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Stromal Content Is Correlated 
With Tissue Site, Contrast 
Retention, and Survival in Pancreatic 
Adenocarcinoma

INTRODUCTION

Primary pancreatic ductal adenocarcinoma (PDA) 
tumors are composed of malignant epithelial 
cells infiltrating and surrounded by an abun-
dant desmoplastic stroma (DS) that, in turn,  
typically composes most of the tumor volume.1 
DS is a diverse matrix comprising many cell 
types (eg, fibroblasts, pancreatic stellate cells, 
immune cells, blood vessels) and extracellu-
lar matrix proteins such as collagen and hyal-
uronic acid.2 Tumor epithelium and DS interact 
in important ways and mediate tumor growth, 

immune surveillance, metabolism, and, possibly, 
metastasis.3-6

The interest in therapeutically targeting DS 
in PDA is increasing because of its purported 
role in impeding drug delivery and excluding 
immune cells from the tumor microenviron-
ment.7-10 Clinical trials targeting DS, however, 
have been disappointing, and more recent stud-
ies have found that reducing DS burden through 
various stroma-depletion strategies in mouse 
models can lead to more aggressive tumors.11-13 
This underscores the complex role DS plays 
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in PDA and highlights the need for additional 
studies.

Quantification of DS is frequently subjective 
and inherently challenging for multi-institutional 
studies. To overcome this, we developed a com-
puterized method to quantify tumor stroma 
density (TSD) in histologic PDA specimens. We 
applied this method to investigate the relation-
ship between primary tumors and metastases 
in a cohort of patients with metastatic disease, 
and the relationship between TSD of primary 
tumors and survival in two cohorts of patients 
who had undergone tumor resection.

Another significant hurdle in the assessment of 
DS is the lack of noninvasive biomarkers that 
can inform us of the qualitative and quantitative 
aspects of the DS. Such noninvasive biomarkers 
may guide the selection of antistromal therapies 
in patients with metastatic disease and assess 
response to therapy. On multiphase computed 
tomography (CT), when compared with normal 
pancreatic parenchyma, PDA tumors commonly 
enhance less but show gradual contrast enhance-
ment at delayed time points. This enhancement 
pattern has been attributed to the presence of 
DS.14-16 In this study, we examined the associa-
tion between primary PDA CT enhancement, 
TSD, and survival in a cohort of patients with 
resected PDA tumors.

PATIENTS AND METHODS

Subjects

Rapid autopsy cohort. Pancreatic tumors and 
metastases were obtained from decedents through 
the Rapid Autopsy Program at the University 
of Nebraska, as previously described.17 Meta-
static sites included lymph nodes, lung, liver, 
and omentum. Tissue microarrays were created 
from paraffin blocks of formalin-fixed tissue in 
duplicate or triplicate.

Denmark cohort. Representative whole-tissue sec-
tions were obtained from de-identified patients 
undergoing pancreaticoduodenectomy for PDA 
in Denmark from 1978 to 2008. The study was 
approved by a regional ethics committee (refer-
ence no. KA-20060181) and has been previously 
described.18,19

University of California, San Francisco, cohort.  
The University of California, San Francisco 
(UCSF), institutional pathology and imaging 
databases were queried to identify patients 

with PDA who met the following inclusion and 
exclusion criteria: had undergone curative intent 
resection with pathology confirmation of PDA, 
had standard preoperative, multiphase pancre-
atic protocol staging CT imaging within 60 days 
of surgery, did not have any neoadjuvant thera-
pies, and had records of ≥ 12 months of imaging 
and clinical follow-up available for review.

Automated Stroma Quantification

For the Rapid Autopsy cohort, tissue microarrays 
were used; for the Denmark and UCSF cohorts, 
whole-tissue sections were used. All slides were 
stained with hematoxylin and eosin, loaded to 
eSlide Manager and visualized with ImageScope 
12.2 (Leica Biosystems, Wetzlar, Germany). 
Slides were annotated to indicate location and 
shape of the tumor. Using Definiens Architect 
XD 2.4 and Tissue Studio 4.1 (both Definiens, 
Munich, Germany), the annotated images were 
segmented into different regions of interest 
(ROIs): tumor epithelium, tumor desmoplasia, 
and glass. The program then calculated the total 
area of each ROI. For each specimen, tumor 
stroma density (TSD) was calculated as follows:

TSD = Tumor Desmoplasia Area/Total Tumor 
Area

CT Image Acquisition and Analysis

Standard, multiphase CT imaging was per-
formed for staging purposes before surgery for 
all patients in the UCSF cohort. All CT scans 
were acquired on 16- or 64-slice CT scanners 
(General Electric, Boston, MA). A nonenhanced 
CT image was acquired first. After intravenous 
injection of 120 mL of Omnipaque 350 CT con-
trast material (GE Healthcare, Chicago, IL) at a 
rate of 5 mL/second, a pancreatic parenchymal 
(PP) phase CT image and then a portovenous 
(PV) phase CT image were acquired. The aver-
age time delay was 45 seconds for the PP phase 
and 90 seconds for the PV phase. The slice thick-
ness of the images ranged from 1.25 to 2.5 mm.

CT images were reviewed on a picture archiv
ing and communication system (Agfa Health-
care, Greenville, SC) by one author who was 
blinded to the pathology and clinical informa-
tion. For each patient, circular ROIs were drawn 
on the PDA (avoiding obvious necrosis) and 
the aorta at the same level on all three phases  
(ie, nonenhanced, PP, and PV phase) and the 

2� ascopubs.org/journal/po JCO™ Precision Oncology

http://ascopubs.org/journal/po


attenuation values (in Hounsfield units [HU]) 
were recorded. For each patient, the following 
normalized tumor enhancement ratios were  
calculated:

1)	 PP phase = (HUtumor, PP – HUtumor, NE)/
(HUaorta, PP - HUaorta, NE) 

2)	 PV phase = (HUtumor, PV – HUtumor, NE)/
(HUaorta, PV - HUaorta, NE).

Statistical Analysis

A mixed-effects linear regression model with 
fixed effects pertaining to metastatic site and 
random intercept with respect to patient of 
origin, using the likelihood ratio test to assess 
significance, was used to compare TSD across 
metastatic sites. Median TSD in the Denmark 
cohort (0.60) was used to stratify high (> 0.60) 
versus low TSD (≤ 0.60). Overall survival (OS) 
and recurrence-free survival (RFS) were com-
pared in high versus low TSD groups using a 
Cox proportional hazards model controlling 
for overall histologic tumor area, tumor differ-
entiation, stage, American Society of Anesthesi-
ologists classification, and smoking status. The 
likelihood ratio test was used to assess the rele-
vance of variables relative to the reduced model 
with that variable removed.

For the UCSF cohort, Cox proportional hazards 
model as well as Cox model with time-varying 
coefficients were used to analyze the RFS and 
OS when stratified by high versus low TSD 
using the same threshold value as the Den-
mark cohort, controlling for clinical and tumor 
pathology variables. For the tumor CT enhance-
ment analysis of the UCSF cohort, the tumors 
were categorized as high versus low enhance-
ment ratios using the median value, and a Cox 
proportional hazards model was used to analyze 
the RFS and OS controlling for clinical and 
tumor pathology variables.

RESULTS

Correlation of Automated and Manual 
Quantification of TSD

Automated quantification of TSD was opti-
mized using whole-tissue sections of primary 
PDA tumors. Figures 1A and 1B demonstrate 
optimized tumor segmentation into tumor epi-
thelium and two distinguishable stromal fea-
tures that allowed for quantification of TSD. 

Automated TSD was compared with manually 
quantified TSD and reviewed by a board-certified 
pathologist (K.E.V.), blinded to clinical and 
pathologic data, in a set of 77 resected PDA sam-
ples. We found good correlation between auto-
mated and manual TSD quantification (ρ = 0.65; 
P < .001; Fig 1C), suggesting that automated 
assessment of TSD may be a reliable method 
to estimate TSD in a high-throughput and unbi-
ased manner.

TSD Variation Across Metastatic Sites

We performed automated TSD quantification 
on 118 tissue sections obtained from six patients 
who underwent rapid autopsy. Primary tumors 
(n = 12 samples), lymph node metastasis (n = 6), 
omental metastasis (n = 18), and solid organ (ie, 
liver and lung) metastasis (n = 17) were repre-
sented (Fig 1D). Median TSD was 0.62 across 
all organ sites. After controlling for variations in 
TSD intrinsic to each patient of origin for each 
sample, significant differences in TSD were 
observed as a function of site (P < .001). Omental 
metastases had the highest TSD (median, 0.85; 
range, 0.20 to 0.99), followed by primary tumors 
(median, 0.74; range, 0.50 to 0.97), lymph node 
(median, 0.61; range, 0.16 to 0.87), and solid- 
organ metastases (median, 0.51; range, 0.13 to 
0.73; Fig 1E). In paired analysis, primary tumors 
had a significantly higher TSD compared with 
solid-organ metastases (P < .001) and lymph 
node metastases (P = .021). These results sug-
gest that PDA stroma is not uniformly abundant 
across metastatic sites and is least abundant in 
solid organ metastases.

High TSD Was a Favorable Prognostic 
Factor in Resectable PDA Tumors

Automated TSD quantification was performed 
on samples from 123 patients with available 
tissue from Copenhagen, Denmark.20 This 
included 63 men and 60 women, whose mean 
age was 62 years at the time of surgery (range, 33 
to 87 years). Median follow-up was 15.3 months 
(range, 0.4 to 296 months). Table 1 lists the clin-
ical and pathology variables for this cohort. No 
patients in this cohort were treated with adju-
vant or neoadjuvant therapy, per the standard of 
care in Europe during the collection period.

The median TSD of this cohort was 0.60 (range, 
0.09 to 0.95) and this median value was used 
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to dichotomize high versus low TSD. Patients 
with a high TSD (> 0.60) had a median RFS of 
21.1 months versus 10.0 months in patients with 
a low TSD (≤ 0.60), which was significant in a 
multivariate model controlling for tumor area, 
tumor differentiation, stage, American Society 

of Anesthesiologists classification, and smok-
ing status (HR = 0.51; P = .008). Patients with 
high TSD also had a longer median OS of 21.3 
months versus 11.7 months in patients with a low 
TSD, which was also significant in a multivariate 
analysis (HR = 0.57; P = 0.003; Fig 2A and 2B). 
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Fig 1. Automated quantification of pancreatic adenocarcinoma (PDA) tumor stroma density at primary and metastatic sites. 
(A) Resected PDA specimen with hematoxylin and eosin staining (magnification, ×10). (B) Automated segmentation of tumor 
epithelium (green) and tumor stroma: fibrosis-high stroma (yellow) and fibrosis-low stroma (pink) (magnification, ×10). (C) Tu-
mor stroma density (TSD) was manually quantified on a subset of 77 specimens that also underwent automated TSD quantifica-
tion with good correlation (ρ = 0.65; P < .001). (D) Distribution of metastatic samples: primary tumors (n = 12), lymph node  
metastasis (n = 6), omental metastasis (n = 18), and solid organ (liver, n = 11; lung, n = 6). (E) Box-and-whisker plot of TSD across 
primary and metastatic organ sites; omental metastases had the highest TSD (median, 0.85; range, 0.20 to 0.99), followed by 
primary tumors (median, 0.74; range, 0.50 to 0.97), lymph node (median, 0.61; range, 0.16 to 0.87), and solid-organ metasta-
ses (median, 0.51; range, 0.13 to 0.73). *P < .001. In paired analysis comparing TSD in primary tumors versus metastatic sites, 
primary tumors showed a significantly higher TSD compared with solid-organ metastases (**P < .001).
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These findings suggest that high TSD is associ-
ated with improved RFS and OS in patients with 
resected PDA tumors.

To validate these prognostic findings, we ana-
lyzed 45 patients from an independent cohort who 
underwent curative-intent operations after pre-
operative CT staging and who did not receive 
neoadjuvant therapy but were treated with adju-
vant chemotherapy when appropriate and/or 
feasible. This cohort included 20 men and 25 
women undergoing resection at UCSF (mean 
age, of 66.3 years [range, 46 to 81 years]; Table 
1). These patients had at least 12 months of  
follow-up, with a median follow-up of 29.2 months 
(range, 12.7 to 90.7 months).

The median TSD in this cohort was again 0.60 
(range, 0.20 to 94). There was no difference in 
TSD between the Denmark and UCSF cohorts 
(P = .684). We analyzed TSD in these samples 
using the automated methods with identical set-
tings and thresholds. Patients with high TSD  
(> 0.6) had a RFS of 14.6 months versus 8.7 
months in those with low TSD (≤ 0.6; Fig 2C). 
Patients with high TSD had median OS of 30.8 
months versus 17.2 months in those with low 
TSD (Fig 2D). Cox proportional hazards mod-
els did not show significant differences for RFS 
and OS when stratified by high versus low TSD 
(RFS, HR = 0.61, P = .160; OS, HR = 0.11, P =  
.121). However, TSD showed significant time- 
varying effects. Patients with high TSD had a 
97% reduction in risk of recurrence compared 
with those with low TSD at time zero (HR = 
0.03; P = .003). However, this risk increased over 
time (0.9% each day) in patients with high TSD 
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Table 1. Clinical and Pathology Variables in the Den-
mark and UCSF Cohorts

Characteristic No. (%)*

Denmark (n = 123)

  Age, mean, years 61.9

  Sex

    Female 60 (49)

    Male 63 (51)

  TNM T stage

    1-2 28 (23)

    3 95 (77)

  TNM N stage

    0 48 (39)

    1 75 (61)

  Tumor differentiation

  �  Well, well to moderately, and 
moderately differentiated

64 (52)

  �  Moderately to poorly, and 
poorly differentiated

59 (48)

  Adjuvant treatment

    No 123 (100)

    Yes 0 (0)

UCSF (n = 45)

  Age, mean, years 66.3

  Sex

    Female 25 (56)

    Male 20 (44)

  Tumor diameter, mean, cm 2.6

  Tumor location

    Head/uncinate 39 (87)

    Body/tail 6 (13)

  Tumor differentiation

  �  Well, well to moderately, and 
moderately differentiated

33 (73)

  �  Moderately to poorly, and 
poorly differentiated

12 (27)

  Adjuvant treatment

    No 4 (9)

    Yes 41 (91)

      Gemcitabine 27 (60)

      Gemcitabine, capecitabine 7 (15)

      Gemcitabine, cisplatin 2 (4.4)

      Gemcitabine, nab-paclitaxel 2 (4.4)

      Gemcitabine, radiation 3 (6.7)

  Surgical margin

    Negative 40 (89)

(Continued in next column)

Table 1. Clinical and Pathology Variables in the Den-
mark and UCSF Cohorts (Continued)

Characteristic No. (%)*

    Positive 5 (11)

  Lymph node involvement

    Absent 10 (22)

    Present 35 (78)

  Perineural invasion

    Absent 3 (7)

    Present 42 (93)

  Angiolymphatic invasion

    Absent 26 (58)

    Present 19 (42)

Abbreviation: UCSF, University of California, San Francisco.
*Unless otherwise indicated.

http://ascopubs.org/journal/po


(time-varying effect, HR = 1.009; P = .010). Sim-
ilarly, at time zero, patients with high TSD had 
a 97% reduction in risk of death compared with 
those with low TSD (HR = 0.03; P = .003). The 
risk of death increased over time (0.5% each day) 
in patients with high TSD (time-varying effect, 
HR = 1.005; P = .001). These results suggest that 
patients in the UCSF cohort with high TSD had 
improved prognosis early on, but its protective 
effect diminished over time.

Preoperative CT Enhancement Patterns in 
Patients With Resectable PDA Tumors

CT scanning of patients with PDA classi-
cally demonstrates delayed enhancement after  

contrast administration.21 This pattern has been 
attributed to the presence of the abundant 
stroma.16 Therefore, we investigated the associ-
ation of CT enhancement in primary (resected) 
PDA and TSD, as well as the association between 
CT enhancement and survival in the UCSF 
cohort. The mean time between the preoperative 
CT and surgery was 19 days (range, 2 to 45 days). 
The median normalized tumor enhancement 
ratio was 0.16 (range, 0.01 to 0.56) during the 
PP phase, and 0.40 (range, 0.12 to 0.82) during 
the PV phase. For each phase of enhancement, 
the tumors were classified as having either low 
or high enhancement ratios, using the median 
values as a threshold. Figures 3A and 3B show 
representative tumors classified as having high 
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Fig 2. Recurrence-free survival (RFS) and overall survival (OS) stratified by tumor stromal density (TSD) in two independent cohorts. (A, B)  
Kaplan-Meier curves of (A) RFS and (B) OS for high versus low TSD in resected pancreatic adenocarcinoma (PDA) specimens from the 
Denmark patient cohort. Patients with a high versus low TSD had a median RFS of 21.1 versus 10.0 months (P = .003), and a median OS of 
21.3 versus 11.7 months (P = .08). (C, D) Kaplan-Meier curves of RFS and OS for high versus low TSD in resected PDA specimens from the 
University of California, San Francisco, patient cohort. Patients with high TSD (> 0.6) had a median RFS of 14.6 months versus 8.7 months in 
those with low TSD (≤ 0.6). Patients with high TSD had median OS of 30.8 months versus 17.2 months in those with low TSD. TSD showed 
significant time-varying effects using a Cox model with time-varying coefficients. Patients with high TSD had a 97% reduction in risk of recur-
rence compared with those with low TSD at time zero (HR = 0.03 for high TSD; P = .003). However, the risk of recurrence increased over time 
(0.9% each day) in patients with high TSD (time-varying effect HR = 1.009 for high TSD; P = .010). Similarly, at time zero, patients with high 
TSD had a 97% reduction in risk of death compared with those with low TSD (time zero HR = 0.03 for high TSD; P = .003). The risk of death, 
however, increased over time (by 0.5% each day) in patients with high TSD (time-varying effect HR = 1.005 for high TSD; P = .001). *P = time 
zero; **P = time-varying effect..
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or low normalized enhancement ratio at the PP 
and PV phases, respectively.

We investigated the association between CT 
tumor enhancement and prognosis. Univariate  

analysis revealed that increasing tumor size  
(HR = 1.7; P = .010), poor tumor differentia-
tion (HR = 4.6; P = .002), and normalized tumor 
enhancement ratio at the PV phase < 0.40 (HR = 
7.1; P = .001) were significantly associated with 
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enhancement ratio (< 0.40; P = .020). There was a trend toward patients with a high PV tumor enhancement ratio having prolonged OS  
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recurrence by 12 months after resection. Nor-
malized tumor enhancement ratio at the PV 
phase < 0.40 was independently associated with 
disease recurrence within 12 months after resec-
tion (HR = 5.6; P = .010) in a multivariate model 
including the same three variables. Univari-
ate analysis showed that increasing tumor size  
(HR = 1.6; P = .020), positive resection margin 
(HR = 2.8; P = .030), and normalized tumor 
enhancement ratio at the PV phase < 0.40  
(HR = 2.4; P = .021) were significantly associated 
with shorter OS. However, multivariate analy-
sis including those same variables did not show 
normalized tumor enhancement ratio at the PV 
phase < 0.40 as an independent predictor of OS 
(HR = 1.8; P = .121).

Figures 3C and 3D show the Kaplan-Meier RFS 
and OS estimates when stratified by the PV phase 
normalized tumor enhancement ratio. Patients 
with normalized tumor enhancement ratio < 0.40 
at the PV phase CT imaging had shorter time to 
recurrence than those with tumor enhancement 
ratio ≥ 0.40 (P = .020). There was a trend toward 
patients with normalized tumor enhancement 
ratio at PV phase < 0.40 having shorter survival 
compared with patients with normalized tumor 
enhancement ratio at PV phase ≥ 0.40 (P = .080).

TSD Correlated With CT Enhancement 
Patterns in Patients With Resectable PDA 
Tumors

Next, we compared normalized tumor enhance-
ment ratio in the PP and PV phases with TSD 
in the same patients. In the PP phase, there was 
no difference in TSD between tumors with nor-
malized enhancement ratios < 0.16 versus ≥ 0.16 
(P = .800). In the PV phase, tumors with nor-
malized enhancement ratios ≥ 0.40 had signifi-
cantly higher TSD compared with those with 
enhancement ratios < 0.40 (P = .020; Fig 4A and 
4B). There was a moderate linear correlation 
between the normalized tumor enhancement 
ratio at the PV phase on CT imaging and TSD 
(ρ = 0.52; P = .003; Fig 4C). These analyses 
demonstrate that preoperative CT enhance-
ment at the PV phase may be a noninvasive sur-
rogate for TSD in patients with resectable PDA 
tumors.

DISCUSSION

PDA is widely associated with DS in the surgi-
cal and pathology literature, in which resected 
disease is studied much more commonly than 
metastatic samples. The degree of heterogene-
ity seen in this desmoplastic response between 
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in patients with resectable 
pancreatic ductal adeno-
carcinoma (PDA) tumors. 
Box-and-whisker plots of 
TSD in tumors with high 
versus low normalized 
enhancement ratios in (A) 
the pancreatic parenchy-
mal (PP) phase and (B) the 
PV phase. There was no 
difference in TSD between 
high versus low PP tumor 
enhancement groups (P = 
.800). Significantly higher 
TSD was found in tumors 
from patients with high 
PV tumor enhancement 
compared with those with 
low PV tumor enhancement 
(P = .020). (C) There is a 
moderate linear correlation 
between the normalized 
tumor enhancement ratio 
at the PV phase on CT 
imaging and TSD  
(ρ = 0.52; P = .003). 
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patients and between anatomic sites in the  
same patient has not been well described. We 
developed an automated, image-based algorithm 
to quantify TSD in PDA that agrees well with 
visual pathologic assessment. This algorithm 
was then used to demonstrate TSD varies across 
metastatic sites and that TSD of the primary 
tumor positively associates with survival.

Most PDA patients die with metastases.22 
Although effective treatment of metastatic dis-
ease is the most important priority in PDA, 
translational efforts and preclinical models have 
focused largely on primary tissues.23 We found 
significant differences in TSD across metastatic 
sites. Prior work has demonstrated that meta-
static PDA tumors have limited driver-mutation 
heterogeneity when compared with the primary 
tumor and largely concordant tumor-specific  
gene expression patterns in samples across many  
primary and metastatic sites.17,24 However, meta
static sites may have different proteomic profiles.25 
These important observations, coupled with our 
results, suggest the variation in TSD is a function 
of host organ-site physiology and not secondary 
to cancer genomic or epigenomic/transcriptional 
differences between the primary and metastatic 
tumors. Different sites of PDA likely react differ-
ently to tumor cells with respect to generation of 
DS that may have therapeutic implications.

We found that TSD correlated with both RFS 
and OS in a mature cohort of patients with 
resected PDA tumors who did not undergo  
adjuvant therapy. Our prognostic findings imply  
a protective role of stroma in PDA patho-
genesis, in agreement with prior studies that 
used subjective assessments of various stromal  
characteristics.3,7,26

In the UCSF cohort, where most patients 
received adjuvant therapy, a lower risk of recur-
rence or death was seen initially in patients with 
high TSD, but the risk for both increased over 
time, with the survival curves eventually crossing. 
The differences in clinical management among 
cohorts are important in the interpretation of 
these results. The Denmark cohort did not 
receive any adjuvant therapy.19,20 In contrast, 91% 
(41 of 45) of the patients in the UCSF cohort 
received adjuvant therapy soon after resection, 
which more recently has become the standard 
of care.27 Interestingly, Sinn et al8 showed that a 
qualitatively dense stroma in PDA was associated 
with a significantly longer RFS and OS in the 

CONKO-001 trial, but this effect was restricted 
to patients in the observation group (no adjuvant 
therapy until recurrence) and not seen in patients 
randomly assigned to adjuvant gemcitabine.8 Our 
findings, along with those of Sinn et al,8 suggest 
patients with tumors that have low TSD may 
benefit more from adjuvant chemotherapy, clos-
ing the survival gap between high TSD and low 
TSD seen in the Denmark cohort.

Assessment of TSD is limited by the availability 
of adequate tissue samples. Thus, we evaluated a 
noninvasive imaging method to provide informa-
tion about stroma density. We showed that nor-
malized tumor enhancement ratio at the PV phase 
on CT imaging was correlated with TSD and 
prognosis, in agreement with a prior study that 
demonstrated resected PDA tumors with lower 
enhancement tended to be less fibrotic.16 The asso-
ciation between PDA enhancement and TSD may 
be explained by the properties of the CT contrast 
materials that pass freely between the intravascu-
lar and extravascular extracellular space but do not 
cross intact cell membranes. Therefore, higher 
enhancement is expected in tumors with higher 
extracellular matrix or higher stromal density.

Our study does have several limitations. The 
Denmark and UCSF cohorts comprised patients 
with resectable PDA, somewhat limiting the 
generalizability of our findings. Another limita-
tion of our study is that only one board-certified  
pathologist reviewed specimens for manual TSD 
quantification, from which we show good cor-
relation between manual and automated TSD 
quantification. To limit any potential bias, man-
ual quantification was done blinded to the results 
of automated quantification and all other clinical 
and pathologic data.

In summary, we found TSD was lowest at solid- 
organ metastases, and that higher TSD was  
positively associated with outcome in patients 
with resected PDA tumors without adjuvant 
therapy. Tumor normalized enhancement ratios 
at the PV phase of multiphasic CT imaging 
are also associated with higher TSD and RFS, 
suggesting quantitative analyses of multiphasic 
CT imaging may be a noninvasive surrogate for 
TSD and/or an independent biomarker for ther-
apy selection.
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