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Abstract 

Study Objectives:  Despite its association with severe health conditions, the etiology of sleep apnea (SA) remains understudied. This 
study sought to identify genetic variants robustly associated with SA risk.

Methods:  We performed a genome-wide association study (GWAS) meta-analysis of SA across five cohorts (NTotal = 523 366), fol-
lowed by a multi-trait analysis of GWAS (multi-trait analysis of genome-wide association summary statistics [MTAG]) to boost 
power, leveraging the high genetic correlation between SA and snoring. We then adjusted our results for the genetic effects of 
body mass index (BMI) using multi-trait-based conditional and joint analysis (mtCOJO) and sought replication of lead hits in 
a large cohort of participants from 23andMe, Inc (NTotal = 1 477 352; Ncases = 175 522). We also explored genetic correlations with 
other complex traits and performed a phenome-wide screen for causally associated phenotypes using the latent causal variable 
method.

Results:  Our SA meta-analysis identified five independent variants with evidence of association beyond genome-wide significance. 
After adjustment for BMI, only one genome-wide significant variant was identified. MTAG analyses uncovered 49 significant inde-
pendent loci associated with SA risk. Twenty-nine variants were replicated in the 23andMe GWAS adjusting for BMI. We observed 
genetic correlations with several complex traits, including multisite chronic pain, diabetes, eye disorders, high blood pressure, osteo-
arthritis, chronic obstructive pulmonary disease, and BMI-associated conditions.

Conclusion:  Our study uncovered multiple genetic loci associated with SA risk, thus increasing our understanding of the etiology of 
this condition and its relationship with other complex traits.
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Graphical Abstract 

Statement of Significance

Sleep apnea (SA) is characterized by episodes of halted breathing during sleep. It is associated with an increased risk of hyperten-
sion, stroke, and increased levels of reactive oxygen species in the blood, which increase oxidative stress in the body. Between 25% 
and 75% of individual risk of presenting SA is heritable (i.e. explained by genetic differences). In this study, we combined SA and 
genetic data from large cohorts from Australia, Canada, Finland, the United States, and the United Kingdom to identify genetic 
variants associated with SA risk. We also explore the genetic relationship between SA and body mass index and other complex 
traits and diseases.

Introduction
Sleep apnea (SA) is a disorder characterized by episodes of 
halted breathing during sleep, which leads to frequent arousal 
and intermittent hypoxia [1]. The most common type of SA is 
obstructive SA, which affects 9%–55% of adults and 1%–9.5% of 
children [2–5]. Obstructive SA is a complex disease with multiple 

underlying mechanisms and risk factors; these include cranio-
facial structure differences, decreased width of the upper air-
ways, increased body mass index (BMI), or a reduced function 
of the pharyngeal dilator muscles, all of which contribute to the 
collapse of the upper airways and subsequent apneas and hypo-
pneas [6–8].
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SA is associated with several factors, including BMI, male sex, 
older age, craniofacial, or upper-airway abnormalities, smoking, 
alcohol consumption, cardiovascular disease, and family history 
of sleep apnea [9]. Furthermore, SA can lead to mental and phys-
ical fatigue, which is associated with an increase in the risk of 
motor accidents [10], and a decrease in mental well-being and 
overall quality of life [11]. In addition, SA has also been associ-
ated with an increased risk of hypertension [12], stroke [13], 
and increased levels of reactive oxygen species in blood, which 
increase oxidative stress in the body [14, 15].

Obesity (i.e. commonly determined as BMI > 30) is correlated 
with a higher SA risk [16]. In fact, one of the most important mod-
ifiable risk factors for SA is BMI. Obesity increases the risk for SA 
through the aggregation of fat deposits in the upper respiratory 
tract, which narrows the throat and induces a decrease in muscle 
activity, potentially leading to hypoxic and apneic episodes that 
lead to SA [17]. Therefore, it is important to consider the potential 
influences of BMI while studying SA.

The heritability of SA is estimated to be between 35% and 75% 
[18, 19], but familial aggregation seems to be partially independ-
ent of bodyweight [20], suggesting an independent germline com-
ponent. Despite an estimated population prevalence of at least 
5%, many SA cases go undiagnosed until other related diseases 
begin to display [21, 22]. Therefore, an increased understanding of 
the genetic architecture of SA could help generate risk prediction 
models, prompting earlier detection, and providing an important 
groundwork for the development of interventions and therapies. 
In addition, having information on the effect of genetic variants 
on SA risk could enable inference of its causal relationship with 
other conditions using methods such as Mendelian randomi-
zation [23]. Although some candidate gene studies for SA have 
yielded a few putatively associated genes [24, 25], genome-wide 
association studies (GWAS) have failed to replicate those associa-
tions [26–28]. In fact, GWAS have identified very few genome-wide 
significant loci robustly associated (i.e. with evidence of replica-
tion in an independent cohort) with SA to date.

SA is likely a highly polygenic trait, with many variants of small 
effect size contributing to the genetic liability of developing this 
condition. Thus, most studies with modest sample sizes will be 
underpowered to identify the majority of these risk variants and 
are susceptible to false-positive associations. Furthermore, the 
number of diagnosed cases of SA within existing large population 
cohorts is low. In a sample of 500 000 individuals, the expected 
number of SA cases (assuming a conservative prevalence of ~5%) 
would be ~25 000. However, in the UK Biobank (UKB) (~500 000 
individuals), only ~8000 SA cases have been recorded. That is 
likely explained by the fact that SA is recognized as an under-
diagnosed condition because those affected are unable to gain 
awareness about their condition or may confuse it with habitual 

snoring [21, 22]. Underdiagnosis further reduces power as many 
real cases may be labeled as unaffected controls in a standard 
analysis. Thus, combining large samples through meta-analysis 
and replicating findings in large, independent studies are essen-
tial steps to uncover reliable results.

Here, we conducted a GWAS meta-analysis of SA across five 
cohorts. Then, we employed multi-trait analysis of genome-wide 
association summary statistics (MTAG) to combine our results 
with a snoring GWAS meta-analysis across five cohorts to boost 
statistical power by leveraging the high genetic correlation 
between SA and snoring [29]. We also performed additional sensi-
tivity analyses to control for the genetic effects of BMI and iden-
tify loci associated with SA independently from BMI. We sought 
to replicate lead single nucleotide polymorphisms (SNPs) in an 
independent sample from 23andMe, Inc. and further explored 
the genetic underpinnings of SA through gene-based tests and 
genetic correlation analyses. Finally, we constructed polygenic 
scores and predicted SA using a leave-one cohort-out (LOO) 
cross-validation framework. Our analyses can be interpreted as a 
proxy for obstructive SA, given its higher prevalence than central 
SA [3, 30].

Methods
Sample information and phenotype 
ascertainment
This study analyzed GWAS data from five cohorts from the 
United Kingdom (UKB), Canada (Canadian Longitudinal Study of 
Aging; CLSA) [31, 32], Australia (Australian Genetics of Depression 
Study; AGDS), the United States (Partners Healthcare Biobank), 
and Finland (FinnGen). The total sample size for each cohort, and 
the number of cases and controls are listed in Table 1. For each 
cohort, SA cases were defined using participant-reported diagno-
sis or ICD diagnostic codes available in electronic health records 
(ICD-9: 327.23 and ICD-10: G47.3). In CLSA and AGDS, SA was 
defined based on the answer to the item “Stop breathing during 
sleep” (see Supplementary Methods for individual cohort details). 
Self-reported snoring cases were excluded from the analyses for 
the SA GWAS across the UKB, CLSA, and AGDS cohorts. An over-
view of the analysis pipeline used for SA discovery analysis is 
available in the Supplementary Figure S1.

GWAS
All GWA studies included the following covariates, namely, 
age, sex, batch (where relevant), and genetic ancestry princi-
pal components derived from genotype data. Standard quality 
control filters were applied at both the sample and variant lev-
els. Variants were excluded from the analyses if they had a low 

Table 1.  Cohort and prevalence overview

Cohort Total sample size Apnea GWAS cases Apnea GWAS controls Snoring GWAS cases Snoring GWAS controls 

UK-Biobank 408 317 7902 248 112 152 303 256 014

Finngen 66 216 9096 57 120 4270 61 946

Partners Biobank 20 047 3102 16 945 4175 15 872

CLSA 18 427 3391 9615 6852 10 736

AGDS 10 359 1517 5838 4450 5907

Total 523 366 25 008 337 630 172 050 350 475

GWAS cases and controls correspond to participants passing quality control as described in the methods.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
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minor allele frequency (MAF < 0.01) or low imputation quality 
score (INFO < 0.6). Individuals were excluded based on excess 
missingness, heterozygosity, or evidence of a deviation from 
European ancestry based on genetic principal components. 
For each cohort, a GWAS was performed using logistic regres-
sion models and including random effects to account for cryp-
tic relatedness where relevant (Supplementary Methods). For 
the UKB snoring GWAS, we used the summary statistics from 
our previously published GWAS for snoring [33]. We obtained 
FinnGen GWAS results for SA and snoring from the open-access 
FinnGen resource (Freeze 3).

GWAS meta-analyses
Sample-size weighted (p-value-based) meta-analyses for SA and 
snoring were performed (separately for each phenotype) across 
the five cohorts described above using METAL (v2020-05-05) [34]. 
Studies were weighted according to their effective sample size 
as described by the equation: Neff = 4/(1/Ncases + 1/Ncontrols), 
as recommended for studies with different levels of case-control 
imbalance (Supplementary Methods).

Multi-trait GWAS analyses
We used MTAG to boost the statistical power for the discovery 
of SA-associated loci. MTAG performs a generalized meta-analy-
sis of GWAS summary statistics for different but high genetically 
correlated traits while accounting for potential sample overlap 
[29]. For this study, we performed MTAG analyses combining our 
SA and snoring meta-analyses. That is possible given the high 
genetic correlation between these traits (rg ~ 0.8) [33] and the 
observation that snoring is one of the primary symptoms of SA, 
the most common type of SA [7].

BMI adjustment
Given the clear relationship between SA, snoring, and BMI, we 
performed a secondary analysis adjusting our GWAS results 
(both the meta-analysis and the MTAG) for the effect of BMI. To 
adjust for BMI while avoiding biases due to collider bias, (i.e. the 
emergence of a spurious association between a pair of variables 
when a common outcome is modeled as a covariate) [35], we used 
multi-trait-based conditional and joint analysis (mtCOJO) [36, 37]. 
As a sensitivity analysis, we also repeated the SA meta-analysis 
adjusting for BMI as a covariate. Including BMI as a covariate was 
only done for the AGDS, CLSA, and UK-Biobank cohorts. These 
results were compared to the unadjusted and mtCOJO-adjusted 
analyses using bivariate LD-score regression and by comparing 
the effect size of SNPs with suggestive evidence of association.

23andMe replication GWAS
We sought to replicate variants identified in the discovery phase 
in an independent sample of participants from the 23andMe 
cohort (N = 1 477 352). Cases were ascertained based on the ques-
tion “Have you ever been diagnosed with, or treated for any of 
the following conditions?” with one of the choices being “Sleep 
apnea” (Yes = 175 522; No = 1 301 830). Methods and results from 
this GWAS have been presented at the 2018 American Society for 
Human Genetics annual conference [38]. Briefly, a logistic regres-
sion GWAS was performed using SA as the dependent variable 
while adjusting for sex, age, BMI, genetic principal components, 
and genotype array. Participants provided informed consent and 
participated in the research online, under a protocol approved 
by the external AAHRPP-accredited IRB, Ethical & Independent 
Review Services (E&I Review). Only unrelated participants of 

European ancestry who provided consent were included in the 
analysis.. We defined evidence of replication after correcting for 
the number of significant variants with data available for replica-
tion per GWAS analysis. That is p < .01 for the SA meta-analysis, 
p < .0016 for the SA plus snoring MTAG and p < .002 for the SA 
plus snoring MTAG adjusted for BMI.

Gene-based association tests and eQTL 
colocalisation
We used the “set-based association analysis for human complex 
traits” fastBAT method, which performs a set-based enrichment 
analysis using GWAS summary statistics while accounting for 
linkage disequilibrium (LD) between SNPs [39]. Statistical sig-
nificance was defined using the Bonferroni method for multiple 
testing correction (p < 2.07e−6). Genes identified as statistically 
significant were further assessed for expression quantitative 
trait loci (eQTL) colocalisation using the COLOC [40] package in 
R. Briefly, we integrated our GWAS summary data with cis-eQTL 
data from whole blood, esophagus, adipose, and lung tissue from 
GTEx V8 [41] to estimate the posterior probability that GWAS sig-
nals co-occur with eQTL signals while accounting for LD struc-
ture. This method estimates the posterior probabilities (PP) for 
five different scenarios. The scenario of interest is colocalisation 
due to associations with both traits through the same SNPs (PP4). 
A threshold of PP4 ≥ 0.8 was considered as evidence for colocali-
sation of GWAS signals and eQTL signals at the region of interest 
(Supplementary Methods).

S-MultiXcan-based eQTL integration
Integration of eQTL with GWAS results interrogates whether the 
associations observed are consistent with changes in gene expres-
sion mediating the trait under study. This study integrated our 
GWAS results with eQTL data from GTEx using S-MultiXcan [42], as 
implemented in the Complex Traits Genetics Virtual Lab (CTG-VL). 
This method employs a multiple-regression of the phenotype on the 
predicted gene expression across multiple tissues based on eQTL 
data. When using only GWAS summary statistics, single-tissue asso-
ciations are performed using S-PrediXcan, and joint effects from the 
single-tissue results are estimated using an approximation simi-
lar to that of the conditional and joint multiple-SNP analysis [43]. 
Contrary to the eQTL colocalisation described above, this analysis 
employs the whole GWAS summary statistics and is not restricted 
only to genes identified using fastBAT or other gene-based tests.

Heritability and genetic correlations
We used LD score regression to estimate the SNP-based heritabil-
ity (hSNP

2) for the SA meta-analysis. Given that samples were not 
specifically ascertained for SA, we assumed the overall sample and 
population prevalence for SA to be the prevalence estimated across 
cohorts (0.05) that are consistent with reported epidemiological 
estimates [2]. Genetic correlations (rg) between SA and 1522 phe-
notypes (with available GWAS summary statistics) were estimated 
using bivariate LD score regression in CTG-VL [44] based on a com-
mon set of HapMap3 variants. The Benjamini–Hochberg false dis-
covery rate (FDR) at 5% was used to define statistical significance.

Polygenic risk scoring
To assess the external validity of the GWAS, we performed polygen-
ic-based prediction on a target sample of 9221 unrelated Australian 
adults from the AGDS [45] with complete data. Briefly, the meta 
and MTAG analyses were repeated, leaving out the AGDS cohort to 
avoid sample overlap. We employed the SBayesR method to obtain 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data


Campos et al.  |  5

the conditional effects of the studied variants, thus avoiding infla-
tion due to correlated SNPs in LD [46]. SBayesR estimates the SNP 
multivariate effect sizes using GWAS summary statistics and SNP 
correlations using an LD-matrix. Here, we used the LD-matrix for 
2.8M variants reported in Lloyd-Jones and Zeng et al. [27, 46], which 
is publicly available (10.5281/zenodo.3350914). SBayesR parameters 
included four mixture components (starting values = 0.95, 0.01, 
0.02, 0.01) with default scaling factors (0, 0.01, 0.1, 1), chain length 
of 25 000, and burn-in of 5000. The SNP conditional effect sizes 
obtained from SBayesR were then used for polygenic scoring using 
HRCr1.1 imputed genotype dosage data in plink v1.9. Polygenic 
risk scoring (PRS) were calculated by multiplying the effect size of 
a given risk allele (obtained from the GWAS summary statistics) 
by the imputed number of risk alleles (using dosage probabilities) 
present in each individual. SNP scores were then summed across 
all loci. The association between PRS and SA in AGDS was assessed 
using a logistic regression model (python statsmodels). SAPRS was the 
predictive variable of interest, with age, sex, and the first 10 genetic 
principal components included as covariates in Nagelkerke’s 
pseudo R2. Finally, binary classifiers based on logistic regression 
were built, including age and sex (base model) or age, sex, and the 
PRS of interest (SAPRS or SAmtagSnoringPRS). These classifiers were 
used to assess the polygenic predictive ability further. The sample 
was divided randomly into training and testing datasets of equal 
sizes. Then, the classifier’s ability to predict SA was assessed using 
the area under the receiver operating characteristic (ROC) curve. 
To avoid potential biases from the random division of training and 
testing datasets, the procedure was repeated 100 times to estimate 
a mean area under the curve (Supplementary Methods).

Latent causal variable analysis
The latent causal variable (LCV) method leverages GWAS summary 
statistics to estimate whether a causal association can explain a 
genetic correlation between traits rather than horizontal pleiot-
ropy (i.e. shared genetic pathways) [47–49]. LCV conceptually relies 
on a latent variable L, assumed to be the causal factor underlying 
the genetic correlation between both traits [47–49]. LCV estimates 
the genetic causality proportion (GCP). A higher absolute GCP value 
indicates more evidence of a causal association among a pair of 
genetically correlated phenotypes. In contrast, a GCP value of zero 
would imply that horizontal pleiotropy underlies the genetic cor-
relation between the phenotypes. However, the LCV method will 
be biased towards the null (a GCP value of 0) if a bi-directional 
association exists between traits. An absolute value for GCP < 0.60 
indicates only partial genetic causality. Multiple testing correction 
was applied using Benjamini–Hochberg’s FDR (FDR < 5%). We per-
formed a phenome-wide hypothesis-free LCV analysis to identify 
traits causally associated with SA. Given the limitations of the 
LCV method (see “Discussion” section), we consider this a hypoth-
esis-generating approach. These hypotheses should be tested in 
follow-up studies that include relevant Mendelian randomization 
analyses and a synthesis of the available literature on the associa-
tion between SA and the trait of interest. In addition, as a sensitiv-
ity analysis, we performed two sample MR analyses for SHBG and 
vitamin D with SA (see Supplementary Methods).

Results
GWAS meta-analysis
The prevalence of both SA and snoring showed some vari-
ation across the five cohorts included in this study (Table 1 
and Supplementary Material). Nonetheless, all the genetic 

correlation estimates were high, albeit with large standard errors 
(Supplementary Table S1). Our meta-analysis identified five inde-
pendent (LD r2 < 0.05) genome-wide significant (p < 5e−8) loci asso-
ciated with SA (Figure 1, A). The signals spanned chromosomes 5, 
11, 12, and 16 near genes ANKRD31, STK33, BDNF, KDM2B, and 
PRIM1 (Supplementary Figure S2). The LD-score regression SNP-
based heritability on the observed scale was 13% (S.E.  = 0.087%). 
Using a transformation that is more suitable for biobank struc-
ture [50], we estimate the heritability on the liability scale might 
range between 55% and 87% (based on an assumed population 
prevalence range of 9%–55%). LD-score regression intercept sug-
gested most inflation (λGC = 1.21) was due to polygenic signal 
(intercept = 1.012, S.E. = 0.009) rather than population stratifica-
tion. Upon adjusting for the effect of BMI using mtCOJO, one new 
genome-wide hit on chromosome 15, located near genes HDGFL3, 
TM6SF1, and BNC1, was identified (Supplementary Figure S2). A 
sensitivity analysis, including BMI as a covariate (see “Methods” 
section) also identified one single hit in chromosome 13. However, 
the evidence of association for all other loci was reduced below 
genome-wide significance upon adjustment for BMI (Figure 1, A). 
The genetic correlation between mtCOJO and covariate adjust-
ment was 1.02 (S.E. = 0.024). Overall, the effects of most loci 
with suggestive evidence of association were consistent across 
the unadjusted, mtCOJO and covariate-adjusted meta analysis 
(Supplementary Figure S3). The only exception was the FTO locus 
that showed a statistically significant shrinking of effect upon 
BMI adjustment.

MTAG
We used MTAG to boost statistical power and increase loci dis-
covery by leveraging the genetic correlation between SA and 
snoring. This analysis had an effective sample size of 159 255 
participants and identified 43 independent genome-wide signifi-
cant loci associated with SA (Figure 1, B). The direction and effect 
sizes of the independent hits were highly consistent across the 
SA meta-analysis and the MTAG analysis with snoring (R2 > 0.95 
Supplementary Figure S4). After adjusting for BMI using mtCOJO, 
25 hits were genome-wide significant; most overlapped with the 
unadjusted results (Figure 1, B). We assessed whether previous 
genetic association studies of SA or related traits [26, 27, 51–55] 
align with our results and survive adjustment for BMI. We found 
some evidence of association for 5 of the 22 loci assessed. Two of 
the previously reported loci showed evidence of association after 
adjusting for BMI (Supplementary Table S2).

Independent sample replication
We sought replication of our GWAS results in an independent 
sample (N = 1 477 352) from 23andMe. Notably, the 23andMe SA 
replication GWAS was adjusted for BMI (see “Methods” section). 
Overall, 10 of the independent variants identified by our analy-
ses showed evidence of association beyond the genome-wide sig-
nificance threshold (Supplementary Table S3) in the replication. 
After multiple testing corrections, three out of the five loci for 
SA meta-analysis were replicated. Furthermore, the variant that 
became significant after adjusting for BMI was also replicated. For 
the SA plus snoring MTAG, 30 out of 43 variants available in the 
23andMe dataset were replicated. Finally, 22 out of 25 variants 
from the SA plus snoring MTAG adjusted for BMI analysis were 
also replicated. This higher replication rate was expected since 
the 23andMe GWAS had been adjusted for BMI (see “Discussion” 
section). Overall, 29 significant independent loci with evidence 
for replication were identified (Table 2). Furthermore, there was 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
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A

B

Figure 1.  Discovery of genetic associations with sleep apnea (SA) risk. Miami plots depict the meta-analysis results for SA before and after adjusting 
for BMI using mtCOJO (A) or MTAG for SA plus snoring before and after adjusting for BMI using mtCOJO (B). Each dot represents a genetic variant. 
The x-axis represents the variant’s genomic position, and the y-axis depicts the significance of the association with SA. In the BMI-adjusted analyses, 
highlighted variants show the genome-wide hits of the unadjusted GWAS.
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a large concordance in the direction and magnitude of effect 
sizes between our analyses and the 23andMe replication results 
(Supplementary Figure S5) and across cohorts (Supplementary 
Figures S6 and S7). Due to power, replication rates, and the inter-
est in studying the etiology of SA beyond BMI effects, we focus 
below on the meta-analysis, the MTAG analysis, and the MTAG 
analysis adjusted for BMI.

Gene-based tests and colocalization
The gene-based association analyses identified 22, 132, and 74 
genes beyond the significance threshold (p < 2.07e−6) for the SA 
meta-analysis, the SA plus snoring MTAG, and the SA plus snoring 
MTAG adjusted for BMI respectively. As expected, many of these 
genes overlapped. Identified genes included DLEU1, DLEU7, MSRB3, 
CTSF, and SCAPER (Supplementary Figure S8 and Supplementary 
Tables S4–S6). Some of these genes were located within the same 
locus and in high LD. Thus, to identify genes linked to SA through 
potential changes in gene expression, we performed eQTL 

colocalization analyses for any of the genes mentioned above. Of 
the 151 genes with available eQTL data, only 18 showed strong 
evidence of eQTL colocalization with either SA, SA plus snoring or 
SA plus snoring adjusted for BMI (Supplementary Tables S7–S9).

eQTL integration
We used S-MultiXcan to integrate our GWAS summary statistics 
with eQTL data and identify genes associated with SA through 
changes in predicted gene expression. These analyses identified 
5 and 65 genes (Supplementary Table S10), for which evidence 
of association with SA meta-analysis or SA plus snoring MTAG 
reached statistical significance. These genes included DLEU7, 
PRIM1, COPZ2, SKAP1, DNAJB7, ACTBP13, and ZBTB6, among others. 
Although the results of S-MultiXcan partially overlapped those of 
the gene-based positional analysis, this approach identified 4 and 
33 new genes that are likely associated with SA through changes 
in gene expression. Genes with convergent evidence through 
gene-based association and S-MultiXcan include FTO, STK33, ETFA, 

Table 2.  Independent hits associated with SA and replicated in 23andMe

SNP CHR BP A1 A2 P_23&me BETAa SEa P_META Signal source 

rs1537818 1 39647038 G A 2.76E−05 −0.01755 0.004182 1.31E−09 MTAG

rs633715 1 177852580 T C 4.60E−07 −0.02466 0.004898 3.49E−08 MTAG_BMIadj

rs72902175 2 157013035 T C 9.30E−10 0.035999 0.005866 3.67E−14 MTAG

rs1403848 3 77609655 C A 7.51E−05 −0.01569 0.003962 9.30E−09 MTAG

rs4076077 5 170863509 T C 3.70E−06 −0.01797 0.003882 4.26E−09 MTAG

rs1428381 5 122693901 G A 0.000369 0.015265 0.004283 4.83E−09 MTAG

rs2715039 7 84094964 C A 4.61E−05 −0.01611 0.003952 2.04E−08 MTAG

rs7005777 8 78233600 T G 5.18E−05 0.017513 0.00433 1.12E−08 MTAG

rs8176749 9 136131188 T C 1.47E−05 −0.03212 0.007433 3.78E−09 MTAG

rs10756798 9 16739763 T C 3.70E−09 −0.02425 0.004115 3.28E−08 MTAG_BMIadj

rs1444789 10 9064361 T C 2.40E−13 −0.03701 0.005042 1.10E−09 MTAG

rs6265 11 27679916 T C 1.12E−05 −0.02198 0.00501 1.79E−14 MTAG

rs1815739 11 66328095 T C 1.19E−06 0.018979 0.003906 2.10E−08 MTAG

rs4923536 11 28422496 G A 1.52E−10 0.025071 0.003915 7.51E−11 MTAG_BMIadj

rs28758996 12 121960480 G A 0.00122 −0.01282 0.003963 1.21E−08 META

rs1389799 12 65824846 G A 3.57E−25 0.04184 0.004032 1.38E−18 MTAG_BMIadj

rs4554968 12 4372609 G A 0.000854 0.013381 0.004011 4.47E−08 MTAG_BMIadj

rs592333 13 51340315 G A 9.04E−23 −0.03997 0.004068 1.69E−14 MTAG

rs11852496 15 83817559 T C 3.17E−05 −0.01918 0.004605 1.71E−06 META

rs11634019 15 76634680 T C 4.44E−10 0.027288 0.00438 1.84E−09 MTAG

rs11075985 16 53805207 C A 1.13E−05 0.017161 0.003907 5.41E−20 META

rs8045335 16 60607116 G A 1.41E−09 −0.02374 0.003922 1.24E−08 MTAG

rs9933881 16 1740691 T C 3.68E−07 −0.03664 0.007183 2.54E−08 MTAG

rs12603115 17 46248994 T C 3.95E−06 −0.01812 0.003926 8.14E−10 MTAG

rs227731 17 54773238 T G 2.40E−11 −0.02603 0.003896 3.96E−09 MTAG

rs4987719 18 60960310 T C 1.28E−08 0.061095 0.01068 4.72E−09 MTAG

rs35445111 19 32172047 G A 2.62E−12 0.04751 0.006817 1.62E−11 MTAG

rs6113592 20 22229505 G A 6.42E−07 0.019892 0.003998 7.82E−11 MTAG

rs6038517 20 6458205 G A 0.000217 −0.01703 0.0046 2.19E−08 MTAG

GWAS and replication significant SNPs. Results are shown for variants with genome-wide evidence of association (p < 5e−8) in at least one of the main analyses, 
and evidence of replication in 23andMe. Abbreviations: META, sleep apnea meta-analysis; MTAG, sleep apnea plus snoring MTAG. MTAG_BMIadj, sleep apnea plus 
snoring MTAG adjusting for BMI using mtCOJO.
aInformation based on the 23andMe GWAS. 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
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SKAP1, MAPT, BAZ2A, DCAF16, MACF1, NSF, COPZ2, SP6, LACTB2, 
LRRC4, and HOXB3 among others (Supplementary Figure S8).

Genetic correlations
Bivariate LD score regression was used to assess the genetic cor-
relation between SA and other complex traits. The trait with the 
highest genetic correlation (rg = 0.92) with SA was a SA GWAS 
performed on the UK-Biobank from a public GWAS repository 
(http://www.nealelab.is/uk-biobank/); this is essentially a sub-
set of the UK-Biobank GWAS used in our meta-analysis. Other 
genetically correlated traits (p-value < .05) included respiratory 
diseases, type 2 diabetes, obesity, eye disorders, stroke, depres-
sion, alcohol addiction, smoking history, and musculoskele-
tal disorders such as arthritis and spondylosis, among others 
(Supplementary Tables S11–S13). The SA meta-analysis and the 
SA plus snoring analyses showed a highly concordant pattern of 
genetic correlations. While also showing overall agreement, the 
SA plus snoring adjusted for BMI results showed lower genetic 
correlations with BMI-related traits such as obesity, diabetes, and 
stroke (Figure 2).

Polygenic risk scoring
PRS based on either of our results were significantly associated 
with SA in a leave one out polygenic prediction analysis. Odds 

ratios (OR) per standard deviation of PRS increased with the 
number of hits. For example, the meta-analysis-based PRS (SAPRS) 
showed an OR = 1.15 (1.08–1.21), whereas the PRS based on the 
SA plus snoring showed an OR = 1.21 (1.14–1.28). A similar pat-
tern was observed for variance explained and significance (Table 
3). These PRS were significantly associated with SA even after 
adjusting for BMI measures in the AGDS cohort (Table 3), suggest-
ing that signals independent from BMI contribute to polygenic 
prediction. Participants in the highest PRS decile showed between 
50% and 87% higher odds of reporting SA than participants in 
the lowest decile (Figure 3, A). Classifier models based on PRS 
showed a prediction ability higher than a random guess for the 
meta-analysis. The MTAG results showed an even higher predic-
tive ability than the meta-analysis alone (Figure 3, B and C and 
Supplementary Figure S10).

Predicting traits causally associated with SA
We used LCV to perform a hypothesis-free screening to assess 
whether the potential genetic overlap between SA and >400 traits 
and diseases can be explained by a causal relationship. To this 
end, we employed the results of the MTAG GWAS with snoring, 
given its increased statistical power. We did not identify any 
potential outcomes of SA. Nonetheless, we identified 103 poten-
tial causal determinants of SA (Supplementary Table S14). For 

Figure 2.  Sleep apnea (SA) is genetically correlated with psychiatric, behavioral, and cardiorespiratory traits. Forest plots showing genetic correlations 
calculated using CTG-VL [44] between SA meta-analysis, MTAG between SA and snoring (SAmtagSnoring) and MTAG between SA and snoring 
adjusted for BMI (SAmtagSnoringBMIadj). Markers depict the genetic correlation estimate (rg), whereas lines represent 95% confidence intervals 
derived from the rg standard error. Not all traits with a significant association (FDR < 0.05) are shown. See the Supplementary Data for other traits.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://www.nealelab.is/uk-biobank/
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
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Table 3.   SA polygenic prediction

Model OR (95% CI) P Nagelkerke R2 (%) Variance explained (%) 

SAprs 1.15 (1.08–1.21) 5.6e−06 0.4 0.45

SAprs (adjusting for BMI) 1.09 (1.03–1.16) 4.2e−03 0.17 0.45

SAmtagSnoringprs 1.21 (1.14–1.28) 3.9e−10 0.77 0.87

SAmtagSnoringprs (adjusting for BMI) 1.14 (1.07–1.21) 2.4e−05 0.37 0.87

Results of PRS derived using our GWAS (leaving out the AGDS cohort) predicting sleep apnea in the AGDS sample with and without accounting for BMI measures in AGDS. 
Note significant prediction even after adjusting for BMI measures. Abbreviations: SAprs, sleep apnea meta-analysis; SAmtagSnoring, sleep apnea plus snoring MTAG.

A B

C

p=7.2x10-4

p=8.5x10-8

Figure 3.  Sleep apnea (SA) polygenic prediction. (A) Plot showing the odds ratio (OR) per change in polygenic risk score (PRS) decile. Error bars depict 
the 95% confidence intervals. (B) Example of a receiver operating characteristic (ROC) curve derived from assessing the ability of logistic regression 
to predict SA using either a base model (covariates only) or the base model plus the PRS of interest. The higher the area under the curve, the higher 
the model’s predictive power. (C) Average area under ROC curve after 100 iterations of leave out validation randomly assigning training and testing 
subsamples. Error bars depict the standard deviation of the mean. Full results (100 ROC curves per model) are available in Supplementary Figure 9. 
Abbreviations: SA, sleep apnea meta-analysis; SAmtagSnoring, sleep apnea plus snoring MTAG.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
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instance, traits that purportedly increase the risk for SA, based 
on our analysis, included hypertension, asthma, lung cancer, 
obesity, having a period of mania, and hernia. Conversely, we 
found evidence for levels of vitamin D and sex hormone-bind-
ing globulin (SHBG) (from either a male- or female-only GWAS) 
to potentially reduce the risk for SA (Supplementary Figure S11). 
Two-sample Mendelian randomization sensitivity analyses did 
not identify evidence for a causal effect of vitamin D, but there 
was some evidence for a protective effect of SHBG quantile 
(females only) on SA (Supplementary Table S15). We repeated the 
LCV analysis approach using our BMI-adjusted summary statis-
tics to test how many of these associations were explained by the 
large overlap with BMI. This identified 29 traits associated with 
SA (Supplementary Table S14; see “Discussion” section), six of 
which overlapped with the BMI-unadjusted-analysis mentioned 
above. These traits were medication taken for anxiety, angina 
pectoris, testosterone quantile (males), taking ibuprofen, walking 
for pleasure as physical activity, and depression diagnosed by a 
professional.

Discussion
This study aimed at increasing our understanding of the genetic 
etiology of SA risk, an area that has stagnated due to the diffi-
culty in achieving the required sample size for GWAS studies. Our 
SA GWAS meta-analysis combined data across five cohorts and 
identified five independent loci (Supplementary Figure S7). The 
evidence of association for most these loci decreased below sta-
tistical significance upon adjustment for BMI using both mtCOJO 
or including BMI as a covariate. Adjusting for BMI identified a new 
locus on chromosome 15 near HDGFL3 when adjusting through 
mtCOJO and one on chromosome 13 near DLEU1 and DLEU7 
when adjusting for BMI as a covariate. While this manuscript 
was under review, another study describing a GWAS for SASA in 
FinnGen and the UKB was published [51]. That study identified 
five genome-wide significant loci associated with SA and a clear, 
strong causal component of BMI. The strong influence of BMI is 
consistent with our observation of genome-wide hits showing 
weaker evidence of association upon adjustments for the effect 
of BMI [43]. We used MTAG to boost power and identify additional 
loci likely to confer SA risk by combining our SA meta-analysis 
with a snoring meta-analysis. We also identified several variants 
linked to SA over and above the effect of BMI and sought repli-
cation in an independent sample from 23andMe. The 23andMe 
GWAS adjusted for BMI, and we could replicate 29 loci associated 
with SA, suggesting our results are robust signals linked to other 
SA pathways.

We employed gene-based tests and identified several genes 
associated with SA, including DLEU1, DLEU7 CTSF, MSRB3, FTO, 
and TRIM66. The association with FTO is likely due to this loci’s 
strong effect on BMI and adiposity [56]. Loss-of-function of 
MSRB3, which encodes a methionine sulfoxide reductase, has 
been associated with human deafness. This finding is consistent 
with reported associations between hearing impairment and SA 
[57]. CTSF has been linked to the airway wall area (Pi10) as meas-
ured quantitatively using CT chest images [58]. That is consistent 
with the fact that small airway dimensions have been linked to 
SA measures in a COPD comorbid sample [59] and that obesity is 
believed to increase SA risk increasing the fat levels of upper air-
way structures and the compression of airway walls [60]. DLEU1 
and DLEU7 are both located within a region associated with leu-
kemia. While DLEU7 is a protein-coding gene, DLEU1 was recently 

discovered to be part of a bigger gene, BCMS, that has a potential 
tumor-suppressing function [61]. Although this locus has been 
linked to snoring [33], its role in the pathogenicity for SA remains 
to be clarified.

Genes with evidence from positional gene mapping and 
gene-expression integration included SKAP1, MAPT, STK33, and 
ETFA, among others. SKAP1, STK33, and MAPT are genes related 
to the MAPK signaling pathway. MAPT is genetically and neu-
ropathologically associated with neurodegenerative disorders, 
including Alzheimer’s disease and frontotemporal dementia [62]. 
Furthermore, ETFA expression has been observed to change in an 
Alzheimer’s disease mouse model in response to aducanumab, 
an amyloid beta antibody [63]. There is a known link between SA 
and Alzheimer’s disease [64]. Recent studies with mouse mod-
els suggest that intermittent hypoxia induces cholinergic fore-
brain degeneration [65]. Furthermore, other observations suggest 
SA severity might be linked to increased amyloid-beta plaques 
[66]. Although informative, these studies still lack the ability to 
distinguish whether a true causal association underlies SA and 
Alzheimer’s disease in humans. Our results should enable the 
exploration of this question by enabling causal inference studies 
using instrumental variable analysis.

We did not replicate previously reported candidate gene asso-
ciations such as TNFA, APOE, PTGER3, and LPAR124. This could be 
explained by differences between our analysis and those identify-
ing the candidate genes. For example, the LPAR1 association was 
observed in participants of African ancestry [67]. Nonetheless, 
studies assessing the support for candidate gene associations using 
GWAS have found poor consistency [68]. Our results suggest a sim-
ilar trend for candidate gene studies of SA. Our study should be 
powered to detect previously reported candidate-gene effect sizes; 
for instance, polymorphisms within TNFA were reported to show 
an odds ratio of 2.01 for SA [69]. Future studies should systemat-
ically evaluate candidate gene studies and GWAS concordance in 
SA, an objective that was outside the scope of the current study.

As a proof-of-principle of the utility of having well-powered 
GWAS summary statistics, we performed a hypothesis-free infer-
ence of causal associations between >400 traits and our SA MTAG. 
Consistent with previous findings [51], our approach inferred obe-
sity to likely increase the risk for SA. Similar results were found 
for asthma, lung cancer, hernia, hypertension, a period of mania, 
and stroke. Conversely, we found that SHBG levels derived from 
male-only, female-only, and combined-sex GWAS decreased the 
risk for SA. A similar finding was observed for endogenous testos-
terone levels derived from a male-only GWAS. This is consistent 
with observations of SHBG and testosterone levels negatively cor-
relating with SA severity [70]. However, continuous positive air-
way pressure therapy does not seem to reverse these abnormal 
changes [71, 72], which would be consistent with the direction of 
causality predicted through LCV (from hormone level to pheno-
type). LCV also identified vitamin D levels as causal determinants 
of SA risk. That is consistent with reports linking vitamin D with 
SA [73]. Nonetheless, it is also possible that this result is explained 
by BMI. Given that vitamin D levels increase with sun exposure 
[74], and exposure increases with physical activity, the well-docu-
mented inverse relationship between obesity (or BMI) and vitamin 
D concentrations might better explain the observed association 
[75, 76]. The extent to which hypertension, hernia, and stroke are 
associated with SA above and beyond obesity as a shared causal 
component was unclear. We tested this by performing our causal 
analyses using BMI-adjusted summary statistics. Our results sug-
gest most of these associations are potentially mediated through 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsac308#supplementary-data
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BMI, as these associations were no longer significant after adjust-
ing for BMI. Interestingly, a lifetime diagnosis of depression was 
consistently associated with an increased risk for SA, even after 
adjusting for BMI. Overall, our LCV analysis identified a set of 
testable hypotheses, which can be further explored through mul-
tivariable MR analyses contrasting the observational associations 
with SA, and genetically derived effect sizes for SA and BMI. We 
performed MR as sensitivity analyses for LCV and found further 
evidence for a protective effect of SHBG. The SHBG GWAS for which 
evidence was identified was performed within females only, thus, 
we do not anticipate these results to be explained by a bias arising 
from sex differences on SHBG. On the contrary, SHBG levels may 
be one of the factors involved in the differential prevalence of SA 
between males and females. Two sample MR studies should be per-
formed on GWAS without sample overlap and including a range of 
sensitivity checks to rule out heterogeneity and pleiotropy. Such 
comprehensive analyses are outside the scope of this study.

This study was performed using cohorts of European ancestry. 
Thus, generalizations and comparisons with other ancestry groups 
should be performed with caution. In order to maximize sample 
size, we included cohorts with different definitions of SA, includ-
ing ICD codes and patient-reported diagnosis. The effect of these 
definitions is not negligible, as SA prevalence displayed marked dif-
ferences (i.e. up to sixfold) between cohorts. The AGDS and CLSA 
cohorts use a single question that assesses whether a participant 
stops breathing during sleep. This item could also capture cardi-
opulmonary diseases. Furthermore, although ICD-10 codes may 
be considered a gold standard for ascertaining cases in GWAS 
studies, there are reports of low specificity [77] when identifying 
cases for sleep disorders. To avoid contamination from potentially 
undiagnosed cases in the control group, we have strived to remove 
participants that report loud snoring from the control set. While 
combining multiple sources for phenotype definition is warranted 
to achieve the required sample sizes for GWAS, minimal phenotyp-
ing might introduce heterogeneity. Future studies should explore 
using novel advances in natural language processing [78] of elec-
tronic health records to increase the accuracy of biobank-based 
phenotyping and compare the accuracy and genetic concordance 
of the different phenotyping approaches used here. We found the 
combined effect of the SNPs in our meta-analysis to explain ~13% 
of the variance of SA on the observed scale. Estimating herita-
bility on the liability scale is challenging given (i) the wide range 
of reported prevalence in the population (9%–55%) and (ii) the 
fact that the current adjustments for transforming between the 
observed and liability scale assume an overrepresentation rather 
than an underrepresentation of cases. To avoid this issue, we have 
used a recently developed model to estimate liability scale herita-
bility on samples with these characteristics [50].

Our results for cross-cohort pairwise genetic correlations sug-
gested that despite using different phenotype ascertainment 
methods, the underlying genetics represent a common trait. 
Nonetheless, this analysis suffered from reduced power, and 
the large standard errors do not allow us to rule out heteroge-
neity across cohorts. Ideally, any SA study would ascertain cases 
employing a robust measure such as the apnea–hypopnea index 
or oxygen saturation; GWAS of complex traits require enormous 
sample sizes, making such approach challenging. Although MTAG 
has proven successful in boosting the discovery of loci associa-
tions, even in the presence of known or unknown sample over-
lap [29], combining traits with extreme power differences might 
inflate signals related to the most powered phenotype [29]. The 
genetic correlation between snoring and our MTAG analysis was 
higher than that with the SA meta analysis alone. This increase in 

correlation is not unexpected as MTAG can only boost power for 
the shared genetic component between the traits included in the 
multivariate analysis. However, the addition of snoring through 
MTAG nearly doubled the effective sample size of the SA GWAS 
(Neff increase from ~90 000 to ~159 000), which resulted in iden-
tifying several novel loci with evidence of replication even after 
adjusting for BMI and the generation of summary statistics of 
utility for analyses such as MR and PRS.

In our study, adjusting for BMI seemed to affect the pattern of 
genetic correlations, particularly decreasing the correlations with 
BMI and related traits such as stroke and obesity. Replication of 
the SA plus snoring adjusted for BMI results was higher than in 
the other analyses. This result is expected for two reasons: First, 
it benefited from the increased power of combining GWAS for 
apnea and snoring through MTAG and adjusted for BMI using 
mtCOJO. Second, the GWAS performed by 23andMe included BMI 
as a covariate. As such, it resembles a phenotype in line with 
those for which the SA plus snoring adjusted for BMI is boosting 
power. Finally, some limitations of the approach used for causal 
inference need to be acknowledged. LCV is still dependent on the 
power of the original GWAS for both traits. Traits with a poten-
tial causal association with SA might not have been included in 
the tested traits. Finally, this method assumes no bi-directional 
causality and will likely be biased towards the null in such cases. 
Thus, a null finding in our study does not reflect a lack of associa-
tion, especially if bidirectional relationships are suspected.

In summary, we performed a GWAS meta-analysis of SA across 
five European-ancestry cohorts and identified five independent 
genome-wide significant loci. Conditional analyses suggested a large 
contribution of BMI to SA; most of the discovered genome-wide hits 
in the meta-analysis were explained by BMI. After adjusting for BMI, 
the meta-analysis identified one genome-wide significant locus. 
MTAG of SA with snoring identified 43 independent hits and 23 after 
conditioning on BMI. Overall, 29 independent significant hits were 
replicated in an independent SA GWAS from 23andMe. All analyses 
showed a significant polygenic prediction of SA in a leave-one-out 
PRS analysis. Our results largely confirm the previously observed 
overlap with BMI and highlight genetic overlap with traits such as 
stroke, asthma, hypertension, glaucoma, and cataracts. We further 
found evidence of a potential causal role of SHBG and vitamin D 
levels in decreasing the risk for SA. If confirmed by multivariable 
MR and interventional studies, new treatments based on modifying 
these risk factors might be used for SA treatment or early interven-
tion. This general hypothesis-free framework can be used to gener-
ate testable hypotheses of risk factors for complex traits [49]. Also, 
the associations identified here can be used as instrumental varia-
bles in targeted MR studies aiming at understanding the relationship 
between SA and hypothesized causally related traits. Identifying 
robust loci associated with SA is an important step towards a deeper 
biological understanding, which can translate into novel treatments 
and risk assessment strategies.
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