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ABSTRACT OF THESIS

Optimized Experimental Observation and Measurements of Pool Boiling Heat Transfer

Using Computer Vision Techniques

By

Marissa Lee

Master of Science in Mechanical and Aerospace Engineering

University of California, Irvine, 2022

Assistant Professor Yoonjin Won, Chair

With power dissipation rates of modern technologies on the rise, enormous efforts are going

toward leveraging one of nature’s most effective thermal management mechanisms, known as

boiling. In this endeavor, researchers have come to recognize the potential of visual data as it

can provide real-time bubble characteristics in relation to the boiling heat flux. Key parameters

to existing heat transfer performance models are nucleation site density, bubble departure

diameter and bubble departure frequency. Although boiling images are richly embedded with

these bubble statistics, conventional methods of extracting and analyzing such data is laborious

and requires extensive user involvement. This potentially introduces errors, producing simplified

and unrealistic prediction models that ultimately muddle our understanding of boiling processes.

Although recent advancements in machine learning have enabled more efficient ways of

processing data to classify boiling characteristics, there have been very few efforts in using

image-based machine learning methods(i.e., computer vision) to correlate bubble dynamics with

heat transfer performance. Such contributions of detailed data can be exploited to refine the

existing, weak, theoretical models. Therefore, this study seeks to address these challenges and

aid in the efforts of understanding the fundamental physics governing pool boiling through

visualization techniques. We present a state of the art experimental setup and procedure that

can be integrated into other laboratories as well as applied to various pool boiling experiments

viii



studying differing conditions(e.g., enhanced surfaces or fluids). Our optimized pool boiling setup

is designed and fabricated to ensure excellent structural integrity, thermal insulation, and system

efficiency all while allowing easy and accurate image and thermal data acquisition. This setup

works in tandem with our machine learning-based computer vision model that is capable of

autonomously capturing a large bandwidth of spatio-temporal bubble statistics and quantifying

heat transfer performance from high-resolution boiling images. Overall, our experimental

methodology and non-invasive vision-based approach to studying pool boiling dynamics, gives

rise to improved heat transfer performance to progress efforts in managing thermal dissipation

of high-power devices.
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CHAPTER 1: INTRODUCTION

The applications for pool boiling are immense as it has been proven to be one of nature’s most

effective methods of heat transfer. This mechanism is used to manage the increasing heat

generation of high performance systems and can be found in essentially all modern industries.

With the arousing rate of technological advancements, researchers are constantly and

extensively evaluating new phase-change cooling schemes to provide a means to simpler yet

more efficient thermal management designs. Approaches to analyze the performance of these

phase change systems are also vast. The fusing of visual data and recent developments in

machine learning have enabled researchers to explore more efficient and accurate techniques

to understand as well as predict boiling physics. Although the major parameters that affect pool

boiling heat transfer have been well studied, such advancements have opened the door to

gaining new insight into this highly complex phenomenon. This chapter will further dive into the

fundamentals of pool boiling and its evolving potential in the realm of thermal management.

1.1 Two-Phase Heat Management Motivation

Rapid development in computing capabilities has brought on the challenge of exponential

growth in power dissipation. As the ability to maintain desirable operating temperature is a

critical factor in system performance and reliability, scientists and engineers are constantly

seeking ways to improve cooling technologies [1]. The most common schemes used to

dissipate thermal energy in the electronics industry involve natural convection or single phase

forced convection. Natural convection, typically executed with heat sinks, utilizes differences in

fluid density along a temperature gradient to induce fluid motion while single phase forced

convection achieves this motion using an external source such as a fan or pump. However,

these methods have their limitations when it comes to higher power devices that require high

heat fluxes accompanied with low surface temperatures. For instance, the miniaturization of
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electronics and power devices in the mid 1980s pushed cooling heat flux requirements to

surpass and have now soared to an ultra-high-flux range of [2].102 𝑊/𝑐𝑚2 103 − 105 𝑊/𝑐𝑚2

This steepening trend in heat dissipation rates of cutting-edge technologies has led to the

emergence of a more efficient and effective thermal management technique called two-phase

cooling. The process involves the removal of sensible as well as latent heat through evaporation

or condensation of a working fluid. Figure 1 illustrates the various cooling schemes with their

corresponding attainable heat transfer coefficients. As conveyed, boiling two-phase flow holds

superior cooling performance, achieving heat transfer coefficients an order of magnitude greater

than natural convection or single phase forced convection [2].

Figure 1: Attainable heat transfer coefficients for various cooling schemes [2]

Consequently, two-phase change processes are now greatly embedded and prevalent in

modern technologies. Some high temperature applications include air-fuel heat exchangers for

aircraft engines, fusion reactor blankets, particle accelerator targets, magnetohydrodynamic

electrode walls and rocket nozzles [3]. Some low temperature applications are nuclear reactors,

2



computer data centers, electric vehicle power electronics, aircraft and spacecraft avionics, laser

and microwave directed energy weapon electronics, advanced radars, X-ray medical devices,

and turbine engines [3].

1.2 Fundamentals of Pool Boiling

1.2.1 Definition

Boiling is simply known as the two-phase change process of liquid to vapor. It occurs at the

solid-liquid interface when the temperature of the solid surface is sufficiently higher than the(𝑇
𝑠
)

saturation temperature of the liquid [4]. This corresponds to Newton’s law of cooling which(𝑇
𝑠𝑎𝑡

)

is the following expression [5]:

(1)𝑞
𝑠
" = ℎ(𝑇

𝑠
− 𝑇

𝑠𝑎𝑡
) = ℎ∆𝑇

𝑒

When heat transfers from the solid to liquid, evaporation occurs where some of the heated liquid

is turned into vapor. This results in the formation of bubbles, columns or films that pull away

from the surface, inherently cooling it. With natural convection or pool boiling, this occurs

through buoyant forces whereas with mixed convection or flow boiling, this results from a

combination of buoyant forces and a forced flow. In this study, we will be focusing on only pool

boiling. In pool boiling, this phenomenon can also be categorized by whether it is subcooled or

saturated. Subcooled boiling takes place when the liquid temperature is below the saturation

temperature where vapor recondenses before it reaches the free surface. If the temperature of

the liquid is greater than the saturation temperature, the bubbles formed at the heated surface

will rise to the free surface, meaning all the liquid is saturated.

1.2.2 Pool Boiling Interactions

Boiling requires the liquid adjacent to the surface to be superheated above the liquid’s saturation

temperature. As the superheat increases with higher heat flux, more bubbles begin to form and
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depart from the surface, drawing in more bulk liquid. This process is then repeated and new

bubbles begin to form, replacing the ones just released. The surface cools as vapor is pulled

away; however, as the dynamics of the vapor bubble formation affects the motion of liquid near

the surface, it also has a significant impact on the amount of heat transferred [5]. The best way

to understand pool boiling heat transfer is to refer to a pool boiling curve that was first

discovered by S. Nukiyama in 1934. Nukiyama identified most boiling regimes in his

power-controlled heating study conducted with a horizontal, metal wire submerged in water [5].

However, the pool boiling curve in figure 2 represents a temperature-controlled experiment of

water at atmospheric pressure, that therefore achieves the transition boiling regime.

Figure 2: Pool boiling curve of water at atmospheric pressure [4]

The boiling curve represents the relationship between heat flux and the excess temperature(𝑞
𝑠
")

) of water at atmospheric pressure with the slope as the heat transfer coefficient(HTC). It is(𝑇
𝑒

separated into four different regimes that correspond to differing bubble dynamics. In the first

regime, at very low excess temperatures, natural convection occurs where heat transfers

without bubbles. During this process, non-condensable vapor is trapped in cavities, or
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nucleation sites, on the heated surface and as heat is applied to this surface, a superheated

liquid layer is formed. With enough heat, vapor bubbles will grow in this superheated liquid layer

until they depart, scavenging away the superheated layer. Simultaneously, cold bulk liquid fills

this area, reforming this superheated layer and a new bubble will grow in its place. This is where

the curve reaches the nucleate boiling regime and isolated bubbles are consistently generated

in multiple locations on the surface. Eventually, the bubble frequency increases, the number of

nucleation sites multiply and the isolated bubbles begin to interact with each other, forming

slugs or columns of vapor. As more vapor is produced, the more difficult it is for saturated liquid

to wet the surface, causing a decrease in slope of the curve. This peak or maximum heat flux is

known as the critical heat flux(CHF). This is also known as the burnout point or boiling crisis as

the sudden jump in surface temperature can approach material melting points and therefore

damage systems. Next, is transition boiling, where bubble formation rapidly increases, causing

vapor blankets to cover the surface. As vapor has a much lower thermal conductivity than liquid,

the HTC and heat flux decreases as excess temperature continues to increase. Finally, the film

boiling regime occurs at the Leidenfrost point or the point of minimum heat flux. At this point, the

surface becomes completely covered by a vapor blanket. Therefore, heat transfers to the vapor

completely through conduction or radiation, causing the heat flux to increase, sometimes even

above the CHF of the nucleate boiling regime [4].

1.2.3 Performance Modeling

Pool boiling performance can be measured in terms of the heat transfer coefficient(HTC) or the

ratio of the surface heat flux to the superheat temperature that is illustrated by the pool boiling

curve, and the critical heat flux(CHF) or the maximum heat flux that is reached when heat

transfer efficiency begins to deteriorate. These characteristics are affected by many conditions:

gravity, pressure, heat flux, wall superheat, working fluid properties, surface characteristics and

surface orientation, to name a few. Thus, to better understand the transport properties involved
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in nucleate pool boiling, researchers have aimed to develop comprehensive, physics-based

models for the HTC and CHF.

Two classical correlations for pool boiling heat transfer rate on plain copper surfaces are

Rohsenow’s correlation and Pioro’s correlation [6]. They employ empirical constants including a

proportionality constant and an exponent on the Prandtl number.

First, Rosenhow’s correlation, with said constants and of 0.0152 and 1.0, is given as [6]:𝐶
𝑠𝑓

𝑛

(2)
𝑐

𝑝,𝑓
∆𝑇

ℎ
𝑓𝑔

= 𝐶
𝑠𝑓

𝑞"
µ

𝑓
ℎ

𝑓𝑔

σ
𝑔(ρ

𝑓
−ρ

𝑔
)

⎡
⎢
⎣

⎤
⎥
⎦

.33
𝑐

𝑝,𝑓
µ

𝑓

𝑘
𝑓

( )𝑛

Second is the Piorro correlation, with a and of .0152 and -1.1, given as [6]:𝐶
𝑠𝑓

𝑚

(3)𝑞"
∆𝑇

𝑠𝑎𝑡
𝑘

𝑓

σ
𝑔(ρ

𝑓
−ρ

𝑔
) = 𝐶

𝑠𝑓+
𝑞"

ℎ
𝑓𝑔

ρ
𝑓

1/2 σ𝑔 ρ
𝑓
−ρ

𝑔( )[ ]1/4

⎰
⎱

⎱
⎰

2/3
𝑐

𝑝,𝑓
µ

𝑓

𝑘
𝑓

( )𝑚

Two CHF prediction models for plain copper surfaces are the Zuber correlation and Liang and

Mudawar correlation. In 1959, Zuber developed a hydrodynamic prediction of CHF based on

both the Taylor wavelength and Helmholtz-instability, considering heat of vaporization, vapor

and liquid densities and surface tension [7]. Zuber’s model is given as:

(4)𝑞"
𝐶𝐻𝐹

= π
24 ρ

𝑔
ℎ

𝑓𝑔

σ𝑔 ρ
𝑓
−ρ

𝑔( )
ρ

𝑔
2

⎡⎢⎢⎣

⎤⎥⎥⎦

1/4

Using deionized water at atmospheric pressure, the CHF is calculated to be 110 [6].𝑊/𝑐𝑚2

Liang and Mudawar’s model considers the heated surface orientation, producing the

equation[6]:

(5)𝑞"
𝐶𝐻𝐹

= 0. 151ρ
𝑔
ℎ

𝑓𝑔

σ𝑔 ρ
𝑓
−ρ

𝑔( )
ρ

𝑔
2

⎡⎢⎢⎣

⎤⎥⎥⎦

1/4

1 − 0. 0012θ𝑡𝑎𝑛(0. 414θ) −. 122𝑠𝑖𝑛(0. 318θ)[ ]
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represents the heated surface inclination angle, with zero degrees being the surface isθ

horizontal, upward facing. This model gives a CHF of 127 [6].𝑊/𝑐𝑚2

1.3 Literature Review on Pool Boiling Performance

Although two-phase cooling has significantly improved thermal management systems, there are

many parameters within pool boiling that can be modified to further enhance their heat transfer

performance. Studies have investigated these modifications, finding strong correlations to (a)

lower surface temperatures at the onset of nucleate boiling(ONB) (b) reduced and/or eliminated

incipient temperature excursion c) reduced wall superheat throughout the nucleate boiling

region(i.e., increasing the HTC) and (d) increased CHF to accommodate higher surface heat

fluxes [8]. In figure 3, the black curve exhibits typical pool boiling behavior while the other red

and blue curves exhibit the aforementioned enhanced boiling heat transfer characteristics.

Figure 3: Ideal pool boiling curves [9]
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According to Liang and Mudawar, application for pool boiling thermal management systems is

relatively limited. The most important among these limits are CHF and maximum operating

temperature brought on by material properties and reliability concerns. Figure 4 illustrates the

constraints of temperature sensitive devices where the only acceptable scheme is that of the

solid line where the boiling curve remains within the heat flux and temperature limits [10].

Figure 4: Optimum pool boiling curve for temperature sensitive devices [10]

As a result, researchers are continuously working to discover ways to overcome these

boundaries with groundbreaking enhancement techniques, enlightening bubble statistic

correlations, and innovative heat transfer prediction methods. However, although thermal

engineers have the same end goal of improving heat transfer performance, due to the

complexity of the boiling phenomenon and constraints of modern technology, there exist various

agreeing as well as conflicting heat transfer findings that will be discussed in the sections to

follow.
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1.3.1 Heat Transfer Enhancement Techniques

As stated by Bergles et al. there are two methods of heat transfer augmentation; active and

passive [11]. Active augmentation requires an external power to create mechanical mixing or

rotation, surface and/or fluid vibration, electrostatic or magnetic fields and injection or suction.

However, as these techniques complicate the boiling system and tend to impair reliability,

passive techniques have become more widespread and have therefore been extensively

researched over the last several decades [8]. Passive augmentation does not require an

external power but rather relies on fluid and surface engineering such as suspending

micro/nano particles in fluids or creating roughened or micro/nanostructured coated surfaces [8].

The major effective parameters regarding passive techniques to increase pool boiling

performance involve surface and fluid properties. According to Chen et al. there are generally

three main approaches to enhancing pool boiling heat transfer. The first being surface

modification by increasing surface roughness, coating with microstructures or nanostructures or

using nanoparticle suspension that result in particle deposition on the heater surface [12]. These

methods have been found to increase the number of cavities that serve as nucleation sites as

well as surface wettability through reduced contact angles. The second is to increase effective

heat transfer surface area by introducing the thermal fin effect through microfabricated pin-fin

structures. Finally, the third means of surface modification is employing wicking structures that

delay dry out with the capillary pumping effect.

The first enhancement approach has been widely studied throughout literature. For example, a

comparative analysis study by Hossain et al. investigated the effect of roughness and wettability

of copper and brass surfaces on pool boiling performance. With an increase in the average

surface roughness, heat transfer coefficient increased by 7% [13]. A study by Rioux et al.

concluded that various scales of surface modifications can drastically improve boiling heat

9



transfer performance through different potential mechanisms. For instance, macroscale

structures confront hydrodynamic issues in CHF by separating vapor columns, microscale

structures provide capillary pumping effects for liquid replenishment to active nucleation sites

through porosity and nanoscale structures enhance wettability through reduced contact angles.

In addition, they proved further enhancement of heat transfer performance with the combination

of the three scales of surface modifications [14]. Thiagarajan et al. compared thermally

conductive, microporous, copper coated surfaces with varying thicknesses, porosity and cavity

sizes to plain copper surfaces finding a 50%-270% increase in HTC as well as a 33%-60%

enhancement of CHF [15]. Moreover, You et al. conducted pool boiling experiments with

water-based nanofluids containing nanoparticles that produced a 200% increase in CHF𝐴𝑙
2
𝑂

3

in comparison to pure water [16]. Although nanofluids have been shown by almost all studies to

enhance CHF, there are disagreeing results regarding its effect on HTC. A review on boiling

heat transfer enhancement with nanofluids by Barber et al. provides a detailed scope into the

conflicting data presented in past literature [17]. She concludes that further systematic

experiments must be performed to comprehend this contradicting data.

Moving onto the second approach, Kong et al. tested bistructural surfaces based on

micro-pin-fins, discovering an increased vitality of bubbles that grow, collide, merge and move

rapidly from the microfins to nearby smooth channels [18]. Their experimental results reveal a

CHF enhancement of over 120% compared to a smooth surface, indicating the favorable impact

of micro-pin-fin structures on heat transfer performance [18].

For the third approach, pool boiling experiments were carried out by Chen and Li to study the

combined effect of wicking and modulated wavelength on CHF. They fabricated two-tier

surfaces by creating copper nanowires with electrodeposition on wire-cut microgrooved
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surfaces. CHF was found to increase 119.3% in comparison to plain copper surfaces due to

liquid replenishment via microgrooves, hydrodynamic instability from the modulated wavelength

and liquid wicking in the copper nanowires that delay spreading of dry-out spots [19].

1.3.2 Bubble Dynamics

Now that we have an idea of various existing enhancement techniques, it is essential to also

grasp how they impact heat transfer performance. The primary way is through bubble dynamics.

It has been widely accepted that the high heat transfer rates encountered in nucleate boiling are

mainly due to the motion of bubbles in the superheated liquid adjacent to the heater surface

[20]. As a result, many have investigated the ability to control bubble behavior with surface and

fluid modifications in order to optimize heat transfer. Although these bubble dynamics have been

greatly studied, there are still inconsistencies in their predictions and correlations to boiling

performance as the extraction of nucleation statistics has proven intrusive and highly variable.

This section will thus explore the crucial bubble dynamic parameters previously considered in

theoretical models: active nucleation site density, bubble departure diameter, and bubble

departure frequency.

Active nucleation site density is the number of fixed sites or cavities where bubbles form in a

given area of a surface heater. Information on this parameter is essential to determining the

amount of evaporative energy carried away as bubbles lift off the boiling surface and thus

predicting heat transfer performance. Recognizing this significance, researchers have

developed correlations in an attempt to predict active nucleation site density. Many of which

report its dependence on the following; heat flux, wall superheat, contact angle, cavity size and

cavity geometry [21][22][23][24][25].
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Overall, an increased number of nucleation sites has been assumed to provide increased

bubble activity resulting in more convection heat transfer and/or increased latent heat transport.

Therefore, in the process of optimizing surfaces, many enhancement techniques, discussed in

the previous section, are aimed to increase the number of active nucleation sites. For instance,

a study by Mori and Utaka reviewed the enhancement of CHF through surface modification and

found that CHF can be improved by increasing the number of nucleation sites [26]. Abd elhady

compared boiling curves of pure water using clean and nanoparticle deposited surfaces and

found that heat transfer rate increased with the increase in roughness from 20 nm to 420 nm

due to the higher number of active nucleation sites [27]. However, when using nanofluids𝐴𝑙
2
𝑂

3

on these same surfaces, heat transfer rate decreased with an increase in surface roughness. It

was believed that nucleation sites deactivated as the alumina nanoparticles in the fluid

deposited on the surface [27]. Additionally, Thiagarajan and colleagues’ pool boiling

experiments on microporous coated copper surfaces showed enhanced nucleate boiling heat

transfer as a direct result of it’s significantly higher active nucleation site density [15]. In contrast,

Ranjan et al. fabricated nanoneedle surfaces, with increased wettability and wickability

properties in comparison to plain surfaces. These anodized surfaces ultimately showed a higher

CHF however, they had fewer active nucleation sites [28]. Hence, due to the many variables

involved in pool boiling experiments as well as the difficulty of measuring active nucleation site

density with such chaotic bubble motion, studies show conflicting results.

Bubble departure diameter is defined as the equivalent diameter of the vapor bubble once it

entirely departs from the nucleation site. There are different approaches to predicting this

parameter including force balance analysis which analyzes the mechanism of the departure

process and empirical correlations that rely on experimental data [29]. According to Zeng et al.,

bubble departure occurs when the balance between buoyancy, surface tension, contact

12



pressure, shear lift and bubble growth force is violated. Using the force balance approach, they

derived the equation [30]:

(6)𝐷
𝑑

= 2 3𝑘2/𝑛

4𝑔 (10𝑛2 + 𝑛(𝑛 − 1)⎡⎢⎣
⎤⎥⎦

2/(2−𝑛)
 

Applying averaged experimental, departure data, Cole modeled bubble departure diameter as a

function of the Jakob number, or the ratio of sensible to latent heat absorbed during phase

change processes, obtaining [31]:

(7)𝐷
𝑑

= 0. 04𝐽𝑎 σ/𝑔(ρ
𝑙

−, ρ
𝑣
) 

Bubble departure diameter can thus depend on these net forces as well as unique experimental

conditions such as wall superheat, heat flux, pressure, contact angle and thermophysical

properties of the working fluid. However, there is no general prediction model for it as there is a

large discrepancy in influential parameter correlations among existing models, as depicted in

figure 5. MahMoud believes that this scatter in results is due to the differences in experimental

boundary conditions, surface structure and material, uncertainty in diameter measurements due

to deformed shaped bubbles, and definition of equivalent bubble diameters  [32].

Figure 5: Comparison of bubble departure diameter prediction models [32]
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Improved heat transfer rates have been linked to bubble departure diameter under these

varying conditions. For example, Može et al. investigated the boiling of self rewetting fluids on

untreated surfaces, revealing an increased CHF with decreased bubble departure diameters

from lower surface tension [33]. The smaller bubble departure diameter generally results in a

quicker bubble cycle, allowing more heat to dissipate as more bubbles release from the surface.

On the contrary, a comparative study by Hossain et al. revealed that boiling on microgrooved

surfaces produced better heat transfer performance and larger bubble departure diameters than

on a flat surface. It is assumed that the rougher the surface, the larger the cavities where the

bubble forms. With more surface area of each cavity, the greater the surface tension force which

holds the bubble down, allowing the bubble to grow larger before departing. Therefore, their

results show improved HTC with larger departure diameters [13].

Bubble departure frequency is the number of bubble cycles per unit time at a given nucleation

site. It can be found by taking the reciprocal of the summation of the bubble waiting time; the

period from the moment the previous bubble departs to the point the current bubble nucleates,

and the bubble growth time; the period from when the bubble nucleates to the moment it

departs [34]. Bubble departure frequency is intimately related to bubble departure diameter and

therefore also has many disparities within prediction models. Bubble departure frequency can

typically be written in the form of ). The left hand side, where m is an𝑓𝐷
𝑑
𝑚 = 𝑓(ρ

𝑙
, ρ

𝑣
, 𝑔, σ, α

𝑙
, 𝐽𝑎

empirical value, is fitted as a function of liquid and vapor density, gravity, surface tension,

thermal diffusivity, and Jacob number [35].

Applying relations and observations from previous studies for boiling on a horizontal surface, in

1959, Zuber deducted this trend [7]:
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(8)𝑓𝐷
𝑑

= 0. 59
σ𝑔(ρ

𝑙
−,ρ

𝑣
)

ρ
𝑙
2

⎡⎢⎢⎣

⎤⎥⎥⎦

1/4

In 1960, Cole equated the rate at which the bubble rises, the buoyancy force and the drag force

on a free rising vapor bubble, deriving [36]:

(9)𝑓𝐷
𝑑
1/2 =

4𝑔(ρ
𝑙
−ρ

𝑣
)

3𝐶
𝑑
ρ

𝑙

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

1/2

where is the drag coefficient. In 1966, Ivey presented three correlations for different regions𝐶
𝑑

as follows [37]:

For the hydrodynamic region:

(10)𝑓𝐷
𝑑
1/2 = 0. 9𝑔1/2

For the transition region:

(11)𝑓𝐷
𝑑
3/4 = 0. 44𝑔1/4

For the thermodynamic region:

(12)𝑓𝐷
𝑑
2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

More recently, Zhang et al. proposed a unified relationship between bubble departure frequency

and diameter for various combinations of heating substrates and working fluids in saturated

nucleate pool boiling. Their relationship takes the following form [38]:

(13)𝑓*𝐷* = 1

where and𝑓* =  𝑓

4.52 𝑘
𝑙

𝑘
𝑠

( )2

(ν
𝑙
α

𝑙
)−1/2α

𝑠
𝑔1/2

𝐷
𝑑
* = 𝐷1/2

As seen, even after extensive research for over half a century, there is no generalized

correlation for bubble departure frequency.
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Researchers have also attempted controlling bubble departure frequency in order to improve

boiling performance. According to Kim, the consistent contributing factor to nucleate boiling

enhancement using microporous coatings is the increase in bubble departure frequency [39]. A

rise in bubble departure frequency means reduced waiting and/or growth time, simultaneously

inhibiting the growth of the superheated liquid layer and enabling the removal of larger amounts

of superheated liquid. This leads to a lower surface temperature and consequently reduced wall

superheat. Further, in a paper by Dong et al., pool boiling experiments are carried out with

ethanol to study the effects of micro/nanostructures on bubble nucleation, bubble departure and

nucleate boiling HTC. It was found that nanostructures increased departure frequency due to

their capillary wicking effect. This delayed bubble merging, preventing vapor film formation and

thus reduced wall superheat and enhanced CHF [40]. Bertossi et al. performed experiments

using carbon nanotube coated surfaces to highlight their influence on nucleation mechanisms.

They attributed their heat transfer intensification to a higher frequency of bubble emissions

along with an enhanced number of nucleation sites [41].

Researchers have also developed pool boiling mechanistic models for heat flux that heavily rely

on these bubble dynamics(i.e., active nucleation site density( , bubble departure diameter(𝑁
𝑏
) 𝐷

𝑏
)

and bubble departure frequency( ). According to the heat flux partitioning model, first𝑓
𝑏
)

proposed by Kurul and Podowski, the total boiling heat transfer rate can be obtained by

summing the different heat transfer modes of natural convection, quenching, and evaporation

[42]:

(14)𝑞"
𝑡𝑜𝑡

𝐴
𝑡𝑜𝑡

= 𝑞"
𝑛𝑐

𝐴
𝑛𝑐

+ 𝑞"
𝑞
𝐴

𝑞
+ 𝑞"

𝑒𝑣
𝐴

𝑒𝑣

This equation can then be manipulated for heat flux:

(15)𝑞"
𝑡𝑜𝑡

= 𝑞"
𝑛𝑐

𝐴
𝑓,𝑛𝑐

+ 𝑞"
𝑞
𝐴

𝑓,𝑞
+ 𝑞"

𝑒𝑣
𝐴

𝑓,𝑒𝑣
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Where is the area fraction of those specific regions. The area available for heat transfer can𝐴
𝑓

also be divided into the area of influence of bubbles where and take place and the𝑞"
𝑒𝑣

𝑞"
𝑞

non-active area where occurs [43].𝑞"
𝑛𝑐

 

Different correlations and conditions have been applied, resulting in various equations for these

heat transfer modes. In Kurul and Podowski’s model, these heat flux modes can be defined as

[42]:

(16)𝑞"
𝑛𝑐

𝐴
𝑓,𝑛𝑐

= 0. 14
𝑘

𝑓

𝐿
𝑐

𝑅𝑎1/3∆𝑇⎡⎢⎣
⎤⎥⎦

1 − π𝑅2
𝑏
𝑁

𝑏
⎡
⎢
⎣

⎤
⎥
⎦

(17)𝑞"
𝑞
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2𝑘
𝑓
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𝑓
𝑡

𝑤
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𝑁

𝑏
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(18)𝑞"
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⎥
⎦
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⎢
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Where is the bubble departure radius that is equivalent to and is the wall superheat.𝑅
𝑏

1
2 𝐷

𝑏
∆𝑇

In equation 16, is the thermal conductivity of the liquid, is the heater size and is𝑘
𝑓

𝐿
𝑐

𝑅𝑎

Rayleigh’s number. Then in equation 17, is the bubble waiting time, is the vapor density,𝑡
𝑤

ρ
𝑔

and is the latent heat of vaporization.ℎ
𝑓𝑔

A study by Kim and Kim incorporated the impact of bubble coalescence from high heat fluxes,

modifying Kurul and Podowski’s partitions. While they found that coalescence does not

significantly affect the heat fluxes, they found that it affects the area fractions [44]. Benjamin and

Balakrishnan present a similar model where they assume an area of influence is four times the

projected area of the bubble at departure, deriving heat flux expressions of [43];

(19)𝑞"
𝑛𝑐

= ℎ∆𝑇 1 − 𝑁
𝑏
π𝐷2

𝑏
⎡⎢⎣

⎤⎥⎦
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(20)𝑞"
𝑞

= 2∆𝑇
𝑘

;
ρ

𝑙
𝐶

𝑝𝑙
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𝑁
𝑏
π𝐷2

𝑏
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(21)𝑞"
𝑒𝑣
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𝑡
𝑔
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𝑙
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𝑏

Where in equation 19, is the estimated heat transfer coefficient, in equation 20, is theℎ 𝐶
𝑝𝑙

specific heat of the liquid, and in equation 21, is the volume of liquid evaporated during𝑉
𝑒𝑣

bubble growth time.

Overall, past studies have made it evident that bubble dynamics such as active nucleation site

density, bubble departure diameter, and bubble departure frequency can be strong regulators as

well as gauges of boiling heat transfer performance. However, there are still dubious and

inconsistent correlations between these boiling features that must be further explored.

1.3.3 Heat Transfer Prediction Methods

Quantification of heat transfer performance has been heavily studied using theoretical,

numerical and experimental techniques [45]. However, as seen from previous literature, the

many parameters involved in pool boiling make it difficult to accurately predict heat transfer

using these classical correlation techniques. For example, Kandlikar developed a theoretical

model to predict CHF, incorporating the impact of contact angle and surface orientation through

force balance analysis. He tested his model with available data sets from literature for different

fluids, correctly estimating CHF for superhydrophobic surfaces however underestimating for

hydrophilic ones [46]. Based on experimental data, Du et al. found that bubble growth rate and

bubble departure diameter in nucleate pool boiling are strongly influenced by system pressure

and Jakob number. With this, they created a modified theoretical model for predicting these

bubble dynamics. Although finding better agreement with experimental data compared to

several previous models their prediction error was 50% [29]. Dhir proposed a complete±
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numerical simulation of bubble dynamics and associated heat transfer processes to predict the

boiling curve. Although his numerical simulation predictions seem to be in agreement with

experimental results, it is stressed that only low heat fluxes were numerically analyzed [47]. As a

result, numerous empirical correlations and mechanistic models have been proposed regarding

pool boiling; many of which are derived by applying theory of similarity and related

dimensionless numbers, where their powers and proposed constants are determined by

matching the modeling results with experimentally measured data [48]. Additional correlation

examples are those of Rohsenow and Pioro which can be found in section 1.2.3. However, as

described, the broad range of parameters in pool boiling have made it challenging to create a

model that spans all possible conditions, resulting in simplified predictions that become suspect

when applied to new situations. Thus, the accuracy of heat transfer correlations is limited to

specific boiling conditions or assumptions applied in their development [48].

The questionable reliability of theoretical and numerical models has made it difficult to draw

broader conclusions on dynamic boiling physics, compelling researchers to depend on

experiments to measure heat transfer performance. However, up until around 1980, previous

experimental methods were leaving out a crucial aspect; visual data. Nakayama et al. carried

out one of the first visualization studies, correlating vaporization and enhanced heat transfer by

analyzing bubble formation characteristics with boiling images [49]. Their solutions gave the

predictions of population density of active sites and frequency of bubble formation which were

then used to predict convective heat flux [50]. Since the discovery that boiling images are richly

embedded with quantitative measurements of the dynamic boiling phenomenon, high-speed

visualization of pool boiling experiments has enabled the analysis of boiling performance

enhancement techniques and development of pool boiling curves based on bubble

morphologies [45][51][52][53][54]. But, as more researchers recognized the efficacy of boiling

images in regards to understanding boiling physics; the more apparent the obstacle of
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post-processing became. In order to extract bubble parameters, images had to be manually

measured frame by frame, taking hours to days to accomplish [54]. Robert Patsuzko visually

investigated boiling heat transfer for extended surfaces called narrow tunnel structures,

determining heat fluxes based on observed bubble parameters. His method was to define

bubble departure diameter as an arithmetic average of the maximum and minimum diameters

that were manually computed by pixel counts for five superheats [54]. It was also pointed out

that when determining departure frequency by counting the number of escaping bubbles on 100

recorded frames, additional bubbles could have been added or omitted by mistake [54].

Evidently, despite the significance of gathering essential visual information, current

measurement setups fail to analyze image data without extensive user involvement, which is not

only time-consuming but also introduces error through user bias [45]. To address this problem,

major efforts have gone into developing image based machine learning(ML) algorithms, known

as computer vision, that can bridge this gap between measurement and visual information.

1.4 Thesis Objectives

There exists an abundance of literature and data on endless combinations of pool boiling

conditions, revealing ideal boiling characteristics for enhanced heat transfer performance along

with various correlations and prediction models. However, conventional measurement and

analysis techniques introduce error through various assumptions and biases(e.g., experimental

or user) On the other hand, the tedious and often intrusive steps to achieve such results are

rarely acknowledged. This task becomes even more cumbersome when visual data is involved,

requiring extensive user involvement for bubble analysis. A great deal of time has gone into post

processing in order to obtain results that seldom provide clear and detailed descriptions of

boiling physics. Thus, the objective of this thesis is to present a non-invasive, automated

computer vision model capable of accurately and efficiently quantifying pool boiling bubble

dynamics to predict heat transfer performance. This study seeks to not only contribute a means

20



to detailed data on active nucleation site density, bubble departure diameter and bubble

departure frequency but also to improving correlations of these parameters to the pool boiling

process. Future work will focus on exploiting such relations to enhance boiling heat transfer

performance and shed light on underlying mechanisms that govern this phenomenon. To further

aid in the accuracy of results obtained from thermal and visual data, an optimized pool boiling

setup was developed for experimental procedures. Ameliorated methods of acquiring necessary

data are also explicated to assure optimal performance of our vision-based approach to

analyzing pool boiling characteristics.
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CHAPTER 2: COMPUTER VISION MODEL

This chapter will delve into the previous efforts of integrating machine learning techniques into

visualization studies to facilitate learning pool boiling physics. It will then introduce our own

computer vision model, thoroughly explaining its framework, training, feature extraction and

validation process.

2.1 Introduction to Computer Vision

An area of machine learning(ML) dedicated to interpreting and understanding visual imagery is

known as computer vision. With provided concrete data points, information can be extracted

from inputted images or videos to understand or predict results similar to and sometimes even

better than how the human brain does. Some familiar ML-based computer vision applications

are automated self-driving, facial recognition, and disease diagnosing [55]. More recently,

computer vision has found its way into the thermal science field, enabling researchers to learn

physical laws from highly dimensional noisy data such as boiling images [56].

With available pool boiling data, ML-based computer vision models have been trained to predict

boiling regimes, bubble statistics, heat flux and heat transfer coefficients from experimental

images. For example, in order to accelerate the analysis of infrared thermometry studies of

boiling heat transfer, Ravichandran and Bucci presented a machine learning algorithm to be

used in quasi-real-time or as fast as they can practically run an experiment. This algorithm uses

a feed-forward artificial neural network(FFNN) to measure bubble growth time, bubble period,

and nucleation site density directly from infrared radiation videos with a regression coefficient of

.95 and higher when compared to conventional image processing techniques [57]. Hobold and

da Silva demonstrate boiling regime classification for an on-wire pool boiling setup using simple

machine learning and image processing techniques. Trained on low-speed and low-resolution
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data, their support vector machines(SVM’s) and multilayer perceptron neural

networks(MLPNN’s) were able to identify boiling regimes with an accuracy up to 99% [55]. With

the same setup, Hobold and da Silva also showed correlations between bubble morphologies

and heat flux using MLPNN’s, obtaining a mean absolute percentage error of 9.84% [56].

A more complex and efficient machine learning algorithm is the convolutional neural

network(CNN). CNN’s have become a dominant method in computer vision tasks as they are

designed to simulate the deep and hierarchical structure of neural networks structures in the

human brain by systematically learning from multiple features through multiple operation layers

[58]. They accept the pure image pixels and find themselves the features that best classify the

data, thus requiring less preprocessing compared to other image-based methods. In addition,

CNN enhances its own performance as each layer transforms the data from one state to

another [59]. This ability makes CNN highly attractive in the machine learning subfield called

deep learning(DL), where features do not need to be defined. Applications of CNN-based

computer vision are hence rapidly progressing in the thermal science field to better understand

boiling heat transfer. The approach to estimate different local boiling characteristics such as

bubble growth rate, departure diameter, departure frequencies, nucleation site density, evolution

of bubbles and dry spots, through visual analysis and CNNs is demonstrated in a study by

Chernyavskiy and Malakhov. They employ a CNN based instance segmentation model(Mask

R-CNN) that successfully detected bubbles from images captured from the bottom size of a

transparent pool boiling heated surface [60]. A study by Chatterjee demonstrated this capability

of deep learning CNNs by automatically segmenting dry areas from IR images captured during

pool boiling heat transfer. This CNN framework was then evaluated by measuring the accuracy

of dry area fraction, bubble frequency and bubble density quantification. According to their

results their model proved satisfactory, predicting these parameters for increasing heat flux with

consistency. However, their observed bubble dynamics did not follow theoretical behavior [61].
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In a separate on-wire pool boiling study by Hobold and da Silva, they again classified boiling

regimes but now using a trained CNN. From solely departed bubble dynamics and bubble

morphology, they received an accuracy of over 99%. They then applied Bayes’ theorem to their

algorithm, looking at several sequential frames to detect the transition from nucleate boiling to

film boiling [62]. Furthermore, they predicted heat flux using CNNs with less than 10% error [57].

Rassourlineajad-Mousavi et al. employ an image-based deep learning model trained on

extracted images from pool boiling youtube videos for identification of three boiling regimes;

discrete bubbles, bubble interference and coalescence and CHF. In addition to CNNs, they

study transfer learning(TL) models that pretrains a DL model using a larger data set and then

use the small dataset from the target domain to fine-tune parameters. Their TL model

outperformed CNN, retaining a high accuracy ranging from 90.02% to 98.71% whereas their

CNN models obtained an accuracy ranging from 68.20% to 98.24% [63]. These deep learning

approaches have therefore proven their potential in enabling automated image analysis for

classifying heat transfer performance and boiling regimes; however, this image evaluation gets

very complicated when dealing with bubbly flows. As a result, to improve algorithm reliability,

Hessenkemper et al. employ multiple CNN’s to tackle the tasks of segmentation and

reconstruction for better identification of individual bubbles despite overlap and occlusion. With

pixel-to-pixel prediction CNN’s, they achieved satisfactory results in accurately determining

bubble size and gas volume fractions [64].

Overall, researchers have begun to exploit visual information to gain knowledge on boiling

physics, even employing machine learning algorithms to further enhance experimental accuracy

and efficiency. However, much of the literature discussed either classifies heat transfer

performance, boiling regimes, or bubble dynamics but does not further link these boiling

features together. Moreover, the extracted visual data is limited to on-wire pool boiling which

cannot represent the erratic bubble behavior produced on 2-D or 3-D surfaces. Accordingly,
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there are very few works relating realistic bubble dynamics of active nucleation site density,

bubble departure diameter, and bubble departure frequency to quantifiable thermo-hydraulic

parameters(i.e., heat flux and heat transfer coefficients) using computer vision techniques.

Although decades of studies have unveiled the potential to understand underlying boiling

mechanisms through bubble analysis, the relation between these parameters and boiling

processes are still unclear and inconsistent. This is partially due to the natural emission of

hundreds of bubbles per second, that all individually exhibit complex movements, interactions

and morphologies [65]. This further complicates the extraction of such boiling bubble dynamics,

where individual features must be connected throughout time [65]. With the objective to address

these challenges and fill this gap in knowledge, we employ a data driven framework that

autonomously captures spatio-temporal bubble statistics and quantifies heat transfer

performance from high-quality boiling images.

2.2 Model Framework

To predict real-time boiling heat transfer characteristics from bubble behavior, we employ our

computer vision based framework that is composed of three main components; an object

detection module, an object tracking module and a data processing module [65].

First, the object detection module employs the deep learning instance segmentation model,

called Mask R-CNN that automatically detects and generates pixel-wise masks for every

object(i.e., bubbles) in an image. Each bubble mask is then assigned a unique identifier to

record spatial features such as equivalent diameter, pixel-wise area, eccentricity, orientation,

solidity, and location. These masks are then processed through the object tracking

module(TrackPy) where a k-dimensional(k-d) tree algorithm uses the identified spatial features

as parameters for linking masks with respect to time. During bubble tracking, potential errors in
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trajectories are manually identified and corrected using a documented graphical user

interface(GUI). Lastly, the tracked spatio-temporal features are post-processed through a

commercial programming software(MATLAB) to extract higher-level features such as active

nucleation site density, bubble departure diameter, bubble departure frequency and heat flux.

Figure 6: Computer vision model framework flowchart including the object detection module,
object tracking module, data processed module [65]

2.3 Mask R-CNN Training

For automated image analysis, we first had to train our Mask R-CNN, instance segmentation

model. In order to learn features of an object, Mask R-CNN needs labeled data in the form of

pixel-wise image annotations. Thus, images were manually annotated using an online

commercial software(Supervisely, San Jose, USA). Extracted pool boiling images were
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uploaded to Supervisely where weeks went into carefully tracing and labeling thousands of

bubbles in the region of interest. An example annotated image is illustrated in figure 7b. To

better guarantee accurate bubble detection, it was imperative to properly trace each bubble,

even those overlapping, merging, or even partially in shot. Then to mitigate user bias, images

were randomly selected and augmented to diversify the dataset, improving generalizability of

the model and therefore its robustness [66]. The total augmented training data set was split

where 80% of these images went to training and 20% went to testing. Training datasets are

labeled with calculated heat fluxes from experimental measurements while test datasets are

unlabeled to verify the model’s ability to accurately analyze new images. The initial model uses

weights pre-trained on the Microsoft Common Objects in Context(MSCOCO) dataset [67];

however they are adjusted throughout training to increase detection accuracy. The model trains

for 100 epochs using stochastic gradient descent with a learning rate of 1e-3 and momentum of

0.9, saving the model’s state after each epoch. The optimal model, or epoch with the lowest test

loss was selected [45].

Figure 7: Supervisely annotation of pool boiling image (a) original image (b) annotated image
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2.4 Feature Extraction

For characterizing higher-level features such as the active nucleation site density, bubble

departure diameter, and bubble departure frequency from our spatio-temporal features, we used

a custom algorithm. Bubble departure events are detected by comparing the bottom bounding

box’s relative position to the surface with the logic of; ,𝐼𝐹(𝑏𝑏𝑜𝑥
𝑏𝑜𝑡,1

< 𝑦) 𝐴𝑁𝐷 𝑖𝐹(𝑏𝑏𝑜𝑥
𝑏𝑜𝑡,2

> 𝑦)

where is the bottom bounding box coordinate at time and is the pixel value𝑏𝑏𝑜𝑥
𝑏𝑜𝑡,𝑡

𝑡 𝑦

corresponding to the boiling surface location [65]. The nucleation site density is estimated as;
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where is the time, is the number of bubbles on the surface at that time, is the total number𝑗 𝑥
𝑗

𝑍

of time steps, and is the projected boiling surface. The departure diameter( ) is the𝐴
𝑠

𝐷
𝑏

equivalent diameter predicted from our model of bubbles within the bottom bounding box. Then,

as the bubbles were observed to form immediately after departing, we equated bubble waiting

time to zero, obtaining the departure frequency as;

(23)𝑓
𝑏

= 1
𝑡

𝑔

where is the bubble growth time(i.e., time between nucleation and departure).𝑡
𝑔

2.5 Model Validation

The model’s object detection and tracking modules were validated by testing accuracy, recall,

precision, F1-score, mean average pixel error(MAPE) and occlusion-induced error. A developed

MATLAB script binarizes the data sets to compare pixels, checking if the predicted ones(i.e.,

predicted mask(PM)) corresponded to our annotated ones(i.e., ground truth(GT)). A true

positive(TP) instance is when the model detects an instance that matches the GT whereas a

false positive(FP) instance is when the model predicts a nonexistent object. True negative(TN)
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is when the model correctly predicts no existing instances and a false negative(FN) is when an

existing object is not detected. The performance metric equations of the object detection model

are defined as [65][68][69]:

(24)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

(25)𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(26)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(27)𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ {𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

(28)𝑀𝐴𝑃𝐸 = 1
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𝑖=1

𝑛

∑ 𝐺𝑇−𝑃𝑀
𝐺𝑇
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Figure 8 illustrates the exceptional performance of the computer vision model, with all metrics

achieving values greater than 90%. Also, the model reported a MAPE of 1.56% [65].

Figure 8: Model performance metrics for validation [65]

Occlusion-induced error is mainly caused when bubbles block each other resulting in improper

bubble detection and therefore invalid spatio-temporal data. To determine occlusion-induced

error, datasets with over 200 randomly labeled images at various heat flux steps were manually

compared with model predictions. This performance metric was estimated on surface bubbles

achieving a maximum occlusion-induced error of 4.6% [65].
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CHAPTER 3: OPTIMIZED POOL BOILING SETUP

Within our lab, pool boiling experiments were previously carried out using an older setup. With

continuous usage over the years by different researchers who ran various types of pool boiling

procedures, the performance of this setup began to deteriorate. For instance, components had

broken or become contaminated with chemicals. In addition, as tests were run, it became

obvious that certain aspects to the setup design could be greatly improved. As pool boiling rigs

are used to study such a chaotic phenomenon under varying complex conditions, there are

many parameters that must be considered when running experiments. For example; thermal

insulation, material strength, leakage, data acquisition, visualization for imaging, etc. Therefore,

in order to accurately observe and measure heat transfer performance with our computer vision

technique, it is crucial to ensure a robust and efficient pool boiling setup. Throughout this

chapter, the steps to optimizing our pool boiling setup will be described in detail, beginning with

the preliminary design all the way to it’s final assembly. The experimental setup process can be

divided into four categories; structural design, vendor search, subsystems design and final

setup assembly.

3.1 Structural design

The main structure of our design consists of a liquid chamber, heating block, upper and lower

insulation bases, and a lid. When designing these components, we prioritized structural integrity,

thermal insulation and overall experimental efficiency.

The material of our rectangular tubed liquid chamber was changed from polycarbonate to glass.

In comparison to polycarbonate, glass is more clear, more resistant to scratches and has a

higher melting point. Therefore, glass provides better visualization and reduces the chances of

overheating and shattering, which occurred in our previous setup. However, as the strength of
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glass is significantly lower than polycarbonate, the chamber must be handled with caution and

carefully monitored during experiments. In addition, rectangular, laser-cut, rubber gaskets are

placed on both ends, between the chamber and the base as well as the lid to prevent water and

vapor leakage.

Figure 9: Liquid chamber design

Figure 10: Rubber gasket design
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The heating block is made of copper 101, as this grade offers a higher thermal conductivity due

to its 99.9% purity. It consists of a cubical portion measured as 50.8mm x 50.8mm, where

cartridge heaters are inserted from the bottom. From the top, a 10mm x 10mm square fin is

extruded. The top of this fin serves as the heating surface where test samples will be directly

mounted. In comparison to the old setup, this heated surface is now slightly elevated from the

surrounding surface by .3mm(Figure 12), enabling improved sealing techniques with epoxy

when mounting our samples. On one side of this fin, thermocouples are embedded by 5mm into

precisely dimensioned and drilled holes. As the previous heating block had significant

machining errors, the distance between thermocouple holes all varied from one another (i.e.,

8.51mm, 8.24mm and 7.57mm), ultimately complicating calculations and introducing error. Thus,

we ensured exact placement of our thermocouple holes that are 10mm apart from each other

and 7mm away from the heated surface(Figure 13). We also reduced the volume of our copper

block by approximately 3000 cubic millimeters. The length and width of the cubical portion was

slightly decreased by 0.8mm and the fin height was shortened from 50.8mm to 38.4mm. The

smaller the heating block, the quicker it will heat up to begin experiments as well as reach

steady state for each step in heat flux. This will also allow for quicker cool down once CHF is

reached and a more uniform temperature distribution for accurate temperature readings.

Figure 11: Elevated heated surface
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Figure 12: Heating block design

Figure 13: Heating block dimensions

33



The insulation bases that surround the fin of the heating block(upper base) and lie below,

supporting the heating block(lower base), are made out of Poly Tetra Fluro Ethylene(PTFE) or

commonly known as Teflon. After analyzing different thermally resistant materials, PTFE

provided the lowest thermal conductivity and highest service temperature, ensuring minimal

heat loss and damage to our system. In the upper base, three holes are precisely drilled for the

thermocouples for a tight and accurately aligned fit into the copper fin, illustrated in figure 18. A

shallow pocket is also machined into the top to perfectly fit one rubber gasket, creating an

air-tight seal for the liquid chamber. The old design had a majority of the copper fin exposed to

air due to a large pocket in the bottom of the base. To determine if this design was optimal for

insulation, we carried out a thermal resistance and heat transfer analysis between teflon and air.

Figure 14: Schematic of heat transfer from heating block to air/teflon

The dimensions in the schematic are defined as; , , ,𝐿 = 0 . 0412𝑚 𝑊 = 0. 01𝑚 𝐻 = 0. 05𝑚

giving a heat transfer surface area of; 𝐴
𝑠

=  𝐻 × 𝑊 = 0. 0005𝑚2

The thermal resistance of and heat transfer through conduction to teflon is calculated as follows:

𝑘
𝑡𝑒𝑓𝑙𝑜𝑛

=. 25𝑊/𝑚𝐾

34



(29)𝑅
𝑡𝑒𝑓𝑙𝑜𝑛

=  𝐿
𝑘 = .0412𝑚

.25𝑊/𝑚𝐾 =  . 1648 [𝑚2𝐾/𝑊] 

(30)𝑞
𝑡𝑒𝑓𝑙𝑜𝑛

= 𝑘
𝑡𝑒𝑓𝑙𝑜𝑛

𝐴
𝑠
∆𝑇/𝐿 =. 0005(∆𝑇)/. 1648 =  3. 0340 × 10−3(∆𝑇) [𝑊] 

Applying conditions of a vertical plate, atmospheric pressure, laminar flow and a film

temperature( ) of , the thermal resistance of and heat transfer through natural𝑇
𝑓𝑖𝑙𝑚

400𝐾

convection to air is calculated as follows:

, , ,ν =  26. 41 × 10−6𝑚2/𝑠 α =  38. 3 × 10−6𝑚2/𝑠 𝑘
𝑎𝑖𝑟

=  33. 8 × 10−3𝑊/𝑚𝐾

𝑔 = 9. 81𝑚/𝑠2, 𝐶 =  0. 59,  𝑛 = 1/4

𝑁𝑢
𝐿

=
ℎ

𝐿
𝐻

𝑘
𝑎𝑖𝑟

= 𝐶(𝑅𝑎
𝐿
)𝑛

𝑅𝑎
𝐿

= 𝑔(∆𝑇)𝐻3

𝑇
𝑓𝑖𝑙𝑚

να  

ℎ
𝐿

=
𝐶𝑘

𝑎𝑖𝑟
(𝑅𝑎

𝐿
)𝑛

𝐻 = 2. 9593(∆𝑇)1/4 

(31)𝑅
𝑎𝑖𝑟

= 1
ℎ

𝐿
=  . 3379(∆𝑇)−1/4 [𝑚2𝐾/𝑊]

(32)𝑞
𝑎𝑖𝑟

= ℎ
𝐿
𝐴

𝑠
∆𝑇 = 1. 4797 × 10−3(∆𝑇)5/4 [𝑊]

Figure 15: Teflon and air thermal performance comparison (a) Thermal resistance plot (b) Heat
transfer plot
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As depicted in Figure 16, for higher temperature differences, teflon has a greater thermal

resistance and lower heat transfer. As a result, we decided to remove this pocket for complete

PTFE coverage of the fin walls.

Figure 16: Upper base design

Figure 17: Side view of thermocouple hole alignment
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In the lower base, four holes are machined to allow the cartridge heaters through into the

heating block. From the previous setup design, we also eliminated an additional base that was

around the cubical portion of the heating block for convenience and insulation purposes. In

place of PTFE, fiberglass wool is thoroughly packed around the copper to promote

one-dimensional thermal conduction to the boiling surface. Wool fiber has a significantly lower

thermal conductivity than PTFE as well as can be easily removed when cooling down the

system after tests. Fiber glass wool will also fill in the extra space below the cartridge heaters to

further reduce heat loss.

Figure 18: Lower base design

When designing our lid, we chose polycarbonate for its thermal as well as mechanical

properties. Polycarbonate allows for easy machining of a shallow pocket to fit the second rubber

gasket and through holes for adding and removing water, thermocouples, a condenser and an

immersion heater. Tapered plugs are inserted into these holes to secure components in place

and seal any gaps that could allow vapor to escape.
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Figure 19: Lid design

Figure 20: Lid assembly design
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All these machined parts are then fastened together by four threaded bolts and held in the

appropriate locations with hex screws and washers, displayed in figure 22.

Figure 21: Pool boiling setup design assembly

3.2 Vendor Search

Once our pool boiling setup design was finalized, we began our search for vendors to create our

main structural components; the heating block, upper base, lower base and lid. We had two

options; (1) find one vendor that could provide both materials and machining services or (2) find

separate vendors for materials and fabrication. The parameters considered in our

decision-making were capabilities, lead time and price. Table 1 lays out these parameters for

various vendors for option 1.
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Company Part/Material Description/Comments
Lead Time
(Weeks) Price($) Quantity

Xometry

Heating Block/Copper 101 +/- .002" tolerance 2 507.09 1

Upper Base/PTFE
+/- .01" tolerance,
International 2 402.43 1

Lower Base/PTFE
+/- .01" tolerance,
International 2 158.52 1

Lid/Polycarbonate
+/- .01" tolerance,
International 2 172.76 1

Plastic and Metal
Center

Heating Block/Copper 101 +/- .002” tolerance 3 1,100 1

Upper Base/PTFE +/- .002” tolerance 3 1,750 1

Lower Base/PTFE +/- .002” tolerance 3 460 1

Lid/Polycarbonate +/- .002” tolerance 3 850 1

Sky Machine Inc

Heating Block/Copper 101 +/- .001” tolerance 3 485 1

Upper Base/PTFE +/- .002” tolerance 3 1,185 1

Lower Base/PTFE +/- .002” tolerance 3 435 1

Lid /Polycarbonate +/- .002” tolerance 3 485 1

Southern Copper
and Supply
Company

Heating Block/Copper 101 +/- .001" tolerance 4 435.05 1

Table 1: Material and fabrication vendor trade study

This option initially seemed ideal, as using a single vendor required less contact and middleman

work on our end. However, with further investigation, we found that these services were either

international, potentially leading to delays, or costly.
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Now considering option 2, we began looking for separate material and fabrication vendors. Our

first fabrication vendor of choice was that of UC Irvine’s engineering department. Using our

school’s machine shop would enable easy communication with the machinist and therefore

better guarantee the accuracy of our parts. We could provide parts, such as thermocouples and

cartridge heaters, to ensure their designated holes were dimensioned and toleranced properly.

Moreover, it would be assumedly quicker and cheaper than other vendors as we wouldn’t have

to ship materials/parts to and from. However, due to unique features of our design, there were

additional tools that needed to be purchased; a #51 extra long drill bit for the thermocouple

holes and a 10mmx10mm square broach for the square hole in the upper base. Although this

increased the cost of our current project, these purchases were worthwhile as they can be

reused for building future experimental setups. Table 2 details the UC Irvine machine shop’s

capabilities, cost and time estimates per part.

Figure 22: Additional machining tool purchases. (a) 10mm square broach (b) #51 extra long drill
bit

UC Irvine
Machine Shop Part Description/Comments

Machining
Time(hr) Price ($) Quantity

Heating Block +/- 0.002" tolerance, $65/hr 3 195 1

Upper Base +/- 0.002" tolerance, $65/hr 3 195 1

Lower Base +/- 0.002" tolerance, $65/hr 1 65 1

Lid +/- 0.002" tolerance, $65/hr 2 130 1

Table 2: UC Irvine machine shop estimates
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Company Part/Material Description/Comments Dimensions Price($/ea) Quantity

McMaster Carr

Upper Base/PTFE +/- 0.25" tolerance 6"x6"x1.5" 163.33 2

Lower Base/PTFE +/- 0.25" tolerance 6"x6"x.5" 79.72 2

Lid/Polycarbonate +/- 0.5" tolerance 6"x12"x1" 228.56 1

Grainger

Upper Base/PTFE +/- 1.0" tolerance 6"x6"x1.5" 150.14 2

Lower Base/PTFE +/- 0.5" tolerance 6"x6"x.5" 72.25 2

Lid/Polycarbonate +/- 0.25" tolerance 12"x12"x1" 348.58 1

EMCO Industrial
Plastics

Upper Base/PTFE +/- 0.060" tolerance 12”x18”x1.5” 1,448.70 1

Lower Base/PTFE +/- 0.060" tolerance 6”x12”x.5” 142.40 2

Lid/Polycarbonate +/- 0.060" tolerance 6”x18”x1” 218.63 1

Schorr

Heating
block/Copper 101 N/A 2"x3"x4" 85 1

Southern Copper
and Supply
Company

Heating
block/Copper 101

2": +/-.005" and 3.5" :
+1/8", -0" tolerance 2"x2"x3.5" 75 1

Table 3: Material vendor trade study

The overall capabilities, time and cost of this option were deemed favorable but, before making

a final decision, we needed to investigate material vendors. To point out, this trade study, shown

in table 3, considers enough material for two pool boiling setups. After comparing tolerances,

available dimensions, and prices, we decided on McMaster for PTFE and polycarbonate and

Southern Copper and Supply Company for copper 101.
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Combining the price of materials per setup and the UC Irvine machine shop services, it was

clear that the second option was in fact more cost effective. Overall, taking this into account as

well as the advantages previously described, we decided on option 2.

3.3 Subsystems Design

The main subsystems of our pool boiling setup are a reflux, heating source, temperature

acquisition and visualization system. This section will discuss each of these system processes

and the specific hardware components required for optimal performance.

3.3.1 Reflux System

For efficiency, we added a reflux condenser that enters the liquid chamber through the lid. This

tool allows any non-condensable gasses to escape while also condensing vaporized working

fluid and returning it to the system. The condensing process maintains the fluid level, reducing

the need for continuous refiling as well as maintains atmospheric conditions inside the boiling

chamber. After a comparative analysis of different condensers, we chose the dimroth

condenser(24/40 Dimroth Condenser, Laboy Inc.). It’s double spiral design with the coolant inlet

and outlet both at the top provides maximum surface area and prevents clogging by having

cooled water flow through the coil rather than around it. This addition will also result in a more

consistent working fluid temperature, producing more accurate temperature readings. A water

pump(3 Speed Circulation Pump, Tysun Inc.) is connected to the condenser’s inlet and outlet

joints with a hose to induce the flow of cooled water through the coil. This pump is also used to

empty the liquid chamber once experiments are completed through the water inlet/outlet.
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Figure 23: Reflux condenser(24/40 Dimroth Condenser, Laboy Inc.)

Figure 24: Water pump(3 Speed Circulation Pump, Tysun Inc.)

3.3.2 Heating Source System

Our main heating source consists of four cartridge heaters(CIR-20191/120V, Omega Inc.)

snugly fit into cylindrical bored holes in the copper heating block. These cartridge heaters are

connected to a power supply through an AC voltage regulator(Bench Top 20 Amp Variac

Variable Auto-Transformer) to control the input power and therefore modulate the heat flux to

the boiling surface. In order to maintain saturation conditions as well as degas the working fluid,
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an immersion heater(120V portable water heater, Lewis N. Clark Inc.) is inserted through the lid.

This is carried out by a PID controller(100V-220V Digital Thermostat Temperature PID

Controller, Inkbird Inc) and solid state relay(40A SSR, Inkbird Inc.) that reads the water

temperature and signals when to switch the immersion heater on and off. A smaller immersion

heater with a shorter heated section allows for complete submersion into the water. As air and

steam are still thermally conductive, this avoids overheating, reducing the risk of burning or

even shattering our liquid chamber. In addition, before filling the liquid chamber, an electric

kettle is used to preheat and initially degas the water.

Figure 25: Cartridge heater(CIR-20191/120V, Omega Inc.)

Figure 26: Immersion heater(120V portable water heater, Lewis N. Clark Inc.)
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Figure 27: AC power supply(Bench Top 20 Amp Variac Variable Auto-Transformer)

Figure 28: (a) PID controller(100V-220V Digital Thermostat Temperature PID Controller, Inkbird
Inc.) (b) Solid state relay(40A SSR, Inkbird Inc.)

3.3.3 Temperature Acquisition System

To calculate the net heat flux and wall superheat, K-type thermocouples (TJ36-CASS-116U-6,

Omega Inc.) were used and connected to a USB data acquisition(DAQ) system(U6, LabJack

Inc.). This DAQ hardware is then connected to a computer where it records the temperature
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readings from the thermocouples. Due to a smaller copper fin height, the number of

thermocouple holes were reduced to three. These three K-type thermocouples read

temperatures along the copper fin in the direction of heat conduction towards the boiling

surface. To ensure good thermal contact between the thermocouple and the copper block, and

therefore accurate temperature readings, thermal paste is applied to the probes before

insertion. Another two sheathed thermocouples, connected to the LabJack and PID controller

are inserted through the lid and submerged into the deionized water to measure and maintain

saturation temperature.

Figure 29: K-type thermocouple(TJ36-CASS-116U-6, Omega Inc.)

Figure 30: USB data acquisition system(U6, LabJack Inc.)
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3.3.4 Visualization System

For accurate bubble feature classification, it is essential to use clear, detailed images of our

boiling experiments. To obtain such quality, recordings of bubble nucleation, growth and

departure are taken with a high-speed camera(Mini AX50, FAST CAM Inc.) through one

transparent side of the liquid chamber. In addition, an adjustable light(SugarCUBE LED fiber

optic, The Ushio America Inc.) illuminates the backside of the chamber where a diffuser sheet is

taped to evenly distribute background lighting.

Figure 31: High speed camera(Mini AX50, FAST CAM Inc.)

Figure 32: Adjustable light source (SugarCUBE LED fiber optic, The Ushio America Inc.)
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3.4 Final Setup Assembly

All structural and subsystem designs are then integrated together as illustrated in both figure 34

and figure 35.  Assembly of hardware components are properly wired and connected according

to our schematic diagram in figure 35. Once the cartridge heaters and thermocouples are

inserted, fiber glass wool is packed into the corresponding locations of the heating block.  The

experimental procedure is now ready to begin and will be explained in the following section.

Figure 33. Pool boiling experimental setup components
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Figure 34: Schematic of pool boiling experimental setup
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CHAPTER 4: EXPERIMENTAL METHODOLOGY

This chapter focuses on the pool boiling test procedure using our optimized set up as well as

optimized image acquisition and thermal measurement methods. In addition, quantification of

heat transfer performance from boiling statistics is discussed.

4.1 Sample Preparation

A 10mm x 10mm x 0.5mm piece of pure copper is cleansed for 5 minutes in a piranha solution.

This is made of 3:1 mixture of sulfuric acid(H2SO4) and 30% Hydrogen Peroxide(H2O2) and

removes any organic residues from the surface. The sample is then further cleansed with

isopropyl alcohol and deionized water before mounting to the heated surface.

4.2 Sample Mounting

To achieve the same contact resistance between the sample and heating block and therefore

obtain consistent results, we employ a meticulous sample mounting method. Once the surface

is heated to the solder’s melting point of about 180°C, we carry out a specific beading technique

where a single bead or drop of solder paste is applied to the heated surface. Then, using

cross-locking 90° angled tweezers, shown in figure 35a, we secure our copper sample, as

illustrated in figure 35b. Holding our sample parallel to the surface, we lower it to the solder,

applying a consistent pressure. This process reduces the chance of air pockets and ensures a

.5mm thin and evenly distributed layer of solder between our heated surface and copper

sample.

In previous experiments with the old setup, bubble nucleation surrounding the sample resulted

in heat loss and obscured visualization of targeted bubble dynamics, depicted in figure 37. This

also made it difficult when annotating to decipher which bubbles formed on the surface once
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they departed. Therefore, prior to experiments, the sample is sealed with epoxy to prevent the

escape of latent heat from its outer edges. Uneven application of epoxy also served as

nucleation sites, further contributing to this issue. Thus, with our elevated heated surface we

carefully create a smooth bond between the sample surface edges and the surrounding PTFE

base.

Figure 35: Sample mounting (a) 90° cross-locking tweezers (b) Mounting method Illustration

Figure 36: Obscured visualization from outer edge bubble nucleation
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4.3 Setup Preparation and Clean up

Once the sample is mounted, the gaskets, liquid chamber and lid are secured in place. The

reflux condenser and immersion heater are then inserted through the lid. The immersion heater

is strategically held at a position to the side of the boiling surface and out of view of our

high-speed camera view. Deionized water is preheated and degassed with an electric kettle

then fed through the water inlet. The water level is maintained at the height of the heating

section of our immersion heater to prevent overheating. Next, power is switched on to all

components. The PID controller is configured to saturation temperature and cooled water is

pumped through the condenser. The optimized setup is ready for data collection once the light

source and high-speed camera are placed in their designated positions. Methods of our

visualization and thermal measurement process are explained further in the next section.

After experiments are complete, power is shut off to all components. The fiberglass wool is

carefully removed from the setup to begin cooling down our system. To quicken this process, a

cool air dryer is directed towards the heated block. Finally, using the tubes and water pump

from our reflux system, we drain our liquid chamber.

4.4 Image Acquisition

During pool boiling, bubbles rapidly explode from the surface in a volatile nature. Therefore, to

ensure high quality images for accurate extraction of bubble features, we use an adjustable light

source at the ideal setting as well as a light diffuser to minimize glare and harsh shadows.

Positions of both the light source and high-speed camera are determined prior to data

acquisition based on clarity of the live view. They are then clearly marked with tape for

repeatable and consistent visual data across multiple test runs. Additionally, we set the

resolution of our high-speed camera to 1024x1024 pixels at 2,000fps. Although high speed

imaging lessens motion blur, it also produces datasets with very similar images. This puts more
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weight on a small number of bubbles and impedes dataset diversity which can potentially

introduce bias to the identification process. To avoid these issues, we employ randomized

imaging, where for each heat flux step, images are captured at random time frames for a period

of 30 seconds.

4.5 Thermal Measurement

This subsection explains the quantification of experimental heat transfer performance through

thermocouple measurements. These temperatures are recorded until steady state is reached for

each incrementally increased input heat load.

The net heat flux( ) passing through the system, can be found using the one-dimensional𝑞"

Fourier’s Law:

(33)𝑞" =− 𝑘
𝐶𝑢

𝑑𝑇
𝑑𝑋

Where is the thermal conductivity of copper 101(391.1 ) and is the temperature𝑘
𝐶𝑢

𝑊/𝑚𝐾 𝑑𝑇
𝑑𝑋

gradient, calculated by taking the average of along the heat transfer direction. represents
∆𝑇

𝑖

∆𝑋
𝑖𝑗

𝑇
𝑖

the temperature readings from the three thermocouples and represents the distance∆𝑋
𝑖𝑗

between each of these thermocouples. This results in the equation:

(34)𝑞" = 𝑘
𝐶𝑢

𝑇
1
−𝑇

2

∆𝑋
12

( )+
𝑇

2
−𝑇

3

∆𝑋
23

( )
2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦
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Figure 37: Schematic cross section of heating block fin with mounted sample

The surface temperature of the copper sample( ) can be estimated using:𝑇
𝑤𝑎𝑙𝑙

(35)𝑇
𝑤𝑎𝑙𝑙 

= 𝑇
1

− 𝑞"(
∆𝑋

𝑠1

𝑘
𝐶𝑢

+
δ

𝑠𝑜𝑙𝑑𝑒𝑟

𝑘
𝑠𝑜𝑙𝑑𝑒𝑟

+
 δ

𝑠𝑎𝑚𝑝𝑙𝑒

𝑘
𝐶𝑢

)

Where is the vertical distance between the first thermocouple and the top surface of the∆𝑋
𝑠1

heating block, is the solder thermal conductivity(~50 ), and and is the 𝑘
𝑠𝑜𝑙𝑑𝑒𝑟

𝑊/𝑚𝐾 δ
𝑠𝑜𝑙𝑑𝑒𝑟

 δ
𝑠𝑎𝑚𝑝𝑙𝑒

thickness of the solder and copper sample, respectively.

To determine the boiling curve, the steady-state is plotted against its corresponding wall𝑞"

superheat( ), which is given by;∆𝑇

(36)∆𝑇 = 𝑇
𝑤𝑎𝑙𝑙 

− 𝑇
𝑠𝑎𝑡

Then, the HTC can be found by relating the applied heat flux to the associated wall superheat,

calculated with;

(37)𝐻𝑇𝐶 = 𝑞"
∆𝑇

𝑤𝑎𝑙𝑙
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The uncertainty of the thermocouple measurements( ) is °C and we assume that𝑈
𝑇

± 1. 1

thermal conductivity remains constant and thermocouple position errors are minimized. Using

the law of propagation of uncertainty for heat flux, which is as follows;

(38)𝑈
𝑞"

= ∂𝑞"
∂𝑇

1
𝑈

𝑇( )2

+ ∂𝑞"
∂𝑇

2
𝑈

𝑇( )2

+ ∂𝑞"
∂𝑇

3
𝑈

𝑇( )2

we approximate the maximum heat flux uncertainty as .± 3. 04 𝑊/𝑐𝑚2

4.6 Heat Flux Prediction Using Bubble Statistics

This subsection explains how the bubble statistics can be used to predict the corresponding

heat flux. The predicted boiling heat flux to the surface can be found by summing the various

heat transfer modes of natural convection ), evaporation( ) and bubble departure forced(𝑞"
𝑛𝑐

𝑞"
𝑒𝑣

convection ) as follows:(𝑞"
𝑓𝑐

(39)𝑞"
𝑡𝑜𝑡

=  𝑞"
𝑛𝑐

+ 𝑞"
𝑓𝑐

+ 𝑞"
𝑒𝑣

Each heat transfer mode is governed by various boiling parameters, including the key bubble

parameters of nucleation site density( ), bubble departure diameter( ), and bubble departure𝑁
𝑏

𝐷
𝑏

frequency( ). They can be calculated with the following equations [65][42]:𝑓
𝑏

(40)𝑞"
𝑛𝑐

= 1 − 𝑁
𝑏

π𝐷2
𝑏

4( )ℎ
𝑐
∆𝑇

(41)𝑞"
𝑓𝑐

= 1
2 𝐷2

𝑏
𝑁

𝑏
π𝑘ρ𝑐𝑓

𝑏( )∆𝑇⎡⎢⎣
⎤⎥⎦

(42)𝑞"
𝑒𝑣

= 𝑁
𝑏
𝑓

𝑏
π
6 𝐷3

𝑏( )ρ
𝑣
ℎ

𝑓𝑔

Where is the average convective HTC outside of the area of influence that we define asℎ
𝑐

with as the experimentally measured HTC, is the superheat, is the densityℎ
𝑐

≈. 5ℎ
𝑒𝑥𝑝

ℎ
𝑒𝑥𝑝

∆𝑇 ρ

of the liquid, is the heat capacity, and is the latent heat of evaporation [65]. This𝑐 ℎ
𝑓𝑔
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methodology is then applied to the postprocessing module of our framework for autonomous

heat flux predictions.

57



CHAPTER 5: SUMMARY AND CONCLUSION

This work presents an optimized pool boiling setup for maximized efficiency and reliability of

experimental procedures. Its cutting edge design ensures accurate thermal data acquisition and

enables real-time, high-resolution visualization of pool boiling processes. Traditional methods of

extracting and interpreting data from pool boiling have proven invasive as well as operose;

which in turn produces potentially biased and therefore questionable heat transfer correlations.

However, with our machine learning-based computer vision model, we can autonomously track

individual bubble features from massive datasets of pool boiling images to then extract

higher-level features(e.g.,. active nucleation site density, bubble departure diameter, bubble

departure frequency, heat flux, heat transfer coefficient). Unfortunately, even with the impressive

performance of our vision-based machine learning approach, it is still difficult to precisely predict

heat transfer performance solely from bubble statistics due to present simplified theoretical

models. Nevertheless, the large bandwidth of accurately mined spatiotemporal bubble statistics

can be used to fine-tune these models. Thus, future research will explore different pool boiling

conditions such as enhanced surface and fluid properties to decipher the underlying

mechanisms that impact the correlations between bubble dynamics and heat transfer

performance. Furthermore, our optimized pool boiling setup design can be integrated into future

studies involving different working fluids, surfaces or even visualization approaches such as top

and bottom-views of bubble dynamics, adding another dimension to our mechanistic

understanding of boiling physics. In conclusion, our proposed experimental setup and

methodology in conjunction with our machine vision-based framework can help pave the way to

discovering more effective cooling schemes for modern day thermal management systems.
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