ṽi(t).∇F (x̄(t)) ≥∑
i∈AEx

ṽi(t).∇F (xi(t))−NEx2 1

λ
d(G))f(R⋆).

(21)

Next, we let

v̄i(t) = argmax
w∈Mi

w.∇F (x̄(t)),

and
v̂i(t) = argmax

w∈Mi

w.∇F (xi(t)).

Because f is monotone increasing, we have
∂F

∂[x]p
≥ 0, and we conclude that 1.v̄i(t) = 1,

i ∈ AEx and also 1.v̂i(t) = 1, i ∈ A. Therefore,
using v̂i(t).∇F (xi(t)) ≥ v̄i(t).∇F (xi(t)) and
v̂i(t).∇F (xi(t)) ≥ ṽi(t).∇F (xi(t)), i ∈ AEx, and
(20) we can also write∑

i∈AEx
v̂i(t).∇F (xi(t)) ≥

∑
i∈AEx

v̄i(t).∇F (xi(t)) ≥∑
i∈AEx

v̄i(t).∇F (x̄(t))−NEx2 1

λ
d(G)f(R⋆), (22a)∑

i∈AEx
v̂i(t).∇F (xi(t)) ≥

∑
i∈AEx

ṽi(t).∇F (xi(t)).

(22b)

On the other hand, by virtue of [23, Lemma 7.4],
∂̃F

∂[x]p
(xi(t)), p ∈ PEx

i that each agent i ∈ AEx uses to solve
optimization problem (11) satisfies∣∣∣∣∣ ∂̃F

∂[x]p
(xj(t))−

∂F

∂[x]p
(xj(t))

∣∣∣∣∣ ≤ 1

2λ
f(R⋆), (23)

with the probability of at least 1 − 2e−
1

8λ2 Kj . Using (22b)
and (23), and also that the samples are drawn independently∑

i∈AEx
ṽi(t).∇F (xi(t)) ≥∑
i∈AEx

ṽi(t).∇̃F (xi(t))−NEx 1

2λ
f(R⋆), (24a)∑

i∈AEx
ṽi(t).∇̃F (xi(t)) ≥

∑
i∈AEx

v̂i(t).∇̃F (xi(t)) ≥∑
i∈AEx

v̂i(t).∇F (xi(t))−NEx 1

2λ
f(R⋆), (24b)

with the probability of at least
∏

i∈AEx(1− 2e−
1

8λ2 Ki)|P
Ex
i |.

From (21), (22a),(24a), and (24b) now we can write∑
i∈AEx

ṽi(t).∇F (x̄(t)) ≥



∑
i∈AEx

v̄i(t).∇F (x̄(t))−(2NExd(G)) + 1)NEx 1

λ
f(R⋆),

(25)

with the probability of at least 1− 2
∑

i∈AEx e−
1

8λ2 Ki .

Next, let v⋆
i be the projection of 1R⋆ into Mi. Know-

ing that Mis are disjoint sub-spaces of M covering the
whole space then we can write 1R⋆ =

∑
i∈AEx v⋆

i . Then,
using (25) and invoking [23, Lemma 7.1] and the fact that
v̄i(t).∇F (x̄(t)) ≥ v⋆

i (t).∇F (x̄(t)) we obtain∑
i∈AEx

ṽi(t).∇F (x̄(t)) ≥∑
i∈AEx

v⋆
i (t).∇F (x̄(t))− (2NExd(G)) + 1)NEx 1

λ
f(R⋆) =

1R⋆ .∇F (x̄(t))− (2NExd(G)) + 1)NEx 1

λ
f(R⋆) ≥

f(R⋆)− F (x̄(t))− (2NExd(G)) + 1)
NEx

λ
f(R⋆), (26)

with the probability of at least
∏

i∈AEx(1 − 2e−
1

8λ2 Ki)|P
Ex
i |.

Hence, using (19) and (26), we conclude that

F (x̄(t+ 1))− F (x̄(t)) ≥
1

λ
(f(R⋆)− F (x̄(t))− (2NExd(G)) + 1

2
NEx + 1)

NEx

λ2
f(R⋆),

(27)

with the probability of at least
∏

i∈AEx(1− 2e−
1

8λ2 Ki)|P
Ex
i |.

Next, let g(t) = f(R⋆)−F (x̄(t)) and β = (2NExd(G))+
1
2N

Ex + 1)N
Ex

λ2 f(R⋆), to rewrite (27) as

(f(R⋆)− F (x̄(t)))− (f(R⋆)− F (x̄(t+ 1))) =

g(t)− g(t+ 1) ≥ 1

λ
(f(R⋆)− F (x̄(t)))− β =

1

λ
g(t)− β.

(28)

Then from inequality (28) we get

g(t+ 1) ≤ (1− 1

λ
)g(t) + β, (29)

with the probability of at least
∏

i∈AEx(1 − 2e−
1

8λ2 Ki)|P
Ex
i |.

Solving for inequality (29) at time T yields

g(T ) ≤ (1− 1

λ
)T g(0) + β

T−1∑
k=0

(1− 1

λ
)k =

(1− 1

λ
)T g(0) + λβ(1− (1− 1

λ
)T ), (30)

with the probability of at least(∏
i∈AEx(1− 2e−

1
8λ2 Kj )|P

Ex
i |
)T

. Substituting back g(T ) =

f(R⋆)− F (x̄(T )) and g(0) = f(R⋆)− F (x(0)) = f(R⋆),
in (30) we then obtain

(1− (1− 1

λ
)T )(f(R⋆)− λβ) =

(1− (1− 1

λ
)T )(1− (2NExd(G)) + 1

2
NEx + 1)

NEx

λ
)f(R⋆)

≤ F (x̄(T )), (31)

with the probability of at least(∏
i∈AEx(1− 2e−

1
8λ2 Ki)|P

Ex
i |
)T

. Knowing that

1
e ≥ (1 − 1

λ )
λ, we can write ( 1e ) ≥ (1 − 1

λ )
λ

and λ = T
1− κmax

√
1−γ

from equation (9), we can
write ( 1e )

1− κmax
√
1−γ ≥ (1 − 1

λ )
T and consequently

1− ( 1e )
1− κmax

√
1−γ ≤ 1− (1− 1

λ )
T . Hence, we conclude

α(1− 1

e1− κmax
√
1−γ

)f(R⋆)≤ F (x̄(T )),

with the probability of at least(∏
i∈AEx(1− 2e−

1
8λ2 Ki)|P

Ex
i |
)T

where

α = 1−(2NExd(G)+ 1

2
NEx + 1)

NEx

λ
.

Moreover, by defining z̄ = max
i∈AEx

zi and because of equa-

tions (14), (15), we can conclude [z̄]p ≥ [x̄(T )]p for p ∈ PEx.
Hence, by the stochastic definition of extended function
F given by equation (5), we have F (x̄) ≤ F (z̄) and
consequently

α(1− 1

e1− κmax
√
1−γ

)f(R⋆)≤ F (z̄), (32)

By the stochastic interpretation of the extended function (5),
we can write

F (z̄) = E[f(Rz̄)]. (33)

By decomposing z̄ to sub-agent level components, we
can write

E[Rz̄] = E[f(
⋃
a∈A

⋃
i∈Aa

Rz̄i)]. (34)

Moreover, for a random set S ∈ PEx and the random set
Rzi

= {p1, · · · , pm} ⊂ PEx
i , i ∈ AEx, we have

E[f(S ∪Rzi
)]= E[f(S)+

m∑
k=1

∆f (pk|S ∪ {p1, · · · , pl−1})]

≤ E[f(S) +
∑

p∈Rzi

∆f (p|S)] = E[f(S) +
∑

p∈PEx
i

∆f (p|S)]

=
∑

p∈PEx
i

[zi]pf(S ∪ {p}). (35)

Since 1.zi = 1 and [zi]p ≥ 0, p ∈ PEx
i , then the expression∑

p∈PEx
i
[zi]pf(S ∪{p}) is equivalent to E[f(S ∪{p})] when

the policy p is chosen randomly according to belief vector
zi. Hence, by referring to equations (34) and (35), we have

E[Rz̄] ≤ E[f(
⋃
a∈A

⋃
i∈Aa

pi] = E[f(
⋃
a∈A

Ta],

where pi is the randomly selected policy according to belief
vector zi and Ta =

⋃
i∈Aa

pi is the set of randomly selected
policies of sub-agents of agent a. Having that f(Ta) =
f(R̄a) where R̄a = {PolicyMap(p)|p ∈ Ta}, and using the
equations (32) and (33), we can write

α(1− 1

e1− κmax
√
1−γ

)f(R⋆)≤ E[f(
⋃
a∈A

Ta] = f(R̄), (36)

with the probability of at least(∏
i∈AEx(1− 2e−

1
8λ2 Ki)|P

Ex
i |
)T

, which concludes the proof.




