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Abstract
Permafrost stability is significantly influenced by the thermal buffering effects of snow and
active-layer peat soils. In the warm season, peat soils act as a barrier to downward heat transfer
mainly due to their low thermal conductivity. In the cold season, the snowpack serves as a thermal
insulator, retarding the release of heat from the soil to the atmosphere. Currently, many global land
models overestimate permafrost soil temperature and active layer thickness (ALT), partially due to
inaccurate representations of soil organic matter (SOM) density profiles and snow thermal
insulation. In this study, we evaluated the impacts of SOM and snow schemes on ALT simulations
at pan-Arctic permafrost sites using the Energy Exascale Earth System Model (E3SM) land model
(ELM). We conducted simulations at the Circumpolar Active Layer Monitoring (CALM) sites
across the pan-Arctic domain. We improved ELM-simulated site-level ALT using a
knowledge-based hierarchical optimization procedure and examined the effects of
precipitation-phase partitioning methods (PPMs), snow compaction schemes, and snow thermal
conductivity schemes on simulated snow depth, soil temperature, ALT, and CO2 fluxes. Results
showed that the optimized ELM significantly improved agreement with observed ALT (e.g. RMSE
decreased from 0.83 m to 0.15 m). Our sensitivity analysis revealed that snow-related schemes
significantly impact simulated snow thermal insulation levels, soil temperature, and ALT. For
example, one of the commonly used snow thermal conductivity schemes (quadratic Sturm or
SturmQua) generally produced warmer soil temperatures and larger ALT compared to the other
two tested schemes. The SturmQua scheme also amplified the model’s sensitivity to PPMs and
predicted deeper ALTs than the other two snow schemes under both current and future climates.
The study highlights the importance of accurately representing snow-related processes and peat
soils in land models to enhance permafrost dynamics simulations.

1. Introduction

Peat soils and snow play crucial roles in the thermal
insulation of permafrost and significantly impact the
permafrost thermal dynamics (Decharme et al 2016).
Peat soils, characterized by high soil organic mat-
ter (SOM) and soil water content, are commonly
found in permafrost regions and are known to reg-
ulate permafrost thermal states and carbon dynam-
ics (Schuur et al 2015). Hugelius et al (2014) repor-
ted that peat deposits extend below 3 m depth in
many permafrost regions, highlighting the need to
understand the intricate relationship between SOM

and permafrost stability. Owing to the low thermal
conductivity of high SOM content, peat soils act
as a thermal buffer against downward heat trans-
fer during the warm season, thus partially insulat-
ing permafrost soil from warming (Perreault and
Shur 2016, Du et al 2023). Many global land mod-
els, including DOE’s Energy Exascale Earth System
Model (E3SM) land model (ELM), prescribe SOM
using observationally-based total soil carbon content
datasets (e.g. NCSCD; Hugelius et al 2013b) at coarse
spatial resolutions of∼50 km.Also, these landmodels
usually approximate the vertical SOM density pro-
file along soil depth using one single distribution
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profile over the vast boreal region (Lawrence and
Slater 2008) without considering the stratification of
peatland soils that is significantly different from loc-
ation to location (Hugelius et al 2013a, 2014, Mishra
et al 2021). This oversimplification can lead to over-
estimated summer soil temperatures and active layer
thickness (ALT, i.e. the maximum thaw depth overly-
ing the permafrost) (Hugelius et al 2020). Given
the distinct hydrological and thermal properties of
organic matter, incorporating the stratified peatland
soil structure and appropriately estimated vertical
organic matter distribution is crucial for capturing
the effects of peatland organic matter on permafrost
warming (Jafarov and Schaefer 2016, Tao et al 2017,
Tran et al 2017). Currently, many global land mod-
els overestimate summer soil temperatures and thus
ALT in permafrost regions, partially attributed to the
lack of representation of spatial variability of peatland
organic matter density and stratification (Fisher et al
2016, Tao et al 2017, Loranty et al 2018, Hugelius et al
2020). At the site scale where measurements are avail-
able for validating model results, model accuracy is
often poor, primarily due to the significant discrep-
ancy between global surface datasets and in-situ con-
ditions, including both the total SOMcontent and the
highly uncertain vertical profile of soil carbon (Tao
et al 2017).

Snow, acting as a thermal insulator to the ground
during the cold season and impeding energy release
to the atmosphere, plays a comparably important role
as air temperature in affecting permafrost soil warm-
ing (Tao et al 2019, Mekonnen et al 2021). That is,
a thicker snowpack generally provides better ground
insulation, leading to warmer winter soil temperat-
ures andmore soil moisture once the snowpack thaws
and snowmelt water infiltrates into soils. Inaccurately
simulated snow thermal insulation can result in
biased soil temperature simulations (Lawrence and
Slater 2010, Jafarov et al 2014, Tao et al 2017, 2019),
leading to large biases in simulated cold-season CO2

and CH4 emissions (Tao et al 2021a, 2021b) and
soil carbon stocks (Koven et al 2009, Gouttevin et al
2012). Moreover, the biased winter soil temperature
significantly influences microbial decomposition and
nitrogenmineralization throughout the non-growing
season and impacts microbial and plant community
shifts (Schimel et al 2004, Riley et al 2018, 2021),
thereby affecting the estimation of the pan-Arctic eco-
system carbon budget (Xu and Zhuang 2023).

Furthermore, snow dynamics also influence soil
moisture and, thereby, plant communities (Liu et al
2018, Qi et al 2020). For instance, Liu et al (2018)
found that snow depth could alter the fungi-to-
bacteria and the grass-to-forb ratios and shift the
correlation relationship between microbial and plant
biomass from positive to negative by alleviating soil
water stress in temperate steppes. Moreover, soil

moisture increases resulting from infiltrated snow-
melt water impact soil thermal conductivity due to
the larger thermal conductivity of soil water than
air in the soil pore spaces, thus impacting subsur-
face heat transfer and the active layer (Tao et al 2017,
Clayton et al 2021). Soil water content also affects lat-
ent heat of fusion during freeze-thaw cycles, thereby
influencing soil temperature changes during shoulder
seasons and subsequently impacting the active layer
(Clayton et al 2021, Tao et al 2021a). On the other
hand, the high water retention and resulting ice con-
tent of peat soils in the wintertime insulates perma-
frost due to the high heat capacity associated with
high ice content, and thus slower soil temperature
decreases during the cold season (Du et al 2023).
Finally, high SOM-associated hydraulic conductivity
may facilitate increased drainage fluxes and advective
heat transport, particularly over hillslope landscapes,
also impacting the ALT in regions where advect-
ive heat transport dominates permafrost thawing
(Gao and Coon 2022).

To simulate snow thermal insulation correctly,
a series of processes need to be well represented in
the land models of Earth System Models (ESMs),
including climate forcing, precipitation partitioning
(i.e. rainfall and snowfall fraction before reaching the
land surface), and snow physics (i.e. snow accumu-
lation, compaction, snowmelt, and water and heat
transfer throughout the snowpack) (Domine et al
2019). Current landmodels usually use a spatially and
temporally static air temperature threshold to parti-
tion total precipitation into rain and snow, includ-
ing ELM. Only a few hydrology and land surface
models have tested coupled relationships between
air temperature and relative humidity to partition
the total precipitation (e.g. Behrangi et al 2018,
Wang et al 2019). Uncertainties in these empir-
ical static threshold-based precipitation-phase par-
titioning methods (PPMs) usually lead to large
uncertainties in simulated snow depth and Snow
Water Equivalent (SWE) (Harder and Pomeroy 2014,
Wayand et al 2016, Jennings and Molotch 2019,
Sun et al 2019).

In addition to climate forcing and the PPM
employed, snow densification and compaction are
critical processes that control snowpack evolution
and snow density profile (Wang et al 2013). A recent
study has shown that a more realistic representation
of perennial snow densification leads to better sim-
ulations of glaciers and ice sheets (van Kampenhout
et al 2017). Yet the impact of how snow compac-
tion impacts permafrost remains unknown because
snow insulation is not only controlled by accumu-
lated snowmass but also by the small but highly vari-
able thermal conductivity of the snowpack. Empirical
equations between snow thermal conductivity (STC)
and snow density are commonly used to parameterize
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snow thermal insulation (Sturm and Johnson 1992,
Calonne et al 2011). The STC parameterizations cur-
rently used in ESMs (e.g. Yen 1965a, Jordan 1991,
Sturm et al 1997) are usually derived from limited
in-situ or laboratory observations, and thus need a
close examination if used over permafrost regions.
Different STC parameterizations produce substan-
tial differences in simulated soil temperatures and,
in regions with permafrost, active layer dynamics
(Dutch et al 2022).

Here, we aim to evaluate and enhance the ELM-
simulated permafrost ALT at observational sites dis-
tributed over the pan-Arctic region by (1) optimiz-
ing the peat SOM density profiles and (2) examining
the impacts of PPMs, snow compaction mechanisms
(including destructive metamorphism of new snow
and snow densification due to overburden pressure),
and STC schemes on ELM simulated snow depth, soil
temperature, and ALT. We also discuss the feasibility
of optimizing a global land model at a regional scale
using spatially distributed observational sites, know-
ing existing model deficiencies.

2. Methodology

2.1. CALM sites and datasets
We used ALT measurements from the Circumpolar
Active Layer Monitoring (CALM) (www2.gwu.edu/
∼calm/; Brown et al 2000) to evaluate model simu-
lations. Figure 1 shows all the CALM sites across the
pan-Arctic. We first consolidated CALM data for 219
individual locations out of 239 CALM sites by com-
bining overlapping site locations. These observations
were then averaged within ELM’s 0.5-degree resol-
ution grid cells by aggregating multiple sites within
the same grid cells, resulting in a dataset of 160
CALM observed grid cells that could be directly com-
pared with ELM simulation results. Subsequently, we
refined our dataset by focusing solely on the Tundra
andTaiga regions above 60◦N, thereby excluding sites
in topographically complex regions (e.g. the Tibetan
Plateau) and/or sites that have large measurement
uncertainties (e.g. the sites inMongolia), reducing the
number of CALM observed grid cells to 108. Finally,
to ensure data consistency, we retained only those
grid cells that have observations available since 1990,
resulting in a final dataset of 100 grid cells. We then
conducted a series of ELM simulations at these 100
consolidated grid cells (section 2.2).

We used a snow climate classificationmap (Sturm
et al 2009) and a permafrost map (Brown et al 2002)
to categorize the types of snow-climate classes and
permafrost regions at the CALM sites. In addition,
we used the Snow Telemetry (SNOTEL) site meas-
urements (https://wcc.sc.egov.usda.gov/) over Alaska
to evaluate simulated snow depth, SWE, and soil

temperature. Among the useful SNOTEL sites that
have SWE or snow depth observations, we identi-
fied five sites that collocate with the assembled CALM
sites, including three Tundra and two Taiga sites
(figure 1).

2.2. Experiment design and optimization
procedure
We used the E3SM land model (ELMv1-ECA) (Riley
et al 2018, Golaz et al 2019, Zhu et al 2019, 2020,
Tao et al 2021a) to run ensemble simulations at the
assembled 100 grid cells that cover CALM sites. The
ELM snow module simulates essential snow physical
processes, including snow aging, accumulation, com-
paction, melting, sublimation, dew and frost on the
top of the snow, and water and energy exchange at
the snow surface (Oleson et al 2013, Golaz et al 2019).
It also represents mass and heat transfer through the
snowpack, which is discretized in up to five dynamic
snow layers depending on snow depth. Although
ELMdoes not explicitly represent factors such aswind
slab and depth hoar layers that cause heterogeneity
in the snow structure (Zhang et al 1996), ELM calcu-
lates the ice and water content and snow grain radius
for each snow layer. Thus, the snow column has a
vertically changing snow density profile. ELM estim-
ates snow coverage fraction based on previous cov-
erage and new snowfall, modified by the subsequent
depletion processes (Swenson and Lawrence 2012).
The ELM estimates heat transfer along the snow and
soil column by solving a one-dimensional heat dif-
fusion equation with the Crank-Nicholson method
(Tao et al 2021a). The soil column comprises 15 lay-
ers with a bottom depth of ∼42 m, and the thick-
ness for each soil layer increases exponentially with
depth. The ELM calculates soil thaw depth at each
time step, with the annual maximum thaw depth rep-
resenting the simulated ALT. The simulation indicates
permafrost-free if the simulated coldest soil temperat-
ure throughout the soil column remains consistently
above 0 ◦C year-round or the predicted ALT extends
deeper than or equal to the bottom depth of the ELM
10th soil layer (∼4 m). More model details can be
found in Tao et al (2021a).

We used two reanalysis climate forcing datasets,
including the Climatic Research Unit and Japanese
Reanalysis (CRUJRA; Harris 2019) and Global Soil
Wetness Project Phase 3 (GSWP3; Kim 2017), which
ended in 2014 and then was extended to 2017 by the
bias-correctedGSWP3with theW5× 105 globalmet-
eorological forcing data processed for Inter-Sectoral
Impact Model Intercomparison Project, i.e. GSWP3-
W5 × 105 (Lange et al 2019)). Simulations followed
the spinup (i.e. cycling 20 years from 1901 to 1920
until the system reached equilibrium states) and tran-
sient run (i.e. from 1901 to 2017) protocols described
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Figure 1. Study domain and sites. The background snow-climate classification map is based on (Sturm et al 2009), and the
permafrost outline map is adapted from (Brown et al 2002) and Diamond symbols represent CALM sites across the pan-Arctic
domain (above the northern latitude of 60◦. The circles represent the SNOTEL sites that have measurements relevant to this study
and are paired with CALM sites.

in Tao et al (2021a). We then ran predictions from
2011 to 2100 under the Representative Concentration
Pathway (RCP) 8.5 scenario climate forcing, following
Tao et al (2021b).

The influence of SOM content on soil thermal
and hydrologic properties (e.g. soil thermal conduct-
ivity, specific heat capacity, porosity, etc) is repres-
ented within current ELM (following Lawrence and
Slater 2008) using the Northern Circumpolar Soil
Carbon Database (NCSCD) (Hugelius et al 2013b)
for high latitudes at a 0.5◦ × 0.5◦ spatial resolution,
which significantly differ from the site-level SOM
content at CALM sites. Also, the ELM distributes
the NCSCD total soil carbon content across the soil
layers according to a soil carbon vertical distribu-
tion profile for polar and boreal regions reported
by Zinke et al (1986), which concentrates more car-
bon towards the surface than the tropical and tem-
perate profile (Lawrence and Slater 2008). However,
this vertical distribution profile of soil carbon con-
tent, although typical for polar and boreal regions,
becomes highly uncertain regarding site-level sim-
ulations (Hugelius et al 2020). Therefore, to better
simulate site-level permafrost dynamics using global
land models such as ELM, it is critical to improve
the representation of total soil carbon stocks and
also the vertical distribution of peat soils. Similarly,
to better simulate snow thermal insulation at the
site level using global land models, processes that
impact snow morphology, accumulation, ripening,
melting, and the thermal properties of the snowpack

need to be better examined. Here, we designed a
knowledge-based hierarchical optimization proced-
ure (figure 2), aiming to sequentially evaluate model
components within ELM relevant to soil and snow
dynamics.

First, to validate and examine the sensitivity of
model simulated snow depth and SWE to climate for-
cing and partitioned precipitation (i.e. rain and snow
fractions), we ran ELM with 18 PPMs (table 1 and
figure 3) based on a comprehensive review of rain-or-
snow thresholds and ranges as examined by Jennings
and Molotch (2019). Table 1 lists all the PPMs tested
in this study, and a list of all the experiments is
included in supplementary table S1. Details about
these PPMs can be found in Jennings and Molotch
(2019). With different PPMs, the snowfall fraction
relationship with air temperature varies significantly,
especially during the shoulder seasons (e.g. freezing
and thawing seasons) when the atmospheric temper-
ature is around the range (e.g.−2 ◦C to 5 ◦C) that the
PPMs are most sensitive to (figure 3).

Then, we tested the impact of snow compaction
parameterizations within ELM since the snow com-
paction mechanisms further impact snow depth and
density. We tested a scheme with an increased snow
compaction rate by doubling the fractional compac-
tion rate and the upper limit on destructive meta-
morphism and decreasing the viscosity coefficient for
the overburden pressure (see ‘1. Snow compaction
schemes’ in the supplementary file). Also, we tested
three STC schemes, which usually increase with snow

4



Environ. Res. Lett. 19 (2024) 054027 J Tao et al

Figure 2. Iterative knowledge-based hierarchical optimization strategy employed by this study. Black arrows indicate how the
forcing data and the physical process parameterizations (blue boxes) directly impact the variables (yellow boxes). Green dashed
lines represent the indirect influence of certain variables on other variables, i.e. the feedback loops. A more detailed description of
this optimization procedure can be found in the supplementary file.

density (Oldroyd et al 2013). The three STC schemes
cover various functional forms and values (figure 4).
Among the three schemes, the Jordan scheme (Jordan
1991) typically yields the highest values for a given
snow density, while the Yen scheme (Yen 1965a)
exhibits the most pronounced gradient in thermal
conductivity with respect to density. Lastly, the Sturm
quadratic equation scheme (Sturm et al 1997) gener-
ally provides the lowest STC values. All equations rel-
evant here are provided in the equation section of the
supplementary file.

Further, soil thermal properties, largely influ-
enced by SOM density, are crucial in regulating sub-
surface heat transfer through diffusion. To address
the SOM representation at multiple sites distributed
across the pan-Arctic, we tested ten peat stratifica-
tion structures by making ELM soil layers purely peat
soils from the top layer down to the 10th layer (illus-
trated in the supplementary table S1). Specifically,
we made the topsoil purely organic matter layer in
the 1st experiment by assigning its organic matter
density as the bulk density of peat (i.e. 130 kg m−3)
(Farouki 1981), made the top two layers as peat soils
in the 2nd experiment, and so on for all ten layers for
the 10th experiment. Note this modification still does
not fully address distinct hydro-thermal processes for
peat soils, but it better accounts for the thermal con-
ductivity and hydraulic properties than the baseline
simulation that uses SOM density derived from the
coarse global datasets. An additional ten simulations
were conductedwith amodified plant functional type
(PFT) dataset that assigned the bare ground friction
(again extracted from a 0.5◦ spatial resolution global

dataset) toArctic grass to better representing site-level
vegetation conditions. Among these simulations, we
searched for the minimum ALT bias for each site and
used the SOM density profile and modified PFT.

Lastly, variations in soil temperature regimes
influence plant growth, which can, in turn, influ-
ence snow accumulation processes through various
mechanisms (e.g. altering precipitation interception
and the surface albedo). Specifically, Arctic grass,
broadleaf deciduous boreal shrub, needleleaf ever-
green boreal trees, and deciduous boreal trees are the
dominant plant types over the tundra and taiga areas.
The Arctic grass and broadleaf deciduous boreal
shrub are found in tundra sites, whereas taiga sites
usually have a combination of the four dominant
plant types. These plant types, possessing different
leaf areas and canopy sizes that cause differences
in precipitation and light interception, significantly
impact soil temperature and thereby nitrogen min-
eralization, affecting the feedback strength between
plant growth and snow accumulation (as discussed in
section 3.3).

All the simulations (table S1) were conducted fol-
lowing the spinup and transient simulations for all the
modified soil and snow schemes (table S1). Finally,
we identified the best simulation by comparing sim-
ulated ALT climatology to CALM observations. This
approach not only provides an optimized modeling
system and simulation results that agree well with
observations, thereby enhancing the modeling cap-
ability to predict future permafrost dynamics confid-
ently, but also enables a comprehensive assessment of
snow impacts on ELM-simulated ALTs.
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Figure 3. Four types of PPMs were tested in this study (table 1). (a) Air temperature (Tair)-based interpolation method (ELM
uses PPM0 by default). (b) Threshold-based deterministic method with Tair, dew point temperature (Tdew), or wet bulb
temperature (Twet). (c) Binary Logistic Regression probability method with two variables, i.e. RegBi—a function of Tair and RH.
(d) Binary Logistic Regression probability method with three variables, i.e. RegTri—a function of Tair, RH, and Ps. The RH values
are fixed at 80% and 60% for solid and dashed lines, respectively.

Figure 4.We tested three snow thermal conductivity (STC) schemes commonly used by global land models. By default, ELM uses
the STC scheme by Jordan (1991).
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Figure 5. (a) Comparison between CALMmeasured and ELM simulated ALT with baseline and optimized surface datasets. Sites
where the ELM baseline simulations erroneously predict permafrost-free conditions, in contrast to the optimized simulations that
better represent permafrost with valid ALT values, are excluded from the scatter comparison. (b) The number of sites with valid
ALT values observed by the CALM network is compared to the number of permafrost sites simulated by both the baseline and
optimized ELM models, showing a significant improvement in capturing site-level permafrost active layer.

3. Results

3.1. Evaluation of ELM simulated ALT at CALM
sites
We identified optimal combinations of SOM dens-
ity profiles and PFTs for each site that provided the
best agreement with CALM observations, i.e. result-
ing in a minimum RMSE in ALT (table S2). The
simulated ALTs demonstrated significant improve-
ment compared to baseline results at the 100 CALM
sites (figure 5(a)). Specifically, the optimized ELM
achieved a significant improvement in simulated ALT
with a RMSE of 0.15 m, which was reduced from
0.83 m in baseline ELM. We also found that the
baseline simulation overestimated summer soil tem-
peratures and thus predicted permafrost-free con-
ditions for many CALM sites in discontinuous or
sporadic permafrost regions. In contrast, the optim-
ized simulation improved the number of permafrost
sites by 21 (figure 5(b)). Note that this optimized
SOM density might not be realistic because the cur-
rent ELM lacks representation of a moss layer and
a seasonally dynamic surface litter layer. (Although
ELM represents litter as an important biogeochem-
ical component, the model doesn’t account for lit-
ter’s hydrologic and thermal effects. Without this sur-
face litter and moss layer, the optimization procedure
mimicked the litter and moss thermal buffer effects
by concentrating more organic matter in topsoils and
thus might overestimate SOM in the top ∼50 cm.
Results thus revealed that for about half the sites, the
model needs to include peat soils down to∼50 cm to
facilitate sufficiently slow heat transfer during warm
seasons to simulate better summer soil temperature
and thus ALT (figures S1 and S2). However, incor-
porating deeper peat soils would increase porosity in
the deep, thick soils and facilitate slower temperature
changes due to the large heat capacity of ice (asso-
ciated with the large porosity) during cold seasons.

Therefore, further incorporation of peat soils into
deep soil layers, in contrast to incorporating peat soils
in the top layers, would slightly increase rather than
decrease ALTs at some sites (figure S1).

Although the optimized SOM density resulted in
different profiles from site to site, the identified sim-
ulations all assign bare ground to the default Arctic
grass PFT fraction. Also, instead of searching for the
best snow scheme for each site, we identified the one
snow scheme set that provided a minimum RMSE
in site-averaged ALT climatology. Results demon-
strated that the default snow scheme, combined with
the optimized surface datasets, still showed super-
ior performance than the other tested snow schemes
(table S2). Next, we examine the sensitivity of ELM-
simulated snow depth, SWE, soil temperature at dif-
ferent layers, and the net ecosystem exchange (NEE,
i.e. net exchange of CO2 with the atmosphere) to the
employed snow schemes at the five SNOTEL sites that
collocate with CALM sites. We also validate the sim-
ulated snow depth, SWE, and soil temperatures at
the sites where measurements are available. Next, we
examine ALT sensitivity to PPMs and STC schemes
at all the assembled CALM sites. To evaluate snow
influence on ALT simulations solely, we conducted
comparisons with simulations using different snow
schemes but maintaining the optimized surface data-
sets (e.g. SOM density and PFTs).

3.2. Sensitivity of simulated snow depth, SWE, soil
temperatures, ALT, and NEE to snow schemes
3.2.1. Snow depth and SWE
Generally, simulations with CRUJRA forcing under-
estimate snow depth significantly at all five SNOTEL
sites, regardless of PPMs and snow compaction
schemes (figure 6). In contrast, GSWP3 forcing
provided better-simulated multi-year averaged sea-
sonal cycles of snowdepthwith improvedmagnitudes
of snow depth peaks, although simulations show
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Figure 6. Comparison of observed and simulated snow depth at five SNOTEL Alaska sites collocated with CALM sites. Among the
five sites, only site 1174 has SWE measurements; thus, SWE comparison is only shown at this site. Shaded areas indicate
uncertainty associated with precipitation-phase partitioning methods (PPMs), which influence the simulations of snow depth
and SWE together with climate forcing (e.g. CRUJRA and GSWP3) and the snow compaction schemes used. The error bars
indicate interannual variability for both simulations and observations. The simulations with increased snow compaction
(SnowIncComp) reduced snow depth and increased density, leaving snow mass (i.e. SWE) not much changed.

earlier peak timing at three sites. The shaded areas in
figure 6, indicating uncertainty associated with PPMs
in simulated snow depth, are generally large during
the fall-to-winter transition season (e.g. September–
October) when the snow starts to accumulate, fol-
lowed by the thawing season (e.g. May–June). This
uncertainty is also large around the snow depth peak
months (e.g. February to April) at two sites (961 and
1177), probably owing to the climate forcing charac-
teristics (e.g. Tair, RH, etc). When using the scheme
with increased snow compaction, simulations greatly
underestimated snow depths at all the sites, although
they did not show significant differences in snow
mass (i.e. SWE), as shown by the SWE comparison
at site 1174 (figure 6). Consequently, the increased
snow compaction scheme resulted in a much lar-
ger snow density, facilitating a large STC, given the
empirical relationships between snow density and
STC (figure 4).

3.2.2. Soil temperature and ALT
The increased snow compaction scheme reduced
snow thermal insulation due to increased snow dens-
ity and thus STC (figure 7), causing faster heat release
from soil to the atmosphere during cold seasons, and
leading to greatly underestimated winter soil temper-
ature (ELM_GSWP3_Jordan&IncComp). As a result,
even though the ELM_GSWP3_Jordan&IncComp
simulated SWE agrees with observations very well
(figure 6), its simulated soil temperatures are overly
cold (second only to the coldest simulations with
CRUJRA), owing to its underestimated snow depth
and overestimated snow density. Although winter soil
temperatures are less important than warm-season
climate on warm-season soil temperatures and ALT,
they affect the onset of the thawing season and plant
leaf-out, thereby significantly impacting plant carbon
uptake and ecosystem carbon dynamics (as discussed
in section 3.2.3).
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Figure 7. Comparison between soil temperature time series observed at SNOTEL Alaska site 1177 and simulated by ELM with two
forcings (CRUJRA and GSWP3) and different snow thermal schemes. Jordan, Yen, and SturmQua indicate the three thermal
conductivity schemes (section 2.2), and IncComp means the snow scheme with an increased compaction rate. The shaded areas
(for ELM_CRUJRA_Jordan, ELM_GSWP3_Jordan, and ELM_GSWP3_Jordan&IncComp) indicate uncertainty associated with
PPMs, i.e. the minimum-to-maximum soil temperature envelopes simulated with the tested PPMs (table 1).

In addition, with the same forcing and the
default PPM0, simulations that used the lowest
STC scheme (ELM_GSWP3_Yen) and the quad-
ratic Sturm equation (ELM_GSWP3_SturmQua)
generally show warmer soil temperatures than
the simulation using the default Jordan scheme
(ELM_GSWP3_Jordan) during cold seasons
(figure 7). Constrained by the correctly simulated
snow depth, here ELM_GSWP3_Jordan still shows
better simulations of soil temperature, e.g. with smal-
ler RMSE of 3.4 ◦C for the 5 cm soil temperature
at site 1177, compared to 3.9 ◦C and 4.7 ◦C for
ELM_GSWP3_Yen and ELM_GSWP3_SturmQua,
respectively.

On average, ELM_GSWP3_SturmQua simu-
lated multi-year averaged annual soil temperat-
ure is much warmer than the other two simu-
lations, e.g. is 1.9 ◦C and 0.7 ◦C warmer than
ELM_GSWP3_Jordan and ELM_GSWP3_Yen,
respectively, at site 1177 (figure 7). As a result,
ELM_GSWP3_SturmQua generally overestimated
ALTs, whereas ELM_GSWP3_Jordan shows good
agreement with CALM observed ALTs (figure 8).
In addition, ELM_GSWP3_Yen, being similar to the
default Jordan scheme for small snow density scen-
arios (figure 4), also demonstrates a similar perform-
ance in simulating ALT to ELM_GSWP3_Jordan at
some sites but overestimates ALTs at many other sites

(figure 8(b)). For the five SNOTEL sites where we
examined the accuracy of simulated snow depth,
the site-averaged mean bias in ALT is 0.10 m,
0.24 m, and 0.46 m for ELM_GSWP3_Jordan,
ELM_GSWP3_Yen, and ELM_GSWP3_SturmQua,
respectively, indicating better simulations with the
default Jordan STC scheme.

3.2.3. Ecosystem carbon fluxes
Snow thermal insulation influences cold-season
microbial activities (e.g. decomposition and nitrogen
mineralization) and affects plant growth via accumu-
lating nutrients for the plant to use in the following
year (Riley et al 2018, 2021). As figure 9 shows, ELM-
simulated NPP with different STC schemes demon-
strates large differences in warm seasons. These NPP
differences are not only related to varying soil tem-
perature owing to different STC schemes but are
also associated with cold-season nitrogen miner-
alization resulting from slow but persistent micro-
bial processes, which is clearly shown by cold-season
(September to May) differences in NEE (i.e. micro-
bial respiration during the cold season) (figure 9). As
a result, simulations using the SturmQua STC pre-
dicted more CO2 emissions (i.e. more positive NEE)
than other simulations due to the larger microbial
respiration persistently lasting throughout the cold
season.

10



Environ. Res. Lett. 19 (2024) 054027 J Tao et al

Figure 8. (a) ALT climatology comparison between CALMmeasurements and ELM simulations with three STC schemes,
i.e. Jordan (by default), Yen (1965b), and the Sturm quadratic equation (Sturm et al 1997), at the five SNOTEL sites that collocated
with CALM sites. Error bars indicate standard deviations of simulated ALTs with different PPMs. (b) Scatter comparison between
CALM observed ALT multi-year average and ELM simulation ensemble mean at the same CALM sites as in figure 5(a). Here, the
vertical bars are standard deviations of simulation ensembles at each site, representing uncertainty associated with PPMs.

Figure 9. Sensitivity of ELM simulated NPP and NEE to climate forcing and STC schemes. NPP differences among the
simulations are attributed to the influence of employed STC schemes on soil temperatures and microbial activities (e.g.
decomposition and nitrogen mineralization), which can be reflected by cold-season NEE differences (September to May).

3.3. Predicted ALT changes under RCP8.5
With the default PPM0 and the Jordan STC scheme,
ELM predicted that 54% of the currently simu-
lated permafrost sites would become permafrost-
free by the end of the 21st century. This number is
78% when using the SturmQua scheme. Figure 10
shows the time series of predicted ALT ensembles
with PPMs and the Jordan and SturmQua schemes
under RCP 8.5. The ensemble mean of predicted
ALTs with the Jordan (SturmQua) scheme estimated
an increasing rate of ALT of 1.0 ± 0.1 cm year−1

(0.4 ± 0.2 cm year−1) and 3.8 ± 0.3 cm year−1

(4.1 ± 1.5 cm year−1) for tundra and taiga sites,
respectively. The SturmQua scheme generally pre-
dicted deeper ALTs than the Jordan scheme. Notably,
the SturmQua scheme predicted that Taiga sites
would transition to a permafrost-free state by 2041,
which is 36 years earlier than the prediction made by
the Jordan scheme (figure 10(b)). Nevertheless, due

to the limited number of Taiga sites, especially across
the vast extent of the Siberian region, the predicted
ALT trends exhibit significant uncertainty and may
not accurately represent certain Taiga areas that cur-
rently lack CALM sites.

Additionally, plant growth indirectly impacts
snow physical processes by affecting surface albedo
and precipitation interception by the canopy, thus
facilitating a negative feedback loop between snow
thermal insulation and plant growth, i.e. more snow
thermal insulation leads to warmer soils and higher
NPP, which, in turn, reduces snow depth and snow
thermal insulation. This negative feedback between
snow thermal insulation and plant growth gradually
gained prominence after ∼2050 for the SturmQua
simulations (figure 10(a)) at the Tundra sites, and
thus, the SturmQua scheme projected ALT declined
to a similar magnitude as predicted by the Jordan
scheme at the end of the 21st century.
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Figure 10. ELM predicted ALT ensemble mean under RCP8.5 climate for (a) Tundra sites and (b) Taiga sites (figure 1). Shaded
areas indicate uncertainty associated with the PPMs. Time series end when half of the ensemble simulations predict
permafrost-free.

4. Summary and discussion

This study evaluated the impact of SOM and snow
schemes onALT simulations at permafrost sites across
the pan-Arctic. Specifically, by testing site-level peat
SOM vertical distribution structure and examining
snow schemes (e.g. PPMs, snow compaction, and
STC schemes), we enhanced ELM simulations of
permafrost ALT at 100 grid cells CALM sites via a
knowledge-based hierarchical optimization strategy
(i.e. reduced ALT RMSE from 0.83 m for the baseline
to 0.15 m). We found that, because the model does
not adequately represent the thermal buffer layers,
the optimized simulations prescribed peat soils up
to ∼50 cm depth at 11 sites, around ∼80 cm at
18 sites, and ∼140 cm at 21 sites (figure S2) to
mimic the thermal insulation from the surface lit-
ter and moss layer during warm seasons. These thick
peat layers in permafrost regions are not uncom-
mon, as highlighted by Hugelius et al (2014), who
found peat deposits could extend to depths of up to
3m.Nevertheless, the optimized SOMcontent profile
and snow schemes may still have biases, even though
ELMwith the optimized schemes produced improved
simulations of site-level ALT. The purpose of the
developedmethod here is to accurately represent ALT,
given the current model structure. We are actively
working on incorporating the moss and surface litter
layers into ELM to mechanistically account for their
thermal insulation effects. However, before a more
sophisticatedmodel becomes available (which usually
introduces new parameters that need to be determ-
ined at the global scale), the optimization scheme
used in this study is a reasonable step toward bet-
ter estimation and prediction of permafrost thermal
dynamics.

We found that modeled soil temperatures are
very sensitive to snow-related schemes, including
the PPMs, snow compaction scheme, and the STC
scheme.We also noticed a saturation of snow thermal
insulation capacity (i.e. modeled snow thermal insu-
lation does not increase with snow depth beyond an
effective snow depth of about 50 cm) (Slater et al
2017). Thus, simulated ALT results demonstrated
a larger sensitivity to STC than to simulated snow
depth. For the five sites where we examined the accur-
acy of simulated snow depth, the Jordan scheme sim-
ulated site-averaged mean ALT showed the smallest
bias. Through the sensitivity analysis, we demon-
strated that the default ELM snow scheme provides
reasonable results at pan-Arctic CALM sites with the
modified SOM density profiles and PFTs. However,
large uncertainties are found in the ensemble simu-
lations with different snow schemes, and in general,
the SturmQua amplified model sensitivity to PPMs
and predicted deeper ALTs than the other two snow
schemes under both current and future climates.

This study elucidates a roadmap to optimizing
and advancing land modeling within ESMs across
permafrost regions, with an emphasis on the critical
importance of reasonably representing snow-related
processes and peat soil representations. Our find-
ings underscore the importance of a nuanced exam-
ination of coupled hydrology, biogeochemistry, and
plant modeling when simulating and predicting per-
mafrost dynamics. This examination includes close
scrutiny of climate forcing, precipitation-phase parti-
tioning, snow accumulation processes, STC schemes,
energy and water exchange at the land-atmosphere
interface, subsurface heat and water transfer, and
the plant-snow feedback mechanism. Specifically,
a calibration or optimization procedure solely for
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the subsurface heat transfer process is not reliable
unless the snow physical properties and thermal
processes are correctly simulated. This comprehens-
ive scrutiny is essential for ensuring both accuracy
and an understanding of uncertainty propagation
within land models, thereby improving the under-
standing of the complex interactions in pan-Arctic
permafrost ecosystems. Nevertheless, without mech-
anistic representations of all thermal buffer layers
in the model and the availability of comprehens-
ive measurements to support the knowledge-based
hierarchical optimization strategy, potential biases
and uncertainties may still persist in the optimized
schemes.

In addition to the snow schemes we examined,
the snow fractional cover, which impacts surface
albedo, absorbed solar radiation, outgoing longwave
radiation, and thus net radiation, also plays a role
in affecting permafrost thermal states (Zhang et al
1996, Zhang 2005) and ecosystem carbon cycling.
The future warming climate might cause precipita-
tion to fall more as rainfall than snowfall (Berghuijs
et al 2014, Bintanja and Andry 2017, Hyncica and
Huth 2019), resulting in decreased snow depth and
snow fractional cover in some areas. Given the pro-
jected faster warming of the cold season compared
to the warm season (Tao et al 2021b), future stud-
ies are needed to examine the net impact of regional-
scale snow conditions on permafrost thermal states
and ecosystem biogeochemical cycling.
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