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Abstract
A well-known open problem of Meir and Moser asks if the squares of sidelength 1/n
for n ≥ 2 can be packed perfectly into a rectangle of area

∑∞
n=2 n

−2 = π2/6 − 1.
In this paper we show that for any 1/2 < t < 1, and any n0 that is sufficiently large
depending on t , the squares of sidelength n−t for n ≥ n0 can be packed perfectly into
a square of area

∑∞
n=n0 n

−2t . This was previously known (if one packs a rectangle
instead of a square) for 1/2 < t ≤ 2/3 (in which case one can take n0 = 1).

Keywords Square packing · Meir–Moser problem · Harmonic series

Mathematics Subject Classification 52C15

1 Introduction

A packing by rectangles1 of a region � ⊂ R
2 is a finite or countably infinite family

of rectangles in � with disjoint interiors. We say that the packing is perfect if the
rectangles cover � up to null sets. Note that this forces the Lebesgue measure m(�)

of � to equal the sum
∑∞

n=1m(Rn) of the areas of the rectangles.

Meir and Moser [10] posed the question of whether rectangles of dimensions n−1 ×
(n + 1)−1 for n ≥ 1 can perfectly pack the unit square [0, 1]2, as well as the very
similar question of whether squares of sidelength n−1 for n ≥ 2 can perfectly pack a
rectangle of area

∑∞
n=2 n

−2 = π2/6−1. These questions remain open; see for instance

1 In this paper all rectangles and squares are understood to have sides parallel to the coordinate axes, and
to be topologically closed.
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[3, pp. 112–113] and [1, Chap. 3] for further discussion. As one measure of partial
progress towards these results, Paulhus [11] showed2 that one could pack rectangles
of dimensions n−1 × (n + 1)−1 for n ≥ 1 into a square of area 1 + 1/(109 + 1), and
squares of sidelength n−1 for n ≥ 2 into a rectangle of areaπ2/6−1+1/1244918662.
Very recently, it was shown in [14] that the rectangles n−1 × (n + 1)−1 for 1 ≤ n ≤
1.35 × 1011 could be packed into the unit square.

Another direction in which partial progress has been made is to consider whether,
for any t > 1/2, squares of sidelength n−t for n ≥ 1 can perfectly pack a square or
rectangle of area

∑∞
n=1 n

−2t (which is finite when t > 1/2). The goal is then to get t as
close as possible to 1, to address the second question of Meir and Moser posed above.
Recently an affirmative answer to this question was given in the range 1/2 < t ≤ 2/3
by Januszewski and Zielonka [5], building upon previous work in [2, 7, 13], as well
as a packing algorithm in the previously mentioned paper [11]. In this note we extend
the range of t to almost reach the value t = 1 corresponding to the question of Meir
and Moser, at the expense of removing the first few squares in the sequence:

Theorem 1.1 Let 1/2 < t < 1 and suppose that n0 is a natural number that is suffi-
ciently large depending on t. Then squares of sidelength n−t for n ≥ n0 can perfectly
pack a square of area

∑∞
n=n0 n

−2t .

As a corollary, for every 1/2 < t < 1, the squares of sidelength n−t for n ≥ 1 can
perfectly pack a finite union of squares; this latter claim was first established in the
range 1/2 < t ≤ 5/6 in [2], and extended to the range 1/2 < t < 2/3 in [13]. We
remark that since the initial release of this preprint, a (somewhat complicated) explicit
expression for n0 in terms of t was given, and the dimensions n−t also replaced with
more general dimensions f (n)−t for certain classes of function f . Also, a higher
dimensional version of this result has since been established in [9].

The strategy of proof is similar to that in the previous works [2, 5, 7, 13], in which
one performs a recursive algorithm to pack the first few squares n−t , n0 ≤ n < n1
into a square of the indicated area, with the remaining space being described by a
union of a family Rn1 of rectangles which have a certain controlled size. In previous
algorithms, the total perimeter of this familyRn1 was comparable to the total perimeter
∑n1−1

n=n0 4n
−t of the squares that one had already packed, and thus (for large n1) also

comparable to nt1 times the total area
∑∞

n=n1 n
−2t of the remaining rectangles. It

is this relationship between the total perimeter and total area of Rn1 that prevents
t from getting too close to 1, as otherwise one could not eliminate the possibility
that all remaining rectangles in R had width less than n−t

1 , thus preventing one from
continuing the packing. By arranging the squares in near-lattice formations, we are
able (for n0 large enough) to make the total perimeter of Rn1 significantly smaller
than the perimeter of the squares that one has already packed, and thus significantly
smaller than nt1 times the total area ofRn1 ; this will allow us to take t arbitrarily close
to 1. Unfortunately the argument does not seem to extend to the critical case t = 1 (or
to the supercritical cases t > 1).

2 As pointed out in [6], some of the lemmas in this paper were not proven correctly, but the gaps in this
paper were recently repaired in [4].
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We remark that the same argument (with minor notational changes) would also allow
one to pack rectangles of dimensions n−t × (n + 1)−t for n ≥ n0 perfectly into a
square of area

∑∞
n=n0 n

−t (n + 1)−t ; we leave the details of this modification to the
interested reader. The quantity n0 could be calculated explicitly as a function of t , but
we have not attempted to optimize this quantity. In principle, one could combine the
arguments here with some initial packing of the first n0 squares, located for instance
by computer search, in order to be able to replace n0 by 1 for certain values of t that
are sufficiently far from 1, but we will not attempt to do so here (among other things,
it would require n0 to be reduced to a magnitude suitable for computer assistance to
be viable).

2 Initial Reductions

Throughout this paper we fix the parameter 1/2 < t < 1, and then introduce the
exponent

δ := 1 − t

Note that because we are in the regime 1/2 < t < 1, we have 0 < δ < 1 and

t + δt < 1. (2.1)

In fact, these are the only two properties of δ that we will need in the sequel. We will
use this exponent δ to define a certain technical modification of the concept of the total
perimeter of a family of rectangles.

We adopt the asymptotic notation X = O(Y ), X � Y , or Y � X to denote the
estimate |X | ≤ CtY for some constant Ct that is allowed to depend only on t (or
equivalently, on δ); in particular, these constants will be independent of the parameters
M or N0 that we shall shortly introduce. We write X � Y for X � Y � X . Next, we
select two large parameters:

• Wepick a natural numberM which is sufficiently large depending on δ, t . (One can
for instance take M := 	δ−C/δ
 for a suitably large absolute constant.3) Roughly
speaking, we will pack our squares in groups of cardinality � M2 at a time,
arranged into approximate lattices with � M squares in each row and column.

• Finally, we pick a number N0 that is sufficiently large depending on M, δ, t . (For
instance, one can check that N0 := M10/δ would work in the arguments below,
though this choice is far from best possible.) This will be our lower bound for the
parameter n0 in Theorem 1.1; in particular, n0 will be far larger than M or M2.

Given a rectangle R, we define thewidthw(R) to be the smaller of the two sidelengths,
and the height h(R) to be the larger of the two sidelengths (with w(R) = h(R) when
R is a square), thus the area m(R) is equal to w(R)h(R). Given a finite family R of
rectangles with disjoint interiors, we can thus define the total area

3 The precise choice of C will depend on the implied constants that appear in the arguments below, but can
in principle be computed explicitly; see [12] for a more precise quantification of parameters.
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area(R) :=
∑

R∈R
w(R)h(R)

and unweighted total perimeter

perim(R) :=
∑

R∈R
2(w(R) + h(R)) �

∑

R∈R
h(R).

For technical reasons we will often work instead with the weighted total perimeter

perimδ(R) :=
∑

R∈R
w(R)δh(R).

One should think of this weighted total perimeter as a slight modification of the
unweighted total perimeter, in which narrower rectangles are given slightly less weight
than wider rectangles. This modification is convenient for technical induction pur-
poses; our algorithms will at one point replace a wide rectangle with several narrower
rectangles, with a favorable control on theweighted total perimeter of the latter, despite
having unfavorable control on the unweighted total perimeter.

In previous literature, proofs of results such as Theorem 1.1 were given by detailing a
specific recursive algorithm for generating the desired packing, and then verifying that
the algorithm produced a packingwith all the required properties. Herewewill arrange
the argument slightly differently4 by using induction instead of recursion, and more
precisely by using a downward induction to establish the following more technical
proposition, that allows us to perfectly pack any family of rectangles that has well
controlled weighted total perimeter (and also obeys some other minor conditions),
and which easily implies Theorem 1.1:

Proposition 2.1 (perfectly packing some families of rectangles) Let nmax≥n0≥N0
and suppose that R is a finite family of rectangles with disjoint interiors, with total
area

area(R) =
∞∑

n=n0

1

n2t
, (2.2)

and obeying the weighted total perimeter bound

perimδ(R) ≤ M−1+δ/2
n0−1∑

n=1

1

nt+δt
(2.3)

and the crude height bound
sup
R∈R

h(R) ≤ 1. (2.4)

Then one can pack
⋃

R∈R R by squares of sidelength n−t for n0 ≤ n < nmax.

4 See however Remark 2.3 below.
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Indeed, if n0 ≥ N0 and we takeR to consist solely of a square S of area
∑∞

n=n0 n
−2t ,

then S has sidelength O(n1/2−t
0 ) (here we use the hypothesis t > 1/2), and hence

perimδ(R) � n(1/2−t)(1+δ)
0 .

On the other hand, from (2.1) we have

n0−1∑

n=1

1

nt+δt
� n1−t−δt

0 = n(1−δ)/2
0 n(1/2−t)(1+δ)

0 .

Since n0 ≥ N0 and N0 is sufficiently large depending on M, δ, t , we conclude that
the condition (2.3) holds. Also it is clear that S has height at most 1. Applying Propo-
sition 2.1, we conclude that we can pack S by the squares of sidelength n−t for
n0 ≤ n < nmax for any nmax. Sending nmax → ∞ and using a standard compactness
argument (see e.g., [8]) we can then pack S by squares of sidelength n−t for n ≥ n0,
which is then a perfect packing by comparison of areas. Theorem 1.1 follows.

The key step in establishing Proposition 2.1 will be to prove the following assertion.

Proposition 2.2 (efficiently packing a small rectangle of bounded eccentricity) Let
n0 ≥ N0, and suppose that R is a rectangle whose dimensions w(R), h(R) obey the
inequalities

Mn−t
0 ≤ w(R) ≤ h(R) ≤ 3Mn−t

0 . (2.5)

Then one can find n′
0 ≥ n0 with n′

0 − n0 � M2 and a perfect packing of R by the
squares of sidelength n−t for n0 ≤ n < n′

0, together with an additional finite family
R of rectangles with disjoint interiors and widths O(n−t

0 ), obeying the unweighted
total perimeter bound

perim(R) � Mn−t
0 . (2.6)

The point here is that the unweighted total perimeter of the rectangles R is only
O(Mn−t

0 ), as compared against the unweighted total perimeter of the squares of side-
length n−t for n0 ≤ n < n′

0 which is comparable to M2n−t
0 . This gain of O(M−1)

is superior to the factor of M−1+δ/2 which appears in (2.3), which in turn is superior
to the factor M−1+δ which is what would be needed to ensure the condition (2.5) is
satisfied for certain rectangles Ri that we will construct shortly.

We prove Proposition 2.2 in the next section. Assuming it for now, we conclude the
proof of Proposition 2.1 and hence Theorem 1.1.We fix nmax and perform a downward
induction on n0; that is to say, we assume inductively that Proposition 2.1 holds for
any larger choice of n0 and any familyR of rectangles obeying the various hypotheses
of that proposition. Proposition 2.1 is vacuously true for n0 = nmax (in this case there
are no rectangles to pack), so suppose that n0 < nmax and that the claim has already
been proven for larger values of n0. Let R obey the hypotheses of the proposition.
From (2.3) and (2.1) we have

∑

R∈R
w(R)δh(R) � M1+δ/2n1−t−δt

0 .
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On the other hand, from (2.2) we have

∑

R∈R
w(R)h(R) � n1−2t

0 .

From the pigeonhole principle, we conclude that there exists R ∈ R with

w(R)1−δ � n1−2t
0

M1+δ/2n1−t−δt
0

which simplifies (using (1 − δ/2)/(1 − δ) > 1 + δ/2) to

w(R) � M1+δ/2n−t
0 .

Since M is assumed to be sufficiently large depending on δ (and t), this implies

h(R) ≥ w(R) ≥ 2Mn−t
0 . (2.7)

We can then partition R into a rectangle R0 of dimensions (w(R) − Mn−t
0 ) × h(R)

and a rectangle R∗ of dimensions Mn−t
0 × h(R). By cutting off squares of sidelength

Mn−t
0 from R∗ until the height of the remaining rectangle dips below 2Mn−t

0 , we
see from (2.7) that one can partition R∗ into rectangles R1, . . . , Rm of dimensions
Mn−t

0 × h(Ri ) with

Mn−t
0 ≤ h(Ri ) < 2Mn−t

0

for i = 1, . . . ,m, and

m∑

i=1

h(Ri ) = h(R).

From (2.4) we conclude in particular the crude upper bound

m ≤ nt0 (2.8)

and we have the perfect packing

R = R0 ∪ R∗ = R0 ∪ R1 ∪ · · · ∪ Rm . (2.9)

Applying Proposition 2.2 m times, we can then find natural numbers

n0 = n′
0 < n′

1 < . . . < n′
m

with
n′
i+1 − n′

i � M2 (2.10)
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for all 0 ≤ i ≤ m − 1, which by (2.8) (and the hypothesis that n0 ≥ N0 is large
depending on M, δ, t) implies in particular that

n0 ≤ n′
i ≤ 1.001n0 (2.11)

(say) for all 0 ≤ i ≤ m, and a perfect packing of each Ri , i = 1, . . . ,m, by squares of
sidelength n−t for n′

i−1 ≤ n < n′
i , together with an additional familyRi of rectangles

of disjoint interiors, widths O(n−t
0 ), and with

perim(Ri ) � Mn−t
0 . (2.12)

If we then define the new family of rectangles

R′ := (R \ {R}) ∪ {R0} ∪
m⋃

i=1

Ri

then we see that the rectangles inR′ have disjoint interiors, and
⋃

R′∈R R′ is perfectly
packed by squares of sidelength n−t for n0 ≤ n < n′

m , together with the rectangles
in R′. If n′

m ≥ nmax then we are now done, so assume that n′
m < nmax. We compute

(using w(R0) ≤ w(R), h(R0) = h(R), (2.12), (2.11), (2.10), and (2.3) in turn, and
using the size hypotheses on M and n0)

perimδ(R′) = perimδ(R) − w(R)δh(R) + w(R0)
δh(R0) +

m∑

i=1

∑

R′∈Ri

w(R′)δh(R′)

≤ perimδ(R) +
m∑

i=1

O(n−δt
0 perim(Ri )) ≤ perimδ(R) + M

m∑

i=1

O(n−t−δt
0 )

= perimδ(R) + M−1
m∑

i=1

O

⎛

⎝
n′
i−1∑

n=n′
0

1

nt+δt

⎞

⎠

= perimδ(R) + M−1O

⎛

⎝
n′
m−1∑

n=n0

1

nt+δt

⎞

⎠ ≤ M−1+δ/2
n′
m−1∑

n=1

1

nt+δt
;

that is to say, R′ obeys the condition (2.3) (with n0 replaced by n′
m). Also, the total

area ofR′ can be computed to be

area(R′) = area(R) −
n′
m−1∑

n=n0

1

n2t
=

∞∑

n=n′
m

1

n2t

and from (2.4) we easily see that all rectangles in R′ have height at most 1. Thus by
induction hypothesis (withR replaced byR′), we can pack

⋃
R′∈R′ R′ by squares of

123
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sidelength n−t for n′
m ≤ n < nmax. This gives the desired packing ofR by squares of

sidelength n−t for n0 ≤ n < nmax, closing the induction.

It remains to establish Proposition 2.2. This is the purpose of the next section.

Remark 2.3 The above analysis can be converted into the following algorithm for
constructing the perfect packing in Theorem 1.1:

(i) Select a sufficiently large natural number M , initialize n0 to be the quantity in
Theorem 1.1, and let R consist of a single square S of area

∑∞
n=n0 n

−2t .
(ii) Let R be a rectangle in R of maximal width w(R), and perform the subdivision

(2.9) of R into rectangles R0, R1, . . . , Rm as indicated above. (This assumes that
w(R) ≥ 2Mn−t

0 ; if this is not the case, terminate with error.)
(iii) For each i = 1, . . . ,m in turn, apply Proposition 2.2 to Ri to subdivide that

rectangle into squares of sidelength n−t for n0 ≤ n < n′
0, together with an

additional family of rectanglesRi ; then replace n0 with n′
0 and continue iterating

in i .
(iv) Replace the rectangle R inR by R0 together with the rectangles inR1∪· · ·∪Rm ,

then return to step (ii).

The above analysis then ensures (for n0 large enough) that this algorithm never termi-
nates and produces a perfect packing of the original square S.

3 Efficiently Packing a Small Rectangle of Bounded Eccentricity

We now prove Proposition 2.2. Without loss of generality we may take R to be the
rectangle

R = [0, w(R)] × [0, h(R)].

From (2.5) we may find natural numbers

M ≤ M1 ≤ M2 < 3M

such that

M1n
−t
0 ≤ w(R) < (M1 + 1)n−t

0 and M2n
−t
0 ≤ h(R) < (M2 + 1)n−t

0 .

We will now take n′
0 := n0 + M1M2, then clearly n′

0 − n0 � M2. We index the set
{n : n0 ≤ n < n0+M1M2} “lexicographically” as {ni, j : 0 ≤ i < M1; 0 ≤ j < M2},
where

ni, j := n0 + jM1 + i .

Our task is then to perfectly pack R by M1M2 squares Si, j of sidelength n−t
i, j for

0 ≤ i < M1 and 0 ≤ j < M2, together with some additional finite family R of
rectangles with disjoint interiors and heights O(n−t

0 ) obeying (2.6).
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To motivate the construction, suppose temporarily that the squares Si, j were required
to have sidelength n−t

0 instead of n−t
i, j . Then we could simply use the lattice packing

Si, j :=
[
in−t

0 , (i + 1)n−t
0

] × [
jn−t

0 , ( j + 1)n−t
0

]
(3.1)

for 0 ≤ i < M1, 0 ≤ j < M2, as these squares perfectly pack the rectangle

[
0, M1n

−t
0

] × [
0, M2n

−t
0

]

and the remaining portion of the original rectangle R can then be perfectly packed by
the two rectangles

[
0, M1n

−t
0

] × [
M2n

−t
0 , h(R)

]
and

[
M1n

−t
0 , w(R)

] × [0, h(R)]

which have widths O(n−t
0 ) and heights O(Mn−t

0 ) (and thus perimeters O(Mn−t
0 )),

giving the claim.

In our actual problem, the squares Si, j are slightly smaller, being required to have
sidelength n−t

i, j instead of n−t
0 . If one attempts to position the bottom left corners of

the Si, j in the same location (in−t
0 , jn−t

0 ) as in the lattice packing (3.1), thus

Si, j :=
[
in−t

0 , in−t
0 + n−t

i, j

] × [
jn−t

0 , jn−t
0 + n−t

i, j

]

then this would still form a packing of the rectangle R, but there would now be a large
number of gaps between the squares, necessitating R to consist of something like
� M2 rectangles of perimeter � n−t

0 each, which would not give the desired bound
(2.6). However, it is possible to close most of these gaps by sliding the squares Si, j
closer together, thus reducing the perimeter of R substantially. More precisely, our
actual construction of the Si, j will take the form

Si, j :=
[
xi, j , xi, j + n−t

i, j

] × [
yi, j , yi, j + n−t

i, j

]

where

xi, j :=w(R) −
M1−1∑

i ′=i

n−t
i ′, j and yi, j :=

j−1∑

j ′=0

n−t
i, j ′ ;

see Fig. 1. Here we adopt the usual convention that an empty sum such as
∑a−1

i=a xi
vanishes.Note from themean value theorem, the triangle inequality, and the hypothesis
n0 ≥ N0 that

xi, j = w(R) − (M1 − i + 1 + O(M3/N0))n
−t
0 (3.2)

and
yi, j = ( j + O(M3/N0))n

−t
0 . (3.3)

123
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Thus, up to errors of O(M3n−t
0 /N0), the points (xi, j , yi, j ) are arranged in a lattice of

spacing n−t
0 . Note that for any 0 ≤ i < M1 and 0 ≤ j < M2 we have

0 ≤ w(R) − M1n
−t
0 ≤ xi, j ≤ xi, j + n−t

i, j ≤ w(R)

and

0 ≤ yi, j ≤ yi, j + n−t
i, j ≤ M2n

−t
0 ≤ h(R)

and so all the squares Si, j are contained in R. Next, for any 0 ≤ i, i ′ < M1 and
0 ≤ j, j ′ < M2 with (i, j) �= (i ′, j ′), we argue that the squares Si, j , Si ′, j ′ have
disjoint interiors as follows.

• If j ′ < j and i ′ ≥ i , then yi ′, j ′ + n−t
i ′, j ′ ≤ yi, j , and hence the interior of Si ′, j ′

lies below the interior of Si, j , giving disjointness. By symmetry, one also has
disjointness if j < j ′ and i ≥ i ′.

• If i ′ < i and j ′ ≤ j , then xi ′, j ′ + n−t
i ′, j ′ ≤ xi, j , and hence the interior of Si ′, j ′ lies

to the left of the interior of Si, j , giving disjointness. By symmetry, one also has
disjointness if i < i ′ and j ≤ j ′. This covers all the possible cases for i, j, i ′, j ′.

If 0 ≤ i < M1 − 1 and 0 ≤ j < M2 − 1, then (using (3.2), (3.3) as necessary, as well
as the size hypotheses on n0) we have the relations

xi+1, j = xi, j + n−t
i, j ,

yi, j < yi+1, j + n−t
i+1, j < yi, j + n−t

i, j ,

xi, j < xi, j+1 < xi, j + n−t
i, j ,

yi, j+1 = yi, j + n−t
i, j ,

xi+1, j+1 = xi, j+1 + n−t
i, j+1,

yi+1, j+1 < yi, j+1 < yi+1, j+1 + n−t
i+1, j+1,

xi+1, j < xi+1, j+1 < xi+1, j + n−t
i+1, j ,

yi+1, j+1 = yi+1, j + n−t
i+1, j

(see Fig. 1). As a consequence, the squares Si, j , Si+1, j , Si, j+1, Si+1, j+1 surround the
rectangle

[xi+1, j , xi+1, j+1] × [yi+1, j+1, yi, j+1] (3.4)

which by (3.2), (3.3) has width and height O(M3n−t
0 /N0), and hence perimeter

O(M3n−t
0 /N0) also.

From Fig. 1 we now see that the rectangle R can be packed by the squares Si, j for
0 ≤ i < M1, 0 ≤ j < M2 together with the rectangles (3.4) for 0 ≤ i < M1 − 1,
0 ≤ j < M2 − 1, as well as the additional rectangles

[0, x0, j ] × [
y0, j , y0, j + n−t

0, j

]
(3.5)
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(0,h(R)) (w(R), h(R))

R

S
i+1,j+1

S
i,j+1

S
i,j S

i+1,j

(x
i,j+1

, y
i,j+1

)

(x
i,j
, y

i,j
)

(x
i+1,j

, y
i+1,j

)

(x
i+1,j+1

, y
i+1,j+1

)

(0,0) (w(R),0)

Fig. 1 A rectangle R (with M1 = 3 and M2 = 4), which is perfectly packed by M1M2 = 12 squares
Si, j with 0 ≤ i < 3 and 0 ≤ j < 4 (the square Si, j depicted is for (i, j) = (1, 1)), together with
(M1 − 1)(M2 − 1) = 6 small rectangles of the form (3.4) between the squares Si, j , M2 = 4 rectangles of
the form (3.5) on the left side of R, M1 = 3 rectangles of the form (3.6) on the upper side of R, and one
rectangle (3.7) on the upper left of R. This becomes a reasonably efficient packing of the rectangle R by
squares once M (and hence M1, M2) gets large, and n0 is extremely large compared to M

for 0 ≤ j < M2, the rectangles

[
xi,M2−1, xi,M2−1 + n−t

i,M2−1

] × [
yi,M2−1 + n−t

i,M2−1, h(R)
]

(3.6)

for 0 ≤ i < M1, and the rectangle

[0, x0,M2−1] × [
y0,M2−1 + n−t

0,M2−1, h(R)
]
. (3.7)

All of these rectangles have width and height O(n−t
0 ), thanks to (3.2), (3.3), and hence

perimeter O(n−t
0 ) also. Collecting these rectangles into a familyR′, we see that

perim(R) � M2 × M3

N0
n−t
0 + M × n−t

0

which gives (2.6) since N0 is large compared with M . The claim follows.
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