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Abstract

Muscle forces and joint moments estimated by electromyography (EMG)-driven musculoskeletal 

models are sensitive to the wrapping surface geometry defining muscle-tendon lengths and 

moment arms. Despite this sensitivity, wrapping surface properties are typically not personalized 

to subject movement data. This study developed a novel method for personalizing OpenSim 

cylindrical wrapping surfaces during EMG-driven model calibration. To avoid the high 

computational cost of repeated OpenSim muscle analyses, the method uses two-level polynomial 

surrogate models. Outer-level models specify time-varying muscle-tendon lengths and moment 

arms as functions of joint angles, while inner-level models specify time-invariant outer-level 

polynomial coefficients as functions of wrapping surface parameters. To evaluate the method, 

we used walking data collected from two individuals post-stroke and performed four variations 

of EMG-driven lower extremity model calibration: 1) no calibration of scaled generic wrapping 

surfaces (NGA), 2) calibration of outer-level polynomial coefficients for all muscles (SGA), 

3) calibration of outer-level polynomial coefficients only for muscles with wrapping surfaces 

(LSGA), and 4) calibration of cylindrical wrapping surface parameters for muscles with wrapping 

surfaces (PGA). On average compared to NGA, SGA reduced lower extremity joint moment 

matching errors by 31%, LSGA by 24%, and PGA by 12%, with the largest reductions occurring 

at the hip. Furthermore, PGA reduced peak hip joint contact force by 47% bodyweight, which was 
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the most consistent with published in vivo measurements. The proposed method for EMG-driven 

model calibration with wrapping surface personalization produces physically realistic OpenSim 

models that reduce joint moment matching errors while improving prediction of hip joint contact 

force.

Keywords

EMG-driven models; musculoskeletal modeling; muscle wrapping surfaces; musculoskeletal 
model personalization; muscle-tendon length; muscle moment arms; hip joint contact force

I. Introduction

Computational neuromusculoskeletal models have emerged as inexpensive and objective 

tools for estimating important biomechanical quantities that are difficult or impossible 

to measure experimentally, which may eventually facilitate the design of more effective 

interventions for neuromusculoskeletal disorders [1], [2]. Electromyography (EMG)-driven 

neuromusculoskeletal models in particular have been developed to estimate muscle forces 

and joint moments computationally using EMG and kinematic data, thereby resolving the 

muscle redundancy problem while simultaneously calibrating musculotendon properties 

(e.g., optimal muscle fiber length, tendon slack length) [3], [4], [5], [6]. In the majority 

of EMG-driven modeling methods, muscle-tendon lengths and moment arms (henceforth 

called “geometries”) are determined using geometric models of muscle-tendon pathways 

implemented within musculoskeletal modeling software such as OpenSim [7], [8] and 

Anybody [9]. These pathways are typically defined using generic geometric representations 

of muscle origin and insertion points along with muscle wrapping surfaces that specify 

how muscles wrap around neighboring muscles and/or bones. However, musculoskeletal 

geometry influences the estimation of muscle forces [6], [10], [11] and joint contact forces 

[12], [13]. Unlike personalization of muscle origin and insertion points, which are relatively 

easy to identify on computed tomography (CT)-derived bone geometry [14], [15], [16], 

personalization of muscle wrapping surfaces has received limited attention.

Though the most direct way of personalizing muscle wrapping surfaces involves the use of 

medical imaging data collected from individual subjects, only a small number of studies 

have followed this approach due to the challenges involved. First, it is often not possible 

to obtain CT or magnetic resonance imaging (MRI) data from a specific subject. Second, 

even when it is, segmentation of muscle volumes and subsequent determination of muscle 

lines of action can be difficult and time consuming [17]. Third, even if muscle lines of 

action can be found from imaging data, the positions, orientations, and dimensions of 

three-dimensional analytical wrapping surfaces (typically cylinders, spheres, or ellipsoids) 

must then be determined via complex computational methods [18]. Fourth, even if accurate 

analytical wrapping surfaces can be determined, the geometric calculations involved in 

finding muscle-tendon lengths and moment arms are too expensive computationally to 

be used within iterative numerical optimizations that calibrate model parameter values or 

predict model motion [7], [19]. Despite these challenges, several studies have developed 

methods to customize muscle wrapping surfaces using MRI data [13], [14], [15], [18], 
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[21], [22]. Generally, these studies determined muscle wrapping surfaces for only a limited 

number of muscles using custom computational algorithms. Furthermore, in some studies 

[17], [21], [22], the resulting muscle wrapping surfaces and associated computational 

algorithms were not consistent with widely used musculoskeletal modeling software such 

as OpenSim and Anybody, which further limits usage of built-in analysis tools (e.g., joint 

reaction force analysis and motion prediction) available in those platforms.

Two studies have used data-driven optimization methods to define subject-specific wrapping 

surfaces implicitly, where satisfactory agreement with literature-reported experimental 

musculoskeletal geometry (e.g., moment arms) was achieved [23], [24]. However, the 

optimization methods used in these two studies performed repeated OpenSim Muscle 

Analyses, which are computationally expensive due to complex anatomical path constraints 

and iterative muscle wrapping algorithms [7], [19]. Consequently, the computational cost of 

solving these optimization problems was high, limiting their application to a small number 

of muscles. Additionally, the optimization cost functions sought to match muscle-tendon 

lengths and moment arms determined a priori from extensive medical imaging datasets, 

which are difficult to obtain for most experimental situations and are not specific to the 

individual subjects being modeled. Ideally, muscle wrapping surface parameters could be 

calibrated using data commonly collected in a gait lab, such as joint kinematics and joint 

moments, without requiring repeated expensive geometric analyses (e.g., OpenSim Muscle 

Analyses).

As an alternative to imaging-based methods, EMG-driven model calibration can potentially 

provide an innovative approach for personalizing musculoskeletal geometries using 

experimental movement data. EMG-driven modeling uses experimental EMG, kinematic, 

and external force data along with a geometric musculoskeletal model to estimate 

muscle forces and joint moments while simultaneously personalizing muscle-tendon model 

parameter values [3], [6], [25]. To date, the majority of EMG-driven modeling studies 

have used scaled generic musculoskeletal geometry that does not explicitly represent 

individual subject anatomy, which hinders the accuracy of predicted muscle forces and joint 

moments [11], [26]. A previous study adjusted musculoskeletal geometries within an EMG-

driven model calibration process by optimizing polynomial coefficients defining surrogate 

musculoskeletal geometric models [6]. Use of the surrogate geometric models substantially 

reduced errors between model-predicted and inverse dynamic joint moments. However, the 

predicted muscle-tendon lengths and moment arms became physically unrealistic for some 

muscles and could not be converted back into a physical geometric musculoskeletal model, 

which is important for applications where knowledge of muscle force directions is required. 

Thus, it would be valuable to have a computationally efficient EMG-driven modeling 

method that can personalize muscle wrapping surfaces in geometric musculoskeletal models.

This paper presents a novel EMG-driven modeling method that can personalize muscle-

tendon model properties and OpenSim cylindrical muscle wrapping surfaces simultaneously. 

The method was developed and tested using gait data collected from two subjects post-

stroke performing treadmill walking at two speeds. Computationally efficient surrogate 

geometric musculoskeletal models were constructed that accurately predicted muscle-tendon 

lengths and moment arms for both subjects given joint angles and wrapping surface 
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parameter values as inputs. Wrapping surface parameter values were then optimized as 

part of the EMG-driven model calibration process. For comparison, EMG-driven model 

calibration was also performed with no geometric adjustments and using two simpler 

surrogate geometric models. Each geometric adjustment approach within the EMG-driven 

model calibration process was evaluated by comparing predicted and inverse dynamic joint 

moments as well as predicted and scaled generic musculoskeletal geometries. Hip joint 

contact forces were also compared using models with scaled generic and personalized 

muscle wrapping surfaces.

II. Methods

A. Experimental Data Collection

Previously published walking datasets collected from two hemiparetic subjects post-stroke 

were used in this study (Table S1) [6], [27]. Motion capture (Vicon Corp., Oxford, 

United Kingdom), ground reaction (Bertec Corp., Columbus, OH, United States), and EMG 

(Motion Lab Systems, Baton Rouge, LA, United States) data were recorded simultaneously 

when subjects walked on a split-belt instrumented treadmill (Bertec Corp., Columbus, 

OH, United States) with belts tied at their self-selected and fastest-comfortable speeds. 

All experimental protocols were approved by the University of Florida Health Science 

Center Institutional Review Board (IRB-01), and both subjects provided written informed 

consent before performing the experiments. For each subject, 16 channels of EMG data were 

recorded from each leg using a combination of surface and fine wire electrodes (Table S2). 

Data from ten gait cycles (five cycles per speed) were randomly selected for analysis of each 

leg. Raw motion capture and ground reaction data were low-pass filtered at 7/tf Hz, where 

tf is the period of the gait cycle being processed, while raw EMG signals were high-pass 

filtered at 40 Hz, demeaned, full-wave rectified, low-pass filtered at 3.5/tf Hz, and finally 

normalized to maximum value over all experimental gait cycles [6]. After being processed, 

each cycle of data was time-normalized by resampling to 101 time frames from heel-strike 

(0%) to subsequent heel-strike (100%) of the same leg.

B. Musculoskeletal Model Refinement

A generic full-body musculoskeletal model [28] was employed for development of the 

approach in OpenSim 4.0 [11], [12]. The model possessed six degrees of freedom (DOFs) 

in each leg, which included three hip DOFs, one knee DOF, and two ankle DOFs. Four 

sequential steps were performed on the generic model using the OpenSim application 

programming interface (API) with MATLAB (MathWorks, USA) to personalize the model 

and prepare for EMG-driven model calibration: 1) model scaling to match the individual 

anthropometry; 2) calibration of lower-extremity joint positions and orientations by tracking 

the surface marker data [29]; 3) inverse kinematic (IK) analysis to calculate joint angle 

time histories from marker data; 4) inverse dynamic analysis to derive experimental joint 

moments using processed ground reaction data and time histories of joint kinematics from 

IK analysis. After these steps, 34 and 33 muscles per leg were available for analysis for 

subject S1 and S2, respectively, where 20 muscles in each leg possessed a cylindrical 

wrapping surface (Table S2).
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C. Surrogate Geometric Model Construction

1) Definition of Surrogate Model Structure: Surrogate musculoskeletal geometric 

models were designed as two-level multivariable polynomials (Fig. 1), which enabled 

actual OpenSim musculoskeletal geometries to be updated reliably when joint kinematics 

and OpenSim muscle wrapping surface parameters were changed. Within the outer-level 

surrogate model, timevarying muscle-tendon length Lmt , muscle-tendon velocity vmt , and 

muscle moment arms (MA) calculated by OpenSim were approximated using a set of fifth-

degree polynomial functions of joint angles θ1, θ2, …, θn  and angular velocities θ̇1, θ̇2…θ̇n  that 

shared the same polynomial coefficients c0, c1…ck :

Lmt = fLmt θ1, θ2…θn, c0, c1…ck (1)

vmt = dLmt

dt = fvmt θ1, θ2…θn, θ̇1, θ̇2…θ̇n, c0, c1…ck (2)

Similarly, muscle moment arms were estimated as partial derivatives of muscle-tendon 

length with respect to relevant musculoskeletal model generalized coordinates [30]:

MA1 = − ∂Lmt

∂θ1
= fMA1 θ1, θ2…θn, c0, c1…ck

MA2 = − ∂Lmt

∂θ2
= fMA2 θ1, θ2…θn, c0, c1…ck

MAn = − ∂Lmt

∂θn
= fMAn θ1, θ2…θn, c0, c1…ck

(3)

where n denotes the number of generalized coordinates spanned by the muscle and k denotes 

the number of terms in the outer-level polynomials, which was different across muscles. 

The outer-level surrogate models were constructed using all polynomial terms up to degree 

five. The negative sign in (3) was implemented for consistency with the OpenSim modeling 

environment.

Within the inner-level surrogate model, the outer-level polynomial coefficients c0, c1…ck

were approximated using a set of third-degree polynomial functions of muscle wrapping 

surface parameters ω1, ω2…ω6 .

c1 = g1 ω1, ω2…ω6, b0
1, b1

1…bm
1

c2 = g2 ω1, ω2…ω6, b0
2, b1

2…bm
2

…
ck = gk ω1, ω2…ω6, b0

k, b1
k…bm

k .

(4)

Where b0, b1…bm are the inner-level polynomial coefficients and m denotes the number 

of terms in the inner-level polynomials. Similarly, the inner-level surrogate models were 

constructed using all polynomial terms up to degree three. For each inner-level polynomial 

function, the number of terms was identical since the muscle wrapping surfaces were 

controlled consistently by six variables. However, the number of polynomial functions in the 
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inner-level surrogate model was muscle-specific, which was dependent on the composition 

of the outer-level polynomials shown in Eqs. (1), (2), and (3).

2) Sampling of Model Poses: During the training phase for constructing outer-level 

surrogate models, 500 combinations of lower-extremity joint angles for 6 leg DOFs were 

sampled (named “training poses”). As shown in the Fig. S1, the first 400 combinations 

were randomly selected within the blue belts defined by the minimum and maximum joint 

angles at each time frame across all experimental walking trials such that the sampled joint 

poses were physiologically realistic. More specifically, for each of the 100 time frames 

(representing 1%–100% of the gait cycle) defining each gait cycle after time normalization, 

4 combinations of joint angles were randomly sampled within the range of motion for 

that time frame (named “random poses”). In addition, 100 combinations of joint angles 

from a fastest-speed walking cycle (named “smooth poses”) were concatenated behind 

the “random poses,” which facilitated removal of unrealistic wrapping surfaces using a 

smoothness criterion (Table S6).

3) Sampling of Wrapping Surface Parameters: To account for anatomical 

constraints and to avoid anatomical obstacles, we employed analytical cylindrical wrapping 

surfaces to simulate muscle wrapping behavior over joint capsules, bony prominences, 

deeper muscle layers, and neighboring soft tissues within the curved-line segments [7], [13], 

[19]. In the generic OpenSim model used for this study, the local reference frame fixed to a 

given wrapping surface was named the “nominal frame” (Fig. 1). For each wrapping surface, 

six parameters were introduced to represent adjustments with respect to the nominal frame, 

including: 1) X-, Y-, and Z-translational offsets (transX, transY, and transZ); 2) X- and Y- 

rotational offsets following a body-fixed X-Y Euler rotation sequence (rotX and rotY); 3) 

radius scale factor (Rr). For each wrapping surface, 1000 combinations of parameters were 

sampled in a six-dimensional hypercube space using a Hammersley quasirandom sequence 

[31] (named “training samples”). The upper and lower bounds for rotX (−20~20 deg), rotY 

(−20~20 deg), and Rr (0.8~1.2) were consistent across wrapping surfaces, while the bounds 

for transX, transY and transZ were customized to account for the subject’s anatomy. Further 

details can be found in Table S8 of the supplementary materials.

4) Analysis of Muscle Geometry: Muscle analyses were performed to calculate 

muscle-tendon lengths and moment arms for all 500 sampled poses using all 1000 muscle 

wrapping surface parameter combinations, resulting in a total of 500,000 muscle analyses 

performed through the OpenSimMATLAB API. For muscles that wrap around a cylindrical 

surface, musculoskeletal geometries were computed for each of the 1000 sampled muscle 

wrapping surface configurations, while for muscles that do not wrap around any cylindrical 

surfaces, muscle-tendon geometries were computed only once.

5) Removal of Non-Physiological Wrapping Geometries: During simulated 

motions with the OpenSim model, nonphysiological wrapping behaviors can occur due to 

unrealistic wrapping surface configurations. For example, if a sampled muscle wrapping 

surface is too far away from or too close to the associated muscle path, the muscle path will 

not wrap around the cylindrical surface or will penetrate the wrapping surface through the 
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entire simulated motion or at certain poses. In addition, muscle wrapping errors sometimes 

occur in an OpenSim model whereby the muscle path wraps around the circumference of 

the cylinder due to unrealistic relative locations of intermediate via points, which results 

in unrealistic overestimates of muscle-tendon length [24]. Therefore, three criteria were 

defined to determine whether or not a sampled wrapping configuration was physiologically 

valid, which depended on measurements of deviation, variability, and smoothness derived 

from the collected musculoskeletal geometries (Table S6). For each wrapping surface, all 

sampled combinations of wrapping surface parameters were analyzed following the above-

mentioned method and classified as a “non-physiological” or “physiological” wrapping 

configuration.

6) Classification of “Non-Physiological” Wrapping Geometries: To prevent 

EMG-driven model calibration from converging to a non-physiological set of wrapping 

surface parameters, we needed to inform the optimizer in an iterative and efficient manner 

whether wrapping surface parameters were “physiological” or “non-physiological.” In this 

study, support vector machine (SVM) models were adopted to recognize non-physiological 

combinations of wrapping surface parameters [32]. For every wrapping surface, after 

all physiologically unrealistic combinations of wrapping parameters were identified and 

labeled, an SVM model was trained with 1000 “training samples” of wrapping surface 

parameters and corresponding labels, where all six wrapping parameters were taken directly 

as “features” and third-degree polynomial kernel functions were consistently applied across 

all wrapping surfaces. Next, to implement efficient classification within EMG-driven model 

calibration, an optimal sigmoid function was fitted for each wrapping surface to calculate the 

continuous probabilities defining whether a combination of wrapping parameters is likely to 

be classified as “non-physiological” from the SVM-predicted scores sj [33]:

P sj = 1
1 + exp Msj + B (5)

This transformation function was dependent on the slope M and the intercept B, which 

were fitted for each wrapping muscles individually. A threshold value was calculated 

when sj was set as 0 for the jtℎ wrapping surface. If the computed probability was 

larger than the threshold value, the set of wrapping parameters was classified as a “non-

physiological” configuration and was rejected as an unrealistic solution within EMG-driven 

model calibration.

7) Training and Validation of Surrogate Models: Training of surrogate 

musculoskeletal geometric models began at the outer level for all muscles in the lower 

extremity musculoskeletal model, including those with and without wrapping surfaces. 

Outer-level polynomial coefficients defined in Eqs. (1) and (3) were calculated by solving 

linear least squares problems, where the known inputs were sampled joint angle, muscle-

tendon length, and muscle moment arm time histories. This solution process fit sampled 

muscle-tendon length and moment arm data simultaneously. Next, inner-level polynomial 

coefficients defined in Eq. (4) were calculated by solving additional linear least squares 

problems, where the known inputs were all “physiological” combinations of sampled 
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wrapping surface parameters. The accuracy of surrogate musculoskeletal geometric models 

was evaluated using 250 new combinations of wrapping surface parameters sampled in 

the same six-dimensional space (named “validation samples”) and 500 new sets of model 

poses (named “validation poses”). OpenSim muscle analysis was again performed for each 

validation sample of wrapping surface parameters at each validation combination of model 

poses. Non-physiological combinations of wrapping surface parameters in the validation 

set were also removed by following the same three criteria before comparing the model-

predicted and OpenSimcalculated musculoskeletal geometries.

D. Model Calibrations With Geometric Adjustments

1) EMG-Driven Musculoskeletal Model: In this study, an EMG-driven model 

calibration process was employed to adjust musculoskeletal geometries while 

simultaneously calibrating EMG-driven model parameter values. The combined calibration 

process extends a previously published EMG-driven model calibration process [6], [34]. 

Given processed EMG data, joint kinematics, and musculoskeletal geometries (muscle-

tendon lengths, velocities, and moment arms) as inputs, the EMG-driven model predicted 

net joint moments in the lower extremities following three steps. First, a nonlinear muscle 

activation dynamics model with electromechanical delay was used to determine muscle 

activation profiles from muscle excitations. Muscle excitations were derived by multiplying 

processed EMG signals by a set of scale factors that account for unknown maximum 

excitation levels [6], [35], [36]. Second, a Hill-type muscle-tendon model with a rigid tendon 

predicted muscle forces from muscle activations, muscle-tendon lengths, and muscle-tendon 

velocities [37], [38]. Last, net joint moments were calculated by combining estimated 

muscle forces with muscle moment arms. The joint moment produced by a muscle spanning 

a particular joint were represented as:

M = MA ⋅ Fo
m ⋅ a ⋅ fl Lm ⋅ fv vm + fp Lm cos α (6)

where M is the moment generated by the muscle about the joint, MA is the moment arm 

of the muscle about the same joint, Fo
m is the maximum isometric force of the muscle, a is 

the muscle activation, α is the pennation angle of the muscle, Lm is the normalized muscle 

fiber length, and vm is the normalized muscle fiber velocity. fl Lm  and fv vm  represent the 

normalized muscle active force-length relationship and the normalized muscle force-velocity 

relationship, while fp Lm  defines the normalized passive force-length relationship.

2) Muscle Geometric Adjustment Approaches: This study explored three different 

approaches for adjusting musculoskeletal geometries within EMG-driven calibration. First, 

as the primary focus of this study, musculoskeletal geometries for muscles with cylindrical 

wrapping surfaces were predicted by the proposed two-level surrogate musculoskeletal 

geometric models defined by Eqs. (1) to (3), both of which are functions of joint 

kinematics and muscle wrapping surface parameters. We allowed cylindrical wrapping 

surface parameters to be altered during the optimization process such that the outer-level 

polynomial coefficients and muscle-tendon geometries were updated accordingly. This 

method was named physical geometric adjustment (henceforth called “PGA”). Second, 
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musculoskeletal geometries of all muscles in the EMG-driven model were calculated 

using outer-level surrogate models that were controlled by joint kinematics alone. Instead 

of being controlled by wrapping surface parameters, independent outer-level polynomial 

coefficients were directly tuned during optimization to achieve geometric adjustment. 

This method was named surrogate geometric adjustment (henceforth called “SGA”) [6]. 

Third, musculoskeletal geometries of only muscles with cylindrical wrapping surfaces were 

determined using outer-level surrogate models, where outer-level polynomial coefficients 

were again design variables in the optimization. However, unlike SGA, this approach 

did not adjust musculoskeletal geometries for muscles without a cylindrical surface. This 

method was named limited surrogate geometric adjustment (henceforth called “LSGA”). In 

addition, to establish a control for comparison, we also performed optimizations where no 

musculoskeletal geometries were adjusted (henceforth called “NGA”).

3) EMG-Driven Model Calibration: Within EMG-driven model calibration, a sequence 

of non-linear optimizations was performed such that the net joint moments produced by the 

model Mi
mod  matched experimental joint moments obtained exp from OpenSim Inverse 

Dynamics analyses Mi
exp  as closely as possible. The primary cost function term was defined 

as follows:

J =
i = 1

N
Mi

mod − Mi
exp 2

(7)

where N is the total number of joints. The variables calibrated for each muscle-tendon 

actuator by the optimization process included 1) electromechanical delays, activation 

dynamics time constants, activation non-linearization shape factors, and EMG scale factors 

that described subject-specific EMG-to-activation relationships; 2) optimal muscle fiber 

length and tendon slack length that described subject-specific muscle force-generating 

ability; 3) variables involved in geometric adjustment: outer-level polynomial coefficients 

for LSGA or SGA, and wrapping surface parameters for PGA. The cost function not 

only aimed to minimize errors in joint moment curves but also included penalty terms as 

“soft constraints” to restrict deviations of model parameter values and curves away from 

the initial model. Furthermore, inequality constraints, referred to as “hard constraints,” 

were incorporated into the problem formulation to ensure that normalized muscle lengths 

remained within realistic ranges, to prevent sign reversal of muscle moment arms for both 

SGA and LSGA approaches, to enforce customized bounds on the muscle wrapping surface 

parameters, and to ensure that wrapping surface parameter values were physiological for 

PGA. Further details can be found in the supplementary materials.

In this study, experimental data from ten gait cycles (five cycles per available speed) were 

adopted for model calibration (henceforth called “calibration trials”), while experimental 

data from an additional ten gait cycles were used for model validation (henceforth 

called “validation trials”). The optimized model parameters, including activation dynamics 

model parameters, Hill-type muscle-tendon model parameters, and wrapping surface model 

parameters, obtained during the calibration process remained unchanged throughout the 

validation process.
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For the PGA implementation, the upper and lower bounds for the parameters of each 

wrapping surface were selected to be consistent with the upper and lower limits for 

sampling. For a given wrapping surface, a nonlinear constraint was added to the 

optimization problem formulation to prevent the solution from converging to a “non-

physiological” wrapping configuration, which required the probability of a set of parameters 

being classified as ‘non-physiological’ to be below the corresponding threshold value.

E. Hip Contact Force Calculation

This study also investigated how personalized muscle wrapping surfaces impacted estimated 

hip joint contact forces (HJRF) during walking. Hip joint contact forces were calculated 

using OpenSim for models with generic and personalized wrapping surfaces across all 

calibration walking trials. During analysis, muscle forces predicted using NGA-based EMG-

driven models were used to actuate the model with generic wrapping surfaces, while 

muscle forces estimated using PGA-based EMG-driven models were employed to actuate 

the optimized model with personalized wrapping surfaces.

F. Evaluation Metrics

Several common metrics were employed to quantify the performance of surrogate 

musculoskeletal geometric models and the reliability of EMG-driven model predictions 

generated using geometric adjustment. First, root mean square error (RMSE) values 

between the estimated musculoskeletal geometries using the two-level surrogate geometric 

models and the generated musculoskeletal geometries using OpenSim muscle analysis were 

computed to evaluate the performance of the proposed two-level surrogate musculoskeletal 

geometric models. Second, mean absolute error (MAE) values between the personalized 

musculoskeletal geometries following EMG-driven calibration and the generic OpenSim-

derived musculoskeletal geometries were calculated to quantify the changes of muscle-

tendon lengths and moment arms with different geometric adjustment approaches. Third, 

MAE values between inverse dynamic and model predicted net joint moments were derived 

to evaluate the EMG-driven joint moment tracking performance using different geometric 

adjustment strategies. Last, to illustrate the difference between NGA- and PGA-based 

HJRFs, peak values in resultant HJRF near 20% of the gait cycle were calculated and 

compared. HJRFs could not be calculated for the SGA and LSGA methods since physical 

muscle lines of action are not produced by those methods.

Multiple statistical analyses were performed to assess whether the calculated metrics were 

statistically different across different geometric adjustment approaches. First, we performed 

a single-factor analysis of variance (ANOVA) with a Tukey-Kramer post-hoc analysis on 

MAE values to investigate whether the geometric adjustment approaches had a significant 

influence on the accuracy of joint moment prediction. Second, we performed paired t-tests to 

investigate whether joint moment estimation accuracy and magnitudes of muscle forces and 

muscle activations were significantly different between each geometric adjustment approach 

and the case where no geometric adjustments (NGA) were made within EMG-driven model 

calibration. Third, we ran paired t-tests to compare changes in musculoskeletal geometries 

from original values for each of the three geometric adjustment methods. Last, we assessed 

whether peak values of HJRFs were statistically different between PGA and NGA using 
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paired t-tests. All statistical analyses were performed in MATLAB, and significance levels 

were set at p < 0.05.

III. Results

For both calibration and validation trials, PGA produced significantly more accurate joint 

moment estimates for all three hip DOFs than did NGA (Table I, p < 0.05). Knee moments 

estimated by PGA were also significantly more accurate than those from NGA for the fastest 

speed (p < 0.05), while ankle moment estimates from PGA were not significantly different 

from those found by NGA. For joint moment estimates that were not statistically different 

between PGA and NGA, PGA always produced lower mean MAE errors. In contrast, 

SGA and LSGA produced significantly more accurate joint moment estimates for all six 

DOFs than did NGA (Table I and Fig. S5). The one exception was the ankle plantarflexion-

dorsiflexion moment estimated by LSGA for the validation trials at self-selected speed, 

through the mean MAE error for LSGA was lower than for NGA.

Absolute changes of musculoskeletal geometries using different geometric adjustment 

methods were quantified by MAE values calculated between the optimized (SGA, LSGA, 

or PGA) and scaled generic (NGA) musculoskeletal geometries (Table S3). Paired t-tests 

indicated that for musculoskeletal geometries associated with the three hip DOFs, there were 

no significant differences in absolute changes among SGA, LSGA, and PGA (p > 0.05). 

However, for musculoskeletal geometries associated with the knee DOF and two ankle 

DOFs, changes in moment arms were significantly larger for LSGA and SGA than for PGA 

(p < 0.05). For changes in muscle-tendon lengths, average absolute changes were less than 

0.17 cm for SGA, 0.41 cm for LSGA, and 0.88 cm for PGA. For changes in moment arms, 

average absolute changes were less than 0.85 cm for SGA, 1.22 cm for LSGA, and 0.84 

cm for PGA. Taking the results of iliacus as an example (Fig. 2), there was an observable 

discrepancy for hip moment arms among the three approaches, where LSGA and SGA 

produced larger changes than did PGA when comparing calibrated and original moment 

arms in terms of both shape and magnitude. Also, personalized locations, orientations, and 

radii of wrapping surfaces produced by PGA differed significantly from those of the scaled 

generic models (p < 0.05, Fig. 2 and Table S4).

Hip joint reaction forces (HJRFs) were estimated using models with original and calibrated 

wrapping surfaces, respectively, when walking motions for analysis were matched (Fig. 3). 

The profiles of resultant overall hip contact forces calculated by the two methods were 

similar in shape. However, compared to the non-adjusted wrapping surfaces, PGA-calibrated 

wrapping surfaces yielded significantly lower average peak values near 20% of the gait 

cycle.

IV. Discussion

This study incorporated personalization of cylindrical muscle wrapping surfaces into the 

EMG-driven musculoskeletal model calibration process, which produced subject-specific 

EMG-driven model parameter values and physical OpenSim models with personalized 

muscle wrapping surfaces simultaneously. On the one hand, our method could help avoid 
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the need to collect medical imaging data and provide a new path for personalizing a large 

number of muscle wrapping surfaces simultaneously. On the other hand, scaled generic 

muscle-tendon lengths and moment arms have been reported to be one of the primary 

sources of joint moment matching errors for EMG-driven model calibration [6], [11], [39]. 

Our method allowed wrapping surface parameter values to be adjusted during optimization, 

which significantly improved joint moment prediction due to the use of personalized 

musculoskeletal geometries.

We developed two-level surrogate musculoskeletal geometric models that allowed actual 

OpenSim musculoskeletal geometries to be updated when both joint kinematics and 

OpenSim muscle wrapping surface parameter values were changed concurrently (Fig. S2). 

Two-level surrogate models were employed for several reasons. First, two-level structures 

could reduce the number of possible terms that appeared in each polynomial function, which 

enabled us to fit musculoskeletal geometries without encountering the issue of overfitting. 

Second, outer-level polynomial functions were constructed using only joint kinematics as 

inputs, allowing physical constraints between muscle-tendon length and moment arms to 

be imposed in a straightforward manner [6]. Third, we could flexibly adjust the power of 

variables in each category when implementing linear regression fitting at the corresponding 

level. Fourth, once muscle wrapping surface parameter values were personalized, outer-level 

polynomial coefficients became readily available, where outer-level surrogate models could 

be adopted for further applications with extremely low computational cost.

Our PGA-based adjustment of wrapping surface parameter values within EMG-driven 

model calibration was isolated from OpenSim to reduce computational cost, which 

required a continuous and accurate model capable of determining whether a wrapping 

surface configuration was “physiological” or “non-physiological.” SVM models were 

advantageous for accurate classification of “non-physiological” combinations of wrapping 

surface parameters due to observations that in most prescribed six-dimensional spaces for 

wrapping surface parameters, “non-physiological” or “non-anatomical” wrapping surface 

configurations normally happened when multiple parameter values were close at the edges 

of the design space, where the boundary plane between two classes was feasible to describe. 

Moreover, posterior SVM score-to-probability models consistently output probability values 

between 0 and 1 across wrapping surfaces, which facilitated implementing nonlinear 

constraints during optimization.

Among the three geometric adjustment approaches investigated in this study, PGA yielded 

the smallest improvement in joint moment prediction accuracy while SGA produced the 

largest improvement (Table I). This observation can be explained by the number of design 

variable available for adjustment and number of muscles adjusted by each of the three 

methods. First, for any muscle, SGA and LSGA introduced substantially more design 

variables into the optimization problem formulation than did PGA. Taking iliacus as an 

example, its geometries were controlled by only six wrapping surface parameters with PGA, 

while 41 independent outer-level polynomial coefficients controlled them with SGA and 

LSGA for the left leg of S1. Second, geometric adjustments were performed on a larger 

number of muscles with SGA than with LSGA and PGA. SGA permitted muscle-tendon 

geometries to change for all 34 muscles for S1 and all 33 muscles for S2. However, LSGA 
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and PGA modified geometries only for 14 muscles per leg muscles that contacted cylindrical 

wrapping surfaces during walking.

Muscle-tendon lengths and moment arms derived with PGA were close the original generic 

values in terms of both magnitude and shape and were more realistic physically than those 

produced by SGA or LSGA, especially at the hip (Fig. 2 and Table S3). Unlike SGA and 

LSGA, which were implemented with outer-level surrogate models alone, PGA employed 

two-level surrogate models, which maintained not only the physical relationship between 

muscle-tendon lengths and moment arms [30] but also physical constraints inherently 

imposed by realistic wrapping surface configurations. Also, PGA produced relatively large 

deviations of musculoskeletal geometries for only a small number of hip muscles (e.g., 

iliacus, psoas, and gluteus maximus middle), whereas SGA and LSGA spread out their 

adjustments over a larger number of muscles.

This study develop the PGA method to address two limitations found in the SGA and LSGA 

methods. First, the PGA method eliminates non-anatomical musculoskeletal geometry 

solutions which occur for some muscles with the SGA and LSGA methods. In the PGA 

method, the polynomial coefficients in the outer-level surrogate models are no longer 

treated as independent variables. Instead, these coefficients are controlled by a set of 

six wrapping surface parameters. This modification reduces the likelihood of the model 

converging to non-anatomical solutions for muscle-tendon lengths and moment arms, as 

evidenced in SGA and LSGA solutions. Second, the PGA method makes it possible to 

convert a musculoskeletal geometry solution into physical wrapping surfaces in an OpenSim 

musculoskeletal model, which is not possible with the SGA and LSGA methods. This 

capability could broaden the application of personalized musculoskeletal models to tasks 

such as custom implant design.

Overestimated hip joint reaction forces have been reported in several papers that estimated 

muscle forces using static optimization [12], [13], [40] or EMG-informed models [41] 

applied to musculoskeletal models with generic wrapping surfaces. Wesseling et al. [13] 

and De Pieri et al. [12] reported that the use of MRI data to increase the level of subject-

specificity in hip muscle wrapping geometries resulted in decreased resultant hip contact 

forces during walking. We observed the same trend when our resultant hip joint contact 

forces calculated by PGA were compared with those produced by scaled generic models 

(Fig. 3), suggesting that some level of hip geometry personalization may be important 

for estimating hip joint contact forces reliably. There were two potential reasons behind 

these similar findings. First, our study and the two previous studies [12], [13] found that 

subject-specific muscle wrapping surfaces increased moment arms of hip flexor muscles 

(e.g., iliacus and psoas) in the sagittal and frontal planes (Fig. 2), where these muscles make 

major contributions to hip contact force [11]. Larger moment arms with the same net hip 

moments mean that smaller forces are required from those muscles, thereby decreasing hip 

joint contact forces (Fig. S3) [13]. Second, muscle wrapping surface configurations had a 

considerable effect on muscle lines of action and directions of muscle forces [12], [40]. 

Therefore, the components and orientations of the resultant hip contact force were affected.
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The improvement in joint moment estimation accuracy within our EMG-driven modeling 

method can be attributed to adjustment of musculoskeletal geometries rather than muscle 

activations and muscle force-generating properties. We formulated our optimization problem 

to penalize deviations of model parameter values away from designated reference values, 

which reduced the influence of musculoskeletal geometric adjustments on the solutions 

found for other model parameter values. The estimates of muscle activations (Fig.S4) 

and muscle-tendon model parameters (Fig.S6) demonstrated a high degree of similarity 

across various geometric adjustment approaches, suggesting that musculoskeletal geometric 

adjustements had little influence on the estimation of muscle activations and muscle force-

generating properties. The primary cause of changes in muscle forces could therefore be 

attributed to alterations in muscle-tendon lengths, which lead to modifications in normalized 

muscle fiber lengths.

In addition to the future research directions suggested above, our study possesses several 

limitations that would be worth addressing in the future. First, we could not validate 

the personalized muscle wrapping surfaces with our current datasets, since the necessary 

medical imaging data were not available from our two subjects. Second, joint moment 

prediction errors were lower with SGA and LSGA than with PGA, which demonstrated 

that there is still room for improvement by personalizing other musculoskeletal geometric 

features, such as muscle origin and insertion points, or the number and paths of multiple 

heads used to represent a single muscle. Third, we modeled only a single task – walking 

at two speeds. Movement datasets collected during multiple daily activities functional 

activities other than walking have been used for EMG-driven model calibration [42], 

[43]. If richer datasets were used for model calibration, such as movements with larger 

ranges of motion (e.g., squatting and stair climbing), then the variation of muscle activity 

and musculoskeletal geometry would be more pronounced, which in turn would improve 

the robustness and reliability of the calibrated model. Fourth, our developed approach 

concentrated on personalizing cylindrical wrapping surface geometry, which sped up 

musculoskeletal geometry calculations compared to ellipsoidal wrapping surfaces [28]. It 

would be worthwhile to explore how well a similar approach would work for other types of 

wrapping surfaces (e.g., ellipsoids, spheres). Last, to increase computational efficiency, we 

used a rigid tendon model in our Hill-type muscle-tendon models. Previous researches have 

shown that rigid and compliant tendon models yield nearly identical muscle force estimates 

for slow movements like walking at a healthy speed but different muscle force estimates for 

faster movements like running [44], [45]. Both of our stroke subjects walked at slow speeds, 

suggesting that use of a compliant tendon model was appropriate. Nonetheless, it would be 

valuable to extend our method to Hill-type muscle-tendon models with compliant tendons 

so that our EMG-driven model calibration process could be applied to tasks involving fast 

movements.

V. Conclusion

The EMG-driven model calibration method presented in this study made several valuable 

contributions. First, two-level surrogate musculoskeletal geometric models were developed 

such that actual OpenSim musculoskeletal geometries were accurately, reliably, and 

efficiently estimated when joint kinematics and OpenSim muscle wrapping surface 
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parameters were changed. Second, SVM classification models were created automatically 

that could accurately determine whether a given combination of wrapping surface 

parameters would lead to “non-physiological” wrapping behaviors in OpenSim. Third, 

as the core of this study, an EMG-driven model calibration method was developed that 

adjusted muscle wrapping surface parameter values to improve the prediction of both joint 

moments and hip contact forces during walking. Fourth, physical OpenSim models were 

updated accordingly with EMG-driven model calibration results such that muscle wrapping 

surfaces represented increased subject specificity. Our method provided not only a new 

approach for personalizing a large number of muscle wrapping surfaces, which requires less 

effort compared with construction of geometric models from MR and/or CT data, but also 

improved joint moment prediction accuracy when performing EMG-driven modeling.
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Fig. 1. 
Workflow for personalizing muscle wrapping surfaces while simultaneously personalizing 

EMG-driven model properties. Briefly, a two-level surrogate muscle-tendon geometric 

model was developed for each muscle with a cylindrical wrapping surface in OpenSim. 

The outer-level surrogate model fitted muscle-tendon lengths and moment arms sampled 

from OpenSim as a function of relevant joint angles using a quintic polynomial, while 

the inner-level surrogate model fitted the outer-level polynomial coefficients as a function 

of cylindrical wrapping surface parameter values using a cubic polynomial. Each two-

level surrogate model provided fast and reliable estimates of OpenSim muscle-tendon 

lengths and moment arms. During EMG-driven model calibration, wrapping surface and 

EMG-driven model parameter values were adjusted concurrently such that errors between 

model-predicted and inverse dynamics joint moments were minimized. A binary support 

vector machine (SVM) classification model and a posterior SVM score-to-probability model 

were developed to identify combinations of wrapping surface parameter values that led to 

non-physiological muscle-tendon geometry in OpenSim. These SVM models informed the 

optimization algorithm when a guessed combination of wrapping surface parameter values 

was non-physiological. The final step investigated how calculated joint contact force was 

impacted by wrapping surface personalization.
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Fig. 2. 
Representative muscle-tendon geometries for the iliacus obtained from EMG-driven 

model calibration performed using three different geometric adjustment approaches for 

both subjects. The last column to the right illustrates the difference between original 

wrapping surfaces (semi-cylinders in green, NGA) and personalized wrapping surfaces 

(semi-cylinders in red, PGA) associated with the iliacus (named “IL_at_brim”). Red lines in 

OpenSim models represent the muscle-tendon path of the iliacus.
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Fig. 3. 
Hip joint contact force calculated for all calibration trials using the original OpenSim 

model with nominal wrapping surfaces (NGA) and the calibrated OpenSim model with 

personalized wrapping surfaces (PGA).
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