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ABSTRACT

A general framework for first- and second-order reliability analysis of structures with
geometrical nonlinearity is presented. The structure is either linear or nonlinear elastic,
and is subjected to static loads. The material properties, geometry, and external loads of
the structure are considered as random variables or random fields. The failure criteria of

the structure is expressed in terms of limit-state functions.

Four major steps are involved in the first- and second-order reliability methods: (1)
selection of probability models for random variables and random fields, and representation
of the latter in terms of random variables; (2) transformation of the random variables into
a set of independent, standard normal variates; (3) iterative solution of a constrained
optimization problem to find the nearest point on the limit-state surface to the origin in the
standard normal space; and (4) integration of the failure probability using a first- or
second-order approximation of the limit-state surface. In the course of the optimization
programming, the structural response and its gradient with respect to the basic random
variables are required at each iteration step. The finite element method is used to compute
these two quantities. Analytical formulas for the gradient of the response are derived to
improve the efficiency and accuracy of the reliability computation. The formulas are in
terms of the tangent stiffness matrix and the initial load stiffness matrix, which are readily
available if Newton 'z method is used to solve for the structural responses. No iterations are

involved in the comz-utation of the gradient.

A general-purpose reliability code, CALREL-FEAP, is developed to perform the
finite-element reliability analysis. The reliabilities of a built-up column and a stochastic
plate with a random hole are studied using this code. Sensitivities of the failure probabili-
ties with respect to parameters in the probability distribution functions or in the limit-state
functions are examined. The usefulness of these sensitivity measures in structural design

process is demonstrated.
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CHAPTER 1
INTRODUCTION

1.1 General Remarks

There are various sources of uncertainty in structural design. External loads,
environmental factors, material properties and geometry of structures all usually possess
inherent variability. Incomplete statistical data, lack of understanding of structural
behavior, and simplified statistical and mechanical models give rise to further uncertain-
ties. For a proper assessment of structural safety, it is essential to take these uncertainties

into account in the analysis of structures.

The finite element method is undoubtedly the most powerful tool for the analysis of
complex structures. It has been proven to be effective in many areas of structural engineer-
ing. However, despite its popularity, the traditional finite element method is limited to
dealing with deterministic problems. As such, it is inadequate for the assessment of struc-

tural safety.

Methods of structural reliability analysis, employing concepts of probability and statis-
tics, account for the uncertain nature of structures and their environments. In recent years,
robust and accurate techniques for computing probabilities of failure have been developed.
However, the application of these techniques to structures is severely limited without a tool

to efficiently analyze the behavior of complex structures.

The main objective of this study is to combine the finite element method and the reli-
ability method into a general framework for the reliability assessment of structures. The
combined methodology is denoted here as the finite-element reliability method. Special
attention is given to the application of this methodology to geometrically nonlinear, elastic
structures. Another goal of this study is to develop a general-purpose computer code to

facilitate the application of the finite-element reliability method to real problems.



1.2 Approach of Analysis

The first- and second-order reliability methods (FORM and SORM) and the finite
element method are the main constituents of the proposed finite-element reliability method.
In the analysis, the FORM/SORM reliabiiity methods provide the basis for modeling and
analysis of uncertainties and computation of probabilities, and the finite element method

provides the necessary computational framework for analyzing complex structures.

There are five major component- in the finite-element reliability method: selection of
proper probability models and the associate probability transformations; discretization of
random fields (used in describing structural properties or external loads with spatial varia-
bility); search of the design point; computation of structural responses and their gradients;
and evaluation of the failure probability. These issues are discussed individually in the
present report. Existing approaches addressing these problems are described and com-
pared. For some problems, new techniques are proposed to improve the efficiency, stabil-

ity, and feasibility of FORM and SORM in the context of the finite element application.

An equally important issue in the finite-element reliability is the interpretation of
analysis results. In two example applications, failure probabilities are evaluated for a range
of mean axial forces, displacement thresholds, and correlation lengths of material-property
random fields. Measures of sensitivity of the reliability with respect to various parameters

are obtained and their use in structural design are discussed.

1.3 Literature Review

Structural analyses which combine the finite element method and the theory of proba-
bility or statistics were initiated in 1970’s. Such analysis techniques are usually denoted as
the probabilistic or stochastic finite element analysis. Basically, there are three types of sto-
chastic finite element methods; namely, simulation methods, perturbation methods, and

reliability methods.

The direct Monte Carlo simulation method wes used in many early works in stochas-

tic finite element analysis [e.g., 5,62]. In this brute-force method, deterministic analysis is



carried out for a series of parameters generated in accordance with their probability distri-
bution. The desired statistics of the response quantities, such as the mean, variance, and
exceedance probabilities, are then evaluated based on the generated sample. The Monte
Carlo simulation method has the advantage that it is adaptable to all types of problems and
the results can be obtained to desired accuracy. However, for practical problems with
many random variables or small probabilities this procedure is usually too expensive, since
a large number of solutions are needed to obtain reliable results. To reduce the computa-
tion cost, Shinozuka and Dasgupta [61] and Yam;zaki et al. [76] introduced the expansiox;;
Monte Carlo simulation method, in which the Neumann expansion technique is used in
deriving the finite element solution for the response variation. Since only the mean stiff-
ness matrix needs to be decomposed with this formulation, computation time is reduced
significantly. This method was used in Refs. 61, 76, and 63 to compute the means and
covariance matrix of the static and dynamic response quantities for structures whose
material properties possessed spatial variability. Although this method is claimed to be

applicable to nonlinear problems in Ref. 61, such application is doubtful.

The perturbation method involves the first- or second-order Taylor series expansion of
the terms in the governing equation of the structure around the mean values of the random
variables. The variation of the response is then obtained by solving a set of deterministic
equations. In this method, random variables are characterized by the first and second sta-
tistical moments. No distribution information is required. The aim of this method is to
compute the first and second moments of the response quantities. The first-order perturba-
tion method was used by Collins and Thomson [8] to obtain the statistics for eigenvalues
and eigenvectors of dynamic problems. Dendrou and Houstis [11,12] applied the method
to field problems for estimation of the statistical properties of the solution process. Baecher
and Ingra [6] and Righetti and Harrop-Williams [54] applied the same method to
geotechnical problems. Handa and Anderson [27] applied a similar approach to a beam
and a truss structure to estimate the first two statistical moments of structural displacements.

and stresses. Hisada et al. applied the first- and second-order perturbation methods to



linear and nonlinear problems [29,30], structures with uncertain foundations [51], stresses
caused by structural misfits [32], and eigenvalue and dynamic problems [31]. Similar
approaches were adopted by Liu et al. with applications to dynamic analysis of nonlinear
continua [41,42]. A stochastic finite-element techniqqe was developed by Lawrence [36]
using an energy-based approach. Similar to the perturbation method, the Taylor series
expansion is used in this method to derive the variation of response quantities. The per-
turbation methods have the advantage that they can be zpplied to a large variety of prob-
lems. However, these methods yield satisfactory results only when the variations of the
random variables are small. Furthermore, the perturbation methods are not suitable for
use in the safety assessment of structures. This is because the failure probability is usually
sensitive to the tail of the probability distribution. Since the perturbation methods expand
the governing equation at the mean values of the random variables, the error in the esti-

mation of the failure probability can be very large.

The reliability methods aim at evaluating the failure probabilities of structures.
Failure criteria of structures are specified in terms of limit-state functions, which define
surfaces separating the safe and failure sets. The first-order reliability method was used by
Der Kiureghian et al. [13,15,16,19] for static analysis of linear structures with random
properties, and by Igusa and Der Kiureghian [35] for dynamic analysis. Recently,
Arnbjerg-Nielsen and Bjerager [3] applied the same method to nonlinear frames and used
omission sensitivity factors to improve the efficiency of the computation. The first-order
method involves transforming the random variables into the standard normal space and
replacing the limit-state surface by a hyperplane at the point with the minimum distance to
the origin. Liu and Der Kiureghian [39] used the first- and seco;ld-order reliability
methods for static analysis of geometrically nonlinear trusses. The second-order method is
similar to the first-order method excépt that the limit-state surface is replaced by a second-
order surface. As such, the second-order method gives a better estimate of the failure pro-
bability, but it is more costly. A detailed description of these two methods is given in

Chapter 2. Tani et al. [65] applied the first-order second-moment reliability method to



laminated plate, and Liu et al. [43] used the same method for fracture mechanics. This
method is similar to the first-order method mentioned above except that the random vari-
ables are characterized only by their first two statistical moments instead of their probabil-

ity distributions. As a result, the failure probability by this method is ad hoc and crude.

An important issue in first- and second-order finite-element reliability is the computa-
tion of the response gradients. For linear structures under static loads, several investigators
[e.g., 4,19] derived analytical expressions for the gradient by taking the derivative of the
equilibrium equation with respect to the design parameter or the basic random variable.
Dems and Mrbz derived the gradients of displacement, stress, and strain responses of linear
structures in term of the solution of the primary and an adjoint structures [9,10]. This
method, however, is difficult to implement. To avoid explicit differentiation of the tangent
stiffness matrix, Dias and Nagtegaal [20] and Dias and Nakazawa [21] proposed an itera-
tive strategy to compute the gradient. This method may not be as efficient as the analyti-
cal approach, and it may fail to converge if the variation of the random variable is too
large. Nevertheless, it has the advantage that it is applicable to the case where a consistent
tangent stiffness matrix is not available. Although this method has only been applied to
linear structures, it is claimed to be applicable to mildly nonlinear problems as well. For
geometrically nonlinear, elastic structures, Wu and Arora [74] and Ryu et al. [57] derived
formulas for the response gradient in terms of the secant stiffness matrix. Since for non-
linear structures the secant stiffness matrix is not readily available, these formulas are of lit-
tle practical use. Ryu et al. [57] made an interpretation of these formulas in terms of the
tangent stiffness matrix. Their results are consistent with the formulas derived in this

study.

Other relevant issues, such as optimization schemes for finding the design point, the
discretization of random fields, and reduction of random variables are reviewed at length

in subsequent chapters.



1.4 Outline of Report

This report is organized as follows:

Chapter 2. First and Second Order Reliability Methods

The chapter begins with a general formulation of the structural reliability problem.
The first- and second-order reliability methods (FORM and SORM) for approximate esti-
mation of the failure probability are described. In these methods, i~ basic random vari-
ables need to be transformed into the standard normal space. Hence, vrobability transfor-
mations for different distributions of the basic random variables are described. An impor-
tant feature of FORM is that it provides sensitivities of the first-order failure probability
with respect to a given set of parameters. The formulas for these sensitivity measures are

given and their applications are briefly discussed.

Chapter 3. Optimization Algorithms for Reliability Analysis

FORM and SORM require the solution of a constrained optimization algorithm to
find the point with the minimum distance from the limit-state surface to the origin in a
standard normal space. In this chapter, several gradient-based optimization schemes are

compared for their suitability in this application, and a new algorithm is proposed.

Chapter 4. Finite Element Formulation of Geometrically Nonlinear Elastic Structures

As mentioned in Section 1.2, the finite element method serves as a means for analyz-
ing structures in the finite-element reliability method. In this chapter, continuum and fin-
ite element formulations of geometrically nonlinear problems are described, and analytical

expressions for the response gradient are derived.

Chapter 5. Computational Aspects of Finite Element Reliability Analysis

Several computational issues are discussed in this chapter. First, the adjoint method
is introduced to improve the efficiency in the computation of the gradient of the limit-state

function. Then, three issues regarding random fields are discussed: a convenient model for



describing non-Gaussian random fields; general guidelines for selecting random field mesh
size; and six methods for describing random fields in terms of random variables. Finally,
two methods are presented for reducing the number of basic random variables in the

optimization process of FORM and SORM.

Chapter 6. Computer Implementation

This chapter introduces the general-purpose finite-element reliability code CALREL-
FEAP. The features of the two constituent routines, CALREL and FEAP, are presented
and the linkage between the two is described. More details on the code are provided in

Appendix B.

Chapter 7. Application Examples

Two application examples are presented in this chapter to illustrate the proposed
finite-element reliability method and the capabilities of the CALREL-FEAP code. Special

attention is given to reliability sensitivity analysis and its potential use in structural design.



CHAPTER 2
FIRST AND SECOND ORDER RELIABILITY METHCDS

2.1 Introduction

The structural reliability problems of interest here are based on two fundamental
assumptions. First, the uncertainties in the structure and its environment are assumed to
be modeled by random variables. These may include the variabilities in the material pro-
perties, the structural shape, and the external loads. The set of basic random va:iables
describing these uncertainties are represented by a vector V = [Vi,...,Va]T. Second, the
structure may fail in any of a finite number of modes, and with respect to each mode it is
either in a safe state or in a failure state. For each mode, the state of the structure.is deter-

mined by the value of a limit-state function.

Structural limit states are usually defined in terms of structural responses and response
thresholds. The response thresholds may be included in vector V if they are random in
nature. The structural responses, denoted by a vector S, are functions of the basic random

variables, i.e.,
S =S8(V) 2.1)
The mapping from V to S is denoted the mechanical transformation of the structure. An

analytical expression for this transformation is available only in trivial cases. Other than

that, the transformation is in an algorithmic form, such as a finite element code.

The limit-state function for a given failure mode is expressed as an explicit function
of Vand §, i.e., g(V,S). In view of the mechanical transformation in Eq. 2.1, this is an
implicit function of the basic variables V. In general, it is possible to formulate the limit-
state function such that the set g(v,s)> 0 defines the safe state and the set g(v,s)=<0
defines the failure state. The boundary between the two sets, g(v,s) =0, is called the

limit-state surface. Thus, the probability of failure in the considered mode is given by

Py = f fv(v)dv (2.2)

g(v3)s0



where fy(v) is the joint probability density function (PDF) of V. The evaluation of the
failure probability for a single failure mode is called component reliability analysis. The
probability due to the combination of failure modes requires a system reliability analysis,
for which the component analysis is the basic element. This presentation will focus on
component reliability analysis. Details on system reliability analysis can be found in Refs.
22 and 49.

Although the expression for the failure probability in Eq. 2.2 appears simple, in prac-
tice it is almost impossible to perform the multi-fold integral directly, either analytically or
numerically. This is because the number of basic random variables is often very large (say
several tens or hundred) and the integration domain is implicit in V. Hence, alternative
methods are needed. The difference between various reliability methods lies in the
approach used for evaluating the multi-fold integral in Eq. 2.2. This study adopts the first-
and second-order reliability methods to assess the reliability of geometrically nonlinear,
elastic structures within a finite element framework. These two methods are reviewed in

detail in the following sections.

2.2 The First-Order Reliability Method

In the first-order reliability method (FORM), the basic random variables V are
transformed into a set of statistically independent, standard normal variates
Y = Y(V) (2.3)
This mapping, denoted the probability transformation, exists for continuous random vari-
ables and is invertible. Details of this transformation are discussed in Section 2.4. In
terms of the standard normal variates, the limit-state function is denoted
G(Y) = g(V(Y),S(V(Y))) (2.4)
Since the probability transformation is a one-to-one mapping, the probability content in the
failure domain is preserved in the standard normal space. Hence, in this space the failure

probability may be expressed by
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Pr= [ &@dy | 2.5)
G(y)=0

where ¢ (y) denotes the standard normal density of Y.

The standard normal space has three useful properties: (1) The probability density
function is rotationally symmetric about the origin, (2) it decays exponentially with the
square of the distance from the origin, and (3) the probability content of some simple sets
in this space are available for arbitrary dimensions. From the first two properties it follows
that the contribution to the integral in Eq. 2.5 comes mostly from the region around the
point on the limit-state surface that is nearest to the origin. The third property is used to
construct simple approximations to the probability integral. These approximations are
achieved by replacing the limit-state surface with an approximating surface fitted at the

nearest point for which the probability content is known.

In FORM, the limit-state surface in the standard normal space is replaced by its
tangent hyperplane at the point nearest to the origin (see Fig. 2.1). This point, denoted
y*, is known as the design point, and the distance from the origin to the point, denoted B,
is known as the reliability index. The first-order estimate of the failure probability is given
by

Py = I ¢ (y)dy = ®(-B) (2.6)
VG (y*) (y-y*)=0

where VG (y*) is the gradient of G (y) computed at y*, ®(.) is the cumulative distribution
function (CDF) of the standard normal variate, and ®(—) represents the probability con-
tent on the failure side of the tangent hyperplane. By the chain rule of differentiation, the

gradient VG (y) is

VG(y) = [ i&é:;sl_ .+ és‘(ay':gz' v’l,v]’v,y 2.7)

in which J,, = g:— is the Jacobian of the mechanical transformation, and J,, = J,, 1

where J, , = ng is the Jacobian of the probability transformation. The partial derivatives

of g (v,s) in the above expression are easily computed for any limit-state function explicit
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in v and s. The Jacobian of the probability transformation and its inverse are also easily
computed, as described in Section 2.4. For elastic structures, analytical expressions for J, ,

are derived in Chapter 4.

It is possible that the limit-state surface has multiple minimum distance points. In
that case, the surface is approximated by a polyhedron and system reliability techniques are

employed to improve the first-order probability esﬁmatc (see Ref. 49).

The main challenge in FORM is in finding the nearest point on the limit-state surface
to the origin. This is a constrained optimization problem. Optimization algorithms suit-
able for solving this problem have been investigated in an earlier study [38,40] and are

described in Chapter 3.

The first-order reliability method provides a good approximation of the exact failure
probability if the limit-state surface in the standard normal space is flat or nearly flat.
Nonlinearity in this surface may arise from the nonlinearity in the limit-state function,
g(V,S), or the nonlinearity in the probability transformation when V has a nonnormal dis-
tribution. A higher order approximating surface, such as a quadratic surface, may be used
to improve the accuracy of the approximation in such cases. Such a method is described in

the following section.

2.3 The Second-Order Reliability Method

In the second-order reliability method (SORM), the limit-state surface is replaced by
a sev.ond-order surface fitted to the design point. Such an approximation method was first
investigated by Fiessler et al. [23]. However, their results, which are derived for general
quadratic surfaces, are too cumbersome for practical use. In subsequent studies [e.g.,
7,17,47, 68], paraboloid approximations were used.

Two types of paraboloid approximations are used in SORM: the curvature-fitted para-
boloid [67,68], and the point-fitted paraboloid [17]. To construct these paraboloids, the
coordinates of the standard normal space are first rotated through an orthogonal transfor-

mation
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Y' = QY (2.8)
such that the new y’, axis coincides with the design point (see Fig. 2.2). This is achieved
by selecting the n-th row of Q as =VG (y*)/|VG(y*)|. The remaining rows of Q are
determined by a suitable orthogonalization scheme, such as the Gram-Schmidt algorithm

[66]. Thus, in the rotated space the limit-state surface is defined by
y'n = G'(y'n-l) (2'9)
where y'n 1= (¥'1,¥"25 " * »¥ 'n-1)-
The curvature-fitted paraboloid is determined by fitting its curvatures at the apex to

the main curvatures of the limit-state surface at the design point. The paraboloid is

defined by

’ l ’ ’
Y= B+ YAy (2.10)
in which A is the second-derivative matrix of G'(y’,-;). The elements of this matrix are

computed more conveniently from [67]

[QV%G (y*)QT);
= i,j=1,2,.,n-1 2.11
v = VGG g @10
In the special case where the coordinate axes y';, i =1, - - - ,n—1, coincide with the prin-

cipal axes of the limit-state surface, the matrix A is diagonal and the paraboloid is defined

by

1 n-1 2
Ya=B+ XKy (2.12)
254
where «; are the principal curvatures. More generally, this equation can be obtained by a
suitable rotation of the y’, _; axes, in which case k; represent the eigenvalues of A. These

eigenvalues are needed to compute the probability content of the paraboloid, as is

described later in this section.

Since only n—1 unknowns are involved in Eq. 2.12, a paraboloid tangent at the
design point can be defined given the coordinates of n —1 points on the limit-state surface.

However, the principal axes of the limit-state surface are unknown unless the eigenvalue
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problem for the second-derivative matrix A is solved. This can be a rather tedious task,
particularly for the finite-element application involving large number of random variables.
The motivation behind the point fitted paraboloid [17] is to avoid the eigensolution by
assuming that the y’; axes coincide with the principal axes of the paraboloid regardless of
the true orientation of the principal axes of the limit-state surface. This assumption elim-
inates not only the requirement of an eigensolution but also the second-derivative computa-
tion. In addition, the form in Eq. 2.12 greatly simplifies the probability computation.
Theoretically, only one point along each coordinate axis y’; is needed to compute the
principal curvatures k; of a paraboloid which has y’; as the principal axes. Nevertheless,
in the point fitting method two points are used along each axis to improve the surface fit-
ting. The fitting points on the surface are selected according to the following ad hoc rules
[2,17]: Along the positive(negative) direction of axis y’;, if the surface curves towards the
origin, a fitting point is selected such that its abscissa is kB(—kB), where k is a predeter-

mined coefficient (see Fig. 2.2). On the other hand, if the surface curves away from the

origin, a fitting point is selected such that it is at a distance Y B2+ (kB)? from the origin.

The coefficient k is selected as follows [17]:

1 for B=3
k = 3 (2.13)
-B— for >3

The preceding ruizs ensure that a fitting point is found under all circumstances, and that a

consistent approxiraation is achieved in all situations.

The two fitting points located in the plane of y‘; and y’, are used to define two
semi-parabolas with principal curvatures x,;, where the subscripts —i and +i denote the
negative and positive directions of y’; (see Fig. 2.2). The principal curvature x; of the fit-
ting paraboloid aiong axis y’; is, then, taken as the weighted average of x_; and

according to the following rule [17]:

1

1 1 1
- + (2.14)
Vies 2 Viepes  Viepes
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This rule defines a parabola whose probability content equals the sum of the probability
contents of the two semi-parabolas. It also has the effect of accounting for higher-order

effects, such as the case where the design point is an inflection point of the surface.

Mathematically, the assumption made in the point fitting method amounts to neglect-
ing the off-diagonal terms of the second-derivative matrix. The error due to this neglect is
analyzed in Ref. 17. If the limit-state surface is indeed a second-order surface, the curva-
ture fitting method givo; an exact result. However, the limit-state surface in general may
contain higher order terms. While these terms are entirely neglected in the curvature fit-
ting method, the point fitting method includes their contribution in an approximate
manner by fitting to the points away from the origin and by the use of the semi-parabolas
just mentioned. The point-fitting method also has the important advantage of being insen-
sitive to the noise on the limit-state surface, which may arise when the limit-state function
is in an algorithmic form. This advantage is of particular interest in the finite-element reli-

ability methods, which is the main concern of the present study.

Several formulas are available for computing the probability content of a parabolic
set. The first formula was proposed by Breitung in 1984 [7] and is

n-1
Ppy = Q('B)snl (1+ Bx;)™12 (2.15)

The above formula is asymptotically exact as B approaches infinity while Bxk; remain fixed.
This approximation is slightly improved for small values of B if the term Bx; inside the
parenthesis is replaced by [é (—B)/®(—B)lx; [33]. A much more accurate formula is
Tvedt’s so-called double-integral formula [68]

n-1

2_

Py = \/_¢(B)Reff (r,{[1+(52+2s)lﬂx,+i\/§u.<,]-m})

Jj=1

(B2 + 25) ™ Y2exp(—s —u?) dsdu (2.16)
where 7,{.} denotes the root with positive real part, x; are the principal curvatures, and

i = Y —1. This equation is computed numerically by Gauss quadratures. Very recently,
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Tvedt [69] has reported an exact single-integral formula for the probability content of the
parabolic set. An evaluation of this formula in the present study was not possible because

of time constraint.

The above formulas for P, require the computation of the eigenvalues of A. (It is
noted that an alternative form of Breitung’s formula is available [67] which only requires
the determinant of A). When the point-fitted paraboloid is used, A is diagonal and its

eigenvalues are readily available. This greatly reduces the required computation. i

2.4 Probability Transformation

When the basic random variables V; are statistically independent, a transformation to

the standard normal space is given by
Y = d)'l[FV‘(vi)] i=12,---,n (2.17)
where Fy,(v;) is the CDF of V;. This mapping is one-to-one, provided each Fy (v;) is a
strictly increasing function.
If the basic random variables are jointly normal, the transformation to the standard

normal space is given by
y=TIT(v-m) (2.18)
in which m is the mean vector of V, and T = L™}, where L is the lower triangular matrix

obtained from the Cholesky decomposition [64] of the covariance matrix of V.

In the most general case of dependent nonnormal variables, the choice of the
transformation depends on the form of the joint distribution of V. Hohenbichler and
Rackwitz [34] have suggested the use of the following transformation due to Segal [59] and
Rosenblatt [56]:

y1 = ©7YFy (v1)]
y2 = ®7YFy v (valv1)]

= Q-l[Fv‘ [v,V, - -'V,_,(Vi |V1, vy, 9"‘—1)]
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Yo = ®7Fy v, v, Onlviva, - vay)] (2.19)
in which Fy yy,...v,_(vi|v1,v2, - - - ,vi_;) denotes the conditional CDF of V; given
Vi=vy, V3=v,, ..., and V;_; = v;_;. This transformation, which is one-to-one provided
each conditional CDF is a strictly increasing function of its arguments, is applicable to all
types of joint distribution models. However, its use is convenient only when the condi-
tional distributions are directly available or can be easily obtained. Another drawback of
this transformation is that it is dependent on the ordering of the basic random variables.

As a result, FORM/SORM approximations employing this transformation are dependent

on this ordering.

In an earlier study [18], a joint distribution model, originally introduced by Nataf
[52], with prescribed marginal distributions and covariances was proposed. The joint PDF
of V is defined such that the variables Z= (Z,, - - - ,Z,) obtained from the marginal

transformations

G = (I)-I[FV‘(V[)] i=12,---,n (2’20)
are jointly normal. Using the rules of random variable transfomiation, it was shown that
the joint density of V that reproduces the prescribed marginals and covariances is given by
v, (v fv,(vd) - - fv.(va)

$(z1)d(z2) - & (z,)
where fy,(v;) = dFy, (v;)/dv; is the PDF of V;, and & ,(z,Co) is the n-dimensional normal

Fv(v) = ¢,(2,Co) (2.21)

density of zero means, unit standard deviations, and correlation matrix Cy. The elements
Poy; of the latter matrix are given in terms of the correlation coefficients py of V; and V;

through the integral relation [18]

Tr e ) vy -e
ow=JJ | ] [ — ,]¢z(z,,z,,po;,)dz, dz; (2.22)
-0 =00 i 0’1
where p; and o; are the mean and standard deviation of V,, respectively, and
& (2, zj, Po,q) is the bivariate normal density of zero means, unit standard deviations, and

correlation coefficient ppy;. For each pair of marginal distributions with known pij, the
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preceding equation can be solved iteratively for pg;;. Since this calculation is tedious, a set
of semi-empirical formulae relating pg;; to p;; for selected marginal distributions are

developed in Ref. 18.

The distribution model in Eq. 2.21 is valid under two conditions: (1) The mappings
in Eq. 2.20 are one to one. This is true if each marginal Fy, (v;) is strictly increasing. (2)
The correlation matrix Cy is positive definite. This condition is normally satisfied if V;'s

are not too strongly correlated.

The transformation to the standard normal space for the above distribution model is

given by

( A
®YFy (v1)]
y = Tz = T | ) » (2.23)

®YFy (v ]

in which Tg= Lg?, where Ly is the lower triangular matrix obtained from the Cholesky

decomposition of Cy. This transformation is invariant of the ordering of the random vari-

ables V;.

The above joint distribution model has several useful features. First, it is applicable
to an arbitrary number of random variables with prescribed marginals and covariances.
Second, using the transformation in Eq. 2.23, the resulting FORM/SORM approximations
are invariant of the ordering of the basic variables. Third, the required transformation in
Eq. 2.23 is computationally much simpler tl:an the transformation in Eq. 2.19 when the
conditional distributions are specified. Most importantly, this distribution can be used to
model nonnormal random fields [14]). This feature is particularly useful in modeling sto-
chastic material variability in finite-element reliability applications (see Chapter 5).

It is noted that all three transformations in Egs. 2.18, 2.19, and 2.23 for dependent
variables have triangular forms. That is, each Y; is only a function of V4, V5, ... , and V;.

and each V; is only a function of Y, Y,, ..., and ¥;. Hence, both the forward and back-



18

ward transformations are easily done. In particular, no decomposition is needed for the

inverse transformation from Y to V.

2.5 Parameter Sensitivity Analysis

An important feature of FORM is that it provides measures of sensitivity of the relia-
bility index and the first-order estimate of the failure probability with respect to the basic
random variables as well as the parameters defining the probability distributions or the
limit-state function. The first set of such sensitivity measures is with respect to the varia-
tions in the coordinates of the design point, y*, in the standard normal space. This sensi-
tivity measure is given by the gradient vector

VyeB = a(y*)T (2.29)
in which a(y*)T= VG (y*)/|VG (y* )| is the unit vector normal to the limit-state surface
at the design point and directed towards the failure set. This vector provides a measure of

relative importance of the standard variates Y;.

The sensitivity of B with respect to the coordinates of the design point, v*, in the ori-

ginal space is given by [16]

VB = —a(y* )TJy,vlyty‘ (2.25)
It is noted, however, that the values of V.+B are dependent on the units of V. Therefore,
to compare the relative importance of the basic random variables, Der Kiureghian and Ke
[16] defined the unit vector

Da(y)TJy,v
YV) =
® IDQ(Y)TJy,vl

where D is the diagonal matrix of standard deviations of V. The éomponents of this

(2.26)

dimensionless vector are scaled by the corresponding standard deviations to make the
respective variations statistically equivalent. Hence, the unit vector y(v*) at the design
point represents the scaled and normalized sensitivities of B with respect to the variations
in the coordinates of v*. As such, it provides a measure of relative importance of thé

basic variables V;. A useful application of the measures a and v is in reducing the
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number of random variables in the optimization process for finding the design point. The

details are discussed in Section 5.4.

Other measures of reliability sensitivity are with respect to the parameters in the dis-
tribution function of V and the limit-state function g(.). Let 8, denote the parameters
defining the distribution function of V (such as means, standard deviations, etc.) and 9,
denote the parameters defining the limit-state function, i.e., Fy(v,8;) and g(V,S,6,). It

can be shown [49] that the sensitivities of B with respect to 6, and 8, are given by

ay* (v*,8,)
Vo B = a(y*)T - ~|. 2.27)
1 ag (V* ,S* ,0,)
Ve B = :
el 7T R e P (228

For either set of parameters 8, the sensitivities of the first-order failure probability are

obtained by applying the chain rule to Eq. 2.6 and are

VoPr1= —4 (B) VB (2.29)

The above sensitivity measures can be extremely useful in the structural design pro-
cess. They can be used to identify the variables or parameters which have major influences
on the failure probability, thus providing an effective means for improving the design.
These measures also help in gaining insight into the complex behavior of structural sys-

tems. Example applications in Chapter 7 illustrate these facts.

2.6 Random Field Modeling

In finite-element reliability analysis, it is often the cuse that the material properties,
structural geometry, and external loads have random spatial variabilities and, hence, are
modeled by random fields rather than random variables. For an application within the
framework of the reliability theory described in this chapter, it is necessary that such ran-
dom fields be represented in terms of random variables. This subject is addressed in

Chapter 5.



20

FORM/SORM applications involving random processes fluctuating in time have been
studied by Igusa and Der Kiureghian [35], Guers and Rackwitz [26], Madsen [47], and
Wen and Chen [73]. This topic is beyond the scope of this report.



Plane

SAFE

21

FAILURE

Design
Point y*

Figure 2.1

Limit-State Surface

The First-Order Reliability Method



Semiparabola

Design
Point y*

22

Limit-State
Surface
4 ’ .
e
Fitting .
Point PR - \

P , -7 Semiparabola

Fitting
Point

B

2

Tangent

BV/1+k? Plane

Figure 2.2

The Point-Fitting Method



CHAPTER 3
OPTIMIZATION ALGORITHMS FOR RELIABILITY ANALYSIS

3.1 Introduction

The main effort in the first-order reliability method is in finding the minimum-
distance point from the limit-state surface to the origin. This is formulated as a con-
strained optimization problem:

P1: minimize F (y)
subjectto G(y) =0 (3.1)

where F(y)=yly/2 is the objective function and G (y) is the limit-state function in the
standard normal space. It is assumed here that the constraint, G (y) = 0, is continuous and

twice differentable.

This chapter examines and compares several optimization algorithms for the solution
of the above problem. Of special interest are the properties of various algorithms in con-

nection with their application to the finite-element reliability problem.

3.2 Basic Concepts of Optimization Programming

Necessary Conditions for Local Minima. The Lagrangian associated with the optimi-
zation program P1 in Eq. 3.1 is defined by [46]

I(y,\) = F(¥) + AG(¥) (3.2)
where A is a constant. If y* is a local minimum point of P 1, then there is a A*, der:oted
the Lagrange multiplier, such that [46]

Viy* A*)=y*T+ A\*VG(y*) =0 (3.3)
In addition, the Hessian of the Lagrangian, V2/(y* ,A*) = I + V3G (y*), is positive sem-
idefinite on the tangent plaﬁe M= {y:VG(y*)(y-y* )‘ = 0}, i.e., yTV2 (y* \*)y =0 for
all y on M.

Line Search. Most iterative algorithms discussed in this chapter have the same struc-

ture: From a starting point, y;, one determines a direction of search, d;, and then searches
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for a new point,

Yis1 =YV + & d; (3.4)
by adjusting the step length, &;, such that the objective function along the direction is

minimized. Although the new point is the optimal point along d,, it may not be the
optimal point of the entire feasible set. Hence, at the new point this process is repeated
until the point satisfies the optimality conditions. The main difference between various

algorithms is in the rule by which the search direction is selected.

The process of searching for the minimum point along a direction is called a line
search. Important line search schemes include the Newton method, quadratic fitting, cubic
fittirig, the false position method, and the Armijo rule [46]. In practice, in order to reduce
the total computation time, an ideal line search is seldom carried out. Instead, a criterion
is used to terminate the line search before the exact minimum is found. The criterion
ensures that the step size & is neither too large nor too small. Armijo’s rule [46] is a

popular criterion for terminating the line search.

Global and Local Convergence Properties. An iterative algorithm is said to be glo-
bally convergent if for any starting point it is guaranteed that the sequence of points will
converge to a solution. Conditions under which global convergence is ensured were
developed by Zangwill [77]. Local convergence properties are a measure of the ultimate
speed of convergence and are generally used to determine the effectiveness of an algo-
rithm. The speed of convergence of an iterative scheme is usually measured by its order of
convergence. Let the sequence of vectors {y,} converge to y* and E be a non-negative
error function satisfying E(y*) = 0. The order of convergence of {y;} is usually defined

as the supermum of the non-negative number p satisfying [46]

E
k-= E(y, )

If for the same sequence {y,},

(3.5)

. E(Yi+1)
hm — T < 1 3.6
ko E(y) ' (3.6)
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the sequence is said to converge linearly to y* with a convergence ratio p. A linearly con-
vergent algorithm is efficient if the convergence ratio is small. The convergence is called

superlinear if p = 0. Most algorithms discussed in this chapter converge linearly.

3.3 Program Structure

The structure of the optimization program plays an important role in the performance
of the algorithm.. P1 consists of two parts: the objective function and the equality con:
straint. The objective function is of pure quadfatic form, is convex, and its gradient 1s
simply y. Because of this simplicity, the objective function does not influence the perfor-
mance of the algorithm. The constraint G (y) = 0 is usually smooth and m;ice differenti-
able, but it is not necessarily convex. Furthermore, in the context of the finite element
reliability method, where the mechanical transformation in Eq. 2.1 is in an algorithmic
form and the size of y can be very large (e.g., several hundred), the computations of G (y)
and VG (y) are difficult since the former is not an explicit function of y. Therefore, the
constraint strongly influences the performance of the algorithm. Obviously, algorithms that
require the computation of the Hessian matrix V2G (y) would be impractical for such appli-
cations. In recent years, efficient algorithms for computing the gradient VG (y) for the
finite-element reliability method have been developed [15,39]. This subject is dealt with in

Chapters 4 and $ of this report.

3.4 Comparison Criteria

The criteria to test the performance of an algorithm should be formulated such that
both the problem structure and the characteristics of the optimization scheme are taken
into account. Following Lootsma [45], four &iteﬁa are proposed here to evaluate the per-
formance of various nonlinear optimization algorithms for application to finite element reli-
ability problems: (1) Generality -- The generality of an algorithm refers to the types of
problems that it can solve. Certain algorithms are restricted to specific types of problems..

For example, some methods require that the feasiole set of the problem be convex. These
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methods are rejected by the generality criterion, since {y : G(y) = 0} is usually not a con-
vex set. Other methods require the Hessian of the constraint, which may be difficult to
compute in structural reliability applications; (2) Robustness - Robustness refers to the
power of a method to solve problems with a required accuracy. It incorporates the global
convergence properties of the algorithm; (3) Efficiency - Efficiency is measured by the
effort required to solve a problem. It is dependent on the convergence rate of the algo-
rithm. In finite element reliability applications, efficiency can be measured by the numbers
of computations of G(y) and VG (y) that are needed to converge to the design point; and
(4) Capacity -- The capacity of a method refers to the maximum size of the problem that

can be solved by the method; it depends on the required and available computer storage.

Five nonlinear optimization algorithms are discussed in the following sections;
namely, the gradient projection method, the penalty method, the augmented Lagrangian
method, the sequential quadratic programming method, and a widely used method which
was specifically designed for the reliability problem. The basic ideas of these algorithms

are introduced and their performances are evaluated using the four criteria proposed

above.

3.5 The Gradient Projection Method

The gradient projection method, originally developed by Rosen [55], is a primal
method. A primal method is an iterative algorithm that solves the original problem
directly (in contrast to indirect methods) by generating a sequence of points which con-
verge to the optimal solution. Each point in the sequence lies in the feasible domain, and

the values of the objective function associated with these points decrease monotonically.

The gradient projection method is the modified version of the widely known steepest
descent method for unconstrained optimization. In the unconstrained case, the steepest
descent method generates a new point by a line search along the negative gradient direc-
tion at each iteration step. For constrained problems, since each point must remain in the

feasible domain, the search direction d, is taken to be the projection of the negative
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gradient of the objective function onto the tangent plane of the feasible set (see Fig. 3.1).
Hence, for program P1, the new search direction d; should satisfy VG (y,)d; = 0 and

VF (y)d; < 0, where VF (y;) = y;*. From these conditions, d, is expressed as

[— VG (y:)TVG (v:)
VG (y:) |2

Because the constraint may not be linear, the new search point could be infeasible. There-

dkg-

Yi 3.7

fore, a Newton-type correction is used to pull the point back to the feasible set (see Fig.

3.1).
A cycle of the gradient projection method may proceed as follows:
(1) Choose a feasible initial point yy and setk = 0.
(2) Compute VG (y;).
(3) Calculate d; from Eq. 3.7.
(4) Ifd, = 0, stop. Otherwise, seti = 0 and
i)  for the selected step size §; calculate
Ye+1= Y+ i dy (3.8)
ii) Repeatedly use the following quasi-Newton formula until G (y} 1 = 0 is satis-

fied within the required accuracy:

_ G (v +1)
IVG () 12

(5) Sety; toy;+;and k to k+1, and return to (2).

VG ()T (3.9)

Theoretically speaking, the step size § in Eq. 3.8 should be obtained by an exact line
search such that F (y; ,) (after the Newton-type correction) is a minimum along that direc-
tion. However, it is extremely time-consuming to do exact line search in a nonlinearly
constrained problem. Hence, the step size is usually selected based on a simple rule, such

as Armijo’s rule [46).
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The gradient projection method is applicable to the structural reliability problem since
it solves general constrained optimization problems. When applied to this problem, the
gradient projection method is globally convergent, since only one equality constraint exists.
Hence it satisfies both the generality and robustness criteria. In addition, because the gra-
dient projection method uses only the first derivative information of P1, only a few n-
dimensional vectors, such as y; and VG (y,), should be stored during the solution phase.
Compared with methods that require the storage of the n X n Hessian matrix, the gradient

projection method has a much larger capacity.

Since this method is the constrained version of the steepest descent method, it can be

shown that it converges linearly and its asymptotic convergence ratio is [46]

()

where ry is the condition number, i.e., the ratio of the largest to the smallest eigenvalue,

of the Hessian of the Lagrangian at the optimal point restricted to the tangent subspace M.
It is clear that the convergence is slower for larger r),. The asymptotic convergence ratio,
though usually not computed, serves as a theoretical tool to compare various methods.
According to the study of Lootsma [45], the gradient Aprojection method is rated as the
most efficient method among several general constrained optimization techniques. Hence,
the gradient projection method appears to satisfy all the proposed criteria and is appropri-

ate for solving the structural reliability problem.

3.6 The Penalty Method

The penalty method is a class of optimization algorithms which transform a con-
strained problem into an unconstrained problem by adding a penalty term ¢ P(y) to the
original objective function, where ¢ is a positive penalty parameter and P (y) is a penalty
function which satisfies P(y) = 0 in the feasible set and P (y) > O elsewhere. If the stan-
dard quadratic pgnalty function is adopted, the unconstrained penalty problem takes the

form
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P2: minimize +yTy+ 1cG(y) (3.11)

2 2
Suppose the penalty parameter ¢ approaches infinity. The minimization process will force
the solution to satisfy G (y) = 0 and minimize yTy/2 at the same time. Thus, P1 and P2
should yield exactly the same solutions. Once the penalty problem is set up, one can use

any unconstrained optimization technique to solve the problem.

The properties of the penalty method depend on the technique used to solve P2. As
mentioned earlier, it is impractical to compute the Hessian of the constraint. Therefore,
only methods using the first-order derivatives are acceptable. The performance of the
first-order schemes depend on the condition number of the Hessian of the objective func-
tion. Unfortunately, because of the penalty term, the Hessian is ill-conditioned. As a
result, the first-order schemes converge very slowly [38,40]. Furthermore, in first-order
reliability analysis, the failure probability is sensitive to the distance between the origin and
the design point. If the penalty method is adopted, the solution is never exact unless the
penalty parameter ¢ approaches infinity. Hence, one may not obtain a solution with
required accuracy by the penalty method. The penalty method is thus considered inap-

propriate because of the robustness and efficiency concerns.

3.7 The Augmented Lagrangian Method

As in linear optimization problems, the constrained problem P1 can be solved by
solving its associated dual problem. Algorithms which solve the dual problem instead of
the original problem are called dual methods. The dual problem corresponding to P1 is
[46]

D1: maximze §(\) (3.12)
Y(A) = minimum [1(y,\)] (3.13)

According to the Local Duality Theorem [46], the dual problem D1 and the primal
problem P1 have the same local solution if the primal problem has a local solution at y*
with Lagrange multiplier A*, and the Hessian of the Lagrangian, V2 (y* ,\*), is positive

definite. There is no guarantee, however, that in reliability problems the Lagrangian is
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convex near the solution of P1. Hence, unless some modification is made, the dual
method cannot be applied to the reliability problem.

The augmented Lagrangian method [24, 46], is a dual method which incorporates the
concept of the penalty method to eliminate the limitation on the ¢:al method. Instead of

solving D 1, the augmented Lagrangian method solves the associated dual problem of the
following program:

P3: minimze F(y) + -;-c G(y)?
subjectto G(y) =0 (3.14)
Note that this problem is equivalent to P 1, since the optimal solution is not altered by the

addition of the penalty term. It can be shown [46] that there exists a c* such that for all

¢ = c*, the augmented Lagrangian

LOAY) = F@) + M G() + 3¢ G()? (3.15)
has a local minimum at y*. In other words, if ¢ is sufficiently large, the Lagrangian asso-
ciated with P3 is made convex by the addition of the penalty term, and hence the dual
method can be applied. An important feature of this method is that it only requires ¢ to
be greater than c¢* to obtain an exact solution. Accordingly, the ill-conditioning of the
Hessian of the Lagrangian is resolved in comparison with the standard penalty method.

To use the augmented Lagrangian method, first choose an initial point yg, an initial
penalty parameter ¢, and an initial multiplier A;. Then, set k to 1 and execute the follow-
ing steps.

(1) Solve the unconstrained problem

$ c(\t) = minimum [1.(y,\;)] | (3.16)
and set y; to be the associated optimal point.

(2) Modify \; according to the following formula

M+1= M +cG(y) (3.17)
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(3) Increase c if the constraint violation has not decreased sufficiently in going from y, _;
to y;.

(4) Set k to k+1 and repeat steps (1) - (4) until optimality is achieved.

Note that the updating process in Eq. 3.17 is simply a steepest ascent iteration with a con-

stant step size ¢ for maximizing the augmented dual function ¢ .

The ahgmented Lagrangian method is globally convergent in application to the relia-
bility problem. It is more efficient than the standard penalty method, as mentioned ear-
lier, and if the steepest descent method is used to solve Eq. 3.13, its capacity is about the
same as the gradient projection method. Therefore, it is applicable to the reliability prob-
lem. However, this method is difficult to implement, because the user has to make initial
estimates on ¢ and \, and these initial values may influence the performance of the algo-

rithm.

3.8 The Sequential Quadratic Programming Method
Considering Egs. 3.1 and 3.3, the optimal point y* must be a solution of the follow-
ing simultaneous equations:

yT+AVG(@y) =0
G(y)=0 (3.18)

Lagrange methods find y* by solving the above equations instead of the original optimiza-
tion problem. The use of this method for solving the reliability problem was first suggested
by Shinozuka [60].

Many standard algorithms for solving systems of nonlinear equations are available.

The Newton method solves the above equations by the following recursive formulas [46]:

'y Y d
ol el e ]

where §; is the step length, and

a1 [V ) veenT] 7 -
- e[S o
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It can be shown [46] that d, and k; are the solution and the Lagrange multiplier of the

following quadratic program:

P4 : minimze %—dTVzl(yk A )d + yTd
subjectto  G(y;) + VG(y,)d =0 (3.21)

For this reason, The algorithm defined in Eqgs. 3.19 and 3.20 is referred to as the recursive
quadratic programming method, or the sequential quadratic programming method.

Schittkowski [58] proposed a sequential quadratic prograrhming scheme which has
become popular in the field of reliability analysis. The essential ideas of this method are
to replace the Hessian of the Lagrangian by an approximate matrix which is updated at
each step, and to use the augmented Lagrangian function in Eq. 3.15 to determine the step

length &, .
Without describing the derivations, the algorithm consists of the following steps:

(1) Select some positive tolerances ¢, e, {, and v with c>1, e<1, {<1, and v< %—

Choose initial values

2 = [{z] By =1 (3.22)
Define8_;=1andc_;=c.

(2) Solve the quadratic subproblem P4 or Eq. 3.20 and denote the optimal solution and

multiplier by d; and x;, respectively.

(3) Determine the new penalty parameter ¢ +1:

Compute
8 = min(d, B, d;/|d; |2,8;) (3.23)

{ |de 127 |k =g |2, i A # g
Ck =

e, otherwise (3’2_4)

and let i be the smallest positive integer with
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1 1 (Y -
< gab-7). (3.25)
Define
¢ = max(cg1,¢') (3.26)

Do line search. Evaluate the smallest nonnegative integer j which satisfies

L (e +Udg 0+ U (ke —0))

=1 (Ve M)+ VL (v, M) [K&d_"h] (3.27)
where I, (.) is the augmented Lagrangian function with penalty parameter ¢;. The
step length &, is then equal to {/.
Letyz41=yx + & dg and Myq = N+ & (kg —Ai).
Update the approximate Hessian, B, by the BFGS scheme [58],

1 T 1

Bisy1= By + —=—qqT— =B, d; d,'B (3.28)
& qTd, d,'B, d, *

where

q=06q +(1-06)&B;d, (3.29)
with

q = Vi(yr+1>sM+1) = V(¥ M) (3.30)

1 ifd,Tq'=0.2¢, d,7B, d;
o 0.8, d,TB, ¢, , (3.31)
== —— otherwise

£ 4,8, d, —d,"q

Repeat steps 2 to 6 until convergence is achieved.

This algorithm has several attractive features: it is applicable to general reliability

problems, it is globally convergent under mild conditions, and, best of all, the local conver-

gence is superlinear. There are, of course, trade-offs for the high efficiency. Namely, it

L‘ requires the storage of the (n + 1)X(n + 1) matrix on the right-hand side of Eq. 3.20 and

the solution of the associated (n + 1) equations at each step. Nevertheless, this algorithm

is appealing, especially when it is applied to finite-element reliability analysis of nonlinear
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structures. Compared with the computations required for the solution of the nonlinear
structural response, the solution of the (n + 1) equations is remunerative. Therefore,
although this method does not have as large a capacity as the other methods, it is con-

sidered suitable for the reliability problem.

3.9 The HL-RF Method

This method, originally proposed by Hasofer and Lind [28] for second-moment relia-
bility analysis and later extended by Rackwitz and Fiessler [53] to include distribution
information, is currently the most widely used method for solving the optimization problem
in structural reliability [49]. For brevity, this method is denoted herein as the HL-RF
method. Unlike the previous methods, the HL-RF method is a specific iterative scheme
rather than a class of algorithms, and it only solves problems having the form P1. This

method is based on the following recursive formula:

Yis1= V6 () v — G () 1VG (7)) T (3.32)

1
VG (yi)|

It can be shown that this method is a special case of the sequential quadratic programming
method, in which the Hessian of the Lagrangian is approximated by an identity matrix

and the step length is §;, = 1.

In comparison with other methods, the HL-RF method requires the least amount of
storage and computation in each step. In addition, experience shows that for most situa-
tions this method not only converges but also converges fast. However, as shown in an
earlier study [38], this method may fail to converge. Therefore, modifications have been
suggested to improve its robustness. Rackwitz, et al. [1] proposed two modified pro-
cedures. One uses y; and y; +; from Eq. 3.32 to define a new iteration point such that it
satisfies the linearized constraint. The other involves two sub-iterations, one using a pure
Newton search to locate a point on the feasible set, and the other searching along a tangent
direction to find a point whose pdsition vector is as parallel to its gradient as possible.

Both modifications appear to be ad hoc. The robustness of the former procedure is not
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guaranteed. The second procedure would require more computations than the gradient

projection method.

Another way to improve the robustness of the HL-RF method is to introduce a merit
function m(y) to monitor the convergence of the sequence. The merit function should
have a global minimum at the solution point of P 1 and it should decrease in each iteration

step. Since the solution point of P 1 satisfies G(y*)= 0 and y* + \* VG (y*) = 0, where

L ] *
*= - -vﬂul-z-, a non-negative merit function can be constructed as
VG (y*)|
1 VG(y)y 2, 1 2
m(y) = >1ly- VG |*+ 5cGy (3.33)
2 VG () I? 2

where c is a positive constant. Obviously, all minimum points of P 1 are global minimum
points of m(y). In the modified HL-RF method, the new iteration point is selected by a

line search along the direction vector

4 1 FIV600% ~GONIVE0)T -0 (3.34)

TS
until a sufficient decrease in m (y) is achieved.

The merit function in Eq. 3.33 is a convenient guide for selecting the step size, since
it is in terms of quantities which are already known. However, the function may have
local minima which are not the solution points of P1, and d; may not be a descent direc-
tion of m(y). Therefore, the global convergence of this modified algorithm is not
guaranteed. Nevertheless, the modification greatly improves the robustness of the original

HJ.-RF method, as numerical examples in the next section will show.

3.10 Comparison of Algorithms

Based on the analysis in the previous sections, the gradient projection method (GP),
the augmented Lagrangian method (AL), and the sequential quadratic programming
method (SQP) appear to be promising methods in solving the reliability problem. The
modified HL-RF method (MHL-RF) requires further testing to examine its robustness.

The original HL-RF method, though not robust, is of interest since it is presently widely
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used to solve the reliability problem. These five algorithms are coded into a computer pro-

gram so that their performances can be further investigated through numerical examples.

Five examples are used to examine the performance of the above algorithms. Three
measures of comparison are selected: the numbers of computations of G (y) and VG (y),
and the CPU time required by each method to converge. In all the examples the gradient
vector VG (y) is computed analytically, and the initial values of the parameter \ in the AL
method is taken to be zero. The tolerance used for checking convergence is identical for
the various algorithms. Because of the limited number and type of examples, the results
may not be representative of the overall performance of the algorithms. However, by way
of this limited comparison, useful insight into the relative merits of the algorithms is
gained.

Example 3.1 This example is taken from the reliability analysis of a pipeline where
the limit-state surface was generated by response-surface fitting. The limit-state function is

g(V) = 1.1-0.00115V,V,+ 0.00157V# + 0.00117V
+0.0135V,V3—0.0705V, —0.00534V, —0.0149V V4

—0.0611V,V4+ 0.0717V V4 —0.226 V3 + 0.0333V #
—0.558V3V,4+0.998V,—1.339V} (3.35)

where V4, V,, V3, and V4 are statistically independent random variables; V4 has a type-II
largest value distribution with a mean 10 and a standard deviation 5; V, and V3 are both
normal with means 25 and 0.8 and standard deviations 5 and 0.2, respectively; and V 4 has

the lognormal distribution with a mean 0.0625 and a standard deviation 0.0625.

Starting from the mean point, all algorithms converged to the point
v* = [15.09,25.07,0.8653,0.04582) T with B = 1.36, except the HL-RF method which exhi-
bited a seesaw behavior after 25 iterations. Table 3.1 lists the number of computations of
G(y) and VG (y) and the CPU time (on MicroVax II/GPX) spent by these four methods.
These results are based on an initial value of ¢ = 2x10? for the AL method, and ¢ = 10
for the MHL-RF method. These two methods were also tested for other values of c. Tﬁe

efficiency and accuracy of the MHL-RF method only varied slightly for ¢ ranging from 1
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to 105. The AL method did not converge to the exact solution point for initial values of ¢
less than 2x10%, and it became inefficient when ¢ was taken greater than 10°. For
instance, for ¢ = 10°, 929 computations of G (y) were performed before convergence was
achieved. Thus, the performance of the AL method is sensitive to the selected value of c.
This property is undesirable since the optimal value of ¢ varies from problem to problem
and is usually unknown. It is apparent from Table 3.1 that, for the present example, the
SQP method is the most efficient among the various methods. However, one should note
that the solution time for this example may not be a meaningful measure of efficiency

because of the small size of the problem.

Example 3.2 In some applications the limit-state function may contain noise, which
may arise from errors in numerical routines, such as numerical integration, equation solu-
tion, or eigenvalue solution required as a part of the finite element analysis. To examine
the performances of the five algorithms for such an unfavorable situation, the limit-state
function

6
g(V) = V{+2V,+2V3+V,4—5Vs—5Vg+0.001 3 sin(100V;) (3.36)
i=1

is selected which has high-frequency, artificial noise. The six random variables in this
function are statistically independent with lognormal distributions. V; to V4 have means
120 and standard deviations 12; Vs has a mean 50 and a standard deviation 15; and V¢

has a mean 40 and a standard deviation 12.

Starting frum the mean point, the GP, SQP, and MHL-RF methods converged to the
solution point v* = [117.3,115.3,115.3,117.3,83.62,55.54] T with B = 2.3482. The HL-RF
method exhibited an unstable behavior, and the AL method failed to converge to a solu-
tion because of the noise. To check whether the solution obtained with the first three
methods is a globally minimum point, the problem was reanalyzed with the noise terms
removed. All solutions using different starting points converged to the same point as in

the case with noise. Hence, it is believed that the solufion obtained is a global minimum

point.
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The required computations by the GP, SQP, and MHL-RF methods (the latter with ¢
= 10) are listed in Table 3.1. Since the computations of G (y) and VG (y) for this problem
take equal time, from the results in Table 3.1 one may conclude that the GP and MHL-RF
methods are slightly more efficient than the SQP method for this example. However, this
result is dependent on the selected value of ¢ for the MHL-RF method. Further investiga-
tion with the MHL-RF method revealed that the efficiency of the method was best for
10 = ¢ = 2000, which included the selected value of ¢. For values of ¢ outside this range,

the convergence of the MHL-RF method slowed down considerably.

Example 3.3 The reliability of the three-bay, five-story, lincal; elastic frame structure
in Fig. 3.2 is examined. Taken from Ref. 38, This problem has 21 basic random variables:
3 applied loads, 2 Young’s moduli, 8 moments of inertia, and 8 cross-sectional areas. Sta-
tistical dependence between loads, material properties, and member dimensions is con-
sidered. Of interest is the probability that the horizontal displacement at node 1 exceeds
0.2 fi. Thus, the limit-state function is expressed as

g (uy(v)) = 0.2 = uy(v) (3.37)
The mechanical transformation u;(v) and its gradient Vi, are computed based on the
approach described in Chapters 4 and 5. The effect of geometrical nonlinearity is not

included in this example.

Starting from the mean point, all the methods (with ¢ = 10 for the AL method, and
¢ = 50 for the MHL-RF method) converged to the same point (see Ref. 38 for the coordi-
nates of the solution point). The required computations are listed in Table 3.1. In this
example, the gradient Vu, is computed using the adjoint method, which is described in
Chapter 5. For this linear structure, the computations required for Vui include the assem-
bly of an m Xn matrix and the solution of m simultaneous equations, where m = 60 is the
number of degrees of freedom of the structure, and n = 21 is the number of basic random
variables. Since no decomposition is required in the equation solving, the time required

for computing the gradient for this problem is less than that required for computing the
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limit-state function. It is seen in Table 3.1 that the HL-RF method is the most efficient
and the AL method is the least efficient among the five methods. Further investigations
revealed that the MHL-RF method converged very slowly for ¢ = 10, but for ¢ > 50 its

efficiency was almost invariant to the value of c.

Example 3.4 The reliability of a two-dimensional, built-up column shown in Fig. 7.1
of Chapter 7 is studied. The column is oomposed of elastic truss members. However, the
constitutive law and the equilibrium of the members are formulated to account for the
geometrical nonlinearity of the column. Twenty two basic random variables define thi;
problem, including two correlated elastic moduli of the truss members, two external forces,
and the x-coordinates of the nodes represcnﬁng the random imperfections of the column.
See Chapter 7 for other details of this problem. The column is considered failed if its hor-
izontal displacement at the midspan exceeds 30 in. Hence, the limit-state function is

defined as
8 (u10(v)) = 30 — uqo(v) (3.38)
where u1o(v) is the horizontal displacement of node 10. This problem is solved by the use

of the general-purpose, finite-element reliability code described in Chapter 6.

Starting from the mean point, the HL-RF and AL methods failed to converge
because they generated points which yielded unstable columns. The other three methods
(with ¢ = 10 for the MHL-RF method) converged to the same solution point, which is
described in Chapter 7. The required computations by the three methods are listed in
Table 3.1. For this problem. the GP method is not as efficient as the other two methods.
Further investigation showed that for this nonlinear structure the feasible set correction is
the most time consuming part of the GP algorithm.

For geometrically nonlinear structures, each computation of G (y) requires an iterative
solution of the nonlinear response. On the other hand, once the response is obtained, the
required effort for computing the gradient VG (y) by the adjoint method (see Chapter S)

essentially amounts to assembling an m X n matrix and solving a set of m equations, where
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m and n respectively denote the number of degrees of freedom of the structure and the
number of basic random variables. Therefore, for such problems, the gradient vector is
much easier to compute than the structural response. This is unlike general optimization
problems, in which the gradient is usually calculated by a finite difference scheme. Thus,
in geometrically nonlinear finite-element reliability applications, one should choose an
algorithm which takes full advantage of the gradient to speed up the convergence. For
instance, the MHL-RF method may be preferred since it makes use of the response as well

as the gradient at each search point.

Example 3.5 The reliability of an elastic plate with a random hole is studied (see Fig.
7.6 of Chapter 7). The plate is subjected to a uniformly distributed tensile load of random
magnitude at the two opposite edges. The Young’s modulus and Poisson’s ratio of the
plate are modeled as random fields, and the coordinates of the hole are assumed to be ran-
domly perturbed from a mean circular shape. After random field discretization of a quar-
ter of the plate, 85 random variables are considered, including 1 for the tensile load inten-
sity, 24 for the nodal coordinates around the hole, 30 for the Young’s modulus field, and
30 for the Poisson’s ratio field. See Chapter 7 for other details of this problem. The plate
is considered failed if the principal stress at the point of stress concentration, including the
geometrical nonlinearity of the plate, exceeds 600 psi. Hence, the limit-state function is

defined as
8(T*(v)) = 600 — T* (v) (3.39)
where T* (v) is the principal Cauchy stress at the point of interest.

Starting from the mean point, the AL method failed to converge after 1200 computa-
tions of the limit-state function, while exhibiting a seesaw behavior. The other four
methods (with ¢ = 50 for the MHL-RF method) converged to the same solution point (see
Chapter 7 for the details of the solution). The required computations by the four methods
are listed in Table 3.1. Similar to Example 3.4, the GP method is by far the most ineffi-
cient among the four algorithms. Furthermore, the HL-RF and MHL-RF methods con-
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verged about three times faster than the SQP method.

3.11 Summary

Several constrained optimization algorithms are compared for their suitability in
finite-element reliability analysis. The comparison is based on four criteria: generality,
robustness, efficiency, and capacity. Five algorithms are found to be suitable for such
analysis and are examined by way of five numerical examples. These schemes include thg
gradient projection method, the augmented Lagrangian method, the sequential quadrati;:
programming method, the HL-RF method, and the modified HL-RF method. The results
indicate that the sequential quadratic programming method, the gradient projection
method, and the modified HL-RF method are robust techniques for use in structural relia-
bility applications. Furthermore, for applications in nonlinear finite-element reliabilit);
analysis, the sequential quadratic programming method and the modified HL-RF method
appear to be more efficient than the gradient projection method. Since the results reported
are based on a limited number of examples, the findings should not be considered as
definitive. The best algorithm will stand out only through continued application and test-

ing.



Table 3.1

Comparison of Optimization Algorithms

CPU time Number of computations
Example Method sec. G(y) VG (y)

GP 14.0 64 64
AL 14.0 220 61

1 SQpP 133 29 14
HL-RF not converged
MHL-RF 13.8 28 28
GP 7.7 154 82
AL not converged

2 SQP 9.0 239 36
HL-RF not converged
MHL-RF 8.1 121 121
GP 79.7 37 37
AL 364.5 266 82

3 SQP 36.1 13 7
HL-RF 314 9 9
MHL-RF 36.5 12 12
GP 965.3 72 72
AL not converged

4 sSQp 218.1 16 8
HL-RF not converged
MHL-RF 255.3 13 13
GP 18248.9 119 119
AL not converged

5 SQP 3377.6 26 11
HL-RF 1282.7 8 8
MHL-RF 1292.3 8 8




Figure 3.1

The Gradient Projection Method
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CHAPTER 4

FINITE ELEMENT FORMULATION OF
GEOMETRICALLY NONLINEAR ELASTIC STRUCTURES

4.1 Introduction

As was described in the previous two chapters, the first- and second-order structural
reliability methods require the computation of the structural response, s, as well as the
response gradient, J,,. Conventional finite element methods for linear or nonlinear struc-
tures normally do not compute the response gradicnt.. Thus, in order to develop a
FORM/SORM finite element methodology, it is necessary to develop efficient algorithms
for computing the response gradient. Of course, the response gradient can be computed by
a finite difference scheme by repeatedly perturbing each variable. However, such an
approach would be extremely time-consuming since in a problem with n random variables
one would have to repeat the finite element solution at least n +1 times just to compute the
gradient. Furthermore, the accuracy of a finite difference scheme is questionable for non-
linear structural problems where the solution is obtained through an iterative scheme.
Since the iterative solution invariably involves numerical errors, the change in the com-
puted response may not truly reflect the change due to the variable perturbation. Because
of these efficiency and accuracy concerns, analytical expressions for computing the
response gradients are of interest. As mentioned in Chapter 1, for gec:netrically nonlinear,
elastic structures, analytical formulas for the response gradient have been derived by Wu
and Arora [74] and Ryu et al. [57]. Both their derivations involve the derivative of the
equilibrium equation which is in terms of the secant stiffness matrix of the structure. Since
for nonlinear structures with multiple degrees of freedom the secant stiliness matrix is not
available, these approaches are considered inappropriate. Ryu et al. [57] have made an
interpretation of their formulas in terms of the tangent stiffness matrix. Their results are

consistent with the formulas derived in Section 4.4.
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This chapter first describes the continuum and finite element formulations for large
deformation problems. The governing equations are given for three-dimensional continua
in terms of the external and resisting forces. Then, general expressions for the response
gradient of geometrically nonlinear, elastic structures are derived based on this formula-

tion.

4.2 Continuum Formulation

For a continuum with large deformations, several alternative definitions of strains and
stresses are 2vailable. The Green-Lagrangian strain E and the Almansi strain E* are the

two most commonly used strain measures, which are defined as follows [50]:
1ot
= SIFTF-1) (4.1)
E* = ;—[I-(F‘I)TF"] (4.2)

in which F is the deformation gradient of the continuum,

where I is the identity matrix, u denotes point displacements, and X and x = X + u respec-
tively represent the coordinates of material points in the original and current configura-
tions. In physical terms, the Green-Lagrangian strain is a measure of the deformation
relative to the original configuration of the continuum, whereas the Almansi strain is a

measure of the deformation relative to the current configuration.

The conjugate stress tensor associated with the Green-Lagrangian strain is the second
Piola-Kirchhoff stress T, and that associated with the Almansi strain is the Cauchy stress
T*. These two stress measures are related by the following equation [50}:

T = (detF)FIT* F~T (4.9)
For elastic continua, stresses are functions of strains and material parameters p,,, i.e.

T = T(E,pn) (4.5)
T* = T* (E*,pn) (4.6)
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Note that the components of p, may be a subset of the basic random variables V if the

material properties are random.

The equations of static equilibrium and boundary conditions with respect to the origi-

nal and current configurations are as follows [50]:

Referential Formulation (original configuration):

3(TFT
> AL + pobai =0 i=1,23 4.7
u=u on the displacement boundary

FTny=1t, on the traction boundary

Spatial Formulation (current configuration):

aT*,

S +pb;=0 i=1,23 (4.8)
1 axl

u=u on the displacement boundary

T*n=t on the traction boundary

where pobg; and pb; are the body forces, u is a known displacement field, ng and n are
the unit normals on the original and deformed traction boundaries, respectively, t-o is the
force acting on the current element per unit original area, and t is the force acting on the

current element per unit current area.

Either of the referential or spatial formulation can be used to solve the large deforma-
tion problem. In the following section, however, only the referential formulation is
employed for the finite element discretization. This is because with the referential formula-
tion the response gradient is easier to compute. Nevertheless, in deriving the exprissions
for the response gradient no assumption is made regarding the choice of the formulation.

Hence, results derived for the gradient are applicable to both formulations.

4.3 Finite Element Formulation

Consider a standard finite element discretization of a continuum

a=yaq,, ue. =g 4.9)
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where © and ), denote the continuum and finite elements, respectively. Within a finite

element 2, , the displacement field u is approximated by

u= ENIUI

I=1

(4.10)

where np is the number of nodal points of the element, Ny are the shape functions, and U;

are the nodal displacements of the element. For the convenience of the finite element for-

mulation, the components of the Green-Lagrangian strain are arranged in the following

vector form:

where

X,
X3

X

are the linear strain terms, and

aul
auz

3!43

X4
X,

X4

=E0+E[

aul
8u2
au3

auz

X

au3

09X,

aul
X3

(4.11)

(4.12)



49

[ T 9
du 0
3X,
ouT
o &
x, ° |, )
T ou_
o o & il
£ ol X3 au 1
1= 27| ouT auT o a—x'; = E-AG (4.13)
aX2 aXl ou
0 auT auT || ) € ‘
X3 X,
ouT ouT
X3 aX,

are the nonlinear strain terms. If tl;e approximate displacement field in Eq. 4.10 is

adopted, the Green-l.agrangian strain in the element is

1
E = l§ (BOI“" 'Z'Bu) UI (4.14)
=]
where
[Ny, 0 0
0 Nl,x, 0
0 0 Nl,x,
BOI = NI,X, Nl,x| 0 (415)
0 Npx, Npy,
Npx, O Ny,
Nl’x'l
Bu =A NI,X,! = AGI (416)
N;,x,l

in which Ny y = 8Ny/8X;, L=1,2,3. It can be verified using Eq. 4.14 that

dE = ﬁ (B + B;) dUy = ﬁ B;dU; (4.17)
I=1 I=]1

Using the principle of virtual displacements [50] with the above approximation, one

obtains the following weak form of the equilibrium equations:

R=P (4.18)
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where
R=UR, = U [BTTd0 (4.19)
e e 0,
is the resisting force vector, and
P=UP, = UlS NTxd(a0) + [ NTpgbydQ] (4.20)
e e a0, 0,

is the external load vector, in which B=[B,,B,, .. ., f,,,], N=[Ny,Ny ..., Ng], and
80}, denotes the element boundary. Nute that in Eq 4.19 the second Piola-Kirchhoff stress
T is rearranged into a vector form [Ty;. T3, T33, T12, T23, T31]7 to be consistent with the

definition of the strain vector.

A solution scheme for Eq. 4.18 based on the Newton method is as follows:
KAUi.g.l = P; - R,' (421)

Uis1 = U + AUy (4.22)
in which the subscripts i and i+1 denote the iterations at which the quantities are com-

puted, U is the global nodal displacement vector, and K = Ky —K is the current stiffness

matrix, where Ky =

aU

is the tangent stiffness and K; = [sa%] is the initial load
i

stiffness. It can be shown that [78]
Kr = UKr = U [fﬁTD,idn+ jGTHGdQ] (4.23)
e e |0 Q,

where Dy = g—%— is the tangent elasticity matrix of the material, G = [G;,G,, . . ., G,,P]T,

and

Sul Spl Sl
H= Snl Szzl 523[ (4.24)
Syl Spl Syl

The initial load stiffness matrix K; is nonzero only when follower forces exist, i.e., when
the external loads are dependent on the continuum deformation. The large deformation

problem is solved by repeatedly applying Eqgs. 4.21 and 4.22 until convergence is achieved.
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4.4 Formulation of the Response Gradient

Let V,,, V,, and V; denote the basic random variables respectively representing unc-
ertain material properties, structural geometry, and external loads, and let vy, , Vg, and v,
represent their respective outcomes. Observe that the original nodal coordinates, X9, are
functions of v,. In addition, for geometrically nonlinear, elastic structures under static
loads, the nodal displacements U are functions of X9, v,,, and v, ; the resisting forces R are
functions of X4, U, and v,,; and the external loads P are functions of X4, U, and v,. That
is,

R = R(X4 (vg) LUX? ¥ 51) 5 Vi) (4.25)
P=P(X (v,),U(X? v, V1), V) (4.26)
The gradient of the structural response is obtained by taking the derivative of Eq. 4.18

with respect to v, i.e.,

VR=VpP (4.27)
By the chain rule of differentiation, the derivatives with respect to the material property

variables are

d d _ R dR
Vo R (v) UK vm o v) %) = 55|, T U+ 30— | (4.28)
v, P4 (v,),UX4 v ov1),v)= -] W, U (4.29)
v, 8/ s¥m V1)Vl au |v. "= .
i s R oP _— . L
By definition, U |v. = Kr and 30 | = K. Substituting the preceding equations into

Eq. 4.27 and rearranging terms, one 'obtains the following expression for the gradient of

the displacement with respect to the material-property variables:

=x1|-3R 4.30
V.U=K [ avm|‘,] (4.30)

If the referential formulation in Eq. 4.19 is used,

- =1 oT
v L;J ‘{ BT o |Um (4.31)

dR
OV,
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in which the derivatives -f‘-"-l-.— v are computed by using Eq. 4.5 with the strains fixed.
m

Note that v,, contains the random material parameters in p,,. Equation 4.30 is consistent
with Ryu et al.’s interpretation of their gradient formula which is in terms of the secant
stiffness matrix [57].

Once V,_U is obtained, one can apply the chain rule to Eqs. 4.14 and 4.5 (or 4.6) to
determine the gradients of strains and stresses. Let.« and o denote either E and T or E*

and T*. Since € are only functions of the nodal displacements Uj of the element,

_ 3¢
Vie= o= IV.V,.U

=35,y (4.32)
I=1

Furthermore, o are functions of v,, and €. Therefore,

o do de
v = — -_— - Vv 4.33
.7 OV A au v A (4.33)
do _
where Te lv. =Dy.

In the above expressions for the gradients, the stiffness matrix K, its decomposition,

and Dy are readily available if Newton’s method is used to solve for the response. There-

fore, only one new matrix, SR

v | v needs to be formed for the computation of the gra-
m

dients. In the formation of this matrix, the individual element terms may be computed

either by their analytical expressions or by a finite difference scheme. The more efficient

approach depends on the type of element.

The expressions for the gradients of the response with respect to v, and v, are derived
in a similar manner. The gradients of the displacements, strains, and stresses with respect
to the load variables v, are

P

V.U=K"!
WwU=K ol I

(4.34)
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2
Vye= 3-5- v, v, U
=3 B,, Uy (4.35)
I=1
dc de ’
where 3 | = Dy. If the referential formulation in Eq. 4.20 is used
P = T 3t-o T a(pObO) ”
N o Iud(an) + J NT =2 | pd (4.37)

av, |u
This is the only new matrix to form in the computation of the gradient with respect to the

load variables.
The gradients of the responses with respect to the geometry variables v, are

(4.38)

| 8P axd
V,U= K"
" ax" v ax‘ | ]
de
V€= o - -b-lv.v,'u (4.39)
in which, noting that for fixed displacements strains are dependent on the original confi-

guration,
3B 1 B ax{
d€ - 9P | l; J Y, (4.40)
ovg 1-1].:1 3x1 v ax Ul av,
where X are the original nodal coordinates of the element, and
—|v v, U= S5V, U (4.41)
‘' I=1
do d€ [ L4
= —] —] + — v, 4.42
Vo de V.av‘IU de VaU| U (4.42)
aP x4 9By
ve ' ox{

o0 . o
where = I = Dr. In the preceding equations, X7 'u’ ax? lu’ 3

311

and l are the new matrices involved in the gradient computation. The third term

is easy to compute because X is usually an explicit function of v, . The computation of
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the last two terms is tedious but straightforward. The first two terms, on the other hand,
are difficult to compute because the domains of the integrals in the expressions of R and P
are dependent on X?. To carry out these derivatives, the integral domains in Eqgs. 4.19
and 4.20 must be mapped onto fixed configurations so that one can take the derivative
inside the integral. Such a mapping is a standard scheme in conventional finite element
analysis, where the local element coordinate system is transformed onto a natural coordi-

nate system for convenience in the Gauss quadrature computai:cn. In any case, if the

. . P dR . - A
analytical expressions of axé v and ——ax v I v for a particular ezment become too com

plicated, one can always use a finite difference scheme to compute these matrices. Since
only the elements next to the structural boundary whose nodal coordinates are random
need to be included in this computation, a finite difference scheme normally would not

require excessive time.

Before closing this section, it should be pointed out that the analytical expressions for
V,U, Ve, and Vo are not used directly in computing the gradient of the limit-state func-
tion. An efficient scheme for evaluating V g (v,s) that avoids the direct computation of

these terms is introduced in the following chapter.

4.5 Concluding Remarks

In this chapter, a finite element formulation for computing the response as well as the
response gradient of an elastic continuum under static loads and large deformation is
developed. Although the formulation is for a three dimensional continuum, the expres-
sions for the response gradient apply to all types of elements. For each type of element,
appropriate expressions should be used for the terms appearing in the equations for R and
~ P. For instance, for a truss element, one should substitute the axial force for T in Eq.
4.19. The essential matrices for the elements used in the example applications in Chapter 7

are derived in Appendix A.

In contrast to the structural response, no iterations are required for computing the
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gradients. The gradients are computed in terms of the results at the end of the iterative
solution for the response. Hence, it is much simpler to compute the gradients than the
response itself. This feature should be exploited when choosing the optimization scheme
for finding the design point in a reliability analysis. Specifically, one should choose an
algorithm which makes as much use of the gradient as possible to speed up the conver-
gence. In this respect, the modified HL-RF method is most desirable.

It is important to note that although in Section 4.3 the weak form of the equilibrium
equation was formulated with respect to the original configuration, the expressions for the
gradient hold for the spatial formulation as well. However, the terms involved in the
expressions of the gradient become more difficult to compute for the spatial formulation.
This is because the domains of the integrals in the expressions for R and P are then func-
tions of the displacements and, therefore, are dependent on the basic random variables.
Finally, although it was not emphasized, the expressions for the gradient derived in this

chapter are valid for structures with nonlinear material, as long as the material is elastic.
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CHAPTER §
COMPUTATIONAL ASPECTS OF FINITE ELEMENT RELIABILITY ANALYSIS

5.1 General Remarks

This chapter is devoted to several issues concerning the computational efficiency and
accuracy of the finite element reliability method. Several such issues were addressed in the
preceding chapters, including the study of efficient optimization algorithms for-finding the
design point and the derivation of analytical expressions for the response pradient of
geometrically nonlinear, elastic structures. In this chapter, three additional issues are dis-
cussed. These concern the numerical computation of the gradient, modeling and discreti-

zation of random fields, and reduction of the number of basic random variables.

5.2 Computation of the Gradient

As shown in Chapters 2 and 3, the gradient of the limit-state function with respect to
the basic variables is an essential component of the FORM analysis. In the most general
case, assume the limit-state function is expressed in terms of a set of displacements, U,
stresses, o, Or strains, €, and a set of thresholds included in the vector of basic variables.
Noting the dependences U = U(v), € = €(U(v),v), and o = o(e(U(v), v),v), the expres-

sion for the gradient, then, takes on the form

Vg(v,s) = Vg(v,U,e,0)
.00 g0 00 s
ov de v IU 9o ov le 9o ode lvov IV
9 dg de dg oo de
+ | 28 4 98 9€ 98 90 | o€ .
U + de aU ot 9o de |vaU |v]v'U 5.1)

The four partial derivatives of g(.) in the right-hand side of this expression are easy to
compute, since the limit-state function is usually an explicit function of the responses and
the response thresholds. For geometrically nonlinear, elastic structures, the partial deriva-

tives of € and o are computed by the expressions derived in Chapter 4. In particular, note
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de N . éo . . . Py
that == |, involves the geometry variables, rry |  involves the material variables, == | |

= Dy is the tangent elasticity matrix, and -aa—:]- I v is given by Egs. 4.32, 4.35, and 4.41.

Finally, V,U is computed as the solution of

KV,U = oP | _ R lu

v lv ™ G5y
The gradient Vg (v,s) can be obtained by solving the above equation and substituting V,U

(5.2)

into Eq. 5.1. For a structure with m degrees of freedom and n basic random variables,
this direct approach would require n solutions of m simultaneous equations. That can be

rather time consuming since both m and n can be very large in real applications.

To avoid costly and unnecessary computations, the adjoint method suggested by

Arora and Haug [4] is employed. Instead of computing 335- + 98 %

9g 30 | e in thi 92 , 92 9
e 3c |v30 in this method the product U T 3¢ 3U
9g 80 | 8¢ | | gy iscomputed by solvi djoint probl

e ac vU is computed by solving an adjoint problem.

The procedure of the adjoint method is as follows:

g 88 de | Bg 30 | 8
1. Compute 3U + aa e

2. Solve the following equation for an auxiliary vector A:

Tk = 98 , 98 8¢ | | 88 30 | 3de 5.3
ME= Tt s v aaaelvau ©3)

3.  Postmultiply both sides of Eq. 5.3 by V,U and make use of the identity in Eq. 5.2 to

obtain the following equation:

4+ 92 30
ac de

ATKV,U = [_&4. 9g 8¢ l ]VU
VaU

cofzloz) 6
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e AT | 2| R | dg  og 9e | g 30 3¢ |
4.  Substitute A [av IU av lu for dU  de aU Ilv 8o ode |voU ']

. g . 9g de 9g 3o
V,U in Eq. 5.1 and compute and add ™ + rogire |U + 30 oy e

3 39 | 3| 1o obiain V
3% oc |v3av uoob in Vg(v,s).

In contrast to the direct method, the adjoint method solves the m simultaneous equa-
tions in Eq. 5.3 only once. Hence, this method saves considerable amount of computation

time when the number of basic random variables is large.
5.3 Modeling and Discretization of Random Fields

5.3.1 Random Field Modeling

Let W(X) denote a random field that models the random variability of a material
property, structural geometry, or load quantity in space. | In most applications, W(X) is
assumed to be Gaussian because of practical convenience and lack of alternative models.
The Gaussian random field has a convenient property in that the field is completely
defined by its mean function py (X), variance function 0% (X), and autocorrelation coeffi-
cient function pyw (X; ,X;). If it is further assumed that the random field is homogeneous,
as is customarily done in practice, the mean and variance functions are constant, and the
autocorrelation coefficient function pyw(X;.X;) = pww(X; —X;). These properties

greatly simplify the parameter estimation and modeling of random fields.

Despite its convenience and popularity, the Gaussian model is not applicable in many
situations. For example, some random quantities have bounded distributions either by
nature or by definition, such as the Young’s modulus of a material which is always posi-
tive. Other random quantities may exhibit skewness in their distributions, such as the
extremes of certain load quantities. Non-Gaussian models are, thus, necessary to describe

such quantities.

The Nataf distribution model defined by Egs. 2.20 — 2.22 of Chapter 2 has been
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used by Grigoriu [25] and Der Kiureghian [14] to model non-Gaussian processes with a
prescribed marginal distribution and mean and autocorrelation functions. Let the random
field W (X) have the marginal CDF Fy (w(X)). The random field is completely defined by
assuming that the transformed process

Z(X) = ®7[Fy(W(X))] (5.5)
is Gaussian with zero mean, unit variance and autocorrelation coefficient function
pzz(X; ,X;). For any set of X; and X;, the relation between pyw (X; ,X;) and pz (X; X;)
is as in Eq. 2.22 with p;, oy, p;;, and pgy; replaced by pw(X;), ow(X;), pww(X; .X;),
and pz(X; ,X;), respectively.

There are certain restrictions on pyw (X; ,X;) for pz(X; ,X;) to be a valid autocorre-
lation coefficient funcﬁon.' Such restrictions for homogeneous and non-homogeneous fields
with various types of marginal distributions are discussed in Ref. 14. In order to avoid
such restrictions, Der Kiureghian [14] has proposed that instead of estimating pyw (X; ,X;)
from the observed data w(X) and then computing pz(X; ,X;), one directly estimate
pz(X; ,)X;) by analyzing the transformed data z(X) = &~ 1[Fy(w(X))]. By doing so, the
restrictions on pyw (X; ,X;) are lifted, and the proposed model always works. This non-
Gaussian model is used in Example 7.2 of Chapter 7 to describe the Young’s modulus and

Poisson’s ratio of a plate as random fields.

Yamazaki and Shinozuka [75] also proposed a model for homogeneous non-Gaussian
sandom fields which is in terms of the marginal distributions and power spectral density
fanction of the field. Digital simulation of such a field using an iterative scheme is
described in Ref. 75. It can be shown that their model is an approximation of the Nataf

model described above.

§.3.2 The Random Field Mesh

As discussed in Chapter 2, when the uncertainties in a structure or its environment
are modeled by random fields, for FORM/SORM analysis it is necessary to represent such

random fields in terms of random variables. Several methods have been suggested for such
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representation of random fields. One approach requires that the domain of the random
field be discretized into adjacent and non-overlapping elements, denoted random field ele-
ments, similar to the discretization employed in the finite element method. The value of
the material property or load in each random field element is then represented by a single

random variable.

The selection of the finite element mesh and the random field mesh is an important
task in finite element reliability analysis. For the ﬁgite element mesh, the proper element
size is controlled by the expected stress gradient in each region of the structure. For the
random field mesh, two factors need to be taken into account. One is the rate of fluctua-
tion of the random field, as measured, for example, by the correlation length. The correla-
tion length is defined here as the length over which the autocorrelation coefficient function
drops to a small values, say e~1. For a short correlation length, the rate of fluctuation of
the random field is high and a fine mesh is required. Limited experience indicates that an
element size one quarter to one half the correlation length is appropriate [15]. The second
is the numerical stability of the transformation to the standard normal space, which was
described in Section 2.4 of Chapter 2. This factor is important because if the random field
mesh is excessively fine, the discretized element variables are highly correlated and their
correlation matrix is nearly singular. The transformation to the standard normal space
then may become numerically unstable. Hence, this second factor provides a lower bound

on the element size.

Usually, it is not efficient to use the same mesh for both the finite element and the
random field discretizations, since the selection criteria are entirely different. Hence, Der
Kiureghian and Ke [15] suggested using separate meshes for the finite. element discretiza-
tion and each random field of properties or loads. They further suggested that the finite
element mesh be selected such that it satisfies all the requirements arising from the stress
gradient as well as the rate of fluctuation of each random field. This is because a region

around which the structural praperty or load has a high rate of fluctuation is likely to have
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a high stress gradient. A separate mesh for each random field of property or load is then
considered, which is equal to or coarser than the finite element mesh, such that each ran-
dc;m field element is a block of one or more finite elements. This approach reduces the
number of basic random variables and avoids the numerical instability in the probability

transformation.

Al these rules provide useful guidelines regarding the mesh selection. Further studies

and experience are needed before more specific and quantitative rules can be developed. ~

5.3.3 Representation of Random Fields

Six methods have been suggested for representation of random fields in terms of ran-
dom variables: the spatial averaging method, the midpoint method, the nodal-point
method, the interpolation method, and two series expansion methods. These methods are

described in the following subsections.

5.3.3.1 The Spatial Averaging Method

The spatial averaging method, suggested by Vanmarcke [70] and Vanmarcke and
Grigoriu [72], uses the local average of the field over a random field element to represent
the random quantity for the element. For a random field W (X), the discretized value for

an element i is given by
W = = [W(X)dQ (5.6)
O p

where (); is the domain of the element. For homogeneous fields and rectangular elements
whose edges are parallel to the coordinate axes, Vanmarcke [71] has derived expressions
for the covariances of the discretized variables W; in terms of the autocovariance function
of W(X).

According to Der Kiureghian and Ke [15], for Gaussian fields the spatial averaging
method yields accurate results even for rather coarse meshes of the random field. Unfor-

tunately, there are two difficulties with the application of this method in finite element reli-
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ability analysis. First of all, for a 2D or 3D continuum of arbitrary shape it is not always
possible to discretize the domain into rectangular elements. For non-rectangular elements,
Vanmarcke [71] has suggested that the element be replaced by a collection of adjacent,
non-overlapping rectangular elements so that the same formulas for rectangular elements
can be used. Der Kiureghian and Ke [15] replaced the integral in Eq. 5.6 by a Gaussian
quadrature for calculating the covariances of W;. Righetti and Harrop-Williams [54] pro-
posed another approximation approach for 2D problems, in which trapezoidal and triangu-
lar elements are mapped into their equivalent rectangular elements. The equivalent rec-
tangular element is defined as the rectangle possessing the same centroid and area of the
original element, and sides proportional to the maximum difference between the nodal
coordinates in each direction. All these approximation methods introduce errors in the
computed covariance matrix of W;. Experience shows that even small numerical errors in
this computation may lead to a non-positive definite covariance matrix. Consequently, the
probability transformation in Eq. 2.3 and, in turn, FORM and SORM calculations may

break down.

Another drawback of the spatial averaging method is that the robability distribution
of W; is difficult or impossible to obtain, except when the field is Gaussian, in which case
W; is also Gaussian. Thus, this method is appropriate only when the random field is
Gaussian. This further restricts the use of the spatial averaging method to the Gaussian

case in finite element reliability analysis.

5.3.3.2 The Midpoint Method and the Nodal-Point Method

The midpoint and nodal-point methods are two point discretization methods which
represent the uncertainties of a random field by the values at some specific points. In the
midpoint method, proposed by Dendrou and Houstis [11], Hisada and Nakagiri [31], Shi-
nozuka and Dasgupta[61], and Der Kiureghian and Ke [15], the field value over an ele-
ment is represented by the value at the centroid of the element. Hence, the randomness in

a random field element i is represented by the random variable
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W, = W(X,) (5.7)

in which X; = ;1; ﬁ Xf are the coordinates of the centroid, where np is the number of
J=1 :

nodes of the random field element, and X§ are the nodal coordinates.

The nodal-point method, proposed by Hisada and Nakagiri [30], represents the ran-
dom field in terms of the values at the nodal points of the finite element mesh. This
method was used to discretize a random field modeling the random geometry of a struc-
ture. In this method, the randomness of the field at node i is represented by

w; = W(X;) (5.8)
where X; = X/ are the coordinates of node i .

In both the midpoint method and the nodal-point method, the mean, variance, and
marginal distribution of W; are the same as those of the process at point X;. The correla-
tion coefficient matrix of W, is directly computed in terms of the autocorrelation coefficient

function of the random field,

pw,w, = pww(X; . X;) (5.9)
and the joint distribution for any set of W; is given by the specified distribution of the ran-

dom field.

As pointed out by Der Kiureghian and Ke [15], the midpoint method tends to over-
represent the variability of the field within each element, and it does not provide as accu-
rate a result as the spatia! averaging method for a coarse random field mesh. However,
these point discretization 1cethods have three advantages: First, no complicated computa-
tions are required for the covariance matrix and the method is easy to implement. Second,
the correlation coefficient matrix obtained by Eq. 5.9 is always positive-definite, provided
a valid autocorrelation function is specified. Hence, the numerical stability problem aris-
ing in the spatial averaging method does not exist in this case. Most importantly, the dis-
tribution information on the discretized variables W; is retained and the method is not res-

tricted to Gaussian random fields.



5.3.3.3 The Interpolation Method

Liu et al. [42] suggested the discretization of the random field W (X) into ¢ random
nodal values, W;, i = 1,...,q. The value at an arbitrary point is obtained by the following
interpolation rule:

W(X) = ‘iINi(X) Wi (5.10)

where W; is the value of W (X) at node X;, and N;(X) are shape functions. The number ¢
is not necessarily equal to the number of finite elements and the shape functions N;(X)
need not be the same as the finite element interpolation functions for the displacement
field. Since the choice of the ¢ nodal points and shape functions is arbitrary, the interpo-
lation method constitutes a class of random field discretization methods. In particular, in
the nodes are chosen to be the centroids of the random field elements and the shape func-
tions are assumed to be unity inside each element and zero elsewhere, the interpolation

method becomes identical to the midpoint method described in the previous section.

Liu et al. [42] further suggested a method to reduce the number of random variables
W;. The random vector W is transformed into an uncorrelated random vector C by
C=yTW (5.11)
such that Cov(C,C) is diagonal. The matrix { is obtained by solving the eigenproblem
Cov(W ,W)¥ = ¢ A (5.12)
where A is the eigenvalue matrix containing the variances of C. Liu et al. [42] observed
that a good approximation of the random field can be obtained by retaining only the C;
with large variances, thus reducing the number of random variables. It should be
emphasized, however, that this reduction is only applicable to Gaussian random fields.
This is because the distribution of C is generally unknown or difficult to obtain unless

W (X) is Gaussian.
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5.3.3.4 Series Expansion Methods

Two series expansion methods have been suggested for second-moment stochastic
finite-element analysis. One is the basis random variable method proposed by Lawrenée
[36], and the other is the kernel expansion method proposed by Spanos and Ghanem [63].
In the first method, the random field is expanded into a double series

WX) = 3 S wyed X ' (5.13)

{=0j=1
in which ¢ ;(X) are a set of linearly independent shape functions, e; are independent basis

random variables having the properties

1 i =0
Ele,] = {o 12 (5.14)
E[eiej] = 8,] (5.15)

in which §;; is the Kronecker delta, and the coefficients w;; are determined by least-square
fitting to the moment functions of the random field. In Ref. 36, Legendre polynomials
were suggested for the shape functions, ¢ ;(X). In applications, only a few dominant

terms are included in the expansion.

The kemnel expansion method [63] employs the Karhunen-Loeve orthogonal expan-
sion [44] to decompose a one-dimensional random field. The random field is expanded
into the sum of its mean function and a single series

WeE) = ww) + 3% V6,00 (5.16)

i=0
where W; are random coefficients independent of X, and \; and ¢ ;(X) are the eigen-

values and eigenfunctions of the covariance kernel, respectively. The latter are obtained as

the solutions of the eigenvalue problem

JCov(x ,0) ¢, (X)dt = N &,(X) (5.17)
Similar to the basis random variable method, the series in Eq. 5.16 is truncated after the

first few dominant terms. Since the series in Eq. 5.16 has a zero mean and the eigenfunc-

tions are orthogonal, the random coefficients W; have properties similar to the basis



random variables, i.e.,
E(w;]=0 (5.18)
One major obstacle of this method is the difficulty in solving the eigenvalue problem in

Eq. 5.17 for arbitrary geometry and boundary conditions. This would be a particularly
difficult task if the method is to be extended to 2D or 3D random fields.

By virtue of the central-limit theorem, both series expansion methods described above
are strictly applicable only to Gaussian random fields. Therefore, they are appropriate for
second-moment analysis, or for reliability analysis when the random fields are truly Gaus-

sian.

5.3.3.5 Concluding Remarks

Six methods for representing random fields in terms of random variables were
described in the preceding subsections. The spatial averaging method and the expansion
methods are restricted to Gaussian random fields and, thus, are not appropriate for use in
finite-element reliability analysis when the structural property or load random fields are
non-Gaussian. The interpolation method with the scheme to reduce the number of ran-
dom variables is also restricted to Gaussian random fields. The midpoint method and the
nodal-point method are employed in the present study because they are numerically stable
and are applicable to all types of random fields. Further research is needed in order to

develop more efficient ways of representing non-Gaussian random fields.

5.4 Reduction of Basic Random Variables

Experience has shown that the number of iterations needed in the optimization algo-
rithm to converge to the design point is independent of the number of basic variables.
However, the required computation of the gradient vector at each iteration step is propor-
tional to the number of basic variables. Hence, it is desirable to reduce the number of

basic variables during the optimization phase, particularly if a costly method is used to
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compute the gradients. Three sensitivity measures have been used in the literature
[16, 35, 48] for this purpose. Basically, these measures examine the relative influences of
the basic variables on the reliability index at each step of iteration. Basic variables found
to have small influences in the first few iteration cycles are replaced by deterministic

numbers in the subsequent iterations.

Der Kiureghian et al. [16] proposed the use of the sensitivity vector y(v) defined in
Eq. 2.26 of Chapter 2 to determine the relative ix_x_ﬂuences of the basic variables on B. It is
shown in Ref. 16 that the ith component of vy(v) represents the sensitivity of B with respec"t
to a normalized variation in the ith basic variable, V;. If this component is close to zero,
then B is insensitive to the variability in V;. Hence, V; can be replaced by a deterministic |
value without much influence on the final result. The median value or the value at the

latest iteration point were suggested as the substitute deterministic value.

An alternative sensitivity measure was introduced by Igusa and Der Kiureghian [35]
for reliability analysis of uncertain structures subjected to stochastic excitation. This meas-
ure is designed for the case where the limit-state function is defined in terms of the
extreme of a response process. This measure is not discussed here since the reliability of

structures under stochastic excitation is beyond the scope of this study.

Madsen [48] proposed the use of the negative unit normal a(y) as the sensitivity
measure. As mentioned in Chapter 2, the ith component of a(y) is a measure of the sen-
sitivity of B with respect to the ith standard normal variate, Y;. When the basic variables
V are dependent, there is no one-to-one correspondznce between V; and Y;. That is, a
small a; does not necessarily imply that B is insensitive to the variability in V;. Thus, a(y)
can only be used to determine which ¥; are unimportant and can be replaced by deter-
ministic values in the subsequent iterations. This measure is suitable only when the gra-

dient is computed in the standard normal space or when V are independent.

In finite-clement reliability analysis, the basic random variables are usually depen-

dent, since often they represent correlated random fields. Furthermore, as already men-
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tioned, it is usually imperative to use analytical expressions of the response gradients both
for reasons of accuracy and efficiency. In this context, the sensitivity vector proposed by
Madsen for omitting the unimportant standard normal variates is not useful, since such
omission does not result in reduced computations of the response gradients. (Note that
perturbing the standard normal variate ¥; may generally result in perturbing values for all
the basic variables.) The sensitivity vector y(v) introduced by Der Kiureghian and Ke [16],
on the other hand, is usable in the context of the finite-element reliability method since it
provides an importance measure for the original random variables. Thus, omitting each
random variable V; means that the corresponding gradient ag/dv; need not be computed in

the subsequent analysis.

To determine the optimal deterministic substitute, Madsen [48] introduced a set of
omission sensitivity factors. The omission sensitivity factor of a variable is defined as the
ratio between the values of the first-order reliability index calculated with and without that
variable replaced by a deterministic value. The deterministic substitute for the variable is
then chosen such that the omission sensitivity factor is as close to unity as possible. Thus,
for a variable ¥; with small «; ; a substitute of B;«; 1/2 is reccommended at the k-th itera-
tion step, where B; is updated in each step, and «a; ; is the a-value computed at the first

iteration.

Despite the fact that the amount of computation can be greatly reduced by omitting
random variables, these approaches should be employed with caution. The variables which
have little influence on B at the beginning of the iteration may turn out to be important at
the final stage. Moreover, if a second-order reliability analysis is to be carried out, the
omission of basic random variables is risky because no second-order information is taken
into account in the above approaches. Hence, with these methods the computation time
may be saved at the cost of accuracy. It is thus advisable to use the results from such
analysis only as an initial estimate. If a more accurate assessment of the reliability is

needed, the iteration should te continued with all basic variables included until the exact



design point is found.
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CHAPTER 6
COMPUTER IMPLEMENTATION

6.1 Introduction

This chapter describes the development of a general-purpose, finite-element reliability
code, which is based on the formulation and methods described in the preceding chapters.
The code. denoted CALREL-FEAP, is developed by combining a reliability code, CAL-
REL, and a finite-element code, FEAP. Three issues have been of main concemn in this
developmer:t; namely, the efficiency, the modularity, and the generality of the code. Effi-
ciency in both computation time and data storage is essential if the code is to have practi-
cal applicability. Thus, special effort has been made to improve the efficiency of the code
by using methods such as the adjoint method and the analytical expressions of the gra-
dient. Special attention has also been given to the memory allocation in the code. This is
described later in this chapter. The modularity of the code is essential for the continued
maintenance and extension of the code. Research in the fields of finite element and struc-
tural reliability is still carried out in different groups. Therefore, it is important that the
code allows a researcher with expertise in only one of the two fields to modify the program
to implement new research results or to test new methods. This is accomplished by
developing the code in a modular form and by keeping the finite element and reliability
parts of the code, to the extent possible, independent of one another. Finally, the general-
ity of the code is desirable since the ideas behind the finite-element reliability method are
applicable to a large variety of problems. Thus, the code is structured in such a manner
that a user may develop and implement a new element routine or a nev) reliability compu-
tation method without significantly altering the main code. This will allow the extension
and application of CALREL-FEAP in a variety of civil engineering problems. In the fol-
lowing, a detailed description of the constituent parts of the CALREL-FEAP code is

presented.
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The CAL-Reliability Program (CALREL) is a general-purpose structural reliability
program developed by the author, H. Z. Lin, and A. Der .Kiureghian. An essential com-
ponent of this program is the specification of the limit-state functions that define the failure
criteria and their gradients with respect to the basic variables. In CALREL, these specifi-
cations, which are problem dependent, are provided by the user in two subroutines. In
finite-element reliability analysis, the limit-state functions are in terms of load effects,
which are themselves implicit functions of the basic variables through the mechanical
transformation, Eq. 2.1. Therefore, in such analysis it is necessary to hook up a finite ele-
ment code through these two user-defined subroutines. The finite element code that has
been selected for the present study is the Finite Element Analysis Program (FEAP)
developed by R. L. Taylor [78]. This code is selected primarily because of its great flexi-
bility and its ability to handle all types of elements and structural behavior. This code not
only meets the requirements for the present study of geometrically nonlinear structures, but
provides opportunity for future research on other classes of problems, including the reliabil-

ity of structures with material nonlinearity and structures under dynamic loads.

Originally, CALREL and FEAP were two independent programs. In order to be
connected to CALREL, FEAP has been modified into a subroutine. The challenge here
has been to make the connection such that to the extent possible the two codes are left
undisturbed. This is important since these two programs have been developed and will be
maintained by two different groups of researchers. With the structures of the tw:: programs
basically unchanged after the connection, an expert on reliability can simply ir:plement a
new reliability routine in CALREL without knowing FEAP, and an expert on finite ele-
ments wanting to perform reliability analysis for a new class of structural problems can
modify or extend FEAP to provide the necessary mechanical transformation without alter-
ing CALREL.

The layout of the combined CALREL-FEAP code is shown in Fig. 6.1. The two

programs basically have no overlap. CALREL does not call the subroutines in FEAP, and
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FEAP does not call those in CALREL. Their interface, the user-defined routines, is prob-
lem dependent and is not affected by the changes in either CALREL or FEAP. Thus,
CALREL-FEAP is highly flexible and easy to update with such an arrangement. The

details of these two programs and their linkage are described in the following sections.

6.2 The CAL-Reliability Program (CALREL)

CALREL has been developed on a virtual memory computer, MicroVax. It has also
been transferred to Qpeiate on PC compatible systems for educational purposes. CALREL

is oomposed' of four mocales:

1. Program control;

2. Problem definition;

3. Reliability analysis routines;
4.  User-defined routines.

The program control module reads and interprets macro commands in the input file and
executes the associated analysis routines. The problem definition routine reads the prob-
lem data and the parameters used in the solution algorithms. The user-defined routines
define the limit-state functions, their gradients, and user-provided probability distributions,
if any.

CALREL contains a set of analysis routines which perform the following:
1.  First-order reliability analysis (FORM) for a component;
2.  Second-order reliability analysis (SORM) for a component;
3. Estimation of reliability bounds for a series system;
4. Estimation of reliability for a series system by the PNET method;
5.  Directional simulation for a general system;
6. Monte Carlo simulation for a general system;

7.  First-order sensitivity analysis.
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The basic difference between the component and system reliability analysis is in the
number of limit-state functions used to define the failure set.- Component reliability
analysis requires a single limit-state function (although several such functions can be
analyzed with a single run), whereas system reliability requires a multitude of such func-
tions. The execution of the various analyses is controlled by a sequence of macro com-
mands issued in the input file. It is seen that CALREL has capabilities beyond those
described in Chapter 2. Namely, it is capable of performmg system reliability analysis and
estimation of probability by the two simulation methods All these capabilities are apphca-
ble for the finite-element reliability analysis. However, the computation time in certain
applications, such as those using the Monte Carlo simulation method, can be prohibitively
long.

The input file of CALREL is composed of several macro command sections. The

macro commands available in the current version are:

CALREL BOUND DATA DIRS END EXIT
FORM MONT PNET RESTART SENS SORM

The input file always starts with the commands CALREL or RESTART and terminates by
the command EXIT. Most macro commands are followed by optional modifiers to indi-
cate how that command is to be carried out. For example, if the following command is

issued,
FORM NPR=3

CALREL will perform a first-order reliability analysis and print results at every third itera-
tion step of the optimization algorithm. With the exception of CALREL, RESTART, and
EXIT, the commands can be repeated and their order in the input file is flexible. How-
ever, some commands are executable only after other analyses are completed. For
instance, a second-order analysis is possible only after the results of a first-order analysis

are obtained. Hence, the command SORM can be issued only after a command FORM.
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The macro command DATA indicates the beginning of the data-input mode. The
input data of CALREL consist of several data sections. Each section starts with a title
describing the type of data to follow. The types of data sections included in the current

version are:

TITLE CUTSETS FLAG OPTIMIZATION
PARAMETER STATISTICS LIMIT

There are default values for most of ¢he data sections, except STATISTICS which reads the
statistics of the basic random variabizs and must be provided at least once for each prob-
lem. The command END terminates the data-input mode and revokes the macro com-

mand mode.

The formats and definitions of the macro commands and the input data are given in

detail in Appendix B. An example input file is also included in this appendix.

Three problem dependent and, therefore, user-defined subroutines are necessary for
running CALREL. The first routine, UGFUN, defines the limit-state functions. The
second routine, UDGX, defines the gradients of the limit-state functions if analytical
expressions are to be used. CALREL provides an option for computing the gradients by
the finite difference scheme. In that case, UDGX is left as a dummy subroutine. The
third routine, UDD, is used to define the probability distributions that are not available in
the CALREL distribution library. This routine can also be dummy if no user-provided
distributions are necessary. The formats of these three subroutines are given in Appendix

B.

In finite-element reliability analysis, the limit-state functions in UGFUN are
expressed in terms of load effects. The dependence of the load effects on the basic vari-
ables is provided through the finite element code. Thus, appropriate call statements to the
finite element code (here FEAP) are included in UGFUN in order to compute the limit-
state functions. If the gradients are to be computed by a finite difference scheme, no other

connection to the finite element code is necessary. However, if the gradients are to be
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computed using analytical expressions, such as those developed in Chapter 4 for geometri-
cally nonlinear structures, then proper call statements to the routines that extract the neces-
sary arrays from the finite element analysis must be included in the subroutine UDGX.
Thus, the subroutines UGFUN and UDGX are the only routines that connect to the finite
element code. The details of the subroutines UGFUN and UDGX for finite element relia-
bility analysis with FEAP are described in Appendix B.

6.3 The Finite Element Analysis Program (FEAP)

FEAP is a general-purpose finite element analysis program. It is designed such that
one can easily make modifications in it to meet the requirements of different analysis
schemes or problem areas. FEAP consists of five general modules:

1. Problem control;

2. Problem definition and mesh input;
3. Problem solution;

4. Element library;

5. Graphic output.

The problem control module reads the problem size and the input/output file names. The
problem definition module reads the input data and a set of macro commands to specify
the solution algorithm. The problem solution module executes the solution steps according
to the macro commands specified in the input file. The graphic output module displays

- the mesh or the results of the analysis on the screen.

FEAP has an element library. The library elements in FEAP have been developed to
solve large classes of problems in structural mechanics. If these elements cannot be used to
model a particular problem, then the user can add an appropriate element to the library by
writing a subroutine which computes the necessary quantities for the element, such as the

stiffness matrix, the stresses and strains, etc..

FEAP can be executed both in interactive and batch modes. To run FEAP, the user
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has to prepare an input file which contains the input data and the macro commands.
Details on the macro commands and the format of the input file can be found in the user’s

manual of FEAP in Ref. 78.

To combine FEAP and CALREL, the following modifications have been made in
FEAP:

1. FEAP has been converted from an independent program into a subroutine;

2. FEAP has been made to operate only in a bat:h mode;

3. The graphic output option has been suppressec;

4. Instead of being specified by the user, the input/output file names have been set to be
feap.inp and feap.out;

5. A new macro command GRAD has been added;

6. The element subroutine has been extended to allow the formation of the matrices
required in the gradient computation;
7. The input data have been extended to allow the specification of external loads,

material properties, and structural geometry as random variables.

Modifications 2 and 3 have been made because the subprogram FEAP is executed repeat-
edly and automatically during the FORM and SORM operations and, hence, graphic out-
put and interactive operations are not appropriate. A graphic capability at the end of the
reliability analysis, however, is essential for a careful evaluation of the results and is
planned in the future development of CALREL-FEAP. The new command GRAD has
been added to compute the gradients of structural responses which are required in FORM.
The element subroutine has been modified to form the matrices needed in the gradient

computation. Details of the element subroutine are available in Appendix B.

The random nature of the external loads, material properties, and structural geometry
is specified by the user in the input data file of the subprogram FEAP. The subprogram

FEAP differentiates random quantities from deterministic quantities merely by the type of
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the data entry. H the data is a real number, the entry is considered a deterministic quan-
tity, and if the data is an integer number, the quantity is considered random and

represented by the basic random variable identified by the integer number.

The input file of the subprogram FEAP consists of two parts. The first part is com-
posed of data sections which define the control information and the mesh of the problem.

The types of data sections included in the current version are:

FEAP ANGL BLOC BOUN COOR CONS EBOU
ELEM FORC LINK MATE NOPR PAGE POLA
PRIN SLOA SPHE TEMP TIE

Each section has a specific function in defining the problem to be solved. The first line of
the data section is always FEAP which specifies the problem size. Among the remaining
sections, BLOC generates mesh blocks, COOR reads and generates nodal coordinates,
FORC reads and generates nodal forces, SLOA reads boundary tractions, and MATE
reads material properties. Since the nodal coordinates, nodal forces, surface loads, and
material properties may be random, these sections have been modified to allow specifica-
tion of random quantities. The formats of these sections remain unchanged, except that
the entries corresponding to the nodal coordinates, loads, and material properties may be
deterministic or random. As mentioned earlier, if the entry is real, the coordinate, load,
or material property is equal to the entered value, and if the entry is an integer k, the
coordinate, load, or material property is assigned the kth random variable. Additional

information on the data sections are available in Ref. 78.

The second part of the input file for the subprogram FEAP contains a list of macro
commands defining the solution algorithm. Currently available macro commands in

CALREL-FEAP are:

MACRO BETA CHEC CMAS DATA DISP DT
END FORM IDEN INIT LMAS LOOP MESH
NEWF NEXT NOPR PRIN PROP REAC SOLV
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STRE SUBS TANG TIME TOL UTAN GRAD

The above list does not include several commands of the original FEAP, which are related
to the graphic and interactive modes and have been suppressed. This command section

must start with the command MACRO and terminate with END.

The command STRE in the original version of FEAP has the format
STRE,node,n1,n2,n3

where [node,n1,n2,n3] are optional modifiers. This command iastructs FEAP to compute
the components of stress and strain in elements nl to n2 at an increment of n3. If the
modifier ’node’ is given in a 2D problem, the stresses and strains are computed at nodal
points instead of the selected stress/strain output points (usually the Gaussian points). In
finite-element reliability analysis with CALREL-FEAP, the numbers of the elements whose
stresses/strains are used in the limit-state functions are specified in the input file of CAL-
REL. Therefore, there is no need to reenter the element numbers in the STRE command

line. For this reason, the format of the command STRE has been shortened to:

STRE

The functions and formats of the other macro commands of FEAP are described in detail

in Ref. 78.

6.4 Linkage of CALREL and FEAP

To link FEAP to CALREL, many modifications had to be made in both programs,
especially in FEAP. Section 6.3 describes the changes made in the features of FEAP. The
following is a list of the changes that have been made in the two codes to make the linkage
possible.

1. The subroutines to allocate arrays in CALREL and FEAP have been modified to

allow these two programs to share the same blank common block;

2.  Several new common blocks have been created and several old common blocks have

been modified to transfer data between CALREL and FEAP;
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New file numbers have been assigned in FEAP to prevent data files from mixing up;
Several new arrays have been created in CALREL and FEAP to store the data
needed in finite-element reliability analysis, e.g., the response gradient;

Several new routines have been created or modified in FEAP to incorporate the ran-
domness in the structure and its environment, to compute the gradient, and to facili-

tate the user in formulating the user-defined subroutines UGFUN and UDGX;

Details of these modifications are described Appendix B.

6.5 Summary

A general-purpose computer code CALREL-FEAP has been developed to perform

finite-element reliability analysis. In this code, the finite element program FEAP has been

linked to the general-purpose reliability program CALREL to provide the required

mechanical transformation. The connection between the two programs is through the

user-defined subroutines UGFUN and UDGX. To use this program, the user should

prepare the following:

1.

2.

An input file for CALREL;

An input file for FEAP;

An element routine in FEAP to compute element quantities, if not available in the
existing library;

Three subroutines UGFUN, UDGX, and UDD to compute the limit-state functions,

the gradients of the limit-state functions, and the user-provided distributions, if any.
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CHAPTER 7
APPLICATION EXAMPLES

7.1 Introduction

Two application examples are presented here to illustrate the reliability methods
described in the previous chapters. The first exaxhple examines the reliability of a built-up
column. A displacement failure criterion is chosen to investigate the stability of the
column. The second example examines the reliability of a plate with a random hole with
two failure criteria. One criterion is in terms of the principal Cauchy stress at the stress
concentration point, and the other is in terms of the maximum displacement along the
plate edge. The union of the two failure events, representing system reliability, is also con-
sidered. These problems were solved using the finite-element reliability program
CALREL-FEAP running on a MicroVax IIGPX workstation. The behaviors of the
column and the plate are investigated using the results of FORM, SORM, and the first-
order sensitivity analysis with respect to the distribution parameters and the deterministic

parameters in the limit-state functions.

7.2 Example 7.1 -- Reliability of a Built-Up Column

The reliability of the two-dimensional, built-up column in Fig. 7.1 is studied. The
column is composed of truss members with the strain energy function E,,D E,/2, where D
is the elastic modulus and E,, = (12 —L2)}(2L?) is the Green-Lagrangian strain measure, in
which ! and L are the current and original lengths of the members. Note that this formu;
lation accounts for the effect of geometrical nonlinearity. The struts have a cross-sectional
area of 1.59in2 and a random elastic modulus Dy, and the braces and battens have a cross-
sectional area of 0.938in? and a random elastic modulus D,. D, and D, are assumed to be
jointly lognormal with means pp = pp = 30,000 ksi , coefficients of variation 8p = 8p =
0.08, and a correlation coefficient pp p, = 0.3. The X,-coordinates of the nodes are deter-

ministic, but the X;-coordinates are considered random to model column imperfection.
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The X;-coordinates are assumed to be independent normals with means py = 60 or —60
in and standard deviations ox = 1.2in. The buckling load for this column using the

mean properties is determined to be 2,593 kips. The column is subjected to a lateral force
F, at the midspan and an axial force F,, which are independent random variables with log-

normal distributions. F, has a mean py = 20 kips and a standard deviation of, = 2 kips,
and F, has a variable mean #r, and a coefficient of variation 8¢, = 0.1. Thus, 22 basic
random variables are included in this problem. The column is considered failed if its hor
izontal displacement at the midspan exceeds the threshold ug. Thus, the limit-state func-
tion is

8(¥) = ug — uzo(v) (7.1)
where u10(v) denotes the displacement at node 10 in the X, direction.

FORM and SORM were performed for #r, = 500 to 2,500 kips and ug = 0 to 30 in.

The analytical expressions derived in Chapter 4 together with the adjoint method described
in Chapter 5 were used to compute the gradient of the limit-state function. The matrices
involved in the gradient computation are derived in Appendix A. Figure 7.2 shows plots

of the first- and second-order failure probability estimates versus g, and ug. For all the

cases studied, FORM and SORM are in close agreement. This indicates that the limit-
state surface around the design point is nearly flat, in spite of the nonlinearity of the struc-
ture. It is interesting to note in Fig. 7.2a that the failure probability curves for different
allowable midspan displacements cluster together as the mean of the axial load increases,

and they all approach probability one as ¢, approaches the buckling load of the mean
column. This insensitivity of the failure probability to uy for large‘ values of wr, is an indi-
cation of instability of the column. The same phenomenon is observed in Fig. 7.2b, where

the curves tend to become horizontal for increasing values of BF,.

For each of the cases studied, the coordinates v* and s* of the design point define

the most likely values of the basic variables and load effects in the failure set. (For non-
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normal basic variables, these coordinates actually are not exactly at the most likely failure
point, but the difference is usually negligible.) As an example, Table 7.1 lists the most
likely values of the basic variables and Fig. 7.3 shows the corresponding undeformed and
deformed configurations of the column for the failure event with py = 1,500kips and
ug=30in. As one would expect, the most likely values of Dy and D, are below their
means, F, and F, are above their means, and the most likely undeformed configuration

has a sine-shape imperfection on the compression side of the column. =

As described in Section 2.5, a useful result in FORM is the sensitivities of the relia-
bility index B with respect to distribution parameters (see Eq. 2.27). As an example, the
sensitivities of the reliability index with respect to the means of the basic variables are
examined here for 3 cases: (1) pr, = 500kips, ug=30in, (2) wr, = 1,500kips , ug= 30in;
and (3) up,=1,500kips, ug=Sin. The first two cases examine the reliability of the
column against a large midspan deflection. In a sense, these cases represent failure of the
column due to instability. The third case examines the reliability of the column against a
relatively small midspan deflection, which may result with or without loss of stability. The
sensitivities are scaled by the corresponding standard deviations of the basic variables to
make them dimensionless. This also has the beneficial effect of making parameter varia-
tions equally likely in a statistical sense. These scaled measures can be directly compared
to determine the relative importance of each basic variable. The results are shown in Fig.
7.4. In all cases the reliability index is strongly sensitive to the mean of the elastic
modulus of the struts. This is because the softening of the structural stiffness basically
comes from the P -5 effect of the struts, and the axial forces of the struts are proportional to
D,. Comparing Figs. 7.4a and 7.4b, it is seen that as the mean of F, increases by a factor
of three, the sensitivity to the mean increases more than sevenfold. This is partly due to
the increase in the standard deviation of F, since the coefficient of variation is kept fixed

at 8y = 0.1, and partly because for the geometrically nonlinear column the lateral dis- '

placement is increasingly sensitive to larger values of the axial load. Comparing Figs. 7.4b
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and 7.4c, the sensitivities to the column imperfection and the lateral forces are seen to
decrease as the displacement threshold u is increased. This is because a larger u, implies
a state closer to the instability state, for which the magnitudes of the column imperfection

and the lateral load do not matter.

As described in Section 2.5 and Eq. 2.28, FORM also provides the sensitivity of the
reliability index with respect to any parameter in the limit-state function. In particular,
observe that for the present example, the partial derivative —8P,/3u is identical to the

PDF of the midspan deflection. For pg =1500kips, this PDF is computed based on

FORM sensitivity analysis and is shown in Fig. 7.5.

7.3 Example 7.2 -- Reliability of a Stochastic Plate with a Random Hole

The reliability of the 32X 32in? square plate shown in Fig. 7.6 which has a hole of
random geometry is investigated. The plate is subjected to a uniformly distributed tensile
load of random magnitude p at the two opposite edges. The magnitude p has a lognormal
distribution with a mean of 100/b/in and standard deviation 20/b/in. The coordinates of
the hole boundary are assumed to be independent normals with mean values defining a
circular hole of radius 2in and coefficients of variation equal to 0.04. The material of the
plate is elastic with a quadratic strain energy function EDE/2, where E is the Green-
Lagrangian strain tensor, and D is the elasticity matrix defined in terms of Young’s
modulus E and Poisson’s ratio v. E and v are modeled as independent, homogeneous
random fields. The Young’s modulus is modeled as a lognormal random field with a
mean py = 500psi and a coefficient of variation 8z = 0.15, and the Poisson’s ratio is
modeled as a uniform random field bounded between 0.2 and 0.4 (see section 5.3.1 and
Ref. 14 for the definitions of these random fields). The autocorrelation coefficient func-

tions of E and v in the transformed normal space are assumed to have the isotropic forms

Axf + AXx?
Pz,z, (X, AX;) = ~@LF (7-2)
b2z, (AX,,AX;) = exp -ﬁ‘-"-f-i-“—f (7.3)

(a,Ly
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where Z; = ®~Fg(E(X))] and Z, = ®~Y[F (v(X))] are the transformed random fields,
AX £ + Ax# is the square of the distance between two points on the plate, L = 32in is the
side dimension of the plate, and az and a, are dimensionless measures of the correlation

lengths of the two random fields.

Because the geometry and material properties of the plate are random, symmetry in
general does not exist. However, for the sake of simplicity, symmetry properties are
assumed and only a quarter of the plate is analyzed. The quarter plate is discretized into
144 finite elements and 30 random field elements for both the E and v random fields, as
shown in Fig. 7.7. After the discretizations, 85 random variables are considered, including
1 for the tensile load intensity, 24 for the coordinates of the nodes on the hole boundary,
and 30 for each of the discretized random fields of E and v. The referential formulation is

used to compute the plate response including the effect of geometrical nonlinearity.

Two failure criteria are considered in this problem. The first criterion is the
exceedance of the tensile principal Cauchy stress at element 133 above a threshold of 600
psi. The second is the exceedance of the horizontal displacement at node 13 above a thres-

hold of 4 in. These criteria are formulated as limit-state functions
g1(T* (v)) = 600 — T* (v) (7.4)
82(u13(v)) = 4 — uy3(v) (7.5)

where T*(v) is the tensile principal Cauchy stress at the centroid of element 133, and

u13(v) is the displacement of node 13 in the X, direction.

The problem was first analyzed by FORM and SORM with g =0.125 and
a,=0.125. In FORM, both the finite difference method and the analytical method
described in Chapters 4 and 5 were used to compute the gradients of the limit-state func-
tions. The essential matrices required for the analytical method are derived in Appendix
A. The modified HL-RF method described in Chapter 3 with the initial point at the mean
values of the basic variables was used to find the design point. In SORM, a point-fitted
paraboloid together with Tvedt’s double integral formula in Eq. 2.16 were used. The
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number of iterations and the required CPU time for these solutions are listed in Table 7.2.
It is clear that the analytical approach for computing the gradients provides a significant
advantage. It is also clear that the SORM approximation requires considerable amount of
additional computations beyond that required for FORM. Table 7.3 shows the estimates
of the failure probability P; and the generalized reliability index, defined here as
—Q'I(P,), based on FORM and SORM for each limit-state function. This table also lists
the estimates of P, and B for the union of the two failure events based on FORM system
analysis [22] and directional simulation using second order approximation surfaces [37]. It
is seen that the FORM and SORM estimates are in close agreement for both limit-state
functions. Further investigations reveal that the curvatures of the fitted paraboloids at the
design points are very small for both limit-state surfaces. This indicates that the two limit-
state surfaces are nearly flat around their design points in spite of the nonlinearity of the
mechanical and probability transformations. Hence, FORM provides good approximation

for the present example. This method is used in the subsequent analysis of the plate.

Figures 7.8 and 7.9 show the contours of the local Young’s modulus E* and the local
Poisson’s ratio v* at the design point of the two limit-state surfaces. The shaded area in
Fig. 7.8 indicates the region where the Young’s modulus is above the mean value of E.
Figure 7.10 shows the configuration of the hole at the design point of the stress limit state.
The hole shape at the design point of the displacement limit state is not shown since it

almost coincides with the mean shape.

Failure criteria in structural reliability evaluation are usually specified based on
theoretical analysis and engineering judgement. For the present example, the two limit
states in Eqs. 7.4 and 7.5 are selected based on our experience with linear elastic plates
with circular holes, for which the location of stress concentration and maximum displace-
ment under uniform tensile loads are well known. The coordinates of the design point
obtained from FORM analysis provide an excellent means for'examining the appropriate-

ness of the selected limit states. For the present example, the contours of the tensile princi-
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pal Cauchy stress and the undeformed and deformed shapes of the plate at the design point
of the two limit-state surfaces are plotted in Figs: 7.11 and 7.12. These figures confirm
that the maximum stress concentration indeed occurs in element 133 and that the max-
imum displacement indeed occurs at node 13 along the X; coordinate. These observations
reassure the appropriateness of the selected limit-state functions. Had the stress contours
indicated a different stress concentration point or had the deformed shapes indicated a dif-
ferent maximum displacement point, then one would have to conclude that the selected
limit-state functions are not appropriate and that more critical failure conditions may exist.
Clearly, such analysis would be useful for complex or nonlinear structures for which the

behavior and the modes of failure cannot be easily prescribed.

Table 7.4 lists the scaled sensitivities of B with respect to the means and standard
deviations of the load variable p, the coordinates of the nodes on the hole boundary, and
the random fields E and v. The sensitivities with respect to the random fields are obtained
by summing up the sensitivities of the individual random field elements. In each case, the
sensitivity is scaled by the standard deviation of the corresponding basic variable or ran-
dom field. As mentioned earlier, these dimensionless sensitivity measures are directly
comparable. It is seen in Table 7.4 that for the stress limit state, B is most sensitive to the
mean and standard deviation of p. This is partly due to the large coefficient of variation
of the load among the basic variables. However, é more fundamental reason is that while
stresses are always direiily related to loads, their dependence on material properties is
indirect and only a resuit of statical indeterminacy. This relative insensitivity of stress
limit-states to variabilities in material properties has been observed to an even greater
extent for linear structures [15]. For the displacement limit state, highest sensitivities are to
the mean of the Young’s modulus random field and the standard deviation of the load.
This is due to the strong dependence of the deformation of the plate to these two variables.

This result is also consistent with previous results for linear structures [15].

It is clear from Table. 7.4 that variabilities in the geometry of the hole have no effect
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on the reliability with respect to the displacement limit state. This is because the displace-
ment at node 13 is a global response measure which is not affected by the detail of the hole
geometry. On the other hénd, the reliability with respect to the stress limit state is rela-
tively sensitive to the geometry of the hole. Obviously, this is due to the localized nature
of the stress limit state. For this limit state, the scaled sensitivities of B with respect to the
means and standard deviations of the nodal coordinates around the hole are shown in Fig.
7.13. The vertical (horizontal) distance between each nodal point and the sensitivity curve
indicates the sensitivity of B with respect to the mean or standard deviation of X5 (X)
coordinate of the node. The sensitivity measure is positive if the curve is drawn above (to
the right of) the nodal point, and it is negative if the curve is drawn in the opposite side.
It is seen that B is insensitive to the variations in the X coordinates of the nodes, but it is
sensitive to the variations in the X, coordinates of the nodes near the stress concentration
point. Figure 7.13a shows that the reliability will decrease if the hole is wider in the X,
direction near the stress concentration point and rapidly narrows away from that point.
Figure 7.13b shows that increased uncertainty in the X, coordinates of the hole, particu-
larly near the stress concentration point, will decrease the reliability. All these results are

consistent with the theoretical results available for the linear elastic case.

Figure 7.14 shows the contour plots of the scaled sensitivities of B with respect to the
mean of the local Young’s modulus. In Figure 7.14a, the shaded band indicates the region
where an increase in the mean of the local E will decrease the pléte reliability for the stress
limit state. This band is the main path through which the tensile load at the edge is
transferred to element 133. If the band is stiffer than the remaining plate, more tensile
load is distributed to this region, and element 133 takes more stress thaﬁ it does when the
plate is uniform. The stress contours of the design point in Fig. 7.11 and the sensitivity
contours in Fig. 7.14a offer two different ways to improve the reliability of the plate with
respect to the stress limit state. One is to mount a high-strength ring on the hole to keep
the plate from cracking at the point of stress concentration, as is usually recommanded in

classical mechanics. The other is to stiffen the region with high positive sensitivity
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measures or soften the shaded band.

It is seen in Figure 7.14b that for the displacement limit state the sensitivity of B with
respect to the mean of the local E is positive everywhere in the plate. Thus, the stiffening
of any part of the plate will increase the reliability with respect to the displacement limit
state. There are, of course, differences in the degree to which the stiffness of each element
influences the displacement. It is clear from Fig. 7.14b that B will increase most if the

mean of E in the region adjacent to node 13 is increased. -

Figure 7.15 shows the contours of the scaled sensitivity of B with respect to the mean
of the local Poisson’s ratio. Unlike Young’s modulus, little is known about how the varia-
tion of Poisson’s ratio in a plate will influence the plate behavior, especially when geometr-
ical nonlinearity is considered. The shaded areas in Figs. 7.15a and 7.15b indicate the
regions where the sensitivity measures are negative. Thus, the reliability of the plate will

increase if the Poisson’s ratio in these regions increase.
Comparing Figs. 7.8 and 7.14, it is seen that the patterns of the contours of E* and

Of 52} are similar for both limit states. This is because the plate is in the safe state at
E

the mean point, and to shift the plate from the safe state to the limit state, the values of the
discretized variables will either increase or decrease to make failure possible. The direction

of change for a local E happens to be quite consistent with the sign of its corresponding

of a—af— This is because if an increase in the mean of a local E tends to decrease the
E

plate reliability, for the local E to taxe a value higher than its mean tends to weaken the

plate. For the same reason, the contours of v* and o, ;af- in Figs. 7.9 and 7.15 have
v

similar patterns. The same phenomenon is observed when comparing the hole shape at the
design point in Fig. 7.10 and the sensitivities of B with respect to the nodal coordinates of

the hole in Fig 7.13 for the stress limit state.

Reliability sensitivity analyses are also performed with respect to the local standard

deviation of the E and v random fields. The contours of these sensitivity measures are
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shown in Figs. 7.16 and 7.17. All these contour plots show the same trend: The sensitivity
is negative everywhere, indicating less reliability for increasing uncertainty; also the plate
reliability is most sensitive to the uncertainties in E and v in the region where the stress or
displacement is investigated.

As a final item of interest, the influences of the correlation length measures az and
a, on the plate reliability are investigated. Figure 7.18a shows the variation of B with
respect to ag with a, = 0.125, and Fig. 7.18b show the variation of B with respect ot a,,
with ag = 0.125. As ag increases from 0.1 to 0.5, B in Fig. 7.18a increases gradually
from 2.64 to 2.70 for the stress limit state and drops from 2.45 to 2.13 for the displacement
limit state. The comparatively low sensitivity of B to ag for the stress limit state is due to
the fact that the stress concentration is a localized phenomenon and is not overly sensitive
to the spatial variations of E. As E becomes more uniform in the plate, i.e. as ag grows,
the plate becomes more reliable for the stress limit state and less reliable for the displace-
ment limit state. The variation of the system reliability with respect to ag is also shown in
this figure. Since both failure criteria are included in the system reliability analysis, the
corresponding index is always smaller than those of the individual limit states. Figure
7.18b shows that the reliability indices for the two limit states and the system remain nearly
constant as the correlation length measure a,, is varied. This implies that the plate reliabil-
ify is insensitive to the spatial variability of Poisson’s ratio.

This example illustrates that the finite-element reliability analysis not only provides
estimates of the failure probabilities of structures, but also provides information which may
'help engineers gain insight into the behaviors of complex structures. The sensitivity meas-
ures are useful in identifying the relative significance of various mram&em and sources of
uncertainty affecting the reliability of the structure. They also provide indications for

modifying a design in order to improve its reliability.



Table 7.1 Design Point of the Built-Up Column for pr = 1500kips and uo= 30in.

Basic Variables Mean Value Design Point
X2 —60.00 —60.06
X3 60.00 59.95
S 7 -60.00 —59.88

) Xg 60.00 60.07
x6 —60.00 —59.80
xq 60.00 60.02
xg —60.00 -59.71
xg 60.00 60.00
X10 —60.00 -59.65
X11 60.00 59.98
X1 -60.00 -59.71
X33 60.00 60.00
X14 —60.00 ~59.80
X1s 60.00 60.02
X16 -60.00 -59.88
X17 60.00 60.07
X8 —60.00 —60.06
X19 60.00 59.95
D, 30000 24750

D, 30000 27740

F, 20.00 20.32
F, 1500 2005

Note: Units are in for x;, kips/in? for D;, and kips for F;.



Table 7.2 Required Number of Iterations and CPU Time of Example 7.2
Limit-State FORM SORM
Function tfumb.er of gradient computed by
lterations | analytical approach | finite difference
g1 8 21 min 2358 min 1186 min
82 4 10 min 1178 min 452 min
Table 7.3 FORM/SORM Solutions for Example 7.2
Lo FORM SORM
Criterion
’ B Pgy B Py
_ Stress 2.6371 | 4.181x1073 | 2.6570 | 3.942x10~3
limit-state
d’ﬁ.‘""."‘em':“‘ 2.4191 | 7.780x1073 | 2.4178 | 7.808x103
mit-state
System 1 2341 | 9.615%107 | 2.354 | 9.295x 1072
reliability
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Table 7.4 Sensitivity of B with Respect to Distribution Parameters
Variable Stress Limit-State Displacement Limit-State
or Field o o2& o 3£ o2&

_ op do op do

P —0.5249 -1.9179 -0.5667 -1.9159
xq -0.0002 -0.0000 -0.0002 -=0.0000
X14 —0.0004 -0.0000 -0.0003 —0.0000
Y14 —0.0000 -0.0000 =0.0000 -0.0000
X7 -0.0002 =0.0000 -0.0001 -0.0000
¥27 -=0.0000 =0.0000 -=0.0000 -0.0000
X40 0.0004 —0.0000 -0.0000 =0.0000
Y40 0.0001 -0.0000 =0.0000 -=0.0000
Xs3 0.0015 =0.0000 -0.0001 -0.0000
¥s3 0.0005 -=0.0000 -=0.0000 -0.0000
Xg6 0.0029 —0.0000 —0.0003 =0.0000
Y66 0.0018 —0.0000 -0.0001 -0.0000
X799 0.0042 -0.0000 -0.0003 -0.0000
¥79 0.0045 -0.0001 —0.0003 -0.0000
xgy 0.0054 -0.0001 -0.0004 -0.0000
Y92 0.0103 -0.0003 =0.0006 —0.0000
X 105 0.0061 -0.0001 —0.0003 -=0.0000
¥ 105 0.0224 -0.0013 -0.0010 -0.0000
X118 0.0058 —0.0001 —0.0002 -0.0000
Y18 0.0440 —0.0051 -0.0015 -0.0000
X131 0.0040 -0.0000 —0.0001 =0.0000
Y131 0.0869 -0.0199 -0.0019 -0.0000
X144 —0.0046 -0.0001 —0.0000 —0.0000
Y144 -0.1132 —0.0338 -0.0022 -0.0000
Y157 =0.2257 -0.1343 -0.0012 -0.0000

E 0.1540 —0.2630 0.7694 —0.3782

v -0.1100 -0.0614 -0.0014 -0.0021

Note: x; and yj denote the X; and X coordinates of node I, respectively.
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Figure 7.1 Example Built-Up Column
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Figure 7.2 FORM and SORM Estimates of Column Failure Probability:

(a) Influence of BF,3 (b) Influence of u.
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F»* = 2,005 kips

D * = 24,750 ksi

D y* = 27,740 ksi

F* =20.32kips

Figure 7.3 Undeformed and Deformed Column Configurations
at the Design Point for pp = 1,500kips and ug= 30in
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Figure 7.5 PDF of Midspan Deflection for K, = 1500ksi
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Hole Shape at
Mean Point

Hole Shape at
Design Point

1
Figure 7.10  Hole Shape at the Design Point for the Stress Limit State
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Undeformed and Deformed Configurations at the Design Point for

Figure 7.12

ar = a,= 0.125; (a) Stress Limit State; (b) Displacement Limit State.
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(a)

' (b)

Reliability Sensitivity Measures for the Stress Limit State with

ag = a, = 0.125: (a) Measure ox -Q-E—; (b) Measure o -a-é-.
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Figure 7.18  Influence of Correlation Length on the Reliability Index:

(a) Influence of ag for a, = 0.125; (b) Influence of a,, for az = 0.125.
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CHAPTER 8
CONCLUSIONS

8.1 Summary of Report

A general framework for reliability analysis of structures with geometrical nonlinear-
ity is presented. The structure is either linear or nonlinear elastic, and is subjected to static
loads. The material properties, geometry, and external loads of the structure are con-
sidered as random. These uncertain quantities are represented in terms of a vector of basic
random variables. Failure criteria of the structure are expressed in terms of limit-state

functions.

Two methods are used to assess the failure probabilities of the structure, namely, the
first-order reliability method (FORM) and the second-order reliability method (SORM).
In FORM, the limit-state surface in a transformed standard normal space is replaced by its
tangent hyperplane at the design point, i.e., the point with the minimum distance from the
origin. In SORM, the limit-state surface is fitted at the design point by a paraboloid

obtained either by curvature fitting or point fitting.

In both methods, a constrained optimization algorithm is needed to search for the
design point. Several optimization algorithms are compared for use in this application.

The modified HL-RF method proposed in this study appears to be the most promising.

The structural response and its gradient, which are required in FORM and SORM,
are computed by the finite element method. For nonlinear problems, it is important that
the gradient is computed analytically since computation of the gradient by a finite differ-
ence scheme is not only time-consuming, but of questionable accuracy. In the present
study, closed-for'm expressions for the gradient are derived for elastic structures with
geometrical nonlinearity. The expressions are in terms of the tangent stiffness matrix, ini-
tial load stiffness matrix, and partial derivatives of the external and resisting force vectors.

Similar to the stiffness matrix, the partial derivatives are formed first on the element level
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and then assembled into global matrices. No iterations are required in the computation of
the gradient in this analytical approach. The expressions presented are applicable to all
types of elements and to both referential and spatial formulations. To further improve the
efficiency of FORM and SORM, the adjoint method is used to compute the gradient of the
limit-state function.

The uncertainties of the structure and its environment are often modeled by random
fields. The Nataf model, which is applicable to non-Gaussian fields, is used in this study
to model such random fields. Six methods to represent a random field in terms of random
variables are compared for their suitability in the finite-element reliability analysis. In this
study, the midpoint method is employed to discretize material-property random fields and
the nodal-point method is employed to discretize geometry random fields because they are

numerically stable and can be applied to non-Gaussian random fields.

In order to carry out the finite-element reliability method, a general-purpose reliabil-
ity code, CALREL-FEAP, has been developed. The finite element routine, FEAP, has
been implemented in the code to compute the structurai response and its gradient. The
CALREL-FEAP code not only perfforms FORM and SORM, but also has capabilities for
Monte Carlo simulation, directional simulation, and series system reliability analysis. It
has three attractive features. First, it incorporates all the time-saving techniques described
in this report. Second, its structure is highly modulized. This makes the maintenance and
extension of the code relatively ezsy. Third, it is flexible. The user can develop and
implement in the code his/her own veliability method, or extend the finite element part of

the code for reliability analysis of a structure with a special mechanical behavior.

The finite-element reliability method is illustrated with two examples: a built-up
column and a st;chastic plate with a random hole. The examples show that for these two
cases, even though the basic random variables are non-normal and the structural behavior
is highly nonlinear, the limit-state surfaces in the standard normal space are nearly flat,

and FORM provides reasonable estimates of the failure probabilities. These examples also
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show that the uncertainties in the material properties and structural geometry may have
strong influence on the structural safety in spite of their small coefficients of variation.
Sensitivities of failure probabilities with respect to the parameters in the limit-state func-
tions and the distribution parameters of various random variables are examined in both
cases. The sensitivity measures with respect to the parameters in the limit-state function
can be used to construct the distribution of the structural response. The sensitivity meas-
ures with respect to the distribution parameters are shown to be useful in identifying the
important sources of uncertainty and in developing means for design modification in order

to improve the reliability.

8.2 Future Development

Although only the truss and plane stress elements with linear constitutive laws are
included in the two examples of Chapter 7, the proposed finite-element reliability method
is readily applicable to other types of geometrically nonlinear elements and constitutive
laws. However, expressions for the stiffness matrix and the derivatives of the resisting and
external forces with respect to the basic random variables need to be derived for each
specific element type and constitutive law. This should be done in the future to make the

element library of CALREL-FEAP more complete.

The finite-element reliability method and the CALREL-FEAP code can also be
extended to other classes of structural problems. Such extensions would be particularly
important for structures with inelastic materials and for structural dynamics problems.
With the current version of CALREL-FEAP, such applications are possible (with proper
formulation of the limit-state functions) if the response gradients are coinputed by a finite-
difference schems. However, for practical feasibility, it is necessary to develop and imple-
ment efficient algorithms for computing the response gradients. Such an extension would
make CALREL-FEAP a powerful tool for structural reliability analysis in vast areas of

application.
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Other Areas that need further study and development include the modeling and
representation of random fields, selection of mesh size, and various techniques to improve

the efficiency of the gradient and the reliability computations.

Finally, it is important to note that the finite-element reliability method is in its
infancy. As the field progresses and various applications are considered, new areas of
study and development will emerge. It is hoped that the present study has taken an early

but important step in this course of development.
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APPENDIX A
DERIVATION OF ESSENTIAL MATRICES IN THE GRADIENT COMPUTATION

A.1 Truss Element of Example 7.1

Consider a truss element with a uniform cross-sectional area A, as shown in Fig. A.1.
Let U, and U, denote the nodal displacements of the element, and X{ and X§ the original

nodal coordinates. The Green-Lagrangian strain E ,, of the element is

1 {2 1 T 1,7
E, = 5-[2—2-—1] = 17 [AX AU+ -2—AU AU] (A.1)

where AX = X{-X{, AU=U,-U;, and | = [(AX+AU)T(AX +AU)]"? and L =
[AXTAX]Y2 are the current and original lengths of the element, respectively. It follows

that

1 dU
dE,= 5l -AxT AxT) [ dU; ] (A.2)
where Ax= AX + AU. Hence, the strain-displacement matrix is

B

1
;_7[ -AxT AxT] (A3)
The material of the truss elements is considered to be elastic with a strain energy function

E D E /2. The second Piola-Kirchhoff stress is thus given by
T=DE, (A4)
Using Egs. 4.19, A.3, and A .4, the element resisting force vector R, is

DE,A [ —Ax

DE,AdL = — Ax

L
1 | —Ax
R, = | — A5

The element tangent stiffness is obtained by taking the derivative of R, with respect to the
?
nodal displacements,

DA [ —Ax DE,A| I -1
Ky, = L_3[ Ax][-AxTAxT]+ L“ [—1 . (A.6)

Since only nodal loads with fixed directions are considered in Example 7.1, P simply
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equals [0,...,0,F, ,0,...,0,F,]T.

Because the limit-state function in Example 7.1 is in terms of the nodal displace-

ments, only four matrices need to be derived to compute the gradient. They are P

ax? |v’
aP R dR . e .
av, lv av, |v and ax? v By differentiation, these matrices are
oP
aP .
o, lu= [o,...,o,l,p,...,O]T (A.8)
aP
o, lv= [0....,0,1]T (A.9)
dR, E;, A | —Ax
w lv™ | ax (A-10)
dR, DE A 1 3DE,A | —Ax T DA} ™
axg lv L [—l + L3 ax |8X° - 73| ax AUA.11)
oR, dR
-7 o — A.12
axs v ax{ lU (A.12)
The global matrices R and 2R are obtained by assembling the corresponding
aD v axd lu

element matrices.

A.2 Plane Stress Element of Example 7.2

In the conventional finite element method, an arbitrary-shaped, 4-node element Q, is
often transformed into a master element ﬂ, through an isoparametric mapping before ele-
ment matrices are computed (See Fig. A.2). Accordingly, the <lement coordinate system
(X4,X5) is transformed into a natural coordinate system (£,m). Each point in £}, is
mapped onto {2, by the following equation:

X =3 NX{ (A.13)
I=1
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where np is the number of nodal points of the element, X{ are the nodal coordinates, and

Nj are the shape functions defined by

1
Ny = :(1 + §€)(1+ mpm) (A.14)
in which & and 7 are the coordinates of the nodal points in the natural coordinate system.
These shape functions are also used in the displacement field interpolation, i.e.,

u= § N;U; (A.15)
I=1

Since the material of the plate has a quadratic strain energy funcﬁon, its constitutive

law is

T = DE (A.16)

where D is the tangent elasticity matrix

1v O
2vl 0

1—-v
00 3

(A.17)

in which E is Young’s modulus and v is Poisson’s ratio. From Eq. 4.14, the Green-
Lagrangian strain E is
1
E= 3 B+ 1B U, (A.18)
I=1
The linear and nonlinear strain-displacement matrices By; and B;; for the element are

obtained by specializing Eqs. 4.15 and 4.16 for the two dimensional case. They are

[Nix, O
Bo[ = 0 N[’x’ (Alg)
Npx, Nix, |
W auT ]
X, 0 _
_ duT Nl,x,l
B, = 0 3X, [Nl,x’l ] AG; (A.ZO_)
ouT guT
X, 94X,
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where

8 _ 3Ny, Uy (A.21)

and

Nix, _ 1| Xam Xae] [N (A.22)
—xlﬂl Xl,f Nl’n .

Nix, J
in which, using the approximation in Eq. A.13,
J = XX~ X1nX2y
= § i (NL¢Ng o — N Ng ) X1 X% (A.23)
L=1K=1
is the Jacobian of the coordinate transformation.

In Example 7.2, the plate is subjected to a uniformly distributed tensile load at the
two opposite edges, and no body force is considered. It is further assumed that the tensile
load remains proportional to the original size of the plate. Hence, by= 0, and t= [p,0]T

on the right edge. It is easily verified that for the nodes on the traction boundary

oL
®,) = [ f) l (A.24)

where L is the original distance between the two nodes on the traction boundary.

The element resisting force at a node I is
(R, = [B'DEdQ (A.25)
3 v

Also, the IJ-th submatrix of the element tangent stiffness, denoted (Ky, )y, is

a(R —
Kr)p = Rek _ JBDB;d0 + [GTHG,d0 (A.26)
]
where
Sl Sl
H= g1 5,0 (A27)

The two limit-state functions in Example 7.2 are
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£1(T* (v)) = 600 — T* (v) (A.28)
82(u13(v)) = 4 — uy3(v) (A.29)
where T*(v) is the tensile principal Cauchy stress at the centroid of element 133, and

u13(v) is the X, displacement of node 13. The gradients of these two limit-state functions

are
Vey(T*(v)) = =V, T*(v) (A.30)
Vga(uy3(x) = =Vyups(v) (A.31)
Note that althougl: the referential formulation is used in the finite element analysis, the

first limit-state function is a function of the Cauchy stress tensor T*. Rearranging the

terms in Eq. 4.4 and making use of Eq. A.16,

1 T
* =
T JetF FDEF (A.32)

where, by Eqgs. 4.3 and A.15,

F=1I+ x§1 Ur[Npx, Nix,] (A.33)

It is seen that the Cauchy stresses are not explicit functions of the Green-Lagrangian

strains. Hence, rather than applying Eq. 5.1 directly, it is more convenient to expand Eq.

A.30 as

aT*(v) | _ aT*(v)

Vey(fe(v) = - T | - 2L

U (A.34)

The basic random variables considered include the tensile magnitude p, the discre-
tized random fields E and v, and the nodal coordinates of the hole boundary. Hence, six

extra matrices need to be computed to obtain the gradient of the limit-state functions.

aP dR aT* dR aT* aT* .
They are av; I'U' av,, IU’ av, IU’ 3x? IU’ e v and U | v The partial

derivatives of P, R, and T* with respect to the load and material variables are

a(Pe )l

L
e | . [2 ] for nodes on the traction boundary : (A.35)
0
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a(Re)l =T 0

= |U= ‘{BI Enm (A.36)
a(R

( ‘)' o= fBTQREdQ (A.37)
aT* 1__aD

2E | U detFF EEF (A.38)

aT* | 1 _gdD gt
3 |u= Gere ¥ 5 EF (A.39)

where

1v O
aD 1
3E ) v 1 10 (A.40)
-V
00 5
2v 142 0
(1-v?3)? (1?2
3D 1+12 2v
—=E 0 A.41
av ¢! _v2)2 a _v2)2 ( )
S
L 2(1+v)
The partial derivatives of R and T* with respect to the nodal coordinates are
(R 3BT B B
( '}‘ =f -DEJdQ + fB p3 [ X+ LI X a0
0Xj aX, K=1 BXJ 2 Xy
+ { B'DE —}-(-;-dﬂ (A4
aT* 1 adetF T, _1 T
= - FDEF DEF
ax4 IU (detF)? ax‘ v detF a I
1 1 aFT
] + T 43
detFF ax‘ | F detF FDE ax¢ |U (A.43)

Note that in the above expressions, B;, B, B;1, J, F, and E are all functions of Ny x, .

Thus, the derivatives of these terms with respect to X§ can be expressed in terms of the

derivatives of N y . Using Egs. A.13 and A.22,
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Nix, = '}‘Kf (N, Nig —Ni e Np o) X (A.44)

Ny, = 1 Kﬁ (Ng.oNpg+ NNy Xy (A.45)
Hence,

N

—_=— A.46

axy, Jz K, ¢ i (Ng. Nig —Ng g Nig) X (A.46)

Ny,

xG 5 KL ﬁ (Mo Nig—NegNL) Xl + 10N, N -NigN) (A7)

aNyy,
axgl = Jz axd i (Nx,n N] L€ _Nu NL,‘)Xﬁl - —(N) .,'N[ £ —NjﬁNL'l) (A48)

Ny,

X%, 12 X% &= ﬁ (Nin Nig —Nig Nio) X (A.49)
where

axfl i (N Njg =Ny N X2 (A.50)

asz g (Nj.o NLg =N o Npo) XY, (A.51)

Finally, the partial derivative of T* with respect to the nodal displacements is

ar* 1 adetF 1_oF

o0 |+~ "@arE aU |x"PET T GetF oU | PEF

-1_ppdE T 1 oFT

T RF P50 | F T FFPE G5 | x (A.52)
where

Ny N
oF Lx, “'LX,
aUu X | 0 0 ] (A.53)

1§

F [0 0
WVp Ix |Nix, Nx.x,] (A.54)
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APPENDIX B
PROGRAM CALREL-FEAP

B.1 Linkage of CALREL and FEAP

This section describes the changes made in CALREL and FEAP to make the linkage
of these two codes possible.

B.1.1 Memory Allocation -

As independent programs, CALREL and FEAP have their own dynamic array allo-
cations. In CALREL, a large integer array is declared in the blank common block, and a
package developed by E. Wilson for use in the finite element code CAL-80 is employed to
allocate memory. This package includes subroutines which allocate new arrays, locate
existing arrays, and delete existing arrays. The initial position of thé unused portion of the
blank common block, next, is updated whenever the package is invoked and stored in a
common block /dbsy/. FEAP also declares an integer array in the blank common block,
and it uses a subroutine PSETM to allocate new arrays. Subroutine PSETM keeps a record
of the length, kmax, of the used portion of the array in the common block /plong/. It
would be a waste of memory space if CALREL and the subprogram FEAP used two
independent allocation arrays. In order for the subprogram FEAP to share the same allo-
cation array as CALREL, both the common blocks /dbsy/ and /plong/ have been passed to
the main routine of FEAP. The variables next and kmax are updated in that routine so
that both CALREL and FEAP are informed of the currently available space. In this way,
the overlapping of array allocations by the two codes is avoided, while the allocation rou-
tine of each code remains essentially untouched. This point is important since it reduces
the changes to be made in each code and, consequently, the possibility of coding errors.
The conceptual diagram of the memory allocation of CALREL-FEAP is shown in Fig.
B.1.
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B.1.2 Common Blocks and Arguments

In order to transfer control parameters between CALREL and FEAP, some modifica-
tions on the common blocks have been made. Five new common blocks have been

created:

common /crel/ ifeap,ifeapo,ifres

common /jjcf/ nmnc,ngnc,ntdc,nmnf,ngnf,ntdf,nrvc,crvf,nrvm,nrvb
common /mdat3/ n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26,n27,n28
common /mdat4/ nes0,les0,nsts,ndeb,ndeu,nesc,nele,ndrbd

common /grad/ figf flgr

Common block /crel/ stores the current limit-state function number, ifeap, the limit-state
function number in the previous call to FEAP, ifeapo, and the flag ifres, which indicates
whether this is a restart run of FEAP or not. Common blocks /jjcf/, /mdat3/, and /mdat4/
contain the addresses of the new arrays created in FEAP. Common block /grad/ contains
two logical flags, flgf and flgr. These flags control whether the structural response and its
gradient are to be computed by FEAP or not. Their values are assigned in CALREL
according to the kind of analysis that CALREL is performing. For example, during the
search for the design point, the structural response needs to be computed at each iteration
step, while the gradient may not be needed, depending on the optimization scheme used.
On the other hand, when performing sensitivity analysis with respect to the deterministic
parameters in the limit-state function, CALREL keeps the response fixed and requires
computing the gradient only.

Two existing colnmon blocks in CALREL have been passed to FEAP:
common /flag/ icl,igr,igf
common /prob/ ngf,ngp,nrx,ntp,nry,ntf

The first block contains the control parameters of CALREL, and the second block stores

the size of the reliability problem.
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Finally, two existing common blocks in FEAP have been extended:

common /fdata/ f(11),pfr,folw

common /mdata/ nn,n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,m1

The new term folw in /fdata/ is a flag indicating whether the external loads are follower
forces; the term m! in /mdata/ is the address of the first array allocated in the blank com-

mon by FEAP.

In addition to the parameters transferred through common blocks, the basic random
variables and the current limit-state function number are passed from the user-defined rou-

tines UGFUN and UDGX to FEAP as arguments in the call statements.

B.1.3 File Numbers

Both CALREL and FEAP open several files to store problem data. Unfortunately,
some of the file numbers used in these two programs were identical. To prevent the data
files from mixing up, new file numbers have been assigned in subroutines FILNAM,

PHIST, PMACR, PMACR3, PMAN, READER, and TAPER in FEAP.

B.1.4 New Arrays in CALREL and FEAP

Two new arrays have been created in CALREL. These arrays store the numbers of
the elements whose stresses or strains are used in the limit-state functions and the starting

addresses of these element numbers with respect to each limit-state function.

In FEAP, several new arrays have been created to save the matrices required in the
computation of the gradient. Other arrays have been created as pointer arrays for the
external loads, material properties, and structural geometry variables which are random
and must be updated every time FEAP is called. These pointers indicate whether a load
parameter, material property, or nodal coordinate is random, and, if it is, they assign the
number of the associated random variable so that the current value of the variable can be

determined for the running of FEAP (see Fig. B.1).
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B.1.5 New and Modified Subroutines in FEAP

Several subroutines in FEAP have been modified and several new routines have been
added. Basically, these subroutines can be classified into three groups. The first group of
subroutines have been created or modified to incorporate the randomress in the structure
and its environment. For instance, every time FEAP is called, a subroutine is executed to
assign the current values of the random variables to the load parameters, material proper-
ties, and structural geometry. Another subroutine then generates new -iodal coordinates
using the new values of the geometry parameters. The second group of subroutines have

been created or modified for the computation of the gradient. Subroutines that form the

d
matrices aa—l: v %’—:—, etc., belong to this group. The third group consists of new sub-
s

routines that are designed for the convenience of the user in formulating the user-defined
subroutines UGFUN and UDGX. Two of these are called by UGFUN to extract displace-
ments and stresses/stains from FEAP in order to compute the limit-state functions. Other
routines are called in UDGX to extract the quantities used in the computation of the
response gradient. These subroutines and their functions are listed in Table B.1. In addi-
tion to the three groups of subroutines mentioned above, a few facility subroutines have

been written to handle frequently performed operations.

B.1.6 User-Defined Subroutines

As mentioned in Chapter 6, there are three subroutines in CALREL, namely,
UGFUN, UDGX, and UDD, and one element routine in FEAP that should be developed
by the user. The formats of UGFUN, UDGX, and UDD remains the same as in the origi-
nal version of CALREL. However, subroutines UGFUN and UDGX, which serve as an
interface between CALREL and FEAP, must contain certain statements to extract quanti-
ties computed by FEAP. The element routine of FEAP should be modified. Arrays asso-
ciated with random material properties, nodal coordinates, and boundary tractions must be

transferred to this routine. In addition, the routine should contain extra steps to form the



129

essential matrices if the response gradient is to be computed by analytical expressions.

Details of these user-defined routines are described in the subsequent sections.

B.2 Input File of CALREL

To run CALREL, the user should provide an input file containing a list of macro
commands that execute the required operations and the data that describe the problem or

specify solution schemes.

B.2.1 Macro Commands of CALREL

The formats and functions of the macro command are listed below. Note that only
the first four characters are required to identify a macro command. A command may be
followed by a list of modifiers. All modifiers inside brackets have default values and are

optional.

CALRel NRX=nrx [NGF=ngf] [NIG=nig] [NDP=ntp] [NMC=nmc] [NTL=ntl]

CALRel defines the size of a problem, where

ngf : number of limit-state functions, default = 1.

nig : number of independent groups of basic random variables, default = 1.
nrx : total number of basic random variables.

ntp : number of deterministic parameters in the limit-state functions, default=0.
nmc : number of minimum cut sets, default = ngf.

ntl :  total number of components in all minimum cut sets, default = nmc.

This command should be the first line of the input file.

RESTart
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RESTart restarts a previous CALREL run. All problem data are read from the files saved
in the previous run. The user should skip command CALRel if RESTart is issued. This

command should be the first line of the input file.

DATA

~

DATA reads the input data of a problem. The user should provide the problem data fol-
lowing this command. The format of the input data is described in the next section. “his

command can be skipped in a restart analysis.

END

END stops data input mode and evokes macro command mode.

FORM [INI=ini] [IST=ist] [IGF=igf] [NPR=npr]

FORM performs first-order reliability analyses on individual limit-state functions, where
ini : initialization flag, default = 0.
ini = —1, start from the design point of the previous run;
ini = 0, start from the mean point;
ini = 1, start from the point specified by the user.
ist :  restart flag, default = 0.
ist = 0, ' analyze a new problem;
ist =1, continue an unconverged problem.
igf . limit-state function to be analyzed, default = 1.

igf applies to component analysis only.
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npr : print interval, default = 0.
npr < 0, print no first-order results;
npr = 0, print the final results of FORM;

npr > 0, print the results after every npr steps.

BOUNd [IBT=ibr]

BOUNG calculates the first-order failure probability bounds for series systems, where
ibt :  type of bounds required, default = 0.

ibt = 1, unimodal bounds;

ibt = 2, relaxed bimodal bounds;

ibt = 3, bimodal bounds;

ibr = 0, all of the above.

Command FORM must have been executed before this command.

PNET [RHO=rho]

PNET estimates the first-order failure probability by the PNET method, where
rho : the threshold used in PNET method, default = 0.6.

Command FORM must have been executed before this command.

SENSitivity [ISC=isc] [ISV=isv] [IGF=igf]

SENSitivity performs first-order sensitivity analysis with respect ot the parameters defining

the probability distributions and with respect to the deterministic parameters defining the
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limit-state functions, where

isc:  type of sensitivity analysis required, default = 1.
isc = 1, sensitivity analysis at component level;
isc = 2, sensitivity analysis for a series system.

isv:  type of parameters for sensitivity analysis, default = 0.
isv = 1, sensitivity analysis with respect to distribution parameters;
isv = 2, sensitivity analysis with respect to deterministic parameters;
isv = 0, both the above.

igf : the same as in FORM.

Command FORM must have been executed before this command, and so must command

BOUNd if isc = 2.

SORM [ISO=iso] [ITG=itg] [IGF=igf]

SORM performs second-order reliability analysis on individual limit-state functions, where
iso : type of second-order analysis to be performed, default = 1.
iso = 1, point-fitting method; |
iso = 2, curvature-fitting method;
iso = 3, Dboth the above methods.
itg : type of integration scheme used; default = 2 for the point-fitting method and
default = 1 for the curvature-fitting method.
itg =1, improved Breitung formula;
itg = 2, , improved Breitung formula and Tvedt’s double integral.

igf: the same as in FORM.

Command FORM must have been executed before this command.
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DIRS [IFS=ifs] [IST=ist] [NSM=nsm] [NPR=npr] [COV=cov] [STP=stp]

DIRS performs directional simulation, where
ifs :  type of surface used in simulation, default = 2 if SORM has been executed, other-
wise default = 1.
ifs = 0, exact limit-state surface;
ifs = 1, first-order approximation surface;
ifs = 2, second-order approximation surface.
ist :  restart flag, default = 0.
ist = 0, perform a new directional simulation;
ist =1, continue a previous simulation.
nsm : total number of trials, default = 10000.
npr : print interval for simulation results, default = nsm/50.
cov : threshold for coefficient of variation of probability estimate, default = 0.05.
stp : seed for random number generation; should lie in the range [1,2147483647]. If not

specified, stp is generated by the program.

Simulation stops at nsm trials or after the sample coefficient of variation falls below cov,
whichever arrives first. If ifs = 1 (2), command FORM (SORM) must have been exe-

cuted.

MONT [IST=ist] [NSM=nsm] [NPR=npr] [COV=cov] [STP=stp]

MONT performs the Monte Carlo simulation, where ist, nsm, npr, cov, and stp are the

same as defined {n DIRS.

EXIT
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EXIT stops program execution.

B.2.2 Input Data of CALREL

The input data of CALREL is composed of several data sections. Each section starts
with a title describing the type of data to follow. All input data are in free format. Data

items are separated by spaces, commas, or tabs.

TITLe

text

TITLe reads the description of the problem, where
n: the number of text lines that follow.

text : n lines of text describing the problem.

FLAG
icl,igr
FLAG reads analysis flags, where
icl :  problem type, default = 1.
ict =1, component reliability;
icl = 2, series system reliability;
icl = 3, ' general system reliability.
igr : flag for gradient computation, default = 0.
igr = 0, gradient computed by finite difference;

igr = 1, gradient provided by the user in subroutine UDGX.
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OPTlImization
iop,nil,ni2,tol,0pl,0p2,0p3
OPTImization reads optimization parameters, where
iop : type of optimization scheme used, default = 2.
iop A= 1, the HL-RF method;
iop = 2, the modified HL-RF method;
iop = 3, the gradient projection method;
iop = 4, the sequential quadratic programming method.
nil : maximum number of iteration cycles, default = 100, maximum = 100. 1
ni2 : maximum steps in line search, default = 4.
tol :  convergence tolerance, default = 0.001, minimum = 0.001. !
opl : step size reduction factor in line search, default = 1.0 for iop = 1, default = 0.5
for iop = 2 or 3.
op2 : optimization parameter.
iop = 2, parameter ¢ in the merit function, default = 10;
iop = 3, convergence tolerance for line search, default = 1ol .
op3 : optimization parameter.

iop = 3, Maximum step size in line search, default = 4.

STATistics?
igt,nge,ngm

xn,nv,id,p1,p2.p3.P 4.0

ro .

STATistics reads statistical data of the basic random variables. The variables are divided

into nig statistically independent groups. For each group, the user should provide:

igt :  group type.
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igt = 1, all variables in the group are statistically independent;
igt = 2, variables described by their marginal distributions and correlation
matrix;
igt = 3, variables described by conditional and/or marginal distributions.
nge : number of variables in the group.
ngm : number of variables in a type 3 group which are described by their marginal distri-

butions.

For each of the nge variables, provide: 3
xn: variable name.
nv :  variable number.
id: ids = |id | = distribution type.

ids = 0, deterministic;

ids =1, nommal;

ids = 2, logno?mal;

ids = 3, gamma;

ids = 4, shifted exponential;

ids = 5, shifted Rayleigh;

ids = 6, uniform;

ids = 7, Dbeta;

ids = 11, type-I largest value;

ids = 12, type-I smallest value;

ids = 13, type-II largest value;

ids = 14, type-III smallest value;

ids > 50, user-defined distributions.
p1: distribution parameter 1. 5

id >0, p;:mean value;

id <0, P : as defined in Table B.2.
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p,: distribution parameter 2. 5
id >0, p2 : standard deviation; i
id <0, p2 : as defined in Table B.2.
p3: distribution parameter 3. 3
ps: distribution parameter 4. 5

xg: initial value of the variable, needed when ini = 1.

If igt = 2, or igt = 3 with ngm > 0, input the lower triangle of the correlation matrix for
variables described by their marginal distributions; read after the distribution data of the
variables. Otherwise, skip ro and continue to input the distribution data for the next
group.

ro : lower triangle of the correlation matrix excluding the diagonals. Read it row-wise

and in a triangular form.

Repeat the above input data for all groups.

PARAmeter
tp

PARAmeter reads the deterministic parameters defining the limit-state functions, where

tp:  ntp deterministic paramstzrs.
LIMIt

nesc

ig,nelm '

elm

LIMIt reads the numbers of the elements whose components of stress or strain are used in

the limit-state functions, where
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nesc : total number of stress and strain components in an element.
ig: limit-state function number.
nelm : total number of elements whose stresses/strains are used in this limit-state function.

elm : element numbers of the above nelm elements.

ig, nelm , and elm should be repeated for all limit-state functions which are expressed in

~ terms of the element stresses/strains. This data section must be ended with a blank line.

CUTSets$

mc

CUTSets reads minimum cut sets, where

mc : components of minimum cut sets. Use zero to indicate the end of each cut set.
Use a negative sign to indicate the complement of a limit-state function. E.g., for

minimum cut sets (1,2,4) and (-2,5,7), mc = 1240-2570.

Notes:

(1) To override the restrictions ni1< 100 and rol > 0.001, input negative nil and tol

values. Their absolute values will be used in the analysis regardless of the limits.

(2) In a normal run without a restart option, all data sections can be skipped except
STAT which must be input at least once.

(3) If a type 3 group contains variables described by marginal distributions, i.e. ngm > 0,
then such v'ariables must be defined before the variables described by conditional dis-

tributions.

(4) The first four characters of the line is treated as the variable name. The user should

provide nv, ids, py, p3, p3, P4, and xq from the fifth character on. No comma should
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be inserted between xn and nv.

(5) For variable groups with igr = 3, entries for parameters P1, P2, P3, and p4 can be
real or integer numbers. If real, then the parameter is assigned the entered value. If
an integer ip; is entered for parameter p, then p; is set equal to the ip; -th basic ran-
dom variable in the group. The ip;-th variable must have been defined before. This
allows assignment of distributions whose ;)arameters are themselves random vari-

ables.
(6) If CUTS is skipped in a system problem, then the system is treated as a series system.
(7)  Only the first four characters are required to identify a data section type.

(8) The order of data sections is arbitrary.
B.2.3 An Example Input File of CALREL

CALR ngf=1 nig=3 nrx=6 ntp=1
DATA

TITLE

1 _

example input file

FLAG

10

OPTI

29 40001 000
STAT

11

r  1,1,100.,20.,0.,0.,100.
22

vl 2,2,1000.,150.,0.,0.,810.
ml 3,-6,50.,100.,0.,0.,75.
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0.5

332

v2  4,2,1000.,150.,0.,0.,810.
m2 §,-6,50.,100.,0.,0.,75.
q 6,51,4,5,10.,0.,810.
0.5

PARA

2.0

END

FORM ini=1 npr=1

SENS

SORM iso=1 itg=1

DATA

PARA

3.0

END

FORM ini= -1 npr= -1
SORM iso=1 itg=1

EXIT

B.3 Input File of FEAP

The input file of the subprogram FEAP consists of two parts. The first part is com-
posed of data sections which define the control information and the mesh of the problem.
The second part contains a list of macro commands defining the solution algorithm.

Details of this input file is available in Ref. 78 and Section 6.3.

B.4 User-Defined Subroutines in CALREL



10

20

10

The formats and arguments of the three user-defined subroutines in CALREL are:

subroutine ugfun(g,v,tp,ig)

implicit double precision (a-h,0-z)
common /prob/ngf,nig,nrv ntp,nry,ntf
dimension v(nrv),tp(ntp)

go to (10,20,...) ig

g= ..

return

g= ..

return

end

subroutine udgx(v,dgv,tp,ig)

implicit double precision (a-h,0-z)
common /prob/ngf,nig,nrv ntp,nry,ntf
dimension v(nrv),dgv(nrv),tp(ntp)

go to (10,20,...) ig

dgv(l) = ...

return

dgv(l) = ...

return

end

subroutine udd(v,par,sg,ids,cdf,pdf,bnd,ib)

implicit double precision (a-h,0-z)

common /prob/ngf,nig,nrv,ntp,n1y,ntf
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dimension v(nrv),par(4),bnd(2)
go to (10,20,...) ids-50
10 cdf = ...
pdf = ...
sg = ...
ib = ...
bnd(1) = ...
bnd(2) = ...

return

return

end

The definitions of the arguments of the above subroutine are as follows:

Argument Definition

g the value of the limit-state function

v a vector of basic random variables

tp deterministic parameters in the limit-state functions

ig the number of the limit-state function whose value/gradient is computed
dgv gradient of the limit-state function in the original space
par parameters defining the probability distribution of the variable

sg , standard deviation of the variable

ids distribution number of the variable
qdf cumulative probability of the variable

pdf probability density of the variable



143

bnd lower/upper bounds of the distribution

ib code of distribution bounds
ib = 0, the distribution has no bounds
ib = 1, the distribution has a lower bound
ib = 2, the distribution has a upper bound

ib = 3, the distribution has lower and upper bounds

The argument sg is used in computing derivatives and only an approximate estimate is

needed. All real arguments of these subroutines must be in double precision.

In CALREL-FEAP, subroutine UGFUN is essentially composed of two sections: The
first section checks if FEAP is to be executed, and the other computes the limit-state func-
tions for a given set of values of the basic variables. A simple example of UGFUN is as

follows:

subroutine ugfun(g,v,tp,ig)
implicit real*8 (a-h,o0-z)
logical flgf, figr
common /prob/ngf,nig,nrv,ntp,nry,ntf
common /grad/ figf flgr
dimension v(nrv),tp(ntp)
c---- check if FEAP is to be executed or not
if(flgf) call feap(v,ig)
c—- switch to ig-th limit-state function
go to (10,20), ig
10 g=tp(1) -'getstr(1,133)
return
20 g = tp(2) — getdis(1,13)

return
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end

In this example, the first failure criterion is expressed as the exceedance of the first com-
ponent of the stress/strain vector of element 133 above the threshold tp(1), and the second
criterion is expressed as the exceedance of the first component of the displacements at node
13 above the threshold tp(2). The double precision functions getstr(i,j) and getdis(i,j)
respectively extract the i-th stress/strain component of element j and the i-th displacement
component of ncre j from the results obtained in FEAP. The order of the stress/strain
components is art«‘rary and is specified by the user in the element routine. For a truss ele-
ment, for example, one can define the first component as the axial force and the second

component as the axial deformation, or vice versa.

For geometrically nonlinear, elastic structures, the gradient of the limit-state function
is computed by the adjoint method to reduce the amount of computation. It was shown in
Chapter 4 that the partial derivatives of €, o, R, and P are dependent on the element type.
These are systematically computed in the element routine of FEAP. On the other hand,
the partial derivatives of g(.) are directly related to the particular limit-state function used
and must be computed by expressions provided by the user. Therefore, in subroutine
UDGX, the user should provide expressions for the partial derivatives of g(.) and call
appropriate subroutines to extract the essential matrices from FEAP. An example of
UDGX for the limit-state functions shown in the above example of UGFUN is as follows

(see Table B.1 and the steps listed in section 5.2 of Chapter 5 for clarity):

subroutine udgx(dgv,v,tp,ig)

implicit real*8 (a-h,o0-2)

common mtot,np,m(1)

common /prob/ ngf,ngp,nrv,ntp,nry,ntf

common /cdata/ numnp,numel,numat,nen,neq,iprgx

common /mdata/ nn,n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,m1

dimension v(nrv),dgv(nrv),tp(ntp)



save /prob/,/cdata/,/mdata/
data nlam,ndsu,ndsv/0,0,0/
c—-- allocate an neqXx 1 array for A
c—- neq : number of degrees of freedom of the structure
if(nlam.eq.0) call define(’lamd’,nlam,neq,1)
c--— switch to ig-th limit-state function
go to (10,20), ig

¢—- set ntot = total number of stress/strain components used in g(.) -

10 ntot=1
c—- allocate an ntotX neq array L l Se_
de 1vaU |v

if(ndsu.eq.0) call define(’dsdu’,ndsu,ntot,neq)

do do Jde€
c—- allocate an ntotX nrv array for — I 4+ — — l
y dv U ge o9v |U

if(ndsv.eq.0) call define("dsdv’,ndsv,ntot,nrv)

3¢

- 3 2o |
cl -- compute v3U |v

do de€

cl.1 compute L7
do

dgds = —1.
do d€
. — — d st
cl.2 extract ¢ |v 30 l . from FEAP and store at m(ndsu)

call dsdu(1,133,m(ndsu))

8g 30 | e
c1.3 compute the product 3 e 1vau |v

call mult(dgds,m(ndsu),m(nlam),1,1,neq)

- Tk = 28 80 | 8¢
c2 --compute A from A 'K 50 ac |v3u |v

and store at m(nlam)

call solvl(m(nlam))

P dR T| P dR
- —_—] - d t _—] - =
c3 -- extract ' U I v from FEAP an compute A [ v | U]
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call tidrv(dgv,m(nlam))

0
- t _8_ | '
c4 -- compute 3 v lvav |u

c4.1 extract %g-l - t,fx'orn FEAP
call dsdv(nste,nelm,m(ndsv))

ic
t ._8_ I !
c4.2 compute 3 3v lvav lu

call mult(dgds,m(ndsv),mndsv),1,ntot,nrv)

3 T apl aRI
—_— + —_— —_—
Vav|U A [av U 9v |U

call addm(dgv,m(ndsv),dgv,1,nrv)

c5 - compute V, g = Eﬁ- ::

return
- 9
cl -- compute 3U
20 call dgu(m(nlam),m(n7),2,neq)

2 --compute A from ATK = 3%

call solvl(m(nlam))

-- extract —_— | l from FEAP and
U 9v
¢3 --compute V,g = \T [ U I ]
call tldrv(dgv,m(nlam))
return
end

subroutine gu(dgdu,id,ndf,neq)
c dgdu:dg/0U

[¢]

id : equation pointer
¢ ndf : number of degrees of freedom at each node

¢ neq : number of degrees of freedom of the structure
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implicit real*8 (a-h,o-z)
dimension dgdu(neq),id(ndf,1)
do 10 i=1,neq
10 dgdu(i)=0.
n=id(1,13)
dgdu(n)=-1.
return
end

In this example, subroutine DGU computes -g-é—, dgdu is a vector storing aif.'-, and dgds is

a vector storing g—s—. These vectors and the parameter ntor should be specified by the user.

Note that in general subroutines DSDU and DSDV are executed nror times in UDGX. The

facility subroutines called in UDGX and their functions are listed Table B.1.

Subroutine UDD, which is used to define probability distributions not available in the
CALREL library, does not change in finite-element reliability analysis. As a simple exam-
ple, consider a basic random variable whose PDF is defined as

(s —8)4 8<s =10

fs(s)=1(12-s)y4 10<s =12 (B.1)
0 elsewhere

Since this distribution is not in the library, it must be defined in the subroutine UDD.

subroutine udd(v,par,sg,ids,cdf,pdf,bnd,ib)
implicit double precision (a-h,0-z)
common /prob/ngf,nig,nrv,ntp,nry,ntf
dimension :r(nrv) ,par(4),bnd(2)

c.... par(1)=8.0, par(2)=10.0, par(3)=12.0.
s = v(2)
if(s.le.par(1)) then
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cdf = 0.d0
pdf = 0.d0

else if(s.le.par(2)) then
cdf = s*s/8.d0 — 2.d0*s + 8.d0
pdf = (s —8.d0)/4.d0

else if(s.le.par(3)) then
cdf = 3.d0*s - s*s/8.d0 - 17.d0
pdf = (12.d0 —s)/4.d0

else
cdf = 1.d0
pdf = 0.d0
endif
sg = 0.8165

bnd(1) = par(1)
bnd(2) = par(3)
ib=3
return

end

B.5 Element Routine in FEAP

In finite-element reliability analysis, in general the element routine for a particular
element may have to include the following steps:

1. Define the element parameters; e.g., the constitutive parameters, the density, etc.

(isw=1);
?
2.  Check features for each element (isw=2)
3. Compute the tangent stiffness matrix and/or the residual force (isw=3);

4. Output the element stresses/strains (isw=4);



10.

11.

12.

13.

14.

15.

16.

17.
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Compute the mass matrix (isw=5);

Compute the residual forces (isw=6);

Compute the boundary loads (isw=7);

Output the nodal stresses/strains (isw= 8);

Compute the damping matrix (isw=9);

Calculate error indicators (isw=10);

Compute the gradient of the surface loads with respect to the load parameters
(isw=11);

Compute the gradient of the surface loads with respect to the nodal coordinates
(isw=12);

Compute the gradient of the resisting forces with respect to the material parameters
(isw=13);

Compute the gradient of the resisting forces with respect to the nodal coordinates
(isw=14);

Compute the gradient of the stresses/strains with respect to the material parameters
(isw=15); |

Compute the gradient of the stresses/strains with respect to the nodal coordinates
(isw=16);

Compute the gradient of the stresses/strains with respect to the nodal displacements
(isw=17).

In CALREL-FEAP, the execution of the above steps is controlled by the argument isw

passed to the element routine. Not all the seventeen steps are necessary in every element

1

routine. The steps to be included in each particular case depend on the type of problem at

hand and the method of solution used. For instance, steps 5 and 9 are not necessary in a-

static problem. If the element routine is available in the element library of FEAP, usually

steps 1 to 10 already exist. These steps are adequate if the response gradient is to be



150

computed by a finite difference scheme. Steps 11 to 17 are required only if the response
gradient is to be computed using analytical expressions such as those in Chapter 4. These
gradients are not available in FEAP and must be provided by the user. In the current ver-
sions of CALREL-FEAP, the gradients for geometrically nonlinear structures are available

for elastic truss and 2D elements.

As an example, the element routine for the geometrically nonlinear truss element in
Example 7.1 is listed below. Note that many steps ir: the element routine are omitted
because they are not used in the analysis. For instance, tre steps to compute the gradients
of strains and stresses are not included because the limit-state function is in terms of dis-

placements.

subroutine elmt01(d,u,x,ix,t,s,p,ndf,ndm,nst,isw,
* brv,jm,pjm,nimp,sts,m)
implicit double precision (a-h,0-z)
C.... any dimensional truss element routine
C.... finite deformation
C.... linear elastic
character*4 o,head
logical fl,pfr,folw
common /bdata/ o,head(20)
common /cdata/ numnp,numel,nummat,nen,neq,ipr
common /fdata/ fl(11),pfr,folw
common /mdat4/ nes0,lesO,nsts,ndeb,ndeu,nesc,nele,ndrb,ndxc
common /eldata/ dm,n,ma,mct,iel,nel
common /ic;ﬁlel ifile,jfile
save /bdata/,/cdata/,/fdata/,/mdatd4/,/eldata/ /iofile/
dimension d(1),u(ndf,1),ix(1),x(ndm,1),t(1),s(nst,nst),p(1)
dimension brv(1),jm(19),pjm(18),nimp(2,1),sts(1),m(1)
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dimension db(3),dx(3),xx(3),dx0(3)
if(isw.eq.—1) go to 110
go to (1,2,3,4,5,4,7,2,9,2,11,12,4,14,15,16) ,isw
c.... input material properties
1 call readln(pjm,jm,’rd’,2,brv,nimp,1,nnrv)
110 d(1) = pjm(1)
d(2) = pim(2)
jm(19) = 1
if(isw.gt.0) write(jfile,2000) d(1),d(2)
d(4) = d(1)*d(2)
C.... set initial values for non-printed coordinates
do120i= 1.3
xx(i) = 0.0
120 continue
2  return

c.... compute element stiffness matrix

3 x1=0.0
x10 = 0.0
dd = d(4)

do31li= 1,ndm
dx0(i) = x(i,2) — x(i,1)
dx(i) = dx0(i) + u(i,2) — u(i,1)
db(i) = dd * dx(i)
xl = xI + dx(i)**2
x10 = x10 + dxO(i)**2

31 continue
xlc = x10*dsqrt(x10)
do32i= 1,ndm



32

33

34

35
36

37

38

dx(i) = dx(i) / xlc
continue
ess = x|l —xI0
pp = dd*ess/2.d0/xlc
i1=0
do 37ii = 1,2
j1=il
do 36 jj = ii,2
do34i= 1,ndm
do33j= 1,ndm
s(i+il,j+j1) = db(i)*dx(j)
continue

s(i+i1,i+j1) = s(i+il,i+j1) + pp

continue
jl1=j1 + ndf
PP = —PP

do 35 j = 1,ndm
dx(j) = —dx(j)
continue
continue
il = il + ndf

continue

.. construct symmetric part

do38i= ll,ndm
do 38 j = 1,ndm
s(i+ndf,j) = s(j,i+ndf)

continue

... form a residual
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41

PP = pp*xic
do 39i = 1,ndf
p(i) = pp*dx(i)
p(i+ndf) = —pp*dx(i)
continue

return

... isw=4 : output stress and strain in element
... isw=6 : compute residual force

.. isw=13: compute d(residual force)/d(material properties)

xl = 0.0

x10=0.0

do4li = 1,ndm
dx0(i) = x(i,2) — x(i,1)
dx(i) = dx0(i) + u(i,2) — u(i,1)
xl = x1 + dx(i)**2
x10 = x10 + dx0(i)**2
xx(i) = (x(i,2) + x(i,1))/2.

continue

ess = (xI — x10)/2.d0/x10

sig = d(4)%ess

xl0 = dsqrt(x10)

if (isw.eq.4) then

... print the stress/strain values for the element

sts(1)=sig

sts(2)=ess

mct = mct — 1

if(mct.le.0) then
write(jfile,2001) o,head
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mct = 50
endif
write(jfile,2002) n,dm,ma,xx,sig,ess
C.... compute right hand side
else if(isw.eq.6) then
sig = sig / x10
do 43 i = 1,ndf
p(i ) = dx(i)*sig
p(i+ndf) = —p(i)
43  continue
else
if(jm(1).eq.0) return
sig = d(2)*ess/x10
do44i = 1,ndf
pi ) = —dx(i)*sig
p(i+ndf) = —p(i)
44  continue
endif
return
C.... compute element mass matrices
5 retumn
c.... compute surface tractions
7  return
C.... form consistent damping matrix
9 return
C.... error indicator calculation
10 return

C.... compute d(surface load)/d(force brv)
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11  return
c.... compute d(surface load)/d(nodal coordinates)
12 return
c.... compute 3(resisting force)/a(nodal coordinates)
14 call drdx01(d,x,u,ndf,ndm,nst,p)

return
c.... compute d(stress,strain)/d(material properties)
15 return
c.... compute d(stress,strain)/d(nodal coordinates)
16 return

c.... compute d(stress,strain)/d(displacements)

17 retum
c.... formats
1000 format(8£10.0)

2000 format(5x,’truss element’/

1 5x,’ modulus = ’,el13.4,/,
2 5x,’ area = ',el3.4)//)
2001 format(al,20a4//
+ 9x,’truss element’//
+ 3x,’element material’,6x,’1-coord’ ,6x,’2-coord’,
+ 6x,’3-coord’,6x,” force’,9x,’strain’)

2002 format(i10,2i5,3f13.4,2¢16.5)

end

1
subroutine drdx01(d,x,u,ndf,ndm,nst,drx)
implicit double precision (a-h,0-z)

c.... compute dR/aX, R: internal force, X: coordinates

dimension d(1),x(ndm,1),u(ndf,1),drx(nst,1),dx(3),dx0(3),du(3)
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C....

20

50

compute current configuration for follower force

x1 = 0.0

xl0 = 0.0

do 20 i=1,ndm

dx0(i) = x(i,2) — x(i,1)

du(i) = u(i,2) - u(i,1)

dx(i) = dx0(i) + du(i)

xl = xl + dx(i)**2

x10 = x10 + dx0(i)**2

continue

ess = (xI — x10)/2.d0/x10

sig = d(4)"%ess

x10 = dsqrt(x10)

xlc = x10**3

tl = —3.d0*sig/xlc

2 = d(4)/xlc

t3 = sig/x10

do 401i = 1,ndf

do 30 j = 1,ndm
drx(i,j) = t1*dx(i)*dx0(j) + 22*dx(i)*du(j)
drx(i,i) = drx(i,i)+1t3

do 50i = 1,ndf

do 50 j = 1,ndm
drx(i,j+ndm) = —drx(i,j)
drx(i+ndf,j) = —drx(i,j)
drx(i+ ndf,j+ndm) = drx(i,j)

continue

return
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end



Table B.1 Facility Subroutines in CALREL-FEAP
Subroutine Function
feap(v,ig) executes subprogram FEAP
getdis(i,j) extracts the i -th displacement component of node j

getstr(i,j)

define(ar,na,nr,nc)

addm(a,b,c,nr,nc)

mult(a,b,c,na,nb,nc)

solvi(a)

tldrv(a,\)

dsdu(i,j,a)

dsdv(i,j,a)

from FEAP

extracts the i-th stress/strain component of
element j from FEAP

allocates a real nr X nc matrix named ar and return
the address na

computes the nr Xnc matrixc=a+b

computes ¢ = ab, where a is an na X nb matrix and b
is an nb X nc matrix

solves for A from ATK = a and returns \ in array a

=T il _ﬁl
computes a = A\ [av v oy |u

Se_
vaU
component of element j from FEAP and stores in a

extracts 3—:- | v for the i -th stress/strain

extracts 90 | 8¢ for the i -th stress/strain
av lvov |U

component of element j from FEAP and stores in a
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Notes
p h-E -
d(v)= \/_ f e 2 du is the standard normal cumulative probability.
27—

T'(k) = fe™u*'du is the gamma function. For integer k, I'(k) = (k—1)!.
0

v
T(k,v)= fe™u*1du is the incomplete gamma function. Note that I'(k) = I'(k,x).
0

The incomplete gamma function is available in most mathematical software libraries.

B(q,r)= L(@)C(r) is the beta function.
I'(g+r)

This distribution is also known as the Gumbel distribution.

This distribution is also known as the Weibull distribution.
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