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Automated Detection of Posterior Vitreous
Detachment on OCT Using Computer Vision
and Deep Learning Algorithms

Alexa L. Li, MD,1,* Moira Feng, MS,2,* Zixi Wang, MS,2 Sally L. Baxter, MD, MSc,1,3

Lingling Huang, MD, PhD,1 Justin Arnett, MD,1 Dirk-Uwe G. Bartsch, PhD,1 David E. Kuo, MD,1

Bharanidharan Radha Saseendrakumar, MS,1,3 Joy Guo, MS,1,3 Eric Nudleman, MD, PhD1

Objective: To develop automated algorithms for the detection of posterior vitreous detachment (PVD) using
OCT imaging.

Design: Evaluation of a diagnostic test or technology.
Subjects: Overall, 42 385 consecutive OCT images (865 volumetric OCT scans) obtained with Heidelberg

Spectralis from 865 eyes from 464 patients at an academic retina clinic between October 2020 and December
2021 were retrospectively reviewed.

Methods: We developed a customized computer vision algorithm based on image filtering and edge
detection to detect the posterior vitreous cortex for the determination of PVD status. A second deep learning (DL)
image classification model based on convolutional neural networks and ResNet-50 architecture was also trained
to identify PVD status from OCT images. The training dataset consisted of 674 OCT volume scans (33 026 OCT
images), while the validation testing set consisted of 73 OCT volume scans (3577 OCT images). Overall, 118 OCT
volume scans (5782 OCT images) were used as a separate external testing dataset.

Main Outcome Measures: Accuracy, sensitivity, specificity, F1-scores, and area under the receiver operator
characteristic curves (AUROCs) were measured to assess the performance of the automated algorithms.

Results: Both the customized computer vision algorithm and DL model results were largely in agreement
with the PVD status labeled by trained graders. The DL approach achieved an accuracy of 90.7% and an F1-
score of 0.932 with a sensitivity of 100% and a specificity of 74.5% for PVD detection from an OCT volume
scan. The AUROC was 89% at the image level and 96% at the volume level for the DL model. The customized
computer vision algorithm attained an accuracy of 89.5% and an F1-score of 0.912 with a sensitivity of 91.9%
and a specificity of 86.1% on the same task.

Conclusions: Both the computer vision algorithm and the DL model applied on OCT imaging enabled reliable
detection of PVD status, demonstrating the potential for OCT-based automated PVD status classification to
assist with vitreoretinal surgical planning.

Financial Disclosure(s): Proprietary or commercial disclosure may be found after the
references. Ophthalmology Science 2023;3:100254 ª 2022 by the American Academy of Ophthalmology. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The age-related process of vitreous separation occurs as a
result of vitreous liquefaction, ultimately leading to a
complete posterior vitreous detachment (PVD).1 OCT is one
of the most widely used imaging modalities in
ophthalmology and is a critical tool in the analysis of the
vitreoretinal interface.2 In particular, OCT is often utilized
in the clinical setting to aid in the determination of a PVD.2,3

The accurate detection of PVD status is important for
clinical prognostication and for presurgical planning for
vitreoretinal surgeons. Patients with a recent diagnosis of
acute PVD are at increased risk of retinal tears and de-
tachments and should be followed closely by an ophthal-
mologist.4,5 Conversely, patients with floaters without a
PVD are at a reduced concern for a retinal tear. Posterior
vitreous detachment status has also been shown to have
prognostic implications in regard to disease progression
ª 2022 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
and in how patients respond to treatment in retinal
diseases, such as diabetic retinopathy, retinal vein
occlusion, and age-related macular degeneration.6e10 In
addition, knowing whether a patient has a partial or a
complete PVD is important in guiding surgical planning.3

For example, if a patient does not have a complete PVD,
a surgeon may be more inclined to choose scleral buckle
as the procedure of choice for retinal detachment repair
instead of pneumatic retinopexy or pars plana vitrectomy.

Enabled by increasing medical imaging data availability,
deep learning (DL) and artificial intelligence (AI) have been
recently applied to the field of ophthalmology, assisting cli-
nicians in the diagnosis and management of ophthalmic dis-
eases. Image-based DL models, such as convolutional neural
networks (CNNs), have shown promising results in the
automated detection of retinal diseases, such as diabetic
1https://doi.org/10.1016/j.xops.2022.100254
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retinopathy, epiretinal membrane, and age-related macular
degeneration.11e18 Despite the wide application of computer-
aided algorithms in the diagnosis of the abovementioned
retinal diseases, to our knowledge, there is currently no reli-
able computer vision algorithm or DL model that can localize
the posterior vitreous cortex and detect PVD status on OCT
images. Although there have been a few prior studies using
DL approaches for diagnosing PVD, these models used ocular
ultrasound images rather than OCT images, which are far
more common in clinical practice.19,20 The aim of this study
was thus to enable and evaluate the automated detection of
PVD through OCT imaging to improve the evaluation of
the vitreoretinal interface.

Methods

Clinical Protocols and Dataset Annotation

This study adhered to the tenets set forth in the Declaration of
Helsinki and the Health Insurance Portability and Accountability
Act, and institutional review board/ethics committee approval was
obtained at the University of California San Diego. A waiver of
written informed consent was granted. Patients who had undergone
evaluation by a retina specialist with OCT imaging at the Uni-
versity of California San Diego Department of Ophthalmology
between October 2020 and December 2021 were reviewed. Adults
and children encompassing a wide range of retinal pathologies
were included. Exclusion criteria consisted of poor OCT image
quality (i.e., scans with poor resolution because of anterior segment
or vitreous opacity or because of motion artifact) and eyes with a
known history of having undergone prior pars plana vitrectomy.

Macular OCT scans were obtained using a spectral-domain
system (Spectralis OCT, Heidelberg Engineering) composed of a
volume scan consisting of 49 horizontally-oriented B-scans
covering a 6 � 6 mm area at a resolution of 512 � 496 pixels per
B-scan (frame averaging > 16 frames), in addition to a 9-mm
vertical and horizontal line scan that included the optic nerve at
a resolution of 768 � 496 pixels (Spectralis high-speed scan pro-
tocol with frame averaging > 100 frames). Four trained ophthal-
mologists (A.L.L., L.H., J.A., and D.E.K.) reviewed the entire
volume B-scans in addition to the horizontal and vertical raster
scans of each patient for the determination of PVD status. The
definition of PVD in this study was a complete stage 4 PVD
without any presence of the premacular bursa or posterior vitreous
cortex on any scans of the OCT.2,3 In questionable cases,
consensus grading was performed by an expert-trained retina
specialist (E.N.) for the final determination of PVD status. Patient
information was anonymized and images were deidentified before
transferring data for analysis.

Automated PVD Detection Algorithms

We approached the computer-aided, automated PVD detection task
using the following 2 different methods (Fig 1): (1) developing a
computer vision algorithm to detect the presence or absence of a
PVD based on posterior vitreous cortex localization, and (2)
training a deep CNN model based on our OCT dataset for
determination of PVD status.

Computer Vision Algorithm based on Posterior
Vitreous Cortex Localization

The customized PVD detection algorithm was designed and pro-
totyped in Python 3 code. The algorithm evaluated PVD status by
2

examining the posterior vitreous cortex in each raster of the OCT
volume scan. If the premacular bursa or posterior vitreous cortex
was detected in any part of the OCT image for > 1 scan out of 49
OCT B-scans in the volume scan, the algorithm determined that the
posterior vitreous cortex was attached, so there was an absence of a
complete PVD. On the contrary, if the posterior vitreous cortex was
not visualized for > 47 scans out of 49 OCT B-scans (thresholding
parameters applied to avoid false-positives), the algorithm deter-
mined that a complete PVD (stage 4 PVD) was present.

For the automated detection of PVD status, the customized
computer vision algorithm consisted of 2 parts (Fig 2): image-
preprocessing and posterior vitreous cortex localization. In the
image-preprocessing step, the OCT scans were normalized based
on pixel intensity. A Gaussian blur (OpenCV-python library
version 4.1.2) was then applied to the original OCT scan to reduce
noise in the image. A kernel with a denoise level of 5 � 3 was used
to suppress imaging noise present across the image and to facilitate
the detection of the internal limiting membrane (ILM). Instead of
using a common square-shaped kernel, we chose this specific
kernel size to be longer on the horizontal axis than the vertical axis,
because the ILM spans more pixels horizontally in an image than
vertically. Furthermore, less denoising power was applied in the
vertical axis, as keeping high-resolution and high-frequency signals
on the vertical axis of the image were crucial to subsequent ILM
and posterior vitreous cortex detection. Next, an edge detection-
based algorithm was utilized to detect the ILM of the retina and
to segment out the posterior vitreous cortex. The ILM segmenta-
tion algorithm first recognized candidate segments of the ILM on
rectangular sliding windows of the image using a customized edge-
detection function based on the intensity difference between the
vitreoretinal interface and thresholding of continuity of the ILM. In
this customized function, a sliding window of size 1 � 10 is
scanned through the image stepwise pixel by pixel to detect a
difference in mean intensity values with a threshold > 100 to
recognize potential ILM segments. The algorithm then removed
outlier segments far away from the main ILM segments in terms of
a vertical distance threshold of 20 pixels and further applied a
spline fitting to the rest of the potential ILM segments to outline the
final ILM. Because only the area above the ILM was needed for
posterior vitreous cortex localization, the retinal area below the
ILM was masked out to save extra computations. Thus, after
masking, only the vitreous area was retained for further processing.

In the posterior vitreous cortex localization step, another
Gaussian blur filter with a 7 � 1 kernel was applied to further
smooth the image of the vitreous and to remove horizontal noise.
Similar to the kernel size selection in the image-preprocessing step,
we chose 1-pixel length in the vertical axis because of the need to
retain higher resolution on the vertical axis of the image because
the posterior vitreous cortex also empirically spanned more pixels
horizontally as compared with vertically in a B-scan. A customized
function similar to the ILM detection method was crafted to
localize the posterior vitreous cortex based on intensity thresh-
olding using a 10 � 15 pixel-sized sliding window. After candidate
segments of the posterior vitreous cortex were detected, the same
outlier removal algorithm as used in ILM segmentation was then
applied. Once a target segment that satisfied the intensity threshold
was detected, the total pixel length and a continuity metric defined
by the vertical difference of the 2 adjacent candidate segments were
calculated. When all the evaluation criteria for posterior vitreous
cortex recognition were satisfied, the algorithm localized the
detected line as the posterior vitreous cortex.

To develop and fine-tune this algorithm, 110 OCT volume
scans (5390 OCT images) were used. Among these scans, 10 eyes
from 10 different patients were examined in detail to estimate the
thresholding for visual features and relevant sliding window sizes



Figure 1. Flowchart summary for the 2 posterior vitreous detachment (PVD) automated detection methods implemented on OCT imaging: customized
computer vision algorithm (upper); deep learning convolutional neural network (CNN) model (lower).
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used in the algorithm, including posterior vitreous cortex thickness
threshold, intensity threshold, and line continuity metrics. These
eyes were also used in the kernel size selections of Gaussian blur
filters for the visual examination of denoising outcomes. The
remaining 100 OCT scans (4900 images) were used to test-run
prototypes of the algorithm and fine-tune the threshold values
based on feedback from a trained retina specialist (E.N.).
Figure 2. Stepwise image processing illustration for customized posterior vitreou
without a complete posterior vitreous detachment. B, Gaussian blur filter from
limiting membrane (ILM) is located using the customized algorithm (orange lin
relevant areas are kept for further posterior vitreous cortex localization. F, Gauss
H, The posterior vitreous cortex (if present in the image) is detected and locate
compared against heuristic thresholds to determine if the posterior vitreous cor
Training DL Model for PVD Detection

To enable a DL approach to automatically detect a PVD, we
implemented a DL pipeline in Pytorch 1.9.0 to train CNNs to
determine the PVD status of an OCT image from the PVD status
label of the volume scan. A ResNet-50 CNN model was trained on
Google Colab with a Tesla P100-PCIE-16GB graphics processing
s cortex localization algorithm. A, Original OCT B-scan image of a patient
OpenCV is applied to the entire image (blue mask). C, D, The internal
e). E, Retinal area below the ILM is masked out (orange mask) and only
ian blur filter from OpenCV is applied to the vitreous area (blue mask). G,
d. Customized distance metrics are calculated on the detected segments and
tex is present in the image.
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unit to learn visual representations of images from an eye with
complete PVD versus absence of complete PVD. We performed
the training-validation dataset split on the volume (per eye) level to
prevent data snooping so that the validation set would not contain
any image from an eye that the model was trained on. A random
shuffle was performed for the 9:1 training-validation dataset split to
ensure that the data from the 2 classes were roughly balanced, after
the same distribution of the entire dataset. The training set con-
sisted of 674 OCT volume scans (33 026 OCT images), with
51.0% volume scans from eyes with complete PVD and 49.0%
scans from eyes without complete PVD. The validation set used for
model selection and hyperparameter tuning consisted of 73 OCT
volume scans (3577 OCT images), with 41.6% volume scans from
eyes with complete PVD and 58.4% scans from eyes without
complete PVD. The ResNet-50 version 1.5 model used was pre-
trained on the ImageNet dataset to enable transfer learning of visual
image representations.

To make image sizes compatible with the pretrained model, all
OCT images were converted to red, green, and blue images from
grayscale images (PIL Image Python library version 7.1.2) and
downsized to 256 � 256 pixels (torchvision Python library version
0.13.1) at runtime in the customized data loader code. The loss
function used in training was the cross-entropy loss, and the
optimizer used was Adam. The training process used a uniform
learning rate of 5E-5, and a batch size of 128. We trained the model
for 100 epochs and saved the model weights with the lowest
validation loss during training as the best model to be used in
testing and evaluation.
Evaluation and Comparison of PVD Detection
Algorithms

In addition to evaluating the 2 methods on the validation dataset
with 73 OCT volume scans, we additionally collected 118 OCT
volume scans (containing 5782 OCT images) as a separate external
testing dataset for the final evaluation of our automated PVD
detection methods in December 2021. The test set included 63.2%
volume scans from eyes with complete PVD and 36.8% scans from
eyes without complete PVD. There was no overlap in OCT images
used in the testing dataset and the dataset used for training and
validation for either of the 2 algorithms. Patients who had under-
gone prior vitrectomy were included in this testing data set to better
simulate clinical practice with the anticipated future application of
the AI algorithm to all patients who present to the retina clinic and
undergo OCT imaging, regardless of prior surgical status. The
baseline characteristics of the patients in each data set are provided
in Table 1.

To evaluate and compare the computer vision approach and the
DL model, we performed testing by running both algorithms on the
same testing set of 118 OCT volume scans. For each eye in a
volume scan, we recorded the predicted PVD status as either
complete PVD or absence of complete PVD and compared the
results with ground truth labels to calculate the accuracy, sensi-
tivity, specificity, precision, and F1-score of both algorithms.
Receiver operating characteristics curves were plotted by varying
the probability output threshold of the DL model, and the area
under the receiver operator characteristic curves (AUROCs) were
calculated (Scikit-learn Python library version 1.0.2) for both
image-level and volume-level PVD status detection results.
Because the 2 classes of PVD status were not perfectly balanced in
the dataset, we also plotted the precision-recall curves to show the
trade-off in precision as the decision threshold shifted to correctly
recognize more complete PVD images. The average precision
scores of the precision-recall curves, equivalent to the area under
curve, were also calculated at the image level and volume level.
4

Results

Performance of Algorithms on Validation
Dataset

Validation testing was performed on both automated algo-
rithms on our dataset of 3577 images and 73 OCT volume
scans (Table 2). The DL algorithm achieved an accuracy of
81.4% with an 88.3% sensitivity, 76.6% specificity, and
0.795 F1-score at the image level. At the volume level,
the DL algorithm achieved a 100.0% sensitivity and 80.8%
specificity with an accuracy of 88.1% and an F1-score of
0.866, whereas the customized algorithm attained an 82.1%
sensitivity and 79.0% specificity with an accuracy of 80.3%
and an F1-score of 0.779.

Comparison of PVD Detection Algorithms with
Testing Dataset

Both the customized algorithm and DL model detection
results were largely in agreement with the PVD status
labeled by trained graders with the testing dataset (Table 3).
For the DL model, at the level of each individual OCT
image, an accuracy of 83.0% and an F1-score of 0.874
were attained with a sensitivity of 93.2% and a specificity of
65.6%. The AUROC was 89% and the average precision
was 86% at the image level (Fig 3). By encompassing the
entire volume OCT scan and averaging the probabilities of
complete PVD from each image, we achieved an accuracy
of 90.7% and an F1-score of 0.932 with a sensitivity of
100% and a specificity of 74.5%. At the volume level, the
AUROC was 96% and the average precision was 94% for
the DL model (Fig 3). For the customized algorithm at the
volume level, the accuracy was 89.5% and the F1-score
was 0.912, with a sensitivity of 91.9% and a specificity of
86.1%.

Discussion

Utilizing both traditional computer vision and DL ap-
proaches, we developed reliable algorithms for the auto-
matic detection of PVD status from OCT images. The
accurate detection of PVD status is a critical feature in the
ophthalmic examination because it is a clinically important
entity for disease prognostication and presurgical planning
for vitreoretinal surgeons. There are many different tech-
niques for assessing PVD status, including slit-lamp bio-
microscopy, ultrasonography, and OCT imaging. The
presence of a Weiss ring on clinical evaluation suggests a
complete PVD; however, identification through bio-
microscopy can be challenging at times and does not allow
staging of PVD status.1,21 B-scan ultrasonography has
shown utility in the detection of PVD status; however, it
has limited anatomic resolution and is highly operator
dependent with lower interexaminer agreement than
OCT.1,21,22 The use of OCT to assist evaluation of PVD
status has thus become increasingly important because it
is a clinically practical tool that ophthalmologists can use
to efficiently and effectively identify the presence or
absence of PVD.21e23 Kraker et al24 found that 6-mm



Table 1. Baseline Characteristics of Patients

Training/Validation
Data Set

Testing
Data Set

Number of eyes 674/73 118
Number of OCT images 33 026/3577 5782
Patients 371 (*30) 57 (*6)
Age (yrs), mean (SD) 64.2 (18.2) 69.75 (16.5)
Gender (%)
Male 161 (43.4) 26 (45.6)
Female 210 (56.6) 31 (54.4)

Race (%)
Asian 45 (12.1) 6 (10.5)
Black or African American 7 (1.9) 1 (1.8)
Native Hawaiian or
Pacific Islander

3 (0.8) 0 (0)

White 253 (68.2) 41 (71.9)
Other race or mixed race 49 (13.2) 9 (15.8)
Unknown 14 (3.8) 0 (0)

SD ¼ standard deviation.
*Mandatory exclusion patients were excluded from demographics analysis.
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OCT scans detected complete PVD with 91% sensitivity
and 99% specificity. Peri-papillary scan images can also
improve the diagnostic ability of OCT, especially in cases in
which vitreous separation occurs in the macula but the vit-
reous still remains attached at the optic nerve.22 In our
study, we utilized both the 6 � 6 mm volume scans in
addition to the 9-mm vertical and horizontal line scan that
included the optic nerve for the determination of PVD
status.

Often, the greatest challenge in PVD status determination
is distinguishing between stage 0, in which there is a
completely attached hyaloid and absence of PVD, and a
stage 4 complete PVD.2,3 Some strategies to classifying an
eye as stage 0 include attempting to visualize if the
premacular bursa is visible but not the posterior vitreous
cortex.3 Once the process of vitreous separation occurs,
identifying a partial PVD by visualizing the posterior
vitreous cortex is easier and more apparent. However,
there are cases in which vitreoretinal separation is difficult
to discern on OCT for the human examiner. A computer
algorithm trained to visualize the posterior vitreous cortex
may be able to more accurately distinguish between stage
0 and early stage 1 partial PVD, and between stage 0 and
stage 4 PVD. Although developing our customized
computer-vision-based algorithm, we found that the algo-
rithm detected the presence or absence of PVD more
accurately in several instances after reviewing the OCT
again in cases in which there was a discrepancy between the
human and machine interpretation. In this way,
Table 2. Algorithms Performance Metric

Accuracy S

Per volume Customized algorithm 80.3%
Deep learning model 88.1%

Per image Deep learning model 81.4%
computer-aided diagnosis may be able to assist providers in
more accurately delineating PVD staging for clinical prog-
nostication. Furthermore, in a high-volume clinic in which
reviewing OCT volume scans can be time-consuming, a
reliable AI algorithm for PVD status determination may
allow for more efficient clinical decision-making.

Within ophthalmology, DL techniques have been applied
to the diagnosis of many retinal diseases, including age-
related macular degeneration, diabetic retinopathy, and
macular edema.11,12,15e18 Automatic segmentation of 9
retinal layer boundaries has been successfully validated on
eyes with nonexudative age-related macular degeneration
using a novel framework based on CNN and graph search
methods.13 Although the majority of DL techniques have
been applied to the retina, there are few reports of
segmentation of the vitreous. To our knowledge, there are
currently no DL methods that have been developed to
automatically segment the posterior vitreous cortex for the
identification of PVD on OCT. A DL segmentation
algorithm was developed for automated eye compartment
segmentation of the vitreous, retina, choroid, and sclera.25

In this model, the vitreous was defined above the
demarcation line of the ILM.25 Automated segmentation
of vitreous hyperreflective foci, the vitreous, and retinal
pigment epithelium has also been developed using a DL
approach in patients with uveitis.26 In this methodology,
the hyperreflective structure of the posterior vitreous
cortex was manually removed by the clinician as a false-
positive structure during the image-preprocessing step.26 A
DL system to recognize vitreous detachment, retinal
detachment, and vitreous hemorrhage on ophthalmic
ultrasound was developed and achieved accuracies of
0.90, 0.94, and 0.92, respectively.19 To our knowledge,
prior literature is scarce regarding automated algorithms to
recognize PVD status utilizing OCT imaging, and we
believe that our study presents an innovative development
in AI for automated PVD detection.

In our study, both automated algorithms demonstrated
good reliability in PVD detection on OCT imaging volume
scans, achieving accuracies of 89.5 % and 90.7%, with
sensitivities of 91.9% and 100%, and specificities of 86.1%
and 74.5% for the traditional computer vision approach and
DL method, respectively. For the ResNet-50 DL model,
AUROC analyses confirmed that PVD detection was more
accurate when analyzing the entire OCT volume scan (96%)
than at the image level (89%). This increase in accuracy and
specificity was as expected because when all the scans from
a volume were considered, averaging the probability of each
image provided a higher confidence level.

The DL method using ResNet-50 CNN achieved better
overall performance than the customized algorithm method,
s Comparison on Validation Dataset

ensitivity Specificity Precision F1-score

82.1% 79.0% 74.2% 0.779
100.0% 80.8% 76.3% 0.866
88.3% 76.6% 72.3% 0.795
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Table 3. Algorithms Performance Metrics Comparison on Testing Dataset

Accuracy Sensitivity Specificity Precision F1-score

Per volume Customized algorithm 89.5% 91.9% 86.1% 90.5% 0.912
Deep learning model 90.7% 100.0% 74.5% 87.2% 0.932

Per image Deep learning model 83.0% 93.2% 65.6% 82.2% 0.874

Ophthalmology Science Volume 3, Number 2, Month 2023
yet both algorithms have the potential to be further
improved and refined to increase reliability in PVD detec-
tion. For the DL approach, the performance would likely
improve with the adoption of a more advanced model ar-
chitecture, such as the vision transformers (ViTs) model,27

which incorporates attention modules that examine input
images by smaller regions. Transformer-based architec-
tures were originally developed for natural language pro-
cessing but in recent years were applied to computer vision,
and ViT models were shown to be superior in performance
in image recognition task benchmarks compared with
traditional CNN models. However, the performance
advantage over ResNet models only reveals itself when the
number of training data set images surpasses a certain
threshold.27 Given the limited amount of OCT images in our
study, a pretrained ResNet-50 model with fewer model pa-
rameters was thus used for optimal convergence and less
overfitting. If the training dataset of OCT imaging for PVD
detection grows substantially in the future, we envision ViT
models pretrained on image recognition benchmark datasets
achieving better performance on this task than the ResNet-
50 model used in our study.

We developed the customized algorithm based on the
idea of utilizing traditional image analyses and heuristics in
Figure 3. Receiving operator characteristic curves and precision-recall (PR) cu
model for posterior vitreous detachment (PVD) detection. Area under the receiv
depicted in the diagram. ROC ¼ Receiving operator characteristic.

6

PVD diagnosis from OCT imaging. Traditional image an-
alyses typically involve manual development of techniques
based on feature extraction and edge detection.28 The
customized algorithm applies automated image
processing and calculations of visual metrics to examine
the presence of the posterior vitreous cortex in an OCT
B-scan, a feature that an ophthalmologist would also use
to determine PVD status. In this sense, the customized
algorithm method can be seen as an automated version of
exercising existing knowledge about PVD diagnostics.
This concept is similar to the clinical setting in which the
examiner typically scrolls through the OCT volume scan
to detect if any posterior vitreous cortex is visualized in
any frame for the final determination of PVD status. For
our automated algorithms, the parameters and threshold
metrics were determined heuristically by running the
PVD detection algorithms on the training and validation
data sets and then selecting the values which resulted in
the best accuracy. The generalization capability of this
method is thus dependent on the set of OCT images that
were used to determine the parameters. Because the
number of parameters of this algorithm is orders of
magnitude fewer than the DL model, the DL model was
able to generalize features learned in the training dataset
rves at the OCT image level and volume level for the deep learning (DL)
er operator characteristic curves (AUROCs) and average precision (AP) are
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better than the thresholding-based customized algorithms.
To further improve this automated algorithm method, more
visual features used in clinical PVD detection can be taken
into account, and the decision-making can be further fine-
tuned to increase the precision and complexity of the
algorithms.

Other limitations of our study include that our models
were trained on images obtained using the Spectralis OCT
system at a single academic institution. Although we
included images from eyes both with and without pathol-
ogy, additional future studies utilizing OCT images from
different systems and from other institutions are needed to
establish external validity and broader generalizability. We
excluded OCT images of poor image resolution, and thus
both of our methods were not developed to navigate around
poor image quality or motion artifacts. A lack of a very
large, robust training data set composed of thousands of
images also may have limited the training of our DL model
and usage of more sophisticated models with a higher
number of parameters.

In conclusion, we demonstrated a novel application of
both traditional computer vision algorithms and DL methods
for the automated detection of PVD on OCT imaging.
Future steps include performing external validation studies
and optimizing the algorithms for efficient usage in the
clinical setting to assist providers in clinical decision-
making. Digital analysis tools, such as our algorithm, offer
promise in enhancing the evaluation of the vitreoretinal
interface to help guide presurgical planning and clinical
prognostication for improved patient care.
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