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Preprint PRL, Vay (2006)

Noninvariance of Space- and Time-Scale Ranges under a Lorentz Transformation and

the Implications for the Study of Relativistic Interactions

J.-L. Vay∗

Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(Dated: April 4, 2007)

We present an analysis which shows that the ranges of space and time scales spanned by a system
are not invariant under the Lorentz transformation. This implies the existence of a frame of reference
which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived
for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with
electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The
most immediate relevance is the reduction by orders of magnitude in computer simulation run times
for such systems.

PACS numbers: 52.40.Mj, 03.30.+p, 02.70.-c

The study of the interaction of two or more “objects”
(in the broad sense of collections of particles, possibly in-
cluding massless particles such as photons, or wave pack-
ets) crossing each other at relativistic velocities is com-
mon to many areas of science and technology. This field
encompasses all laser-matter interactions and relativistic
beams colliding with each other or interacting with mat-
ter. In many instances, the system exhibits a disparity of
space and time scales between the crossing objects which
can span several orders of magnitude, with implications
for experimentation, theoretical and numerical analysis.
Examples of such systems with large separations of scales
are: free electron lasers [? ], laser-plasma acceleration [?
? ? ], and high-energy particle beams interacting with
electron clouds [? ].

The disparity of scales sets significant constrains on ex-
periments where a very short particle and/or laser beam
propagates through a structure (plasma, accelerator,...)
which is orders of magnitude longer. The increase in
energy of the incident pulse, coupled to a decrease in
the pulse duration, puts increasingly challenging require-
ments on the precision of apparatus alignment, time re-
sponse and synchronism.

For the theoretical study of such systems, it is com-
mon practice to perform a change of variable of the form
{x′ = x − vt, t′ = t} or {x′ = x, t′ = t − x/v}, where t
is the time, x is the direction of propagation of the in-
cident beam and v is its speed in the laboratory frame.
This allows the study of just a “window” moving respec-
tively in space/time which encompasses the “beam” and
that portion of the “target” which it is instantaneously
overlapping. It is also recognized that the separation
of scales in space and time between the incident beam
and the target offers the opportunity for simplifying the
mathematical description of the interaction through the
use of Eikonal (sometimes referred to as “slowly varying
envelope”) approximations. Although the simplification
allows recovery of many features of the physical processes
at play, there are instances where the physics that is omit-

ted by these models cannot be neglected, and numerical
solutions on a computer are then required. Because a
wide separation of space and time scales can impose se-
vere limitations on the size of the system that can be
modeled (“multiscale” problems), these usually require
massively parallel computations, and parametric studies
of the full system are often impossible without the use of
the above-mentioned approximations.

We will show that the use of the Lorentz transfor-
mation {x′ = γ (x − vt) , t′ = γ

(

t − vx/c2
)

} (where c

is the speed of light in vacuum and γ = 1/
√

1 − v2/c2

is the usual relativistic factor) offers the opportunity of
bridging disparate space and time scales, the benefits
of which will be discussed and demonstrated on one
example.

We begin by illustrating the effect of scale separation
under the Lorentz transformation on a very simple con-
figuration where we consider two “objects” with parallel
velocity vectors having, in a frame of reference F0: the
same (a) length l, (b) minimum length of interest λ, and
(c) maximum frequency of interest ν = 1/τ ; and differ-
ent speed β+ ≥ 0 and β- ≤ 0 (denoting quantities re-
lated to the two objects respectively with the subscripts
+ and −). For the sake of simplicity, and for this ex-
ample only, we assume that the two objects are suffi-
ciently rigid macroscopically that the total length and
average velocities are not affected during the interac-
tion. Under these assumptions, the total time for the
two objects to cross each other in the frame F0 is given
by T = 2l/ (|β+ − β-|c), and the ratios of the longest
to smallest space/time scales are given respectively by
Rs = 2l/λ and Rt = T/τ . In a frame F moving at speed
βc in F0, we have (denoting quantities in the moving
frame with the superscript ∗)







β∗
± = (β± − β) / (1 − ββ±) ,

l∗±/l0 = λ∗
±/λ0 = τ0/τ∗

± = 1/ [γ (1 − ββ±)] ,
T ∗ =

(

l∗
+

+ l∗-
)

/
[

|β∗
+
− β∗

- |c
]

.
(1)



2

1 10 1e2 1e3 1e4 1e5

10

1e2

1e3

1e4

1e5

1e6

1e7

1e8

1e9

γ

γ  =1e4
2γ2

Γ

+

γ  =1e2

γ  =1e3

γ  =10

γ  =2

+

+

+

+

γ

FIG. 1: Γ as a function of γ for γ+ = {2, 10, 1e2, 1e3, 1e4}.

If we assume that β ≥ 0 then we have λ∗
- ≤ λ∗

+
and

τ∗
+
≤ τ∗

- , so that the ratios of longest to smallest space
and time scales are given in the moving frame F by

{

R∗
s =

(

l∗
+

+ l∗-
)

/λ∗
- ,

R∗
t = T ∗/τ∗

+
.

(2)

From (??) and (??), we find that the dependence Γ of
space and time scales ratios with regard to the moving
frame is given by

Γ = R∗

s/Rs = R∗

t /Rt =
1 − ββ̄

1 − ββ+

, (3)

with β̄ = (β+ + β-) /2. If we assume β̄ << 1 (velocities
of the two objects are almost equal and opposite in F0),
Γ simplifies to Γ ≈ 1/ (1 − ββ+), which is plotted versus

γ = 1/
√

1 − β2 on Fig. ?? for several values of γ+ =
1/

√

1 − β2
+
. It varies as 2γ2 for γ < γ+ and asymptotes

to 2γ2
+

for γ > γ+. From this, we conclude that the
space and time scales associated with each beam, which
span the same range in F0, separate from each other in a
frame F moving at some velocity βc from F0, at the rate
γ2 = 1/

(

1 − β2
)

. Note that this is general and applies
to both particles and photons (for example, if object 1 is
made of photons, we have β+ = β∗

+
= 1).

Fig.?? shows the space-time diagrams of two objects
crossing each other (for this example, the velocities were
such that the relativistic factor γ0 = 2 for each object
in F0; but this choice is unimportant to the argument).
The two objects that are represented can be viewed as en-
tire uniform beams crossing each other or, perhaps more
interestingly, as the smallest space-time unit of interest
for each. Assuming that the two objects are identical
in F0, the corresponding space-time diagram, shown in
Fig.??(a), is very simple, with geometrical structures at
one scale only. In the rest frame F of one of the beams,
the space-time diagram, shown in Fig.??(b), reveals a
more “complex” layout with very disparate space and
time scales, revealing graphically the separation of scales
obtained above via mathematical analysis. We also re-
mark that the space-time area covering the interaction
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FIG. 2: Phase-space diagrams of two identical rigid objects
crossing each other as viewed in (a) the frame of the center
of mass, (b) the rest frame of one object (solid line - object
1, dashed line - object 2, shaded area - overlap of bodies). A
regular mesh (dotted lines), with cells resolving the smallest
space and time scales, is overlaid.

(usually of most interest), is given by the overlap of the
two objects (shaded areas on Fig.??), which occupies a
maximal fraction of the support of the system in F0, when
the disparity of scales is minimal. Finally, we note that
the diagram in Fig.??(b) can be representative of a short
particle beam or laser pulse propagating into a long struc-
ture, such as an FEL, a laser-plasma accelerator, or of a
beam interacting with an electron cloud in a particle ac-
celerator, which are considered below.

These considerations have consequences in the experi-
mental, theoretical and numerical study of a system. Ex-
perimentally, the study of the fundamental mechanisms
of the interactions might be greatly simplified if per-
formed in the frame which minimizes the range of scales.
Potential advantages are: (a) the system is more compact
spatially, (b) the time of interaction is shorter, (c) the
ratios between largest to smallest space and time scales
are minimized. All of these alleviate the requirements
on alignment, time response of diagnostics and synchro-
nism. Theoretically, it is common practice to study par-
ticle beams in their ”rest” or ”bucket” frames where the
analysis can be greatly simplified [? ]. Furthermore, de-
velopments in series (for example) around some spatial,
time, frequency or wavelength of interest might offer dif-
ferent opportunities of approximation, depending on the
chosen frame of analysis, which have different tradeoffs
with regards to the study of some aspects of the mecha-
nisms at play.

The most important immediate application probably
lies in the numerical modeling of such systems. The ap-
proximations used theoretically (Eikonal, “slowly vary-
ing envelope”, “quasi-static”) are also used in numerical
analysis in order to reduce the requirements on the num-
ber of points in space and time of the discretized system
(using Eulerian or Lagrangian methods). However, these
approximations are sometimes inappropriate and the sys-
tem must be modeled from first principles, but the range



3

of the space and time scales imposes very severe limi-
tations. In such cases, it may be very advantageous to
perform the calculation in the frame which minimizes the
range of scales. Potential complications include the mod-
eling of internal boundaries moving at relativistic veloci-
ties or the existence of a non-inertial moving frame (in a
case of a beam propagating in a circular accelerator, for
example). However, the dependence of Γ on the square of
γ indicates that gains of orders of magnitude are possible
for relative velocities with large γ, offsetting the potential
difficulties.

As a first example, let us consider one pass of a Free
Electron Laser configuration [? ] where an electron
beam of length l propagates at speed v into a wiggler
consisting of N magnet pairs of periodicity length λw

and vector potential Aw, with l << λw. When crossing
the wiggler, the electron beam will emit electromagnetic
radiation at the wavelength λ = λw

[(

1 + a2
w

)

/
(

2γ2
)]

,
where aw = eAw/(mc2), and e and m are respectively
the charge and mass of the electron. The time T taken
by the driver beam to propagate through the magnets is
given by T ≈ Nλw/v. Finally, the ratios of the longest
to smallest space/time scales are given respectively by
Rs = Nλw/λ ∝ γ2 and Rt = T/ (λ/c) = Nλwc/ (λv) ∝
γ2. Hence both ratios of scales vary as the square of the
relativistic factor γ which, for large values of γ, corre-
sponds to a large separation of space and time scales.
If we consider now the same system in a frame moving
at speed v relative to the laboratory frame, and apply-
ing the Lorentz transformation, the quantities become in
this frame: λ∗/λ = λw/λ∗

w = γ and R∗
s = Rs/γ2 ∝ 1.

Hence in this frame of reference, the disparity of space
and time scales vanishes. [? ]

As a second example, let us now consider a laser-
plasma wakefield accelerator (LPWA) scheme [? ? ?

] where an incident laser pulse of wavelength λ and
length l propagates through a neutral plasma of length
Lp and density n0. The highest frequency of interest is
ω = 2πc/λ, while the time of the interaction is given
by T = (Lp + l) /c. The ratio of space and time scales
are Rs = (Lp + l) /λ and Rt = T/ (2π/ω) = Rs. In
a frame moving at relativistic speed βc relative to the
laboratory frame, we have (note that we make the com-
mon assumption that the backward Raman emission can
be neglected. If not, further considerations are needed
that will be addressed elsewhere.): Lp/L∗

p = γ, λ∗/λ =
l∗/l = ω/ω∗ = γ (1 + β), so that T ∗ = (l∗ + L∗) / (c + v),
R∗

s =
(

L∗
p + l∗

)

/λ∗ = αRs, and R∗
t = T ∗/ (2π/ω∗) =

αRt/ (1 + β), with α = (1 − β + l/Lp) / (1 + l/Lp). We
have α = 1 when β = 0, α ∝ 1/γ2 when γ2 << Lp/l, and
α = 3/2Lp/l when γ2 = Lp/l. Since typically, Lp >> l,
the ratio of length and space scales can be considerably
reduced in the moving frame. [? ]

As a last example, let us consider a relativistic par-
ticle beam of length l, positively charged, propagating
at speed βbc in a linear periodic section of an accelerator

structure of length L and periodicity λ = L/n, and inter-
acting with electrons emitted by photo-emission and/or
secondary emission at the walls of the vacuum pipe [? ].
For very short bunches l << L, the minimum/maximum
space scales are given by the bunch/accelerator section
lengths l and L. The minimum time scale in the labo-
ratory frame is given by the transit time τ of an elec-
tron across the pipe due to the beam electric field. The
maximum time scale T is given by the time taken by
the beam to get across the accelerator section and we
have T = (L + l) / (βbc) where we have assumed that
there are no large accelerating fields in the section. We
have then Rs = (L + l) /l and Rt = T/τ . In a frame
moving at relativistic speed βc relative to the labora-
tory frame, the quantities become l∗ = l/ [γ (1 − ββb)],
L/L∗ = τ∗/τ = γ, and T ∗ = (L∗ + l∗) / [(β + βb) c], so
that

{

R∗
s = L∗/l∗ = Rs

1+l/L−ββb

1+l/L ,

R∗
t = T ∗/τ∗ = Rt

βb(1+l/L−ββb)
γ2(1+l/L)(β+βb)(1−ββb)

.
(4)

For ultra-relativistic beams (βb → 1), then Rs → Rt →
(1 − β + l/L)/ (1 + l/L) which is the same function α
obtained for the LPWA case. The conclusion obtained
for the LPWA case thus hold here.

We illustrate (using the WARP code[? ]) the dra-
matic speedup which can be obtained, in a numerical
simulation of a beam of 1012 protons propagating at
γ = 500 (in the laboratory) into a cylindrical pipe of
radius R = 1cm, embedded into an external continuous
focusing azimuthal magnetic field Bθ = 0.15r, where r
is the distance to the axis of propagation. After 1km
of propagation through vacuum, the beam encounters an
initially cold background of electrons with uniform den-
sity, which ramps linearly over 2km from zero to a max-
imum of ne = 1015m−3, and then remains constant for
1km before dropping back to zero linearly over 2km. The
beam distribution is initially 6-D gaussian with an RMS
transverse size σx = σy = 1mm, RMS length σz = 10cm,
beta functions βx = βy = 100m and no momentum
spread. The beam is injected such that each slice pass-
ing through z=0 has the above-mentioned characteris-
tics, initial offset xoff = 0.1σx and velocity vy = 0.1vth,
where vth is the initial transverse thermal spread. The
average value of the beam radius < r >=<

√

x2 + y2 >,
for a thin slice taken in the middle of the beam, as a
function of its position in the laboratory frame, is given
in Fig. ?? (top) for three runs: a) with no electrons,
b) with electrons, in the laboratory frame, and c) with
electrons, in a frame moving at γ =

√
512. As the beam

propagates through the background of electrons, the in-
teraction leads to a type of hose instability (see bottom of
Fig. ??) which is characterized by an exponential growth
of < r >, followed by saturation. As expected, the two
calculations performed with electrons led to the same re-
sults. However, due to the different ratios of space and
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FIG. 3: (Color online) (top) average value of the beam radius
for a thin slice taken in the middle of the beam, as a function
of its position in the laboratory frame, given for three runs: a)
no electrons, b) with electrons, in the laboratory frame, and c)
with electrons, in a frame moving at γ =

√
512, (bottom) 3-D

snapshot of the beam and electrons from run in the moving
frame taken when the head of the beam reaches z=4km in
the laboratory frame (beam macro-particles are rendered as
spheres colored according to their position in r(mm); electrons
are sampled and rendered as streamlines in gold color).

time scales, the Courant condition on the motion of elec-
trons led to very different restrictions on the time steps:
in the laboratory frame, the calculation required over 5
million time steps and over a week of clock time, running
on eight 2.2GHz Opteron processors; while the calcula-
tion in the frame moving at γ =

√
512 required only ap-

proximately 5000 time steps and completed in less than
30 minutes, using the same computer resources.

In conclusion, we have shown that, for a system which
contains a component of matter and/or light moving at
relativistic velocities with regard to another component,
there is a preferred frame of reference which minimizes
the ranges of space and time scales, and the ratio of
maximum to minimum space or time scales varies as
the square of the relativistic factor γ associated with
the speed of the moving frame. We have also shown
that the large space and time scale separations in several
systems of experimental interest vanish in this preferred
frame, and discussed new possibilities offered by this ef-
fect for the experimental, theoretical and numerical study
of these configurations. We have demonstrated the effect
on three examples: free electron laser, laser plasma accel-

eration, and electron cloud interactions with high energy
beams. Furthermore, we have recovered for each of these
examples the dependence on the square of the relativis-
tic factor γ which was obtained for a simpler symmetric
configuration. We note in particular that the modeling
of these systems using computer simulations can bene-
fit from orders of magnitude reduction in run time when
performed in this preferred frame, and offered an exam-
ple where a speedup of three orders of magnitude was
obtained.
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