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Abstract

We propose a copula-based joint modeling framework for mixed longitudinal responses. Our 

approach permits all model parameters to vary with time, and thus will enable researchers to reveal 

dynamic response–predictor relationships and response–response associations. We call the new 

class of models TIMECOP because we model dependence using a time-varying copula. We 

develop a one-step estimation procedure for the TIMECOP parameter vector, and also describe 

how to estimate standard errors. We investigate the finite sample performance of our procedure via 

three simulation studies, one of which shows that our procedure performs well under ignorable 

missingness. We also illustrate the applicability of our approach by analyzing binary and 

continuous responses from the Women’s Interagency HIV Study and a smoking cessation 

program.
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AMS 2000 subject classifications

Primary 62G08; secondary 62H20

1. INTRODUCTION

Analyses of multivariate longitudinal outcomes are now common, but current models for 

such data cannot reveal the nature of time-varying dependence among the coordinates of a d-
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dimensional response unless d = 2 and the two processes in question are Bernoulli and 

Gaussian [43]. What is needed is a modeling approach that is flexible enough to permit the 

estimation of time-varying parameters for a response of higher dimension, having coordinate 

processes of practically any type. In this paper we develop a modeling framework that 

addresses these concerns.

A number of joint models for longitudinal binary and continuous responses are well 

established [see, for example, 7, 10, 26, 61, 57, 16, 29, 47, 43]. The main challenge in 

developing such models is that there is no natural multivariate distribution for responses of 

mixed type. One way to overcome this problem is to introduce a latent variable underlying 

the binary response, and assume that the continuous response and the latent variable are 

jointly Gaussian. The resulting joint distribution can then be factored, leading to one of two 

formulations: (1) a marginal distribution for the continuous response along with a 

conditional distribution for the binary response given the continuous response, or (2) a 

marginal distribution for the binary response along with a conditional distribution for the 

continuous response given the binary response. Some approaches of this sort are not limited 

to binary and continuous outcomes, but can also handle other types of outcomes and d > 2 

[see, for example, 61, 16].

A second solution to the above mentioned problem is the joint mixed-effects model [28, 29]. 

In this approach a random effect is assumed for each outcome, and the outcomes are 

associated via a joint distribution for the random effects. As pointed out by Verbeke et al. 

[73], fitting these models becomes computationally burdensome as the number of outcomes 

increases, and maximum likelihood estimation is possible only when the dimension is low or 

strong assumptions are made. An example of the latter can be found in Roy and Lin [58], 

where corresponding random effects for various outcomes are assumed to be perfectly 

correlated. Another potential drawback of the mixed-effects approach is confounding [34], 

which may inflate the variance of fixed-effects estimators, preventing the discovery of 

important response–predictor relationships.

A third solution is to join a set of marginal distributions using a copula. (See Nelsen [52] for 

an introduction to copulas, and de Leon and Chough [13], Heinen and Rengifo [33], Madsen 

and Fang [49], Masarotto and Varin [51], Smith et al. [67], Song et al. [71], Wu and de Leon 

[74] for information on copula-based regression models.) This is the approach we adopt for 

the remainder of this article.

In a longitudinal study the relationship between a response and predictors, or the association 

between a pair of responses, may change over time. The inability of ordinary models to 

capture these dynamic patterns led Kürüm et al. [43] to develop time-varying models [3] for 

longitudinal binary and continuous responses. Kürüm et al. [43] adopted the latent variable 

approach and first type of factorization described above. This implies a two-step estimation 

procedure. In the second stage of the procedure, the association between the responses takes 

the form of a time-varying regression coefficient. The advantage of this method is that it 

allows all parameters, including association parameters, to be time varying. But the method 

of Kürüm et al. [43] relies on the assumption that the latent variable and the continuous 
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response follow a joint normal distribution. Moreover, their method is limited to estimating 

the time-varying association between only two longitudinal outcomes.

In this paper we develop a flexible and intuitive framework for modeling multivariate 

longitudinal data. Although we focus on revealing time-varying dependence relationships, 

our framework can easily accommodate all manner of time-varying parameters for the 

coordinate processes: regression coefficients, variances, etc. To achieve this goal, we exploit 

the modularity of copula-based modeling, which allows us to model the marginal 

distributions and dependence structure separately before joining them by way of the 

probability integral transform [66]. In our view, this is perhaps the simplest and most natural 

way to construct a multivariate distribution for discrete or mixed responses, and is even more 

intuitive when the responses are continuous.

Our main contribution is twofold. First, our approach brings time-varying parameters to 

multivariate longitudinal modeling. This will allow researchers to uncover complex dynamic 

patterns of dependence and response–predictor relationships. Second, our approach brings 

arbitrary response type and dimension greater than two to time-varying joint modeling, i.e., 

our approach, unlike the approach of Kürüm et al. [43], is not limited to a binary–continuous 

response. Moreover, our model requires neither latent variables nor factorization, and so 

does not rely on the assumptions required by Kürüm et al. [43] to estimate time-varying 

dependence parameters.

Our motivating data were collected as part of the National Institutes of Health-funded 

Women’s Interagency HIV Study (WIHS). The WIHS was spurred by alarming trends:

• Between 1990 and 1994, the rate of increase in AIDS cases reported for women 

(89%) was three times that for men (29%).

• The 1994 rate of AIDS cases among African-American women was twice that 

for Hispanic women and 17 times that for white women.

• By 1995, HIV infection had become the third leading cause of death among U.S. 

women between the ages of 25 and 44, and the leading cause of death among 

African-American women in this age group.

Although the Multicenter AIDS Cohort study (MACS) [39], a 10 year-long study of 5,000 

homosexual/bisexual men, 90% of whom were white, contributed much to our 

understanding of HIV progression, the progression of HIV to AIDS, and survival after 

AIDS, the increasing rate of AIDS among women necessitated a similar longitudinal study 

for women and communities of under-represented race. For this reason, the WIHS was 

established to study the impact of HIV infection in U.S. women. One of many objectives of 

the program is to investigate nutritional, socioeconomic, and behavioral risk factors that may 

be related to the rate of disease progression [2].

Researchers have taken a special interest in the smoking behavior of HIV patients because it 

is known that smoking affects the immune system [25, 31, 36, 27]. But the findings are 

inconsistent. For instance, Nieman et al. [54] found that smokers progressed to AIDS more 

rapidly than nonsmokers, whereas the analyses performed by Galai et al. [27] and Burns et 
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al. [5] on two different data sets found no difference between smokers and nonsmokers in 

the risk of developing AIDS. We will investigate this matter further by applying our model 

to two WIHS variables: CD4 cell percentage (a measure of HIV progression) and smoking 

status.

Our analysis will differ from the above mentioned analyses in two important ways. First, our 

analysis will not employ survival methods, for our data are not censored, and we do not wish 

to define a patient lifetime that ends when the patient has progressed to AIDS. We wish to 

explore the dynamics of the relationship between CD4 cell percentage and smoking status 

throughout the study. Second, some of the above mentioned analyses excluded patients who 

altered their smoking behavior during the study. It is not unusual for behaviors to change 

during a longitudinal study, and ignoring these changes may lead to biased results.

We will treat CD4 percentage and smoking status as response variables so that we can 

estimate the time-varying partial association [8] between them, i.e., we aim to reveal the 

association between CD4 percentage and smoking status conditional on predictors of 

interest, one of which is shared by the outcomes. We could regress one of CD4 percentage 

and smoking status on the other, but it is not obvious how to assign the role of response or 

predictor to either variable. (In HIV studies it is customary to regress CD4 cell percentage 

on smoking status, assuming that smoking leads to a change in CD4 cell percentage. But 

Mamary et al. [50] showed that the percentage of smokers among HIV patients is higher 

than the percentage of smokers in the general adult population. In addition, HIV patients 

tend to have a pessimistic view of their survival, which might result in lack of motivation to 

quit smoking or even an increase in cigarette consumption. These results suggest that being 

an HIV patient could be predictive of smoking, which implies that one should regress 

smoking status on CD4 cell percentage.) And a regression model would not allow us to 

reveal the nature of this association having controlled for the predictors, such as depression, 

nor would it allow us to reveal response–predictor relationships for both variables. We could 

of course achieve the latter goal by fitting two univariate regression models, but this would 

provide no information about the association, which is of interest to us. Moreover, joint 

modeling can lead to considerably more precise estimators [28, 70]. This gain in efficiency 

grows as the strength of dependence increases, especially for smaller samples.

We will also apply TIMECOP to binary and continuous responses from a smoking cessation 

study. Several studies have focused on understanding the motivation for smoking so that 

more successful smoking cessation programs can be designed. The intuitive link between 

urge to smoke and smoking, and the importance of urges in some theories of smoking, 

makes urge to smoke interesting to prevention scientists [64]. Besides urge to smoke (our 

continuous response), the data set contains a number of additional outcomes, including 

alcohol consumption, coffee consumption, presence of others smoking, and food 

consumption (all binary). We used the latter four variables to create our binary response, 

since it has in fact been observed that these stimuli increase the odds of smoking [17, 63, 37, 

64].

The relationship between the above mentioned stimuli and smoking (and therefore, perhaps, 

urge to smoke) might vary over the course of the study, particularly before and after a 
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subject quits smoking. However, previous studies ignored the possible changes in this 

relationship over time. Our main goal is to study the time-varying partial association 

between these factors and urge to smoke using our joint modeling approach. Exploring the 

dynamics of this association would help prevention scientists to achieve their goal of 

designing smoking cessation programs with high success rates.

The remainder of the paper is organized as follows. Section 2 describes our time-varying 

copula model for longitudinal mixed outcomes; our estimation procedure, which uses local 

regression techniques; and bandwidth selection. Section 3 assesses the finite sample 

behavior of our approach via simulation, and shows that our procedure can handle ignorable 

missingness. Sections 4 and 5 apply our method to a subset of the WIHS data and to 

smoking cessation data, respectively. And Section 6 contains concluding remarks.

2. TIME-VARYING COPULA MODELS

In longitudinal and ecological studies, response–predictor associations may change with 

time, temperature, or geographical location. Varying coefficient models, which allow 

regression parameters to change with some underlying covariate(s), were developed to 

address the inability of ordinary regression models to capture these dynamic relationships.

Varying coefficient models were introduced by Cleveland et al. [9] and popularized by 

Hastie and Tibshirani [32]. A linear varying coefficient model takes the form

Y = x′β(U) + ε, (1)

where Y is the response variable, x = (x1, …, xp)′ is a vector of predictors, U is a scalar 

covariate, β(U) = (β1(U), …, βp(U))′ are unknown coefficient functions, and ε is an error 

such that (ε | x, U) = 0. Since varying coefficient models are local linear models [22], 

kernel smoothing is a natural approach to estimation for model (1), and so we use kernel 

smoothing for the class of models developed below: time-varying copula models for 

longitudinal data, TIMECOP for short. The TIMECOP framework permits not only 

regression coefficients but all parameters, including dependence parameters, to be time 

varying.

Suppose we have m independent subjects. For subject i we observe the d-variate process 

Yi(t) = (Yi1(t), …, Yid(t))′ at random times ti = (ti1, …, tini)′. That is, we observe Yij ≡ Yi(tij) 
= (Yi1(tij), …, Yid(tij))′ (j = 1, …, ni). The number of observations and the observation times 

may vary from subject to subject.

We assume that coordinate k of the response has marginal distribution function Fik and 

density/mass function fik, both of which may depend on time-varying parameters θk(t), some 

of which may be regression coefficients βk(t). For example, in the oft-cited bivariate 

continuous–binary case we might adopt a Gaussian linear model for one coordinate:
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Yi1(t) 𝒩{xi1′ (t)β1(t), σ2(t)}

and a logistic model for the other:

Yi2(t) ℬ([1 + exp { − xi2′ (t)β2(t)}]−1),

where ℬ(p) denotes a Bernoulli random variable with mean p, and xi1(t) and xi2(t) are 

vectors of predictors for subject i, measured at time t. Although it is often convenient to 

work within the familiar generalized linear model (GLM) framework, in which case our 

local model (Section 2.2) is reminiscent of the vector GLM [71], there are of course many 

other options for the marginal specifications: extreme value distributions, beta regression 

models, zero-inflated models, skew-normal models, heavy-tailed distributions, etc.

We model dependence using a time-varying d-copula Cγ(t){u1(t), …, ud(t)}, where γ(t) are 

copula parameters [52]. A convenient choice is the Gaussian copula [38, 69]

ΦR(t)[Φ
−1{u1(t)}, …, Φ−1{ud(t)}],

where ΦR(t) is the cdf of a d-variate multinormal random variable with mean vector 0 and 

correlation matrix R(t), and Φ−1 is the univariate standard normal quantile function. Other 

attractive choices are the t copula [15], which can accommodate tail dependence, or the skew 

t copula [68], which can accommodate tail dependence and asymmetric dependence.

We use a one-step estimation procedure based on optimization of an approximation to the 

local kernel-weighted log likelihood of θ(t) = (θ1′ (t), …, θd′ (t), γ′(t))′. The approximation is 

based on the distributional transform (DT) (explained below) and was first proposed by 

Kazianka and Pilz [40] for fitting Gaussian copula geostatistical models.

2.1 Likelihood inference for Gaussian copula models

In this subsection we revert temporarily to an ordinary likelihood setting. This will ease 

notation and allow us to motivate our likelihood approximation as simply and clearly as 

possible. In Section 2.2 we will reintroduce time varyingness and describe our approach to 

local likelihood inference for TIMECOP.

Likelihood inference is fairly straightforward for Gaussian copula models with continuous 

marginals. To see this, first note that the density for the Gaussian d-copula is
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cR(u) =
ϕR{Φ−1(u1), …, Φ−1(ud)}

∏i = 1
d ϕ{Φ−1(ui)}

∝ ∣ R ∣−1/2 exp − 1
2 z′(R−1 − I)z ,

where z = (z1, …, zd)′ = (Φ−1(u1), …,Φ−1(ud))′ and I is the d × d identity matrix. If the 

desired marginal distributions F1, …, Fd are continuous also, the likelihood of the 

parameters θ given the data y has the form

L(θ ∣ y) ∝ cR{F1(y1), …, Fd(yd)} ∏
i = 1

d
f i(yi),

where fi is the density function corresponding to Fi. This implies the log likelihood

ℓ(θ ∣ y) = − 1
2 log ∣ R ∣ − 1

2 z′(R−1 − I)z + ∑
i = 1

d
log f i(yi), (2)

where zi = Φ−1{Fi(yi)}. This log likelihood can be optimized to arrive at the maximum 

likelihood estimate of θ.

When some of the marginal distributions are discrete, the likelihood does not have the 

simple form given above because zi = Φ−1{Fi(yi)} is not standard normal (since Fi(yi) is not 

standard uniform if Fi has jumps). In this case the true likelihood is more complicated [44, 

71] and becomes unwieldy as the number of discrete coordinates increases. An appealing 

alternative to the true likelihood is an approximation based on the distributional transform.

It is well known that if Y ~ F is continuous, F(Y ) has a standard uniform distribution. But if 

Y is discrete, F(Y ) tends to be stochastically larger, and F(Y−) = limx↗Y F(x) tends to be 

stochastically smaller, than a standard uniform random variable. This can be remedied by 

stochastically “smoothing” F at its jumps. This technique goes at least as far back as 

Ferguson [24], who used it in connection with hypothesis tests. More recently, the 

distributional transform has been applied to stochastic ordering [59], conditional value at 

risk [4], and the extension of limit theorems for the empirical copula process to general 

distributions [60].

Let W ~ (0, 1), and suppose that Y ~ F and is independent of W. Then the distributional 

transform

G(W , Y) = WF(Y−) + (1 − W)F(Y)

Kürüm et al. Page 7

Stat Interface. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



follows a standard uniform distribution, and F−1{G(W, Y)} follows the same distribution as 

Y.

Kazianka and Pilz [40] suggested approximating G(W, Y ) by replacing it with its 

expectation with respect to W:

G(W , Y) ≈ 𝔼wG(W , Y)

= 𝔼w{WF(Y−) + (1 − W)F(Y)}

= 𝔼wWF(Y−) + 𝔼w(1 − W)F(Y)

= F(Y−)𝔼wW + F(Y)𝔼w(1 − W)

= F(Y−) + F(Y)
2 .

To construct the approximate log likelihood, then, we replace Fi(yi) in (2) with

Fi(yi
−) + Fi(yi)

2

for each discrete coordinate of the response. Note that this becomes

Fi(yi − 1) + Fi(yi)
2

if the distribution has integer support.

This approximation, although crude, performs well as long as the discrete distribution in 

question has a sufficiently large variance, in which case we suggest using the approximation 

when the true likelihood is too cumbersome to obtain. We employed the approximation in 

the trivariate simulation study. We used the true likelihood in the bivariate simulation study 

and data applications, for those scenarios involved binary outcomes, for which the DT-based 

approximation tends to perform poorly.

2.2 Local likelihood inference for timecop

Now we return to TIMECOP, for which we recommend local likelihood inference. That is, 

we estimate θ(t) at time t0 by maximizing the local kernel-weighted log likelihood

ℓ{θ(t0) ∣ T} = ∑
i = 1

m
∑

j = 1

ni
ℓ{θ(t0) ∣ yi j}K{(t0 − ti j)/h}/h,
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where T = (t1 ··· tm), ℓ{θ(t0) | yij} is the log likelihood of θ(t0) given the outcomes for subject 

i at time point tij, K is a kernel, and h is a bandwidth. In this section, we describe how to use 

the approximate log likelihood described in the previous section. Specifically, if we partition 

the response vector so that the first d1 coordinates are continuous and the remaining 

coordinates are discrete, we have

ℓ{θ(t0) ∣ yi j} = − 1
2 log ∣ R ∣ − 1

2(zi j′ , zi j
∗ ′){R−1 − I}(zi j′ , zi j

∗ ′)′ + ∑
k = 1

d
log f ik{yik(ti j)}, (3)

where

zi j = (Φ−1[Fi1{yi1(ti j)}], …, Φ−1[Fid1
{yid1

(ti j)}])′,

zi j
∗ = (Φ−1{ui(d1 + 1)(ti j)}, …, Φ−1{uid(ti j)})′ .

The distributional transform approximation enters through computation of the uik(tij) (k = d1 

+ 1, …, d):

uik(ti j) =
Fik{yik

−(ti j)} + Fik{yik(ti j)}
2 .

We obtain θ̂(t0) using the quasi-Newton method of Byrd et al. [6] so that estimated 

dependence and scale parameters can be appropriately constrained.

We used local constant estimation in our simulation studies, i.e., we assumed that θ(t0) is 

constant on a neighborhood of t0. It is straightforward to use a higher-order polynomial 

approximation to θ(t0), but even a linear approximation—in which one assumes that

θ(t0) = θ(t) + θ
.
(t)(t0 − t)

for t on a neighborhood of t0—increases the computational burden quite a bit while reducing 

bias only slightly.

In the final step of our procedure we estimate the variance of θ̂(t0). Here we use results 

obtained by Fan et al. [18]. We begin with the approximate conditional variance (conditional 

on T), which has a sandwich form:

∑(t0) = 𝕍{θ(t0) ∣ T}
≈ κ(t0)ℋ−1(t0)𝒥(t0)ℋ−1(t0)
= κ(t0)[ℓ̈{θ(t0) ∣ T}]−1𝕍[ℓ

.
{θ(t0) ∣ T}][ℓ̈{θ(t0) ∣ T}]−1,

(4)
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where κ(t0) = ∑i = 1
m ∑ j = 1

ni K2{(t0 − ti j)/h}/h2 and ℋ(t0) is the Hessian matrix, which can be 

estimated by ℓ̈{θ̂(t0) | T} as a side effect of optimization. The variance of the score, (t0), 

can be estimated by

∑i = 1
m ∑ j = 1

ni ∇ ∇′ℓ{θ(t0) ∣ yi j}K{(t0 − ti j)/h}/h

∑i = 1
m ∑ j = 1

ni K {(t0 − ti j)/h}/h
,

where ∇ denotes the gradient.

Invoking asymptotic normality [30, 14] and using Σ̂(t0), we construct a pointwise 

(1−α)100% confidence interval for the νth element of θ(t0) as

θν(t0) ± Φ−1(1 − α/2) ∑ν(t0), (5)

where Σ̂ν(t0) is the νth diagonal element of Σ̂(t0).

Note that our procedure does not account for intrasubject dependence, but theory suggests 

that intra-subject dependence can safely be ignored (for estimation of θ(t)) when the number 

of subjects is sufficiently large. As shown in Lin and Carroll [45], the method of kernel 

generalized estimation equations (kernel GEE) yields a root-n consistent estimator 

regardless of the working correlation structure. Furthermore, kernel GEE with working 

independence correlation matrix yields the most efficient estimator for the nonparametric 

regression function in a longitudinal setting. The procedure proposed here shares the spirit 

of kernel GEE, and so we suspect that our estimator is root-n consistent and is likely the 

most efficient. Theoretical justification is beyond the of scope of this paper and must be left 

to a future investigation.

As for inference, Fan et al. [18] noted that the intervals given by (5) might be too narrow for 

some datasets (due to intra-subject dependence), in which case one can get better coverage 

by using the wider intervals obtained from an undersmoothed fit. Undersmoothing is 

effective here because any two kernel-weighted intra-subject observations are nearly 

uncorrelated when h is sufficiently small and the serial dependence is short- or medium-

range [19]. See Section 3 for details regarding appropriate undersmoothing for TIMECOP.

Practical application of our approach depends on selection of a suitable bandwidth. For this 

we recommend a form of cross-validation proposed by Fan and Zhang [22]. We leave out a 

single subject at a time rather than a single observation, since the latter approach is 

inappropriate when there is intra-subject dependence [35]. After removing the ith subject, 

we estimate θ(·) based on the remaining subjects. After doing this for each of the m subjects, 

we combine the results to form the cross-validation score
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CV(h) = − ∑
i = 1

m
∑

j = 1

ni
ℓ{θ \i(ti j) ∣ yi j, h},

where θ̂\i (tij) is the leave-i-out estimate for time tij. We compute the cross-validation score 

for a range of bandwidths and select the bandwidth that minimizes the score.

We recommend that a bimodal kernel [12] be used because doing so leads to a more accurate 

estimate in the presence of intra-subject dependence. Informally, a bimodal kernel removes 

serial dependence by down weighting observations that are very close to t0. This prevents 

undersmoothing by preventing the estimation procedure from “mistaking” local similarity 

for structure that should be fitted. We use the member of the so called ε-optimal class of 

bimodal kernels recommended by De Brabanter et al. [12]. Specifically, we use

Kε(u) = 4
4 − 3ε − ε2

3
4(1 − u2)1{ ∣ u ∣ ≤ 1} if ∣ u ∣ ≥ ε

3
4

1 − ε2
ε ∣ u ∣ if ∣ u ∣ < ε

with ε = 0.1, where 1{·} denotes the indicator function.

3. SIMULATED APPLICATION

We investigated the finite sample performance of our estimator using a simulation study 

designed to mimic the WIHS data that we analyze in Section 4. The response in our study 

was binary–continuous. Specifically, we let Yi1(t) be a Gaussian process with mean 

xi1′ (t)β1(t) and variance σ2(t), and Yi2(t) be a Bernoulli process with mean

[1 + exp { − xi2′ (t)β2(t)}]−1,

as described above in Section 2. For the time-varying coefficients β1(t) and β2(t), we used

β1(t) = (β10(t), β11(t), β12(t), β13(t))′
= 0.2 ( cos 2πt, sin 2πt, − sin 2πt, 1 + sin 2πt)′
β2(t) = (β20(t), β21(t))′ = 0.2 ( sin 2πt, 1 + cos 2πt)′,

with βk0(t) an intercept and βk1(t), β12(t), and β13(t) slopes. We simulated the predictors, 

independently, from the standard normal distribution. Yi1(t)’s time-varying standard 

deviation was σ(t) = 0.8+0.2 sin2πt. And the cross-sectional correlation function was ρ(t) = 

0.2 + 0.15 sin 2πt.

Although it does not enter into our estimation procedure, we simulated both processes with 

CAR(1) dependence:
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ρ1(s, t) = 2−7 ∣ s − t ∣

ρ2(s, t) = 5−7 ∣ s − t ∣,

for any two times s and t in the unit interval. These functions correspond to consequential 

but short-range dependence. Specifically, if we define the effective range to be the distance |s
−t| at which the correlation between two observations has dropped to 0.05, these functions 

have an effective range of approximately 0.2.

We simulated a single dataset as follows. For subject i,

1. let ni = 10;

2. simulate ni measurement times ti = (ti1, …, tini)′ from the standard uniform 

distribution;

3. for j = 1, …, ni, construct the 2×2 correlation matrix with off-diagonal entries 

ρ(tij), and use the Cholesky root to impose the correlation on (Wi1(tij), Wi2(tij))′ 
~ (0, I);

4. construct the ni × ni correlation matrices R1(ti) and R2(ti) according to the 

CAR(1) specification given above, and use the corresponding Cholesky roots to 

impose the correlation structures on (Wi1(ti1), …, Wi1(tini ))′ and (Wi2(ti1), …, 
Wi2(tini))′;

5. form Z = (Wi1(ti1), Wi2(ti1), …, Wi1(tini), Wi2(ti1ni))′;

6. apply the probability integral transform (PIT) to each element of Z to arrive at

U = (Ui1(ti1), Ui2(ti1), …, Ui1(tini
), Ui2(tini

))′

= (Φ−1{Zi1(ti1)}, Φ−1{Zi2(ti1)}), …, Φ−1{Zi1(tini
)}, Φ−1{Zi2(tini

)}′,

the elements of which are uniformly distributed; and

7. apply the inverse PIT to U to produce the response

(Yi1(ti j), Yi2(ti j))′ = (Fi1
−1{Ui1(ti j)}, Fi2

−1{Ui2(ti j)})′,

where Fi1
−1 and Fi2

−1 are the inverse cdfs corresponding to the desired Gaussian 

and Bernoulli marginal distributions described above and j = 1, …, ni.

Note that the simulated outcomes need not have precisely the same dependence structure as 

the underlying copula realization [41, 48]. This is because, for non-Gaussian outcomes, the 

margins impose bounds (the so called Fréchet–Hoeffding bounds) on the achievable 

correlation. For example [56], the maximum correlation for two binary random variables 

with expectations p1 and p2 is
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min
p1(1 − p2)
p2(1 − p1) ,

p2(1 − p1)
p1(1 − p2) .

We used a pilot study to choose several bandwidths. For each bandwidth we simulated and 

fitted 500 datasets, each having m = 300 subjects, and estimated θ(t) = (β1′ (t), σ(t), β2′ (t), ρ(t))′

at 200 grid points equally spaced over the unit interval. Figures 1 and 2 show the results for 

h0 = 0.1, the bandwidth that minimized the cross-validation score described in Section 2.

Our procedure performed well overall for this scenario with respect to bias, as the biases are 

generally small. The standard errors for the selected bandwidth of h0 = 0.1 were very 

accurate for the slope functions β11(t), β12(t), β13(t), and β21(t), and so the coverage rates for 

those functions were very close to the desired 95%. For the other parameters, especially σ(t) 
and ρ(t), the procedure tended to yield optimistic confidence intervals. We remedied this by 

using a smaller bandwidth for variance estimation. Specifically, we used h1 in O(n−1/4) since 

the asymptotically optimal bandwidth is in O(n−1/5). For our simulation scenario, this leads 

to h1 = 0.067. We see from the plots in Figures 1 and 2 that this bandwidth yielded accurate 

confidence intervals.

It is of interest to observe the performance of our methodology in a missing completely at 

random (MCAR) scenario [46] since missingness of this type is common in longitudinal 

studies. We designed our MCAR study as follows: for any subject and any time point, if the 

value of the second predictor for the continuous response is greater than some cutoff value, 

delete that observation. Our goal was to create approximately 15% missingness in each 

simulated data set. Since the second predictor is standard normal, a cutoff value of 1.03 

allowed us to achieve our target rate. Figure 3 shows selected results under this missingness 

scenario, for the same bandwidth that was used in the first study. The plots show that our 

procedure performed comparably for the two studies, which suggests that our approach can 

handle ignorable missingness.

Our approach performs well with considerably fewer subjects if the binary data are replaced 

by, say, count data. To demonstrate this we present selected results from a second simulation 

study. For the second study we simulated a trivariate process for 100 subjects. The first 

coordinate was Gaussian and identical to the process used in the first study. The second 

coordinate was Poisson with mean exp {xi2′ (t)β2(t)} and the same serial dependence as the 

Bernoulli process from the first study. And the third coordinate was Beta{α(t), 2} with α(t) 
= 5 + 0.2 sin2πt and serial dependence ρ3(s, t) = 10−6|s−t|. The three dependence functions 

for the joint process at time t were

ρ12(t) = 0.2 + 0.15 sin 2πt Gaussian−Poisson

ρ13(t) = 0.2 + 0.15 cos 2πt Gaussian−Beta

ρ23(t) = 0.3 + 0.15 sin 2πt Poisson−Beta.
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The results are shown in Figure 4. Note that we once again undersmoothed to obtain 

accurate confidence intervals for the non-slope parameter functions.

Additional simulation studies suggest that TIMECOP performs well for several, or even 

many, outcomes in realistic scenarios similar to those considered above, i.e., for at least 100 

subjects and at least ten observations per subject, say.

4. APPLICATION TO HIV DATA

In this section we apply our proposed methodology to data from the Women’s Interagency 

HIV Study (WIHS). These data contain information on 372 women recruited between 1994 

and 1995 from HIV primary care clinics, research programs, community outreach sites, 

women’s support groups, drug rehabilitation programs, and HIV testing sites in Chicago, 

Los Angeles, New York City, San Francisco, and Washington, DC. Participants were 

evaluated at WIHS sites every six months with an extensive interview that included physical 

and oral examinations, blood and gynecological specimen collection, and collection of 

information regarding participants’ daily activities (such as their sexual behaviors and 

tobacco use). Our analysis is restricted to 292 participants who were HIV positive. Among 

these subjects, 26% self-identified as Latina or Hispanic, 45% of the women were of 

African-American non-Hispanic origin, and 12% were of white non-Hispanic origin. Sixty-

six percent of the participants were smokers, and, while taking part in the study, 8.3% of the 

smokers quit smoking while 8.1% of the non-smokers started smoking. Although our data 

set contains follow-up information on women aged 25–55 until 2006, many participants 

failed to attend some of their scheduled visits, which led to unequal numbers of 

measurements and different measurement times. The number of observations for each 

subject varies from one to eight.

It is known that cigarette smoking has effects on the immune system [25, 27, 31, 36], but it 

is not yet clear whether any of these effects influence the progression of HIV. Burns et al. [5] 

analyzed data on a cohort of 3,221 HIV-seropositive men and women enrolled in the Terry 

Beirn Community Programs for Clinical Research on AIDS. They used proportional hazards 

regression analysis to assess the differences between never, former, and current cigarette 

smokers in terms of clinical outcomes, and found no association between cigarette smoking 

and the overall risk of disease progression or death. Similarly, Galai et al. [27] used Kaplan-

Meier analysis and multivariate Cox regression models to investigate the effect of cigarette 

smoking on the development of AIDS in the Multicenter AIDS Cohort Study of homosexual 

men. Their analysis revealed that smoking was not significantly associated with progression 

to AIDS. However, Nieman et al. [54] found that in a case series of 84 individuals, smokers 

progressed to AIDS more rapidly than nonsmokers. Their analysis used life tables and 

compared the median time to develop AIDS for smokers and nonsmokers.

Given these inconsistent findings, our primary interest was in investigating the association 

between HIV progression (as measured by CD4 cell percentage) and smoking status among 

women with HIV enrolled in the WIHS, while revealing response–predictor relationships for 

both responses. Based on the HIV literature [75, 55] and exploratory analyses, we chose a 

number of predictors. For the continuous response we used baseline CD4 cell percentage 
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(measured at the first visit), number of sexual partners, hematocrit value (the volume 

percentage of red cells in the blood), mean corpuscular volume (a measure of average red 

blood cell size), platelet count, and Center for Epidemiologic Studies Depression (CESD) 

scale score. For the binary response we used the CESD scale score and race. All predictors 

save race are continuous, and we centered them. The race variable originally had five levels: 

African American, white, Asian/Pacific Islander, native American/Alaskan native, and other. 

However, our subset of the data had just two participants in each of the Asian/Pacific 

Islander and native American/Alaskan native categories. Hence, we recategorized race into 

three levels: African American, white, and other.

To minimize modeling bias we assumed a maximally flexible model, which is to say that we 

permitted all parameters, including the dependence parameter ρ(t), to be time varying. If the 

confidence bands for some parameters suggest that those parameters may be constant with 

respect to time, our methodology can be used to fit a semivarying model [76].

We assume that CD4 cell percentage, Yi1(t), is a Gaussian process with mean xi1′ (t)β1(t) and 

variance σ2(t), where β1(t) = (β10(t), β11(t), β12(t), β13(t), β14(t), β15(t), β16(t))′ and 

xi1′ (t) = (1, xi11(t), xi12(t), xi13(t), xi14(t), xi15(t), xi16(t))′ with for subject i

xi11(t): the baseline CD4 (BaseCD4) cell percentage at the first visit,

xi12(t): the number of sexual partners (PART) at time t,

xi13(t): the hematocrit (HCV) value at time t,

xi14(t): the mean corpuscular volume (MCV) at time t,

xi15(t): the platelet count (PLAT) at time t,

xi16(t): the CESD scale score at time t.

We assume that smoking status, Yi2(t), is a Bernoulli process with mean

[1 + exp { − xi2′ (t)β2(t)}]−1,

where β2(t) = (β20(t), β21(t), β22(t))′ and xi2′ (t) = (1, xi21(t), xi22(t), xi23(t))′ with

xi21(t): the CESD scale score of subject i at time t,

xi22(t): the first dummy variable for race (RACE 1)

(xi22(t) = 1 if subject i is African American),

xi23(t): the second dummy variable for race (RACE 2)

(xi23(t) = 1 if subject i is white).

We used the K0.1 bimodal kernel and chose a bandwidth of h = 14 using the cross-validation 

procedure described in Section 2. Note that the time covariate in this study is the age of the 

participant. The estimated time-varying regression coefficient functions and variance for the 

continuous response (CD4 cell percentage) are shown in Figure 5.
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• From panel (a) we see that the intercept function is time varying and increases 

with age.

• The plot in panel (b) suggests that the effect for baseline CD4 is time varying and 

decreases with age. Moreover, the effect is always significant and positive for 

ages between 25 and 55.

• The confidence band in panel (c) suggests that the coefficient for number of 

sexual partners may be time invariant. And the effect is significantly different 

from zero only between ages 43 and 55.

• The plot in panel (d) suggests that the effect of hematocrit may be time invariant, 

but the effect is significant and positive for ages between 28 and 50.

• According to panel (e), the effect of mean corpuscular volume may be time 

invariant, but the effect is significant and positive after age 26.

• Panel (f) shows that the effect of platelet count is significant and positive after 

age 29. But the confidence band is too wide to support the conclusion that the 

effect is time varying.

• From panel (g) we see that the effect of CESD score is always significant and 

negative, i.e., depression is associated with a lower CD4 cell percentage. The 

effect may be constant with respect to time, however.

• The final panel (just barely) allows us to conclude that the variance of CD4 

percentage is time varying and increases with age.

Figure 6 shows the estimated time-varying regression coefficient functions for the binary 

response (smoking status) along with the estimated time-varying association, ρ̂(t), between 

CD4 cell percentage and smoking status.

• Panel (a) shows that the intercept function is time varying and increases with age.

• Panel (b) suggests that the coefficient for CESD score is time varying. The 

coefficient is significant until age 50 and decreases with age. We see that the 

effect is positive, which implies an association between depression and smoking. 

The association is evidently weaker for older patients.

• In panel (c) the upper and lower three-curve groups are the estimates and 

confidence bands for the RACE 1 and RACE 2 variables, respectively. The 

confidence bands reveal that the coefficient for RACE 1 is time varying while the 

coefficient for RACE 2 may be time invariant. We see that the coefficient for 

RACE 1 is always significant and positive, and until age 45 is greater than the 

coefficient for RACE 2. That is, African Americans have higher odds of smoking 

than do patients of other races. After age 45 the confidence bands for RACE 1 

and RACE 2 overlap, which indicates that the difference between the two groups 

becomes insignificant. We also observe that RACE 2 is not a significant predictor 

of smoking.

In Section 1 we mentioned that joint modeling can result in more precise estimation of 

marginal parameters. To demonstrate this for the WIHS data, we fitted a univariate time-
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varying model for each of the outcomes. In each univariate model, the other response was 

included as an additional predictor. Figure 7 compares standard errors for the joint model to 

those for the univariate models, for selected parameters. We see that joint modeling leads to 

considerable efficiency gains near the endpoints. The difference is negligible between ages 

35 and 45, which is not surprising: approximately 55% of our data were observed in this 

time interval, and, as Gueorguieva and Agresti [29] argue, for larger sample sizes the 

efficiency gained through joint modeling is less pronounced.

Finally, let us interpret the last panel of Figure 6, which shows the estimated time-varying 

partial association. Judging from the confidence band in this plot, we do not have sufficient 

evidence to conclude that ρ(t) is time varying. But we can conclude that the partial 

association is always significant and negative, i.e., for women enrolled in the WIHS, 

decreased CD4 cell percentage is partially associated with smoking. Although we studied 

women only, this finding provides evidence that smokers progress to AIDS more rapidly 

than nonsmokers. In addition to its negative association with CD4 percentage, smoking is 

known to decrease the adherence to highly active antiretroviral therapy [23]. Smoking also 

poses additional threats to HIV-positive patients, such as pulmonary-related complications 

(pneumonia, asthma, and chronic obstructive pulmonary disease) and increased incidence of 

opportunistic infections [1, 11, 42]. Therefore, the findings of our study and others suggest 

that smoking cessation counseling is a necessary component of any program that seeks to 

enhance quality of life and disease management for HIV patients. Niaura et al. [53] provided 

a review of existing cessation techniques for HIV patients, and also suggested ways to 

improve research studies so that more effective cessation treatments can be discovered.

Since some of the parameters may be constant with respect to time, a semivarying model is 

probably the most appropriate model for these data. Although our method can be adapted to 

the semivarying setting, it seems clear that fitting such a model to the WIHS data would not 

result in substantive changes to our conclusions.

5. APPLICATION TO SMOKING CESSATION DATA

In this section we apply TIMECOP to the smoking cessation data mentioned in the 

introduction.

According to a 2004 report by the U.S. Department of Health and Human Services [72], 

cigarette smoking is one of the leading preventable causes of several diseases, including 

coronary heart disease, acute myeloid leukemia, and bladder, esophageal, laryngeal, lung, 

oral, and throat cancers. Therefore, prevention scientists have designed studies to explore the 

motivation behind smoking and factors that might promote smoking. These studies revealed 

that alcohol, coffee, food, and presence of others smoking increase the odds of smoking [17, 

63, 37, 64].

Urge to smoke is another variable that is often of interest in smoking cessation research 

because of (1) the intuitive link between urge to smoke and smoking, and (2) the importance 

of urges in some theories of smoking (for instance, many theories posit that the influence of 

emotional states on smoking is impacted through the urge to smoke). Shiffman et al. [64] 
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investigated the association between urge to smoke and smoking and concluded that there is 

a strong and positive association between these variables, especially for lower levels of urge 

to smoke.

A drawback of the previous analyses was that they did not explore the dynamics of the 

association between these factors and smoking. However, we suspect that the relationship 

between these stimuli and smoking (and therefore, perhaps, urge to smoke) might vary over 

the course of a cessation study, especially before and after a subject quits smoking. Thus we 

created a binary response by combining the factors that might lead to smoking (specifically, 

the binary outcome is zero iff none of the factors is present), and applied TIMECOP with the 

new binary outcome and urge to smoke as response variables.

The data were collected using hand-held palm-top computers that prompted each participant 

at random times. When prompted, the subjects recorded their answers to a series of 

questions about their current setting and activities as well as current mood and urge to 

smoke. The data collection process is described below.

First, the subjects were monitored for a two-week interval during which they engaged in 

their ordinary smoking behavior. They were asked to record all their smoking occasions 

during this period, and to respond to the random assessment prompts. Patients were 

instructed to quit smoking at the end of this two-week period. When a patient had abstained 

for 24 hours, the current day was recorded as that patient’s quit day. After the subjects quit, 

they were required to continue responding to the random assessment prompts and to record 

any episodes of smoking (lapses) or strong temptations. Although all subjects were 

instructed to quit on a certain date, different subjects had different quit days, and the prompts 

were random. Thus the subjects have unequal numbers of measurements and different 

measurement times.

In our analysis we focus on the randomly scheduled assessment data collected two weeks 

before and after the quit day, so that we can study the differences between these periods. We 

analyzed the data for 206 smokers, each of which had from 46 to 222 observations.

Based on previous analyses of smoking cessation data [62, 65, 64, 43], we used the mood 

variables negative affect, arousal, and attention disturbance as predictors for urge to smoke. 

(see [64] for more information regarding these scores). We used the same set of predictors 

for the binary response. All of these predictors are continuous.

We assume that urge to smoke, Yi1(t), is a Gaussian process with mean xi1′ (t)β1(t) and 

variance σ2(t), where β1(t) = (β10(t), β11(t), β12(t), β13(t))′ and 

xi1′ (t) = (1, xi11(t), xi12(t), xi13(t))′ with for subject i

xi11(t): the centered score of negative affect at time t,

xi12(t): the centered score of arousal at time t,

xi13(t): the centered score of attention disturbance at time t.

We assume that smoking triggers, Yi2(t), is a Bernoulli process with mean
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[1 + exp { − xi1′ (t)β2(t)}]−1,

where β2(t) = (β20(t), β21(t), β22(t), β23(t))′.

As in the first data application, we used the K0.1 bimodal kernel in our estimation procedure 

and chose a bandwidth of h = 7 using the cross-validation procedure described in Section 2. 

The estimated time-varying regression coefficient functions and variance for the continuous 

response (urge to smoke) are shown in Figure 8.

• The plot in panel (a) suggests that the intercept function is time varying, and 

decreases after the quit day.

• The confidence band in panel (b) shows that the coefficient for negative affect is 

time varying. The effect is always significant and positive, that is, as negative 

affect increases, urge to smoke also increases. This effect increases until five 

days after the quit day and then starts to decrease.

• According to panel (c) we observe that the effect of attention disturbance may be 

time invariant, but it is significantly different from zero and always positive.

• Panel (d) allows us to conclude that the coefficient for attention disturbance is 

time varying. The effect becomes significant and negative just prior to quit day. 

Approximately at the same date that the coefficient for negative affect starts to 

decrease, the effect of attention disturbance starts to increase.

• The final panel shows that the variance of urge to smoke varies over time. The 

variance is almost constant prior to the quit day, and then it starts to decrease.

Figure 9 shows the estimated time-varying regression coefficient functions for the binary 

response (factors that may lead to smoking) along with the estimated time-varying 

association, ρ̂(t), between this binary response and urge to smoke.

• From panel (a) we see that the intercept function is time varying and significant.

• Panel (b) shows that the coefficient for negative affect score might be time 

invariant. The effect is significant and negative until quit day, after which the 

effect becomes insignificant.

• In panel (c) we observe that the effect of arousal may be time invariant but is 

significant and positive.

• The confidence band in panel (d) suggests that the effect of attention disturbance 

is significant and just barely time varying. The effect is positive and decreases 

until the quit day. Then the effect becomes nearly constant.

According to the confidence band in the last panel of Figure 9, which shows the estimated 

time-varying partial association, we do not have sufficient evidence to conclude that ρ(t) is 

time varying. However, we observe that this partial association is always significant and 

positive, i.e., for smokers enrolled in this study, exhibiting at least one of the factors is 

associated with an increased urge to smoke. This result could help prevention scientists to 

Kürüm et al. Page 19

Stat Interface. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



design better cessation programs. For instance, before someone tries to quit smoking, it may 

be wise of him/her to decrease the urge to smoke by mitigating some or all of the factors.

As in the application to HIV data, these results suggest that some of the parameters may be 

time invariant, in which case a semivarying model would be more appropriate. But fitting a 

semivarying model to these data would not lead to substantive changes to our conclusions.

6. CONCLUSION

In this article we developed a new class of joint models for longitudinal responses, and an 

estimation procedure based on the local likelihood approach. This new class of models can 

accommodate (1) responses of mixed type, (2) time-varying association parameters, and (3) 

all manner of time-varying marginal parameters. We demonstrated the efficacy of our 

approach via three simulation studies, one of which showed that our approach performs well 

under ignorable missingness. Then we used our methodology to analyze a bivariate response 

taken from the Women’s Interagency HIV Study. This analysis revealed a significant 

negative partial association between CD4 cell percentage and smoking status. We also 

applied our approach to smoking cessation data. Our analysis revealed a significant and 

positive partial association between urge to smoke and factors that may lead to smoking.

Our proposed methodology assumes that all parameters have the same degree of 

smoothness. However, it may be of interest to develop an estimation procedure capable of 

handling multiple degrees of smoothness. Perhaps the two-step estimation procedure 

proposed by Fan and Zhang [21] can be adapted for this purpose.

In this paper we used confidence bands to assess features of parameter functions. It may be 

desirable to develop hypothesis testing procedures, in which case results presented in [20] 

may prove useful.
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Figure 1. 
Part 1 of the results from our simulation study. Each row shows three plots for a given time-

varying parameter. The first plot shows the true function (solid) and the empirical bias of our 

estimator (dotted). The second plot shows the true function (dashed), the empirical pointwise 

95% confidence band (solid), and the mean theoretical pointwise 95% confidence band 

(dotted). The third plot shows the desired coverage rate (solid) and the empirical pointwise 

coverage rates (dotted).
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Figure 2. 
Part 2 of the results from our simulation study. Each row shows three plots for a given time-

varying parameter. The first plot shows the true function (solid) and the empirical bias of our 

estimator (dotted). The second plot shows the true function (dashed), the empirical pointwise 

95% confidence band (solid), and the mean theoretical pointwise 95% confidence band 

(dotted). The third plot shows the desired coverage rate (solid) and the empirical pointwise 

coverage rates (dotted).
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Figure 3. 
Selected results from our simulation study with MCAR. Each row shows three plots for a 

given time-varying parameter. The first plot shows the true function (solid) and the empirical 

bias of our estimator (dotted). The second plot shows the true function (dashed), the 

empirical pointwise 95% confidence band (solid), and the mean theoretical pointwise 95% 

confidence band (dotted). The third plot shows the desired coverage rate (solid) and the 

empirical pointwise coverage rates (dotted).
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Figure 4. 
Selected results from our trivariate simulation study. Each row shows three plots for a given 

time-varying parameter. The first plot shows the true function (solid) and the empirical bias 

of our estimator (dotted). The second plot shows the true function (dashed), the empirical 

pointwise 95% confidence band (solid), and the mean theoretical pointwise 95% confidence 

band (dotted). The third plot shows the desired coverage rate (solid) and the empirical 

pointwise coverage rates (dotted).
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Figure 5. 
The results of our data analysis for the continuous response, CD4 cell percentage. For each 

panel, the solid curve shows the estimate, the dashed curves show the estimated 95% 

pointwise confidence band, and the dotted line marks zero.
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Figure 6. 
The results of our data analysis for the binary response (smoking status), and the estimated 

time-varying association between smoking status and CD4 cell percentage. For each panel, 

the solid curve shows the estimate, the dashed (or dashed-dotted) curves show the estimated 

95% pointwise confidence band, and the dotted line marks zero.
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Figure 7. 
Comparison of standard errors for our joint analysis and separate univariate analyses of CD4 

cell percentage and smoking status. In each univariate analysis, the other outcome was 

included as an additional predictor. Panels (a), (b), and (c) show results for CD4 cell 

percentage, and panels (d) and (e) show results for smoking status. For each panel, the solid 

curve and dashed-dotted curve show the standard errors for the joint and univariate models, 

respectively.
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Figure 8. 
The results of our data analysis for the continuous response, urge to smoke. For each panel, 

the solid curve shows the estimate, the dashed curves show the estimated 95% pointwise 

confidence band, and the dotted line marks zero.
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Figure 9. 
The results of our data analysis for the binary response (potential factors leading to 

smoking), and the estimated time-varying association between this binary response and urge 

to smoke. For each panel, the solid curve shows the estimate, the dashed curves show the 

estimated 95% pointwise confidence band, and the dotted line marks zero.
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