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We derive a new nonlinear criterion for the occurrence of fast relaxation (crash) events at the edge of
high-confinement-mode plasmas. These fast relaxation events called ELMs (edge-localized modes) evolve
from ideal magnetohydrodynamics (MHD) instabilities, but the crash is not due only to linear physics. We
show that for an ELM crash to occur, the coherence time of the relative phase between potential and
pressure perturbations must be long enough to allow growth to large amplitude. This phase coherence time
is determined by both linear and nonlinear dynamics. An ELM crash requires that the instability growth rate
exceed a critical value, i.e., γ > γc, where γc is set by 1=τc and τc is the phase coherence time. For
0 < γ < γc, MHD turbulence develops and drives enhanced turbulent transport. The results indicate that
the shape of the growth rate spectrum γðnÞ is important to whether the result is a crash or turbulence. We
demonstrate that ELMs can be mitigated by reducing the phase coherence time without changing linear
instability. These findings also offer an explanation of the occurrence of ELM-free H-mode regimes.

DOI: 10.1103/PhysRevLett.112.085001 PACS numbers: 52.35.Ra, 52.55.Fa, 52.55.Tn, 52.65.Kj

Impulsive, abrupt relaxation phenomena are ubiquitous
in physics. Examples include, but are not limited to, the
catastrophic breaking of elastic structures under stress [1],
solar flare eruptions [2], fast magnetic reconnection and
relaxation in astrophysical and laboratory plasmas, and
edge-localized modes (ELMs) [3], which occur at the edge
of high-confinement-regime (H-mode) [4] tokamaks.
Bursty relaxation is of interest for many reasons but almost
always because of the strong, rapid energy release which
results. While the criticality conditions for relaxation often
involve linear stability criteria, it is also often the case that
the ultimate, dynamical mechanisms for relaxation are
nonlinear. A persistent general question is what is the
nonlinear criticality condition which actually determines
when bursty relaxation occurs?
In this Letter, we answer the above question for ELM

crashes in tokamaks. ELMs are fast relaxation phenomena
which occur in the steep gradient edge region of H-mode
plasmas. ELM crashes cause large transient heat loads on
plasma facing components and remain an urgent issue for
present and future fusion reactors like ITER. The correct
understanding of ELM dynamics and an accurate criterion
for predicting the onset of ELMs are of great interest to the
fusion community. It is widely accepted that ELMs are
driven by steep edge pressure and current gradients and
triggered by robust, ideal magnetohydrodynamics (MHD)
peeling-ballooning (P-B) instabilities [5,6]. However, in
this Letter, we demonstrate that the onset of ELMs is
governed by a novel nonlinear criterion γ > γc rather than
the linear criterion γ > 0. Our analysis is centered on the

dynamics of the relative phase between pressure and
potential perturbations. Phase dynamics has been exten-
sively studied in the context of pattern formation [7], and
now it is shown to be important to the linear-nonlinear
transition, the onset of ELM crashes, and the formation of
filamentary structure. Our results propose an explanation
for the existence of an ELM-free H mode and also suggest
new ELM control methods to experimentalists.
This analysis is conducted using the same reduced MHD

model from the study of Ref. [6] with additional gyrovis-
cous terms [8] by using BOUT++ [9]. Boundary conditions
for vorticity ϖ, pressure ~P, and parallel vector potential A∥
are Dirichlet, Neumann, and zero Laplacian, respectively.
No additional sources or sinks are in simulations for ELM
crashing dynamics on the order of a few hundred Alfvén
time scale. Resistivity, hyper-resistivity, and parallel ion
viscosity are chosen to be S ¼ μ0R0vA=η ¼ 2 × 1010,
SH ¼ μ0R3

0vA=ηH ¼ 2 × 1014, and μi∥ ¼ 0.1ωAR2 for typ-
ical pedestal plasmas [10]. The shifted circular equilibrium
is based on JET (the second equilibrium described in
Ref. [10]) and has minor radius a ¼ 1.22 m, major radius
R0 ¼ 3.53 m, and toroidal magnetic field Bt ¼ 1.99 T. The
normalized pressure gradient is α ¼ −2μ0q2R0P0

0=B
2 ¼

2.17 and magnetic shear is s ¼ rq0=q ¼ 3.81 at the peak
pressure gradient location. The number of grid cells in each
direction is nψ ¼ 516, nθ ¼ 128, and nζ ¼ 129, where ψ ,
θ, and ζ are the radial, poloidal, and toroidal coordinates,
respectively. This equilibrium is linearly unstable to peel-
ing-ballooning modes, and the most unstable mode has
toroidal mode number n ¼ 20, with normalized linear
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growth rate γ=ωA ¼ 0.034 for a constant density
n0 ¼ 1019 m−3. According to the conventional model
based upon purely linear peeling-ballooning theory [5],
this equilibrium will have an ELM crash because it is
unstable to P-B modes (see the Supplemental Material [11]
for more information).
We start with a comparison between a single-mode

simulation (SMS) and a multiple-mode simulation
(MMS), where SMS and MMS are defined by different
initial perturbations, as follows:

~ft¼0 ¼ f0G1ðψÞG2ðθÞ cos nζ;SMS; (1)

~ft¼0 ¼ f0G1ðψÞG2ðθÞ
X160

n¼0

An cosðnζ þ φÞ;MMS. (2)

Considering the localized nature of peeling-ballooning
modes, G1 and G2 are set to be Gaussian functions. In
both cases, the initial perturbation has an amplitude of
δp=p0 ¼ 10−4 set by f0. In SMS, the initial perturbation
has toroidal mode number n ¼ 20, which is the most
unstable mode. In MMS, the initial perturbation is a
toroidal spectrum with random phase and amplitude.
In SMS, the pressure profile crashes at t ¼ 140τA and

relaxes further at t ¼ 300τA [Fig. 1(a)]. Here, τA ¼ 3.5 ×
10−7 s is the Alfvén time. When pedestal crash occurs,
filaments are generated [Fig. 1(b)] and evolve into fully
developed turbulence [Fig. 1(c)]. Here the definition of a
filament is a helical coherent structure which moves and
bursts radially outward. In MMS, the pressure profile
remains nearly unchanged during the whole simulation
period [Fig. 1(d)]. There, the fluctuations do not generate
filaments but evolve directly to the turbulent state, as shown
in Figs. 1(e) and 1(f). Also, the fluctuations in MMS have a
much narrower radial extent, as compared to those in SMS.
Figure 2(a) shows the time evolution of the ELM size,

which measures the energy loss during the ELM crash and
is defined as ΔELMðtÞ ¼

R
ψout
ψ in

dψ∯ JdθdζðP0 − hPðtÞiζÞ=R
dψ∯ JdθdζP0. Here, ψ in is the inner boundary of the

simulation domain, and ψout is chosen to be the location of
the peak pressure gradient. P0 is equilibrium pressure and J
is Jacobian. In SMS, a typical ELM crash occurs at
t ¼ 115τA, as indicated by the sudden increase in ELM
size. This is consistent with linear theory. However, in
MMS an ELM crash does not appear. Instead, slow
turbulent transport occurs. Since the turbulence is generated
by peeling-ballooning modes, it is named P-B turbulence.
The energy loss for MMS is dramatically reduced relative
to that for SMS. Clearly, MMS results disagree with the
linear P-B model of the origin of ELM crashes.
These results show that the existence of linear instability

alone does not predict ELM crashes. To trigger an ELM
crash, the P-B perturbation must grow to a large, nonlinear
amplitude. Linear drive and nonlinear wave-wave inter-
action both contribute to the growth of a mode. The linear
drive in this model is mainly the ballooning drive, and it
requires both sufficient growth rate and growth time to
drive the mode. According to Eq. (1) of Ref. [6], the
relation between the kinetic energy ~V2

E×B;n and ballooning
drive can be expressed as

∂ ~V2
E×B;n

∂t ∝ −2ℜðinϕ̂�
nP̂nb0 × κ ·∇ζÞ ∝ sin δφ: (3)

Here, the relative phase between P̂n and ϕ̂n is defined as
δφðn;ψ ; θ; tÞ ¼ arg½P̂nðψ ; θ; tÞ=ϕ̂nðψ ; θ; tÞ�, δφ ∈ ð−π; π�,
where P̂n and ϕ̂n are the nth toroidal Fourier components of
the pressure and potential perturbation, respectively. The
relative phase is important because it determines whether
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FIG. 1 (color online). Evolution of pressure profiles at different
times is shown in (a) for SMS and (d) for MMS. The pressure
fluctuation pattern at the outer midplane is shown in (b),(c) for
SMS and (e),(f) for MMS. The toroidal segment is 5.
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FIG. 2 (color online). Simulation results for SMS (red) and
MMS (black). (a) Time evolution of ELM size; (b) time evolution
of the toroidal Fourier component of pressure perturbation δPkz;
(c) evolution of relative phase δφ between P̂n and ϕ̂n. The dashed
green lines correspond to δφ ¼ �π.
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the ballooning mode can extract free energy from the
pressure gradient or not. The curvature term drives balloon-
ing modes when 0 < δφ < π (phase for growth) and damps
ballooning mode when −π < δφ < 0 (phase for damping).
Thus, the net increase in amplitude due to linear drive is set
by γðnÞτcðnÞ, where the phase coherence time (PCT) τcðnÞ
is defined as the time duration of the phase for growth and
is limited by nonlinear mode interaction.
In SMS, as shown in Figs. 2(b) and 2(c), there is no

disruption in δφ from wave-wave interaction prior to the
ELM crash. The mode has a long time during which to
grow to large amplitude and, thus, trigger an ELM crash.
However, in MMS, wave-wave interaction starts at the
beginning of the simulation. It scatters δφ and terminates
growth before the mode reaches a large amplitude.
Consequently, the ELM crash is replaced by a quasista-
tionary state of P-B turbulence. In the later turbulent state of
both cases, δφ fluctuates rapidly between positive and
negative values; thus, τc becomes so short that no dramatic
mode growth occurs. In addition, the strong consistency
between phase coherence and the amplitude growth in
Fig. 2 and Figs. 3(d) and 3(e) shows that the energy transfer
among different modes via wave-wave interaction is much
weaker than the linear drive in this model. In general, the
scattering of δφ naturally induces phase fluctuations and,
thus, generates a statistical ensemble of phases. Here, τc is a
stochastic quantity with a certain probability distribution
function (PDF). The accurate measurement of this PDF
requires an ensemble average over a huge database, and,
thus, is beyond the scope of this Letter.
Overall, linear theory ignores the constraint set by τc and so

leads to an underestimate of the critical growth rate for the
onset of ELMs. The linear criterion γ > 0 for the onset of
ELMs is, thus, seen as a necessarybut not sufficient condition.
To find the sufficient condition for the onset of an ELM

crash, we take the turbulent state of MMS at t ¼ 200τA as
the initial perturbation and examine the evolution of the
pedestal pressure profile by scanning a range of equilibrium
pressure gradients with other profiles fixed. Here we
assume that the transport from the P-B turbulence is weaker
than the heat flux from the core, so the pedestal gradient
steepens until a crash is triggered. When the pressure
gradient increases, the linear growth rates increases, as
shown in Fig. 4(a). The evolution of fluctuations can be
quite different, depending upon the product γðnÞτcðnÞ.
Three relevant possibilities are (a) P-B turbulence
γðnÞτcðnÞ < ln 10, for all n; (b) isolated crash
γðnÞτcðnÞ > ln 10, for n ¼ nd and γðnÞτcðnÞ < ln 10, for
n ≠ nd; (c) turbulent crash γðnÞτcðnÞ > ln 10, for multiple
n. The value ln 10 is used to measure whether the mode
amplitude can grow by an order of magnitude. Transport
from P-B turbulence can be enhanced by the higher
pressure gradient and may eventually balance the heat flux
from the core. In this situation, an ELM-free H mode is
obtained with a turbulent pedestal. Thus, our results

suggest a possible explanation for the origin of ELM-free
H mode. In the situation of an isolated crash, the mode with
number nd is called the dominant mode, because this mode
grows to a large amplitude and triggers the crash. The
dominant instability is determined by both γðnÞ and τcðnÞ,
and, thus, is not simply the most linearly unstable mode. If
several modes can develop a long PCTat the same time and
grow together, we can also observe a large “turbulent”
crash, in which the ejected filament is composed of a
mixture of different modes. Our analysis shows that ELM
crashes not only depend on the magnitude of linear growth
rates but also on the growth rate spectrum γðnÞ. A peaked
γðnÞ curve tends to trigger an isolated crash, while a flat
γðnÞ curve leads to either P-B turbulence or a turbulent
crash. This implies that in experiments, an isolated crash
can be avoided by flattening the γðnÞ curve instead of by
fully stabilizing all P-B modes.
In Fig. 3(a), only in the case with α ¼ 2.44 is an ELM

crash triggered at t ¼ 200τA by the dominant mode n ¼ 20
[Fig. 3(c)]. In this case, the phase for growth persists for a
long time—over 30τA [Fig. 3(e)]. In cases with α < 2.44,
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FIG. 3 (color online). (a) Time trace of ELM sizes for different
pressure profiles. Fluctuation of different toroidal modes from
α ¼ 2.29 case (b) and α ¼ 2.44 case (c). Time evolution of
relative phase (black) and pressure perturbation (red) of n ¼ 20
mode for α ¼ 2.29 case (d) and α ¼ 2.44 case (e).
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P-B turbulence leads to relatively slow transport. In those
cases, no dominant mode appears, but all modes have
similar amplitude, as shown in Fig. 3(b). This is due to the
short τc [Fig. 3(d)]. In the case of P-B turbulence, the
condition γτc < ln 10 is satisfied. For the case of an ELM
crash, the condition γτc > ln 10 is satisfied by the dominant
mode n ¼ 20.
Overall, the sufficient condition for the onset of an ELM

crash is γτc > ln 10. This condition is equivalent to a
constraint on the linear growth rate γ > γc, where γc ∼
ln 10=τc is the critical growth rate. In this work,
γc=ωA ∼ 0.078, as shown in Fig. 4(a). Unlike the purely
linear criterion γ > 0, our novel criterion is nonlinear, since
τc depends on the process of phase scattering.
Here we briefly sketch the derivation of the PCT and the

phase diffusivity which determines it. Proceeding in the
spirit of calculations of propagation in a random medium
[12], we write V̂r ¼ B, P̂ ¼ Aeiδφ, where A, B, and δφ are
real. δφ is the relative phase between V̂r, and P̂ and is
equivalent to what is commonly referred to as the “cross
phase.” Here the “random medium” is the ensemble of P-B
turbulence. Thus, the pressure response evolves according
to ∂P̂=∂tþ ~V ·∇P̂−D0∇2P̂¼− ~Vr∂hPi=∂r, where ambi-
ent background diffusion D0 allows nontrivial phase-
amplitude coupling. For D0 ¼ 0, the phase evolution
reduces to a simple scalar turbulence problem. Writing
δφ ¼ δφðx; tÞ, the phase evolution equation can straight-
forwardly be renormalized using standard methods [13,14],
and we get the phase evolution equation

∂δφk

∂t þ k ·D
↔
· kδφk ¼ 0: (4)

The phase diffusion tensor D
↔ ¼ P

k0 ~Vk0Lkþk0 ~Vk0, where
Lkþk0 ¼ ð∂t þ 1=τc;kþk0 Þ−1 is the propagator describes the

rate at which the P-B mode relative phase is scattered by
stochastic advection by the velocities of other background
P-B modes. Note that D ∼ ð ~V2=k2Þ1=2. Here, k ·D

↔
· k, or,

ignoring anisotropy, k2Dδϕ sets the time rate of change δφ,
and, thus, can be used as a statistical approximation to the
stochastic quantity τ−1c . The condition for a P-B crash due to
mode n is then γðnÞ > ln 10ðk2DδφÞn. Note that this
criterion is explicitly nonlinear via the amplitude depend-
ence of Dδφ. The importance of the distribution of γðnÞ is
also apparent. Without a dominant mode, a single filament
crash could not occur. Finally, it is apparent that adding
flow shear will enhance 1=τc by the process of hybrid shear
decorrelation [15].
According to our nonlinear criterion, ELMs can be

controlled by decreasing τc without changing the linear
drive. To show this, we place an artificial coefficient CR in
front of the nonlinear convection term in the vorticity
equation, i.e., ∂ϖ=∂tþ CR

~VE ·∇ϖ ¼ RHS. By changing
CR, nonlinear mode interaction is modified, but linear
instability is not affected. For the case with α ¼ 2.44,
different CR values give different ELM evolution, as shown
in Fig. 4(b). Compared with the original case of CR ¼ 1.0,
decreasing CR to 0.8 weakens the mode interaction and,
thus, phase scattering. Thus, the most unstable mode can
grow more easily and so lead to a larger ELM crash at an
earlier time. Increasing CR generates much stronger non-
linear coupling and phase scattering, so the ELM crash is
smaller and is eventually suppressed. Consistent with this,
Fig. 4(c) shows that increasing CR leads to shorter τc. Note
that the maximum linear growth rate for the α ¼ 2.44 case
is 0.085, so the τc needed to trigger an ELM crash is about
τc ∼ ln 10=0.085 ≈ 27τA. The cases with PCT shorter than
this time do not crash but manifest P-B turbulence.
Finally, a simple study on the effect of zonal flow on τc is

performed [Fig. 4(d)]. Overall, zonal flow can reduce the
τc for most modes. Given the analysis above, it is not
surprising that mean or zonal flow shear can decrease τcðnÞ,
due to the fact that it leads to an enhanced, hybrid phase
decorrelation processes, i.e., k2⊥Dδφ → ðk2θhV⊥i02DδφÞ1=3.
The basic trend of flow shear is to reduce the incidence of
ELM crashes. Thus, the strong edge shear flows can be
expected to be beneficial for ELMmitigation. This suggests
a possible explanation for the Quiescent H-mode (QH).
In conclusion, we presented a new, nonlinear criterion

for the ELM crash. The occurrence of the crash depends on
both the linear MHD growth rate γðnÞ and the phase
coherence time τcðnÞ. The criterion for the crash is γ >
γc ∼ ln 10=τc rather than the purely linear criterion γ > 0.
This theory suggests that ELMs can be controlled by
changing the growth rate spectrum or by shortening the
phase coherence time. The control of γðnÞ and τcðnÞ via
flow shear, magnetic shear or other equilibrium quantities,
the spatiotemporal evolution of relative phase, the proba-
bility distribution function of τcðnÞ, and the effect of finite
diffusion on phase evolution are four important issues to

γc

no ELM
with ELM

(a)

2.1 2.2 2.3 2.4 2.5 2.6 2.7
α

0.02

0.04

0.06

0.08

0.10

0.12

0.14

γ/
ω

A
(b)

0 100 200 300 400
t (τA)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

∆ E
LM

(c)

0.8 1.0 1.2 1.4 1.6 1.8 2.0

CR

0

10

20

30

40

τ c
,m

ax
  (

τ A
)

(d)

0 10 20 30 40 50

toroidal mode number n

0

20

40

60

80

τ c
,m

ax
  (

τ A
)

CR = 0.8

CR = 1.0

CR = 1.2

CR = 1.4

CR = 1.6

CR = 1.8

CR = 2.0

n=15
n=20

with ZF
without ZF

FIG. 4 (color online). (a) Maximum linear growth rates versus
different α; (b) time evolution of ELM size for different CR values
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study in the future. More generally, this study points toward
the key role of relative phase evolution in controlling bursty
relaxation.
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