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Abstract

Background

As diagnostic tests for COVID-19 were broadly deployed under Emergency Use Authoriza-

tion, there emerged a need to understand the real-world utilization and performance of sero-

logical testing across the United States.

Methods

Six health systems contributed electronic health records and/or claims data, jointly devel-

oped a master protocol, and used it to execute the analysis in parallel. We used descriptive

statistics to examine demographic, clinical, and geographic characteristics of serology test-

ing among patients with RNA positive for SARS-CoV-2.
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Results

Across datasets, we observed 930,669 individuals with positive RNA for SARS-CoV-2. Of

these, 35,806 (4%) were serotested within 90 days; 15% of which occurred <14 days from

the RNA positive test. The proportion of people with a history of cardiovascular disease,

obesity, chronic lung, or kidney disease; or presenting with shortness of breath or pneumo-

nia appeared higher among those serotested compared to those who were not. Even in a

population of people with active infection, race/ethnicity data were largely missing (>30%) in

some datasets—limiting our ability to examine differences in serological testing by race. In

datasets where race/ethnicity information was available, we observed a greater distribution

of White individuals among those serotested; however, the time between RNA and serology

tests appeared shorter in Black compared to White individuals. Test manufacturer data was

available in half of the datasets contributing to the analysis.

Conclusion

Our results inform the underlying context of serotesting during the first year of the COVID-

19 pandemic and differences observed between claims and EHR data sources–a critical

first step to understanding the real-world accuracy of serological tests. Incomplete reporting

of race/ethnicity data and a limited ability to link test manufacturer data, lab results, and clini-

cal data challenge the ability to assess the real-world performance of SARS-CoV-2 tests in

different contexts and the overall U.S. response to current and future disease pandemics.

Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2); originally identified in Wuhan, China in Decem-

ber 2019 [1]. In January 2020, COVID-19 was declared a public health emergency in the

United States as the disease continued to spread worldwide. As new variants continue to

threaten health and well-being across the globe, valid serology tests are needed to support the

characterization of immune response—overall and within different subpopulations—to iden-

tify effective treatments, prophylaxis, and mitigation strategies [2, 3]. Given the public health

emergency, currently authorized serologic assays to test for antibodies against SARS-CoV-2

have not undergone the same evidentiary review standards required for the Food and Drug

Administration (FDA) approval [4, 5]. A collaboration among the US National Cancer Insti-

tute, Centers for Disease Control and Prevention (CDC), Biomedical Advanced Research and

Development Authority (BARDA), and the Food and Drug Administration (FDA) led to the

development of a dataset to compare the performance characteristics of different serological

tests that were independently evaluated using sample panels of patients who were positive and

negative for SARS-CoV-2 antibodies [6]. However, as the sample size of the dataset is limited,

more robust population-based studies on the accuracy of serology tests are needed to support

assay selection and implementation, interpretation of seroepidemiologic studies, and estimates

of COVID-19 prevalence and immune response [7]. Additionally, given disproportionate

infection rates in communities of color [8] and asymptomatic spread and carriage of COVID-

19 [9–12], understanding the best use of serologic tests to estimate the true prevalence of dis-

ease and immunity is critical to developing sound public health mitigation strategies that serve

all communities.
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A critical piece to enable the assessment of real-world performance is the ability to link

manufacturer test information, lab results, and patient healthcare data. Despite several initia-

tives to improve interoperability of healthcare data, there are few incentives to create digital

“bridges” enabling public health and research networks to leverage more complete data sets

for rapid analysis and discovery [13]. The absence of unique device identifiers (UDIs) for clear

and unambiguous identification of specific diagnostic tests; and the limited integration and

flow of manufacturer assay information impedes the interpretation of seroepidemiologic stud-

ies and estimates of COVID-19 prevalence.

An initial step to address this challenge is to identify which metadata can be captured and

explore approaches to transmitting data between the instrument, laboratory information sys-

tem (LIS), and electronic health record (EHR). Enabling such interoperability would likewise

allow us to assess the real-world performance of serological tests and describe results in the

context of clinical symptoms. Additionally, disproportionately high infection rates in under-

served communities and asymptomatic carriage and spread of SARS-CoV-2 [9, 11] underscore

the need for reliable serologic test reporting to accurately estimate disease prevalence and to

develop equitable public health mitigation strategies [14, 15]. Recent studies by the Centers for

Disease Control (CDC) describe SARS-CoV-2 seroprevalence across the U.S. from conve-

nience samples retrieved from routine blood chemistry [16], and others describe the duration

of antibody response [17–20]. However, to our knowledge, few studies characterize the real-

world use of serological testing for COVID-19, particularly in the context of symptoms and

race [21].

To address these gaps, the Reagan-Udall Foundation for the FDA, in collaboration with the

FDA and Friends of Cancer Research. has convened the COVID-19 Evidence Accelerator

(EA). The EA is a consortium of leading experts in health systems research, regulatory science,

data science, and epidemiology, specifically assembled to analyze health system data to address

key questions related to COVID-19. The EA provides a platform for rapid learning and

research using a common analytic plan. In May 2020, the EA launched the Diagnostics EA. As

part of the Diagnostics EA, we examined patterns of COVID-19 serological testing using real-

world data among the different populations and clinical characteristics. Specifically, our objec-

tives were to 1) understand the current state of data interoperability across instrument, labora-

tory, and clinical data; 2) describe serological testing by demographic, environmental

characteristics (e.g., geographic location), baseline clinical presentation, key comorbidities

(e.g., diabetes and cardiovascular disease), and bacterial/viral co-infections (e.g., influenza),

and 3) assess the timing of serology testing relative to molecular testing date by the characteris-

tics listed above. Characterizing how serology tests were used (including which tests were

used, when, and in whom), as well as potential gaps in data, provide an important context to

interpret future results to describe diagnostic accuracy.

Materials and methods

Study population and setting

A call to participate in this descriptive analysis was put out to the Evidence Accelerator (EA)

community. Six health systems answered the call and collaborated on the Diagnostics EA:

Aetion and HealthVerity, Health Catalyst, Mayo Clinic, OptumLabs, Regenstrief Institute, and

the University of California Health System. Health Catalyst, Mayo Clinic, and the University

of California Health System all utilized EHR data from their respective healthcare delivery sys-

tems, Regenstrief Institute accessed EHR clinical data from the Indiana health information

exchange [22, 23], while Aetion and OptumLabs utilized medical and pharmacy claims, as well

as data directly from laboratories. Furthermore, Aetion drew hospital billing data from the
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HealthVerity Marketplace. OptumLabs utilized administrative claims data from a single, large,

U.S. insurer. We refer to these health systems as partners A-F for the purposes of anonymity.

Data sources included in the analysis are generally categorized as either payer (claims) or

healthcare delivery systems. As illustrated in Fig 1, data were drawn from across the U.S. with

heavy representation in California, Illinois, Ohio, and Michigan. Characteristics of participat-

ing data sources and representative populations are described in S1 Table.

Study design

Each partner analyzed data collected from their distinct sources according to a master protocol

and identified patients across settings (e.g., inpatient, outpatient, or long-term care facility)

who tested positive for SARS-CoV-2 ribonucleic acid (RNA) by molecular test between

March–September 2020, except one partner who went through April 30, 2021 (Fig 2). “Date of

RNA positive” served as the index (cohort entry) date and was defined hierarchically as either

the date at 1) sample collection; 2) accession; or 3) result. Among datasets that included pri-

marily claims data, our protocol excluded persons who did not have evidence of enrollment

for at least six months in the year before the index to decrease bias in the capture of pre-exist-

ing conditions. We did not implement similar data requirements from healthcare delivery sys-

tems and health information exchanges (HIEs), given the lack of membership data. We

identified comorbidities (pre-existing conditions) 365 days before the index date.

Follow up for serological testing, excluding immunoglobulin M tests, went through 90 days

after the index date in all but one partner who identified all RNA positive and serology tests

through April 30, 2021 without additional follow-up time for serology. Multiple serological

measures were captured. Among those who received a serological test, we described the preva-

lence of presenting symptoms; concomitant infections with influenza and respiratory syncytial

virus; time (in days) to the first serological test; and the number of serological and molecular

tests in the 90 days after index.

To minimize the effect of differential missingness between partners, we did the following:

1) included all persons with an office or telephone visit in the +/- 14 days around the index

date to enable as complete an assessment of presenting symptoms as possible; 2) in claim sys-

tems, included only persons with at least six months of enrollment in the year before index; 3)

estimated the proportion of patients at each site who had zero encounters in the prior year to

contextualize our capture of pre-existing conditions; and excluded variables from analysis if

Fig 1. Geographic coverage of data partners. Reprinted from brightcarbon.com under a CC BY license, with

permission from Bright Carbon, original copyright (2021). Each color represents the number of data partners with a

presence in each state but does not necessarily correspond to the number of people. The darkest color represents those

where all six partners had a presence.

https://doi.org/10.1371/journal.pone.0281365.g001
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�30% of values were missing. Between 35–65% of patients identified from health care delivery

systems had no documented encounter in the system in the 365 to 15 days before the index

date. In contrast, only 11% of patients from national insurers reported having zero claims in

the baseline period. We also assessed the distribution of age, sex, and geography in those with

and without data on serology manufacturers. We did not observe any difference by age or sex

in those with known versus unknown serology manufacturer information. In a single partner

reporting <30% missing race/ethnicity, we observed over-representation of White and His-

panic individuals in those with known serology manufacturer data.

Measures

Demographic and environmental characteristics, baseline clinical presentation, key comorbid-

ities, bacterial/viral co-infections, and test characteristics potentially related to serological

testing were included in the analysis (S1 Fig). We identified comorbidities and clinical presen-

tation using phenotypes defined by ICD-10, and/or National Drug Codes. We provided coding

algorithms used for other EA studies and from FDA’s Sentinel Initiative for partners to use,

Fig 2. Study design diagram.

https://doi.org/10.1371/journal.pone.0281365.g002
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while some partners used existing algorithms generated within their systems. The ICD-10

codes used to identify comorbidities are listed in S2 Table. Given differences in data availability

across partners, each partner identified which of the prescribed covariates could be included in

their analyses.

Manufacturer data

We interviewed diagnostic manufacturers, clinical laboratory directors, middleware and infor-

mation technology vendors, and clients to understand the data generated by the instrument

and the data flow from the instrument to information systems for laboratory and clinical data.

Statistical analysis

Descriptive analyses were performed separately by each contributing data partner in accor-

dance with a common analytic plan. Among persons with and without serology, we calculated

the distribution by age, sex, race, ethnicity, U.S. region, pre-existing medical conditions

(including but not limited to cardiovascular disease, hypertension, kidney disease, asthma,

dementia, chronic liver disease, etc.), smoking status, and obesity. We also analyzed body mass

index (BMI), pregnancy status, presenting symptoms, and RNA test manufacturer. Among

those with at least one serology test after index, we described the frequency of presenting

symptoms and the specific manufacturer/assays at the time of the first serology test, and the

time to the first test. We calculated the median and interquartile range (IQR) for the number

of days between RNA and the first test. Separately, we included all serology and RNA tests

after the index date to describe the median and IQR for the number of molecular and serologi-

cal tests conducted after the index date.

The WCG Institutional Review Board (IRB), the IRB of record for the Reagan-Udall Foun-

dation for the FDA, reviewed the study and determined it to be non-human subjects research.

Results

Study samples ranged from 36,319–363,653 individuals per data set—a total of 930,669 people

with a confirmed SARS-CoV-2 infection by molecular test across all partners contributing

data from March 1- September 30, 2020; and a sixth partner who captured data through April

30, 2020. As described in Table 1, the study population across all datasets was predominantly

female, White, and 45–64 years of age. The geographic distribution of patients included in the

analyses represented the population in each of the health systems, with two national datasets

drawing primarily from the Mid-Atlantic region. Among two datasets, a majority of the sam-

ple population had no evidence of pre-existing conditions, whereas in two nationally represen-

tative samples, 30–50% had evidence of such. The most prevalent pre-existing conditions

across healthcare partners were diabetes, hypertension, cardiovascular disease, obesity, and

lung conditions. Across all healthcare partners, 4–11% of the female population were pregnant

in the 40 weeks before the index date. The most common presenting symptoms at index were

cough, shortness of breath, and pneumonia. The prevalence of lab-confirmed concomitant

respiratory syncytial virus or influenza was<1%.

Serological testing (serotesting)

Generally, 3–6% of those with confirmed infection were serotested–a total of 35,806 people

observed.across all datasets. Nearly all follow-up serological tests were immunoglobulin G

(IgG) tests (Table 2). Generally, each partner utilized one or two primary serology tests and

did not support a large number of tests.
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Table 1. Clinical and demographic characteristics of positive RNA population by serological testing status.

Partners Total12 A B C D E F

N = 36,319 (%) N = 303,214 (%) N = 38,484 (%) N = 85,034 (%) N = 70,313 (%) N = 393,653 (%)

Serological testing status Yes No Yes No Yes No Yes No Yes No Yes No

2,191

(6.0)

34,128

(94.0)

14,059

(4.6)

289,155

(95.4)

2,170

(5.6)

36,314

(94.4)

2,808

(3.3)

82,226

(96.7)

2,137

(3.0)

68,176

(97.0)

12,441

(3.1)

381,212

(96.9)

Age at time of

RNA test1,2

(Years)

0–3 9,353

(1.0)

1 (0.0) 367

(1.1)

15 (0.1) 1,919

(0.7)

5 (0.2) 750

(2.1)

0 (0) 344

(0.4)

4 (0.2) 910

(1.3)

46 (0.4) 4,992

(1.3)

4–11 28,592

(3.1)

11

(0.5)

743

(2.2)

57 (0.4) 6,388

(2.2)

30

(1.4)

1,266

(3.5)

13

(0.5)

2,048

(2.5)

12

(0.5)

2,682

(4.0)

84 (0.7) 15,258

(4.0)

12–17 46,802

(5.0)

38

(1.7)

1,109

(3.0)

196

(1.4)

12,049

(4.2)

40

(1.8)

1,280

(3.5)

25

(0.9)

3,245

(3.9)

19

(0.9)

4,042

(5.9)

213

(1.7)

24,546

(6.4)

18–44 403,702

(43.5)

726

(33.2)

13,012

(38.1)

5,218

(37.1)

132,531

(45.8)

800

(36.9)

15,222

(41.9)

834

(29.7)

39,780

(48.4)

613

(28.7)

32,383

(47.5)

3,341

(26.9)

159,242

(41.8)

45–54 144,918

(15.6)

479

(21.9)

5,811

(17.0)

2,884

(20.5)

47,112

(16.3)

354

(16.3)

5,530

(15.2)

484

(17.2)

12,780

(15.5)

329

(15.4)

9,746

(14.3)

2,184

(17.6)

57,225

(15.0)

55–64 134,907

(14.6)

519

(23.7)

6,047

(17.7)

2,860

(20.3)

41,337

(14.3)

399

(18.4)

5,422

(14.9)

579

(20.6)

10,847

(13.1)

461

(21.6)

9,379

(13.8)

2,564

(20.6)

54,493

(14.3)

65–74 90,906

(9.8)

293

(13.4)

3,702

(10.8)

1,870

(13.3)

28,538

(9.9)

314

(14.5)

3,816

(10.5)

479

(17.1)

6,972

(8.5)

395

(18.5)

5,374

(7.9)

2,264

(18.2)

36,889

(9.7)

75–84 46,320

(5.0)

91

(4.2)

1,929

(5.6)

761

(5.4)

13,473

(4.7)

160

(7.4)

1,970

(5.4)

295

(10.5)

3,997

(4.9)

212

(9.9)

2,700

(4.0)

1,232

(9.9)

19,500

(5.1)

85+ 21,540

(2.3)

32

(1.5)

1,432

(4.2)

198

(1.4)

5,808

(2.0)

68

(3.1)

1,058

(2.9)

99

(3.5)

2,213

(2.7)

92

(4.3)

960

(1.4)

513

(4.1)

9,067

(2.4)

Sex2 Female 491,263

(53.0)

1,274

(58.2)

19,182

(56.2)

7,647

(54.4)

149,668

(51.8)

1,188

(54.7)

19,250

(53.4)

1,531

(54.5)

43,381

(52.8)

1,087

(50.9)

34,546

(50.7)

7,011

(56.4)

205,498

(53.9)

Male 433,733

(46.8)

891

(40.6)

13,942

(40.9)

6,408

(45.6)

139,419

(48.2)

982

(45.2)

17,064

(47.0)

1,277

(45.5)

38,810

(47.2)

1,050

(49.1)

33,565

(49.2)

5,429

(43.6)

174,896

(45.9)

Unknown 1,790

(0.2)

18

(0.8)

782

(2.3)

4 (0.1) 68 (0.1) NA3 NA 0 (0) 35 (0.1) 0 (0.0) 65 (0.1) <10

(0.0)

818 (0.2)

Race/ Ethnicity4 Black 57,505

(6.2)

NA NA 303

(2.2)

5,993

(2.1)

83

(3.8)

2,130

(5.9)

208

(7.4)

8,842

(10.7)

145

(6.8)

2,718

(4.0)

1,231

(9.9)

35,852

(9.4)

White 470,629

(50.8)

NA NA 2,043

(14.5)

27,879

(9.6)

1,172

(54)

16,153

(44.5)

2,183

(77.7)

50,960

(62.0)

1,701

(79.6)

54,685

(80.2)

10,173

(81.8)

303,680

(79.7)

Asian 13,211

(1.4)

NA NA 47 (0.3) 411 (0.1) 247

(11.9)

2,681

(7.4)

41

(1.5)

2,003

(2.4)

88

(4.1)

1,398

(2.1)

176

(1.4)

6,119

(1.6)

Pacific Islander/

Native Hawaiian

7,585

(0.8)

NA NA 2 (0.0) 39 (0.1) 6 (0.3) 254

(0.7)

13

(0.5)

909

(1.1)

3 (0.1) 66 (0.1) 110

(1.48)

6,183

(1.59)

Hispanic or

Latino3
103,304

(10.8)

NA NA 1,325

(9.4)

16,134

(5.6)

685

(31.6)

12,455

(34.3)

942

(33.5)

24,408

(29.7)

221

(10.3)

7,197

(10.6)

1,342

(10.8)

35,595

(9.3)

American Indian

or Alaska Native

2,916

(0.3)

NA NA NA NA 7 (0.3) 151

(0.4)

94

(3.3)

1,450

(1.8)

48

(2.3)

223

(0.3)

22 (0.2) 921 (0.2)

Other 41,369

(4.5)

NA NA NA NA 142

(6.5)

4,518

(12.4)

65

(2.3)

2074

(2.5)

NA NA 814

(6.5)

33,756

(8.9)

Missing 275,156

(29.7)

NA NA 10,339

(73.5)

238,699

(82.5)

513

(23.6)

10,427

(28.7)

40

(1.4)

5,873

(7.1)

152

(7.1)

9,113

(13.4)

NA NA

(Continued)
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Table 1. (Continued)

Partners Total12 A B C D E F

N = 36,319 (%) N = 303,214 (%) N = 38,484 (%) N = 85,034 (%) N = 70,313 (%) N = 393,653 (%)

Pre-existing

Conditions 5,6
Cardiovascular

disease

153,329

(16.5)

924

(43.9)

13,627

(39.9)

5,672

(40.3)

89,722

(31.1)

1,051

(48.4)

12,464

(34.3)

981

(34.9)

14,175

(17.2)

NA NA 891

(6.1)

13,822

(3.6)

Hypertension 111,718

(12.1)

746

(35.4)

11,710

(36.2)

4,732

(33.7)

76,999

(26.6)

633

(29.2)

7,675

(21.1)

NA NA NA NA 412

(3.3)

8,811

(2.3)

Diabetes 14,306

(8.9)

462

(21.9)

7,023

(19.3)

2,285

(16.2)

34,945

(12.1)

396

(18.2)

4,835

(13.3)

484

(17.2)

7,061

(8.6)

NA NA 1,441

(11.6)

23,159

(6.1)

Cancer 14,306

(1.5)

114

(5.4)

1,342

(4.2)

NA NA 268

(12.3)

2,816

(7.7)

141

(5.0)

1,465

(1.8)

NA NA 578

(4.6)

7,582

(2.0)

Asthma 44,058

(4.8)

221

(10.5)

3,085

(9.0)

1,072

(7.6)

16,608

(5.7)

165

(7.6)

2,636

(7.2)

191

(6.8)

3,463

(4.2)

NA NA 899

(7.2)

15,718

(4.1)

Kidney Disease 35,437

(3.8)

118

(5.6)

3,218

(9.4)

646

(4.6)

12,589

(4.3)

437

(20.1)

4707

(13.0)

301

(10.7)

3,586

(4.4)

NA NA 682

(5.5)

9,153

(2.4)

Chronic Lung

conditions

48,880

(5.3)

297

(14.1)

5,024

(14.7)

1631

(11.6)

27,075

(9.4)

NA NA 330

(11.7)

5,727

(7.0)

NA NA 556

(4.5)

8,240

(2.2)

Auto-Immune

conditions

22,497

(2.4)

90

(4.1)

1,056

(3.1)

1,324

(9.4)

16,790

(5.8)

111

(5.11)

1,084

(3.0)

NA NA NA NA 122

(1.0)

1,920

(0.5)

HIV 1,217

(0.1)

18

(0.9)

223

(0.7)

NA NA 23

(1.1)

496

(1.4)

7 (0.2) 103

(0.1)

NA NA 27 (0.2) 320 (0.1)

Any liver disease 16,342

(1.8)

148

(7.0)

1,511

(4.7)

693

(4.9)

8,246

(2.8)

223

(10.3)

2,646

(7.2)

127

(4.5)

1412

(1.7)

NA NA 87 (0.7) 1,249

(0.3)

Obesity 37,388

(4.0)

510

(23.3)

7,567

(22.2)

NA NA 272

(12.5)

3,808

(10.5)

346

(12.3)

5,765

(7.0)

NA NA 881

(7.1)

18,239

(4.8)

Dementia 7,240

(0.8)

25

(1.2)

1,628

(4.8)

NA NA 57

(2.6)

814

(2.2)

45

(1.6)

1294

(1.6)

NA NA 118

(0.9)

3,259

(0.9)

No pre-existing

conditions11
547,683

(59.1)

429

(19.6)

9,929

(29.1)

6,666

(47.4)

170,044

(58.8)

NA NA NA NA NA NA 10,565

(84.9)

350,050

(91.8)

Pregnancy

Status Among

Females 5,7

Yes 5,198 () 64

(5.0)

1,199

(6.25)

NA NA 148

(12.5)

2,022

(10.5)

110

(3.9)

1,655

(2.0)

NA NA NA NA NA

No 101,537

()

NA NA NA NA 1,040

(87.5)

17,228

(89.5)

2,698

(96.1)

80,571

(98.0)

NA NA NA NA

Geography 2,8

(patient

residence)

New England 13,057

(1.4)

80

(3.7)

2,777

(8.1)

289

(2.1)

9,899

(3.4)

NA NA NA NA 1 (0.0) 11 (0.0) 0 0

Mid-Atlantic 51,390

(5.5)

1,478

(67.5)

11,700

(34.3)

4,757

(33.8)

33,402

(11.5)

NA NA NA NA 6 (0.3) 32 (0.1) 0 (0) 15 (0)

South-Atlantic 84,156

(9.1)

164

(7.5)

6,078

(17.8)

3,853

(27.4)

68,344

(23.6)

NA NA NA NA 378

(17.7)

5,287

(7.8)

0 (0) 52 (0)

East North Central 440,206

(47.5)

110

(5.0)

2,845

(8.3)

524

(3.7)

34,833

(12.1)

NA NA NA NA 198

(9.3)

21,592

(31.7)

12,202

(98.1)

367,902

(96.5)

East South Central 12,614

(1.4)

12

(0.5)

488

(1.3)

257

(1.8)

10,680

(3.7)

NA NA NA NA 6 (0.3) 39 (0.1) 10 (0.1) 1,122

(0.3)

West North

Central

62,856

(6.8)

13

(0.6)

776

(2.3)

277

(2.0)

25,379

(8.8)

NA NA NA NA 927

(43.4)

35,472

(52.0)

0 (0) 12 (0)

West South Central 51,389

(5.5)

92

(4.2)

4,248

(12.4)

1,609

(11.4)

45,249

(15.6)

NA NA NA NA 12

(0.6)

162

(0.2)

<10 (0) 17 (0)

Mountain 55,782

(6.0)

26

(1.2)

544

(1.6)

1,952

(13.9)

47,274

(16.3)

NA NA NA NA 594

(27.8)

5,382

(7.9)

0 (0) 10 (0)

Pacific 54,245

(5.9)

109

(5.0)

2,304

(6.8)

483

(3.4)

12,734

(4.4)

2,170

(100)

36,314

(100)

NA NA 11

(0.5)

108

(0.2)

0 (0) 12 (0)

Unknown 12,392

(1.3)

NA NA NA NA NA NA NA NA 4 (0.2) 91 (0.1) 227

(1.8)

12,070

(3.2)

(Continued)
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Table 1. (Continued)

Partners Total12 A B C D E F

N = 36,319 (%) N = 303,214 (%) N = 38,484 (%) N = 85,034 (%) N = 70,313 (%) N = 393,653 (%)

Presenting

Symptoms at the

time of RNA

test1,5

Fever >100.4 F 48,215

(5.2)

440

(20.1)

6,573

(19.3)

2,656

(18.9)

38,546

(13.3)

NA NA NA NA NA NA NA NA

Diarrhea 12,394

(1.3)

NA NA 453

(3.2)

6,910

(2.4)

75

(3.4)

1,106

(3.0)

146

(5.2)

3,704

(4.5)

NA NA NA NA

Chest pain 17,287

(1.9)

117

(5.3)

1,772

(5.2)

706

(5.1)

9,394

(3.2)

218

(10.0)

1,867

(5.1)

108

(3.8)

3,105

(3.8)

NA NA NA NA

Delirium

/Confusion

6,474

(0.7)

63

(2.9)

1,734

(5.1)

88 (0.6) 2,165

(0.7)

14

(0.6)

187

(0.5)

181

(6.4)

2,042

(2.5)

NA NA NA NA

Headache 17,416

(1.9)

95

(4.3)

1,630

(4.8)

527

(3.7)

6,449

(2.2)

39

(1.8)

995

(2.7)

133

(4.7)

7,548

(9.2)

NA NA NA NA

Sore throat 23,551

(2.5)

83

(3.8)

1,411

(4.1)

748

(5.3)

14,656

(5.1)

NA NA 93

(3.3)

6,560

(8.0)

NA NA NA NA

Cough 98,111

(10.6)

634

(28.9)

8,644

(25.3)

4,094

(29.1)

59,693

(20.6)

190

(8.7)

4,810

(13.2)

464

(16.5)

19,582

(23.8)

NA NA NA NA

Shortness of breath 51,526

(5.6)

329

(15.0)

5,765

(16.9)

1,956

(13.9)

26,374

(9.1)

336

(15.4)

3,623

(10.0)

568

(20.2)

12,575

(15.3)

NA NA NA NA

Pneumonia 45,195

(4.9)

268

(12.2)

4,967

(14.6)

1,462

(10.4)

20,092

(6.9)

324

(14.9)

3,536

(9.7)

1,049

(37.4)

13,497

(16.4)

NA NA NA NA

Acute respiratory

infection

57,898

(0.7)

255

(11.6)

3,577

(10.5)

2,194

(15.6)

35,282

(12.2)

56

(2.6)

1,718

(4.7)

867

(30.9)

13,949

(17.0)

NA NA NA NA

Acute respiratory

distress, arrest, or

failure

6,819

(0.7)

110

(5.0)

2,435

(7.1)

NA NA 282

(13.0)

2,867

(7.9)

32

(1.1)

1,093

(1.3)

NA NA NA NA

Acute bronchitis 1,837

(0.2)

15

(0.7)

191

(0.6)

114

(0.8)

1,206

(0.4)

NA NA 17

(0.6)

294

(0.4)

NA NA NA NA

Sepsis 9,038

(1.0)

186

(8.5)

4,067

(11.9)

NA NA NA NA 433

(15.4)

4,352

(5.3)

NA NA NA NA

Cardiovascular

condition

69,730

(7.5)

397

(18.1)

7,477

(21.9)

2,546

(18.1)

37,381

(12.9)

624

(28.7)

6,149

(16.9)

981

(34.9)

14,175

(17.2)

NA NA NA NA

Renal Condition 14,569

(1.6)

64

(2.9)

2,412

(7.1)

487

(3.5)

9,117

(3.1)

257

(11.8)

2,232

(6.1)

NA NA NA NA NA NA

Care Setting

(where RNA test

occurred)9

Outpatient 368,217

(39.0)

835

(38.1)

12,370

(36.3)

13,365

(95.1)

278,125

(96.2)

NA NA NA NA 1,344

(62.9)

62,178

(91.2)

NA NA

Inpatient 7,744

(0.8)

62

(2.8)

1,567

(4.6)

258

(1.8)

4,456

(1.5)

NA NA NA NA 281

(13.2)

1,120

(1.6)

NA NA

Emergency

department

8,840

(1.0)

93

(4.2)

2,211

(6.5)

67 (0.5) 1,079

(0.4)

NA NA NA NA 512

(24.0)

4,878

(7.2)

NA NA

Urgent Care 2,369

(0.3)

203

(9.3)

2,166

(6.3)

NA NA NA NA NA NA 0 (0.0) 0 (0.0) NA NA

Other 5,864

(0.6)

NA NA 369

(2.6)

5,495

(1.9)

NA NA NA NA 0 (0.0) 0 (0.0) NA NA
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Serology manufacturer and test name were captured by four analytic partners, and mostly

complete (<30% missing) for three included in this analysis (A, C, E). One of our largest part-

ners was missing manufacturer data in 85% of the sample, and two partners were missing it

completely. While manufacturer and assay name, as well as other metadata, are typically cap-

tured and available for export from the instrument, oftentimes laboratory information systems

are not configured to receive or store this information. Constraints on integration include

technical limitations of software and middleware, as well as a lack of clinical need, business

case, or regulatory incentive. Capturing, storing, and transferring this additional data would

require a substantial investment of resources to modify and/or reconfigure existing instru-

ments, laboratory information systems, connective middleware, and EHRs. Absent a regula-

tory or reimbursement requirement, companies perceive little need to invest such resources

given other competing priorities.

Serotesting by demographic characteristics

Overall, we observed a higher distribution of persons aged 45–64 among those serotested com-

pared to those not serotested. Four partners representing healthcare delivery systems reported

race with<30% missing. Across three of these partners, we observed a higher distribution of

White individuals among those serotested compared to those not. We did not observe a con-

sistent pattern in serotesting by sex.

Five partners had representation across more than one region of the U.S. In partners with

national representation, patients from the West North Central (Iowa, Nebraska, Kansas, North

Dakota, Minnesota, South Dakota, Missouri) and West South Central (Arkansas, Louisiana,

Table 1. (Continued)

Partners Total12 A B C D E F

N = 36,319 (%) N = 303,214 (%) N = 38,484 (%) N = 85,034 (%) N = 70,313 (%) N = 393,653 (%)

Calendar Time10

(based on RNA

test)

Before May 1, 2020 67,093

(7.2)

1,401

(63.9)

15,148

(44.4)

2,976

(21.2)

17,933

(6.2)

364

(16.8)

3,115

(8.5)

238

(8.5)

9,807

(11.9)

258

(12.1)

784

(1.2)

707

(5.7)

14,362

(3.8)

On/After May 1,

2020

859,924

(92.8)

790

(36.1)

18,980

(55.6)

11,083

(78.8)

271,222

(93.8)

1,806

(83.2)

33,199

(91.4)

2,570

(91.5)

72,419

(88.1)

1,879

(87.9)

67,392

(98.8)

11,734

(94.3)

366,850

(96.2)

1 At the time of RNA or serological sample refers to +/- 14 days from the sample collection date for the relevant test
2 The unaccounted samples in Partners A and B were missing.
3 Data was not available
4 Hispanic ethnicity was not mutually exclusive from race.
5 Phenotypes (code-sets) of ICD-10, medication, and LOINC are provided in S2 Table. Conditions may be identified using ICD-10, medication, or both.
6 Pre-existing conditions were assessed 365 days before the index date and were not mutually exclusive.
7 Pregnancy Status was assessed up to 40 weeks before the index date.
8 Geographic regions were based on patients’ home zip codes and defined by the US Census Bureau (https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_

regdiv.pdf) and mapped by census track zip code. States included in each region are as follows: New England: Connecticut, Maine, Massachusetts, New Hampshire,

Rhode Island, Vermont; Mid Atlantic: New Jersey, New York, Pennsylvania; East North Central: Indiana, Illinois, Michigan, Ohio, Wisconsin; West North Central:

Iowa, Nebraska, Kansas, North Dakota, Minnesota, South Dakota, Missouri; South Atlantic: Delaware, District of Columbia, Florida, Georgia, Maryland, North

Carolina, South Carolina, Virginia, West Virginia; East South Central: Alabama, Kentucky, Mississippi, Tennessee; West South Central: Arkansas, Louisiana,

Oklahoma, Texas; Mountain: Arizona, Colorado, Idaho, New Mexico, Montana, Utah, Nevada, Wyoming; Pacific: Alaska, California, Hawaii, Oregon, Washington.
9 The unaccounted samples in Partner A were missing.
10 The FDA issued guidance for clinical laboratories, commercial manufacturers, and FDA staff on the use of diagnostic and serological tests for COVID-19 on May 16,

2020. https://www.fda.gov/news-events/fda-voices/insight-fdas-revised-policy-antibody-tests-prioritizing-access-and-accuracy.
11 No pre-existing conditions—defined as those identified to have none of the above listed preexisting conditions.
12 Because some partners did not collect and report some variables, care should be taken when interpreting the total number of each variable.

https://doi.org/10.1371/journal.pone.0281365.t001
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Oklahoma, Texas) regions were under-represented among the serotested. Two partners oper-

ated primarily in a single U.S. state and thus did not allow assessment of geographic differences.

Serotesting by care-setting, symptoms, and pre-existing conditions

Half of the partners reported care-setting. Generally, most of the population was seen in the

outpatient setting for their index visit. Large national insurer data did not suggest any differ-

ences in the distribution of index visit care settings among serotested vs. non-serotested. How-

ever, EHR data from a large national health data consortium revealed a higher distribution of

patients in the inpatient setting among the serotested compared to non-serotested (13% vs.

2%, respectively).

As shown in Table 3, four of six partners reported presenting symptoms at index. Patterns

in serotesting by symptoms seem to align with the data source. In partners who relied on

Table 2. Characterization of molecular and serologic tests among those with follow up serology test.

Partners A B C D E F

N = 2,191 (%) N = 14,059(%) N = 2,170(%) N = 2,808(%) N = 2,137(%) N = 12,441 (%)

Serological Test Type1 IgG 2,073 (94.6) 12,480 (88.8) 2,170 (100) 2,738 (97.5) 849 (39.7) 9,916 (79.7)

Total Antibody 105 (4.8) 1,744 (12.4) NA2 41 (1.5) 1288 (60.3) 2,044 (16.4)

Combined 13 (0.06) NA NA 29 (1.0) NA 481 (3.9)

Molecular Test Type NAAT3 NA NA NA NA NA 393,653 (100)

N gene NA 6 (0.1) NA NA NA NA

RNA NA 13,979 (99.4) 36,314 (100) NA NA NA

RdRp gene4 NA 26 (0.2) NA NA NA NA

Other NA 48 (0.3) NA NA NA NA

Manufacturer—serological test name5 Γ 371 (16.9) 668 (4.7) NA NA 496 (23.2) NA

Δ 1,318 (60.2) 1,423 (10.1) NA NA NA NA

Θ NA NA 531 (24.47) NA NA NA

Λ NA NA 941 (43.36) NA NA NA

X NA NA 207 (9.5) NA NA NA

P 1 (0.04) NA NA NA 353 (16.5) NA

C NA NA NA NA 1,288 (60.3) NA

Unknown/Missing 501 (22.9) 11,968 (85.1) 491 (22.6) NA NA6 NA

Manufacturer—molecular test name5 S 210 (9.6) 541 (3.8) NA NA NA NA

F NA 126 (0.9) NA NA NA NA

O 41 (1.9) NA NA NA NA NA

X NA 597 (4.2) NA NA NA NA

Y 150 (6.8) 83 (0.6) NA NA NA NA

Unknown/Missing 1,790 (81.7) 12712 (90.4) NA NA NA NA

Molecular test Sample Type Respiratory NA 13,784 (98.1) NA NA NA 259,744 (66.0)7

Nasopharyngeal Swab NA 8 (0.1) NA NA NA NA

Unknown/Missing NA 267 (1.9) NA NA NA 133,909 (34.0)7

1 The sum for Partners B exceeded the total sample because 165 patients, respectively, received a test for both IgG and Total Antibody and were counted in both groups.
2 Data was not available
3 Nucleic Acid Amplification Test
4 RNA-dependent RNA polymerase gene
5 We refer to the tests as Γ—Y for the purposes of anonymity. Most tests received an Emergency Use Authorization from the FDA. References available upon request
6 The sum for Partner E’s manufacturer-serological test name is classified as unknown/missing.
7 The sum between the molecular test sample type for Partner F includes all people that have a positive RNA test result.

https://doi.org/10.1371/journal.pone.0281365.t002
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claims data, we generally see no systematic trend in serotesting by presenting symptoms at the

time of the index visit. Among systems that relied on EHR data, we see a higher distribution of

patients with shortness of breath (15–20%), pneumonia (15–37%), and cardiovascular condi-

tions (29–35%) among the serotested vs. non-serotested (10–15%, 10–16%, 17%, respectively).

All but one data partner reported pre-existing conditions. We found individuals with pre-

existing cardiovascular disease tended to have greater representation in the serotested (35%–

48%) vs. non-serotested group (17%–40%). In partners with EHR data, a greater distribution

of patients with pre-existing obesity and kidney disease were also observed among the sero-

tested compared to non-serotested. We did not observe a differential in testing among preg-

nant women–although only half of the contributing partners reported pregnancy status. We

observed similar patterns of pregnancy among women with serological testing (4–13%) com-

pared with women without serological testing (2–11%), with a slightly higher range in preva-

lence of pregnancy among women with serological testing.

As shown in Table 3 and Fig 3, many of the same symptoms at the time of RNA testing per-

sisted at the time of serotesting, which may be attributed to the high volume of same-day

molecular and serological testing.

Frequency and time to serological testing

In all but one healthcare system, serological testing increased substantially after May 1, 2020

(Table 1). Serological testing among those with positive RNA ranged from 3–6% across our

Table 3. Clinical presentation and concomitant influenza or other viral infection around the time of serological sampling.

Partners A B C D E F

N = 2,191

(%)

N = 14,059

(%)

N = 2,170

(%)

N = 2,808

(%)

N = 2,137

(%)

N = 12,441

(%)

Symptoms around the time of

Serology test2,3
Any Chargemaster1 or Medical

Claim

1,743 (79.6) 14,059 (100) NA4 NA NA NA

Fever >100.4 F 86 (3.9) 675 (4.8) NA NA NA NA

Diarrhea NA 188 (1.3) 75 (3.4) 101 (3.6) NA NA

Chest pain 91 (4.2) 579 (4.1) 218 (10.1) 108 (3.8) NA NA

Delirium/Confusion 39 (1.8) 76 (0.5) 14 (0.6) 279 (9.9) NA NA

Headache 39 (1.8) 257 (1.8) 39 (1.8) 66 (2.3) NA NA

Sore throat 41 (1.9) 291 (2.1) NA 31 (1.1) NA NA

Cough 199 (9.1) 1,657 (11.8) 190 (8.7) 194 (6.9) NA NA

Shortness of breath 152 (6.9) 1,072 (7.6) 336 (15.4) 430 (15.3) NA NA

Pneumonia 118 (5.4) 899 (6.4) 324 (14.9) 1,046 (37.2) NA NA

Acute Bronchitis 9 (0.4) 46 (0.3) NA 10 (0.4) NA NA

Acute respiratory infection 55 (2.5) 781 (5.6) 56 (2.6) 927 (33.0) NA NA

Acute respiratory distress,

arrest

42 (1.9) NA 282 (13.0) 24 (0.8) NA NA

Cardiovascular condition 309 (14.1) 3,047 (21.7) 624 (28.7) 1,159 (41.3) NA NA

Renal Condition 38 (1.7) 437 (3.1) 257 (11.8) NA NA NA

Known exposure to COVID-19 724 (33.0) 6,668 (47.4) NA 406 (14.5) NA NA

1 A hospital chargemaster is a comprehensive list of a hospital’s products, procedures, and services that could produce a charge. It will have a record for everything in the

health system that relates to patient care.
2 At the time of RNA or serological sampling refers to +/- 14 days the from sample collection date. Symptoms are not mutually exclusive.
3 Phenotypes (code-sets) of ICD-10, medication, and LOINC are provided in S2 Table. Conditions may be identified using ICD-10.
4 Data was not available

https://doi.org/10.1371/journal.pone.0281365.t003
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contributing partners. Among all people with follow-up samples, 15% had a follow-up serology

within 14 days of the index RNA test (Fig 3).

Overall, the median time to serotesting from RNA per data partner ranged from 10–31 days

and was shorter in datasets from systems with data from EHRs (Table 4). In terms of age,

adults 85 years and older tended to have the shortest time to follow-up between molecular and

serology testing (median range: 1–25 days). In partners with robust capture of race and ethnic-

ity, Black patients (median: 7–15 days) tended to experience a shorter time to serotesting as

compared to White individuals (median: 13–21 days). In half of the analytic datasets, time to

serotesting tended to be shortest in people with a history of dementia (median: 2–15 days).

Within and across datasets, there was substantial variability in time to serotesting by present-

ing symptoms at index. In the two partners reporting on pregnancy, time to serotesting did

not tend to differ by pregnancy status.

In general, we did not observe repeat molecular or serological testing within the 90–day

time frame. In partners A–E, the median (IQR) number of both tests was 1 (0); while in part-

ner F it was 1 (1). Time to serotesting tended to be shorter for IgG tests as compared to total

antibody. There was substantial variation in time to serological testing across manufacturer

assays (both molecular and serological). We observed differences in time to serological testing

across care settings in only one dataset, with the median time to serotesting being 0 in the

inpatient setting and almost one month in the outpatient. Patients with index dates after May

1st, 2020 tended to wait fewer days for serological testing (median: 7–27) compared to those

with index before May 1st, 2020 (median: 28–43). This difference may be explained by the

lower availability of SARS-CoV-2 tests before May 1 since serology tests were not authorized

before April 15, 2020; and molecular tests were not authorized before March 15, 2020.

Discussion

The Centers for Disease Control has initiated several large-scale population-based seropreva-

lence studies throughout the U.S. [24]. We conducted this study to characterize the real-world

use of COVID-19 serological testing. We identified a number of key findings: 1) a substantial

proportion of serology tests were conducted within 14 days of the RNA test, the majority of

which occurred on the same day as the positive RNA test; 2) a lack of data interoperability

between the instrument, laboratory, and clinical data could limit the ability to conduct a large-

scale assessment of the real-world performance of not only COVID-19 tests, but other diag-

nostic and laboratory tests; 3) missing race/ethnicity data may impede a comprehensive under-

standing of racial disparities involved in COVID-19 serology and immunity, and 4) important

differences in the testing landscape presented from claims vs. EHR data sources may impact

results generated from these data sources.

We assumed the date of a positive SARS-CoV-2 molecular test would be a reasonable

proxy for symptom onset. We did not expect that 15% of serotesting would occur within 14

Fig 3. Distribution of serological tests by the number of days after positive RNA test.

https://doi.org/10.1371/journal.pone.0281365.g003
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Table 4. Characterization of the timing of serology testing relative to RNA sampling date.

Partners A B C D E F

Median days to serology test (from positive RNA test) (25–75

percentile)

Age at the time of RNA test (Years)2,3 0–3 32 (32,

32)

36 (24,

43)

8 (1,15) NA1 0 (0,3) 3 (0, 26)

4–11 27 (15,

33)

29 (17,

43)

2 (1,8) 19 (4,26) 27 (1,38) 12 (1, 39)

12–17 18 (5, 36) 28 (12,

53)

1 (1,13) 17 (2,34) 34 (2,55) 28 (1,54)

18–44 29 (11,

45)

28 (12,

49)

14 (1,36) 14 (0,41) 27 (2,40) 31 (11,

55)

45–54 32 (15,

45)

32 (16,

52)

13 (1,38) 13 (1,39) 27 (1,41) 30 (10,

54)

55–64 35 (21,

51)

35 (19,

53)

13 (1,34) 14 (1,40) 21 (1,38) 28 (8, 51)

65–74 32 (15,

45)

33 (19,

51)

8 (1,29) 13 (1,36) 10 (1,32) 19 (3, 44)

75–84 32 (11,

53)

32 (15,

52)

6 (1,22) 8 (1,28) 6 (0,3) 10 (2, 30)

85+ 21 (1, 46) 25 (9, 49) 1 (1,14) 7 (1,27) 2 (0,16) 6 (1, 18)

Overall3 31 (15,

46)

31 (15,

51)

10 (1,34) 12 (1,38) 20 (1,37) 24 (5, 49)

Sex Female 31 (15,

47)

33 (16,

52)

14 (1,37) 13 (1,43) 25 (1,41) 28 (7, 52)

Male 31 (14,

45)

29 (14,

49)

6 (1,29) 10 (1,32) 13 (0,33) 20 (4, 45)

Unknown/ Missing 28 (7, 48) 35 (20,

49)

NA NA NA 27 (23,32)

Race/Ethnicity (not mutually exclusive) White NA 33 (16,

54)

13 (1,35) 12 (1,39) 21 (1,38) 26 (7, 51)

Black NA 34 (17,

57)

7 (1,30) 12 (1,40) 11 (0,31) 12 (1, 36)

Asian NA 38 (28,

55)

7 (1,28) 15 (2,32) 20 (1,33) 16 (4, 37)

Pacific Islander/Native Hawaiian NA NA 10 (1,44) 33

(10,57)

22 (0,38) NA

Hispanic or Latino NA 29 (15,

49)

5 (1,30) 5 (1,27) 21 (2,38) 11 (1, 33)

American Indian or Alaska Native NA 20 (16,

25)

10 (6,17) 3.5 (0,19) 0 (0,14) 36 (11,

45)

Other NA NA 2 (1,14) 38 (1,39) NA 17 (1, 41)

Unknown NA 31 (14,

50)

13 (1,35) 21 (7,37) 22 (1,40) NA

(Continued)
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Table 4. (Continued)

Partners A B C D E F

Median days to serology test (from positive RNA test) (25–75

percentile)

Pre-existing Conditions4,5 Cardiovascular disease 33 (18,

49)

33 (17,

52)

8 (1,31) 40 (2,42) NA 10 (2, 32)

Diabetes 33 (16,

49)

32 (16,

51)

5 (1,26) 39 (1,40) NA 10 (2, 33)

Hypertension 33 (17,

50)

33 (17,

52)

9 (1,34) NA NA 11 (2, 35)

Cancer 35 (15,

52)

NA 7 (1,27) 36 (1,37) NA 15 (3, 41)

Asthma 30 (13,

44)

35 (18,

54)

11 (1,36) 46 (3,49) NA 11 (1, 26)

Kidney Disease 29 (5, 48) 32 (15,

51)

6 (1,33) 37 (2,39) NA 8 (1, 27)

Chronic Lung conditions 32 (15,

46)

33 (17,

51)

NA 42 (3,45) NA 7 (6, 49)

Auto-Immune conditions 33 (14,

51)

34 (18,

53)

10 (1,36) NA NA 25 (1, 41)

HIV 40 (30,

66)

NA 8 (1,39) 50 (7,57) NA 18 (2, 33)

Any liver disease 29 (14,

48)

34 (18,

53)

4 (1,24) 37 (0,37) NA 11 (4, 37)

Obesity 33 (16,

48)

30 (15,

50)

4 (1,33) 47 (2,49) NA 19 (3, 45)

Dementia 23 (1, 41) NA 2 (1,17) 13 (1,14) NA 7 (2, 21)

Pregnancy Status6 No NA NA 10 (1,34) 37 (1,38) NA NA

Yes NA NA 10 (1,29) 48 (0,48) NA NA

Geography (patient residence)7 Mid-Atlantic 33 (17,

48)

35 (17,

53)

NA NA 3 (0,25) NA

New England 38 (12,

57)

35 (19,

53)

NA NA 12

(12,12)

NA

South-Atlantic 29 (18,

44)

32 (17,

54)

NA NA 2 (0,15) NA

East North Central 25 (8, 38) 31 (15,

53)

NA NA 7 (0,33) 25 (5,49)

East South Central 37 (19,

60)

28 (12,

48)

NA NA 1 (0,4) 28 (4,45)

West North Central 29 (17,

49)

34 (18,

54)

NA NA 22 (1,41) NA

West South Central 25 (8, 38) 23 (9, 42) NA NA 7 (0,18) 16 (9,24)

Mountain 34 (15,

46)

29 (14,

47)

NA NA 30

(11,40)

NA

Pacific 29 (9,50) 30 (13,

47)

10 (1,34) NA 22 (2,29) NA

Unknown NA 24 (14,

40)

NA NA 0 (0,4) 2 (1,19)

(Continued)
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Table 4. (Continued)

Partners A B C D E F

Median days to serology test (from positive RNA test) (25–75

percentile)

Presenting Symptoms at the time of RNA

test2,3
Fever >100.4 F 37 (24,

49)

37 (22,

55)

NA NA NA NA

Diarrhea NA 34 (19,

53)

6 (1,33) 39 (3,42) NA NA

Hypoglycemic NA NA NA NA NA NA

Chest pain 36 (22,

50)

31 (16,

48)

2 (1,14) 34 (4,38) NA NA

Delirium/Confusion 39 (13,

55)

17 (2, 39) 1 (1,5) 11 (1,12) NA NA

Headache 38 (22,

59)

33 (16,

54)

2 (1,26) 45 (7,52) NA NA

Sore throat 33 (12,

45)

30 (15,

50)

NA 39

(14,53)

NA NA

Cough 37 (23,

49)

35 (20,

53)

24 (2,48) 48 (8,56) NA NA

Shortness of breath 38 (24,

51)

35 (19,

53)

2 (1,16) 34 (1,35) NA NA

Pneumonia 38 (25,

52)

33 (16,

50)

2 (1,17) 22 (1,23) NA NA

Acute bronchitis 20 (7, 55) 35 (23,

51)

NA 42 (2,44) NA NA

Acute respiratory infection 38 (25,

51)

36 (19,

54)

22 (2,45) 18 (1,19) NA NA

Acute respiratory distress, arrest, or

failure

36 (22,

52)

NA 2 (1,8) 35 (1,36) NA NA

Cardiovascular condition 33 (18,

49)

30 (14,

50)

3 (1,19) 30 (1,31) NA NA

Renal Condition NA 29 (9, 47) 3 (1,27) NA NA NA

Serological Test Type Total Antibody 51 (13,

75)

36 (19,

57)

NA 37 (5,42) 11 (0,36) 36 (19,

58)

IgG 31 (15,

45)

30 (15,

50)

10 (1,34) 49

(28,77)

28 (7,38) 38 (21,

60)

Manufacturer–serological test name (assay)8 Γ 1 (1,1) 33 (17,

48)

NA NA 22 (1,37) NA

Δ 1 (1,1) 26 (7, 45) NA NA NA NA

P NA NA NA NA 32

(21,39)

NA

X NA NA 4 (1,21) NA 11 (0,36) NA

Θ NA NA 13 (1,17) NA NA NA

C NA NA NA NA 11 (0,36) NA

Λ NA NA 23 (2,40) NA NA NA

Missing/Unknown NA NA NA NA NA NA

Manufacturer–molecular test name (assay)8 O 15 (1, 30) NA NA NA NA NA

Y 1 (1, 21) 15 (0, 35) NA NA NA NA

X NA 21 (7, 41) NA NA NA NA

S 1 (1, 23) 23 (9, 43) NA NA NA NA

F NA 25 (12,

48)

NA NA NA NA

Missing/Unknown NA NA NA NA NA NA

(Continued)
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days of the RNA test, and most often on the same day. This is an important finding because

we would not expect concordance between molecular and serology tests taken in close prox-

imity because of known viral kinetics [25–27] After consulting with our analytic partners, we

discovered the implementation of policies within health systems to screen patients admitted

for procedures for active or past SARS-CoV-2 to evaluate the risk of nosocomial infections.

These policies may be driving observed differences in the median time between molecular

and serology tests in claims (31 days), compared to EHR datasets (10–24 days), with the

nuance being washed out in larger claims datasets that incorporate a mix of care settings. Cli-

nicians may also be serotesting because they do not believe that patients are presenting close

to the time of exposure, desire a better understanding of patients’ disease progression, or to

assist in determining clinical course of care, which may depend on whether patients are at

increased risk for severe illness due to insufficient antibody response [28]. For all diagnostic

and serological tests authorized by the FDA, the FDA produces fact sheets for healthcare pro-

viders to provide information about the assay and its limitations [29]. Continued guidance

and communication are needed to help clinicians understand how to best use serological

tests for SARS-CoV-2 [30, 31].

A higher distribution of patients presenting with respiratory, metabolic, and cardiovascular

symptoms among the serotested compared to non-serotested, is consistent with an evaluation

by the CDC that indicated such factors are associated with severe COVID-19 illness [32].

Patients with a pre-existing history of cardiovascular disease (including hypertension) and

liver disease were over-represented among those serotested vs. those not serotested in multiple

datasets. These conditions have been shown to be associated with excess risk in other studies

Table 4. (Continued)

Partners A B C D E F

Median days to serology test (from positive RNA test) (25–75

percentile)

Care Setting where RNA test occurred Inpatient 37 (24,57) 31 (6, 48) 10 (1,12) NA 0 (0,3) NA

Outpatient 35 (21,

50)

31 (15,

51)

NA NA 30

(12,43)

NA

Emergency department 39 (31,

52)

33 (21,

53)

NA NA 1 (0,21) NA

Calendar Time (based on RNA test) On or after May 1, 2020 9 (1, 27) 27 (12,

48)

71,29) 32 (1,33) 15 (0,35) 22 (4, 47)

Before May 1, 2020 39 (28,

51)

43 (30,

58)

28 (6,

50)

38

(30,68)

36

(25,49)

46 (30,

64)

1 Data was not available
2 At the time of RNA or serological sample refers to +/- 14 days from the sample collection date for the relevant test
3 The median time to event across all participants
4 Pre-existing conditions were assessed 365 before the index date.
5 Phenotypes (code-sets) of ICD-10, medication, and LOINC are provided in S2 Table. Conditions may be identified using ICD-10, medication, or both.
6 Pregnancy Status was assessed up to 40 weeks before the index date.
7 The geographic regions were based on the regions defined by the US Census Bureau and are taken from https://www2.census.gov/geo/pdfs/maps-data/maps/reference/

us_regdiv.pdf. The states that are included in each region are New England: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Mid Atlantic:

New Jersey, New York, Pennsylvania; East North Central: Indiana, Illinois, Michigan, Ohio, Wisconsin; West North Central: Iowa, Nebraska, Kansas, North Dakota,

Minnesota, South Dakota, Missouri; South Atlantic: Delaware, District of Columbia, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, West

Virginia; East South Central: Alabama, Kentucky, Mississippi, Tennessee; West South Central: Arkansas, Louisiana, Oklahoma, Texas; Mountain: Arizona, Colorado,

Idaho, New Mexico, Montana, Utah, Nevada, Wyoming; Pacific: Alaska, California, Hawaii, Oregon, Washington
8 We refer to the tests as Γ—Y for the purposes of anonymity. Some of the tests received an emergency use authorization (EUA). References available upon request

https://doi.org/10.1371/journal.pone.0281365.t004

PLOS ONE Real-world SARS-CoV-2 serological testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0281365 February 10, 2023 17 / 23

https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf
https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf
https://doi.org/10.1371/journal.pone.0281365.t004
https://doi.org/10.1371/journal.pone.0281365


[33, 34]. It was surprising that we did not observe any differences in the distribution of cancer

in those serotested compared to the non-serotested. More research is needed to understand

why some patients with known active SARS-CoV-2 infection receive a serology test, while oth-

ers do not.

Across care delivery systems, a notable observation was increased serological testing in

White as compared to Black individuals. However, when Black patients did receive serology

testing, the time to testing was shorter, which may be due to a pressing need to identify the

presence of antibodies/past infection in populations who have been shown to be at higher risk

of COVID-19 morbidity and mortality [17]. More importantly, data on race from a large

national insurer was missing in about 80% of the sample. Without data on race and ethnicity,

the racial disparities in COVID-19 outcomes—and healthcare in general–cannot be addressed.

Another important information gap is in manufacturer data. Despite targeted conversa-

tions with technology teams and experts in technical, syntactic, and semantic interoperability,

only half of analytic partners were able to integrate test manufacturer data with LIS and EHR

data. A lack of data interoperability within healthcare is a historic problem [35]. Such interop-

erability is the foundation for public health surveillance, research, artificial intelligence, medi-

cal advances, and quality assurance in the context of EUA [36, 37]. Healthcare systems,

manufacturers, and information technology vendors should move to fill information gaps to

improve response to COVID-19 and future public health threats.

Differences in results reported by claims vs. EHR-based systems

Analytic partners ran their analyses in parallel and aligned on a common analytic plan. We did

not pool data, which allowed us to highlight, rather than control for differences across part-

ners. Different patterns between EHR and claims systems were apparent in our analysis. In

general, claims datasets showed no difference in serotesting by care setting or presenting

symptoms, whereas EHR systems did. And while all datasets showed an elevated prevalence of

pre-existing cardiovascular disease observed among those serotested (compared to the non-

serotested), EHR datasets also showed a greater distribution of people with pre-existing obe-

sity, kidney disease, and chronic lung conditions among the serotested. Because healthcare

delivery systems generally have a limited ability to capture all clinical events for a given patient

[38], sicker patients may be driving identification within certain health systems and pre-exist-

ing conditions may have been missed in patients who do not regularly attend the facility for

care but were diverted to the facility [38]. Our data support this hypothesis on both points of

increased illness among patients and lower identification of pre-existing conditions among

patients identified from EHR compared to claims data sources. These differences may influ-

ence the interpretation of serology tests [38–42].

Strengths and limitations

Our study has many strengths. This was a large assessment of serotesting across the U.S. in

diverse datasets leveraging either EHR or claims data. We developed a protocol that incorpo-

rated the unique characteristics of each data source and provided a forum to transparently

communicate and collaborate on study design and interpretation. We also established a plat-

form to rapidly collect and analyze data from various systems to evaluate process improvement

and identify important trends over time. Such a platform may be used to evaluate process

improvement and comparisons within data systems.

Our study also has some important limitations. First, we were unable to assess the indepen-

dence of samples across the healthcare partners directly. Three partners provide national cov-

erage, and thus large sample sizes. The geographic distribution of their populations does not
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suggest overlap. However, single health systems included in the same geographic region as the

larger healthcare partners (specifically in the Pacific and Mountain regions) may be double

counted. Second, smoking status, BMI, and race were largely missing in our analysis. These

are important characteristics in assessing the impact of COVID-19 on the health of the popula-

tion. Third, the sample collection date was not always available the and result date was used by

some partners. As such, it is possible that samples collected on the same day may have different

result dates if tests were run sequentially. Fourth, manufacturer information was largely miss-

ing from two of our largest datasets because instrument data either did not flow to the labora-

tory information system (LIS), or those results were not transmitted from the LIS to the EHR

or payer database. However, we did not find differential missingness by age, sex, or geography

among individuals with and without manufacturer data. Finally, lack of data on COVID-19

exposure and symptom onset limits our ability to make future inferences on appropriate pairs

of molecular and serological tests to assess serological performance for past infection. We note

that assumptions regarding the proximity of RNA testing to symptom onset may not be reli-

able over time. Testing for active infection has gone from severely limited at the start of the

pandemic (March-April 2020) to widely available today. People may receive serial RNA testing

without suspected exposure for purposes of employment or recreational gathering with friends

and family.

As in all observational datasets, the completeness of our assessment is dependent on the

capture of events in each of our healthcare data partners. Indeed, we observed that a greater

proportion (35–65%) of patients identified in EHR data had no encounter in the year prior to

index, compared to 11% among those identified from payer data. Coupled with our observa-

tion from EHRs that there seemed to be a greater number of pre-existing conditions for which

there was preferential serotesting, these data provide additional evidence that patients identi-

fied through EHR data sources may tend to be sicker than those identified in claims. Further-

more, not knowing "care setting" for a large portion of tests could affect interpretation of the

performance of serology testing as well, since the sensitivity of serology assays appears to be

lower in mildly sick and/or asymptomatic cohorts.

Conclusion

Our results inform the underlying context of serotesting during the first year of the COVID-19

pandemic and differences in serotesting trends observed from claims and EHR data sources–a

critical first step to understanding the real-world accuracy of serological tests. The limited abil-

ity to link test manufacturer data with lab results and clinical data, and incomplete reporting

of race/ethnicity data challenge the ability to assess real-world performance of SARS-CoV-2

tests in different populations and settings. These shortcomings challenge the overall U.S.

response to current and future disease pandemics.

Supporting information

S1 Table. Characteristics of participating data sources and representative populations.

(DOCX)

S2 Table. Phenotype (code-lists) for specified presenting symptoms & pre-existing condi-

tions.

(DOCX)

S1 Fig. Factors potentially associated with serological testing.

(TIF)

PLOS ONE Real-world SARS-CoV-2 serological testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0281365 February 10, 2023 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281365.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281365.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0281365.s003
https://doi.org/10.1371/journal.pone.0281365


Acknowledgments

We would like to thank Christina Silcox, Shamiram Feinglass, Roland Romero, James Okusa,

Elijah Mari Quinicot, Amar Bhat, Susan Winckler, Alecia Clary, Sadiqa Mahmood, Philip Bal-

lentine, Perry L. Mar, Cynthia Lim Louis, Connor McAndrews, Elitza S. Theel, Cora Han,

Pagan Morris, Charles Wilson, and Bridgit O Crews for their engagement, and assistance with

this manuscript. We would also like to note Daniel Caños, Sara Brenner, Wendy Rubinstein,

Veronica Sansing-Foster, and Sean Tunis for their support and feedback during this work. A

special thanks and recognition for the contributions and sacrifice of Dr. Michael Waters, our

dear colleague and friend who will be forever in our thoughts. We thank Amir Alishahi Tabriz

MD, PhD for his assistance with manuscript preparation.

Author Contributions

Conceptualization: Carla V. Rodriguez-Watson.

Data curation: Natalie E. Sheils, Anthony M. Louder, Elizabeth H. Eldridge, Nancy D. Lin,

Benjamin D. Pollock, Jennifer L. Gatz, Shaun J. Grannis, Rohit Vashisht, Carly Kabelac,

Camille Knepper, Sandy Leonard, Peter J. Embi, William G. Jenkinson, Reyna Klesh, Omai

B. Garner, Ayan Patel, Lisa Dahm, Aiden Barin, Dan M. Cooper, Tom Andriola, Carrie L.

Byington, Bridgit O. Crews.

Formal analysis: Carla V. Rodriguez-Watson, Natalie E. Sheils, Anthony M. Louder, Elizabeth

H. Eldridge, Nancy D. Lin, Benjamin D. Pollock, Jennifer L. Gatz, Shaun J. Grannis, Rohit

Vashisht, Carly Kabelac, Camille Knepper, Peter J. Embi, William G. Jenkinson, Reyna

Klesh, Ayan Patel.

Funding acquisition: Carla V. Rodriguez-Watson, Atul J. Butte.

Investigation: Carla V. Rodriguez-Watson, Natalie E. Sheils, Anthony M. Louder, Elizabeth

H. Eldridge, Nancy D. Lin, Benjamin D. Pollock, Jennifer L. Gatz, Shaun J. Grannis, Rohit

Vashisht, Carly Kabelac, Camille Knepper, Sandy Leonard, William G. Jenkinson, Reyna

Klesh, Omai B. Garner, Ayan Patel, Lisa Dahm, Aiden Barin, Dan M. Cooper, Tom

Andriola, Carrie L. Byington, Bridgit O. Crews, Atul J. Butte, Jeff Allen.

Methodology: Carla V. Rodriguez-Watson, Natalie E. Sheils, Anthony M. Louder, Elizabeth

H. Eldridge, Nancy D. Lin, Benjamin D. Pollock, Jennifer L. Gatz, Shaun J. Grannis, Rohit

Vashisht, Kanwal Ghauri, Gina Valo, Aloka G. Chakravarty, Tamar Lasky, Mary Jung, Ste-

phen L. Lovell, Sandy Leonard, Peter J. Embi, William G. Jenkinson, Reyna Klesh, Omai B.

Garner, Ayan Patel, Lisa Dahm, Aiden Barin, Dan M. Cooper, Tom Andriola, Carrie L.

Byington, Bridgit O. Crews, Atul J. Butte, Jeff Allen.

Project administration: Carla V. Rodriguez-Watson, Kanwal Ghauri.

Supervision: Carla V. Rodriguez-Watson, Peter J. Embi, Atul J. Butte.

Validation: Carla V. Rodriguez-Watson, Aloka G. Chakravarty.

Visualization: Carla V. Rodriguez-Watson.

Writing – original draft: Carla V. Rodriguez-Watson, Natalie E. Sheils, Kanwal Ghauri.

Writing – review & editing: Carla V. Rodriguez-Watson, Natalie E. Sheils, Anthony M.

Louder, Elizabeth H. Eldridge, Nancy D. Lin, Benjamin D. Pollock, Jennifer L. Gatz, Shaun

J. Grannis, Rohit Vashisht, Kanwal Ghauri, Gina Valo, Aloka G. Chakravarty, Tamar

Lasky, Mary Jung, Stephen L. Lovell, Jacqueline M. Major, Carly Kabelac, Camille Knepper,

Sandy Leonard, Peter J. Embi, William G. Jenkinson, Reyna Klesh, Omai B. Garner, Ayan

PLOS ONE Real-world SARS-CoV-2 serological testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0281365 February 10, 2023 20 / 23

https://doi.org/10.1371/journal.pone.0281365


Patel, Lisa Dahm, Aiden Barin, Dan M. Cooper, Tom Andriola, Carrie L. Byington, Bridgit

O. Crews, Atul J. Butte, Jeff Allen.

References
1. Velavan TP, Meyer CG. The COVID-19 epidemic. Tropical medicine & international health. 2020; 25:

278. https://doi.org/10.1111/tmi.13383 PMID: 32052514

2. Hanson KE, Caliendo AM, Arias CA, Englund JA, Lee MJ, Loeb M, et al. Infectious Diseases Society of

America guidelines on the diagnosis of COVID-19. Clinical infectious diseases. 2020.

3. Cheng MP, Yansouni CP, Basta NE, Desjardins M, Kanjilal S, Paquette K, et al. Serodiagnostics for

Severe Acute Respiratory Syndrome–Related Coronavirus 2: A Narrative Review. Annals of internal

medicine. 2020; 173: 450–460. https://doi.org/10.7326/M20-2854 PMID: 32496919

4. Lassaunière R, Frische A, Harboe ZB, Nielsen AC, Fomsgaard A, Krogfelt KA, et al. Evaluation of nine

commercial SARS-CoV-2 immunoassays. MedRxiv. 2020.

5. Whitman JD, Hiatt J, Mowery CT, Shy BR, Yu R, Yamamoto TN, et al. Test performance evaluation of

SARS-CoV-2 serological assays. MedRxiv. 2020.

6. CDC. Cases, Data, and Surveillance. In: Centers for Disease Control and Prevention [Internet]. 11 Feb

2020 [cited 2 Jan 2022]. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/serology-surveillance/

serology-test-evaluation.html

7. Administration UF and D. In vitro diagnostics EUAs. Food and Drug Administration. 2020.

8. Gold JA, Rossen LM, Ahmad FB, Sutton P, Li Z, Salvatore PP, et al. Race, ethnicity, and age trends in

persons who died from COVID-19—United States, May–August 2020. Morbidity and Mortality Weekly

Report. 2020; 69: 1517. https://doi.org/10.15585/mmwr.mm6942e1 PMID: 33090984

9. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al. Presymptomatic SARS-CoV-

2 infections and transmission in a skilled nursing facility. New England journal of medicine. 2020; 382:

2081–2090. https://doi.org/10.1056/NEJMoa2008457 PMID: 32329971

10. Wei WE, Li Z, Chiew CJ, Yong SE, Toh MP, Lee VJ. Presymptomatic transmission of SARS-CoV-2—

Singapore, january 23–march 16, 2020. Morbidity and Mortality Weekly Report. 2020; 69: 411. https://

doi.org/10.15585/mmwr.mm6914e1 PMID: 32271722

11. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus

disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020.

Eurosurveillance. 2020; 25: 2000180. https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180

PMID: 32183930

12. Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C, et al. Suppres-

sion of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature. 2020; 584: 425–429.

13. Dzau VJ, McClellan MB, McGinnis JM, Burke SP, Coye MJ, Diaz A, et al. Vital directions for health and

health care: priorities from a National Academy of Medicine initiative. Jama. 2017; 317: 1461–1470.

https://doi.org/10.1001/jama.2017.1964 PMID: 28324029

14. Shah M, Sachdeva M, Dodiuk-Gad RP. COVID-19 and racial disparities. Journal of the American Acad-

emy of Dermatology. 2020; 83: e35. https://doi.org/10.1016/j.jaad.2020.04.046 PMID: 32305444

15. Chowkwanyun M, Reed AL Jr. Racial health disparities and Covid-19—caution and context. New

England Journal of Medicine. 2020; 383: 201–203. https://doi.org/10.1056/NEJMp2012910 PMID:

32374952

16. Havers FP, Reed C, Lim T, Montgomery JM, Klena JD, Hall AJ, et al. Seroprevalence of antibodies to

SARS-CoV-2 in 10 sites in the United States, March 23-May 12, 2020. JAMA internal medicine. 2020;

180: 1576–1586. https://doi.org/10.1001/jamainternmed.2020.4130 PMID: 32692365

17. Garcia-Beltran WF, Lam EC, Astudillo MG, Yang D, Miller TE, Feldman J, et al. COVID-19-neutralizing

antibodies predict disease severity and survival. Cell. 2021; 184: 476–488. e11. https://doi.org/10.1016/

j.cell.2020.12.015 PMID: 33412089

18. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV-2

assessed for up to 8 months after infection. Science. 2021. https://doi.org/10.1126/science.abf4063

PMID: 33408181

19. Yu H, Sun B, Fang Z, Zhao J, Liu X, Li Y, et al. Distinct features of SARS-CoV-2-specific IgA response

in COVID-19 patients. European Respiratory Journal. 2020; 56. https://doi.org/10.1183/13993003.

01526-2020 PMID: 32398307

20. To KK-W, Tsang OT-Y, Leung W-S, Tam AR, Wu T-C, Lung DC, et al. Temporal profiles of viral load in

posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-

PLOS ONE Real-world SARS-CoV-2 serological testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0281365 February 10, 2023 21 / 23

https://doi.org/10.1111/tmi.13383
http://www.ncbi.nlm.nih.gov/pubmed/32052514
https://doi.org/10.7326/M20-2854
http://www.ncbi.nlm.nih.gov/pubmed/32496919
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/serology-surveillance/serology-test-evaluation.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/serology-surveillance/serology-test-evaluation.html
https://doi.org/10.15585/mmwr.mm6942e1
http://www.ncbi.nlm.nih.gov/pubmed/33090984
https://doi.org/10.1056/NEJMoa2008457
http://www.ncbi.nlm.nih.gov/pubmed/32329971
https://doi.org/10.15585/mmwr.mm6914e1
https://doi.org/10.15585/mmwr.mm6914e1
http://www.ncbi.nlm.nih.gov/pubmed/32271722
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180
http://www.ncbi.nlm.nih.gov/pubmed/32183930
https://doi.org/10.1001/jama.2017.1964
http://www.ncbi.nlm.nih.gov/pubmed/28324029
https://doi.org/10.1016/j.jaad.2020.04.046
http://www.ncbi.nlm.nih.gov/pubmed/32305444
https://doi.org/10.1056/NEJMp2012910
http://www.ncbi.nlm.nih.gov/pubmed/32374952
https://doi.org/10.1001/jamainternmed.2020.4130
http://www.ncbi.nlm.nih.gov/pubmed/32692365
https://doi.org/10.1016/j.cell.2020.12.015
https://doi.org/10.1016/j.cell.2020.12.015
http://www.ncbi.nlm.nih.gov/pubmed/33412089
https://doi.org/10.1126/science.abf4063
http://www.ncbi.nlm.nih.gov/pubmed/33408181
https://doi.org/10.1183/13993003.01526-2020
https://doi.org/10.1183/13993003.01526-2020
http://www.ncbi.nlm.nih.gov/pubmed/32398307
https://doi.org/10.1371/journal.pone.0281365


2: an observational cohort study. The Lancet Infectious Diseases. 2020; 20: 565–574. https://doi.org/

10.1016/S1473-3099(20)30196-1 PMID: 32213337

21. Mackey K, Ayers CK, Kondo KK, Saha S, Advani SM, Young S, et al. Racial and ethnic disparities in

COVID-19–related infections, hospitalizations, and deaths: A systematic review. Annals of internal

medicine. 2021; 174: 362–373. https://doi.org/10.7326/M20-6306 PMID: 33253040

22. McDonald CJ, Overhage JM, Barnes M, Schadow G, Blevins L, Dexter PR, et al. The Indiana network

for patient care: a working local health information infrastructure. Health affairs. 2005; 24: 1214–1220.

23. Dixon BE, Whipple EC, Lajiness JM, Murray MD. Utilizing an integrated infrastructure for outcomes

research: a systematic review. Health Information & Libraries Journal. 2016; 33: 7–32.

24. Bajema KL, Wiegand RE, Cuffe K, Patel SV, Iachan R, Lim T, et al. Estimated SARS-CoV-2 Seropreva-

lence in the US as of September 2020. JAMA internal medicine. 2021; 181: 450–460. https://doi.org/10.

1001/jamainternmed.2020.7976 PMID: 33231628

25. Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. Jama. 2020; 323:

2249–2251. https://doi.org/10.1001/jama.2020.8259 PMID: 32374370

26. Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M, et al. Robust neutralizing antibod-

ies to SARS-CoV-2 infection persist for months. Science. 2020; 370: 1227–1230. https://doi.org/10.

1126/science.abd7728 PMID: 33115920

27. Huang AT, Garcia-Carreras B, Hitchings MD, Yang B, Katzelnick LC, Rattigan SM, et al. A systematic

review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and associa-

tion with severity. Nature communications. 2020; 11: 1–16.

28. Fact Sheet For Health Care Providers Emergency Use Authorization (Eua) Of Bamlanivimab And Ete-

sevimab 12222021.: 45.

29. EUAs IVD. Serology and Other Adaptive Immune Response Tests for SARS-CoV-2. 2021.

30. West R, Kobokovich A, Connell N, Gronvall GK. COVID-19 Antibody Tests: A Valuable Public Health

Tool with Limited Relevance to Individuals. Trends in Microbiology. 2020. https://doi.org/10.1016/j.tim.

2020.11.002 PMID: 33234439

31. Qaseem A, Yost J, Etxeandia-Ikobaltzeta I, Forciea MA, Abraham GM, Miller MC, et al. What Is the

Antibody Response and Role in Conferring Natural Immunity After SARS-CoV-2 Infection? Rapid, Liv-

ing Practice Points From the American College of Physicians (Version 1). Annals of Internal Medicine.

2021; 174: 828–835. https://doi.org/10.7326/M20-7569 PMID: 33721518

32. for Immunization NC. Science Brief: Evidence used to update the list of underlying medical conditions

that increase a person’s risk of severe illness from COVID-19. CDC COVID-19 Science Briefs [Internet].

Centers for Disease Control and Prevention (US); 2021.

33. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with

COVID-19-related death using OpenSAFELY. Nature. 2020; 584: 430–436. https://doi.org/10.1038/

s41586-020-2521-4 PMID: 32640463

34. Rosenthal N, Cao Z, Gundrum J, Sianis J, Safo S. Risk factors associated with in-hospital mortality in a

US national sample of patients with COVID-19. JAMA network open. 2020; 3: e2029058–e2029058.

https://doi.org/10.1001/jamanetworkopen.2020.29058 PMID: 33301018

35. Richwine C, Marshall C, PMP CJ. Challenges to Public Health Reporting Experienced by Non-Federal

Acute Care Hospitals, 2019.

36. Salmon D, Yih WK, Lee G, Rosofsky R, Brown J, Vannice K, et al. Success of program linking data

sources to monitor H1N1 vaccine safety points to potential for even broader safety surveillance. Health

Affairs. 2012; 31: 2518–2527. https://doi.org/10.1377/hlthaff.2012.0104 PMID: 23129683

37. Lehne M, Sass J, Essenwanger A, Schepers J, Thun S. Why digital medicine depends on interoperabil-

ity. NPJ digital medicine. 2019; 2: 1–5.

38. Zeltzer D, Balicer RD, Shir T, Flaks-Manov N, Einav L, Shadmi E. Prediction accuracy with electronic

medical records versus administrative claims. Medical care. 2019; 57: 551–559. https://doi.org/10.

1097/MLR.0000000000001135 PMID: 31135691

39. Friedman A, Crosson JC, Howard J, Clark EC, Pellerano M, Karsh B-T, et al. A typology of electronic

health record workarounds in small-to-medium size primary care practices. Journal of the American

Medical Informatics Association. 2014; 21: e78–e83. https://doi.org/10.1136/amiajnl-2013-001686

PMID: 23904322

40. Paul MM, Greene CM, Newton-Dame R, Thorpe LE, Perlman SE, McVeigh KH, et al. The state of popu-

lation health surveillance using electronic health records: a narrative review. Population health manage-

ment. 2015; 18: 209–216. https://doi.org/10.1089/pop.2014.0093 PMID: 25608033

41. O’Malley AS, Draper K, Gourevitch R, Cross DA, Scholle SH. Electronic health records and support for

primary care teamwork. Journal of the American Medical Informatics Association. 2015; 22: 426–434.

https://doi.org/10.1093/jamia/ocu029 PMID: 25627278

PLOS ONE Real-world SARS-CoV-2 serological testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0281365 February 10, 2023 22 / 23

https://doi.org/10.1016/S1473-3099%2820%2930196-1
https://doi.org/10.1016/S1473-3099%2820%2930196-1
http://www.ncbi.nlm.nih.gov/pubmed/32213337
https://doi.org/10.7326/M20-6306
http://www.ncbi.nlm.nih.gov/pubmed/33253040
https://doi.org/10.1001/jamainternmed.2020.7976
https://doi.org/10.1001/jamainternmed.2020.7976
http://www.ncbi.nlm.nih.gov/pubmed/33231628
https://doi.org/10.1001/jama.2020.8259
http://www.ncbi.nlm.nih.gov/pubmed/32374370
https://doi.org/10.1126/science.abd7728
https://doi.org/10.1126/science.abd7728
http://www.ncbi.nlm.nih.gov/pubmed/33115920
https://doi.org/10.1016/j.tim.2020.11.002
https://doi.org/10.1016/j.tim.2020.11.002
http://www.ncbi.nlm.nih.gov/pubmed/33234439
https://doi.org/10.7326/M20-7569
http://www.ncbi.nlm.nih.gov/pubmed/33721518
https://doi.org/10.1038/s41586-020-2521-4
https://doi.org/10.1038/s41586-020-2521-4
http://www.ncbi.nlm.nih.gov/pubmed/32640463
https://doi.org/10.1001/jamanetworkopen.2020.29058
http://www.ncbi.nlm.nih.gov/pubmed/33301018
https://doi.org/10.1377/hlthaff.2012.0104
http://www.ncbi.nlm.nih.gov/pubmed/23129683
https://doi.org/10.1097/MLR.0000000000001135
https://doi.org/10.1097/MLR.0000000000001135
http://www.ncbi.nlm.nih.gov/pubmed/31135691
https://doi.org/10.1136/amiajnl-2013-001686
http://www.ncbi.nlm.nih.gov/pubmed/23904322
https://doi.org/10.1089/pop.2014.0093
http://www.ncbi.nlm.nih.gov/pubmed/25608033
https://doi.org/10.1093/jamia/ocu029
http://www.ncbi.nlm.nih.gov/pubmed/25627278
https://doi.org/10.1371/journal.pone.0281365


42. Darmon D, Sauvant R, Staccini P, Letrilliart L. Which functionalities are available in the electronic health

record systems used by French general practitioners? An assessment study of 15 systems. Interna-

tional journal of medical informatics. 2014; 83: 37–46. https://doi.org/10.1016/j.ijmedinf.2013.10.004

PMID: 24231269

PLOS ONE Real-world SARS-CoV-2 serological testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0281365 February 10, 2023 23 / 23

https://doi.org/10.1016/j.ijmedinf.2013.10.004
http://www.ncbi.nlm.nih.gov/pubmed/24231269
https://doi.org/10.1371/journal.pone.0281365



