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Abstract

Efficient Sequential Decision Making

by

Alan Malek

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Peter Bartlett, Chair

This thesis studies three problems in sequential decision making across two different frameworks.
The first framework we consider is online learning: for each round of a T round repeated game,
the learner makes a prediction, the adversary observes this prediction and reveals the true outcome,
and the learner suffers some loss based on the accuracy of the prediction. The learner’s aim is to
minimize the regret, which is defined to be the difference between the learner’s cumulative loss and
the cumulative loss of the best prediction strategy in some class. We study the minimax strategy,
which guarantees the lowest regret against all possible adversary strategies. In general, computing
the minimax strategy is exponential in T ; we focus on two setting where efficient algorithms are
possible.

The first is prediction under squared Euclidean loss. The learner predicts a point in Rd and the
adversary is constrained to respond with a point in some compact set. The regret is with respect to
the single best prediction in the set. We compute the minimax strategy and the value of the game
for any compact set and show that the value is the product of a horizon-dependent constant and the
squared radius of the smallest enclosing ball of the set. We also present the optimal strategy of the
adversary for two important sets: ellipsoids and polytopes that intersect their smallest enclosing
ball at all vertices. The minimax strategy can be cast as a simple shrinkage of the past data towards
the center of this minimum enclosing ball, where the shrinkage factor can be efficiently computed
before the start of the game. Noting that the value does not have any explicit dimension dependence,
we then extend these results to Hilbert space, finding, once again, that the value is proportional to
the squared radius of the smallest enclosing ball.

The second setting where we derive efficient minimax strategies is online linear regression. At
the start of each round, the adversary chooses and reveals a vector of covariates. The regret is defined
with respect to the best linear function of the covariates. We show that the minimax strategy is an
easily computed linear predictor, provided that the adversary adheres to some natural constraints that
prevent him from misrepresenting the scale of the problem. This strategy is horizon-independent:
regardless of the length of the game, this strategy incurs no more regret than any strategy that has
knowledge of the number of rounds. We also provide an interpretation of the minimax algorithm as
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a follow-the-regularized-leader strategy with a data-dependent regularizer and obtain an explicit
expression for the minimax regret.

We then turn to the second framework, reinforcement learning. More specifically, we consider
the problem of controlling a Markov decision process (MDP) with a large state-space. Since it is
intractable to compete with the optimal policy for large scale problems, we pursue the more modest
goal of competing with a low-dimensional family of policies. Specifically, we restrict the variables
of the dual linear program to lie in some low-dimensional subspace, and show that we can find a
policy that performs almost as well as the best policy in this class. We derive separate results for the
average cost and discounted cost cases. Most importantly, the complexity of our method depends on
the size of the comparison class but not the size of the state-space. Preliminary experiments show
the effectiveness of the proposed algorithms in a queuing application.
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1.1 Motivation
The decades since the creation of the internet have seen an explosion in the rate of data generation
and rapid movement towards the ubiquity of personal computers. With these developments, we
have the ability for sequential interaction with systems of unprecedented size and complexity and
an urgent need to understand large-scale sequential decision problems. This thesis studies two
strategies to deal with this problem.

1. Online learning focuses on simple frameworks, often eschewing probabilistic assumptions,
and develops simple algorithms with robust performance guarantees, even against non-
stochastic data.

2. Reinforcement learning, on the other hand, attempts to model the environment as a compli-
cated stochastic system and find an optimal policy to control it. We adapt this framework
to the large-scale sequential setting by developing methods that search for approximately
optimal solutions on low-complexity versions of the model.

1.2 Online Learning
Online learning describes the sequential decision problem as a repeated game between the learner
and some adversary (e.g. nature). For every round t = 1, . . . , T ,

1. the learner picks an action at ∈ A

2. the adversary observes at and plays a response xt ∈ X

3. the learner suffers loss `(at, xt) ∈ [0, 1], and

4. the learner receives feedback (e.g. `(·, xt) or `(at, xt)).

In contrast to machine learning which often assumes stochastic data and generates sophisticated
algorithms, online learning studies simple algorithms but proves performance bounds with minimal
assumptions, often allowing the data to be adversarially generated as responses to the choices of the
learner [12].

Since the data are adversarial, the cumulative loss can always be made large; instead, we
minimize the regret, defined as

R :=
T∑
t=1

`(at, xt)− L∗T (x1, . . . , xT ), (1.1)

where L∗T (x1, . . . , xT ) is the best loss of some reference class. If we take the class to be the set of
fixed action, then L∗T (x1, . . . , xT ) = mina∈A

∑T
t=1 `(a, xt). Obtaining regret that grows sublinearly

with T implies that we are learning, as we can play almost as well as the best action in hindsight but
without seeing the data sequence ahead of time.
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Online learning is a useful tool in the context of large-scale sequential decision problems for
several reasons. First, the algorithms are often simple with fast updates. They typically have a small
memory footprint and only need to track a small number of parameters; specifically, data may be
discarded once they are processed. Second, the guarantees are robust even against non-stochastic
data. Third, online learning has been successful in games with partial information such as noisy
feedback or only observing the loss for the taken action (e.g. multi-arm bandit problems).

The typical analysis for an online learning algorithm is to

• propose an algorithm,

• prove an upper bound on regret (e.g. using some potential function argument),

• prove a lower bound on regret (e.g. by counter example) for any algorithm, and

• hope that the two bounds meet.

This outline has been very successful and many algorithms have upper bounds that match the rate
of the lower bound. In contrast, the minimax optimal algorithm provides a stronger notion of
optimality: the algorithm must achieve the best possible regret against all sequences, not simply a
regret that grows with the correct dependence on T .

The Minimax Algorithm
The minimax value of a game is defined to be

V := min
a1∈A

max
x1∈X
· · · min

aT∈A
max
xT∈X

T∑
t=1

`(at, xt)− L∗T (x1, . . . , xT ).

The value can be though of as regret when both players play optimal responses to the other player’s
actions. A strategy that plays the argmin at in the above expression is the minimax algorithm; it is
precisely the optimal response to the adversary. It is optimal in the sense that, for any other strategy,
there is an xt sequence that causes that strategy to suffer more regret than the minimax strategy
would suffer on the xt sequence.

The value of the game and optimal strategies can be calculated by backwards induction. We can
write

V = min
a1∈A

max
x1∈X
· · · min

aT∈A
max
xT∈X

T∑
t=1

`(at, xt)− L∗T (x1, . . . , xT )

= min
a1∈A

max
x1∈X

`(a1, x1) + min
a2∈A

max
x2∈X

`(a2, x2) + · · ·+ min
aT∈A

max
xT∈X

`(aT , xT )− L∗T (x1, . . . , xT ).

This form suggests that we study the recursion with base case

VT (x1, . . . , xT ) = − L∗T (x1, . . . , xT )
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and induction step

Vt−1(x1, . . . , xt−1) = min
at

max
xt

`(at, xt) + V (x1, . . . , xt).

This recursion yields the value, i.e. V = V0(), and it conveniently encodes the temporal structure
of the problem. That is, the minimizer for at depends on x1, . . . , xt−1 only, which is exactly the
game history the learner would have access to when choosing at. Similarly, the maximizer for xt
can depend on x1, . . . , xt−1 as well as at. Performing this series of saddle point problems is known
as backwards induction. Backwards induction requires that the learner account for the current loss,
`(at, xt), as well as the future regret which encoded in V (x1, . . . , xt).

Advantages of the minimax algorithm include robustness and a very strong notion of optimality:
the optimal constant, not just the optimal rate, is achieved. For regimes where the game length
and the dimensions are comparable, the difference in constants could be significant. From a
theoretical standpoint, minimax algorithms capture the inherent complexity of the problem. Instead
of an arbitrary regularization (e.g. ridge regression), the structure of the problem provides the
regularization. For example, for the game with square loss and a Euclidean ball constraint on
nature’s responses, the minimax algorithm plays a carefully shrunk empirical mean where the
shrinking is determined by the game parameters (the ball radius and the current round). As a
consequence, there are no parameters to tune.

Efficient Minimax Algorithms
The largest drawback of the minimax algorithm is that its computational complexity is often
exponential in T . At a high level, the value-to-go function must be computed for every possible
history sequence x1, . . . , xt, which is typically exponential in t. From a more mechanical perspective,
each backwards induction step tends to add complexity. Even if L∗T (x1, . . . , xT ) has some structure,
it is unlikely that minaT maxxT `(aT , xT ) + V (x1, . . . , xT ) will maintain it.

There are relatively few examples where one can perform the minimax analysis efficiently.
For example, consider log loss, first discussed in [45]. While the minimax algorithm, Normalized
Maximum Likelihood, is well known [12], it is only efficient in two cases: the multinomial case
where fast Fourier transforms may be exploited [29], and very particular exponential families that
cause NML to be a Bayesian strategy [26], [5]. The minimax optimal strategy is known also for: (i)
the ball game withW = I [50] (our generalization to MahalanobisW 6= I results in fundamentally
different strategies), (ii) the ball game withW = I and a constraint on the player’s deviation from
the current empirical minimizer [2] (for which the optimal strategy is Follow-the-Leader), (iii)
Lipschitz-bounded convex loss functions [2], (iv) experts with an L∗ bound [3], (v) static experts
with absolute loss [13], and (vi) time series prediction against a smoothness-penalized comparator
[31]. While this list may not be exhaustive, hopefully the reader is convinced that tractable minimax
algorithms are rare.
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1.3 Reinforcement Learning
One powerful tool for reasoning in complex systems is reinforcement learning. However, a lack
of computational efficiency prevents a more wide-spread adoption. While recent success such as
Google DeepMind demonstrate RL’s efficacy, theoretical understanding of optimality guarantees,
especially for large scales, is lacking.

Reinforcement learning assumes that the world is a Markov decision process, abbreviated MDP,
and tries to learn the MDP while simultaneously performing well. An MDP is parameterized by

1. a discrete state space X = {1, 2, . . . , X},

2. a discrete action space A = {1, 2, . . . , A},

3. transition dynamics P : X ×A → 4X that describes the distribution of the next state given a
current state and action, and

4. loss function ` : X ×A → [0, 1] that provides the cost of taking an action in a given state.

For time step t, the learner observes the state xt, chooses an action at, and receives loss `(xt, at). The
next state is then generated stochastically: xt−1 ∼ P (xt, at). The (fully observed) state encapsulates
all the persistent information of the environment, and the influence of the agent is captured through
the transition distribution, which is a function of the current state and the current action. The state
evolves in a Markov fashion: xt is conditionally independent of the past given xt−1 and at−1. A
policy π provides a distribution of actions for every state, and the usual goal is to find a good policy.

We focus on an important subproblem to reinforcement learning: planning. The MDP planning
problem assumes perfect knowledge of the MDP and tries to find the optimal policy. Even though
the planning problem decouples the optimization problem (finding π) from the learning problem
(estimating the parameters of the MDP), it is still challenging when X or A are large.

Classical techniques such as value iteration [7] or policy iteration [27] solve the planning prob-
lem but scale quadratically with X . We restrict the optimization space to arrive at an approximately
optimal policy but with complexity scaling with the size of the restriction instead of X . Exploiting
the fact that the optimal policy can be written as the solution to a linear program [36], the ap-
proximate linear programming line of work reduces the computational complexity of the planning
problem by approximating solutions to the linear program by only considering solutions on some
low-dimensional subspace. The first theoretical guarantees in [19, 17] bounded the suboptimality
of the greedy policy corresponding to the best value function representation. Later papers, such
as [15, 51], improved the computational burden by e.g. sampling constraints. Unfortunately, these
algorithms all require that the optimal policy be near the low-dimensional subspace.

1.4 Contributions
Two chapters of this thesis are devoted to efficient minimax algorithms. In Chapter 2, we study the
prediction game. Given some compact set X ∈ Rd and a game length T , each round t = 1, . . . , T
of the prediction game consists of:
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1. the learner predicts at ∈ Rd,

2. the adversary observes at and responds with xt ∈ X , and

3. the learner observes xt and receives loss ‖xt − at‖2
2.

The regret is with respect to L∗T (x1, . . . ,xT ) = mina∈X
∑T

t=1‖xt − a‖
2
2. We derive the minimax

algorithm, show it is efficient, and calculate the value. We also extend the analysis to sets X in
Hilbert spaces. This work is a broad generalization of the previous published work [30].

Chapter 3 studies the minimax algorithm for the classic problem of linear regression. For each
round t = 1, . . . , T , the game protocol is:

1. the adversary chooses a covariate xt ∈ Xt ⊂ Rd,

2. the learner predicts a label ŷt ∈ R,

3. the adversary observes ŷt and responds with yt ∈ Yt ⊂ R, and

4. the learner observes yt and receives loss (ŷt − yt)2,

where Xt and Yt are some constraints we will specify later (and will be carefully chosen to ensure
that the minimax algorithm is computationally efficient). The linear regression is encoded into the
regret term. Specifically, we define regret with respect to

L∗T (x1, . . . ,xT , y1, . . . , yT ) = min
θ∈Rd

T∑
t=1

‖θᵀxt − yt‖2
2,

which is the best linear predictor in hindsight. This protocol emphasizes that the structure of
minimax analysis can be entirely derived from the regret term. We shall see that, despite the
learner’s prediction being unconstrained, the minimax strategy (under certain restrictions on the
adversary) is a linear function similar to ridge regression but with a data-dependent regularization.
The first part of this chapter was previously published as [6].

Chapter 4 switches to the second topic: planning in large state-space Markov decision problems.
Our method builds off the approximate linear programming literature but takes the novel approach of
approximating in the dual space of the linear program. The dual LP can be interpreted as optimizing
stationary distributions over state action pairs with dual objective equal to the expected loss. We
show that approximately solving a low-dimensional LP suffices to provide a policy that is near
optimal with respect to the best in the class, even if the class is far from the optimal policy. Thus,
the performance bound is non-trivial even if the subspace does not contain a near optimal policy.
This work is an extension of the previous published paper [35].

Finally, Chapter 5 summarizes the work and discusses further directions.
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Chapter 2

Minimax Squared Loss Prediction
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2.1 Introduction
We are interested in general strategies for sequential prediction and decision making (a.k.a. online
learning) that improve their performance with experience. We model interaction with the envi-
ronment as a repeated game where the learner and environment take turns playing actions with
full knowledge of the past. We formalize the learning task as a problem of minimizing regret, the
difference between the learner’s performance and the performance of the best strategy from some
fixed reference set. In many cases, we have efficient algorithms with an upper bound on the regret
that meets the game-theoretic lower bound (up to a constant factor). In a few special cases, we
have the exact minimax strategy, meaning that we understand the learning problem at all levels of
detail. In even fewer cases we can also efficiently execute the minimax strategy. These cases serve
as exemplars to guide our thinking about learning algorithms.

This chapter explores efficiently computable minimax strategies for the squared Euclidean loss.
Our setup, described in Figure 2.1, is as follows. Given a game length T and a set X ⊂ Rd, for
each round t = 1, . . . , T , the learner plays at ∈ Rd, the adversary plays xt ∈ X , and then the
learner is penalized using the squared Euclidean distance ‖a− x‖2. After a sequence of T such
interactions, we compare the loss of the learner to the loss of the best fixed prediction a∗ ∈ Rd. In
all our examples, this best fixed action in hindsight is the mean outcome a∗ = 1

T

∑T
t=1 xt.

Given: T , X .
For t = 1, 2, . . . , T ,

• learner chooses prediction at ∈ Rd,

• adversary chooses outcome xt ∈ X ,
and

• learner incurs loss ‖at − xt‖2.

Figure 2.1: Protocol

We use regret, the difference between the loss of the learner and the loss of a∗, to evaluate
performance. The minimax regret for the T -round game, also known as the value of the game, is
given by

V := inf
a1

sup
x1

· · · inf
aT

sup
xT

T∑
t=1

‖at − xt‖2 − inf
a

T∑
t=1

‖a− xt‖2 (2.1)

where the at range over actions in Rd and the xt range over outcomes in X . (Note that the value
depends on X and T , but we omit the dependence from the notation.) The minimax strategy chooses
the at, given all past outcomes x1, . . . ,xt−1, to achieve this regret, and the maximin strategy (of the
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adversary) chooses xt given x1, . . . ,xt−1 and at. Equation (2.1) can equivalently be thought of as

V = inf
Player

Strategies

sup
Environment

Strategies

T∑
t=1

‖at − xt‖2 − inf
a

T∑
t=1

‖a− xt‖2

with the causal dependencies of at and xt on the past made explicit. Hence, the minimax value is
the best response to the worst case.

The contributions of the paper can be succinctly summarized as identifying constraints on X
that allow efficient computation of (2.1) and the minimax strategy. We proceed by first solving two
special cases in explicit detail, then generalizing.

Special Cases
Our goal is to derive the minimax strategy for a general compact X ∈ Rd. Our previous work
[30] explicitly computed the minimax strategy in two special cases: the Brier game, where the
action and outcome spaces are the probability simplex with K outcomes, and the Mahalanobis loss
game, where the action and outcome spaces are the Euclidean norm ball. The former is traditionally
popular in meteorology [10] and the latter has connections with online Gaussian density estimation
[50].

We generalize these results to polytopes in general position (Section 2.3) and to arbitrary
ellipsoids (Section 2.4). Recall that a collection of points in Rd is in general position if, for any
k ≤ d+ 1, no (k − 2)-dimensional flat (i.e., a subspace with an offset) contains k of the points.

Definition 1 (simplex). For a collection of k ≤ d+ 1 points in general position, z1, . . . ,zk ∈ Rd,
we use Z to denote both the matrix with columns z1, . . . ,zk as well as the collection of points. We
define the Z-simplex as the convex hull of these points,

4Z :=

{
k∑
i=1

pkzk : p1, . . . , pk ≥ 0,1ᵀp = 1

}
. (2.2)

We say that4Z is of size k. Use4k to denote the probability simplex over k actions,

4k := {p : p1, . . . , pk ≥ 0,1ᵀp = 1} .

It is easy to see that4Z is exactly the image of4k through the linear map Z.
In particular, the k = d + 1 case corresponds to the standard definition of a simplex that is

affinely independent in Rd; that is, the polytope cannot be translated to lie in some low dimensional
subspace. Also, the notion of general position is equivalent to requiring that

Rank

([
Z
1ᵀ

])
= k.

For a positive semi-definite matrixW , we define the Mahalanobis norm as

‖x‖2
W := xᵀW †x, (2.3)
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whereW † is the Moore-Penrose Pseudo inverse. Without loss of generality, we assume thatW is
symmetric.

The unit ball in this norm is an ellipsoid.

Definition 2. A positive semi-definite, symmetricW and center z ∈ Rd define the ellipsoid

B(z,W ) := {x ∈ Rd | ‖x− z‖W ≤ 1} (2.4)

with centered case©W := B(0,W ).

Note that the ellipsoid©W is the image of© := ©I under the linear map W
1
2
†. Instead of

Euclidean loss on Mahalanobis balls, we could have equivalently played with Mahalanobis losses
on Euclidean balls by transforming x to W

1
2
†x; we shall later see that affine transformations do not

change the regret.

Bridging the Gap
One of the main results of this chapter is that ellipsoid games and certain simplex games have the
same minimax strategies and the same regret. The key geometric quantity to study is the smallest
enclosing ball.

Definition 3 (smallest enclosing ball). For a compact set X , the point cX ∈ X and scalar ρX ∈ R
are defined to be the center and radius of the Euclidean ball with the minimum radius that contains
X , that is, (cX , ρX ) is the solution to the optimization problem

min
c,ρ

ρ

s.t. X ⊆ B(c, ρ),

where B(c, ρ) denotes the Euclidean ball,

B(c, ρ) := {x ∈ Rd | ‖x− c‖ ≤ ρ}.

We shall show that the regret for any compact set is the same as the regret played on the smallest
enclosing ball. Intuitively, the adversary only chooses points maximally far apart and hence plays
on the intersection of the boundary of X and the smallest enclosing ball. The proof is by a sandwich
argument: every compact set contains a simplex (possibly in a lower dimensional subspace), is
contained in a Euclidean ball, and the regret of the games played on these two sets match. More
precisely, we prove the following theorem.

Theorem 4. Let X be a compact set and let cX and ρX be the center and radius of the smallest
Euclidean ball that contains X . For n = 2, . . . , T , recursively define the coefficients αT = 1/T and
αn−1 = αn + α2

n. Then the squared loss game has value

V = ρ2
X

T∑
n=1

αn, (2.5)
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which is achieved by the minimax strategy

an = cX + αn

n−1∑
t=1

(xt − cX ) . (MM)

Hilbert Space
One may notice that the value of the game on a compact set X only depends on the radius of the
smallest enclosing ball and some function of the game length; in particular, there is no dimension
dependence. This invites the question, can we play in an infinite dimensional space with the same
regret and, if so, is (MM) the minimax strategy? We will show that the answer to both questions
is yes. We show that (MM) achieves the same regret (2.5) in Hilbert space, and show that this is
optimal using a limiting argument from the finite case, by constructing a sequence of finite subsets
with a minimum enclosing ball whose radius approaches that of X .

Related Work
Repeated games with minimax strategies are frequently studied [12] and, in online learning, minimax
analysis has been applied to a variety of losses and repeated games; however, computationally
feasible algorithms are the exception, not the rule. For example, the minimax algorithm for log loss,
Normalized Maximum Likelihood (NML), is well known [45], but it generally requires computation
that is exponential in the time horizon, as one needs to aggregate over all data sequences. To our
knowledge, there are two exceptions where efficient NML forecasters are possible: the multinomial
case where fast Fourier transforms may be exploited [29], and very particular exponential families
that cause NML to be a Bayesian strategy [26, 5]. The minimax optimal strategy is known also
for: (i) the ball game with W = I [50] (our generalization to Mahalanobis balls with W 6= I
results in fundamentally different strategies), (ii) the ball game with W = I and a constraint on
the player’s deviation from the current empirical minimizer [2] (for which the optimal strategy
is Follow-the-Leader), (iii) Lipschitz-bounded convex loss functions [2], (iv) experts with an L∗

bound [3], (v) static experts with absolute loss [13], (vi) unconstrained linear optimization [37], and
(vii) linear regression [6]. This close-to-exhaustive list demonstrates the rarity of tractable minimax
algorithms.

The Ball game was considered previously by [50], who identify the minimax algorithm for the
special caseW = I . The generalization toW 6= I results in fundamentally different strategies.

Outline
The paper is organized as follows. Section 2.2 begins with describing the minimax framework
and introducing the tool of backwards induction as a means of computing the minimax strategy.
We then apply this tool and fully solve the simplex and ellipsoid games in Sections 2.3 and 2.4,
presenting the value, the minimax strategy, and the optimal strategy of the adversary. We then
generalize to an arbitrary compact set in Section 2.5 by first proving several necessary properties of
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the smallest enclosing ball for convex sets and then deriving the minimax strategy and value using a
sandwich argument. Section 2.6 then shows that the regret and minimax strategy remain essentially
unchanged in the infinite dimensional case. We conclude in Section 2.7.

2.2 Value-to-go
In this section, we introduce the value-to-go function and some common elements of the ball and
Brier games. All games will be specified by a game length T and a constraint on the adversary’s
action space X ⊂ Rd. For simplicity, we omit this dependence from our notation. For some
observed data x1, . . . ,xn, the value-to-go for the remaining T − n rounds is given by

V (x1, . . . ,xn) := inf
an+1

sup
xn+1

· · · inf
aT

sup
xT

T∑
t=n+1

‖at − xt‖2 − inf
a

T∑
t=1

‖a− xt‖2,

where xn+1, . . . ,xT are constrained to be in X but an1 , . . . ,aT are unconstrained (although we
will later see that the learner will never play outside of the convex hull of X ). The value-to-go at
x1, . . . ,xn encapsulates the effective future regret if both players play optimally starting with a
history x1, . . . ,xn.

By definition, the minimax regret (2.1) is V = V (ε) where ε is the empty sequence, and an easy
induction shows that the value-to-go satisfies the recurrence

V (x1, . . . ,xn) =

{
− infa

∑T
t=1‖a− xt‖

2 if n = T ,
infan+1

supxn+1
‖an+1 − xn+1‖2 + V (x1, . . . ,xn+1) if n < T .

(2.6)

Our analysis for the two games proceeds in a similar manner. For some past history of plays
(x1, . . . ,xn) of length n, we summarize the state by s =

∑n
t=1 xt and σ2 =

∑n
t=1 x

ᵀ
txt. As we

will see, the value-to-go after n of T rounds can be written as V (s, σ2, n); i.e. it only depends on
the past plays through s and σ2. More surprisingly, for each n, the value-to-go V (s, σ2, n) is a
quadratic function of s and a linear function of σ2 (under certain conditions on X ).

It is easy to see that the terminal value V (s, σ2, T ) is quadratic in the state; this is simply a
consequence of the form of the loss of the best action in hindsight, as described in Lemma 5.
However, it is not at all obvious that propagating from V (s+ x, σ2 + xᵀx, n+ 1) to V (s, σ2, n)
by using the second case of (2.6) preserves this structure. This compact representation of the
value function is an essential ingredient for a computationally feasible algorithm. In many regret
minimization games, the minimax strategy has a computational complexity that apparently scales
exponentially with the time horizon. We show that, for squared Euclidean loss, the minimax strategy
can be computed in constant amortized time.

The Offline Problem The regret is defined as the difference between the loss of the algorithm
and the loss of the best action in hindsight. Here we calculate that action and its loss.
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Lemma 5. For data x1, . . . ,xT ∈ X , the loss of the best action in hindsight equals

inf
a∈Rd

T∑
t=1

‖a− xt‖2 =
T∑
t=1

xᵀ
txt −

1

T

(
T∑
t=1

xt

)ᵀ( T∑
t=1

xt

)
, (2.7)

and the minimizer is the mean outcome a∗ = 1
T

∑T
t=1 xt.

Proof. The unconstrained minimizer and value are obtained by equating the derivative to zero and
plugging in the solution.

The best action in hindsight is independent of X , and therefore the follow-the-leader strategy is
as well. As we shall see, the minimax strategy does not have this property.

2.3 The Simplex Game
This section analyzes the squared loss game when the adversary is restricted to play on a general
simplex, which can be thought of as a non-degenerate (k)-vertex polytope in Rd. We first define
a simplex and connect the Euclidean loss game on the simplex with a Mahalanobis loss game on
the probability simplex and prove several useful lemmas for optimizing quadratic functions in the
simplex. Building off of this, in Section 2.3, we evaluate the value-to-go function of the simplex
game and present the minimax and maximin strategies. Finally, we show a regret bound.

Simplex Preliminaries
Recall that the Z-simplex is the convex hull of the columns of Z, which are in general position. We
require that Z be in general position because it allows a short description of the mapping between
4Z and4k that relies on the offset vector, defined below. We will use G := ZᵀZ to denote the
Gram matrix of Z and g := diag(G) to denote its diagonal.

Definition 6. For the Z-simplex, define the offset vector to be any vector v satisfying Zv = 0 and
1ᵀv = 1.

Note that such a v always exists: since Z are in general position, Z can have rank at most d and

the null space cannot be orthogonal to 1. In the case when k = d+ 1,
[
Z
1ᵀ

]
has full rank and v is

uniquely determined.
We can think of v as the point in 4k that maps to the origin, provided that 4Z contains the

origin (otherwise, v will have negative entries but will lie in the hyperplane containing4k). The
vector v affords us an easily described affine transformation between4Z and4k.

Proposition 7. Given the Z-simplex 4Z , the linear map Z maps from 4k onto 4Z . For any
z ∈ 4Z , the affine map

5 (z) := v + Sz (2.8)
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guarantees that p = 5(z) ∈ 4k is a solution to Zp = z, where v is the offset vector and

S := (I − v1ᵀ)Z†. (2.9)

Additionally, ZS = I .

Proof. Let z ∈ 4Z , and we want to find a p such that Zp = z. By definition of4Z , z must be
in the column space of Z, and hence we can take p = Z†z + αv for any α (since v is in the null
space of Z). Solving for the α that requires 1ᵀp = 1 yields

1ᵀ
(
Z†z + αv

)
= 1⇔ α = 1− 1ᵀZ†z

since 1ᵀv = 1. Hence,

p = Z†z +
(
1− 1ᵀZ†z

)
v

= (I − v1ᵀ)Z†z + v,

and S = (I − v1ᵀ)Z† as claimed.
The last claim of the theorem is easily checked: ZS = Z (I − v1ᵀ)Z† = ZZ† = I.

Minimum Enclosing Ball of a Simplex
One of the biggest reasons for working with simplices is that the minimum enclosing ball is easy to
compute in closed form, as described in the following lemma, where g = diag(ZᵀZ) and S is as
defined in Proposition 7.

Lemma 8. Let Z be in general position and 4Z be the corresponding simplex. The center and
radius of the minimum enclosing ball are

cZ :=
1

2
Sᵀg, and ρ2

Z := cᵀZcZ + gᵀv (2.10)

provided that ScZ + v � 0, where � denotes an entry-wise inequality between vectors.

The proof of Lemma 8 builds off Lemma 10 and will be presented shortly. We state Lemma 8 to
highlight an important condition:

Definition 9. A simplex4Z is ball-like if

ScZ + v � 0. (2.11)

The ball-like property holds only if the minimum enclosing ball touches the simplex at every vertex,
and allows easy computation of the minimum enclosing ball via (2.10).

We will drop the subscripts on c and ρ2 when the context is clear.
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Optimizing Quadratic Functions on the Simplex
Before we prove Lemma 8 and compute the value-to-go, we will derive a useful result about
optimizing quadratic functions over4Z .

Lemma 10. The optimization

max
p

− pᵀZᵀZp+ 2dᵀp

s.t. 1ᵀp = 1.

has solution
p = v + SSᵀd

and value
dᵀSSᵀd+ 2dᵀv.

Proof. We can equivalently solve the optimization for p or z = Zp, since p 7→ z is a one-to-one
mapping between {p : 1ᵀp = 1} and Rd. Using p = v + Sz and z = Zp, the optimization is
equal to

−pᵀZᵀZp+ 2dᵀp = −zᵀz + 2dᵀSz + 2dᵀv

= − (z − Sᵀd)ᵀ (z − Sᵀd) + dᵀSSᵀd+ 2dᵀv

We can therefore read off the solution as z = Sᵀd and the value as

dᵀSSᵀd+ 2dᵀv.

Mapping this back, we find that the solution is

p = v + Sz = v + SSᵀd.

With this lemma, we can immediately prove the smallest ball theorem.

Proof of Lemma 8. The smallest ball containing4Z has center c and radius ρ that are solutions to
the optimization problem

min
ρ,c∈4Z

ρ2

s.t. ‖zi − c‖2 − ρ2 ≤ 0 ∀i = 1, . . . , k

Using p as the vector of dual variables, the Lagrangian is then

L(c, ρ,p) =
k∑
i=1

pi‖zi − c‖2 + ρ2

(
1−

k∑
i=1

pi

)
.
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If we differentiate with respect to c and set this equal to zero, we must have c =
∑

i pizi; using
this, we are left with

k∑
i=1

pi‖zi −Zp‖2 + ρ2

(
1−

k∑
i=1

pi

)
under the further constraint that pi ≥ 0. We can rewrite the first term as∑

i

pi‖zi −Zp‖2 =
∑
i

pi (ei − p)ᵀZᵀZ(ei − p)

=
∑
i

pi (e
ᵀ
iGei − 2pᵀGei + pᵀGp)

= gᵀp− pᵀGp,

and thus we see that the least-norm minimum ball is equivalent to the optimization problem

min
p

gᵀp− pᵀGp (2.12)

s.t. p ∈ 4k.

Applying Lemma 10 with d = g/2 gives

p∗ = v +
1

2
SSᵀg,

which implies that

cZ = Z
(
v + SSᵀg

2

)
=
Sᵀg

2

and
ρZ =

1

4
gᵀSSᵀg + gᵀv.

However, Lemma 10 solves the optimization problem where 1ᵀp = 1 is the only constraint. If the
solution given by the Lemma also happens to satisfy pi ≥ 0, then the solution must also be correct
on the subset p ∈ 4k. That is, for the cZ above to be correct, it suffices if

v + ScZ ∈ 4k,

which is exactly equivalent to the ball-like condition.

We need one final ingredient before we can evaluate the value of the game: namely, we need to
understand how saddle point problems over4Z behave.

Lemma 11. For a simplex4Z , vector b and constant β ≥ 1, the optimization problem

min
a∈Rd

max
x∈4Z

‖a− x‖2 + βxᵀx+ 2bᵀx



CHAPTER 2. MINIMAX SQUARED LOSS PREDICTION 17

achieves its value

dᵀSSᵀd+ 2dᵀv = (1 + β)2cᵀc+ 2(1 + β)cᵀb+ bᵀb+ (1 + β)vᵀg

where
d =

1 + β

2
g +Zᵀb.

This is accomplished by the saddle point defined by the player strategy

a∗ = Sᵀd

and the randomized adversary strategy (the maximin strategy randomizes, playing x = zi with
probability p∗i )

p∗ = v + SSᵀd

provided p∗ � 0. Note that the expected value of the maximin strategy is precisely a∗.

Proof. The objective is convex in x for each a as β ≥ 1, so it is maximized at a corner x = zk.
The value is unchanged by allowing the adversary to play linear combinations. That is,

min
a∈4Z

max
x∈4Z

‖a− x‖2 + βxᵀx+ 2bᵀx = min
a∈4Z

max
k
‖a− zk‖2 + βzᵀkzk + 2bᵀzk

= max
p∈4d+1

min
a∈4Z

E
k∼p

[
‖a− zk‖2 + βzᵀkzk + 2bᵀzk

]
where the second line follows from a straightforward application of a min-max swap (see e.g. [46]).

The properness of the squared loss implies that the minimum of Ek∼p‖a − zk‖2 is at a =
Ek∼p[zk] = Zp; plugging this in yields

min
a∈4Z

max
x∈4Z

‖a− x‖2 + βxᵀx+ 2bᵀx = max
p

E
k∼p

[
‖Zp− zk‖2 + βzᵀkzk + 2bᵀzk

]
= max

p
−pᵀZᵀZp+ ((1 + β) diag (ZᵀZ) + 2Zᵀb)ᵀ p

We immediately find p∗ by applying Lemma 10 with the linear term equal to d = 1+β
2
g + Zᵀb,

which can be written as

p∗ = v + SSᵀd

= v + SSᵀ

(
1 + β

2
g +Zᵀb

)
.

Lemma 10 also provides the value

dᵀp = dᵀSSᵀd+ 2dᵀv

=
(1 + β)2

4
gᵀSSᵀg + (1 + β)gᵀSSᵀZᵀb+ bᵀZSSᵀZᵀb+ (1 + β)vᵀg

=
(1 + β)2

4
gᵀSSᵀg + (1 + β)gᵀSb+ bᵀb+ (1 + β)vᵀg.

Finally, the optimal player action is

a∗ = Zp∗ = Sᵀd.
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Minimax Analysis of the Simplex Game
With the above lemmas, we can readily compute V (s, σ2, n) as a recursion and specify the minimax
and maximin strategies.

Input: Game length T , ball-like simplex4Z
Calculate the smallest enclosing ball center c.
Calculate

αT =
1

T
, αn = α2

n+1 + αn+1,

Set s = 0
for all n = 1, . . . , T do

Play a∗ = c+ αn
∑n−1

t=1 (xt − c)
end for

Figure 2.2: Minimax4Z strategy, ‖·‖2 loss

Theorem 12. Consider the T -round game over a ball-like simplex4Z and Euclidean loss ‖a−x‖2.
After n outcomes (x1, . . . ,xn) with statistics s =

∑n
t=1 xt and σ2 =

∑n
t=1 x

ᵀ
txt, the value-to-go is

V (s, σ2, n) = αns
ᵀs− σ2 + (1− nαn)gᵀSs+ γn,

the maximin strategies plays point zk proportional to

p∗ = v + S

(
(1− (n− 1)αn) c+ αn(n− 1)

s

n− 1

)
and the minimax strategy is

a∗ = Zp∗ = c+ αn

n−1∑
t=1

(xt − c)

where the αn coefficients are defined in Figure 2.2 and γT = 0 with

γn−1 = γn + (1− (n− 1)αn)2 cᵀc+ αnv
ᵀg.

Proof. We proceed by induction. Recall that V (s, σ2, T ), the value at the end of the game is

V (s, σ2, T ) =
1

T
sᵀs− σ2,
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corresponding to αT = 1
T

and γT = 0. Now, assume the induction hypothesis for n ≤ T rounds. To
check the n− 1 case, we evaluate

V (s, σ2, n− 1) = min
a∈Rd

max
x∈4Z

‖a− x‖2 + αn(s+ x)ᵀ(s+ x)

− (σ2 + xᵀx) + (1− nαn)gᵀS(s+ x) + γn.

= min
a∈Rd

max
x∈4Z

‖a− x‖2 + αnx
ᵀx− xᵀx

+ 2

(
1− nαn

2
Sᵀg + αns

)ᵀ

x+ αns
ᵀs

+ (1− nαn)gᵀSᵀs− σ2 + γn.

Applying Lemma 11 with β = (αn − 1) and b = 1−nαn
2
Sᵀg + αns achieves its value

dᵀSSᵀd+ 2dᵀv

where

d =

(
αn
2
I +

1− nαn
2

ZᵀSᵀ

)
g + αnZ

ᵀs

and the maximin strategy is

p∗ = v + SSᵀd

= v +
αn
2
SSᵀg +

1− nαn
2

SSᵀZᵀSᵀg + αnSs

= v +
1

2
(1− (n− 1)αn)SSᵀg + αnSs

= S
(

(1− (n− 1)αn) c+ αn(n− 1)
s

n− 1

)
Recall that the player plays a∗ = Zp∗, and so

a∗ = (1− (n− 1)αn) c+ αn(n− 1)
s

n− 1
= c+ αn

n−1∑
t=1

(xt − c) .

Next, we need to show that the value-to-go remains in the correct form. Repeatedly using the
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identity ZS = I , we have

dᵀSSᵀd+ 2dᵀv = gᵀ
(
αn
2
I +

1− nαn
2

ZᵀSᵀ

)ᵀ

SSᵀ

(
αn
2
I +

1− nαn
2

ZᵀSᵀ

)
g

+ 2αng
ᵀ

(
αn
2
I +

1− nαn
2

ZᵀSᵀ

)ᵀ

SSᵀZᵀs

+ α2
ns

ᵀZSSᵀZᵀs+ 2dᵀv

= gᵀ
(
αn
2
I +

1− nαn
2

ZᵀSᵀ

)ᵀ(
αn
2
SSᵀ +

1− nαn
2

SSᵀ

)
g

+ αn (αn + (1− nαn)) gᵀSs+ α2
ns

ᵀs+ αnv
ᵀg

=

(
αn
2

+
1− nαn

2

)2

gᵀSSᵀg

+ αn (αn + (1− nαn)) gᵀSs+ α2
ns

ᵀs+ αnv
ᵀg

and hence the value is

V (s, σ2, n− 1) = (α2
n + αn)sᵀs+ ((1− nαn) + αn (αn + (1− nαn))) gᵀSᵀs

+

(
αn
2

+
1− nαn

2

)2

gᵀSSᵀg + αnv
ᵀg − σ2 + γn

= αn−1s
ᵀs+ (1− (n− 1)αn−1) gᵀSᵀs

+
(1− (n− 1)αn)2

4
gᵀSSᵀg + αnv

ᵀg − σ2 + γn

= αn−1s
ᵀs+ (1− (n− 1)αn−1) cᵀs

+ (1− (n− 1)αn)2 cᵀc+ αnv
ᵀg − σ2 + γn

under the update

αn−1 = αn + α2
n

γn−1 = γn + (1− (n− 1)αn)2 cᵀc+ αnv
ᵀg.

Finally, we need to verify that the strategies above respect the constraints of the game, i.e. that
a∗ ∈ 4Z and p∗ ∈ 4d+1. It suffices to verify the latter. Otherwise, the above calculations do not
correspond to the minimax strategy. We need to show for all s ≥ 0 with sum n− 1 that p∗ ≥ 0, i.e.

v + S ((1− (n− 1)αn) c+ αns) = 5 ((1− (n− 1)αn) c+ αns) ∈ 4k.

By Proposition 7,5 is one-to-one from4k to4Z , and thus the above statement is equivalent to
(1− (n− 1)αn) c+ αns ∈ 4Z , which we can easily verify by noting that the expression is exactly
a convex combination of c ∈ 4Z and s

n−1
∈ 4Z .

This full characterization of the game allows us to derive the following minimax regret bound.
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Theorem 13. The minimax regret on the T -round ball-like simplex4Z satisfies

V (4Z) = ρ2

T∑
n=1

αn ≤ ρ2 (1 + ln(T )) , (2.13)

where ρ2 is the squared radius of the minimum enclosing ball, cᵀc+ vᵀg.

Proof. The regret is equal to the value of the game, V = V (0, 0, 0) = γ0; thus, we need to calculate∑T
n=1(1− nαn+1)2. Observe that

(1− nαn+1)2 = 1− 2nαn+1 + n2α2
n+1

= 1− 2nαn+1 + n2(αn − αn+1)

= αn+1 + 1− (n+ 1)2αn+1 + n2αn.

After summing over n, the last two terms telescope, and we find

T−1∑
n=0

(1− nαn+1)2 = − T 2αT +
T−1∑
n=0

(1 + αn+1) =
T∑
n=1

αn,

and hence V = (cᵀc+ gᵀv)
∑T

n=1 αn = ρ2
∑T

n=1 αn. verifying the first equality.
Each αn can be bounded by 1/n, as observed in [50, proof of Lemma 2]. In the base case n = T

this holds with equality, and for n < T we have

αn = α2
n+1 + αn+1 ≤

1

(n+ 1)2
+

1

n+ 1
=

1

n

n(n+ 2)

(n+ 1)2
≤ 1

n
.

It follows that γ0 ∝
∑T

n=1 αn ≤
∑T

n=1
1
n
≤ 1 + ln(T ) as desired.

Remark 14. In fact, [50, Lemma 3] actually proves the slightly more refined bound

T∑
n=1

αn = ln(T )− ln(ln(T )) +O

(
ln(ln(T ))

ln(T )

)
.

2.4 The Ellipsoid Game
This section parallels the previous: we first introduce the Euclidean loss game on an ellipsoid and
relate it to the Mahalanobis loss game on a unit sphere. Section 2.4 then proves some useful lemmas
for optimizing square functions and saddle points on ellipsoids and uses these tools to compute the
value-to-go and optimal strategies.

Here, we consider the game with Euclidean loss and ellipsoid X = ©W := {x ∈ RK |
‖x‖W ≤ 1}. We will first solve the centered case, as the general case easily follows. The centered
case is without loss of generality: since the loss is the difference between the player’s and adversary’s
plays, translating X will simply shift both sets of plays and offer exactly the same loss.
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Ellipsoid Preliminaries
As with the simplex, we could equivalently think about the Euclidean loss on a warped space (e.g.
an ellipsoid) or the Mahalanobis loss on a Euclidean space.

Lemma 15. Playing x and a in the©W game with Euclidean loss ‖·‖2 is equivalent to playing

y =
(
W †) 1

2 x and b =
(
W †) 1

2 a, respectively, in the Euclidean game with Mahalanobis loss
‖·‖2

W † .

This lemma is a simple consequence of noticing that x ∈ ©W ⇔ ‖
(
W †) 1

2 x‖ ≤ 1⇔ y ∈ ©,
and ‖y − b‖W † = ‖W 1

2 (y − b)‖ = ‖x− a‖.
For the rest of the section, we will fixW � 0 and consider the game with loss ‖·‖2 and action

set X =©W .

Optimization on an Ellipsoid
For each step of the backwards induction, we will need to solve a quadratic saddle point problem on
the ellipse, which will be provided by the following lemma.

Lemma 16. Fix a symmetric matrixA and vector b and assumeA+W−1 � 0. Let λmax be the
largest eigenvalue ofW +W

1
2AW

1
2 and vmax the corresponding eigenvector. If

bᵀW− 1
2 (λW−1 −A)−2W− 1

2b ≤ 1,

then the optimization problem

inf
a∈Rd

sup
x∈©W

‖a− x‖2 + xᵀAx+ 2bᵀx

has value
bᵀ
(
λmaxW

−1 −A
)−1

b+ λmax, (2.14)

minimax strategy a∗ = (λmaxW
−1 −A)−1b, and a randomized maximin strategy that plays two

unit length vectors, with

Pr

(
x = a⊥ ±

√
1− aᵀ

⊥W
−1a⊥vmax

)
=

1

2
±

aᵀ
‖vmax

2
√

1− aᵀ
⊥W

−1a⊥
,

where a⊥ and a‖ are the components of a∗ perpendicular and parallel to vmax.

Proof. As the objective is convex, the inner optimum must be on the boundary and hence ‖x‖W = 1.
Introduce a Lagrange multiplier λ for xᵀW−1x ≤ 1 to get the Lagrangian

inf
a∈Rd

inf
λ≥0

sup
x
‖a− x‖2 + xᵀAx+ 2xᵀb+ λ(1− xᵀW−1x).
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This is concave in x if I +A− λW−1 � 0, that is, λmax ≤ λ. Differentiating yields the optimizer
x∗ = (I +A− λW−1)

−1
(a− b), which leaves us with an optimization in only a and λ:

inf
a∈Rd

inf
λ≥λmax

aᵀa− (a− b)ᵀ(I +A− λW−1)−1(a− b) + λ.

Since the infimums are over closed sets, we can exchange their order. We then exploit the fact that,
for all λ ≥ λmax, the objective is convex in a. We have

(I − (I +A− λW−1)−1)a∗ = −(I +A− λW−1)−1b

⇔ −(I +A− λW−1)(I − (I +A− λW−1)−1)a∗ = b

⇔ a∗ = (λW−1 −A)−1b.

We now rewrite the optimization problem as

inf
λ≥λmax

inf
a∈Rd

aᵀ
(
I − (I +A− λW−1)−1

)
a+2bᵀ(I+A−λW−1)−1a−bᵀ(I+A−λW−1)−1b+λ

and plug in a = a∗. The the quadratic term can be simplified as

a∗ᵀ
(
I − (I +A− λW−1)−1

)
a∗

= bᵀ(A− λW−1)−1
(
I − (I +A− λW−1)−1

)
(A− λW−1)−1b

= bᵀ(A− λW−1)−1(I +A− λW−1 − I)(I +A− λW−1)−1(A− λW−1)−1b

= bᵀ(I +A− λW−1)−1(A− λW−1)−1b.

Plugging this into the objective, we find

inf
λ≥λmax

inf
a∈Rd

aᵀ
(
I − (I +A− λW−1)−1

)
a+ 2bᵀ(I +A− λW−1)−1a− bᵀ(I +A− λW−1)−1b+ λ

= inf
λ≥λmax

−bᵀ(I +A− λW−1)−1(A− λW−1)−1b− bᵀ(I +A− λW−1)−1b+ λ

= inf
λ≥λmax

−bᵀ(A− λW−1)−1b+ λ.

We can use the spectral decomposition W
1
2AW

1
2 =

∑
i λiviv

ᵀ
i to rewrite this optimization

problem as

inf
λ≥λmax

bᵀ(λW−1 −A)−1b+ λ = inf
λ≥λmax

bᵀW
1
2 (λI −W

1
2AW

1
2 )−1W

1
2b+ λ

= inf
λ≥λmax

(∑
i

vᵀiW
1
2bvᵀi

)
(λI −W

1
2AW

1
2 )−1

(∑
i

vᵀiW
1
2bvi

)
+ λ

= inf
λ≥λmax

∑
i,j

(
vᵀiW

1
2b
)
vᵀi (λI −W

1
2AW

1
2 )−1vj

(
vᵀjW

1
2b
)

+ λ

= inf
λ≥λmax

∑
i,j

(
vᵀiW

1
2b
) vᵀi vj
λ− λj

(
vᵀjW

1
2b
)

+ λ

= inf
λ≥λmax

∑
i

(
vᵀiW

1
2b
)2

λ− λi
+ λ.
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The derivative of the objective with respect to λ is

−
∑
i

(
vᵀiW

1
2b
)2

(λ− λi)2
+ 1 = −

∑
i,j

(
vᵀiW

1
2b
) vᵀi vj

(λ− λj)2

(
vᵀjW

1
2b
)

+ 1

= −

(∑
i

vᵀiW
1
2bvᵀi

)
(λI −W

1
2AW

1
2 )−2

(∑
i

vᵀiW
1
2bvi

)
+ 1

= −bᵀW
1
2 (λI −W

1
2AW

1
2 )−2W

1
2b+ 1

= −bᵀW− 1
2 (λW−1 −A)−2W− 1

2b+ 1,

and so the objective is an increasing function in λ ≥ λmax as long as bᵀW− 1
2 (λW−1−A)−2W− 1

2b ≤
1. The infimum is attained at λmax and the a∗ is minimax for the given x∗ when the assumed in-
equality is satisfied.

To obtain the maximin strategy, we can take the usual convexification where the Adversary
plays distributions P over©W . This allows us to swap the infimum and supremum (see e.g. Sion’s
minimax theorem [46]) and obtain the equivalent optimization problem

V = sup
P

inf
a

E
x∼P

[aᵀa− 2aᵀx+ xᵀx+ xᵀAx+ 2bᵀx] .

We notice that the objective only depends on the mean µ = Ex and second momentD = Exxᵀ of
P . Since x is supported on the boundary of©W , we must have tr(W−1D) = 1 andD � µµᵀ. It
is clear that these two properties are necessary for any distribution on the boundary of©W ; the fact
that this criteria is also sufficient is proven in [32, Theorem 2.1]. Therefore, the above optimization
is equivalent to

V = sup
µ,D

inf
a
aᵀa− 2aᵀµ+ tr((I +A)D) + 2bᵀµ

= sup
µ,D

inf
a
−µᵀµ+ 2bᵀµ+ tr((I +A)I)

= −a∗ᵀa∗ + 2bᵀa∗ + sup
D�a∗a∗ᵀ

tr(W−1D)=1

tr ((I +A)D)

where the second equality uses a = µ and the third used the saddle point condition µ∗ = a∗.
We can rewrite the matrix trace constraint as tr(W− 1

2DW− 1
2 ) = 1 and the objective in the

supremum as tr
(

(W +W
1
2AW

1
2 )W− 1

2DW− 1
2

)
. We then see that the matrix W− 1

2DW− 1
2

seeks to align with the largest eigenvector of (W +W
1
2AW

1
2 ) while respecting the constraint

W− 1
2DW− 1

2 �
(
W− 1

2a∗
)(
W− 1

2a∗
)ᵀ

. If we reparameterize byC = W− 1
2 (D − a∗a∗ᵀ)W− 1

2 ,
it becomes clear that we need to find

sup
C�0

tr(C)=1−a∗ᵀW−1a∗ᵀ

tr
(

(W +W
1
2AW

1
2 )C

)
.



CHAPTER 2. MINIMAX SQUARED LOSS PREDICTION 25

vmax

µ

Figure 2.3: Illustration of the maximin distribution from Lemma 16. The mixture of red unit vectors
with mean µ has second momentD = µµᵀ + (1− µᵀµ)vmaxv

ᵀ
max.

By linearity of the objective, the maximizer can be of rank 1. Hence, this is a (scaled) maximum
eigenvalue problem, with solution given by C∗ = (1 − a∗ᵀW−1a∗)vmaxv

ᵀ
max, so that D∗ =

W− 1
2a∗a∗ᵀW− 1

2 + (1− a∗ᵀW−1a∗)vmaxv
ᵀ
max.

It is easy to verify that the mixture in the theorem has the desired mean a∗ and second moment
D∗. See Figure 2.3 for the geometrical intuition.

Notice that both the minimax and maximin strategies only depend on W through λmax and
vmax.

Minimax Analysis of the Ellipsoid Game
With the above lemmas, we can compute the value and strategies for the ellipsoid game in an
analogous way to Theorem 12. Again, we find that the value function at the end of the game is
quadratic in the state, and, surprisingly, remains quadratic under the backwards induction.

Input: Game length T , X = B(c,W ).
Calculate

AT =
1

T
I, An = An+1

(
λmax
n+1W

−1 + I −An+1

)−1
An+1 +An+1,

where λmax
n = λmax(W

1
2AnW

1
2 )

for all n = 1, . . . , T do
Play a∗ = c+ (λmax

n+1W
−1 + I −An+1)−1An+1

∑n−1
t=1 (xt − c).

end for

Figure 2.4: Minimax©W strategy
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Theorem 17. Consider the T -round ball game with loss ‖a − x‖2 and action space ©W , the
matrices defined in Figure 2.4, and the statistics

s =
n∑
t=1

xt and σ2 =
n∑
t=1

xᵀ
txt. (2.15)

After n rounds, the value-to-go is

V (s, σ2, n) =
1

2
sᵀAns−

1

2
σ2 + γn,

whereAn is as defined in Figure 2.4 and

γT = 0, γn = γn+1 + λmax(W
1
2An+1W

1
2 ). (2.16)

The minimax strategy plays

a∗(s, σ2, n) = a∗ = (λmaxW
−1 −An+1 − I)−1An+1s

and the maximin strategy plays two unit length vectors with

Pr

(
x = a⊥ ±

√
1− aᵀ

⊥W
−1a⊥vmax

)
=

1

2
±

aᵀ
‖vmax

2
√

1− aᵀ
⊥W

−1a⊥
,

where λmax and vmax correspond to the largest eigenvalue ofW
1
2An+1W

1
2 and a⊥ and a‖ are the

components of a∗ perpendicular and parallel to vmax.

Proof. Recall that we needed to calculate

V (s, σ2, n) = inf
a

sup
x
‖a− x‖2 + (s+ x)ᵀAn+1(s+ x)− (σ2 + xᵀx) + γn+1,

which may be reorganized to

sᵀAn+1s− σ2 + γn+1 + inf
a

sup
x
‖a− x‖2 + xᵀ (An+1 − I)x+ 2sᵀAn+1x.

We now apply Lemma 16 with A = An+1 − I and b = An+1s. Let λmax
n+1 be the largest

eigenvalue ofW +W
1
2 (An+1 − I)W

1
2 = W

1
2An+1W

1
2 . If we have

1 ≥ sᵀAn+1

(
λmax
n+1W

−1 + I −An+1

)−2
An+1s, (2.17)

then the value equals

sᵀAn+1s− σ2 + γn+1 + λmax
n+1 + sᵀAn+1

(
λmax
n+1W

−1 + I −An+1

)−1
An+1s

with minimax strategy
a∗ = (λmax

n+1W
−1 + I −An+1)−1An+1s.
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If we assert that V (s, σ2, n) = sᵀAns−σ2 +γn, we find that we must have the correspondence:

An = An+1

(
λmax
n+1W

−1 + I −An+1

)−1
An+1 +An+1,

γn = λmax
n+1 + γn+1.

The final piece is to check Equation (2.17). We use the observation thatAn has the same eigenspace
asW−1 (see the comment after the proof for more discussion). Then, let ν denote the eigenvalues
ofW−1. We have that the largest eigenvalue ofAn+1

(
λmax
n+1W

−1 + I −An+1

)−2
An+1 is

(
λmax
n+1

)2

because the mapping

λ 7→ λ2(
λmax
n+1ν + 1− λ

)2

is monotonic in λ ≤ λmax.
We can then calculate λmax

n+1 = λmax(W
1
2An+1W

1
2 ) = λmax(An+1)/νmax

The proof now follows by combining the recurrence for the largest eigenvalue from Section 2.4
with the bound on αn from the proof of Theorem 13:

sᵀAn+1

(
λmax
n+1W

−1 + I −An+1

)−2
An+1s ≤

(
λmax
n+1

νmax

)2

‖s‖2 ≤ α2
n+1n

2 ≤ n2

(n+ 1)2
< 1.

Understanding the Eigenvalues ofAn

The eigensystem of An is always the same as that of W . Assume that W−1 has eigenvalue,
eigenvector pairs (νi,vi), in decreasing order, and let λin+1 denote the eigenvalue ofAn+1 associated
with vi. Assuming that the order of λin does not change, we can calculate λmax

n = λ1
n

ν1
, set λiT = 1

T

are update λin as

λin =
(λin+1)2

νi
ν1
λ1
n+1 + 1− λin+1

+ λin+1,

which leaves the order of the λin unchanged. The largest eigenvalue λ1
n satisfies the recurrence

λ1
T = 1/T and λ1

n =
(
λ1
n+1

)2
+ λ1

n+1, which, remarkably, is the same recurrence for the αn
parameter in the Brier game, i.e. λmax

n = αn
νmax

.
This observation is the key to analyzing the minimax regret.

Theorem 18. The minimax regret of the T -round ball game satisfies

V = λmax(W−1)
T∑
n=1

αn ≤
1 + ln(T )

2
λmax(W−1).

Proof. Notice that V = V (0, 0, 0) = γ0 =
∑T

n=1 λ
max
n = λmax(W−1)

∑T
n=1 αn and use the bound

on
∑T

n=1 αn from the proof of Theorem 13.
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General Ellipsoid
We now generalize the results of the previous section from B(0,W ) to B(c,W ).

Theorem 19. Given a positive semi-definite matrixW and a vector c ∈ Rd, the T -round ball game
with loss ‖a−x‖2 and action space X =©W +c has the same regret as the game with X =©W ,
minimax strategy

a∗(s, σ2, n) = a∗ = c+ (λmaxW
−1 −An+1 − I)−1An+1

n∑
t=1

(xt − c)

and the maximin strategy plays two unit length vectors with

Pr

(
x = c+ a⊥ ±

√
1− aᵀ

⊥W
−1a⊥vmax

)
=

1

2
±

aᵀ
‖vmax

2
√

1− aᵀ
⊥W

−1a⊥
,

where λmax and vmax correspond to the largest eigenvalue ofW
1
2An+1W

1
2 and a⊥ and a‖ are the

components of a∗ perpendicular and parallel to vmax. That is, the minimax and maximin strategies
are just offset versions of the centered-ellipsoid case.

Proof. Let x′n, s′n, σ2′, and a′n denote the centered versions of xn, sn, σ2, and an, respectively. It
is straightforward to notice that the value of offline problem with xn is the same as with x′n with
solution a = a∗ + c, where a∗ is given by Equation (2.7). Tracing through the calculations of the
proof of Theorem 17, we find that the calculations with x′n are exactly the same as for the centered
case if we notice that ‖an − xn‖ = ‖a′n − x′n‖ with a′ = a− c. Thus, the optimal response is the
a′ given by Theorem 17, which equates to the a presented in the theorem statement.

2.5 The Convex Set Game
Building off the two special cases in the previous sections, we are now ready to derive the minimax
strategy and value-to-go for bounded convex sets.

The basic argument is as follows. We first show that any convex, compact set X has some
contained ball-like k-simplex contained with the same minimum enclosing ball. The regret of this
ball-like simplex must lower bound the regret on X , since it is a smaller set and the adversary’s
action is more limited. On the other hand, the regret on the minimum enclosing ball must upper
bound the regret on X . Since the regret on these two sets is actually equal, the regret on X must
also agree.

Remark 20. The bounded assumption is necessary. Otherwise, the adversary could play some fixed
point for the first T − 1 rounds, then play xT with arbitrary norm on the last round. Regardless of
aT , the adversary could pick xT with ‖xT‖ � ‖aT‖ such that the loss of the comparator is still
much smaller (since it is the average of all the xt).

Mechanically, the backwards induction is not feasible even from the last round with unbounded
X (as we are maximizing a convex function over an unbounded set).
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Finding a Supporting Ball-like Simplex
Let X have smallest enclosing ball with center c and radius ρ. To lower bound the regret of playing
on X , we need to find a subset with an easy to calculate regret. To this end, we define:

Definition 21. Let X be a convex, compact set. We say that a simplex4 of size k ≤ d+ 1 supports
X if4 is a ball-like simplex and has the same minimum enclosing ball as X .

This section shows that we can always find a simplex to support X . We shall see that the
ball-like simplex is formed from a subset of the intersection of the minimum ball and X .

Lemma 22. Let X be a closed and bounded set, possible in some Hilbert spaceH. The smallest
enclosing ball is unique.

Proof. First, we argue that the minimum enclosing radius is well defined and attained. Define the
set R = {ρ ∈ R : ∃x ∈ X s.t. X ⊆ B(x, ρ)}. This set is bounded above since X is bounded;
otherwise, X must be a singleton and the result is trivial. Hence, it must have a non-zero infimum,
which we denote ρ.

We will check uniqueness of the center by contradiction. Assume that both c1 and c2 are centers
of smallest enclosing balls, i.e. X ⊆ B(c1, ρ) ∩B(c2, ρ). First, note that c1 and c2 must both be in
the convex hull of X . Otherwise, the projection theorem for Hilbert space implies that the projection
of, say, c1 onto the convex hull must be closer to every point.

Defining c′ = c1+c2

2
, we easily derive

‖x− ci‖2 = ‖x− c′ + (c′ − ci)‖2 = ‖x− c′‖2 + ‖c′ − ci‖2 + 2〈x− c′, c′ − ci〉.

Now, assume that x is closer to c1 than c2. This implies

0 ≤ ‖x− c2‖2 − ‖x− c1‖2 = ‖c′ − c2‖2 − ‖c′ − c1‖2 + 2〈x− c′, c1 − c2〉,

and since ‖c′ − c2‖2 = ‖c′ − c1‖2, we have that 2〈x− c′, c1 − c2〉 ≥ 0.
Finally, we expand ‖x− c2‖2 to

‖x− c2‖2 =‖x− c1‖2 + ‖c1 − c2‖2 + 2〈x− c1, c1 − c2〉
≥‖x− c1‖2 + ‖c1 − c2‖2,

and hence B
(
c′,
√
ρ2 − ‖c1 − c2‖2

)
is a smaller enclosing ball, yielding a contradiction. This

implies that c is unique.

Next, we turn towards indentifying a subset of X that has a well understood regret. Any
supporting simplex seems to be a good candidate, but we must first prove their existence.

Lemma 23. Every convex, compact set X ∈ Rd has a supporting simplex of size 2 ≤ k ≤ d + 1.
That is, there exist points z1, . . . ,zk in general position that share the same minimum enclosing
ball as X .
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Proof. Let X̂ = ∂X ∩B(cX , ρX ), where ∂X is the set of boundary points of X . We claim that X̂
and X share the same minimum ball. Let us consider supx∈X‖x− c‖ as a function of c. At cX , we
have

sup
x∈X
‖x− c‖ = sup

x∈X̂
‖x− c‖ = ρ

and the minimum enclosing ball of X̂ must be the same as the minimum enclosing ball of X by
uniqueness.

Now let c denote this unique minimum. By Caratheodory’s theorem, there exist points
z1, . . . ,zk ∈ X̂ with corresponding matrix Z such that, for some p∗ ∈ 4k, we have c = Zp∗.
Without loss of generality, assume that p∗ has all non-zero entries (otherwise, the corresponding zi
could be removed without consequence). Let4Z be the convex hull (we will later show that4z is
a simplex). Recall that the minimum enclosing ball is the solution to the optimization

min
c∈Rd,ρ2

∀i:‖c−zi‖2≤ρ2

ρ2.

Using p as the dual variables, the Lagrangian is

L(c, ρ2,p) = max
p≥0

min
c∈Rd,ρ2

ρ2 +
∑
i

pi
(
‖c− zi‖2 − ρ2

)
.

As any finite convex hull is bounded, Slater’s condition holds, so we have strong duality and the
KKT conditions are necessary and sufficient for optimality. Hence c, ρ2 and p are optimal iff

‖c− zi‖2 ≤ ρ2 (primal feasible)
p ≥ 0 (dual feasible)

pi
(
‖c− zi‖2 − ρ2

)
= 0 (complementary slackness)

0 = 2
∑
i

pi(c− zi) (∂cL vanishes)

1 =
∑
i

pi. (∂ρ2L vanishes)

These conditions are easily checked for p∗. We constructed p∗ ∈ 4k such that ‖Zp∗ − zi‖2 = ρ2

for all i (which covers all but the forth condition) and Zp∗ = c (which covers the forth). Hence, by
uniqueness of the the smallest ball,4Z′ and X must share the same smallest enclosing ball.

It remains to check that4Z is ball-like. It is sufficient to show that v + ScZ ∈ 4k. This is an
easy consequence since cZ = Zp∗ and the mapping from4Z to4k is one-to-one.

Remark 24. Playing the minimax strategy for a general closed set requires knowing the center
of the minimum enclosing ball. This requirement is very benign under any assumption that the
center is at the origin (e.g. symmetry assumptions). However, even in more complicated sets, the
problem of finding the smallest enclosing ball is well understood. For example, there are linear
time algorithms for finding the smallest ball of a set of points [38] (in our earlier derivations, we
formulated this as a quadratic program).
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Main Result
We have finally gathered the tools necessary to prove our main result. Since the adversary’s plays
are constrained but the player’s are not (although the player will naturally play in the same space),
games with larger sets will have at least as much regret. Thus, for any X , we can upper bound its
regret,RX , by the regret of the game on the smallest enclosing ball,

RX ≤ ρ2
X

T∑
t=1

αt.

On the other hand, the above section has shown that there is a ball-like simplex that lower bounds
the regret on X by ρX

∑T
t=1 αt. Since these two bounds match, the regret on all sets in the middle

must be the same:

Theorem 25. Let X be a compact set with center and radius c and ρ, respectively. The squared
loss game has value

V = ρ2

T∑
n=1

αn, (2.18)

which is achieved by the minimax strategy

an = c+ αn

n−1∑
t=1

(xt − c) . (MM)

Proof. We will use V (S) to denote the value of the Euclidean game when X = S. Note that if
S1 ⊆ S2, then V (S1) ≤ V (S2) since the adversary has strictly more power (he can play from a
larger set).

Recall that4Z(X ) is the ball-like simplex sharing the minimum enclosing ball with X . Since
4Z(X ) is ball-like, Theorem 13 implies

ρ2
X

T∑
n=1

αn = V
(
4Z(X )

)
≤ V (X ).

On the other hand, the ball B(cX , ρX ) is a special case of the ellipsoid with W = 1
ρX
I . Since

X ⊆ B(cX , ρX ), Theorem 18 establishes

V (X ) ≤ V (B(cX , ρX )) = λmax(W−1)
T∑
n=1

αn = ρ2
X

T∑
n=1

αn.

Therefore, we have
T∑
n=1

αnρ
2
C ≥ V (C) ≥

T∑
n=1

αnρ
2
C,

which provides the other side of the inequality.
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Remark 26. Theorem 25 provides the value and minimax strategy for the convex set game, which
is a surprising result. We cannot calculate the value-to-go or the maximin strategy for any of the
sets between the supporting ball-like simplex and an enclosing ellipsoid; yet we can calculate the
minimax strategy and the value. Recall that the maximin strategy on the ball-like simplex plays
(Theorem 12) vertex z1, . . . ,zk with probability proportional to

pt = v + S ((1− (t− 1)αt) c+ αtSst)

and the maximin strategy on any ellipsoid B(W , c) plays (Theorem )

Pr

(
x = c+ a⊥ ±

√
1− aᵀ

⊥a⊥vmax

)
=

1

2
±

aᵀ
‖vmax

2
√

1− aᵀ
⊥a⊥

.

where λmax and vmax correspond to the largest eigenvalue ofW
1
2An+1W

1
2 and a⊥ and a‖ are the

components of a∗ perpendicular and parallel to vmax.

2.6 The Hilbert Space Game
In the previous sections, we analyzed the Euclidean game for compact sets and found that the regret
only depends on the radius of the smallest containing Euclidean ball. In particular, the regret has no
explicit dependence on dimension, which suggests a natural extension to Hilbert space.

Consider the squared loss game where the adversary is constrained to play xt ∈ X , where
X ⊂ H is some closed and bounded set of a Hilbert spaceH. In Realsd, the minimax strategy is

an = c+ αn

n−1∑
t=1

(xt − c), (MM)

where c is the center of the smallest enclosing ball. By Lemma 22, there is a unique smallest
enclosing ball even if X is inH, and therefore the above strategy is well defined isH. It is easy to
compute since it is a linear combination of past data and c.

The main result of this section is showing that the finite-dimensional results carry over to Hilbert
space: the regret of (MM) is ρ2

∑T
t=1 αt. We accomplish this by proving a direct upper bound and

then constructing a lower bound from a sequence of finite dimensional games (which we analyzed
in the previous section).

Lemma 27. For some fixed point d ∈ H, the strategy

an := d+ αn

n−1∑
t=1

(xt − d),

with the same αn recursion (αT = 1
T

and αn−1 = α2
n + αn), obtains regret

RT =
T∑
t=1

αt ‖xt − d‖2 ≤
(

sup
z∈X
‖z − d‖2

) T∑
t=1

αt.
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Proof. Recall that the regret is

RT :=
T∑
t=1

‖at − xt‖2 − inf
a∈H

T∑
t=1

‖a− xt‖2,

the optimal comparator is a = 1
T

∑T
t=1 xt, and hence

inf
a∈H

T∑
t=1

‖a− xt‖2 =
T∑
t=1

‖xt‖2 − 1

T

∥∥∥ T∑
t=1

xt

∥∥∥2

.

Expanding, we find that

RT =
T∑
t=1

(
‖at‖2 − 2〈at,xt〉

)
+

1

T

∥∥∥ T∑
t=1

xt

∥∥∥2

=
T∑
t=1

∥∥∥∥∥d+ αt

t−1∑
s=1

(xs − d)

∥∥∥∥∥
2

− 2

〈
d+ αt

t−1∑
s=1

(xs − d),xt

〉
+

1

T

∥∥∥∥∥
T∑
t=1

(xt − d)

∥∥∥∥∥
2

+ 2

〈
T∑
t=1

(xt − d),d

〉
+ T ‖d‖2

=
T∑
t=1

α2
t

∥∥∥∥∥
t−1∑
s=1

(xs − d)

∥∥∥∥∥
2

− 2αt

〈
xt − d,

t−1∑
s=1

(xs − d)

〉+
1

T

∥∥∥∥∥
T∑
t=1

(xt − d)

∥∥∥∥∥
2

=
T∑
t=1

(αt−1 − αt)

∥∥∥∥∥
t−1∑
s=1

(xs − d)

∥∥∥∥∥
2

− 2αt

〈
xt − d,

t−1∑
s=1

(xs − d)

〉+ αT

∥∥∥∥∥
T∑
t=1

(xt − d)

∥∥∥∥∥
2

=
T∑
t=1

αt

∥∥∥∥∥
t∑

s=1

(xs − d)

∥∥∥∥∥
2

−

∥∥∥∥∥
t−1∑
s=1

(xs − d)

∥∥∥∥∥
2

− 2

〈
xt − d,

t−1∑
s=1

(xs − d)

〉
=

T∑
t=1

αt ‖xt − d‖2

A straightforward bound on the regret is

T∑
t=1

αt ‖xt − d‖2 ≤
(

sup
z∈X
‖z − d‖2

) T∑
t=1

αt,

and optimizing the above guarantee over the choice of d reduces to finding the squared radius of
the smallest ball enclosing X , i.e.

ρ2 := inf
d∈H

sup
z∈X
‖z − d‖2.
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It follows that the minimax regret has the bound

V (H) ≤ ρ2

T∑
t=1

αt. (2.19)

Note that this holds even if the infd in the definition of ρ2 is not attained.

This result matches the upper bound for the finite dimension case. The infimum c is always
attained and is unique (Lemma 22), and we have seen that the maximin strategy always plays xt
such that ‖xt − c‖ = ρ; thus, the upper bound can be met with equality.

Before we prove the matching lower bound, we prove the following proposition, which may be
of independent interest.

Proposition 28. For any closed set Z ∈ H, there exists a sequence of finite sets Ci ⊆ Z such that

ρ(Ci+1)

ρ(Z)
≥ 1−

√
2

i
,

where ρ(Ci) is the radius of the smallest enclosing ball of the convex hull of Ci.

Proof. We construct Ci iteratively by adding a point to Ci−1. The key argument is showing that we
can always pick a point that increases the radius significantly towards ρ. We start with a singleton
C1 = {z1} with z1 ∈ Z arbitrary. This witnesses ρ(C1) = 0 with center c1 = z1. We construct
Ci+1 from Ci as follows. If ρ(conv(Ci)) = ρ(Z), we are done. Otherwise, by definition of ρ(Z),
there is a point x ∈ Z such that ‖c− x‖ ≥ ρ(Z). We then set Ci+1 = Ci ∪ {x}. The difficulty is
in showing that ρ(conv(Ci)) makes significant progress to ρ(Z).

For any finite set C, we can perform a min-max swap,

ρ2(C) = min
c

max
z∈C
‖z − c‖2 = max

q∈4C
min
c

∑
z∈C

q(z)‖z − c‖2,

and obtain a distribution q on Ci with mean c such that

ρ2(Ci) =
∑
z∈Ci

q(z)‖z − c‖2.

Now, consider the distribution qλ onCi+1 that puts probability (1−λ)q(z) on z ∈ Ci and probability
λ on x. The optimal center w.r.t. this distribution is its mean cλ = (1− λ)c+ λx = c+ λ(x− c),
and we can lower bound its radius by evaluating the dual problem at qλ and noting that ‖x− cλ‖2 =
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(1− λ)2‖x− c‖2 ≥ (1− λ)2ρ2(Z):

ρ2(Ci+1) ≥ (1− λ)
∑
z∈Ci

q(z)‖z − cλ‖2 + λ‖x− cλ‖2

= (1− λ)
∑
z∈Ci

q(z)
(
‖z − c‖2 − 2λ〈z − c,x− c〉+ λ2‖x− c‖2)+ λ‖x− cλ‖2

≥ (1− λ)ρ2(Ci) + (1− λ)λ2ρ2(Z) + λ‖x− cλ‖2

≥ (1− λ)(ρ2(Ci) + λ2ρ2(Z)) + λ(1− λ)2ρ2(Z)

= (1− λ)ρ2(Ci) + λ(1− λ)ρ2(Z).

This expressions is a lower bound for any λ ∈ [0, 1] and is maximized at

λ =
ρ2(Z)− ρ2(Ci)

2ρ2(Z)

where it takes value (ρ2(Z)+ρ2(Ci))
2

4ρ2(Z)
. Therefore,

ρ(Ci+1) ≥ ρ2(Z) + ρ2(Ci)

2ρ(Z)
,

and we may think of ρ2(Ci) as a sequence with a lower bound generated by the mapping x 7→ ρ2+x2

2ρ
,

which increases to its limit of ρ2(Z).
To obtain the convergence rate, define xi = ρ(Ci+1)/ρ(Z). We then have x1 = 0 and

xi+1 =
i∑

s=1

(xs+1 − xs) =
i∑

s=1

(
1 + x2

s

2
− xs

)
=

i∑
s=1

(1− xs)2

2
≥ i

2
(1− xi+1)2 ,

and solving the quadratic inequality yields

ρ(Ci+1)

ρ(Z)
≥ 1 +

1

i
−
√

2

i
+

1

i2
≥ 1−

√
2

i
.

Proposition 28 makes the lower bound for the Hilbert game immediate, which leads finally to
our main result.

Theorem 29. The value of the squared norm game over any closed, bounded, convex set X with
minimum enclosing ball of radius ρ is

V (X ) = ρ2

T∑
t=1

αT

and the minimax strategy (MM).
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Proof. Lemma 27 immediately gives an upper bound, V (X ) ≤ ρ
∑T

t=1 αT . The lower bound is
an application of Proposition 28. Define Xi = conv(Ci), where Ci is the sequence of finite sets
guaranteed by the proposition. Since Xi ⊆ X , we must have V (Xi) ≤ V (X ), and so, applying
Theorem 25 yields ρ(Xi)2

∑T
t=1 αt ≤ V (X ) for all i, and hence

ρ(X )2

T∑
t=1

αt ≤ V (X ) ≤ ρ(X )2

T∑
t=1

αt,

completing the proof.

2.7 Conclusion
This chapter calculated the value and minimax strategy of the squared loss game where the adversary
is constrained to play in some closed, bounded, convex set. We proved that if ρ and c are the radius
and center of the minimum enclosing ball, then the simple strategy

an := c+ αn

n−1∑
t=1

(xt − c). (MM)

is in fact minimax optimal. The player only needs to know c and T to play. Furthermore, the value
is

R ≤ ρ2

T∑
t=1

αt

regardless of dimension. We have also calculated the value-to-go for ball-like simplices and ellip-
soids and can play with subgame perfection (i.e. optimally respond to a non-optimal adversary). As
promised, these methods are computationally efficient as all the αt coefficients can be precomputed
in O(T ) time.
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Chapter 3

Minimax Online Linear Regression
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Given: Covariate budget matrix Σ � 0
For t = 1, 2, . . .

• Adversary reveals xt

• Learner predicts ŷt ∈ R

• Adversary reveals yt ∈ R

• Learner incurs loss (ŷt − yt)2.

Learner’s aim is to minimize regret,

R :=
∑
t

(ŷt − yt)2 −min
θ

∑
t

(xᵀ
t θ − yt)

2

Figure 3.1: online linear regression protocol

3.1 Introduction
Linear regression is a fundamental prediction problem in machine learning and statistics. In this
chapter, we study a sequential version: on round t, the adversary chooses and reveals a covariate
vector xt ∈ Rd, the learner makes a real-valued prediction ŷt, the adversary chooses and reveals the
true outcome yt, and finally the learner is penalized by the square loss, (ŷt − yt)2. The protocol is
described in Figure 3.1.

Since it is hopeless to guarantee a small loss (the adversary can always cause constant loss per
round), we instead aim to guarantee that we are able to predict almost as well as the best fixed linear
predictor in hindsight. Letting xts and yts denote xs, . . . ,xt and ys, . . . , yt, respectively, the regret
of a strategy that predicts ŷT1 is defined as

RT

(
ŷT1 ,x

T
1 , y

T
1

)
:=

T∑
t=1

(ŷt − yt)2 −min
θ∈Rd

T∑
t=1

(θᵀxt − yt)2.

A strategy s :
⋃
t≥1(Rd × R)t−1 × Rd → R, is a map from observations to predictions, and we

define RT

(
s,xT1 , y

T
1

)
:= RT

(
ŷT1 ,x

T
1 , y

T
1

)
where ŷt = s(x1, y1, . . . ,xt−1, yt−1,xt). This chapter

studies the minimax regret, which is the lowest possible regret of any strategy guaranteeable against
all sequences chooses by the adversary, including sequences that adapt to the player strategy. That
is, the minimax player strategy s∗ is such that

max
xT1 ,y

T
1

RT

(
s∗,xT1 , y

T
1

)
= min

s
max
xT1 ,y

T
1

RT

(
s,xT1 , y

T
1

)
,

where the min is over all strategies. Phrased another way, every other strategy can be made to suffer
at least as much regret as the minimax strategy.
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The minimax regret can also be written without explicitly defining a strategy as follows:

V := max
x1

min
ŷ1

max
y1

· · ·max
xT

min
ŷT

max
yT
RT . (3.1)

This form may be more intuitive as it suggests how to compute the worst case strategies: solve the
optimization problem, starting from time T and working backwards.

We have not specified the domains of any of the optimizations. Throughout, we will allow ŷt to
be unconstrained, but we will need to constrain the adversary to achieve any non-trivial guarantees.

In general, computing minimax strategies is computationally intractable: the optimal prediction
ŷt depends on the complete history (x1, y1, . . . ,xt−1, yt−1,xt), and the dependence might be a rather
arbitrary function of this enormous space of histories. Hence, we will concentrate on constraint
families that permit efficient solutions with a per-round complexity independent of T . Precisely,
we search for settings were there are horizon-free minimax strategies. We require a strategy to
minimize the worst case regret over covariate and label sequences, but we also insist that, for any
time horizon T , the strategy incurs no more regret than any other strategy, even a strategy that
knows T .

Definition 30. A strategy s∗ is horizon-independent minimax optimal for some class A of covariate
sequences and some class Y(xT1 ) of label sequences, possibly depending on xT1 ∈ A, if

sup
T

(
sup

xT1 ∈A, yT1 ∈Y(xT1 )

RT

(
s∗,xT1 , y

T
1

)
−min

s
sup

xT1 ∈A, yT1 ∈Y(xT1 )

RT

(
s,xT1 , y

T
1

))
= 0.

Outline and Our Contributions Our main result is that given a constraint Σ on the scale of
the covariates, there is an efficiently computable minimax optimal strategy that can compete with
every covariate and label sequence in some class (described in Section 3.7). The restrictions on the
adversary essentially ensure that the adversary respects the scale constraint Σ, so that the player is
not led to under-regularize or over-regularize.

We proceed by analyzing a sequence of restrictions on the adversary of decreasing severity. We
show that, under these conditions, the minimax strategy is always a simple, linear predictor. After t
rounds, define the summary statistics

st :=
t∑

q=1

yqxq , σ2
t :=

t∑
q=1

y2
q , and Πt :=

t∑
q=1

xqx
ᵀ
q . (3.2)

The minimax strategy (we call it mms) predicts

ŷt+1 = xᵀ
t+1Pt+1st, (mms)

where the Pt matrices have an intricate definition we will describe shortly. We first note that taking
Pt = Π†t or Pt = (Πt+λI)† corresponds to follow the leader or ridge regression, respectively. The
minimax algorithm is more sophisticated. For Σ0 � 0, a limit on the size of the covariates, define

P0 := Σ†0, Pt := Pt−1 −
at
b2
t

Pt−1xtx
ᵀ
tPt−1 (3.3)
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where

b2
t := xᵀ

tPt−1xt, at :=

√
4b2
t + 1− 1√

4b2
t + 1 + 1

. (3.4)

Hence, (mms) has per-round complexity O(d2). The rest of the chapter explains how we arrived at
(3.3) and presents several families of constraints on the data, {xt, yt} where (mms) is the (efficiently
computable) minimax strategy.

Intuitively, the minimax strategy begins by regularizing against all possible future covariate
sizes defined by Σ0. Upon seeing xt, it lessens the regularization in the direction of xtx

ᵀ
t since

there is less budget left in that direction.
We will always impose the following Adversarial Covariate Conditions. For Pt defined by (3.3),

we denote

A(Σ) :=
{
xT1 : for P0 = Σ†, P †t � Πt

}
(3.5)

A(Σ) :=
{
xT1 : for P0 = Σ†, P †t � Πt and P †T = ΠT

}
. (3.6)

The conditions essentially require that the scale of all the covariates xT1 at the conclusion of the game
are compatible with Σ, the scale promised to the player at the start. We provide more interpretations
of this condition and show that, without this condition, the adversary can cause arbitrarily high
regret.

We begin our analysis in Section 3.3 with the easier case of fixed-design regression where all
the covariates x1, . . . ,xT are chosen by the adversary and revealed at the start of the game. This
allows us to explicitly solve for the value-to-go starting from the back of the game, provided that
the labels are bounded and the covariates satisfy an additional alignment condition. The backwards
induction results in (mms) with Pt matrices defined by

PT = Π†T , Pt = Pt+1 + Pt+1xt+1x
ᵀ
t+1Pt+1 (3.7)

which corresponds to the forwardsPt upon setting Σ0 to be the unique matrix that leads toPT = ΠT .
The Pt matrices are shown to have the alternative form

P−1
t =

t∑
q=1

xqx
ᵀ
q +

T∑
q=t+1

xᵀ
qPqxq

1 + xᵀ
qPqxq

xqx
ᵀ
q , (3.8)

and we immediately see that xT1 ∈ A(Σ). The Pt matrices also have the form which intuitively
is ridge regression with some future-instance-weighted regularization. We can view each term
xᵀ
tPtxt as round t’s contribution to the regret, and hence the Pt can be interpreted as an inverse

second moment matrix when the outer products xqxᵀ
q for unseen data are weighted according to

their contribution to the minimax regret. We emphasize that Pt is a product of the minimax analysis;
its elegant form showcases the beauty of the minimax approach.

Section 3.4 demonstrates that we can also be minimax in the fixed design case if we fix some
R ≥ 0 and require

T∑
t=1

y2
tx

ᵀ
tPtxt ≤ R.
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There are no bounded label assumptions, and since the strategy is (mms), it clearly does not need
knowledge of R and it is automatically adaptive in this sense. This suggests that the above quantity
is a natural measure of the complexity of the constellation of labels and covariates for regression.

In order to study more general adversarial-design games, Section 3.5 shows that the forwards
and backwards recursions are equivalent so long as xT1 ∈ A(Σ). This immediately lifts the two
previous fixed-design results to the adversarial-design setting. That is, we show that (mms) is
minimax optimal for all sequences xT1 ∈ A(Σ) and label constraints studied in Section 3.3 and 3.4.

However, our goal is to be minimax against sequences in A(Σ). To this end, we examine a
hybrid game in Section 3.6 where the covariate sequence is fixed but the adversary is allowed to
adaptively choose when to stop the game. Then, Section 3.7 relaxes the condition that Pt = Π†T
with equality and show that, as long as the covariates satisfy a continuation condition, (mms)
remains optimal. We proceed by analyzing a variant of the game where the adversary is allowed to
stop at any point, and we derive conditions that ensure that the adversary causes maximum regret by
not doing so.

Section 3.8 continues the intuition of (mms) as a modified ridge regression by casting the
minimax algorithm as Follow-the-Regularized-Leader with a specific, time-dependent regularizer.
Finally, Section 3.9 derives an O(log(T )) regret bound for the worst case covariates.

Related Work
Linear regression is one of the classical problems in statistics and has been studied for over a century.
The online version of linear regression is much more recent. [22] considered online linear regression
with binary labels and `1-constrained parameters w, and gave an O(d log(dT )) regret bound for
an `2-regularized follow-the-leader strategy. [11] considered `2-constrained parameters, and gave
O(
√
T ) regret bounds for a gradient descent algorithm with `2 regularization. [28] showed that an

Exponentiated Gradient algorithm, based on relative entropy regularization, gives O(
√
T ) regret.

All of these results depend on the scale of the instances and labels. [53] applied the Aggregating
Algorithm [52] to continuously many experts to arrive at an algorithm for online linear regression.
This algorithm uses the inverse second moment matrix of past and current covariates, whereas the
minimax strategy that we present uses the entire covariate sequence (see (3.11)). Vovk’s algorithm
was interpreted and re-analyzed in various ways [21, 4]: it is minimax optimal for the last trial, and
it satisfies a O(log T ) scale-dependent regret bound. The scale dependence is perhaps not surprising
when future instances are not available. The regret bound we obtain for the minimax strategy is
O(log T ) with no dependence on the scale of the covariates. Refined work on “last-step minimax”
was done by [39].

We take the approach of [50] and [30], who studied minimax optimal strategies for prediction
games with squared loss: rather than proposing an algorithm that explicitly involves regularization
and proving a regret bound, we identify the optimal minimax strategy for square loss; the ideal
regularization emerges.
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3.2 Fixed Design Linear Regression
In the fixed design setting, the game length T and covariates xT1 are chosen and revealed before
the game begins. The goal of this section will be to calculate the value-to-go and the minimax and
maximin strategies of this game. Recall that the value is

V := min
ŷ1

max
y1

· · ·min
ŷT

max
yT

T∑
t=1

(ŷt − yt)2 −min
θ∈Rd

T∑
t=1

(θᵀxt − yt)2

where we constrain yT1 ∈ Y for some Y (we will provide several amenable examples later) but do
not explicitly constrain ŷt1. This formula encodes the requirement that ŷt is a function of yt−1

1 and
ŷt−1

1 and yt is a function of yt1 and ŷt−1
1 . We emphasize that in the fixed design setting, every yt and

ŷt can be a function of xT1 .
The standard technique to solve for the value is known as backwards induction. Define the value

to go function recursively with base case

V
(
sT , σ

2
T , T

)
:= −min

θ∈Rd

T∑
t=1

(θᵀxt − yt)2

and induction

V
(
st, σ

2
t , t
)

:= min
ŷt+1

max
yt+1

(
(ŷt+1 − yt+1)2 + V

(
st + yt+1xt+1, σ

2
t + y2

t+1, t+ 1
))

The value-to-go function at time n, V (yn1 ,x
T
1 ), is the regret if yn1 and ŷn1 have been played and

both players play optimally from round n+ 1 onward with the loss of the fixed actions of the past∑n
t=1(ŷn − yn)2 subtracted off (they do not affect the strategies). These equations are naturally

solved working backwards from n = T , hence the name.
Generally, calculating the value-to-go is computationally intractable: we must evaluate V (yn1 ,x

T
1 )

for every possible sequence of plays, which suggests, and often results in, complexity exponential in
T . The contribution of this work can alternatively be understood as specifying when this exponential
blow-up does not occur. In fact, the value-to-go can be written as a succinct function of sn and σn
only.

The Offline Problem
Lemma 31. Fix data (x1, y1), . . . , (xT , yT ). The loss of the best linear predictor in hindsight is

min
w∈Rd

T∑
t=1

(wᵀxt − yt)2 =
T∑
t=1

y2
t −

(
T∑
t=1

ytxt

)ᵀ( T∑
t=1

xtx
ᵀ
t

)†( T∑
t=1

ytxt

)
= σ2

T − s
ᵀ
TΠ†TsT

where † denotes pseudo-inverse (any generalized inverse will do). It is minimized by

w = Π†TsT .
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3.3 Minimax Analysis for Bounded Labels
In this section we perform a minimax analysis of fixed-design linear regression with bounded
labels yt and give an exact expression for the minimax regret. As discussed in the introduction, the
following problem-weighted inverse covariate matrices are central to the analysis and algorithm.

Recall the backwards recursion for the Pt matrices:

PT =

(
T∑
t=1

xtx
ᵀ
t

)†
, Pt = Pt+1 + Pt+1xt+1x

ᵀ
t+1Pt+1.

In the proof, it becomes clear that the Pt arise exactly from solving the minimax problem.

Theorem 32. Fix a constant B > 0 and a sequence x1, . . . ,xT ∈ Rd. Consider the following
T -round game. On round t ∈ {1, . . . , T}, the player first chooses ŷt ∈ R, then the adversary
chooses yt ∈ [−B,B] and the player incurs loss (ŷt − yt)2. The value of this game is

min
ŷ1

max
y1

· · ·min
ŷT

max
yT

T∑
t=1

(ŷt − yt)2 − min
w∈Rd

T∑
t=1

(wᵀxt − yt)2.

Assume that the following covariate condition holds:

t−1∑
q=1

|xᵀ
qPtxt| ≤ 1 for all 1 ≤ t ≤ T . (3.9)

Then the value of the game is B2
∑T

t=1 x
ᵀ
tPtxt, the optimal strategy is (mms): ŷt+1 = xᵀ

t+1Pt+1st,
where st =

∑t
q=1 yqxq, and the maximin probability distribution assigns

Pr(yt+1 = ±B) = 1/2± xᵀ
t+1Pt+1st/(2B).

The proof shows that the minimax strategy optimizes the value-to-go, and therefore optimally
exploits suboptimal play by the adversary.

Proof. The proof proceeds by explicitly performing the backwards induction and showing

V (st, σ
2
t , t) = sᵀtPtst − σ2

t + γt,

where the γt coefficients are recursively defined as

γT = 0, γt = γt+1 +B2xᵀ
t+1Pt+1xt+1.

This implies that the value of the game is V (0, 0, 0) = γ0 = B2
∑T

t=1 x
ᵀ
tPtxt, as desired. Lemma 31

establishes the base case V (sT , σ
2
T , T ) = sᵀTPTsT − σ2

T . Now, assuming the induction hypothesis

V (st+1, σ
2
t+1, t+ 1) = sᵀt+1Pt+1st+1 − σ2

t+1 + γt+1,
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we have

V
(
st, σ

2
t , t
)

= min
ŷt+1

max
yt+1

(ŷt+1 − yt+1)2 + V
(
st + yt+1xt+1, σ

2
t + y2

t+1, t+ 1
)

= min
ŷt+1

max
yt+1

(ŷt+1 − yt+1)2 + (st + yt+1xt+1)ᵀPt+1 (st + yt+1xt+1)

−
(
σ2
t + y2

t+1

)
+ γt+1

= min
ŷt+1

max
yt+1

(
ŷ2
t+1 − 2ŷt+1yt+1 + 2yt+1x

ᵀ
t+1Pt+1st + y2

t+1x
ᵀ
t+1Pt+1xt+1

+ sᵀtPt+1st − σ2
t + γt+1

= min
ŷt+1

ŷ2
t+1 +

(
max
yt+1

2
(
xᵀ
t+1Pt+1st − ŷt+1

)
yt+1 + xᵀ

t+1Pt+1xt+1y
2
t+1

)
+ sᵀtPt+1st − σ2

t + γt+1.

The inner maximization is a quadratic in yt+1 ∈ [−B,B] with a non-negative second derivative, so
it is maximized by an extreme yt+1 ∈ {−B,B}, giving

V
(
st, σ

2
t , t
)

= min
ŷt+1

(
ŷ2
t+1 + 2B

∣∣xᵀ
t+1Pt+1st − ŷt+1

∣∣)
+ xᵀ

t+1Pt+1xt+1B
2 + sᵀtPt+1st − σ2

t + γt+1.

The minimization over ŷt+1 is of a convex function, which is minimized when 0 is in the subgradient,
so that

ŷt+1 =


−B if xᵀ

t+1Pt+1st < −B,
B if xᵀ

t+1Pt+1st > B,
xᵀ
t+1Pt+1st otherwise.

(3.10)

Under the assumption (3.9) of the theorem, only the last case occurs:

∣∣xᵀ
t+1Pt+1st

∣∣ =

∣∣∣∣∣
t∑

q=1

xᵀ
t+1Pt+1xqyq

∣∣∣∣∣ ≤
t∑

q=1

∣∣xᵀ
t+1Pt+1xq

∣∣ |yq| ≤ B,

so we have ŷt+1 = xᵀ
t+1Pt+1st. Plugging this solution in, we find

V
(
st, σ

2
t , t
)

= sᵀtPt+1xt+1x
ᵀ
t+1Pt+1st +B2xᵀ

t+1Pt+1xt+1 + sᵀtPt+1st − σ2
t + γt+1

= sᵀt
(
Pt+1xt+1x

ᵀ
t+1Pt+1 + Pt+1

)
st − σ2

t + γt+1 +B2xᵀ
t+1Pt+1xt+1,

verifying the recursion for Pt and γt. From the perspective of the adversary, we need to solve

max
p∈[0,1]

min
ŷt+1

ŷ2
t+1 + 2

(
xᵀ
t+1Pt+1st − ŷt+1

)
(2p− 1)B + xᵀ

t+1Pt+1xt+1B
2

= max
p∈[0,1]

B(2p− 1)2 + 2
(
xᵀ
t+1Pt+1st −B(2p− 1)

)
(2p− 1)B + xᵀ

t+1Pt+1xt+1B
2.

because the minimizer of ŷt+1 is the mean B(2p − 1). Setting the p-derivative to zero results in
worst-case probability 1/2± xᵀ

t+1Pt+1st/(2B) on ±B.
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As discussed in the introduction, the Pt have an alternative form:

Lemma 33. For the Pt matrices defined in (3.7), we have

P−1
t =

t∑
q=1

xqx
ᵀ
q +

T∑
q=t+1

xᵀ
qPqxq

1 + xᵀ
qPqxq

xqx
ᵀ
q . (3.11)

Proof. The proof is by induction. We start with

P−1
T =

T∑
t=1

xtx
ᵀ
t .

Suppose the equation in the lemma is true for 1 < t ≤ T . Then by the Sherman-Morrison formula,

P−1
t−1 = (Pt + Ptxtx

ᵀ
tPt)

−1

= P−1
t −

xtx
ᵀ
t

1 + xᵀ
tPtxt

=
t∑

q=1

xqx
ᵀ
q +

T∑
q=t+1

xᵀ
qPqxq

1 + xᵀ
qPqxq

xqx
ᵀ
q −

xtx
ᵀ
t

1 + xᵀ
tPtxt

=
t−1∑
q=1

xqx
ᵀ
q +

T∑
q=t

xᵀ
qPqxq

1 + xᵀ
qPqxq

xqx
ᵀ
q .

Condition (3.9) can be easily tested; it does not involve the labels yt. It can be viewed as
forbidding outlier covariates: an xt that is large relative to the others will cause the condition to fail,
leading to clipping in (3.10). The condition appears to be restrictive: it is satisfied if the covariates
are approximately orthonormal, which essentially corresponds to playing d interleaved independent
one-dimensional regression problems, but we do not know of other problem instances that satisfy
the condition.

The condition arises because of the uniform constraint on the labels. There are, however, many
other constraint sets for which the same strategy is still minimax optimal, but the corresponding
conditions are milder. In particular, it is clear that the proof extends immediately to the case in
which the adversary is constrained to choose label sequences from

YB := {(y1, . . . , yT ) : |yt| ≤ Bt} , (3.12)

provided that the B = (B1, . . . , BT ) are compatible with the data by satisfying

Bt ≥
t−1∑
q=1

|xᵀ
tPtxq|Bq. (3.13)
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In this case, the minimax regret is
∑T

t=1 B
2
tx

ᵀ
tPtxt and the maximin probability distribution for

yt+1 puts weight 1/2± xᵀ
t+1Pt+1st/(2Bt+1) on ±Bt+1. Condition (3.9) is a special case of these

compatibility constraints (3.13) corresponding to B1 = · · · = BT .
We end this section by proving one useful (and maybe surprising) fact.

Lemma 34. Let xT1 be any covariate sequence and P1, . . . ,PT the associated precision matrices
given by the backwards recursion (3.7). For any invertible matrixW ∈ Rd×d, let x′t = Wxt. Then
the precision matrices of x′1, . . . ,x

′
T are exactly P ′t = W †ᵀPtW

† and xᵀ
tPtxt = x′ᵀt P

′
tx
′
t.

Proof. First, we can easily check that P ′T =
(∑T

t=1 x
′
tx
′
t
ᵀ
)†

= (W ᵀ)†
(∑T

t=1 xtx
ᵀ
t

)†
W †. Now,

assume that the hypothesis holds for t. Then

P ′t−1 =P ′t + P̃tx
′
tx
′
t
ᵀ
P ′t

=W †ᵀPtW
† +W †ᵀ (PtW †WxtxtW

ᵀW †ᵀPt
)
W †

=W †ᵀPt−1W
†.

3.4 Ellipsoidal Constraints
In addition to the box constraints, we are also able to provide the minimax strategy for another
family of constraints. In this section we investigate another way of budgeting that is suggested by
the problem. Namely, for some R ≥ 0, we consider the set

YR :=

{
(y1, . . . , yT ) ∈ R :

T∑
t=1

y2
tx

ᵀ
tPtxt = R

}
(3.14)

of label sequences with a certain weighted 2-norm, where the weights are related to the hardness of
the covariates. We analyze the minimax fixed design linear regression problem (3.1) on YR, and
show that the minimax strategy is again the simple linear strategy (mms). Recall that this strategy
predicts

ŷt+1 = xᵀ
t+1Pt+1st.

This is surprising for two reasons. First, this predictor does not incorporate knowledge of R.
Second, there is no easy relation between R and the maximum label magnitude Bmax := maxt|yt|.
As the minimax regret bound of Section 3.9 deteriorates with B2, one might conjecture that the
performance also degenerates. However, to the contrary, we show that the regret of the predictor
(mms) now equals

RT =
T∑
t=1

y2
txtPtxt.
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This means that this algorithm has two very special properties. First, it is a strong equalizer in the
sense that it suffers the same regret on all 2T sign-flips of the labels. And second, it is adaptive to
the complexity R of the labels.

The regret this algorithm incurs is better than the minimax regret with B = Bmax under
Condition (3.9). Still, it inherits the B2

maxd log T bound. In addition, minimax optimality for the
family of constraints YR is stronger than the corresponding result for the family of box constraints
YB defined in (3.12), in the sense that, given some budget R and a sequence of Bts that satisfy
the compatibility inequalities (3.13), we can rescale the Bts so that YB is contained in YR, but the
minimax regret is the same in both cases.

We proceed in two steps. We characterize the worst-case regret of the simple linear predictor
(mms) on the set YR. Then we argue that the worst-case regret of any predictor is at least as large.

Lemma 35. Let Pt be as defined in (3.7). For all y1, . . . , yT , strategy (mms) has regret

RT =
T∑
t=1

(ŷt − yt)2 − min
w∈Rd

T∑
t=1

(wᵀxt − yt)2 =
T∑
t=1

y2
tx

ᵀ
tPtxt. (3.15)

Proof. The worst-case (over labels) slack in (3.15) can be recursively calculated by

F
(
sT , σ

2
T , T

)
:= − min

w∈Rd

T∑
t=1

(wᵀxt − yt)2 −
T∑
t=1

y2
tx

ᵀ
tPtxt,

F
(
st, σ

2
t , t
)

:= max
yt+1

(
(ŷt+1 − yt+1)2 + F

(
st + yt+1xt+1, σ

2
t + y2

t+1, t+ 1
))
.

Note that the max over y1, . . . , yT of the difference between left and right hand side of (3.15) is
equal to F (0, 0, 0). We now show by induction that

F (st, σ
2
t , t) = sᵀtPtst − σ2

t −
t∑

q=1

y2
qx

ᵀ
qPqxq.

Lemma 31 verifies the base case. To check the inductive step, we calculate

F
(
st, σ

2
t , t
)

= max
yt+1

(
(ŷt+1 − yt+1)2 + F

(
st + yt+1xt+1, σ

2
t + y2

t+1, t+ 1
))

= ŷ2
t+1 + max

yt+1

2
(
xᵀ
t+1Pt+1st − ŷt+1

)
yt+1 + xᵀ

t+1Pt+1xt+1y
2
t+1

+ sᵀtPt+1st − σ2
t −

t+1∑
q=1

y2
qx

ᵀ
qPqxq

= ŷ2
t+1 + sᵀtPt+1st − σ2

t −
t∑

q=1

y2
qxqPqxq + max

yt+1

2
(
xᵀ
t+1Pt+1st − ŷt+1

)
yt+1,
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where the max term on the right is zero by the choice of ŷt+1. Finally, we obtain

F
(
st, σ

2
t , t
)

= sᵀt
(
Pt+1xt+1x

ᵀ
t+1Pt+1 + Pt+1

)
st − σ2

t −
t∑

q=1

y2
qxqPqxq

as desired. The theorem statement is immediate upon noting that F (0, 0, 0) = 0.

Using this result, we can show that our predictor is minimax optimal.

Theorem 36. Let x1, . . . ,xT be fixed and let Pt be the corresponding prediction matrices. Then
for every R, strategy (mms) is minimax optimal on the set of labelings YR as defined in (3.14).

Proof. First, note that strategy (mms) suffers regret R on every yt sequence in YR. Now fix any
predictor X and consider the label sequence 0, . . . , 0,±

√
R

xᵀ
TPTxT

, where the sign of the label in the
last round is chosen to oppose the sign of the predictor’s prediction. Our predictor (mms) predicts
the first T − 1 perfectly and is at least as good on the T th round. So on every round, predictor X
incurs at least the loss of (mms), and hence its worst-case regret is at least R. Thus, (mms), which
incurs regret exactly R, is minimax optimal.

For some fixed sequence of label budgets B1, B2, . . . > 0, define

1. Label constraints on yt: L(Bt) := {yT1 : |yt| ≤ Bt}

2. Box constraints on xt: B(Bt) :=
{
xt : Bt ≥

∑t−1
s=1 |x

ᵀ
tPtxs|Bs for 2 ≤ t

}
.

3. Implicit box constraints: B(xT1 , b) := B
(
BT

1 (xT1 , b)
)
, where BT

1 (xT1 , b) is the component-
wise minimum of the set of compatible box constraints, C(xt1, b)), defined by

C(xT1 , b) :=

{
BT

1 : B1 = b, Bt ≥
t−1∑
s=1

|xᵀ
tPtxs|Bs for 2 ≤ t ≤ T

}
. (3.16)

4. Ellipsoidal constraints: E(xT1 , R) :=
{
yT1 :

∑T
t=1 y

2
tx

ᵀ
tPtxt ≤ R

}
.

To summarize the fixed-design results of the previous two sections, we have the following
corollary to Theorem 32.

Corollary 37. For each xT1 , the corresponding strategy (mms) is minimax optimal with respect to
B(BT

1 ), B(xT1 , b), and E(xT1 , R), for any Bt > 0, b > 0, and R > 0, in the following sense.

(1) If BT
1 satisfies BT

1 ∈ C(xT1 , B1), then

sup
yT1 ∈B(BT1 )

RT (s∗,xT1 , y
T
1 ) = min

s
sup

yT1 ∈B(BT1 )

RT (s,xT1 , y
T
1 ) =

T∑
t=1

B2
tx

ᵀ
tPtxt,

(3) sup
yT1 ∈E(xT1 ,R)

RT (s∗,xT1 , y
T
1 ) = min

s
sup

yT1 ∈E(xT1 ,R)

RT (s,xT1 , y
T
1 ) = R.
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3.5 The Forward Algorithm
The previous section described the fixed-design minimax strategy and established sufficient con-
ditions for its optimality. Unfortunately, Pt is recursively defined as a function of the entire xT1
sequence, so, at first, it seems difficult to remove the fixed-design requirement.

The key insight is that if xT1 ∈ A(Σ), then the forward recursion is exactly equal to the
backwards recursion found in the value-to-go of the last section.

If we provide the player with an initial precision matrix P0, then the natural algorithm that
emerges is to play (mms), i.e., ŷt := xᵀ

tPtst−1, except with the Pt matrices defined by the forwards
recursion. The prediction ŷt is a function of xt−1

1 and yt−1
1 only and can be used in online covariate

settings. The algorithm needs O(d2) memory and at each round the computational complexity is
O(d2).

Our first result is that this algorithm is actually minimax optimal if we constrain the adversary
to play in A(Σ). Another interpretation is that Σ encodes all the necessary scale information the
learner needs to optimally respond. In particular, the learner does not need to know T .

Theorem 38. For all positive semidefinite Σ, B1, B2, . . . > 0, b > 0, and R > 0, the minimax
strategy (mms) using the forward recursion (3.3) is horizon-independent minimax optimal, i.e.

sup
T

sup
xT1 ∈A

(
sup

yT1 ∈Y(xT1 )

RT (s∗,xT1 , y
T
1 )−min

s
sup

yT1 ∈Y(xT1 )

RT (s,xT1 , y
T
1 )

)
= 0.

with respect to the following (A,Y(xt1)):

(A(Σ), E(xT1 , R)), (A(BT
1 ) ∩ A(Σ),B(BT

1 )), (A(Σ),B(xT1 , b)).

That is, s∗ performs as well as the best strategy that sees the covariate sequence in advance.

The proof is intuitively simple: if the adversary plays inA(Σ), then the forward recursion begins
at the matrix that make the Pt generated by the forwards and backwards recurrences identical;
hence, the strategy exactly corresponds to the minimax strategy.

Lemma 39. For any fixed covariate sequence x1, . . . ,xT satisfying

Σ =
T∑
s=1

xᵀ
sPsxs

1 + xᵀ
sPsxs

xsx
ᵀ
s ,

the forward matrices Pt defined by (3.3) are identical to the Pt matrices defined by the backwards
recursion (3.7).

Proof. Let Pt be defined in the forwards recursion and P ′t denote the backwards recursion in
Equation (3.7). The lemma assumes the base case PT = P ′T . Now, given the induction hypothesis
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P ′t = Pt, we show

P ′t−1 = P ′t + P ′txtx
ᵀ
tP
′
t

= Pt−1 −
at
b2
t

Pt−1xtx
ᵀ
tPt−1 + (Pt−1 −

at
b2
t

Pt−1xtx
ᵀ
tPt−1)xtx

ᵀ
t (Pt−1 −

at
b2
t

Pt−1xtx
ᵀ
tPt−1)

= Pt−1 −
at
b2
t

Pt−1xtx
ᵀ
tPt−1 + Pt−1xtx

ᵀ
tPt−1 −

at
b2
t

Pt−1xtx
ᵀ
tPt−1xtx

ᵀ
tPt−1

− at
b2
t

Pt−1xtx
ᵀ
tPt−1xtx

ᵀ
tPt−1 +

at
b2
t

Pt−1xtx
ᵀ
tPt−1xtx

ᵀ
tPt−1xtx

ᵀ
t

at
b2
t

Pt−1xtx
ᵀ
tPt−1

= Pt−1 −
at
b2
t

Pt−1xtx
ᵀ
tPt−1 + Pt−1xtx

ᵀ
tPt−1 − 2atPt−1xtx

ᵀ
tPt−1

+ a2
tPt−1xtx

ᵀ
tPt−1

= Pt−1 +

(
−at
b2
t

+ 1− 2at + a2
t

)
Pt−1xtx

ᵀ
tPt−1

= Pt−1,

which is true since
(
−at
b2t

+ 1− 2at + a2
t

)
= (−(1− at)2 + (1− at)2) = 0.

We can now complete the proof.

Proof. of Theorem 38 First, assume that xT1 ∈ A(Σ). Theorem 32 along with Lemma 39 gives
that

sup
yT1 ∈B(BT1 )

RT (s∗,xT1 , y
T
1 )−min

s
sup

yT1 ∈B(BT1 )

RT (s,xT1 , y
T
1 ) = 0.

Since this holds for all xT1 , we actually get the stronger result

sup
T

sup
xT1 ∈A(BT1 )∩A(Σ)

(
sup

yT1 ∈B(BT1 )

RT (s∗,xT1 , y
T
1 )−min

s
sup

yT1 ∈B(BT1 )

RT (s,xT1 , y
T
1 )

)
= 0.

Identical reasoning extends Theorem 36 to the adversarial covariate context.

Before ending this section, we prove the alternative interpretation of A(Σ) described in the
introduction. The Adversarial Covariate Conditions can alternatively be written using the backwards
recursion,

A(Σ) =
{
xT1 : for P0, . . . ,PT defined by (3.7), P †0 � Σ

}
,

A(Σ) =
{
xT1 : for P0, . . . ,PT defined by (3.7), P †0 = Σ

}
, (3.17)

The equivalence of the two definitions of A(Σ) is a simple consequence of Lemma 39. The
equivalence of A(Σ) requires the following lemma.
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Lemma 40. For any t ≥ 0, x1, . . . ,xt, and symmetric matrix P � 0, the following two conditions
are equivalent:

1. P † � Πt

2. For any T ≥ t + k, where k = rank
(
P † −Πt

)
, there is a continuation of the covariate

sequence, xt+1, . . . ,xT , such that setting Pt = P and defining Pt+1, . . . ,PT by the forward
recursion (3.3) gives P †T = ΠT .

Proof. To see that Condition 1 implies Condition 2, we will consider the forward algorithm
recursion, starting fromPt = P , and show that we can find suitable covariate vectorsxt+1, . . . ,xt+k,
so that

rank

(
P †t+i −

t+i∑
s=1

xsx
ᵀ
s

)
= k − i,

which implies the result for T = t+ k. It suffices to show that, at each step, we can reduce this rank
by one. Consider the spectral decomposition

P † −Πt =
m∑
i=1

λiviv
ᵀ
i ,

for orthonormal v1, . . . , vk and non-negative λ1 ≥ · · · ≥ λk > 0. Choosing xt+1 = βvk, there is a
β ≥ 0 such that

P †t+1 −Πt−1 =
k−1∑
i=1

λiviv
ᵀ
i ,

which implies the result. Indeed, we have

P †t+1 −Πt+1 = P †t +
at+1β

2

(1− at+1)b2
t+1

vkv
ᵀ
k −Πt − β2vt+1v

ᵀ
t+1

=
k−1∑
i=1

λiviv
ᵀ
i +

(
λk − β2 +

at+1β
2

(1− at+1)b2
t+1

)
vkv

ᵀ
k.

Recall

b2
t+1 = xᵀ

t+1Ptxt+1

= β2vᵀk

(
Πt +

k∑
i=1

λiviv
ᵀ
i

)†
vk

= β2c2,
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where we have defined c2 > 0. We need to choose β ≥ 0 so that

λk = β2

(
1− at+1

(1− at+1)b2
t+1

)
= β2

(
1−

√
4b2
t + 1− 1

2b2
t

)

= β2

(
1−

√
4β2c2 + 1− 1

2β2c2

)

⇔ c2λk = β2c2 −
√

4β2c2 + 1− 1

2
.

Since c2λk ≥ 0 and the function on the right hand side maps to [0,∞) for β ≥ 0, there is a suitable
choice of β. To see that this implies the result for any T ≥ t+ k, notice that by choosing a smaller
value of β, the rank is not diminished.

To see the other direction, notice that Condition 2 and Lemma 39 together imply that there is a
T and a completion of the sequence, x1, . . . ,xT , so that plugging the sequence into the backwards
recurrence (3.7) gives Pt = P . But then Equation (3.11) shows that

P †t = Πt +
T∑

s=t+1

xᵀ
sPsxs

1 + xᵀ
sPsxs

xsx
ᵀ
s � Πt,

which is Condition 1.

3.6 Exhausting the Budget
The last section presented the minimax strategy when xT1 ∈ A(Σ). This section examines a different
method for relaxing the fixed-design assumption: fixing a covariate sequence xT1 but allowing the
adversary to control the length of the game. We perform a minimax analysis and establish conditions
that ensure that the adversary maximizes regret by using up the entire covariance budget Σ.

We encapsulate the adversary’s decision by the variable et, which is equal to one if the adversary
decides to play round t and zero otherwise. For some fixed T and x1, . . . ,xT , the game protocol is:
at round t, the player predicts ŷt, the adversary chooses et and if et = 1, plays the response yt and
causes the learner (ŷt − yt)2 loss. We call this the fixed design game with early stopping.

We first define the additional loss suffered by the comparator from playing t rounds instead of
t− 1 rounds as

∆∗t := min
θ∈Rd

t∑
s=1

(θᵀxs − ys)2 − min
θ′∈Rd

t−1∑
s=1

(θ′ᵀxs − ys)2 (3.18)

so that ∆∗t ≥ 0 and L∗T =
∑t

t=1 ∆∗t . The regret of the game with early stopping can be written as

RT =
T∑
t=1

(
t∏

s=1

es

)(
(yt − ŷt)2 −∆∗t

)
.
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If the adversary chooses yt = θ∗t−1
ᵀxt where θ∗t−1 is the ordinary least squares solution on data

through time t − 1, then δ∗t = 0. Since the loss of the player is always non-negative, the regret
increases. However, this yt might not be feasible, and so this section identifies necessary and
sufficient conditions where the adversary maximizing regret by playing all rounds. This intuition
will be used in the adversarial covariates section to argue when the adversary will use the entire
covariance budget.

We proceed by computing the minimax strategy for this augmented game and characterize when
(mms) is, once again, the minimax strategy. To this end, we define the instantaneous value-to-go
Wt(st, σ

2
t ,Πt) by WT (sT ) = 0 and

Wt−1(st−1, σ
2
t−1,Πt−1) = max

et∈{0,1}
et

(
min
ŷt

max
yt

(ŷt − yt)2 −∆∗t +Wt(st−1 + ytxt)

)
.

It is easy to check thatW0 is the minimax regret for this game and that it equals the regret of the
fixed design game when the adversary plays every round.

Calculating ∆∗t

To proceed, we need a closed for solution for ∆∗t . To this end, and usingR(M ) to denote the row
space of matrixM , we can prove:

Lemma 41. The marginal loss for the comparator of playing another round with covariate x =
x‖ + x⊥, where x‖ ∈ R(Πt−1) and x⊥ is its orthogonal complement, is

∆∗t = y2
t

(
1− xᵀ

tΠ
†
txt

)
− 2yts

ᵀ
t−1Π

†
txt +

(
sᵀt−1Π

†
txt

)2 xᵀ
tΠ
†
t−1xt

xᵀ
tΠ
†
txt

.

The rest of this section proves this result but can be skipped without impacting the rest of the
presentation.

While the update of Pt is given by the forward recursion, the rank one update of Πt is more
complicated; Sherman-Morrison cannot be used directly. Instead, we show the following lemma.

Lemma 42. Using x⊥ := x − Πt−1Π
†
t−1x to denote the projection of xt onto the orthogonal

complement of Πt−1, we have

Π†t =


Π†t−1 −

x⊥x
ᵀΠ†t−1 + Π†t−1xx

ᵀ
⊥

xᵀ
⊥x⊥

+
x⊥

(
1 + xᵀΠ†t−1x

)
xᵀ
⊥

(xᵀ
⊥x⊥)2

if x /∈ R(Πt−1), and

Π†t−1 +
Πt−1xtx

ᵀ
tΠt−1

1− xᵀ
tΠt−1x

ᵀ
t

otherwise .

Proof. We will writeX as the matrix with columns x1, . . . ,xt−1. Thus, we have

Πt = Πt−1 + xxᵀ =
[
X x

] [Xᵀ

xᵀ

]
,
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and sinceX has linearly independent columns, (without loss of generality; we shall see why later),[
X x

]
has linearly independent columns since x is not in the column space ofX . Therefore, we

have [
X x

]†
=

([
Xᵀ

xᵀ

] [
X x

])−1 [
Xᵀ

xᵀ

]
and

Π†t = (Πt−1 + xxᵀ)† =
[
X x

]([Xᵀ

xᵀ

] [
X x

])−2 [
Xᵀ

xᵀ

]
.

Now, recall that the matrix that projects onto the column space ofX is P := XX† and define
x‖ := Px and x⊥ = x − x‖. We can calculate the middle matrix by using the block matrix
inversion formula:([

Xᵀ

xᵀ

] [
X x

])−1

=

(XᵀX)−1 + X†xxᵀXᵀ†

xᵀx−xᵀPx
−X†x

xᵀx−xᵀPx

−xᵀXᵀ†

xᵀx−xᵀPx
1

xᵀx−xᵀPx


=

1

xᵀx− xᵀ
‖x‖

(XᵀX)−1
(
xᵀx− xᵀ

‖x‖

)
+X†xxᵀXᵀ† −X†x

−xᵀXᵀ† 1

 ,
and so ([

Xᵀ

xᵀ

] [
X x

])−1 [
Xᵀ

xᵀ

]
=

1

xᵀx− xᵀ
‖x‖

[
X†
(
xᵀx− xᵀ

‖x‖

)
−X†xxᵀ

⊥

xᵀ
⊥

]
Using the Pythagorean theorem (i.e. that xᵀx = xᵀ

‖x‖ + xᵀ
⊥x⊥) and that Π†t−1 = Xᵀ†X†, we have

Π†t =
1

(xᵀ
⊥x⊥)2

[
X†

ᵀ
xᵀ
⊥x⊥ − x⊥xᵀXᵀ† x⊥

] [X†xᵀ
⊥x⊥ −X†xx

ᵀ
⊥

xᵀ
⊥

]
=

1

(xᵀ
⊥x⊥)2

(
Π†t−1 (xᵀ

⊥x⊥)2 − xᵀ
⊥x⊥

(
x⊥x

ᵀΠ†t−1 + Π†t−1xx
ᵀ
⊥

))
+
x⊥x

ᵀΠ†t−1xx
ᵀ
⊥

(xᵀ
⊥x⊥)2 +

x⊥x
ᵀ
⊥

(xᵀ
⊥x⊥)2

= Π†t−1 −
x⊥x

ᵀΠ†t−1 + Π†t−1xx
ᵀ
⊥

xᵀ
⊥x⊥

+
x⊥

(
1 + xᵀΠ†t−1x

)
xᵀ
⊥

(xᵀ
⊥x⊥)2

.

Thus, we can evaluate

xᵀΠ†tx = xᵀΠ†t−1x−
xᵀx⊥x

ᵀΠ†t−1x+ xᵀΠ†t−1xx
ᵀ
⊥x

xᵀ
⊥x⊥

+
xᵀx⊥

(
1 + xᵀΠ†t−1x

)
xᵀ
⊥x

(xᵀ
⊥x⊥)2

= xᵀΠ†t−1x− 2xᵀΠ†t−1x+ 1 + xᵀΠ†t−1x

= 1,
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and

xᵀΠ†ts = xᵀΠ†t−1s− xᵀΠ†t−1s−
xᵀΠ†t−1xx

ᵀ
⊥s

xᵀ
⊥x⊥

+

(
1 + xᵀΠ†t−1x

)
xᵀ
⊥s

xᵀ
⊥x⊥

= −
xᵀΠ†t−1xx

ᵀ
⊥s

xᵀ
⊥x⊥

+

(
1 + xᵀΠ†t−1x

)
xᵀ
⊥s

xᵀ
⊥x⊥

= 0.

Finally, notice that

sᵀΠ†ts = sᵀΠ†t−1s

since xᵀ
⊥s = 0.

The second case is a consequence of the Sherman-Morrison formula. Since Πt, Πt−1, and
xt are all in the same eigenspace, we can without loss of generality assume full rank and apply
Sherman-Morrison. A precise formulation can also be found in e.g. [24].

With this form of Π†t , we can easily check the following equalities.

Corollary 43. For a PSD symmetric matrix Π, s ∈ R(Π) and x 6∈ R(Π), we have

xᵀ (Π + xxᵀ)† x = 1,

sᵀ (Π + xxᵀ)† x = 0,

sᵀ (Π + xxᵀ)† s = sᵀΠ†s.

Proof of Lemma 41. We have

∆∗t = σ2
t − σ2

t−1 − (st−1 + ytxt)
ᵀ Π†t (st−1 + ytxt) + sᵀt−1Π

†
t−1st−1.

First, assume that x⊥ = 0. Then xt is in the column space of Πt and Πt−1, and an application of
the generalized Sherman-Morrison formula (see e.g. [24]) yields

Π†t−1 = (Πt − xtxᵀ
t )
† = Π†t +

Π†txtx
ᵀ
tΠ
†
t

1− xᵀ
tΠ
†
txt

, (3.19)

and so

∆∗t = σ2
t − σ2

t−1 − (st−1 + ytxt)
ᵀ Π†t (st−1 + ytxt) + sᵀt−1Π†t−1st−1

= y2
t − 2ytst−1Π†txt − y2

tx
ᵀ
tΠ
†
txt + sᵀt−1

(
Π†t−1 − Π†t

)
st−1.

Finally, notice that (3.19) implies

xᵀ
tΠ
†
t−1xt =

xᵀ
tΠ
†
txt

1− xᵀ
tΠ
†
txt
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when x⊥ = 0, yielding the claim in that case.
Now, assume that x⊥ 6= 0. Then

(st−1 + ytxt)
ᵀΠ†t(st−1 + ytxt)

= sᵀt−1Π
†
tst−1 + 2yts

ᵀ
t−1Π

†
txt + y2

tx
ᵀ
tΠ
†
txt

= sᵀt−1Π
†
t−1st−1 + y2

t ,

where we applied the three claims of Lemma 43 to obtain the second equality. Therefore, ∆∗t = 0,
verifying the formula.

Calculating the Value
We can now explicitly calculate the value-to-go for this game.

Theorem 44. Consider the fixed-design game with early stopping, with covariates xT1 . Define the
Pt by the backwards recursion (3.7) and define γt =

∑T
s=t+1B

2
sx

ᵀ
sPsxs. Suppose that, for all t,

γt ≥ sᵀt
(
Π†t − Pt

)
st. (3.20)

Then the instantaneous value-to-go is equal to

Wt(st) = sᵀt

(
Pt −Π†t

)
st + γt, (3.21)

the adversary causes more regret by continuing the game, and the optimal player strategy is (mms).

Proof. The proof is by induction: assume thatWt(st) = sᵀt

(
Pt −Π†t

)
st + γt. The base case is

easily established with γT = 0 and PT = Π†T yielding the base case ofWT = 0. Now, we assume
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Wt is correct and want to verify the formula forWt−1. Hence, we need to calculate

Wt−1(st−1)

= max
et∈{0,1}

et

(
min
ŷt

max
yt

(ŷt − yt)2 −∆∗t +Wt(st−1 + ytxt)

)
=

(
min
ŷ

max
y

(ŷ − y)2 − y2
(

1− xᵀ
tΠ
†
txt

)
+ 2ysᵀt−1Π

†
txt −

(
sᵀt−1Π

†
txt

)2 xᵀ
tΠ
†
t−1xt

xᵀ
tΠ
†
txt

+ (st−1 + yxt)
ᵀ
(
Pt −Π†t

)
(st−1 + yxt) + γt

)
+

=

(
min
ŷ

max
y

ŷ2 + 2y
(
sᵀt−1Π

†
txt + sᵀt−1

(
Pt + Π†t

)
xt − ŷ

)
+ y2xᵀ

tΠ
†
txt

−
(
sᵀt−1Π

†
txt

)2 xᵀ
tΠ
†
t−1xt

xᵀ
tΠ
†
txt

+ sᵀt−1

(
Pt −Π†t

)
st−1 + y2xᵀ

t

(
Pt −Π†t

)
xt + γt

)
+

=

(
min
ŷ

max
y
ŷ2 + 2y

(
sᵀt−1Ptxt − ŷ

)
+ y2xᵀ

tPtxt

−
(
sᵀt−1Π

†
txt

)2 xᵀ
tΠ
†
t−1xt

xᵀ
tΠ
†
txt

+ sᵀt−1(Pt −Π†t)st−1 + γt

)
+

.

The objective is convex in y and therefore the optimum will be on the boundary at ±Bt. Thus,

Wt−1(st−1) =

(
min
ŷ
ŷ2 + 2Bt

∣∣sᵀt−1Ptxt − ŷ
∣∣−B2

tx
ᵀ
tAtxt

−
(
sᵀt−1Π

†
txt

)2 xᵀ
tΠ
†
t−1xt

xᵀ
tΠ
†
txt

+ sᵀt−1(Pt −Π†t)st−1 + γt

)
+

.

This objective is convex in ŷ as well, and hence we can minimize it by setting the subgradient to
zero. Under the condition that

∣∣sᵀt−1Btxt
∣∣ ≤ Bt, the subgradient at ŷ = sᵀt−1Ptxt contains zero.

Therefore,

Wt−1(st−1)

=

((
sᵀt−1Ptxt

)2
+B2

tx
ᵀ
tPtxt −

(
sᵀt−1Π

†
txt

)2 xᵀ
tΠ
†
t−1xt

xᵀ
tΠ
†
txt

+ sᵀt−1

(
Pt −Π†t

)
st−1 + γt

)
+

.

If xt ∈ R(Πt−1), then we can use a generalized Sherman-Morrison lemma (see Lemma 42 for

details) to calculate xᵀ
tΠ
†
t−1xt =

xᵀ
tΠ
†
txt

1−xᵀ
tΠ
†
txt

, and therefore

(
sᵀt−1Π

†
txt

)2 xᵀ
tΠ
†
t−1xt

xᵀ
tΠ
†
txt

+ sᵀt−1Π
†
tst−1 = sᵀt−1

(
Π†txtx

ᵀ
tΠ
†
t

1

1− xᵀ
tΠ
†
txt

+ Π†t

)
st−1

= st−1Π
†
t−1st−1.
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If instead xt 6∈ R(Πt−1), then a standard fact for the ordinary least squares solution is sᵀt−1Π
†
txt = 0

and sᵀt−1Π
†
tst−1 = sᵀt−1Π

†
t−1st−1 (a proof of this fact is provided in Lemma 43). In either case, we

have

Wt−1(st−1) =
(
sᵀt−1 (Pt + Ptxtx

ᵀ
tPt) st−1 +B2

tx
ᵀ
tPtxt − s

ᵀ
t−1Π

†
t−1st−1 + γt

)
+

=
(
sᵀt−1

(
Pt−1 −Π†t−1

)
st−1 + γt−1

)
+
,

verifying the Pt and γt recurrence. If γt−1 ≥ sᵀt−1

(
Π†t−1 − Pt−1

)
st−1 holds for all t, then the

instantaneous value-to-go is always positive, an optimal adversary will always continue, and the
data sequence seen by the player is xT1 ∈ A(P0). In this case, the minimax strategy is confirmed to
be (mms) by Theorem 38.

3.7 Minimax Game
From the previous section, we have the intuition that if the adversary plays actions that keep the
instantaneous value-to-go positive, then the game will not terminate early. This section builds on
this intuition to define a set of constraints where (mms) is the minimax response. For convenience,
we restate constraints A and B and define a third constraint related to the continuation conditions
(3.20). For some fixed Bt sequence, define the bounded label constraint on the yts, L(Bt) := {yt :
|yt| ≤ Bt}, and the following constraints on the xt:

A (Σ0) :=
{
xt : P †t � Πt

}
, B (Σ0) :=

{
xt : Bt ≥

t−1∑
s=1

|xᵀ
tPtxs|

}
, and

C (Σ0, γ0) :=

{
xt : γt−1 ≥

∥∥∥∥(Bt−1X
ᵀ
t−1

(
Π†t−1 − Pt−1

)
Xt−1Bt−1

) 1
2

∥∥∥∥
∞,2
∀t = 1, . . . , T

}
,

where γt = γt−1 −B2
tx

ᵀ
tPtxt and Pt are derived from the forward recursion (3.3),Xt is the matrix

with columns xt1, andBt := diag(B1, . . . , Bt). The form of the C constraint is explained by writing

sᵀt−1

(
Π†t−1 − Pt−1

)
st−1 ≤ max

ξ:‖ξ‖∞≤1
ξBt−1X

ᵀ
t−1

(
Π†t−1 − Pt−1

)
Xt−1Bt−1ξ

=

∥∥∥∥(Bt−1X
ᵀ
t−1

(
Π†t−1 − Pt−1

)
Xt−1Bt−1

) 1
2

∥∥∥∥
∞,2

.

The C constraint ensures that sᵀt−1

(
Π†t−1 − Pt−1

)
st−1 ≤ γt−1 for all possible yt1 ∈ L(Bt).

We use the shorthandABC(Σ0, γ0) := A(Σ0)∪B(Σ0)∪C(Σ0, γ0), and also defineABC(Σ0, γ0)
to be any sequence xT1 ∈ A(Σ0) and γT = 0, i.e., the Σ0 and γ0 budgets are exactly met. Note that
ABC(Σ0, γ0) ⊂ ABC(Σ0, γ0). As we shall show, the covariate sequence xT1 cannot be optimal for
the adversary unless xT1 ∈ ABC(Σ0, γ0).
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Given: Σ � 0, γ0 > 0.
For t = 1, 2, . . . ,

• Adversary may choose to end the game

• Adversary reveals xt ∈ ABC(Σ0, γ0)

• Learner predicts ŷt ∈ R

• Adversary reveals yt such that |yt| ≤ Bt

• Learner incurs loss (ŷt − yt)2

• The game ends if no xt+1 exists such that xt+1
1 ∈ ABC(Σ0, γ0)

Figure 3.2: Adversarial Covariates Protocol

The adversarial covariates protocol is presented in Figure 3.7 and allows the adversary to choose
covariates (subject to ABC) and to choose when to end the game. The first step in the analysis is to
check that the constraint set is non-trivial.

Lemma 45. Consider the game defined by Σ0 � 0, γ0 ≥ ‖Bt‖∞ and a Bt sequence. If there exists
some T such that

T∑
t=1

B2
t

t+ log(T + 1)
≥ γ0, (3.22)

then there exists a covariate sequence xT1 ∈ ABC(Σ0, γ0). In particular, any Bt that are bounded
below satisfy this condition.

Proof. It actually suffices to take the simplest of sequences, xt = e1. For any fixed T , PT = 1
T
e1e

ᵀ
1,

where all the Pt for the remainder of the proof are with respect to the covariate sequence of T
copies of e1. In this case, the Pt matrices are all zero except for the first element which evolves
like Pt−1 = Pt + P 2

t . This is the same recursion studied by [50], who proved a lower bound of
(t+ log(T + 1)− log(t+ 1))−1. Thus, we can bound

T∑
t=1

B2
tx

ᵀ
tPtxt ≥

T∑
t=1

B2
t

t+ log(T + 1)− log(t+ 1)
≥

T∑
t=1

B2
t

t+ log(T + 1)
,

and thus condition (3.22) implies that there is an xT1 sequence that produces an upper bound on γ0.
Next, notice that if we choose any index t′ with Bt′ ≤ ‖Bt‖∞, then the covariate sequence

xt = e1{t = t′}, where {·} is the indicator function, produces
∑T

t=1B
2
tx

ᵀ
tPtxt = B2

t′ ≤ γ0. Now,∑T
t=1 B

2
tx

ᵀ
tPtxt ≤ γ0 is a continuous function of xT1 , and hence, by the intermediate value theorem,

there is a xT1 with
∑T

t=1B
2
tx

ᵀ
tPtxt = γ0.

Next, we check the B constraint. First, observe that it suffices to check that we can construct
some xT1 using the construction of the previous paragraph. On [0, 1/2], x/(1 +x) ≥ x/2 and the Pt
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sequence is decreasing, so
∑T

s=t+1 x
2
s
x2
sPs

1+x2
sPs
≥ 1

2
x
∑T

s=t+1 x
4
sPs, and combined with (3.11), we

have

t∑
s=1

|xᵀ
tPsxs| ≤ |xt|

∑t
s=1|xs|

Πt +
∑T

s=t+1 x
2
s
x2
sPs

1+x2
sPs

≤ |xt|
∑t

s=1|xs|
Πt +

∑T
s=t+1 x

2
s
x2
sPs
2

.

The arguments from the previous section show that
∑T

s=t+1 x
2
s
x2
sPs
2

can be made to grow without
bound (in particular, by taking xs = e1), and so we can always find a long enough covariate
sequence such that the B constraint is met.

Now, fix any xT1 sequence that achieves the B and C constraints. By Lemma 34, we can,
for any invertible matrix A, rescale the covariate sequence to form x′t = Axt to obtain the
corresponding P ′t = W−1PtW

−1. Since we have xᵀ
sPtxt = x′ᵀs P

′
tx
′
t for any s and t, the B and C

constraints hold automatically. Therefore, we are free to chooseA such that P ′0 = Σ0, and therefore
xT1
′ ∈ ABC(Σ0, γ0).

We now present the main result of this work:

Theorem 46. Consider the two player game defined in Figure 3.7. The player strategy (mms) is
minimax optimal against an adversary in the sense that

sup
T

(
sup

(xT1 ,y
T
1 )∈ABC(Σ0,γ0)

RT (s∗,xT1 , y
T
1 )−min

s
sup

(xT1 ,y
T
1 )∈ABC(Σ0,γ0)

RT (s,xT1 , y
T
1 )

)
= 0.

and it attains the minimax regret, γ0.

Proof. We will actually show something stronger: the optimal adversary strategy for the game in
Figure 3.7 plays an xT1 sequence in ABC and causes exactly γ0 regret against the optimal player
strategy (mms).

Now, assume that the game stops before round T + 1 and x1, . . . ,xT have been played. There
are four possible scenarios depending on whether the Σ0 or γ0 budgets exhausted.

If neither budget is exhausted, we apply Lemma 40 to conclude that there exists a covariate
sequence xT+k

T+1 that uses up the Σ0 budget. The C(Σ0, γ0) contraint guarantees that the adversary
can cause more regret by playing these rounds. Hence, an adversary that exhausts neither budget is
suboptimal.

Since Pt − Π†t � 0, we cannot exhaust the γ0 before the Σ0 budget and still satisfy the C
constraint.

If the Σ0 budget is exhausted, then xT1 ∈ A and hence the minimax regret is
∑T

t=1B
2
tx

ᵀ
tPtxt

by Theorem 38. Since γT = γ0 −
∑T

t=1B
2
tx

ᵀ
tPtxt, the adversary strategy is suboptimal if γT > 0

since it is possible to cause γ0 regret.
These arguments cover all four cases, we can conclude that the adversary can cause at most γ0

regret and that any strategy that causes γ0 regret must exhaust the Σ0 and γ0 budgets.
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The Necessity of a γ0 Bound
Requiring a γ0 bound may seem artificial at first, especially since it translates directly into a bound
on the regret. However, it is a reasonable constraint to impose, for several reasons. First, the regret
can be infinite if only condition A is imposed; Section 3.9 argues that the regret may grow like
log(T ) (while the results are upper bounds, lower bounds of the kind used in Lemma 45 supply
lower bounds of the same order for the covariate sequence of constant magnitude). Additionally,
the restriction of the adversary can be mild, as the γ0 budget can be increased and the game history
will remain consistent with it. Finally, we emphasize that the player does not need to know γ0 to
play (mms).

3.8 Follow the Regularized Leader
The minimax strategy (mms) can be interpreted as playing follow-the-regularized-leader with a
certain data-dependent regularizer. In particular, if we define

R0 := P−1
0 , andRt := Rt−1 +

1

1 + xᵀ
tPtxt

xtx
ᵀ
t − xt−1x

ᵀ
t−1, (3.23)

then we can prove the following correspondence.

Lemma 47. The minimax strategy (mms) is exactly follow-the-regularized-leader, predicting
ŷt = θᵀxt at round t, where θ is the solution to

min
θ

t−1∑
s=1

(θᵀxs − ys)2 + θᵀRtθ,

and the regularization matricesRt are given by (3.23).

Proof. Since θ minimizes a convex unconstrained objective, we set the derivative to zero and obtain
the solution θ∗ =

(∑t−1
s=1 xsx

ᵀ
s +Rt

)−1
st−1. Thus, we need to verify that

∑t−1
s=1 xsx

ᵀ
s+Rt = P−1

t

for all t. This also guarantees thatRt � 0.
This is true for t = 0 by definition of R0. Now, proceeding by induction, assume that the

statement holds for t− 1. Then,

t−1∑
s=1

xsx
ᵀ
s +Rt =

t−1∑
s=1

xsx
ᵀ
s +Rt−1 +

xtx
ᵀ
t

1 + xᵀ
tPtxt

− xt−1x
ᵀ
t−1

=
t−2∑
s=1

xsx
ᵀ
s +Rt−1 +

xtx
ᵀ
t

1 + xᵀ
tPtxt

= P−1
t−1 +

xtx
ᵀ
t

1 + xᵀ
tPtxt

= P−1
t ,

where the last equality is Sherman-Morrison.
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We can also write theRt recursion without referring to Pt.

Lemma 48. The definition ofRt in Equation (3.23) is equivalent to definingR0 = P−1
0 and

Rt = Rt−1 +
2xtx

ᵀ
t√

1 + 4xᵀ
t

(
Rt−1 +

∑t−2
s=1 xsx

ᵀ
s

)−1
xt + 1

− xt−1x
ᵀ
t−1. (3.24)

Proof. First, we can calculate

4b2
t =

(
2

1− at
− 1

)2

− 1 =

(
1 + at
1− at

)2

− 1 =
4at

(1− at)2
, (3.25)

which implies that b2
t = at

(1−at)2 . Using the forward recursion (3.7) of Pt, we have

xᵀ
tPtxt = b2

t − atb2
t =

at
1− at

,

and
1

1 + xᵀ
tPtxt

= 1− at =
2√

1 + 4b2
t + 1

,

which, when combined with b2
t = xᵀ

t

(
Rt−1 +

∑t−2
s=1 xsx

ᵀ
s

)−1
xt, yields the desired statement.

Last step minimax The last step minimax algorithm [4] plays ŷt = Π†tst−1, so we can also view
the minimax algorithm as last step minimax with a regularization of

Rt =
T∑

s=t+1

xᵀ
sPsxs

1 + xᵀ
sPsxs

xsx
ᵀ
s .

3.9 Regret Bound
The main result of this chapter is to show that if the adversary plays in ABC(Σ0, γ0), then (mms) is
the minimax optimal strategy and the adversary can cause at most γ0 regret by fixing any xT1 with
ABC(Σ0, γ0) and playing the maximin strategy for the fixed-design game.

The regret of the games analyzed in Sections 3.5 and 3.6 need a different bound. Specifically,

Theorem 49. For any fixed T and BT
1 , we can bound the minimax regret of the box-constrained

game by

sup
xT1 ∈A(Σ0)

sup
yT1 ∈L(BT1 )

RT (s∗,xT1 , y
T
1 ) ≤ d‖BT

1 ‖∞
‖Σ‖2

(
1 + 2 ln

(
1 +

||Σ||22
2‖BT

1 ‖2
∞
||BT

1 ||22
))

.
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The minimax analysis shows that the minimax regret is equal to supxT1 ∈A(Σ)

∑
tB

2
tx

ᵀ
tPtxt,

which we bound by defining the worst case regret function,

ϕt(Σ, B
t
1) = max

x1,...,xt

{
t∑

s=1

B2
sx

ᵀ
sPs(x1, . . . ,xs)xs : Σ � Pt(x1, . . . ,xt)

t∑
s=1

xsx
ᵀ
s

}
.

We drop the explicit dependence of Pt on xT1 and reparameterize by r2
t = Ptxtx

ᵀ
t :

ϕt(Σ, B
t
1) = max

r1,...,rt

{
t∑

s=1

B2
s tr(r2

t ) : Σ � Pt
t∑

s=1

P−1
s r2

s

}
.

Noting that Pt−1P
−1
t = I + Ptxtx

ᵀ
t = I + r2

t , we can derive an induction for ϕt:

ϕt(Σ, B
t
1) = max

x1,...,xt
B2
tx

ᵀ
tPtxt +

{
t−1∑
s=1

B2
sx

ᵀ
sPsxs : Σ− Ptxtxᵀ

t � Pt
t−1∑
s=1

xsx
ᵀ
s

}

= max
x1,...,xt

B2
tx

ᵀ
tPtxt +

{
t−1∑
s=1

B2
sx

ᵀ
sPsxs : (Σ− Ptxtxᵀ

t )Pt−1P
−1
t � Pt−1

t−1∑
s=1

xsx
ᵀ
s

}

= max
rt,...,rt

B2
t tr(r2

t ) +

{
t−1∑
s=1

B2
s tr(r2

s) : (Σ− r2
t )(I + r2

s) � Pt−1

t−1∑
s=1

xsx
ᵀ
s

}
= max

rt
B2
t tr(r2

t ) + ϕt−1

(
(Σ− r2

t )(I + r2
s), B

t−1
1

)
.

As a first step, we will bound ϕt in one dimension where ϕt(Σ, Bt
1) = maxrt B

2
t r

2
t +ϕt−1((Σ−

r2
t )(1 + r2

t ), B
t−1
1 ). We have omitted the bolding to emphasize that we are in the scalar case.

Lemma 50. For every T and every BT
1 with ||BT

1 ||∞ ≤ Σ,

ϕT (Σ, BT
1 ) ≤ min

{
− ln(1− Σ), 1 + 2 log

(
1 +
||BT

1 ||22
2

)}
.

Proof. In fact, we will prove the slightly stronger statement: for any positive function f(T ) with
f(0) ≥ 0 and B2

T+1e
−f(T )/2 + f(T ) ≤ f(T + 1), we have

ϕT (Σ, BT
1 ) ≤ min{− ln(1− Σ), f(T )}.

We prove this by induction on T . The base case is trivial. Assume that the induction hypothesis
holds for T . Then,

ϕT+1(Σ, BT
1 ) = max

r2
T+1

B2
T+1r

2
T+1 + ϕT

(
(Σ− r2

t )(1 + r2
t ), B

T
1

)
= max

0≤x≤Σ
B2
T+1

√
(1 + Σ)2 − 4x− (1− Σ)

2
+ ϕT (x,BT−1

1 )

≤ max
0≤x≤Σ

B2
T+1

√
(1 + Σ)2 − 4x− (1− Σ)

2
+ min{− ln(1− x), f(T )}.
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Define x̂ = 1− exp(−f(T )), which is where the minimum switches from the first to the second
argument. To find the maximizing x, we will calculate when the derivative is positive:

−B2
T+1√

(1 + Σ)2 − 4x
+

1

1− x
≥ 0

⇔(1 + Σ)2 − 4x−B4
T+1(1− x)2 ≥ 0

⇔(1 + Σ)2 −B4
T+1(1 + x)2 + 4(B4

T+1 − 1)x ≥ 0, (3.26)

which is true for all x ≤ Σ and B4 ≤ Σ. In fact, B4
T+1 may be bigger than Σ without violating the

constraint, but in particular Bt ≤ Σ is enough.
The sign of the derivative changes at x̂. If Σ ≤ x̂, then the maximum is at Σ and we have

ϕT+1(Σ, BT
1 ) ≤B2

T+1

√
(1 + Σ)2 − 4Σ− (1− Σ)

2
+ ϕT (Σ)

=ϕT (Σ).

Otherwise, if x̂ ≤ Σ, the maximum is at x̂ and we have

ϕT+1(Σ, BT
1 ) ≤B2

T+1

√
(1 + Σ)2 − 4x̂− (1− Σ)

2
+ f(T )

≤B2
T+1

√
1− x̂+ f(T )

=B2
T+1 exp(−f(T )/2) + f(T )

where the second line was from using Σ ≤ 1. This allows any f(T ) that satisfies

B2
T+1e

−f(T )/2 + f(T ) ≤ f(T + 1).

To check that f(T ) = 1 + 2 log(1 + 1/2
∑

tB
2
t ) indeed works, we calculate:

f(T + 1)− f(T ) = − 2 log

(
2 +

∑T
t=1B

2
t

2 +
∑T+1

t=1 B
2
t

)

= − 2 log

(
1−

B2
T+1

2 +
∑T+1

t=1 B
2
t

)

≥
B2
T+1

1 + 1
2

∑T+1
t=1 B

2
t

≥ e−1/2 B2
T+1

1 + 1
2

∑T+1
t=1 B

2
t

= B2
T+1e

−f(T )/2.
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The general multidimensional case can be bounded by first relaying the assumption that r2
t =

Ptxtx
ᵀ
t to allow general matricesRt (relaxing the rank one assumption), which only increases the

value of the maximization. We can then apply the one-dimensional bound in every direction:

Lemma 51. For any Σ ≥ 0, ψt(ΣI, Bt
1) =

∑d
i=1 ϕt(Σ, B

t
1), where ϕt(Σ) is the one-dimensional

regret bound.

Proof. The base case is trivial since both sides are zero. For the inductive hypothesis, assume that
ψt−1(ΣI, Bt−1

1 ) =
∑d

i=1 ϕt−1(Σ, Bt−1
1 ). Denoting the eigenvalues ofR by λ1, . . . , λd, we have

ψt(ΣI, B
t
1) = max

R
B2
t tr(R) + ψt−1

(
(ΣI −R)(I +R), Bt−1

1

)
= max

R

{
d∑
i=1

λi +
d∑
i=1

ϕt−1

(
(1 + λi)(Σ− λi), Bt−1

1

)}
=

d∑
i=1

ϕt(Σ, B
t
1).

Proof. (of Theorem 49) Recall from Theorem 32 that for given T and x1, . . . ,xT , the regret of
the box constrained game is precisely

∑T
t=1 B

2
tx

ᵀ
tPtxt. Lemma 51 bounds

∑T
t=1B

2
tx

ᵀ
tPtxt by a

quantity that does not depend on xt. To invoke Lemma 50, we need that Bt ≤ maxi λi for all t,
which is exactly ||BT

1 ||∞ ≤ ||Σ||2. Rescaling the Bt sequence (and hence the regret bound) gives
the result.

3.10 Conclusion
We have presented the minimax optimal strategy for linear regression in a number of scenarios
where it is efficient, including fixed-design and adversarial design with certain covariate scale and
budget constraints. We found that, as long as the adversary respects these constraints, the minimax
algorithm remains optimal for any length of game without having knowledge of it. Furthermore,
this strategy competes even against strategies that are allowed to know the length of the game. We
have also provided an intuitive view of the algorithm as follow-the-regularized-leader with a specific
data-dependent regularizer, which automatically adjusts to the scale of the data and to how much
data budget remains.
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Chapter 4

Regret Bounds for MDP Learning
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4.1 Introduction
The Markov Decision Process planning problem is to find a good policy given complete knowledge
of the transition dynamics and loss function. Much work has been done by the reinforcement
learning community; the earliest approaches with convergence guarantees date back to value
iteration [7], policy iteration [27], and other dynamic programming ideas. Another thread has been
the linear programming formulation [36]. In general, the planning problem is well understood for
state-spaces small enough to permit computation of the value function [8]. However, in large state
space problems, both the dynamic programming and linear program approaches are computationally
infeasible as complexity scales quadratically with the number of states.

A popular approach to large-scale problems is to search for the optimal value function within
the linear span of a small number of features with the hope that the optimal value function will be
well approximated and will lead to a near optimal policy. Two popular methods are Approximate
Dynamic Programming (ADP) and Approximate Linear Programming (ALP). For a survey on
theoretical results for ADP, see [9, 47], [8, Vol. 2, Chapter 6], and more recent papers [49, 48, 33,
34].

Our goal is to find an almost-optimal policy in some low dimensional space such that the
complexity scales with the low dimensional space but is sublinear in the size of the state space. In
contrast, all prior work on ALP either scales badly or requires access to samples from a distribution
that depends on the optimal policy. To accomplish this, we will use randomized algorithms to
optimize policies that are parameterized by linear functions in the dual LP. We provide performance
bounds in the average loss and discounted loss cases. In particular, we introduce new proof
techniques and tools for average cost and discounted cost MDP problems and use these techniques
to derive a reduction to stochastic convex optimization with accompanying error bounds.

Markov Decision Process
Markov decision processes have become a popular approach to modeling an agent interacting with
an environment, and, most notably, are the model assumed by reinforcement learning. The MDP is
parameterized by:

1. a discrete state space X = {1, 2, . . . , X},

2. a discrete action space A = {1, 2, . . . , A},

3. transition dynamics P : X ×A → 4X that describes the distribution of the next states given
a current state and action, and

4. loss function ` : X ×A → [0, 1] that provides the cost of taking an action in a given state.

The (fully observed) state encapsulates all the persistent information of the environment, and the
influence of the agent is captured through the transition distribution, which is a function of the
current state and the current action. We will use xt to denote the state at time t and at the action
chosen at time t. The state evolves in a Markov fashion: xt is conditionally independent of the past
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given xt−1 and at−1. A policy π provides a distribution of actions for every state, and the agent’s
goal is to find a policy with small loss. The inclusion of the state dynamics forces the agent to
consider policies that seek long term over myopic rewards.

The goal of the planning problem is to find a policy with small long-term loss; this requires
the learner to plan for the entire trajectory, as myopic actions may guide the state to areas of high
loss. We study the two most common costs: average cost and discounted. The first measures the
the average loss under the stationary distribution under the policy, and the second measures the
loss starting from a starting state with an exponential decay. In this way, average cost captures
the long-term dynamics of a policy, and discounted cost captures the transient loss of a particular
starting condition.

For example, the average cost of π is the expected loss of the stationary distribution of P π and
hence represents the average loss of a Markov chain after all the transient dynamics have vanished.
On the other hand, discounted cost weights the future loss by an exponentially decreasing amount
and is designed to capture the transient behavior. We will provide technical definitions in the next
section, as we obtain results for both costs.

Notation

We will use the standard matrix notation for Markov chains. Throughout, we will use xi for the ith
component of vector x and Mij for the element ofM in row i, column j, and Mi,: and M:,j for ith
row and jth column of matrix M , respectively. Thus, we will write a distribution over states as a
row vector x ∈ RX , where p(X = i) = xi, and we will write the transition dynamics from state X
to state X ′ as a matrix P ∈ RX×X with p(X ′ = j|X = i) = Pij so that the product xP will be the
marginal distribution of X ′.

Given a fixed policy π, the induced state transition matrix is P π where

(P π)ij =
∑
k

P (X ′ = j|X = i, A = k)π(A = k|X = i).

We will also study distributions over state-action pairs, usually denoted µ ∈ RX×A, that can be
thought of as a marginal on X multiplied by a policy, i.e. µx,a = P (X = x)π(A = x|X = x).
This implies that µP provides the distribution of X ′ with the X marginal and policy π above. We
also define the marginalization matrix B ∈ {0, 1}XA×X to be the binary matrix such that the ith
column has A ones in rows 1 + (i− 1)A to iA; thus, µB is the marginal distribution of the states of
µ. A distribution over state-action pairs is a stationary distribution of P , in the sense that the state
marginal µB is the stationary distribution under the corresponding P π, if µP = Bµ.

We will use the norms ‖v‖1,c =
∑

i ci|vi| and ‖v‖∞,c = maxi ci|vi| (for a positive vector c).
The constant one and zero vector are 1 and 0, and ∧ and ∨ refer to the element-wise minimum and
maximum. We can then compactly define [v]− = v∧ 0 and [v]+ = v∨ 0 as the negative and positive
parts of a vector v, respectively. Finally, v ≤ w for two vectors means element-wise inequality, i.e.
vi ≤ wi for all i.
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Evaluating a Policy

The goal in MDP planning is to find an optimal policy, but there are many different ways to assign
a numeric value to the performance of a policy. The two most common are average cost and
discounted cost. Average cost is roughly the expected loss of the policy once the Markov chain has
reached stationarity and therefore disregards all the transient dynamics. Discounted cost minimizes
the cost where future losses t rounds into the future are discounted by γt, where γ ∈ (0, 1) is some
discounting factor. Therefore, discounted cost emphasized the short-term reward and roughly only
considers 1/(1− γ) rounds into the future. Precisely,

λπ(x) := lim
n→∞

E

[
1

n

n∑
t=0

`(Xt, π(Xt))

∣∣∣∣∣ X0 = x

]
(average cost), and (4.1)

Jπ(x) := E

[
∞∑
t=0

γt`(Xt, π(Xt))

∣∣∣∣∣ X0 = x

]
(discounted cost) (4.2)

where Xt is distributed according to x0(P π)t. The initial state is very relevant for J but irrelevant
for λ. We study the average cost in Section 4.2 and the discounted cost in Section 4.4.

Linear Programming for Average Cost
For the average cost, let h ∈ RX be a vector and λR a scalar. The Bellman operator for average
cost is

Lh(x) := min
a∈A

[
`(x, a) +

∑
x′∈X

P(x,a),x′h(x′)

]
,

and h and λ correspond to an optimal policy if they satisfy the Bellman optimality equation,

λ+ h(x) = Lh(x) ∀x.

We will call such an h and λ the differential value function and the average cost, respectively. When
the Bellman optimtality equation is satisfied, the greedy policy (taking the action that achieves the
minimum in the operator with probability 1) achieves the optimal loss, and finding a solution to
the Bellman optimality condition implies that the greedy policy of h∗ is optimal [41]. Additionally,
every policy induces a stationary distribution over state-action pairs; the average cost is precisely
the expected loss under this stationary distribution.

We can formulate the Bellman optimality equation as a linear program [36] by first noticing that
if we have Lh ≥ h+ λ1 for some λ and h, we must have λ ≤ λ∗. Therefore, the optimal λ and h
are the solution to

max
λ,h

λ ,

s.t. h+ λ1 ≤ Lh.
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Now, notice that h+λ1 ≤ mina

[
`(x, a) +

∑
y P (y|x, a)h(y)

]
is equivalent to requiring h(x)+λ ≤

`(x, a) +
∑

y P (y|x, a)h(y) for all x and a. In our matrix notation, this is precisely B(λ1 + h) ≤
`+ Ph. Hence, the Bellman optimality equation is equivalent to the linear program

max
λ,h

λ , (4.3)

s.t. B(λ1 + h) ≤ `+ Ph .

A standard computation shows that the dual of LP (4.3) has the form of

min
µ∈RXA

µᵀ` , (4.4)

s.t. µᵀ1 = 1, µ ≥ 0, µᵀ(P −B) = 0 ,

The dual variable, µ, has an important interpretation: it is a stationary distribution over state-action
pairs. The first two constraints ensure that µ is a probability distribution over state-action space and
the third constraint forces µ to be a stationary distribution. To be precise, define the policy πµ

πµ(a|x) =
µ(x, a)∑

a′∈A µ(x, a′)
.

Then, µ has a distribution where the state marginal is the stationary distribution of P πµ and the
action is drawn according to πµ(a|x). The objective, µᵀ`, is the average loss under µ (i.e. the
average loss of πµ).

Linear Programming for Discounted Cost
There are analogous notions for the discounted cost setting. We define a value function J : X → as
a mapping from states to discounted costs. The hope is to find J∗, where J∗(x) is the discounted
cost starting in state x if the optimal policy is used.

We define the Bellman operator for discounted cost

LγJ(x) := min
a∈A

[
`(x, a) + γ

∑
x′∈X

P(x,a),x′J(x′)

]

and the optimal value function will be the fixed point of the Bellman operator,

LγJ∗ = J∗.

It is easy to check that J ≤ LγJ implies J ≤ J∗, and therefore, for any strictly positive vector α,
the optimal value function is the solution to the linear program

max
J

αᵀJ (4.5)

s.t. LγJ ≥ J.
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We also have an interpretable dual LP. Let α ∈ RX be an arbitrary positive vector such that
αᵀ1 = 1. The linear program for discounted MDPs in the dual space has the form of

min
ν∈RXA

νᵀ` , (4.6)

s.t. (B − γP )ᵀν = α, ν ≥ 0, νᵀ1 = 1.

Unlike the average cost case, the dual variable ν cannot be interpreted as a stationary distribution.
However, it can be thought of as the discounted number of visits, as made explicit in the following
theorem from [41]:

Theorem 52. 1. For each randomized Markovian policy π and state x and action a, define
νπ(x, a) by

νπ(x, a) =
∑
x′

α(x′)
∞∑
t=1

γt−1P π(xt = x, at = a | x1 = x′) .

Then νπ is a feasible solution to the dual problem.

2. Suppose ν is a feasible solution to the dual problem, then, for each x ∈ X ,
∑

a ν(x, a) > 0.
Define the randomized stationary policy πν by

πν(a|x) =
ν(x, a)∑
a′ ν(x, a′)

.

Then, νπν is a feasible solution to the dual LP and νπν = ν.

Thus, we can approximately solve the planning problem if we find a vector z such that the
discounted cost of the policy defined by z, namely νπz , is small. To handle possibly negative entries
of z, we more generally define

πz(a|x) =
[z(x, a)]+∑
a′ [z(x, a′)]+

.

In this case, the precise relationship between νπz and the value function can be found in [41]: for
any vector z, ∑

x,a

νπz(x, a) =
1

1− γ
and νTπz` = αTJπz , (4.7)

where J is the value function corresponding to policy πz.

Approximate Linear Programming
If we ignore computational constraints, we can solve the planning problem by solving the linear
programs (4.4) and (4.6). Unfortunately, state spaces are frequently very large and often grow
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exponentially with the complexity of the system (e.g. number of queues in the queuing network), and
therefore any method polynomial in X becomes intractable. As any general optimality guarantee is
impossible with computation sublinear in X without special knowledge of the problem, we instead
aim for optimality with respect to some smaller policy class.

In contrast to previous work, we reduce the dimensionality by limiting the dual variables to
lie in some d-dimensional affine subspace. Let Φ ∈ RX×A by a feature matrix and µ0 some know
stationary distribution (that can be taken to be zero but allows a user to start with a good policy).
For the average cost case, we will limit our search to µ = µ0 + Φθ for θ ∈ Θ ⊂ Rd; that is, we will
study the approximate average cost dual LP,

min
θ

(µ0 + Φθ)ᵀ` , (4.8)

s.t. (µ0 + Φθ)ᵀ1 = 1, µ0 + Φθ ≥ 0, (µ0 + Φθ)ᵀ(P −B) = 0 .

For every θ, we associate a policy

πθ(a|x) =
[µ0(x, a) + Φ(x,a),:θ]+∑
a′ [µ0(x, a′) + Φ(x,a′),:θ]+

(4.9)

and a stationary distribution µθ the actual stationary distribution of running policy πθ. Thus, the
average cost corresponding to the policy πθ is `ᵀµθ.

For the discounted cost case with feature matrix Φ, we restrict the dual variable to ν = Φθ and
define the approximate discounted cost dual LP

min
θ∈Rd

`ᵀΦθ , (4.10)

s.t. (B − γP )ᵀΦθ = α, Φθ ≥ 0.

For every θ, we define a policy

πθ(a|x) =
[Φ(x,a),:θ]+∑
a′ [Φ(x,a′),:θ]+

, (4.11)

and let νθ be corresponding dual variables (i.e. the discounted number of visits); hence, `ᵀνθ is the
discounted cost as in (4.7).

Problem Definition
This chapter solves the following problem.

Definition 53 (Efficient Large-Scale Dual ALP). For an MDP specified by ` and P with the dual
variables ξθ corresponding to θ ∈ Θ, the efficient large-scale dual ALP problem is to find a θ̂ such
that

`ᵀξθ̂ ≤ min {`ᵀξθ : ξθ feasible for (4.4) or (4.6) }+O(ε) (4.12)

in time polynomial in d and 1/ε. The model of computation allows access to arbitrary entries of Φ,
`, P , µ0, P ᵀΦ, and `ᵀΦ in unit time.
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The computational complexity cannot scale with X and we do not assume any knowledge of
the optimal policy. In fact, as we shall see, we solve a harder problem, which we define as follows.

Definition 54 (Expanded Efficient Large-Scale Dual ALP). Let V : Rd → R+ be some “violation
function” that represents how far ξθ is from satisfying the constraints of (4.4) or (4.6) and has
V (θ) = 0 if θ is feasible.

The expanded efficient large-scale dual ALP problem is to produce parameters θ̂ such that

`ᵀξθ̂ ≤ min
θ∈Θ

`ᵀξθ + V (θ) +O(ε), (4.13)

in time polynomial in d and 1/ε, under the same model of computation as in Definition 53.

Note that the expanded problem is strictly more general as guarantee (4.13) implies guarantee
(4.12). Also, many feature vectors Φ may not admit any feasible points. In this case, the dual ALP
problem is trivial, but the expanded problem is still meaningful.

Having access to arbitrary entries of the quantities in Definition 53 arises naturally in many
situations. In many cases, entries of P ᵀΦ are easy to compute. For example, suppose that for any
state x′ there are a small number of state-action pairs (x, a) such that P (x′|x, a) > 0. Consider
Tetris; although the number of board configurations is large, each state has a small number of
possible neighbors. Dynamics specified by graphical models with small connectivity also satisfy
this constraint. Computing entries of P ᵀΦ is also feasible given reasonable features. If a feature
ϕi is a stationary distribution, then P ᵀϕi = Bᵀϕi. Otherwise, it is our prerogative to design sparse
feature vectors, hence making the multiplication easy. We shall see an example of this setting later.

Related Work
One of the first dimensionality reduction methods, proposed in Schweitzer and Seidmann [43], was
to project the primal LP into a subspace. The first theoretical analysis of ALP methods, Farias and
Van Roy [19], analyzed the discounted primal LP (4.6) performance when the value function was
constrained; i.e. J = Φθ. Given some vector u ∈ {u ∈ RX : u ≥ 1, u ∈ span(Ψ), βu < 1} and a
“goodness-of-fit” parameter βu = γmaxx,a

∑
x′ P(x,a),x′u(x′)/u(x), the authors showed that θ∗, the

solution to the ALP, satisfies

‖J∗ −Ψw∗‖1,c ≤
2cᵀu

1− βu
min
w
‖J∗ −Ψw‖∞,1/u . (4.14)

Unfortunately, this result has a number of limitations. First, solving ALP can be computationally
expensive as the number of constraints is large. Second, it assumes that the feasible set of ALP is
non-empty. Finally, Inequality (4.14) implies that c = µπΨw∗ ,ν

is an appropriate choice to obtain
performance bounds. However, w∗ itself is function of c and is not known before solving ALP.

One approach is to solve ALP iteratively, using c = µπΨw∗ ,ν
from last iteration. They showed that

for an arbitrary probability distribution ν ∈ ∆X and accompanying µπ,ν = (1− γ)νᵀ(I − γP π)−1,
we must have

‖JπJ − J∗‖1,ν ≤
1

1− γ
‖J − J∗‖1,µπJ ,ν

.
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Farias and Van Roy [18] propose a computationally efficient algorithm that is based on a
constraint sampling technique. The idea is to sample a relatively small number of constraints
and solve the resulting LP. Let N ⊂ Rd be a known set that contains w∗ (solution of ALP). Let
µVπ,c(x) = µπ,c(x)V (x)/(µᵀ

π,cV ) and define the distribution ρVπ,c(x, a) = µVπ,c(x)/A. Let δ ∈ (0, 1)

and ε ∈ (0, 1). Let βu = γmaxx
∑

x′ P(x,π∗(x)),x′u(x′)/u(x) and

D =
(1 + βV )µᵀ

π∗,cV

2cᵀJ∗
sup
w∈N
‖J∗ −Ψw‖∞,1/V , m ≥ 16AD

(1− γ)ε

(
d log

48AD

(1− γ)ε
+ log

2

δ

)
.

Let S be a set of m random state-action pairs sampled under ρVπ∗,c. Let ŵ be a solution of the
following sampled LP:

max
w∈Rd

cᵀΨw ,

s.t. w ∈ N , ∀(x, a) ∈ S, `(x, a) + γP(x,a),:Ψw ≥ (Ψw)(x) .

Farias and Van Roy [18] prove that with probability at least 1− δ, we have

‖J∗ −Ψŵ‖1,c ≤ ‖J∗ −Ψw∗‖1,c + ε‖J∗‖1,c .

This result has a number of limitations. First, vector µπ∗,c (that is used in the definition of D)
depends on the optimal policy, but an optimal policy is what we want to compute in the first
place. Second, we can no longer use Inequality (??) to obtain a performance bound (a bound on
‖JπΨŵ

− J∗‖1,c), as Ψŵ does not necessarily satisfy all constraints of ALP.
Known as approximate linear programming (ALP), these methods were later improved by Farias

and Van Roy [19, 17], Hauskrecht and Kveton [25], Guestrin, Hauskrecht, and Kveton [23], Petrik
and Zilberstein [40], and Desai, Farias, and Moallemi [15]. As noted by Desai, Farias, and Moallemi
[15], the prior work on ALP either requires access to samples from a distribution that depends
on optimal policy or assumes the ability to solve an LP with as many constraints as states. Our
objective is to design algorithms for very large MDPs that do not require knowledge of the optimal
policy.

Let c ∈ RX be a vector with positive components and γ ∈ (0, 1) be a discount factor. Let L :
RX → RX be the Bellman operator defined by (LJ)(x) = mina∈A(`(x, a)+γ

∑
x′∈X P(x,a),x′J(x′))

for x ∈ X . Let Ψ ∈ RX×d be a feature matrix. The exact and approximate LP problems are as
follows:

max
J∈RX

cᵀJ , max
w∈Rd

cᵀΨw ,

s.t. LJ ≥ J , s.t. LΨw ≥ Ψw .

which can also be written as

max
J∈RX

cᵀJ , max
w∈Rd

cᵀΨw , (4.15)

s.t. ∀(x, a), `(x, a) + γP(x,a),:J ≥ J(x) , s.t. ∀(x, a), `(x, a) + γP(x,a),:Ψw ≥ (Ψw)(x) .
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The optimization problem on the RHS is an approximate LP with the choice of J = Ψw. Let
Jπ(x) = E [

∑∞
t=0 γ

t`(xt, π(xt))|x0 = x] be the value of policy π, J∗ be the solution of LHS, and
πJ(x) = arg mina∈A(`(x, a) + γP(x,a),:J) be the greedy policy with respect to J .

Desai, Farias, and Moallemi [15] study a smoothed version of ALP, in which slack variables
are introduced that allow for some violation of the constraints. Let D′ be a violation budget. The
smoothed ALP (SALP) has the form of

max
w,s

cᵀΨw , max
w,s

cᵀΨw −
2µᵀ

π∗,cs

1− γ
,

s.t. Ψw ≤ LΨw + s, µᵀ
π∗,cs ≤ D′, s ≥ 0, s.t. Ψw ≤ LΨw + s, s ≥ 0 .

The ALP on RHS is equivalent to LHS with a specific choice of D′. Let U = {u ∈ RX : u ≥ 1}
be a set of weight vectors. Desai, Farias, and Moallemi [15] prove that if w∗ is a solution to above
problem, then

‖J∗ −Ψw∗‖1,c ≤ inf
w,u∈U

‖J∗ −Ψw‖∞,1/u
(
cᵀu+

2(µᵀ
π∗,cu)(1 + βu)

1− γ

)
.

The above bound improves (4.14) as U is larger than U and RHS in the above bound is smaller
than RHS of (4.14). Further, they prove that if η is a distribution and we choose c = (1− γ)ηᵀ(I −
γP πΨw∗ ), then

‖JµΨw∗
− J∗‖1,η ≤

1

1− γ

(
inf

w,u∈U
‖J∗ −Ψw‖∞,1/u

(
cᵀu+

2(µᵀ
π∗,νu)(1 + βu)

1− γ

))
.

Similar methods are also proposed by Petrik and Zilberstein [40]. One problem with this result is
that c is defined in terms of w∗, which itself depends on c. Also, the smoothed ALP formulation
uses π∗ which is not known. Desai, Farias, and Moallemi [15] also propose a computationally
efficient algorithm. Let S be a set of S random states drawn under distribution µπ∗,c. Let N ′ ⊂ Rd

be a known set that contains the solution of SALP. The algorithm solves the following LP:

max
w,s

cᵀΨw − 2

(1− γ)S

∑
x∈S

s(x) ,

s.t. ∀x ∈ S, (Ψw)(x) ≤ (LΨw)(x) + s(x), s ≥ 0, w ∈ N ′ .

Let ŵ be the solution of this problem. Desai, Farias, and Moallemi [15] prove high probability
bounds on the approximation error ‖J∗ −Ψŵ‖1,c. However, it is no longer clear if a performance
bound on ‖J∗ − JπΨŵ

‖1,c can be obtained from this approximation bound.
Next, we turn our attention to average cost ALP. Let ν be a distribution over states, u : X →

[1,∞), η > 0, γ ∈ [0, 1], P π
γ = γP π + (1 − γ)1νᵀ, and Lγh = minπ(`π + P π

γ h). Farias and
Van Roy [16] propose the following optimization problem:

min
w,s1,s2

s1 + ηs2 , (4.16)

s.t. LγΨw −Ψw + s11 + s2u ≥ 0, s2 ≥ 0 .
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Let (w∗, s1,∗, s2,∗) be the solution of this problem. Define the mixing time of policy π by

τπ = inf

{
τ : |1

t

t−1∑
t′=0

νᵀ(P π)t
′
`π − λπ| ≤

τ

t
, ∀t

}
.

Let τ∗ = lim infδ→0{τπ : λπ ≤ λ∗ + δ}. Let π∗γ be the optimal policy when discount factor is
γ. Let πγ,w be the greedy policy with respect to Ψw when discount factor is γ, µᵀ

γ,π = (1 −
γ)
∑∞

t=0 γ
tνᵀ(P π)t and µγ,w = µγ,πγ,w . Farias and Van Roy [16] prove that if η ≥ (2− γ)µᵀ

γ,π∗γ
u,

λw∗ − λ∗ ≤
(1 + β)ηmax(D′′, 1)

1− γ
min
w
‖h∗γ −Ψw‖∞,1/u + (1− γ)(τ∗ + τπw∗ ) ,

where β = maxπ‖I − γP π‖∞,1/u, D′′ = µᵀ
γ,w∗V/(ν

ᵀV ) and V = LγΨw∗ − Ψw∗ + s1,∗1 + s2,∗u.
Similar results are obtained more recently by Veatch [51].

An appropriate choice for vector ν is ν = µγ,w∗ . Unfortunately, w∗ depends on ν. We should
also note that solving (4.16) can be computationally expensive. Farias and Van Roy [16] propose
constraint sampling techniques similar to [18], but no performance bounds are provided.

Wang et al. [54] study ALP (4.8) and show that there is a dual form for standard value function
based algorithms, including on-policy and off-policy updating and policy improvement. They also
study the convergence of these methods, but no performance bounds are shown.

In the primal form (4.3), an extra constraint h = Ψw is added to obtain

max
λ,w

λ , (4.17)

s.t. B(λe+ Ψw) ≥ `+ PΨw .

Let λ∗ be the average loss of the optimal policy and (λ̃, w̃) be the solution of this LP. It turns
out that the greedy policy with respect to w̃ can be arbitrarily bad even if |λ∗ − λ̃| was small [17].
Farias and Van Roy [17] propose a two stage procedure, where the above LP is the first stage and
the second stage is

max
w

cᵀΨw ,

s.t. B(λ̃e+ Ψw) ≤ `+ PΨw , (4.18)

where c is a user specified weight vector. Let ŵ be the solution of the second stage. Let λw and µw
be the average loss and the stationary distribution of the greedy policy with respect to Ψw. Farias
and Van Roy [17] prove that

λw − λ∗ ≤ ‖h∗ −Ψw‖1,µw
.

Further, it is shown that ŵ minimizes ‖hλ̃ −Ψw‖1,c and that

‖h∗ −Ψŵ‖1,c ≤ ‖hλ̃ −Ψŵ‖1,c + (λ∗ − λ̃)cᵀ(I − P π∗)−1e ,
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which implies that ‖h∗ − Ψŵ‖1,c is small. To get that λŵ − λ∗ is small, we need to use c = µŵ.
Value of µŵ is obtained only after solving the optimization problem (4.18). To fix this problem,
Farias and Van Roy [17] propose to solve (4.18) iteratively, using c = µŵ from the solution of the
last round.

The above approach has two problems. First, it is still not clear if the average loss of the resultant
policy is close to λ∗ (or the best policy in the policy class). Second, iteratively solving (4.18) is
computationally expensive. Similar results are also obtained by Desai, Farias, and Moallemi [15]
who also show that if we were able to sample from the stationary distribution of the optimal policy,
then LP (4.17) can be solved efficiently.

Our Contributions
We prove that if we parameterize the policy space by using the approximate dual LPs, then we can
solve the expanded efficient large-scale dual ALP problem for discounted cost and average cost
under a (standard) assumption that the distribution of states under any policy converges quickly
to its stationary distribution. We also show that it suffices to solve the approximate dual LPs by
approximately minimizing a surrogate loss function equal to the sum of the objective and a scaled
violation function

We begin with the average cost in Section 4.2 and prove that, for some parameter H > 0, we
have the regret bound

µᵀ

θ̂
` ≤min

θ
µᵀ
θ`+HV (θ) +O

(
1

H
log(1/δ)

)
+O(ε)

where V (θ) = ‖[µ0 + Φθ]−‖1 + ‖(P −B)ᵀ(µ0 + Φθ)‖1. The V (θ) term is zero for feasible points
(points in the intersection of the feasible set of LP (4.8) and the span of the features). For points
outside the feasible set, these terms measure the extent of constraint violations for the vector µ0 +Φθ,
which indicate how well stationary distributions can be represented by the chosen features.

In particular, setting H = ε−1 gives an O
(

1
ε
V (θ) + ε

)
regret bound between the `ᵀµθ̂ returned

by the algorithm and the best `ᵀµθ. We emphasize that this bound is on the loss of actually running
the πθ policy, which could differ from the surrogate used in the optimization, `ᵀ(µ0 + Φθ).

This regret bound is rather unwieldy as H needs to be set correctly to obtain a O(ε) regret bound.
Section 4.3 addresses this shortcoming with a meta algorithm that solves the surrogate optimization
for a carefully chosen set of H values. We show a regret bound of

`ᵀµ≤
θ̂T
`ᵀµθ +O

(√
V (θ)

)
+O(ε).

We then turn to the discounted cost problem in Section 4.4. We obtain a bound on the discounted
cost of the form

`ᵀνθ̂ ≤ `ᵀνθ +O

((
1

1− γ
+

1

ε

)
V (θ)

)
+O

(
ε

1− γ

)
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where V (θ) is an analogous violation function for the constraints in the discounted dual ALP. We
also show that, even with the 1

1−γ term, we can use a grid meta-algorithm to obtain a regret bound
of the form

`ᵀνᵀ
θ̂T
` ≤ `ᵀµθ +O

(√
V (θ)

)
+O(ε).

This analysis is presented in Section 4.5.
Section 4.6 then demonstrates the effectiveness of our method on a well studied example from

queuing theory, the Rybko-Stolyar queue. We show that using two simple heuristic policies with a
small number of simple features provides good performance.

4.2 The Dual ALP for Average Cost
Is this section, we propose and analyze our solution to the Expanded large-scale MDP problem
for average cost. As discussed in the introduction, there are two main challenges for solving the
planning problem in its LP formulation: the optimization is in dimension X , and there are O(XA)
constraints, which is intractable in the large state-space setting.

We solve the two challenges by projecting the dual LP onto a subspace and by approximately
solving the optimization using stochastic gradient descent, respectively. Unlike previous approaches
for the primal LP, we show that an approximate solution in the dual allows for a regret, i.e. one that
controls the error between our approximate solution and the best solution in some approximate policy
class, and thereby solve Equation (4.13). We also provide some interpretation of the approximations
we make.

Recall that, for a matrix Φ and a known stationary distribution µ0 (which may be set to zero if
no distribution is known), we defined the dual ALP

min
θ
θᵀΦᵀ` ,

s.t. θᵀΦᵀ1 = 1, Φθ ≥ 0, θᵀΦᵀ(P −B) = 0

and associated every θ with the policy

πθ(a|x) =
[µ0(x, a) + Φ(x,a),:θ]+∑
a′ [µ0(x, a′) + Φ(x,a′),:θ]+

.

We denote the stationary distribution of this policy µθ which is only equal to µ0 + Φθ if θ is in the
feasible set.

A Reduction to Stochastic Convex Optimization
Unfortunately, the ALP (4.8) still has O(XA) constraints and cannot be solved exactly. Instead, we
will form an unconstrained convex optimization that will act as a surrogate for the original problem
and show that it is a finite sum, e.g. equal to

∑N
i=1 fi(θ). Therefore, we can apply the extensive

literature of solving finite sum problems with stochastic gradient descent methods.
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To this end, for a constantH ≥ 1, define the following convex cost function by adding a multiple
of the total constraint violations to the objective of the LP (4.8):

c(θ) := `ᵀ(µ0 + Φθ) +H‖[µ0 + Φθ]−‖1 +H‖(P −B)ᵀ(µ0 + Φθ)‖1

= `ᵀ(µ0 + Φθ) +H‖[µ0 + Φθ]−‖1 +H‖(P −B)ᵀΦθ‖1

= `ᵀ(µ0 + Φθ) +H
∑
(x,a)

|[µ0(x, a) + Φ(x,a),:θ]−|+H
∑
x′

|(P −B)ᵀ:,x′Φθ| .
(4.19)

We justify using this surrogate function as follows. Suppose we find a near optimal vector θ̂ such
that c(θ̂) ≤ minθ∈Θ c(θ) +O(ε). We will prove

1. that ‖[µ0+Φθ̂]−‖1 and ‖(P−B)ᵀ(µ0+Φθ̂)‖1 are small and µ0+Φθ̂ is close to µθ̂ (Lemma 56),
and

2. that `ᵀ(µ0 + Φθ̂) ≤ minθ∈Θ c(θ) +O(ε).

As we will show, these two facts imply that with high probability, for any θ ∈ Θ,

µᵀ

θ̂
` ≤ µᵀ

θ`+
1

ε
‖[µ0 + Φθ]−‖1 +

1

ε
‖(P −B)ᵀ(µ0 + Φθ)‖1 +O(ε).

Unfortunately, calculating the gradients of c(θ) is O(XA). Instead, we construct unbiased
estimators and use stochastic gradient descent. Let T be the number of iterations of our algorithm,
q1 and q2 be distributions over the state-action and state space, respectively (we will later discuss
how to choose them), and ((xt, at))t=1...T and (x′t)t=1...T be i.i.d. samples from these distsributions.
At round t, the algorithm estimates subgradient∇c(θ) by

gt(θ) = `ᵀΦ−H
Φ(xt,at),:

q1(xt, at)
I{µ0(xt,at)+Φ(xt,at),:

θ<0} +H
(P −B)ᵀ:,x′t

Φ

q2(x′t)
s((P −B)ᵀ:,x′t

Φθ). (4.20)

This estimate is fed to the projected subgradient method, which in turn generates a vector θt. After
T rounds, we average vectors (θt)t=1...T and obtain the final solution θ̂T =

∑T
t=1 θt/T . Vector

µ0 + Φθ̂T defines a policy, which in turn defines a stationary distribution µθ̂T . The algorithm is
shown in Figure 4.1.

Regret bound
We now turn towards proving the main result of this section, Theorem 55. We begin with our
assumptions.

We make a mixing assumption on the MDP so that any policy quickly converges to its stationary
distribution.

Assumption A1 (Fast Mixing) For any policy π, there exists a constant τ(π) > 0 such that for all
distributions d and d′ over the state space, ‖dP π − d′P π‖1 ≤ e−1/τ(π)‖d− d′‖1.
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Input: Constant S > 0, number of rounds T , constant H .
Let ΠΘ be the Euclidean projection onto Θ.
Initialize θ1 = 0.
for t := 1, 2, . . . , T do

Sample (xt, at) ∼ q1 and x′t ∼ q2.
Compute subgradient estimate gt (4.20).
Update θt+1 = ΠΘ(θt − ηtgt).

end for
θ̂T = 1

T

∑T
t=1 θt.

Return policy πθ̂T .

Figure 4.1: The Stochastic Subgradient Method for Markov Decision Processes

Define

C1 = max
(x,a)∈X×A

‖Φ(x,a),:‖
q1(x, a)

, C2 = max
x∈X

‖(P −B)ᵀ:,xΦ‖
q2(x)

.

These constants appear in our performance bounds. So we would like to choose distributions q1

and q2 such that C1 and C2 are small. For example, if there is C ′ > 0 such that for any (x, a) and
i, Φ(x,a),i ≤ C ′/(XA) and each column of P has only N non-zero elements, then we can simply
choose q1 and q2 to be uniform distributions. Then it is easy to see that

‖Φ(x,a),:‖
q1(x, a)

≤ C ′ ,
‖(P −B)ᵀ:,xΦ‖

q2(x)
≤ C ′(N + A) .

As another example, if Φ:,i are exponential distributions and feature values at neighboring states
are close to each other, then we can choose q1 and q2 to be appropriate exponential distributions
so that ‖Φ(x,a),:‖/q1(x, a) and ‖(P − B)ᵀ:,xΦ‖/q2(x) are always bounded. Another example is
when there exists a constant C ′′ > 0 such that for any x, ‖P ᵀ

:,xΦ‖/‖Bᵀ
:,xΦ‖ < C ′′ (this condition

requires that columns of Φ are close to their one step look-ahead) and we have access to an
efficient algorithm that computes Z1 =

∑
(x,a)‖Φ(x,a),:‖ and Z2 =

∑
x‖Bᵀ

:,xΦ‖ and can sample
from q1(x, a) = ‖Φ(x,a),:‖/Z1 and q2(x) = ‖Bᵀ

:,xΦ‖/Z2. In what follows, we assume that such
distributions q1 and q2 are known.

Obviously, minimizing the convex surrogate function does not guarantee a feasible solution to
the original dual LP. Therefore, we define the following non-feasibility penalties which roughly
correspond to how far Φθ is from the simplex and how far Φθ is from a stationary distribution,
respectively:

V1(θ) :=
∑
(x,a)

|[µ0(x, a) + Φ(x,a),:θ]−| and (4.21)

V2(θ) := ‖(P −B)ᵀ(Φθ)‖1 =
∑
x′

|(P −B)ᵀ:,x′Φθ|. (4.22)
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The main theorem of the section is:

Theorem 55. Consider an expanded efficient large-scale dual ALP problem and some error tol-
erance ε > 0 and desired maximum probability of error δ > 0. Then running the stochastic
subgradient method (shown in Figure 4.1) with

H =
1

ε
, T ≥ max

{
H2

ε2
, 40S2 log

1

δ

}
, and η =

(√
d+H(C1 + C2)

) S√
T
,

yields a θ̂T where

µᵀ

θ̂T
` ≤ min

θ∈Θ

(
µᵀ
θ`+

1

ε
(V1(θ) + V2(θ)) +O(ε)

)
, (4.23)

holds with probability at least 1− δ. Constants hidden in the big-O notation are polynomials in S,
d, C1, C2, log(1/δ), log(V1(θ) + V2(θ)), τ(µθ), and τ(µθ̂T ).

Functions V1 and V2 are bounded by small constants for any set of normalized features: for any
θ ∈ Θ,

V1(θ) ≤ ‖µ0‖1 + ‖Φθ‖1 ≤ 1 +
∑
(x,a)

|Φ(x,a),:θ| ≤ 1 + Sd ,

V2(θ) ≤
∑
x′

|P ᵀ
:,x′(µ0 + Φθ)|+

∑
x′

|Bᵀ
:,x′(µ0 + Φθ)|

≤

(∑
x′

P:,x′

)ᵀ

[µ0 + Φθ]+ +

(∑
x′

B:,x′

)ᵀ

[µ0 + Φθ]+

= 2[µ0 + Φθ]ᵀ+1

≤ 2|µ0 + Φθ|ᵀ1
= 2 + 2S .

Thus V1 and V2 can be very small given a carefully designed set of features. The output θ̂T is a
random vector as the algorithm is based on a stochastic convex optimization method. The above
theorem shows that with high probability the policy implied by this output is near optimal.

The optimal choice for ε is ε =
√
V1(θ∗) + V2(θ∗), where θ∗ is the minimizer of RHS of (4.23)

and not known in advance. One could think of parameterizing the optimization problem by H , but
the problem is not jointly convex in H and θ. Nevertheless, we present methods that recover a
O(
√
V1(θ∗) + V2(θ∗)) error bound using a grid based method in Section 4.3.

Analysis
This section provides the necessary technical tools and a proof of the main result. We break the
proof into two main ingredients. First, we demonstrate that a good approximation to the surrogate
loss gives a feature vector that is almost a stationary distribution; this is Lemma 56. Second, we
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justify the use of unbiased gradients in Theorem 57 and Lemma 59. The section concludes with the
proof of Theorem 55.

The first ingredient shows that we can relate the magnitude of the constraint violation of θ to the
difference between Φθ and µθ, which quantifies how far Φθ is from a stationary distribution.

Lemma 56. Let u ∈ RXA be a vector, N be the set of points (x, a) where u(x, a) < 0, and S be
the complement of N . Assume∑

x,a

u(x, a) = 1,
∑

(x,a)∈N

|u(x, a)| ≤ ε′, ‖uᵀ(P −B)‖1 ≤ ε′′.

The vector [u]+/‖[u]+‖1 defines a policy, which in turn defines a stationary distribution µu. We
have that

‖µu − u‖1 ≤ τ(µu) log(1/ε′)(2ε′ + ε′′) + 3ε′ .

Proof. Let f = uᵀ(P −B). From ‖uᵀ(P −B)‖1 ≤ ε′′, we get that for any x′ ∈ X ,∑
(x,a)∈S

u(x, a)(P −B)(x,a),x′ = −
∑

(x,a)∈N

u(x, a)(P −B)(x,a),x′ + f(x′)

such that
∑

x′|f(x′)| ≤ ε′′. Let h = [u]+/‖[u]+‖1. Let H ′ = ‖hᵀ(B − P )‖1. We write

H ′ =
∑
x′

|
∑

(x,a)∈S

h(x, a)(B − P )(x,a),x′ |

=
1

1 + ε′

∑
x′

|
∑

(x,a)∈S

u(x, a)(B − P )(x,a),x′|

=
1

1 + ε′

∑
x′

|−
∑

(x,a)∈N

u(x, a)(B − P )(x,a),x′ + f(x′)|

≤ 1

1 + ε′

∑
x′

|−
∑

(x,a)∈N

u(x, a)(B − P )(x,a),x′ |+
∑
x′

|f(x′)|


≤ 1

1 + ε′

ε′′ + ∑
(x,a)∈N

∑
x′

|u(x, a)||(B − P )(x,a),x′|


≤ 1

1 + ε′

ε′′ + ∑
(x,a)∈N

2|u(x, a)|

 ≤ 2ε′ + ε′′

1 + ε′

≤ 2ε′ + ε′′ .

Vector h is almost a stationary distribution in the sense that

‖hᵀ(B − P )‖1 ≤ 2ε′ + ε′′ . (4.24)
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Let ‖w‖1,S =
∑

(x,a)∈S |w(x, a)|. First, we have that

‖h− u‖1 ≤ ‖h−
u

1 + ε′
‖1 + ‖u− u

1 + ε′
‖1,S ≤ 2ε′ .

Next we bound ‖µh − h‖1. Using ν0 = h as the initial state distribution, we will show that as we
run policy h (equivalently, policy µh), the state distribution converges to µh and this vector is close
to h. From (4.24), we have µᵀ

0P = hᵀB + v0, where v0 is such that ‖v0‖1 ≤ 2ε′ + ε′′. Let Mh be a
X × (XA) matrix that encodes policy h, Mh

(i,(i−1)A+1)-(i,iA) = h(·|xi). Other entries of this matrix
are zero. We have

hᵀPMh = (hᵀB + v0)Mh = hᵀBMh + v0M
h = hᵀ + v0M

h ,

where we used the fact that hᵀBMh = hᵀ. Let µᵀ
1 = hᵀPMh which is the state-action distribution

after running policy h for one step. Let v1 = v0M
hP = v0P

h and notice that as ‖v0‖1 ≤ 2ε′ + ε′′,
we also have that ‖v1‖1 = ‖P hᵀvᵀ0‖1 ≤ ‖v0‖1 ≤ 2ε′ + ε′′. Thus,

µᵀ
1P = hᵀP + v1 = hᵀB + v0 + v1 .

By repeating this argument for k rounds, we obtain

µᵀ
k = hᵀ + (v0 + v1 + · · ·+ vk−1)Mh

and it is easy to see that

‖(v0 + v1 + · · ·+ vk−1)Mh‖1 ≤
k−1∑
i=0

‖vi‖1 ≤ k(2ε′ + ε′′).

Thus, ‖µk − h‖1 ≤ k(2ε′ + ε′′). Now, notice that µk is the state-action distribution after k rounds of
policy µh. By the mixing assumption, ‖µk − µh‖1 ≤ e−k/τ(h), so the choice of k = τ(h) log(1/ε′)
yields ‖µh − h‖1 ≤ τ(h) log(1/ε′)(2ε′ + ε′′) + ε′.

The second ingredient is the validity of using estimates of the subgradients. We assume access
to estimates of the subgradient of a convex cost function. Error bounds can be obtained from results
in the stochastic convex optimization literature; the following theorem, a high-probability version of
Lemma 3.1 of Flaxman, Kalai, and McMahan [20] for stochastic convex optimization, is sufficient.
We note that the variance reduced stochastic gradient descent literature (e.g. SAGA or SVGR)
cannot be directly applied since a full gradient calculation is impossible, and most complexity upper
bounds are at least O(

√
XA/ε) [55], which is inappropriate for out setting.

Theorem 57. Consider a bounded set Z ⊂ Rd of radius Z (i.e. ‖z‖ ≤ Z for all z ∈ Z) and a
sequence of real-valued convex cost functions (ft)t=1,2,...,T . Let z1, z2, . . . , zT ∈ Z be the stochastic
gradient decent path defined by defined by z1 = 0 and zt+1 = ΠZ(zt − ηf ′t), where ΠZ is the
Euclidean projection onto Z , η > 0 is a learning rate, and f ′1, . . . , f

′
T are bounded unbiased
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subgradient estimates; that is, E [f ′t |zt] = ∇f(zt) and ‖f ′t‖ ≤ F for some F > 0. Then, for
η = Z/(F

√
T ) and any δ ∈ (0, 1),

T∑
t=1

ft(zt)−min
z∈Z

T∑
t=1

ft(z) ≤ ZF
√
T +

√
(1 + 4Z2T )

(
2 log

1

δ
+ d log

(
1 +

Z2T

d

))
(4.25)

with probability at least 1− δ.

Proof. Let z∗ = argminz∈Z
∑T

t=1 ft(z) and ηt = f ′t − ∇ft(zt). Define function ht : Z → R by
ht(z) = ft(z) + zηt. Notice that ∇ht(zt) = ∇ft(zt) + ηt = f ′t . By Theorem 1 of Zinkevich [56],
we get that

T∑
t=1

ht(zt)−
T∑
t=1

ht(z∗) ≤
T∑
t=1

ht(zt)−min
z∈Z

T∑
t=1

ht(z) ≤ ZF
√
T .

Thus,
T∑
t=1

ft(zt)−
T∑
t=1

ft(z∗) ≤ ZF
√
T +

T∑
t=1

(z∗ − zt)ηt .

Let St =
∑t−1

s=1(z∗ − zs)ηs, which is a self-normalized sum [14]. By Corollary 3.8 and Lemma E.3
of Abbasi-Yadkori [1], we get that for any δ ∈ (0, 1), with probability at least 1− δ,

|St| ≤

√√√√(1 +
t−1∑
s=1

(zt − z∗)2

)(
2 log

1

δ
+ d log

(
1 +

Z2t

d

))

≤

√
(1 + 4Z2t)

(
2 log

1

δ
+ d log

(
1 +

Z2t

d

))
.

Thus,

T∑
t=1

ft(zt)−min
z∈Z

T∑
t=1

ft(z) ≤ ZF
√
T +

√
(1 + 4Z2T )

(
2 log

1

δ
+ d log

(
1 +

Z2T

d

))
.

Remark 58. Let BT denote the RHS of (4.25). If all cost functions are equal to f , then by convexity
of f and an application of Jensen’s inequality, we obtain that f(

∑T
t=1 zt/T ) − minz∈Z f(z) ≤

BT/T .

The last step before giving the proof of Theorem 55 is to apply Theorem 57 to our convex
surrogate function, c(θ).
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Lemma 59. Under the same conditions as in Theorem 55 and any δ ∈ (0, 1)

c(θ̂T )−min
θ∈Θ

c(θ) ≤ S(
√
d+H(C1 + C2))√

T
+

√
1 + 4S2T

T 2

(
2 log

1

δ
+ d log

(
1 +

S2T

d

))
(4.26)

with probability at least 1− δ,

Proof. We prove the lemma by showing that conditions of Theorem 57 are satisfied. The assump-
tions allow an easy bound on the subgradient estimate:

‖gt‖ ≤ ‖`ᵀΦ‖+H
‖Φ(xt,at),:‖
q1(xt, at)

+H
‖(P −B)ᵀ:,x′t

Φ‖
q2(x′t)

≤
√
d+H(C1 + C2) .

Also, we show that the subgradient estimate is unbiased:

E [gt(θ] = `ᵀΦ−H
∑
(x,a)

q1(x, a)
Φ(x,a),:

q1(x, a)
I{µ0(x,a)+Φ(x,a),:θ<0}

+H
∑
x′

q2(x′)
(P −B)ᵀ:,x′Φ

q2(x′)
sgn((P −B)ᵀ:,x′Φθ)

= `ᵀΦ−H
∑
(x,a)

Φ(x,a),:I{µ0(x,a)+Φ(x,a),:θ<0} +H
∑
x′

(P −B)ᵀ:,x′Φ sgn((P −B)ᵀ:,x′Φθ)

= ∇θc(θ) .

The result then follows from Theorem 57 and Remark 58.
It is also convenient to bound the norm of the gradient. If µ0(x, a) + Φ(x,a),:θ ≥ 0, then

∇θ|[µ0(x, a) + Φ(x,a),:θ]−| = 0. Otherwise,∇θ|[µ0(x, a) + Φ(x,a),:θ]−| = −Φ(x,a),:. Calculating,

∇θc(θ) = `ᵀΦ +H
∑
(x,a)

∇θ|[µ0(x, a) + Φ(x,a),:θ]−|+H
∑
x′

∇θ|(P −B)ᵀ:,x′Φθ|

= `ᵀΦ−H
∑
(x,a)

Φ(x,a),:I{µ0(x,a)+Φ(x,a),:θ<0} +H
∑
x′

(P −B)ᵀ:,x′Φ sgn((P −B)ᵀ:,x′Φθ) ,

(4.27)

where sgn(z) = I{z>0} − I{z<0} is the sign function. Let ± denote the plus or minus sign (the exact
sign does not matter here). We have that

‖∇θc(θ)‖ ≤ H

√√√√√ d∑
i=1

∑
x′

±∑
(x,a)

(P −B)(x,a),x′Φ(x,a),i

2

+ ‖`ᵀΦ‖+H

√√√√√ d∑
i=1

∑
(x,a)

|Φ(x,a),i|

2

.
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Thus,

‖∇θc(θ)‖ ≤

√√√√ d∑
i=1

(`ᵀΦ:,i)2 +H
√
d+H

√√√√√ d∑
i=1

∑
(x,a)

(
±
∑
x′

(P −B)(x,a),x′

)
Φ(x,a),i

2

≤
√
d+H

√
d+H

√√√√√ d∑
i=1

2
∑
(x,a)

|Φ(x,a),i|

2

=
√
d(1 + 3H) ,

where we used |`ᵀΦ:,i| ≤ ‖`‖∞‖Φ:,i‖1 ≤ 1.

With both ingredients in place, we can prove our main result.

Proof of Theorem 55. Let bT be the RHS of (4.26). Using the trivial fact that
√
a+ b ≤ 2

√
a+2
√
b,

we can easily derive

bT ≤
S√
T

(
(
√
d+H(C1 + C2)) + 2

√
10 log

1

δ
+ 2

√
5d log

(
1 +

S2T

d

))
+O

(
1

T

)
. (4.28)

Lemma 59 implies that with high probability for any θ ∈ Θ,

`ᵀ(µ0 + Φθ̂T ) +H V1(θ̂T ) +H V2(θ̂T ) ≤ `ᵀ(µ0 + Φθ) +H V1(θ) +H V2(θ) + bT . (4.29)

From (4.29), we get that

V1(θ̂T ) ≤ 1

H
(2(1 + S) +H V1(θ) +H V2(θ) + bT ) := ε′ , (4.30)

V2(θ̂T ) ≤ 1

H
(2(1 + S) +H V1(θ) +H V2(θ) + bT ) := ε′′ . (4.31)

Inequalities (4.30) and (4.31) and Lemma 56 give the following bound:

|`ᵀµθ̂T − `
ᵀ(µ0 + Φθ̂T )| ≤ τ(µθ̂T ) log(1/ε′)(2ε′ + ε′′) + 3ε′ , (4.32)

and we can similarly bound

|`ᵀµθ − `ᵀ(µ0 + Φθ)| ≤ τ(µθ) log(1/V1(θ))(2V1(θ) + V2(θ)) + 3V1(θ). (4.33)

Combining these two equation with (4.29) gives the final result:

`ᵀµθ̂T ≤ `ᵀ(µ0 + Φθ̂T ) + τ(µθ̂T ) log(1/ε′)(2ε′ + ε′′) + 3ε′

≤ `ᵀ(µ0 + ΦθT ) + τ(µθ̂T ) log(1/ε′)(2ε′ + ε′′) + 3ε′ +HV1(θ) +HV2(θ) + bT

≤ `ᵀµθ + τ(µθ) log(1/V1(θ))(2V1(θ) + V2(θ)) + 3V1(θ)

+ τ(µθ̂T ) log(1/ε′)(2ε′ + ε′′) + 3ε′ +HV1(θ) +HV2(θ) + bT

≤ `ᵀµθ + 2 (V1(θ) + V2(θ))
(

3 + τ(µθ) log(1/V1(θ)) + τ(µθ̂T ) log(1/ε′) +H
)

+
(

2τ(µθ̂T ) log(1/ε′) + 3
) 2(1 + S)

H
+ (2τ(µθ̂T ) log(1/ε′) + 3)

bT
H

+ bT .
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Using the form of bT above, we find the regret bound

`ᵀµθ̂T ≤ `ᵀµθ + 2 (V1(θ) + V2(θ))
(

3 + τ(µθ) log(1/V1(θ)) + τ(µθ̂T ) log(1/ε′) +H
)

+
(

2τ(µθ̂T ) log(1/ε′) + 3
) 2(1 + S)

H
+

S√
T
H(C1 + C2)

+

(
2τ(µθ̂T ) log(1/ε′) + 3

H
+ 2

)
S√
T

√
10 log

1

δ

+O

(
log(T )√

T

)
+O

(
1√
TH

)
(4.34)

≤ `ᵀµθ + (V1(θ) + V2(θ))O(H) +O

(
1

H

)
+O

(
H√
T

)
+O

(
1

H
√
T

)√
log

1

δ
+O

(
log(T )√

T

)
(4.35)

Now, recall that we set

H =
1

ε
and T = max

{
H2

ε2
, 40S2 log

1

δ

}
,

which finally yields that with high probability, for any θ ∈ Θ,

`ᵀµθ̂T ≤ `ᵀµθ +
1

ε
(V1(θ) + V2(θ)) +O(ε),

as claimed.

Comparison with Previous results
With a precise statement of our main result, we return to compare Theorem 55 from Farias and
Van Roy [16]. Their approach is to relate the original MDP to a perturbed version 1 and then analyze
the corresponding ALP. (See Section 4.1 for more details.) Let Ψ be a feature matrix that is used
to estimate value functions. Recall that λ∗ is the average loss of the optimal policy and λw is the
average loss of the greedy policy with respect to value function Ψw. Let h∗γ be the differential value
function when the restart probability in the perturbed MDP is 1−γ. For vector v and positive vector
u, define the weighted maximum norm ‖v‖∞,u = maxx u(x)|v(x)|. Farias and Van Roy [16] prove
that for appropriate constants C,C ′ > 0 and weight vector u,

λw∗ − λ∗ ≤
C

1− γ
min
w
‖h∗γ −Ψw‖∞,u + C ′(1− γ) . (4.36)

1In a perturbed MDP, the state process restarts with a certain probability to a restart distribution. Such perturbed
MDPs are closely related to discounted MDPs.
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This bound has similarities to bound (4.23): tightness of both bounds depends on the quality of
feature vectors in representing the relevant quantities (stationary distributions in (4.23) and value
functions in (4.36)). Once again, we emphasize that the algorithm proposed by Farias and Van Roy
[16] is computationally expensive and requires access to a distribution that depends on optimal
policy.

4.3 Average Cost Grid Algorithm
The main regret bound of the previous section, Theorem 55, may be sufficient for many applications,
especially if one has reason to believe that V1(θ) and V2(θ) are small. For example, the features
could include many stationary distributions (hence the error terms are zero). However, the result
may be unsatisfying since the complexity is a function of H , but running the stochastic gradient
procedure for more iterations will not guarantee a better result.

In this section, we will present an algorithm that obtains the more natural regret bound

`ᵀµθ̂T ≤ min
θ∈Θ

`ᵀµθ +O
(√

V1(θ) + V2(θ)
)

+O(ε).

Intuitively, we accomplish this by also optimizing over the violation scaling parameter H , thus
approximately computing

min
θ∈Θ,H∈R

(
`ᵀµθ +H(V1(θ) + V2(θ)) +

β

H

)
, (4.37)

where β is some constant, but in particular can be chosen to match the coefficient on the O(ε) of the
regret bound in Theorem 55:

β = S(C1 + C2 + 3τ(µθ̂k) + 3τ(µθ∗) + 2). (4.38)

However, if one does not require the dependence on S or C1 +C2 to be correct, β = 1 is acceptable.
Throughout the section, we use the following notation to simplify the presentation. We define

c(H, θ) := `ᵀΦθ+H(V1(θ)+V2(θ)) and θ∗H := argminθ c(H, θ). To obtain theO
(√

V1(θ∗) + V2(θ∗)
)

regret, it suffices to solve the optimization problem

min
H,θ

c(H, θ) +
β

H
.

The objective is convex in H and θ individually but not jointly and hence we cannot use gradient
descent. One might try alternating minimizing over θ and H , but this approach is difficult to analyze.

Instead, we will exploit what we already know how to do: approximate θ∗H . If we define
F (H) = c(H, θ∗H) + β

H
, then we will show that approximating the minimum H is sufficient. Hence,

we will analyze grid search, where we (precisely) select a grid H1, . . . , HK then use Algorithm 4.1
to approximate θ̂ for every grid point.
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The Grid Algorithm The grid algorithm takes as inputs a bound on the violation function Vmax,
a desired error tolerance ε, and desired probability tolerance δ. The algorithm then carefully chooses
a grid H1, . . . , HK , and for each i = 1, . . . , K, computes θ̂i, the output of Algorithm 4.1, and V̂i, an
approximation to V1(θ̂i) + V2(θ̂i). It then returns

k̂ := argmin
k

`ᵀΦθ̂k +HkV̂k +
β

Hk

. (4.39)

Estimating the Error Functions
To run the Grid Algorithm, we need to be able to estimate the constraint violations V1(θ) + V2(θ).
Similar to the gradient estimate, we estimate V1 + V2 by importance-weighted sampling. For some
n and samples y1, . . . , yn ∼ q1 and (x1, a1), . . . , (xn, an) ∼ q2, define

V̂n(θ) :=
1

n

n∑
i=1

[µ0(xi, ai) + Φ(xi,ai),:θ]−
q1(x, a)

+
|(P −B)ᵀ:,yiΦθ|

q2(yi)
. (4.40)

Since V1(θ) =
∑

(x,a)|[µ0(x, a) + Φ(x,a),:θ]−| and V2(θ) =
∑

x′ |(P − B)ᵀ:,x′Φθ|, this estimate is

clearly unbiased. Also, we earlier assumed the existence of constants C1 = max(x,a)∈X×A
‖Φ(x,a),:‖
q1(x,a)

and C2 = maxx∈X
‖(P−B)ᵀ:,xΦ‖

q2(x)
, and so we can bound

[µ0(xi, ai) + Φ(xi,ai),:θ]−
q1(x, a)

+
|(P −B)ᵀ:,yiΦθ|

q2(yi)
≤ S(C1 + 1) + SC2

which gives us concentration of V̂ around V . In particular, applying Hoeffding’s inequality yields:

Lemma 60. Given ε > 0 and δ ∈ [0, 1], for any θ, the violation function estimate V̂n(θ) has

|V̂n(θ)− (V1(θ) + V2(θ))| ≤ ε

with probability at least 1− δ as long as we choose n ≥ (S(C1+1)+SC2)2

2ε2
log
(

2
δ

)
.

Figure 4.2 provides a precise definition of the algorithm and specifies the grid, parameters for
the SGD algorithm, and sample sizes for V̂k needed. The rest of Section 4.3 is devoted to analyzing
this algorithm and proving that is does achieve a O(

√
V1(θ∗) + V2(θ∗) regret.

Theorem 61. For some ε > 0 and δ ∈ [0, 1], the Grid Algorithm specified in Figure 4.2 has regret

µᵀ

θ̂T
` ≤ µᵀ

θ`+O
(√

V1(θ) + V2(θ)
)

+O(ε) (4.44)

with probability at least 1− δ.

The proof is delayed until Section 4.3, but a rough outline is as follows. We construct the grid
H1, . . . , HK such that maxHk≤H≤Hk+1

F (H)−F (Hk) is always ε
2

by reasoning about the Lipschitz
constant of F (H). This lets us conclude that Hk̂, θ̂k̂ produces an objective value close to that of

H∗, θ∗, which has the desired O
(√

V1(θ∗) + V2(θ∗)
)

regret.
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Input: Upper bound V1(θ) + V2(θ) ≤ Vmax, error tolerance ε > 0,
probability δ > 0
Compute grid

Hk :=

β
(

1√
Vmax
− k−1

4
ε
)−1

if k ≤ k

Hk + ε(k−k)
4Vmax

otherwise
(4.41)

where

k := min
{
i : Vmax(Hi+1 −Hi) ≥

ε

4

}
, and (4.42)

K := min{k : Hk ≥ 4
β

ε
}. (4.43)

for k := 1, 2, . . . , K do
Obtain θ̂k from Algorithm 4.1 with T = max

{
H2

ε2
, 40S2 log K

δ

}
Set n = 8(S(C1+1)+SC2)2

ε2
log
(

4K
δ

)
Set V̂k = 1

n

n∑
i=1

[
[µ0(xi, ai) + Φ(xi,ai),:θ̂k]−

q1(x, a)
+
|(P −B)ᵀ:,yiΦθ̂k|

q2(yi)

]
end for
Set k∗ = argmink `

ᵀΦθ̂k +HkV̂k + β
Hk

Return policy πθ̂k̂

Figure 4.2: The Grid algorithm

Analysis
The main idea of the proof is to show that F (H) (the optimization in H only after the optimal θ is
used) is well behaved and Lipshitz; we construct the sequence Hk such that maxHk≤H≤Hk+1

F (H)
is always ε

2
. Finally, we show that the error from finding the minimum Hk and the error for the

approximate optimization of θ given a fixed H add up to an order ε error.

Lemma 62. Let ε > 0 be some desired error tolerance. Let Vmax be some upper bound on
V1(θ) + V2(θ); we can always take Vmax = 3 + S(d+ 2). The sequence defined by

Hk :=

β
(

1√
Vmax
− k−1

2
ε
)−1

if k ≤ k

Hk + ε(k−k)
2Vmax

k < k ≤ K
(4.45)
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for

k := min
{
i : Vmax(Hi+1 −Hi) ≥

ε

2

}
and K = min

{
k : Hk ≥

2β

ε

}
(4.46)

guarantees that, for all 1 ≤ k ≤ K,

max
Hk≤H≤Hk+1

|F (Hk)− F (H)| ≤ ε. (4.47)

Proof. Since c(H, θ) is linear inH , c(H, θ∗H) is concave inH . Also, using δ to denote some positive
number, we can show that c(H, θ∗H) is increasing

c(H, θ∗H) = min
θ
`ᵀΦθ +H(V1(θ) + V2(θ))

≤ min
θ
`ᵀΦθ + (H + δ)(V1(θ) + V2(θ))

= c(H + δ, θ∗H+δ)

and sub-linear

c(H + δ, θ∗H+δ) = min
θ
`ᵀΦθ + (H + δ)(V1(θ) + V2(θ))

≤ `ᵀΦθ∗H + (H + δ)(V1(θ∗H) + V2(θ∗H))

= c(H, θ∗H) + δ(V1(θ∗H) + V2(θ∗H))

≤ c(H, θ∗H) + δVmax.

Using the monotonicity property of c(H, θ∗H), we have

max
Hi≤H≤Hi+1

|F (Hi)− F (H)| ≤ max
Hi≤H≤Hi+1

c(Hi+1, θ
∗
Hi+1)− c(Hi, θ

∗
Hi

) + β

(
1

Hi

− 1

Hi+1

)
≤ (Hi+1 −Hi)Vmax + β

(
1

Hi

− 1

Hi+1

)
.

First, consider the case where k ≤ k. Then Hk = β
(√

Vmax − k−1
2
ε
)−1 so that

(
1
Hk
− 1

Hk+1

)
=

ε
2
. By definition of k, we also have that Vmax(Hi+1 −Hi) ≤ ε

2
. In the case where k > k, we have

β
(

1
Hk
− 1

Hk+1

)
< (Hk+1 −Hk)Vmax and (Hk+1 −Hk)Vmax = ε

2
. In either case,

|F (Hk+1)− F (Hk)| ≤ (Hk+1 −Hk)Vmax + β

(
1

Hk

− 1

Hk+1

)
≤ ε

2
+
ε

2
≤ ε

as desired.
Finally, we check that if H∗ > HK , then |F (H∗)− F (HK)| ≤ ε. Note that

F (H∗) = min
H,θ

`ᵀΦθ +H(V1(θ) + V2(θ)) +
β

H
= min

θ
`ᵀΦθ + 2

√
β(V1(θ) + V2(θ))
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and

F (HK) = min
θ
`ᵀΦθ +

√
β

(
V1(θ) + V2(θ)

ε
+ ε

)
,

where we solved for the optimum H for a given θ as H∗θ =
√
β/(V1(θ) + V2(θ)). Therefore,

H∗ > HK implies that V1(θ∗) + V2(θ∗) ≤ ε2

4β
. Then

F (HK)− F (H∗) = min
θ′

(
`ᵀΦθ′ +

2β

ε
(V1(θ′) + V2(θ′)) +

ε

2

)
−
(

min
θ
`ᵀΦθ + 2

√
β(V1(θ) + V2(θ))

)
≤ max

θ
`ᵀΦθ +

2β

ε
(V1(θ) + V2(θ)) +

ε

2
−
(
`ᵀΦθ + 2

√
β(V1(θ) + V2(θ))

)
≤ max

θ

2β

ε
(V1(θ) + V2(θ)) +

ε

2
≤ ε,

completing the last case.

We can now formally state and prove Theorem 61.

Proof. Running Algorithm 4.1 for H1, . . . , HK with T = 16
H2
k

ε2
, produces a sequence θ̂1, . . . , θ̂K

such that
c(Hk, θ̂K) ≤ c(Hk, θ

∗
K) +HkV (θ∗) +

β

Hk

+
ε

4

holds for all k simultaneously with probability at least 1− δ
2
, which is easily argued by noting that the

probability of error for any single k is δ/K and applying the union bound. Let θ∗k be the true optimal
θ of C(Hk, θ). Additionally, Lemma 60, along with our choice of n = 8(S(C1+1)+SC2)2

ε2
log
(

4K
δ

)
,

guarantees that, with probability at least 1− δ
2K

, |V1(θ̂k)+V2(θ̂k)−V̂k| ≤ ε
4
, and hence the statement

holds for all V̂k with probability at most 1− δ
2
.

The first step is bounding the suboptimality of the objective. Recalling that k̂ is the minimizer
of `ᵀΦθ̂k +HkV̂k + β

Hk
, and using k∗ as the minimizer of c(Hk, θ

∗
k) + β

Hk
, we have

`ᵀΦθ̂k̂ +Hk̂V̂k̂ +
β

Hk̂

= min
k
`ᵀΦθ̂k +HkV̂k +

β

Hk

≤ `ᵀΦθ̂k∗ +Hk∗V̂k∗ +
β

Hk∗

≤ c(Hk∗ , θ̂k∗) +
β

Hk∗
+
ε

4
(Lemma 60)

≤ c(Hk∗ , θ
∗
k∗) +

β

Hk∗
+
ε

2
(Lemma 59)

= min
k
c(Hk, θ

∗
k) +

β

Hk

+
ε

2

≤ min
H,θ

c(H, θ) +
β

H
+ ε (Lemma 62).
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The statement holds with probability at least δ
2

+ δ
2
, where the first term is from estimating V̂k

(Lemma 60) and the second term is from bounding the SGD error (Lemma 59). Hence, the Gird
Algorithm minimizes the objective to within ε.

A bound of the suboptimality of the objective is not enough. We wish to prove a statement
about the regret of `ᵀµθk̂ , and hence we must relate this quantity to `ᵀΦθ̂k̂. Since all quantities are
non-negative, this implies that | β

Hk̂
− β

H∗
| ≤ ε. Finally, we can put together the regret bound. To

apply Lemma 3 and bound the distance between `ᵀΦµθ̂k̂ and `ᵀΦθ̂k̂, we first need to bound V1(θ̂k̂)

and V2(θ̂k̂). Using the bounded suboptimality of θ̂k̂ as an optimizer of c(Hk̂, θ), we have

`ᵀΦθ̂k̂ +Hk̂

(
V1(θ̂k̂) + V2(θ̂k̂)

)
≤ `ᵀΦθ∗

k̂
+Hk̂

(
V1(θ∗

k̂
) + V2(θ∗

k̂
)
)

+
ε

2
≤ `ᵀΦθ∗ +H∗ (V1(θ∗) + V2(θ∗)) + ε

and can conclude that

V1(θ̂k̂) ≤
1

Hk̂

(
2(S + 1) +

√
V1(θ∗) + V2(θ∗)

)
≤
(

1

H∗
+ ε

)(
2(S + 1) +

√
V1(θ∗) + V2(θ∗)

)
= (2(S + 1) + ε)

√
V1(θ∗) + V2(θ∗) + (V1(θ∗) + V2(θ∗)) + 2(S + 1)ε.

Completely analogous reasoning gives the same bound on V2(θ̂k̂).
Then, applying Lemma 56, we have

`ᵀΦµθk̂ ≤ `ᵀΦθ̂k̂ + 4τ(µθk̂) log(1/ε′)
(

(2(S + 1) + ε)
√
V1(θ∗) + V2(θ∗) + (V1(θ∗) + V2(θ∗)) + 2(S + 1)ε

)
≤ `ᵀΦθ̂∗ + 4τ(µθk̂) log(1/ε′)

(
(2(S + 1) + ε)

√
V1(θ∗) + V2(θ∗) + (V1(θ∗) + V2(θ∗)) + 2(S + 1)ε

)
+H∗(V1(θ∗) + V2(θ∗)) +

β

H∗
+ ε

≤ `ᵀµθ∗ + 4τ(µθk̂) log(1/ε′)
(

(2(S + 1) + ε)
√
V1(θ∗) + V2(θ∗) + (V1(θ∗) + V2(θ∗)) + 2(S + 1)ε

)
+H∗(V1(θ∗) + V2(θ∗)) +

β

H∗
+ ε+ (V1(θ∗) + V2(θ∗)).

Now, using that H∗ =
(√

V1(θ) + V2(θ)
)−1

, the previous statement implies

`ᵀµθk̂ ≤ min
θ
`ᵀµθ +O

(√
V1(θ) + V2(θ)

)
+O (V1(θ) + V2(θ)) +O(ε),

which produces the theorem statement, because V1(θ) + V2(θ) ≤ 1.
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4.4 The Dual ALP for Discounted Cost
We now change settings to discounted cost but the problem remains: find a policy with discounted
loss almost as low as the best in the class. Fortunately, most of the tools from the average cost carry
over with small modifications. Hence, this section studies how to approximately solve θ given an
H , and the next section studies how to use a grid algorithm to optimize H as well.

Recall that the LP we intend to approximately solve is

min
θ∈Rd

`ᵀΦθ , (4.10)

s.t. (B − γP )ᵀΦθ = α, Φθ ≥ 0.

This LP has another interpretation. The dual of the approximate dual is

maxJ∈RX αᵀJ

s.t. Φᵀ (`+ (γP −B)J − z) = 0,

z ≥ 0,

which is the original primal with a form of constraint aggregation.

Approximately solving the LP Analogous to V1 and V2, we define, relative to a feature matrix
Φ, the constraint violation functions

V3(θ) := ‖ [Φθ]− ‖1 and (4.48)

V4(θ) := ‖(B − γP )TΦθ − α‖ (4.49)

so that we can approximate the solution of the LP by minimizing the convex surrogate

cγ(θ) := `ᵀΦθ +H (V3(θ) + V4(θ)) (4.50)
= `ᵀΦθ +H‖ [Φθ]− ‖1 +H‖(B − γP )ᵀΦθ − α‖1

= `ᵀΦθ +H
∑
(x,a)

[
Φ(x,a),:θ

]
− +H

∑
x′

∣∣(B − γP )ᵀ:,x′Φθ − α
∣∣

with some constant H and the constraint set Θ = {θ : ‖θ‖2 ≤ S} .
We will minimize (4.50) through stochastic gradient descent. We will sample constraints for

V3 and V4 with distributions q3 ∈ 4X×A and q4 ∈ 4X , respectively, and calculate the unbiased
subgradient

gγt (θ) = `ᵀΦ−H
Φ(xt,at),:

q3(xt, at)
I{Φ(xt,at),:

θ<0} +H
(P − γB)ᵀ:,x′t

Φ

q4(x′t)
sgn((P − γB)ᵀ:,x′t

Φθ). (4.51)

Then, the algorithm is exactly the same as Figure 4.1 with gγt instead of gt. Recall that we are using
the shorthand

Jθ = JπΦθ
and νθ = νπΦθ

. (4.52)
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Thus, our objective is to show that αᵀJθ̂T is small.
A key difference between the average and discounted cases is the interpretation for the dual

variables, µ and ν. In the average case, the feasible µ exactly corresponded to stationary distributions
and therefore the average loss was precisely `ᵀµ. However, in the discounted case, the dual variables
ν correspond to the expected discounted number of visits to each state and `ᵀν = αᵀJ , where J is
the value function corresponding to policy πν .

A Regret Bound for the Discounted Case
Unlike the average cost case, the discounted cost case does not need a fast mixing assumption.
However, we do need to assume that the operator 1-norm of Φ is upper bounded by some constant
C:

‖Φ‖1 = max
x:‖x‖1=1

‖Φx‖1 = max
1≤j≤d

∑
(x,a)

|Φ(x,a),j| ≤ C. (4.53)

As before, we will need to choose constraint sampling distributions such that we can bound

C3 = max
(x,a)∈X×A

‖Φ(x,a),:‖
q3(x, a)

, C4 = max
x∈X

‖(P − γB)ᵀ:,xΦ‖
q4(x)

.

While special structure may suggest natural choices of sampling distributions to ensure small C3

and C4, there are general conditions that allow these constants to be bounded. For example, if there
is C ′ > 0 such that for any (x, a) and i, Φ(x,a),i ≤ C ′/(XA) and each column of P has only N
non-zero elements, we can choose q3 and q4 to be uniform distributions and we can bound

‖Φ(x,a),:‖
q3(x, a)

≤ C ′ ,
‖(P − γB)ᵀ:,xΦ‖

q4(x)
≤ C ′(N + A) .

Finally, note that we can always upper bound the constraint violation functions. For any θ ∈ Θ,

V3(θ) ≤ ‖Φθ‖1 ≤
d∑
j=1

∑
(x,a)

|Φ(x,a),j||θj| ≤ C‖θ‖1 ≤ C
√
d‖θ‖2 ≤

√
d CS

V4(θ) ≤
∑
x′

|Bᵀ
:,x′(Φθ)|+ γ

∑
x′

|P ᵀ
:,x′(Φθ)|+ ‖α‖1

≤
∑
(x,a)

(∑
x′

B(x,a),x′

)
|(Φθ)(x,a)|+ γ

∑
(x,a)

(∑
x′

P(x,a),x′

)
|(Φθ)(x,a)|+ 1

= (1 + γ)‖Φθ‖1 + 1

≤ (1 + γ)
√
d CS + 1

and hence
V3(θ) + V4(θ) ≤ 1 +

√
dCS(2 + γ) ≤ 4

√
dCS (4.54)

as long as C, S ≥ 1.
We now present the regret bound for discounted cost and a fixed H .
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Theorem 63. Consider an expanded efficient large-scale dual ALP problem and some error toler-
ance ε > 0 and desired maximum probability of error δ > 0. Running the stochastic subgradient

method (shown in Figure 4.1) with H ≥ 1, T = O

(
S2 log( 1

δ )
ε2

)
and constant learning rate

η = S/(G′
√
T ), where G′ =

√
d+H(C3 + C4), yields a θ̂T with

`ᵀνθ̂T ≤ `ᵀνθ +

(
6

1− γ
+H

)
(V3(θ) + V4(θ)) +

6
√
dCS

H(1− γ)
+O(ε).

Constants hidden in the big-O notation are polynomials in S, d, C3, C4, and C.

Analysis
Here, we present the proof of the main result of this section, beginning with showing that if some
vector ν is close to a feasible point of the LP, then it almost equals the expected frequencies of visits
of the policy πν (when the system runs under the policy πh with the initial distribution α), i.e.,

νπν (x, a) =
∑
x′

α(x′)
∞∑
t=1

γt−1P πh (xt = x, at = a|x1 = x′) . (4.55)

Lemma 64. For any vector ν ∈ RXA, let N be the set of points (x, a) where ν(x, a) ≤ 0 and
S = N c and define the constants

∑
(x,a)∈N |ν(x, a)| = ε′ and ‖(B − γP )ᵀν − α‖1 = ε′′. Further

assume that for each x, there exists an a such that (x, a) ∈ S. Then, for the policy πν define by

πν(a|x) =
[ν(x, a)]+∑
a′ [ν(x, a′)]+

, (4.56)

the expected frequencies of visits under the policy is close to ν:

‖νπν − ν‖1 ≤
3ε′ + ε′′

1− γ
.

Proof. First, we notice that,

‖ [ν]+ − ν‖1 ≤
∑

(x,a)∈N

|ν(x, a)|1 = ε′. (4.57)

Let ξ = (B − γP )ᵀν − α ∈ RX with ‖ξ‖1 = ε′′ according to the assumption. For any x′ ∈ X ,
we have,∑

(x,a)∈S

ν(x, a)(B − γP )(x,a),x′ − α(x′) = −
∑

(x,a)∈N

ν(x, a)(B − γP )(x,a),x′ + ξ(x′).
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Let v0 = (B − γP )ᵀh− α, we have

‖v0‖1 =
∑
x′

∣∣∣∣∣∣
∑
(x,a)

h(x, a)(B − γP )(x,a),x′ − α(x′)

∣∣∣∣∣∣
=
∑
x′

∣∣∣∣∣∣
∑

(x,a)∈S

ν(x, a)(B − γP )(x,a),x′ − α(x′)

∣∣∣∣∣∣
=
∑
x′

∣∣∣∣∣∣−
∑

(x,a)∈N

ν(x, a)(B − γP )(x,a),x′ + ξ(x′)

∣∣∣∣∣∣ (4.58)

with the upper bound

‖v0‖1 ≤
∑
x′

∣∣∣∣∣∣−
∑

(x,a)∈N

ν(x, a)(B − γP )(x,a),x′

∣∣∣∣∣∣+ ‖ξ‖1

≤
∑

(x,a)∈N

(
|ν(x, a)|

∑
x′

∣∣(B − γP )(x,a),x′
∣∣)+ ε′′

≤ 2
∑

(x,a)∈N

|ν(x, a)|+ ε′′

≤ 2ε′ + ε′′. (4.59)

LetMh be aX×(XA) matrix that encodes the policy πν , whereMh
(i,(i−1)A+1)−(i,iA) = πν (·|xi) .

As a concrete example, when the state space X = {x1, x2} and A = {a1, a2}, then

Mh =

(
πν(a1|x1) πν(a2|x1) 0 0

0 0 πν(a1|x2) πν(a2|x2)

)
.

By the definition of πν in (4.56), it is easy to check that hᵀBMh = hᵀ.
With Mh, the νπh defined in (4.55) can be written as,

νᵀπh =
∞∑
t=1

γt−1αᵀMh(PMh)t−1 (4.60)

Now, we are ready to bound ‖νπν − ν‖1. By the definition of v0 (i.e., v0 = (B − γP )ᵀh− α),
we have,

αᵀMh = hᵀBMh − γhᵀPMh − vᵀ0Mh = hᵀ − γhᵀPMh − vᵀ0Mh,

where the last equality is due to hᵀBMh = hᵀ. Therefore,

αᵀMh(PM)t−1 = hᵀ(PMh)t−1 − γhᵀ(PMh)t − vᵀ0Mh(PM)t−1,
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By (4.60), we have,

νᵀπh = hᵀ −
∞∑
t=1

γt−1vᵀ0Mh(PM
h)t−1. (4.61)

Let zt = vᵀ0Mh(PM
h)t. By (4.59), we have

‖z0‖ = ‖vᵀ0Mh‖1 =
∑
x,a

|v0(x)πν(a|x)| ≤
∑
x

(
|v0(x)|

∑
a

|πν(a|x)|

)
= ‖v0‖1 ≤ 2ε′ + ε′′.

Further,

‖zt+1‖1 = ‖ztPMh‖1 =
∑
x,a

∑
x′,a′

|zt(x′, a′)P (x|x′, a′)πν(a|x)|

≤
∑
x,a

(
|zt(x′, a′)|

∑
x′,a′

|Pπν (x, a|x′, a′)|

)
= ‖zt‖1.

By the induction, we know that ‖zt‖1 ≤ 2ε′ + ε′′ for all t. By (4.61),

‖νπh − h‖1 ≤
∞∑
t=1

γt−1‖zt−1‖1 ≤
2ε′ + ε′′

1− γ
. (4.62)

Combining this with (4.57) and the triangle inequality,

‖νπh − ν‖1 ≤
2ε′ + ε′′

1− γ
+ ε′ ≤ 3ε′ + ε′′

1− γ
. (4.63)

Next, we need the analog of Lemma 59 for the discounted case, which is again a direct
application of Theorem 57.

Lemma 65. Given some error tolerance ε > 0 and desired maximum probability of error δ > 0,
running the stochastic subgradient method (shown in Figure 4.1) on cγ(θ) with T ≥ 1/ε4, H = 1/ε,
and constant learning rate η = S√

T

(√
d+H(C3 + C4)

)
produces a θ̂T such that, with probability

at least 1− δ,

cγ(θ̂T )−min
θ∈Θ

cγ(θ) ≤ S

√
d+H(C3 + C4)√

T
+

√
1 + 4S2T

T 2

(
2 log

1

δ
+ d log

(
1 +

S2T

d

))
.

(4.64)
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Proof. We (once again) prove the lemma by showing that conditions of Theorem 57 are satisfied.
First, the subgradient norms have the easy bound

‖gγt ‖ ≤ ‖`ᵀΦ‖+H
‖Φ(xt,at),:‖
q3(xt, at)

+H
‖(P − γB)ᵀ:,x′t

Φ‖
q4(x′t)

≤
√
d+H(C3 + C4) .

Finally, we show that the subgradient estimate is unbiased:

E [gγt (θ)] = `ᵀΦ−H
∑
(x,a)

q3(x, a)
Φ(x,a),:

q3(x, a)
I{µ0(x,a)+Φ(x,a),:θ<0}

+H
∑
x′

q4(x′)
(P − γB)ᵀ:,x′Φ

q4(x′)
sgn((P − γB)ᵀ:,x′Φθ)

= `ᵀΦ−H
∑
(x,a)

Φ(x,a),:I{µ0(x,a)+Φ(x,a),:θ<0} +H
∑
x′

(P − γB)ᵀ:,x′Φ sgn((P − γB)ᵀ:,x′Φθ)

= ∇θc
γ(θ) .

With this lemma in hand, the proof of Theorem 63] proceeds in much the same way as the proof
of Theorem 55].

Proof of Theorem 63. Recall that the convex surrogate for the discounted cost is

cγ(θ) = `ᵀΦθ +H‖ [Φθ]− ‖1 +H‖(B − γP )ᵀΦθ − α‖1, (4.65)

with the constraint set Θ = {θ : ‖θ‖2 ≤ S}.
Now, obtain θ̂T from the stochastic gradient descent algorithm. By Lemma 65, the error bound

must be less than

bT =
S√
T

(
(
√
d+H(C3 + C4)) + 2

√
10 log

1

δ
+ 2

√
5d log

(
1 +

S2T

d

))
+O

(
1

T

)
.

Then with high probability, we have for any θ ∈ Θ,

`ᵀΦθ̂T +H V3(θ̂T ) +H V4(θ̂T ) ≤ `ᵀΦθ +H V3(θ) +H V4(θ) + bT . (4.66)

Since we can bound

`ᵀΦθ ≤ ‖`‖∞‖Φθ‖1 ≤
√
d CS,

rearranging Equation (4.66) yields

V3(θ̂T ) ≤ 1

H

(
2
√
d CS +H V3(θ) +H V4(θ) + bT

)
:= ε′ , and (4.67)

V4(θ̂T ) ≤ 1

H

(
2
√
d CS +H V3(θ) +H V4(θ) + bT

)
:= ε′′ . (4.68)
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Using these bounds on V3(θ̂T ) and V3(θ̂T ) with Lemma 64 gives

|`ᵀνθ̂T − `
ᵀΦθ̂T | ≤ ‖νθ̂T − Φθ̂T‖1 ≤

3ε′ + ε′′

1− γ
. (4.69)

Lemma 64, applied to νθ, implies that

|`ᵀνθ − `ᵀΦθ| ≤ ‖νθ − Φθ‖1 ≤
3V3(θ) + V4(θ)

1− γ
, (4.70)

and so

`ᵀνθ̂T ≤ `ᵀΦθ̂T +
3ε′ + ε′′

1− γ

≤ `ᵀΦθ +H V3(θ) +H V4(θ) + bT +
3ε′ + ε′′

1− γ

≤ `ᵀνθ +
3V3(θ) + V4(θ)

1− γ
+H V3(θ) +H V4(θ) + bT +

3ε′ + ε′′

1− γ
.

First, we simplify

3ε′ + ε′′

1− γ
=

3

H(1− γ)

(
2
√
dCS +HV3(θ) +HV4(θ) + bT

)
=

3

(1− γ)
(V3(θ) + V4(θ)) +

3

H(1− γ)
2
√
dCS +

4S(
√
d+ C3 + C4)√
TH(1− γ)

+
3S√

TH(1− γ)
2

√
10 log

1

δ
+

3S√
TH(1− γ)

2

√
5d log

(
1 +

S2T

d

)
+O

(
1

T 3/2(1− γ)H

)
=

3

(1− γ)
(V3(θ) + V4(θ)) +

6

H(1− γ)

√
dCS +O

(
log(T )

(1− γ)H
√
T

)
.

Plugging in this expression and bT , we have

`ᵀνθ̂T ≤ `ᵀνθ +

(
6

1− γ
+H

)
(V3(θ) + V4(θ)) +

6
√
dCS

H(1− γ)
+O

(
log(T )

(1− γ)H
√
T

)
+ bT

≤ `ᵀνθ +

(
6

1− γ
+H

)
(V3(θ) + V4(θ)) +

6
√
dCS

H(1− γ)
+

S√
T
H(C3 + C4)

+
S√
T

(
C3 + C4 +

√
d+ 2

√
10 log

1

δ
+ 2

√
5d log

(
1 +

S2T

d

))
(4.71)

+O

(
log(T )

(1− γ)H
√
T

)
+O

(
1

T

)
. (4.72)



CHAPTER 4. REGRET BOUNDS FOR MDP LEARNING 101

Thus, setting T such that

T ≥ S2

ε2

(
C3 + C4 +

√
d+ 2

√
10 log

1

δ
+ 2

√
5d log

(
1 +

S2T

d

))2

(4.73)

⇒ T = O

(
S2 log

(
1
δ

)
ε2

)

yields

`ᵀνθ̂T ≤ `ᵀνθ +

(
6

1− γ
+H

)
(V3(θ) + V4(θ)) +

6
√
dCS

H(1− γ)
+ 2ε+O

( ε
H

)
+O(ε2), (4.74)

where, as usual, the O hides log factors. This statement holds with probability at least 1− δ and for
any θ ∈ Θ.

Error Bound
Previous ADP literature concentrated on showing that the optimal value function is well approxi-
mated if the feature space contains elements close to the optimum; i.e. |αᵀJθ̂T −α

ᵀJ∗| was bounded
in terms of minθ ‖Φθ − ν∗‖1. Theorem 63 is certainly more general, as it remains non-trivial even
if minθ ‖Φθ − ν∗‖1 is large. For completeness, we provide a corollary of this form.

Corollary 66. Under the same conditions as Theorem 63,

αᵀJθ̂T − α
ᵀJ∗ ≤ C3

(
1

1− γ
+

1

ε

)
min
θ
‖Φθ − ν∗‖1 + C2

ε

1− γ
. (4.75)

Proof. Let θ∗ be one of the vectors minimizing ‖Φθ − ν∗‖1. Theorem 63 gives

αᵀJθT − αᵀJθ∗ ≤ C1

(
1

1− γ
+

1

ε

)
(V3(θ∗) + V4(θ∗)) + C2

ε

1− γ
,

Since ν∗ ≥ 0 and by the simple fact that [x]− ≤ |y − x| for any y ≥ 0, we have

V3(θ∗) ≤ ‖Φθ − ν∗‖1. (4.76)

For the term V4(θ∗), since ν∗ is feasible (i.e., (B − γP )ᵀν∗ = α)

V4(θ∗) ≤ ‖(B − γP )ᵀ(Φθ∗ − ν∗)‖1 + ‖(B − γP )ᵀν∗ − α‖1 = ‖(B − γP )ᵀ(Φθ∗ − ν∗)‖1

≤ ‖(B − γP )ᵀ‖1‖Φθ − ν∗‖1 ≤ (‖Bᵀ‖1 + γ‖P ᵀ‖1) ‖Φθ − ν∗‖1

= (1 + γ)‖Φθ − ν∗‖1, (4.77)
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where ‖ · ‖1 is the matrix operator 1-norm. Therefore, we have,

αᵀJπ
[Φθ̂T ]+

− αᵀJπ[Φθ∗]+
≤ C1

(
1

1− γ
+

1

ε

)
(2 + γ)‖Φθ∗ − ν∗‖1 + C2

ε

1− γ
. (4.78)

Next, we bound αᵀJπ[Φθ∗]+
− αᵀJ∗. Since αᵀJπ[Φθ∗]+

= `ᵀνπ[Φθ∗]+
and αᵀJ∗ = `ᵀν∗ and by Lemma

64,

αᵀJπ[Φθ∗]+
− αᵀJ∗ ≤ ‖`‖∞‖νπ[Φθ∗]+

− ν∗‖1 ≤ ‖νπ[Φθ∗]+
− Φθ∗‖1 + ‖Φθ∗ − ν∗‖1

≤ 3V3(θ∗) + V4(θ∗)

1− γ
+ ‖Φθ∗ − ν∗‖1 ≤

5

1− γ
‖Φθ∗ − ν∗‖1. (4.79)

where the last inequality is due to (4.76) and (4.77).
The result follows by combining (4.78) and (4.79).

4.5 Discounted Cost Grid Algorithm
For the average cost case, we saw that setting H correctly (or optimizing for it) could allow us to
recover a regret bound that scaled with the square root of the optimal violation function. Theorem 63
showed that, with high probability,

`ᵀνθ̂T ≤ `ᵀνθ +

(
6

1− γ
+H

)
(V3(θ) + V4(θ)) +

6
√
dCS

H(1− γ)
+O(ε)

as long as T was sufficiently large.
This suggests that we want H and θ to optimize

`ᵀΦθ +

(
6

1− γ
+H

)
(V3(θ) + V4(θ)) +

β

H
,

where we have defined β := 6
√
dCS

(1−γ)
.

As before, we will approximately minimize the regret bound over H by using a grid algorithm.
It is important to note that the optimum H∗ can never be larger than 1/

√
Vmax, where Vmax is

some bound on V3(θ∗) + V4(θ∗). Even though we cannot compute this quantity, we may still restrict
the domain of H to

H ≥ min
θ

1/
√
V3(θ) + V4(θ) ≥

(
1 +
√
dCS(2 + γ)

)− 1
2 ≥

(
4
√
dCS

)− 1
2
. (4.80)

where the bound on V3(θ) + V4(θ) is taken from (4.54).
For convenience, we will reuse some notation from the average cost section. Define

cγ(H, θ) := `ᵀΦθ +

(
H +

6

1− γ

)
(V3(θ) + V4(θ)),
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θ∗H := argminθ c(H, θ), and F (H) = c(H, θ∗H) + β
H

. The grid algorithm for the discounted case
takes as inputs a bound on the violation function Vmax, discount factor γ, an error tolerance ε,
and desired probability tolerance δ. The algorithm then carefully chooses a grid H1, . . . , HK , and
for each i = 1, . . . , K, computes θ̂i, the output of Algorithm 4.1, and V̂i, an approximation to
V3(θ̂i) + V4(θ̂i). It then returns

k̂ := argmin
k

`ᵀΦθ̂k +

(
Hk +

1

1− γ

)
V̂k +

β

Hk

. (4.81)

Estimating the Violation Functions
Given some θ, we can estimate the violation function V3(θ) + V4(θ) in much the same way as the
average cost case.

For some n and samples y1, . . . , yn ∼ q3 and (x1, a1), . . . , (xn, an) ∼ q4, define

V̂n(θ) :=
1

n

n∑
i=1

[Φ(xi,ai),:θ]−
q3(x, a)

+
|(B − γP )ᵀ:,yiΦθ − α|

q4(yi)
. (4.82)

Since V1(θ) =
∑

(x,a)|[Φ(x,a),:θ]−| and V2(θ) =
∑

x′ |(B − γP )ᵀ:,x′Φθ − α|, this estimate is clearly
unbiased. Also, we earlier assumed the existence of constants

C3 = max
(x,a)∈X×A

‖Φ(x,a),:‖
q3(x, a)

, C4 = max
x∈X

‖(P − γB)ᵀ:,xΦ‖
q4(x)

,

and so we can bound

[Φ(xi,ai),:θ]−
q3(x, a)

+
|(B − γP )ᵀ:,yiΦθ − α|

q4(yi)
≤ S(C3 + 2C4).

Therefore, we have concentration of V̂ around V . In particular, applying Hoeffding’s inequality
yields the following lemma.

Lemma 67. Given ε > 0 and δ ∈ [0, 1], for any θ, the violation function estimate V̂n(θ) has

|V̂n(θ)− (V3(θ) + V4(θ))| ≤ ε

with probability at least 1− δ as long as we choose n ≥ (S(C1+2C4))2

2ε2
log
(

2
δ

)
.

Figure 4.3 provides a precise definition of the algorithm and specifies the grid, parameters for
the SGD algorithm, and sample sizes for V̂k needed. This algorithm has the following regret bound.

Theorem 68. For some ε > 0 and δ ∈ [0, 1], the Grid Algorithm for discounted cost specified in
Figure 4.3 has regret

`ᵀνθk̂ ≤ min
θ
`ᵀνθ +O

(√
V1(θ) + V2(θ)

)
+O(ε),

with probability at least 1− δ.
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Input: Upper bound V3(θ) + V4(θ) ≤ Vmax, error tolerance ε > 0,
probability δ > 0
Compute grid

Hk :=

β
(

1√
Vmax
− k−1

4
ε
)−1

if k ≤ k

Hk + ε(k−k)
4Vmax

otherwise
(4.83)

where

k := min
{
i : Vmax(Hi+1 −Hi) ≥

ε

4

}
, and (4.84)

K := min{k : Hk ≥ 4
β

ε
√

1− γ
}. (4.85)

for k := 1, 2, . . . , K do

Obtain θ̂k from Algorithm 4.1 with T = O

(
S2 log( 1

δ )
ε2

)
Set n ≥ (S(C1+2C4))2

2ε2
log
(

4
δ

)
Set V̂k = 1

n

n∑
i=1

[
[Φ(xi,ai),:θ̂k]−
q3(x, a)

+
|(B − γP )ᵀ:,yiΦθ̂k − α|

q4(yi)

]
end for
Set k∗ = argmink `

ᵀΦθ̂k +HkV̂k + β
Hk(1−γ)

Return policy πθ̂k̂

Figure 4.3: The Grid algorithm for discounted cost

Analysis
As before, let ε > 0 be some desired error tolerance and Vmax be some upper bound on V3(θ)+V4(θ);
e.g. we can always take Vmax = 4

√
dCS. Define the grid

Hk :=

β
(

1√
Vmax
− k−1

2
ε
)−1

if k ≤ k

Hk + ε(k−k)
2Vmax

k < k ≤ K
(4.86)

where
k := min

{
i : Vmax(Hi+1 −Hi) ≥

ε

2

}
(4.87)

and K = min{k : Hk ≥ 2β
ε
}.



CHAPTER 4. REGRET BOUNDS FOR MDP LEARNING 105

Lemma 69. Let ε > 0 be some desired error tolerance. Let Vmax be some upper bound on
V1(θ) + V4(θ); we can always take Vmax = 3 + S(d+ 2). The sequence defined by

Hk :=

β
(

1√
Vmax
− k−1

2
ε
)−1

if k ≤ k

Hk + ε(k−k)
2Vmax

k < k ≤ K
(4.88)

for

k := min
{
i : Vmax(Hi+1 −Hi) ≥

ε

2

}
and K = min

{
k : Hk ≥

2β

ε
√

1− γ

}
(4.89)

guarantees that, for all 1 ≤ k ≤ K,

max
Hk≤H≤Hk+1

|F (Hk)− F (H)| ≤ ε. (4.90)

Proof. Since c(H, θ) is linear inH , c(H, θ∗H) is concave inH . Also, using δ to denote some positive
number, we can show that c(H, θ∗H) is increasing

c(H, θ∗H) = min
θ
`ᵀΦθ +

(
H +

1

1− γ

)
(V3(θ) + V4(θ))

≤ min
θ
`ᵀΦθ +

(
H +

1

1− γ
+ δ

)
(V3(θ) + V4(θ))

= c(H + δ, θ∗H+δ)

and sublinear

c(H + δ, θ∗H+δ) = min
θ
`ᵀΦθ +

(
H +

1

1− γ
+ δ

)
(V3(θ) + V4(θ))

≤ `ᵀΦθ∗H +

(
H +

1

1− γ
+ δ

)
(V3(θ∗H) + V4(θ∗H))

= c(H, θ∗H) + δ(V3(θ∗H) + V4(θ∗H))

≤ c(H, θ∗H) + δVmax.

Using the monotonicity property of c(H, θ∗H), we have

max
Hi≤H≤Hi+1

|F (Hi)− F (H)| ≤ max
Hi≤H≤Hi+1

c(Hi+1, θ
∗
Hi+1)− c(Hi, θ

∗
Hi

) + β

(
1

Hi

− 1

Hi+1

)
≤ (Hi+1 −Hi)Vmax + β

(
1

Hi

− 1

Hi+1

)
.

First, consider the case where k ≤ k. Then Hk = β
(√

Vmax − k−1
2
ε
)−1 so that

(
1
Hk
− 1

Hk+1

)
=

ε
2
. By definition of k, we also have that Vmax(Hi+1 −Hi) ≤ ε

2
. In the case where k > k, we have
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β
1−γ

(
1
Hk
− 1

Hk+1

)
< (Hk+1 −Hk)Vmax and (Hk+1 −Hk)Vmax = ε

2
. In either case,

|F (Hk+1)− F (Hk)| ≤ (Hk+1 −Hk)Vmax + β

(
1

Hk

− 1

Hk+1

)
≤ ε

2
+
ε

2
≤ ε,

as desired. Finally, we check that if H∗ > HK , then |F (H∗)− F (HK)| ≤ ε. Since

F (H∗) = min
θ
`ᵀΦθ +

(
H +

1

1− γ

)
(V3(θ) + V4(θ)) +

β

H
,

we can solve for the optimal H as a function of θ as H∗θ =
√
β(V3(θ) + V4(θ))−1, yielding

F (H∗) = min
H,θ

`ᵀΦθ +
1

1− γ
(V3(θ) + V4(θ)) + 2

√
β(V3(θ) + V4(θ)).

Therefore, H∗ > HK implies that V3(θ∗) + V4(θ∗) ≤ ε2(1−γ)
4β

. Then

F (HK)− F (H∗) = min
θ′

(
`ᵀΦθ′ +

(
1

1− γ
+

2β

ε

)
(V3(θ′) + V4(θ′)) +

ε

2

)
−
(

min
θ
`ᵀΦθ +

1

1− γ
(V3(θ) + V4(θ)) + 2

√
β(V3(θ) + V4(θ))

)
≤ max

θ
`ᵀΦθ +

2β

ε(1− γ)
(V3(θ) + V4(θ)) +

ε

2
−
(
`ᵀΦθ + 2

√
β(V3(θ) + V4(θ))

)
≤ max

θ

2β

ε(1− γ)
(V3(θ) + V4(θ)) +

ε

2

≤ ε,

completing the last case.

Proof of Theorem 63. Running Algorithm 4.1 for H1, . . . , HK with 4T set as in Theorem 63 pro-
duces a sequence θ̂1, . . . , θ̂K such that

c(Hk, θ̂K) ≤ c(Hk, θ
∗
K) +HkV (θ∗) +

β

Hk

+
ε

4

holds for all k simultaneously with probability at least 1− δ
2
, which is easily argued by noting that

the probability of error for any single k is δ/K and applying the union bound.
Lemma 67, along with our choice of

n ≥ (S(C1 + 2C4))2

2ε2
log

(
4K

δ

)
guarantees that |V1(θ̂k) + V2(θ̂k)− V̂k| ≤ ε

4
holds with probability at least 1− δ

2K
, and hence the

statement holds for all V̂k with probability at most 1− δ
2
.
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We now turn to bounding the suboptimality of the objective. Recalling that k̂ is the minimizer
of `ᵀΦθ̂k +HkV̂k + β

Hk
, and using k∗ as the minimizer of c(Hk, θ

∗
k) + β

Hk
, we have

`ᵀΦθ̂k̂ +Hk̂V̂k̂ +
β

Hk̂

= min
k
`ᵀΦθ̂k +HkV̂k +

β

Hk

≤ `ᵀΦθ̂k∗ +Hk∗V̂k∗ +
β

Hk∗

≤ c(Hk∗ , θ̂k∗) +
β

Hk∗
+
ε

4
(Lemma 67)

≤ c(Hk∗ , θ
∗
k∗) +

β

Hk∗
+
ε

2
(Theorem 63)

= min
k
c(Hk, θ

∗
k) +

β

Hk

+
ε

2

≤ min
H,θ

c(H, θ) +
β

H
+ ε (Lemma 69).

The statement holds with probability at least δ
2

+ δ
2
, where the first term is from estimating V̂k

(Lemma 67) and the second term is from bounding the SGD error (Theorem 63). Hence, the Gird
Algorithm minimizes the objective to within ε.

Next, we use Lemma 64 to bound the discrepency between Φθ and νθ. Therefore, we need to
bound V3(θ̂k̂) and V4(θ̂k̂). Since all quantities are non-negative, this implies that | β

Hk̂
− β

H∗
| ≤ ε.

Using the bounded suboptimality of θ̂k̂ as an optimizer of c(Hk̂, θ), we have

`ᵀΦθ̂k̂ +

(
1

1− γ
+Hk̂

)(
V1(θ̂k̂) + V2(θ̂k̂)

)
≤ `ᵀΦθ∗

k̂
+

(
1

1− γ
+Hk̂

)(
V1(θ∗

k̂
) + V2(θ∗

k̂
)
)

+
ε

2

≤ `ᵀΦθ∗ +

(
1

1− γ
+H∗

)
(V1(θ∗) + V2(θ∗)) + ε

= `ᵀΦθ∗ +
1

1− γ
(V1(θ∗) + V2(θ∗))

+
√
V1(θ∗) + V2(θ∗) + ε.

Next, we crudely bound `ᵀΦθ ≤
√
dCS and use

(
1

1−γ +Hk̂

)−1

≤ 1
Hk̂

to obtain

V1(θ̂k̂) + V2(θ̂k̂) ≤
1

Hk̂

(
2
√
dCS +

√
V1(θ∗) + V2(θ∗) +

1

(1− γ)
(V1(θ∗) + V2(θ∗)) + ε

)
≤
(

1

H∗
+ βε

)(
2
√
dCS +

√
V1(θ∗) + V2(θ∗) +

1

(1− γ)
(V1(θ∗) + V2(θ∗)) + ε

)
≤ 2
√
dCS

√
V1(θ∗) + V2(θ∗) + (V1(θ∗) + V2(θ∗)) +

(V1(θ∗) + V2(θ∗))
3
2

(1− γ)
+O(ε).
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Then, applying Lemma 64, we have

`ᵀΦµθk̂ ≤ `ᵀΦθ̂k̂ +
3

1− γ

(
2
√
dCS

√
V1(θ∗) + V2(θ∗) + (V1(θ∗) + V2(θ∗)) +

(V1(θ∗) + V2(θ∗))
3
2

(1− γ)

)

+O

(
ε

1− γ

)
≤ `ᵀΦθ∗ +

3

1− γ

(
2
√
dCS

√
V1(θ∗) + V2(θ∗) + (V1(θ∗) + V2(θ∗)) +

(V1(θ∗) + V2(θ∗))
3
2

(1− γ)

)

+

(
1

1− γ
+H∗

)
(V1(θ∗) + V2(θ∗)) +O

(
ε

1− γ

)
≤ `ᵀνθ∗ +

3

1− γ

(
2
√
dCS

√
V1(θ∗) + V2(θ∗) + (V1(θ∗) + V2(θ∗)) +

(V1(θ∗) + V2(θ∗))
3
2

(1− γ)

)

+

(
1

1− γ
+H∗

)
(V1(θ∗) + V2(θ∗)) + ε+

3

1− γ
(V1(θ∗) + V2(θ∗)) +O

(
ε

1− γ

)

≤ `ᵀνθ∗ +

(
1 +

3

1− γ
2
√
dCS

)√
V1(θ∗) + V2(θ∗) +

3

1− γ
(V1(θ∗) + V2(θ∗))

3
2

(1− γ)

+
7

1− γ
(V1(θ∗) + V2(θ∗)) +O

(
ε

1− γ

)
.

All in all, this simplifies to

`ᵀνθk̂ ≤ min
θ
`ᵀνθ +O

(√
V1(θ) + V2(θ)

)
+O

(
(V1(θ) + V2(θ))

3
2

)
+O

(
ε

1− γ

)
.

Using our assumption that (V1(θ) + V2(θ)) < 1, we obtain the theorem statement.

4.6 Experiments
In this section, we apply both algorithms to the four-dimensional discrete-time queuing network
illustrated in Figure 4.4. This network has a relatively long history; see, e.g. [42] and more recently
[19] (c.f. Section 6.2). There are four queues, µ1, . . . , µ4, each with state 0, . . . , B. Since the
cardinality of the state space is X = (1 +B)4, even a modest B results in huge state-spaces. For
time t, letXt ∈ X be the state and si,t ∈ {0, 1}, i = 1, 2, 3, 4 denote whether queue i is being served.
Server 1 only serves queue 1 or 4, server 2 only serves queue 2 or 3, and neither server can idle.
Thus, s1,t + s4,t = 1 and s2,t + s3,t = 1. The dynamics are as follows. At each time t, the following
random variables are sampled independently: A1,t ∼ Bernoulli(a1), A3,t ∼ Bernoulli(a3), and
Di,t ∼ Bernoulli(di ∗ si,t) for i = 1, 2, 3, 4. Using e1, . . . , e4 to denote the standard basis vectors,
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µ1 µ2

µ4 µ3

server 1 server 2

d1a1 d2

d3d4 a3

Figure 4.4: The 4D queuing network. Customers arrive at queue µ1 or µ3 then are referred to queue
µ2 or µ4, respectively. Server 1 can either process queue 1 or 4, and server 2 can only process queue
2 or 3.

the dynamics are:

X ′t+1 =Xt + A1,te1 + A3,te3 +D1,t(e2 − e1)−D2,te2 +D3,t(e4 − e3)−D4,te4,

and Xt+1 = max(0,min(B, X ′t+1)) (i.e. all four states are thresholded from below by 0 and above
by B). The loss function is the total queue size: `(Xt) = ||Xt||1. We compared our method against
two common heuristics. In the first, denoted LONGER, each server operates on the queue that is
longer with ties broken uniformly at random (e.g. if queue 1 and 4 had the same size, they are
equally likely to be served). In the second, denoted LBFS (last buffer first served), the downstream
queues always have priority (server 1 will serve queue 4 unless it has length 0, and server 2 will serve
queue 2 unless it has length 0). These heuristics are common and have been used as benchmarks for
queuing networks (e.g. [19]).

We used a1 = a3 = .08, d1 = d2 = .12, and d3 = d4 = .28, and buffer sizes B1 = B4 = 38,
B2 = B3 = 25 as the parameters of the network.. The asymmetric size was chosen because
server 1 is the bottleneck and tend to have longer queues. The first two features are features
of the stationary distributions corresponding to two heuristics. We also included two types of
non-stationary-distribution features. For every interval (0, 5], (6, 10], . . . , (45, 50] and action A, we
added a feature ψ with ϕ(x, a) = 1 if `(x, a) is in the interval and a = A. To define the second
type, consider the three intervals I1 = [0, 10], I2 = [11, 20], and I3 = [21, 25]. For every 4-tuple
of intervals (J1, J2, J3, J4) ∈ {I1, I2, I3}4 and action A, we created a feature ψ with ψ(x, a) = 1
only if xi ∈ Ji and a = A. Every feature was normalized to sum to 1. In total, we had 372 features
which is about a 104 reduction in dimension from the original problem.

Stochastic Gradient Descent
We ran our stochastic gradient descent algorithm with I = 1000 sampled constraints and constraint
gain H = 2. Our learning rate began at 10−4 and halved every 2000 iterations. The results of
our algorithm are plotted in Figure 4.5, where θ̂t denotes the running average of θt. The left plot
is of the LP objective, `ᵀ(µ0 + Φθ̂t). The middle plot is of the sum of the constraint violations,
‖[µ0 + Φθ̂t]−‖1 + ‖(P −B)ᵀΦθ̂t‖1. Thus, c(θ̂t) is a scaled sum of the first two plots. Finally, the
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Figure 4.5: The left plot is of the linear objective of the running average, i.e. `ᵀΦθ̂t. The center
plot is the sum of the two constraint violations of θ̂t, and the right plot is `ᵀµ̃θ̂t (the average loss of
the derived policy). The two horizontal lines correspond to the loss of the two heuristics, LONGER
and LBFS.

right plot is of the average losses, `ᵀµθ̂t and the two horizontal lines correspond to the loss of the
two heuristics, LONGER and LBFS. The right plot demonstrates that, as predicted by our theory,
minimizing the surrogate loss c(θ) does lead to lower average losses.

All previous algorithms (including [19]) work with value functions, while our algorithm works
with stationary distributions. Due to this difference, we cannot use the same feature vectors to make
a direct comparison. The solution that we find in this different approximating set is slightly worse
than the solution of Farias and Van Roy [19].

4.7 Conclusion
This chapter demonstrated the feasibility of solving the MDP planning problem with a parametric
policy class based on an approximate dual LP. Unlike previous approaches, we were able to prove
regret bounds, that is, bounds relative to the best policy in our parametric class. We obtained results
for both the average cost and discounted cost settings as well as empirical justification.

There are several promising directions. First, are such regret bounds possible in the primal
formulation? The primal has the advantage that feature vectors are more intuitive to design.

Another drawback to our methods is that we need a backwards simulator, that is, access to every
state with positive probability of transitioning into a state x. Are their alternative formulations that
remove this requirement?
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Chapter 5

Conclusion

5.1 Summary
This thesis examined two parallel approaches toward efficient sequential decision making. In the
first, we examined minimax strategies in online learning for two different games. In the prediction
game, for each round t = 1, . . . , T , the learner played at in an attempt to predict the true label
xt ∈ X . We saw that the minimum enclosing ball for X is the central object in determining the
minimax strategy and regret. If the minimum enclosing ball has center c and radius ρ, then the
minimax strategy is

an := c+ αn

n−1∑
t=1

(xt − c).

and the minimax regret is

R ≤ ρ2

T∑
t=1

αt.

This algorithm is efficient and scalable.
We also studied the online linear regression game, in both the fixed-design and adversarial-

design settings. Under a variety of constraints on the learner, the minimax strategy for online linear
regression is

ŷt+1 = xᵀ
t+1Pt+1st

and the strategy does not need to know T in advance. In fact, the strategy is minimax against all
other strategies, even those that know the game length in advance. We have also provided an intuitive
view of the algorithm as follow-the-regularized-leader with a specific data-dependent regularizer
which automatically adjusts to the scale of the data and to how much data budget remains.

Finally, we studied the MDP planning problem with a large state-space. We demonstrated that
solving this problem with a parametric policy class based on an approximate dual LP allowed us
to prove regret bounds between the loss of our policy and the best policy in the class; that is, we
showed

`ᵀξθ̂ ≤ min
θ∈Θ

`ᵀξθ + V (θ) +O(ε),



CHAPTER 5. CONCLUSION 112

where ξθ̂ was the appropriate dual variable for either the average cost or the discounted cost case.
We also saw empirical results for the average cost case on a 4-dimensional queuing example.

5.2 Future Directions
The minimax technique is powerful but often computationally unwieldy. The prediction and linear
regression games relied on the quadratic structure of the losses and value-to-go to arrive at closed
form expressions for the strategy and regret. One obvious direction is exploring other loss functions
and constraint sets that allow for a precise minimax analysis. An orthogonal direction would be to
extend the minimax tools to other scenarios with squared loss. Examples include estimation under
changing dynamics (e.g. hidden Markov models) or control problems with linear dynamics and
square loss (e.g. linear quadratic regulators).

Additionally, one could instead use the minimax analysis as a tool to obtain precise regret
guarantees of more common regret-minimization algorithms. For example, can we analyze follow
the regularized leader by comparing it to the follow the regularized leader algorithm with the data
dependent regularization studied in Chapter 3?

There are also a few pressing questions for the large-scale MDP planning. Is a regret bound
possible in the primal formulation? Such a result would allow one to import the literature on
designing features in the primal, as it is less intuitive to design features in the dual. What is the
impact of the feature matrix to the performance? Finally, the algorithm required knowledge of all
states that transition into an arbitrary state x. In practice, having knowledge of the forward dynamics
(through e.g. a forwards simulator) is more common that having knowledge of the backward
dynamics, which is required by our method. Is it possible to remove this requirement?
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