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Supplementary Material:
Spin Seebeck Effect near the Antiferromagnetic Spin-Flop Transition

Derek Reitz,1 Junxue Li,2 Wei Yuan,2 Jing Shi,2 and Yaroslav Tserkovnyak1

1Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
2Department of Physics and Astronomy, University of California, Riverside, California 92521, USA

Theoretical formalism.—We calculate the spin currents, J l = (~g↑↓l /4π) l × ∂tl and Jm = (~g↑↓m /4π)m × ∂tm,
by averaging over thermal fluctuations of the magnetic variables. The latter can be obtained from the symmetrized
fluctuation-dissipation theorem:

〈δφiδφj〉 =
i~
2

∫
d3k

(2π)3
[
χ∗ji(k, ω)− χij(k, ω)

]
N(ω), (1)

where δφi stands for a Cartesian component of l or m and χij is the corresponding linear-response function. N(ω) ≡
nBE(ω) + 1/2 accounts for thermal fluctuations associated with occupied modes, according to the Bose-Einstein
distribution function nBE, with 1/2 reflecting the zero-point motion1. The dynamic susceptibility tensor is defined
by δφi = χijξj , for the field ξj thermodynamically conjugate to φj . Our system is driven according to the energy
density E(B, t) = E(B)−m · h(t)− l · g(t), where g and h are conjugate to l and m, respectively. The off-diagonal

components of the Néel response χ
(l)
ij thus determine the Néel pumping as 〈l× ∂l/∂t〉k → iωεijk 〈lilj〉 (in terms of the

Levi-Civita tensor εijk, and upon the Fourier transform), and similarly for the magnetic response, χ
(m)
ij .

For convenience, we reproduce the dispersions here,

ω1k, ω2k = ∓γB +
√

(γBc)2 + (ck)2, (2a)

ω3k = ck, ω4k =
√
γ2B2 − γ2B2

c + (ck)2, (2b)

where c = s−1
√
A/χ is the speed of the large-k AF spin waves. The components of χij contributing to spin currents

in I are

χ(l)
xy = − i

4s2χω0k

(
1

ω − ω1k + iε
− 1

ω + ω1k + iε
− 1

ω − ω2k + iε
+

1

ω + ω2k + iε

)
, (3a)

χ(m)
xy = χ2K2

1χ
(l)
xy, (3b)

where ω0k =
√

(γBc)2 + (ck)2. According to Eq. (3a), the fluctuations perpendicular to l0,I = ẑ at ω1k and ω2k

produce opposite contributions to the spin currents. The magnetic fluctuations in I in, e.g. Cr2O3, are a factor
(χK1)2 ∼ 10−7 smaller than the Néel fluctuations and will be neglected. δm is elliptically polarized in the ω4k mode,
with magnetic fluctuations producing a spin current according to

χ(m)
xy =

iγχB

2

(
1

ω − ω4k + iε
− 1

ω + ω4k + iε

)
. (4)

ω3 is linearly polarized in δl and δm so it does not produce spin currents in the nonlinear-σ model discussed in the
main text. However, there may still be small Néel fluctuations which are not captured by this model. One contribution
arises if we relax the nonlinear constraint δl2 = 1, allowing for an additional term m×δE/δl in the equation of motion
for l. Explicitly, the Euler-Lagrange equations for the Lagrangian density L(l,m) = sm · (l× ∂l/∂t)− E now are

s
∂l

∂t
= −Hm × l−H l ×m, (5a)

s
∂m

∂t
= −Hm ×m−H l × l, (5b)

where H l ≡ −δE/δl and Hm ≡ −δE/δm are the effective fields. When we consider linear excitations about the same
ground states as before, the only change is then that ω3k develops small elliptical polarization in δl. This produces a
Néel spin current parallel to the field with similar magnitude to the ω4k magnetic spin current,

χ(l)
xy =

iγχB

2

(
1

ω − ω3k + iε
− 1

ω + ω3k + iε

)
. (6)

Since it pumps at g↑↓l . g↑↓m , we discard this contribution to SSE from our analysis.



2

The magnitude of ε arises from dissipation. Dissipation is included by extending the Euler-Lagrange equations of

motion with dissipative forces ∂F/∂ṁ and ∂F/∂ l̇ from the Rayleigh dissipation functional F = αl̇
2
/2 + α̃ṁ2/2,

parametrized by Gilbert damping constants α and α̃. By including it in our calculation of χij , we end up with
Lorentzians centered at these poles, whose widths are determined by bulk Gilbert damping and the effective damping
due to interfacial spin pumping2,3. When these resonance modes’ quality factors are large, however, their spectral
weight is sharp and may be simply integrated over. We assume this is the case, allowing us to neglect dissipation and
simply use infinitesimal ε.

Evaluation of Seebeck coefficients.— We can now evaluate the Seebeck coefficients, S = ∂T (Jl + Jm). The spin
currents are calculated by inserting Eqs. (3a) below SF and (4) above SF into (1), and integrating over the Brillouin
zone. Since the spin currents are even in ω, the bounds of integration over ω may be changed from (-∞, ∞) to (0,
∞) with the spin current expression multiplied by a factor of two. Then, only the positive poles contribute.

This reproduces the results for SI and SII in the main text. For temperatures T � TN , thermal occupation of
magnons with momentum near the Brillouin zone boundary is exponentially suppressed, so we can extend the upper
limit of integration to ∞. Furthermore, we can evaluate SI and SII analytically when kBT � ~γBc:

SI ≈
g↑↓l γBk2BT

2π3c3χs2

∫ ∞
0

dx x2exn2BE(x) ∝ g↑↓l BT, (7)

SII ≈
g↑↓m γχBk4BT

3

4π3c3~2

∫ ∞
0

dx x4exn2BE(x) ∝ g↑↓mBT 3, (8)

where x is dimensionless and the integrals are convergent, simply evaluating to numbers. Eqs. (7), (8) are used to
plot the theoretical curves in Fig. 2 and 3 of the main text. In evaluating the Seebeck coefficients as a function of
temperature, we have neglected slow temperature dependencies in the energetic constants A, χ, and K, which is valid
when T � Tn.
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