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ABSTRACT

This report presents a summary of some of the results of the basic
mechanics study performed in conjunction with the development of a general
computer program for the analysis of highway protective systems. In the
course of these studies several areas of interest were identified and
efforts were made to obtain results in some depth in these areas.

It was found that theories and methods of solution using plasticity
to represent material and structural behavior were not readily available.
Much of the work on the subject related to particular types of dynamic
material testing and has been found to be relevant to the present problem,
providing that it be reinterpreted from the point of view of design for
dynamic and impulsive loading. Furthermore methods for the inclusion of
rate effects have, in the past, used only the idea of an arbitrarily in-
creased yield point in a bilinear material model., These results indicate
that it would be useful to collect a reinterpretation of much of the
existing published research in dynamic plasticity from the point of view
of design for impulsive loading.

The report begins with a study of uniaxial and multiaxial constitutive
equations for strain rate insensitive and strain rate sensitive plastic
materials developed in this way. The constitutive theories for dynamic
plastic behavior which are included have been developed in a way which
allows their incorporation into any numerical solution technique using
an incremental method for integration in the time domain, In addition
there has been an attempt to include the delayed yield phenomenon, a
characteristic of the dynamic loading of mild steel, into a design problem
for dynamic loadings.
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In the third chapter of the report a series of solutions for rate
independent systems are presented. The first deals with the response of
a laterally supported beam subjected to normal impact by a moving object.
The problem may be considered to be a model of the collision of an auto-
mobile with a highway impact protective system. The problem is idealized
by assuming the beam to be rigid perfectly plastic and carried on a rigid
perfectly plastic support. The impacting object is also taken to be
rigid perfectly plastic in that it can sustain only a limited force in
contact with the barrier. Closed form solutions are found for a number
of specific examples, and estimates of the vehicle damage are given.

The second is concerned with the oblique impact of a moving de-
formable mass on a beam laterally supported by some kind of energy
absorbing material. As before the problem is idealigzed by assuming the
beam to be rigid perfectly plastic and backed by a rigid-perfectly plastic
support material, and the impacting mass is taken as rigid-perfectly
plastic in that it can sustain only a limited force in contact with barrier.
The salution includes the determination of the contact force between mass
and barrier and includes variable mass velocity parallel to the barrier
and also includes convective terms which arise out of the rate of change
of slope of the beam at the point of contact of beam and mass., Inclusion
of this term allows the determination of the speed and the angle of the
vehicle as it leaves the deformed barrier. Closed form solutions are no
longer possible for this problem but a fairly simple numerical integration
procedure is developed and solutions for particular examples are obtained.

The question of how this has to be modified when the effect of axial
forces on the yield condition is included is then taken up and an approach

to this case is developed.



In the fourth chapter a general method of finding the dynamic plastic
response of some structural elements of rate sensitive materials under
impulsive loading is developed.

The uniaxial constitutive equation is extended to a beam element in
terms of generalized forces, generalized deformations and generalized
rates. Also a dynamic yield surface which changes with rate was established.

A finite element approach is used to form dynamic equilibrium equa=-
tions of general beam, The differential constitutive equation was trans-
formed into an incremental one., The solution was carried out in a step
by step numerical integration. A computer program was developed for this

purpose and some problems involving cantilever beams were solved,
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1. INTRODUCTION

This report presents a sumeary of some of the results of the basic
mechenics study performed in conjunction with the development of a general
computer program for the analysis of highway protective systems. In the
course of these studies several areas of interest were identified and
efforts were made to obtain results of some depth in these areas.

During this study it was found that with respect to elastic and
bilinear theories of behavior the essential features of the appropriate
theories and the techniques needed for the solution of impact problems
were well understood. On the other hand, it was found that corresponding
theories and methods of solution using plasticity to represent material
and structural behavior were not so readily available. There has been,
however, an extensive amount of work on the subject related to particular
forms of dynamic material testing and much of this work has been found to
be relevent to the present problem, providing that it be interpreted from
the point of view of design for dynamic and impulsive loading. For
example, there has been no systematic attempt to include the delayed yield
phenomenon, which is a characteristic of the dynamic loading of mild
steel, into a design problem for dynamic loadings. An approach in this
direction has been worked out in the basic mechanics study under this
contract. Further methods for the inclusion of rate effects have, in
the past, used only the idea of an arbitrarily increased yield point in
a bilinear material model. These results indicate that it would be useful
to collect the results of the present study and a reinterpretation of
mich of the existing published research in dynamic plasticity, from the
point of view of design for impulsive loading, in the form of a summary
report to the Bureau; and hence this constitutes the second part of the

present final report.



Much of the work reported here, in particular the solutions obtained
for moving mass impact on laterally backed beams and the approach for rate
sensitive structures, is original to this study. On the other hand, some
of the material presented here has appeared in other contexts but has
been reinterpreted from the point of view of its application to structural
impact problems, For example, the constitutive theories for dynmamic plastic
behavior which are included have been developed in a way which allows their
incorporation into any numericeal solution technique using an incremental

method for integration in the time domain.



2. CONSTITUTIVE EQUATIONS OF DYNAMIC PLASTIC BEHAVIOR

2.1 Rate Independent Plastic Behavior

The classical theory of plasticity as developed, for example,
in the text books by Hill [2.1] or Prager and Hodge [2.2] is a theory
which does not admit the influence of rate effects by virtue of the fact
that the constitutive equations are hamogeneous in time, The classical
theory extends to multiaxial states of stress the main features of plastic
behavior which are characterized by the unaxial stress strain curve of a

material, usually expressed in the simple form:

o = f(¢)
where 0 represents either an engineering stress or a true stress and ¢
some suitable measure of the strain. Included with this is the notion
of irreversibility, in that unloading occurs elastically, leaving a
permanent plastic deformation.

The generalization to multiaxial states of stress leads to systems
of equations which are well known; and in giving them here, the purpose
is to present them in a form particularly suitable for incorporation into
numerical solutions of structural problems. These resulting equations
take significantly different forms when the material is assumed to be
perfectly plastic and when it is assumed to work harden, and it is
useful to consider these separately.

(1) Perfectly Plastic Materials

In what follows we denote the stress tensor by Gij’ and the
total infinitesmal strain tensor by Eij’ and assume that it can be
divided into an elastic part Ezj’ and a plastic part 8?3' For yield to

occur and continue in a perfectly plastic material, it is necessary that



the stresses satisfy a yield condition of the form:
f(oij) =0 (2.1.1)

When £ < O the behavior is elastic and f > O is not possible. The flow
rule, which, as a consequence of the principle of maximum plastic work
enunciated by Drucker [2.3], identifies the potential of the plastic

strain rates with the yleld function f, leads to the equation:

p=
€43 Aaf/acij (2.1.2)

where A is a positive factor of proportionality. The elastic part of
the strain rate may be obtained by assuming that the instantaneous elastic

compliances ”ijkl are independent of the plastic strain, thus:

oe - ®
€55 = M50

Eliminating A from this equation by contracting with Gij’ leads to:
6. €  =p 0O G
s . * 4+ -R4P9 pgrs pq rs 1.
€3 M3 35x1%13 —5 af/acij (2.1.3)

where it has been assumed that f(cij) is homogeneous of order n.
This may be written in a form particularly suitable for incorporation
into incremental numerical approaches, as follows:

o M o
s - AR _ _of 'pgrs'rs\
(épidqj nf,>£pq (Pidpq oy; nf J'pq (2.2.4)

where dij is the Kronecker delta.
Taking the 6 independent components of €ij as a vector E and the

components of o, . as a vector § these equations take the matrix form:

ij

A(S)E = (M + B(8))8 (2.1.5)



where ﬁ and.g are matrices dependent on the instantaneous stress state
and M is a constant matrix.

For an isotropic material, in the case where the yield function
does not depend on the pressure and the plastic strains are equivoluminal,
certain simplifications result. When the Mises yield condition is used,
the stress strain relations reduce to the Prandtl-Reuss equations:

e.. = s,./2G + As,
ij i

i3 = "kk/3K (2.1.6)

J? ékk
where G is the shear modulus and K the bulk modulus of the material,

and

n

€.

€55 ij " ekk/3 dij (2.1.7)

and

Si5 =035 - "kk/3 dij (2.1.8)

are the strain and stress deviation tensors. The factor A in this case
becomes:

e, ./2x°

A =8550

and the matrix form of equations reduces to:
26(I - B(S))E = § (2.1.9)

To illustrate the convenience of this type of representation for
incremental methods of solution we may consider the propagation of elastic
plastic waves of combined stress. The simplest problem of this kind
involves the propagation of combined shear waves in & half space. Taking

the half space to be X. 2 O these waves may be generated by impulsive

3



shear loadings tl and t2 in directions X5 x2 independent of X1 x2, on

x3 = 0, For this problem, the equations of motion for small displace-

ments, namely:

O, = oV
13,5~ Vi,

where p is the density of the material and vy the velocity vector, take

the form:
30,5/, = pdv, /36, 30,/ = pdv, /3

and the strain displacement relations for infinitesmal theory reduce to:

ael3/at 1/2 avl/ax3

1/2 avz/ax3

The constitutive equation (2.1.9) takes the form:

8523/81;

2 2 - 2 . .
1- 013/k . 023013/k €13 O3
1
2G

2 2
- 623613/k > 1 - 9p3/i2 €53 p3

(2.1.10)

and the complete formulation of the problem is:

CH,, + DN, =0

M,x

where x indicates x3 s ,‘! is the vector

\

0




and.g and 2 are the symmetric matrices given by:

E =
0, 0, 0, -1
0, 0, -1, 0
and
B 2 ,2 2 7
G(1 - 013/k ), 0, 6023013/k , 0
0, 1/, 0 0
D=
- 2 2 ,2
-6623013/k , 0, G(1 - 023/k ), O
0, 0, 0, l/p
— -

This constitutes a set of quasi-linear partial differential equations
of the first order for which there exists an extensive body of knowledge
on their solution by the method of characteristics.

Detailed discussion of the technique can be found in Courant and
Hilbert [2.4] or Jeffrey and Taniuti [2.5]. It is enough to note here

that the characteristic wave speeds are given by roots of the equation:
det (AC - 2) =0

and for the real symmetric matrices which appear here these speeds are
real. In the particular case above there are four roots, but two of
these coalesce to zero and the system of equations is not wholly hyper-
bolic. However, the yield condition supplies an algebraic relationship
between the two stress components, and thus three characteristics are

adequate for a solution. The characteristics of the problem are not



known a priori and are in general curved in the (x3, t) plane. This,
however, presents no serious difficulty if the solution is to be ob-~
tained by an incremental technique based on difference equations in the
characteristic directions.

(ii) Work Hardening Plastic Equations

The introduction of work hardening into the material description
increases the complexity of the theory, and there is at the present time
no generally accepted constitutive theory which includes the very wide
range of physical behavior experienced in any real materiasl. This com-
plexity is clear when we consider that at any plastic state of stress the
current yleld surface depends on the entire history of the loading process
up to that time. Thus a proper description of the plastic deformation
should be based on functional representations, as is done for general
viscoelastic materials. Some work along these lines has appeared, for
example, by Rivlin and Pipkin [2.6] but has led to no development along
these lines suitable for application to problems of the kind we are
interested in here.

To overcome the complexities of the functional approach the usual
process is to represent the change in the current yleld surface in terms
of current level of plastic strain and the current plastic work. Reference
may be made to the textbook by Fung [2.7] for the details of this
approach.

The yield condition is taken to be:
f(o e? ) =0
13* %13’ %

where now the q, are scalar parameters which may influence the expansion

of the yield condition. Typical examples of q, are the plastic work:

8



't
=w = eP
q =W _L/; o;s€15 Ot (2.1.11)

or the equivalent plastic strain:

=EP = t('sp P )1/2 dt (2.1.12)
W o 1343 o
As before, the flow rule applies that:
€.. = A Of/do, .
1J 1J

where A is a positive factor of proportionality.
Since £ = O is the condition for continued plastic behavior, we

must have:

f = af/aoijéij + af/aégjéfj + 3t/dq, q (2.1.13)

From this we can eliminate A, as before, obtalning:

P = - of/30yy /N0 (2.1.14)
+J (3e/3e> + 3t/3q, Bqu/asgn)af/bcmn

To complete the specification of the material response it is necessary
to know the quantities af/aezn and af/aqu.

Two fairly simple one parameter models have been developed which
enable the necessary informetion to be obtained from uniaxial stress
strain curves. The first, known as kinematic hardening, assumes that in
stress space the yield condition remains fixed in shape but translates

in this space. Thus the yield condition may be written in the form:

f(Gij - aij) =0, a5 = aij(q) (2.1.15)



where “ij represents the translation of the center of the yield surface
and q may be either the plastic work or-the total equivalent plastic
strain. If it is assumed that the center translates instantaneously in

the direction of the plastic strain rate, we have:

. - op
o, = C(q)eij

Taking C to be a constant generalizes the bilinear law of uniaxial be-

havior, and using as before equations (2.l1.1L4) and (2.1.15), we obtain:

(af/aci )&i

N =t TS
c k1l £ k1l

An alternative assumption is that the center translates with the
direction of the vector joining the instantaneous center with the stress
point, thus giving:

gy = (2o - agy)

The second one parameter hardening law is known as isotropic hardening.
According to this hypothesis, the yield condition in stress space is a
surface which retains its shape but uniformly expands.

A typical yield condition of this kind is:

£(o;4) - ¢(a) =0
or (2.1.16)

f(cij) = k"

where in the second form f is a homogeneous function of order n and
k = k(q) is a characteristic stress. When the quantity q is identified

with the plastic work or the equivalent plastic strain, as in

10



equations (2.1.11) or (2.1.12), the information needed to construct k(q)
can be obtained from a tension test.
For example, if q is the plastic work then inverting the relation-

ship k = k(W) to give W* = W'(k), we have:

W = ggf k (2.1.17)

From the yield condition we have:

. - n- .
3t/30,, 6, = k"

and from the flow rule we have:
WP = A /X, . o
ij "ij
= Anf

since £ is homogeneous of order n in Gij.

Thus the expression for A takes the form:

__awP/ax

A =
n2 k2n 1

Oy (2.1.18)

af/aokl

which when isotropic elastic stress strain relations as used leads to:

. _l-]-v. v
&3 F %3 ES%

1

O * G(k) af/aokl af/ao.j Oy (2.1.19)

J
where:

(k) = awP/ak n~2k"20*1
The function G(k) is a scalar function of k, and through the yield
condition (2.1.16), of the stress Oy4° This system of equations can,
as before, be put into a matrix form particularly suited to incorporation
into incremental numerical methods of solutions, in this case taking the

form:



£ = (k+A8))2

where K is an elastic matrix and ﬁ is & matrix dependent on the current
stress vector §.
If we are given the uniaxial stress strain curve for the material

in the form:

o = f(g)
then using:
e = ¢ - ¢/E

it is possible to construct a curve
ef = g(o)
From this the rate of plastic work P is:

W = 0g'(0)é = (6%/2) &'(0)

Thus:
W /a(e®) = 5 &'(0)

and if the material obeys the Mises yield condition, then:

02 = 3k2

and
awP/a(x?) = % g' (3%)

which, when inserted into equation (2.1.19), with n = 2 for the Mises

condition, leads to:
1/2




This particular set of constitutive equations has been applied to the
problem of the propagation of plastic wave of combined tension and torsion
by Clifton [2.8], using the method of characteristics as the solution
technique.

Neither of the two simple one parameter hardening models given here
reflects accurately the physical behavior of a real material. If,
however, the state of stress is such that the stress point in stress space
remains in a fairly small neighborhood, the isotropic hardening model is
likely to be accurate and fairly easy to use. On the other hand, if
stress reversals take place it is likely that the kinematic hardening
law, although more difficult to use due to the presence of the additional

six quantities aij’ is likely to be the most accurate.

13



2.2 Rate Dependent Plastic Behavior

The equations of the classical plasticity theory are homogeneous

in time and are as a consequence insensitive to strain rate effects.
This particular mathematical form for these equations was sought
precisely to reflect the observed physical response of ductile metals
in the range of loading rates normally encountered in the technical
situations to which the plasticity theory was directed. As an idea of
the strain rates involved, a standard tension test on a steel specimen
usually incurs strain rates of the order of lO-3 to lO-h per sec. It
is generally accepted that plastic deformation results from the genera-
tion and movement of dislocation lines of various kinds throughout the
crystal lattice of metal being deformed. The characteristic times
associated with the propagation of a dislocation line across a grain
are generally of the order of millisecs so that under the usual rates of
loading the times associated with the loading process are very much
greater than those associated with the plastic deformation, which may
then be considered to be rate independent.

However, at even the moderate strain rates experience by dynamically

loaded structures (in the range 10° to 107

per sec, for example), the
times associated with the loading become comparable to those of the
dislocation motion, and the observed physical behavior of the metal be~
comes quite different from that observed in quasi-static experiments.
This type of behavior is generally referred to in the literature as
strain rate sensitivity.

A large amount of experimental work has been published on strain
rate sensitivity, indicating that it varies widely from metal to metal

and for a single metal, for example, mild steel it depends on grain

1k



size, chemical composition and heat treatment. Often different measures
of rate sensitivity are obtained on nominally the same material when
tested using different experimental techniques. Also, specimens cut
from the same stock show differences in sensitivity when cut parallel
to the direction of rolling and when cut transverse to it. A complete
summary of the experimental information is not possible here. Data up
to 1960 are given in the book by Goldsmith [2.9].

(1) Uniaxial Constitutive Equations

It is customary to present experiment results on the strain
rate sensitivity of a metal in the form of plot of stress ¢ as a function
of strain € and strain rate € by means of an isometric diagram (see for
example Marsh and Campbell [2.10]). The surface which results in the
o, €, € space is in a sense an equation of state for the material,

f(o, €, é) = 0, and such a relationship cannot be strictly correct
since it assumes that one of the three quantities is known when the other
two are specified. It is obvious that for such materials the stress
depends on the strain history experienced by the material, and thus
the equation of state representation is only approximate. It is a
convenient one, however, and it appears from the results of Marsh and
Campbell [2.10] that the same diagram results for mild steel when
tested in constant stress tests and in constant strain rate tests, in-
dicating that strain history effects are not serious.

To a certain extent the strain history can be incorporated into
the constitutive equation of the material if the equation of state of

the material is rewritten in the form:

P = glo, €)

15



indicating that the current plastic strain rate, ép, depends on the
current stress and strain.

Since
e® = ¢ - o/E

where E is the Young's modulis, this equation becomes:
Ee = o + g(o, €) (2.2.1)

An equation of this type was introduced by Malvern [2.11]. Since we are
interested in plastic materials, i.e. materials which exhibit an elastic
range given, say, for static loading by a stress curve o = f+(€) when
o, € are tensile and ¢ = f (&) when compressive, the function g(o, €)
should be interpreted as follows:

g(o, €) >0, o> f+(e) >0

g(o, €) =0, f+(€) >0 > £ (g)

glo, e) <0, f(e)>0
Also, to incorporate the irreversibility implicit in plastic behavior,
the constitutive equation should be the elastic law:

EE = G

. +
whenever € <0 and o> f (g)

>0 and o< £ (g)

Mme

or

It is thus possible to have a loading situation when the stress and

stress rate are opposite in sign, for example, in a relaxation test

P

. . o+ . .
where £ = O but €° # O, and if ¢ > f (&) then ¢ = - Ee* > O.

16



Several simple forms of equation (2.2.1) have been used in the study
of uniaxial wave propagation problems. The earliest appears to be due
to Sokolovsky [2.12], who showed that a closed form solution to the

uniaxial wave problem could be obtained when the constitutive equation

L] [ ] l
Ee =0 + = (o - co) (2.2.2)

was used. In this equation o, is the static yield stress and T a time

0
constant. Malvern [2.11], although suggesting an equation of the form

(2.2.1), actually used the simpler equation:

B =& 42 (0 - £(e)) (2.2.3)

Where as before f(e) is the static stress strain curve taken to be the
same in tension and compression and T a time constant. These simple
equations, which indicate that the plastic strain rate is linear in the

over-stress ¢ - ¢, or ¢ - f(e), are particularly convenient to use in

0
problems but have a very limited range of applicability. If the strain

is specified, equation (2.1.22) can be integrated to give:

t '
o = f(e) +L/; (E - df/ds)e'(t't ) de(t')/at' at' (2.2.4)

where t = O is chosen so that ¢ = O, € = 0. In this form the partial
incorporation of strain history effects in equation (2.2.2) is clear.

It is clear from equation (2.2.4) above that it predicts the the dynamic
stress strain curve is asymptotically parallel to the static curve.
Tests by Hauser, Simmons and Dorn [2.13] have indicated that the asymp-
totic slope increases with strain rate. This type of response can be

included if equation (2.2.3) is modified (see Kelly, [2.1L4]) to:
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Ee =0 + 1‘-&9- (o - £(e)) (2.2.5)

This equation remains linear in ¢ and can immediately be integrated

to give:
% - §§t2-g§t'} is !
o(t) = £(e) +f (E - df/de)e T —-(‘1?)- ats*
0
where:

t
£(t) = f u(e(t'))at’
0

€

A simple form of p(e), which gives the effect sought, is u(e) = el
0

where 80 < O and constant. Considering the case when we take f in the

simple form:

Ee e < g

f(e)

where ey is the yield strain, and for a constant strain rate € = a

this leads to

_ -g /0T
€ €5 0

E € " % 5
0 1 so/dr €, = €, € - €, | Vs 0

which asymptotically gives curves of the form:

E
= + -
o GO i_:7;77—— (e eo)
implying an increase in slope with increasing strain rate. The same type

of modification taking instead p(e) = A(e + c).2 has been discussed
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recently by Lubliner and Valathur [2.15] in application to wave propa-
gation problems.

In addition to the fact that equation (2.2.3) predicts dynamic
curves parallel to the static curves, it also predicts that the over-
stress is linear in the strain rate, and in fact this linear dependence
is not experimentally confirmed over even moderate ranges of strain rate
(say from 10° to 103 per sec). In fact, for mild steel in particular
and for many other metals, the experimental results suggest a logarithm
dependence. This behavior results from equation (2.2.1) if written in
the form:

c
Ee = ¢ + o /T (e ¢ - ) (2.2.6)

where o is a characteristic stress. It was shown by Kelly [2.16] that
this equation can be linearized in (¢ - f(e)) and integrated formally
for o(t) in terms of strain history.

In a situation in which the strain is prescribed, it is convenient

to write (2.2.6) in the form:

o-fl€

%E{L:a_:iﬂ} +%<e+ % > = (E - £')/o_ de/dt

which by suitable manipulations and use of the integrating factor

e+t/% e(Ee-f(s))/ac

leads to the integral:
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o(t) = f(e) - g, 1n {1

-B(e-¢')/o, (£(e)-£(e'))/o
e

t '
- ;l,—c-fo (E - df/de)e'(t‘t )t o ¢ de'/ot! dt'}

(2.2.7)
where €' = g(t'), and o, and € are taken to be zero at t = O.

Since 0 is always greater than or equal to the stress corresponding
to the static lower yield point for all strain rates, the fact that
df/dE is very much less than E over most of the plastic range can be
used to simplify the above result. The term f(e) - f(e¢') is, as a
consequence, negligible in comparison to E(e - £'), and the above result

reduces to:

t , -E(e-¢'
O'(t) = f(E) - o-c 1n {l - g_f e'(t-t )/1: . E(S € )/O'C aey/a.tx dt'}
cvY O

(2.2.8)

The representation of stress in terms of strain history thus involves
a fading memory in time with a relaxation time T (using the terminology
of viscoelasticity theory) and in addition has a fading memory in strain,
with the characteristic memory strain given by cc/E.

In the case of constant strain rate, € = a the reduced form (2.2.8)

becomes:

- -Befo - -Ee/o
o = f(e) - g, ln'{e € e e/at + [l - e e/ut e

c] ' Eot
(o 2=

c
The asymptotic form of the above equation is:

o = f(e) + o, In (} + E“T/G?>
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Curves of 0 against log a were given by Marsh and Campbell [2.10]
for mild steel specimens of two grain sizes: one a large grain-size
material with 346 grains/mm2 and the other a small grain-size material
have 2030 grains/mmz. Using this equation and the data of Marsh and
Campbell, reasonable values of Gc and T to be 26,000 psi and lO-l sec
for both materials are obtained. It is possible to extend equation
(2.2.6) further by inclusion, as in equation (2.2.5), of a term in
p(e) and in this the variable transformation from t to £(t), as given
for equation (2.2.5), can be used to obtain an integral equivalent to
(2.2.7).

A wide variety of other forms for the function of g(o, €) are
possible., On the basis of a theory of thermally activated dislocation

motion a representation of the form:

Q

c

g(o, €) = == sinh ((o - £(e))/o)

is suggested (see for example Dorn and Mote, [2.17]). Other theories

of dislocation motion have led to power law expressions involving

(o - co)n. On the basis of experimental results on the stress dependence
of dislocation motion, Gilman [2.18] and Johnston [2.19] proposed an

equation of the form:

glo, €) = ',Jr: exP/&" g)

which differs from the others in that there is no explicit elastic

range.
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(ii) Multiaxial Constitutive Equations

In extending the models proposed in the previous section to
multiaxial states, there is very little experimental information to act
as a guide, and any assumptions made must be regarded as speculative.
The general approach used, for example, by Perzyna [2.20] and reviewed
by Cristescu [2.21] assumes the existence of a static yield surface and
assumes that this can be used as a potential for the plastic strain
rates. Thus, for exemple, for a statically non-herdening material for

which the yield condition may be

_ .2
f(cij) = k

where f is homogeneous of order n in the Gij we have:

op -
€55 =2 af/aaiJ

but in contrast to equations (2.1.1) and (2.1.2), £ > k" is possible
and A here is a factor of proportionality which depends on the stress

state which may be outside the yield condition. It is generally assumed

1l f - )
A==0 (
T K2

when, as before, T is a time constant but ® is a dimensionless function

that

of the extent to which the stress state lies beyond the static yield
condition., Thus the stress strain relations for the material may be

written in the form:

. _l=-v- v . f -k
€5 =5 %3 " F T a« n)éf/ac (2.2.9)

where v is Poisson's ratio.
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If the static yield surface is given by the Mises yield condition,

written in the form:

(1/2 sia.sia.)l/2 =k

we can obtain an extension of the linear model in the form:

(1/2 s.kl:skl)l/2 -k

L] . l
Ge,.,=85,, += S, . (2.2.10)
ij ij T (1/2 s. .5 )1/2 ij
k1 k1
3k ekk = Gkk
with €42 54 defined by equations (2.1.7) and (2.1.8). This reduces

the equation (2.2.3) when 9y is uniaxial.

On the other hand, the alternative extension

2
1/2 s .5, -k
.. 1 11 5k1
2G 55 = 53 + 2 2 JF (2.2.11)

which results from the Mises condition when written in the form:

2

1/2 553515

does not reduce to (2.2.3) when Uij is uniaxial, but cannot be dismissed

on these grounds, for in the range of small values of overstress to which
the linear equation (2.2.3) applies the equation resulting from (2.2.11)

is the same as that resulting from (2.2.10).

The second alternative form:

2

1/2 51155 - K

1/2 811 551

2G e,, = S (2.2.12)

i
ij ij T
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which also does not reduce to equation (2.2.3) when Gij is uniaxial, is

equally as acceptable as equation (2.2.10) or (2.2.11).

Noting that égj = eij - E%J , it is obvious that these equations can

be interpreted in terms of a dynamic yield condition; for taking éij

to the left side and squaring both sides gives for (2.2.9):

462(1/2 epJep ) = 1/12((1/2 515,1) )2 | )2
or
(1/2 8,45,.,) /2 - 4 2ae(1/2 faefJ)l/z

A dynamic yield curve of the form:

1/2 s = k% + 261(1/2 & & fJ)

k1K1
proposed by Craggs [2.22], suggests a constitutive equation of the form:
2,1/2

-k)
)1/2 i3

. (1/2 s

: K15kl
..=s..+
2G ela 15 7 T /2 s

(2.2.13)
k1%K1

which is another way to extend the uniaxial equation.
Extensions to include isotropic work hardening of the yield condi-

tion are possible, e.g. if we write the yield condition in the form:
£(oy;) = cla)

where q is the plastic work wF or the equivalent plastic strain Ep,

then:

-p _1l f-¢
== d& af/ac
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and: ¢ = cy + B(a); B(0) = 0.

Extensions similar to (2.2.5) may be obtained by setting

D 1 (g £(o,.) - K"
€, =% (E°)o &——J——kn af/acij

and many obvious combinations can be derived. All of these ere specu-
lative and none are known to be the superior in any sense other than
convenience to analytical solutions.

An entirely different approach to the extension of these constitutive
relations which retains the linearity of relations of the type (2.2.3) and
improves their correspondence with physical deta by the use of hereditary
integrals is given in the next section.

Regardless of which form of equation (2.2.9) is used, and inde-
pendently of the choice of the function ¢, it is always possible to put
the equations into a matrix form suitable for incorporation into incre-
mental numerical solutions, and in this case the strain rate vectors
and stress rate vectors are operated on by matrices which are constants.

Thus the equations reduce to:

= K§ + A(8) (2.2.14)

A

‘e

(iii) Extension by Use of Hereditary Integrals

Suppose we consider the extended form of the linear law
(2.2.3) as given in equation (2.2.12). Multiplying both sides of this

equation by 1/2 8 gives:

L] 2 - *
1/2 54845 * 1/t (1/2 8135843 ~ k) =G 85581 5
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which can be written in the form:

1. 2 .
2J2+l/r (Jz-k)=Gw

Where Jp = 1/2 Sy is the 2nd invariant of the stress deviator and

S..
J i3
sijéij is rate of work. This equation can be written immediately

in the form:

-(t-t')/z
2 t 2,
=X t')dt!
+2Gfo e w(t')at

Jp

where for convenience t = O is selected so that sij(O), eij(O) vanish.
This is an equation of the hereditary integral type with a single
relaxation time T/2. However, in any real material there is no single
natural time, but a large number of different times corresponding to
the multiplicity of crystal grains and orientations. If we assume that

instead of a single time 1/2, a spectrum of natural times 0 < T < o,

then replacing G by Go(t), where ¢(t) is a normalized function of T

" 00

such that h/k ¢(t)dtr = 1, and summing over the entire range, we obtain:
0

t
Jy = K2 + 2Gf P(t - t")w(t')as’ (2.2.15)
0

The function {(t), appearing above, is a nondimensional relaxation function

constructed from:
, 00 =% %
¥(t) = ,[ o(t)e dr (2.2.16)
v 0

and having the properties:
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P(0) =1 p(t) 20, t=z20

A
o
-
ct
v
o

lim §(t) =0, ¢'(t)
o0

The determination of (t) by experiment is possible by means of uniaxial
. *2

relaxation tests. In this case, w(t) = QE— d(t) where o* is the

instantaneous value of o(t) at t = 0'. When o(t), t > O is measured,

we obtain:

1/3 o2(t) = ¥2 + y(t) o' 2/3

Thus :

Wt) = (o%(t) - 36%) /0¥
Tests at constant rate of work could also provide a means for the
determination of Y(t).
For a material defined in this way the complete stress strain

relations become:

2G eij = Bij + Asij

where now, as in equation (2.1.2), A is a factor of proportionality

given by equation (2.2.15) for J2’ In fact, A takes the form:

t
- 2G f g'(t - t')w(t')at’
0
A = T (2.2.17)
K2 + 2Gf P(t - t')w(t')at’
0

This particular form is no more involved than equation (2.2.12) when
applied to incremental computations as t = O may be taken at the start

of the interval, initial conditions there included explicitly and the
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integral taken over the length of the increment in any approximate form
consistent with the approximations used in the rest of integration

procedure.
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2.3 Delayed Yield Phenomenon

The rate sensitivity of the yield stress for certain metals is
well known and, as indicated above, a reasonably well understood phencmenon.
Another type of rate effect in certain metals which is much less well
understood is that of the yield delay time. This involves a delay in
the development of plastic strain when a stress in excess of yleld stress
is instantaneously applied. The order of magnitude of the delay time in
mild steel for stresses which exceed the yield stress by about 20% is
7 millisec. It appears, however, to be extremely sensitive to the
stress level, decreasing with increasing stress. This effect gives
rise to the familiar upper yield point and yield drop in simple tension
tests on mild steel, but there is much controversy as to whether this
is a material property or due solely to the stiffness of the machine
used for the tests. There is no doubt that interaction between machine
and specimen strongly influences the observed delay time in tension
tests, but the phenomenon appears in wave propagation tests and in other
test situations where the stiffness effects are not present.

It appears to have been first observed by Hopkinson [2.23] and has
been studied experimentally by Clark and Wood [2.24], Campbell and Marsh
[2.25] and Krafft and Sullivan [2.26]. These experimental results show
that with increasing strain rate the upper yield point increases faster
than the lower yield point, and thus the effect might become increasingly
important for very rapid loading, although so far as is known no con-
sideration of this behavior has been included in any studies of im-
pulsively loaded structures. For statically loaded structures or for
dynamically loaded structures for which the strain rates remain small

(< 1 per sec.) the effect is of no importance and is always ignored.
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Whether or not the effect can be ignored for dynamic loading with high
strain rates is an open question and only extensive experimental and
computational work could resolve this.

In the following we develop a rate sensitive constitutive theory
that incorporates a delay time showing how the constitutive equations
have to be modified. A method for determining the upper yield point
dependence on strain rate is given. Later in the report, in the section
on analysis, the constitutive equations will be applied to the problem
of a dynamically loaded beam and one possible effect of the yield time
will be shown.

We assume for this development that the response of the material
from the unstained, unstressed state be described by the two basic

equations:

=
™
it
Q-
-
ct
[T}
ot

(2.3.1)
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providing € 2 0.

To estimate td use will be made of published experimental data by
Campbell and Marsh [2.25). In their tests, mild steel specimens of
various grain sizes were loaded dynemicelly in compression under constant
stress. It was found that the delay time is dependent on the applied
constant stress and on the grain size. The authors discussed a number
of models and found that the one which best corresponds to the data
is the hypothesis that macroscopic yielding can only occur when a critical
fraction of the grains contain released dislocations. For uniform grain

size this gives the result:
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o P
t, = A—3 (3-0-> (2.3.2)
d
where 0 is the constant stress and GO is twice the shear stress required
to release a source in the absence of thermal fluctuations and 4 is the
average grain diameter. Taking O, as 2G/45, the value of A obtained
from the data was 1.2 X lO"6 mm3 sec and B was approximately 9.

In situations, as here, where the stress is not constant, the
determination of the delay time can only be conjectured. It will be
assumed here that the above model is valid and that the rate of release
of dislocations is a function of the applied stress. Thus, if the

critical fraction required for macroscopic yielding is F, then the rate

R at which this critical fraction is reached under constant stress is:

R = F/% Gyg) (2.3.3)

Assuming that the same formula will hold for variable stress, the delay

time td will be given by the solution of:

t B
d .3
fo :— (%(—) at =1 (2.3.4)

In the case of constant strain rate € = o, this takes the form:

3 1/148

Bat, = o% = {E(L + B)MoBu/d (2.3.5)

On this basis, the upper yield point o%* is proportional to 1/10-th power
of the strain rate. Since the lower yield point is asymptotically propor-
tional to 1n for mild steel (see equation (2.2.8)) the upper yield point

will increase more rapidly with increasing o« than the lower yield point.



Substitution of the values of A, 4, p for the two grain sizes given in

paper by March and Campbell [2.10], gives:

l/lO (p.s.i.) for 2030 grains/mm2

%

= 77,000 a

and (2'306)

1/10 (p.s.i.) for 346 grains/mm?

"

o* = 60,000 «



3. IMPULSIVE LOADING ON STRUCTURAL SYSTEMS

3.1 Moving Mass Impact on Elastic Beams

The problem of the impact of a mass on a beam is of interest
in the understanding of the behavior of an automibole which collides with
a highway barrier and has an intrinsic interest as a problem of struc-
tural dynamics. The total response combination of elastic and plastic
behavior, in the fence and in the impacting vehicle, the initial stages
of the impact, which might produce the highest decelerations on the
passengers, and during which time energy dissipation due to plastic flow
is still of minor importance, might be covered by an elastic approach.

To this end, a Laplace transform method of solution for the impact
of a mass on an elastic beam of infinite extent, in which primary con-
cern was with the motion of the mass after impact, was given in a recent
paper by Kelly [3.1]. It was shown that the solution on the basis of
simple (Bernoulli-Euler) beam theory can be given in closed form, but
while this provides physically reasonable values of velocity and dis-
placement of the mass immediately after impact, it leads to an infinite
deceleration of the mass at the instant of impact.

It is well known that the Bernoulli-Euler theory of dynamic response
of beams predicts that the disturbance due to a suddenly applied load
propagates infinitely rapidly. However, it was shown that the impact
of a mass on a tightly stretched string has a finite value of initial
deceleration. It may be conjectured then that the infinite value of
the deceleration is a result of the infinite wave velocity of the simple
beam theory and that it may be removed by using the Timoshenko beam theory .
in which finite wave velocities occur. It was shown that the Timoshenko

beam equations do, in fact, predict a finite value of initial deceleration.
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The equation of displacement, w(x, t) of a beam of cross sectional
area A, moment of inertia I, density p and modulus of elasticity E is,

on the basis of Bernoulli-Euler theory,
EIW,XJGDI + pr,tt = - p(x’ t) (3'1'1)

where p(x, t) is the external applied force on the beam which in this

case is given by:
p(x, t) = - Mw,tt| 6(x) (3.1.2)
x=0

M being the mass (impacting at t = O at x = 0) and d(x) the Dirac delta
function.
The details of the Laplace transform method of solution of (3.1.1)

with (3.1.2) is given in [3.1]; the solution taking the form:

. t aZT 8E
w(0, t) = VOL/N e’ " erfe(aNt)dr , a =—x
0]

o2t , on \L/¥
w,t(o, t) =V, e ° erfe(avNt) s kK= kﬁﬁi (3.1.3)

2a2‘b 1
w’tt(o’ t) = /R erfc(a Nt) - m o/ Nt

It is clear from the last of these results that this solution, while
providing reasonable velocity and displacement solution, indicates an
infinite deceleration at the instant of impact. Intuitively, the reason
for this result is that the slope of the beam under the point of appli-
cation of the load must be continuous and thus at the moment of impact
the mass engages a finite portion of the beam, this being intimately
connected with the infinite wave velocity. If we look at the same

problem for a string of linear density p and tension T in which case
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the equation for displacement w(x, t) is:
TW, o\ = PWspy = Mw,ttl d(x) (3.1.4)
x=0

and we obtain, by the same method, the solutions:

w(0, t) = vo(Mc/aT)(l - e-(ZT/MC)t
-(2T/Mc)t
w,t(o, t) = vy e (3.1.5)
-(2T/Mc )t L
w’tt(o’ t) = - Vo(2T/M::) e , €= (—T}-)

This shows that where a finite wave velocity exists, a finite deceleration
is obtained. In fact, in this case it is clear that at the instant of
impact the portion of the string carried forward by the mass has zero
mass.

It was further shown that the bending moment under the point of

impact, M(O, t) takes the form:
aet
M(0, t) = 2EIk2V0 e erfc(a ~Nt)

The result for the bending moment is a multiple of that for the
velocity under the load and the formula mey be taken as a physically
reasonable one. The initial value of the moment, 2EIk2V0, is independent
of the magnitude of the impacting mass. Since the moment decays fram
this initial value (for a finite impacting mass) for the impact to be
elastic it is enough that 2EIk2VO < My’ the yield moment of the beam
cross section. Since M.y = on/y where Gy is the yield stress and y the
distance from the centroidal axis of the beam to the extreme fiber, the

limiting velocity for an elastic impact is given by:
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Vo/Cy = (/y)e

where r = (I/A)l/2

is the radius of gyration of the section and
e, = O,/E is the yield strain end C) = (E/0)2 the velocity of
longitudinal waves in the beam material.

We will meke use of this result in a later section when the effect
of a delay time is studied.

The corresponding solution for the elastic beam in which rotary
inertia and transverse shear deformation i.e. the Timoshenko beam was

also obtained in [3.1]. It was found that the initial deceleration could

be expressed in the form:

w,tt(o, 0) = - ZVOGAS/M02

where G is the shear modulus, As the effective shear area, and
c, = (G/p)l/2 is the velocity of propagation of shear waves in the beam
material.

This result for the initial deceleration is fairly simple but in
fact leads to values of the initial deceleration which appear to be
excessively high, and thus, while the inclusion of the propagation
effects has improved the estimate, the neglect of deformibility of the
mass and the plastic behavior of the system prevents a realistic result.
In the following section solutions which neglect wave propagation effects
but include the deformibility of the mass and plastic behavior will be

given.
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3.2 Normal Impact of a Moving Mass on a Rigid Plastic System

Many suggested barrier systems comprise beam or cable elements
which are backed by an energy absorbing material such as plastic foam or
metal honeycomb. The impact of a moving object against a beam backed
by such a material is consequently of some interest in that its solution
could lead to an increased understanding of the behavior of an automobile
in collision with such a protective barrier. The response of the barrier
and the vehicle are interrelated kinematically and dynamically, and in
both is a complex combination of elastic and plastic behavior. This
problem can only be treated directly by massive computation. The load
deflection characteristics of materials such as plastic foam or metal
honeycomb are fairly well approximated, for the purpose of predicting
their absorbing ability, by a rigid plastic model. Thus, in order to
reduce the problem to manageable proportions and to allow the identifi-
cation of important parameters and features of the response, we consider
here the problem of moving mass impacting a rigid perfectly plastic beam
backed by a rigid perfectly plastic support. In effect, the elastic
deformations are disregarded, being assumed negligible in comparison
with the plastic deformations.

A considerable literature on the dynamic plastic deformation of
impulsive loaded beams using rigid plastic model of deformation has
developed since the original paper by Lee and Symonds [3.2], dealing with
a free-free beam of finite length subject to concentrated load. Other
load distributions on free-free beams were studied by Symonds [3.3],
Salvadori and Dimaggio [3.4], and Seiler and Symonds [3.5], and infinite
beams by Hopkins [3.6] and Conroy [3.7]. An extensive series of papers

on impulsively loaded cantilever beams quoting both theoretical and
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experimental results was published by Bodner and Symonds. In particular
in [3.8] they concluded from experiments that the rigid perfectly plastic
approximation to the material behavior is reasonable so long as the

ratio of the kinetic energy input to the maximum possible elastic stored
energy is at least three. This tends to limit the application of rigid
perfectly plastic analysis to problems where the impulsive loading causes
extensive damage to the structure, but it is precisely this damage which
is of major interest in such cases.

The particular problem considered here leads to quite simple
solutions, primarily as a result of the inclusion of the rigid plastic
support. This leads to a simplification in the boundary conditions over
that of the finite beam [3.2-3.5] or the infinite beam [3.6-3.7]. The
representation of the vehicle is much more difficult to resolve, but here
we have made the not unreasonable conjecture that it is rigid perfectly
plastic in that the force between the vehicle and the beam has an upper
bound determined by the physical characteristics of the vehicle itself.

A general solution of the problem is presented here in closed form,
and particular illustrative examples are given. Approximate solutions
suitable for cases where the moving object is either very massive or
very rigid--these will be given precise meaning in the paper--are also
described.

(i) Basic Assumptions and Method of Solution

The elementary rigid-plastic analysis used here is characterized
by the following assumptions on the behavior of the beam
a. elastic deformations are neglected
b. no strain hardening of the material and no strain rate

sensitivity
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c. equations of motion are written in the undeformed configuration
d. axial forces in the beam are neglected
e. the curvature of any section of the beam remains constant if

the moment is below the yield moment denoted by M.O
Further, the backing material is taken to provide a continuous reaction
to the beam, the beam displacement rate being zero if this reaction is
below a yield value denoted by 9, (force per unit length of beam).

The vehicle itself is taken to be rigid perfectly plastic with the

yield force denoted by Po.

Equations of Motion

In setting up the equations of motion, it is assumed that the
magnitude of the impact is sufficient to cause the formation of three
hinges, one at the point of impact and the other two symmetrically placed
on either side, thus creating a mechanism of deformation. It will be
verified a posterior that this assumption is sufficient to determine the
solution.

The question of the behavior of the beam at a moving hinge has been
studied by Lee and Symonds [3.2] and Hopkins [3.6]. It is established
by Hopkins [3.6] that if the hinge is moving, then the lateral velocity
of the beam is continuous across the hinge, and the acceleration may be
discontinuous. If the hinge is stationary, both are continuous. In
addition, the bending moment at a moving hinge is continuous as is both
the spatial and temporal derivatives of the bending moment across the
hinge. Since at a hinge the moment must be a maximum according to the
yield criterion, it follows that the shear force must vanish if no con-

centrated loads act there.
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Consider a beam of unlimited extent - © < x < = of density m (mass

per unit length) acted on by a force P(t) at x = O and assume a symmetrical

velocity field v(x, t) of the form:

v(x, t) = vo(t) (1 - g&-,) ;05 xs £(t)
(3.2.1)
=0 E(t) = x
Thus v, is the velocity of the point of impact and % £(t) the location

of moving hinges. This velocity field which implies that the beam is
moving as a rigid body between O and & is consistent with the yield
criterion which requires that the beam be rigid when the moment M is
within the yield limits = MO for the moment is + MO at x = 0 and

- Mb at x = £ and continuous between.

If w(t) is the angular velocity of the portion O < x < £ and w(t)

the angular acceleration, it is easily shown that
o(t) = a/E - wE/E (3.2.2)

where a = %0 is the linear acceleration of the point x = 0. The equa-

tions of motion of the portion O < x < § as shown in Figure 3.2.1 are:

B/2 = qif + ut (= - %_— gb) (3.2.3)
PE/h = oM + B &35 (3.2.4)

The equation of motion of the vehicle takes the form:

P=-Ma (3.2.5)

with M the mass and av the acceleration of the vehicle.

Rewriting equation (3.2.4) in the form:
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2uM
o= 0 (3.2.6)
m§ mé

and substitution in equation (3.2.3) and then (3.2.2) leads to the

more convenient equations of motion:

a = F- ;EE— - o (3.2.7)
. 12M £
ok = = - ki (3.2.8)

If the mass is rigid then & = a and the unknowns become E(t), a(t),
w(t), and P(t). On the other hand, if the mass is behaving plastically,
P is then prescribed, av(t) to be determined. In each case the equa-
tions (3.2.5) - (3.2.8) are adequate for a solution. When a rigid mass
impacts a rigid beam, the contact force is instantaneously infinite.
Thus, one or both of the elements must yield. Both will yield if PO
exceeds the static yield load Pb of the beam. This static yield load
Pb is given by assuming that equation (3.2.1) with constant £ provides
an incipient velocity field and minimizing the resultant collapse load

with respect to §. It is found that

Py = L‘(Moqo)l/2

and the value of §, say § = L, for which this minimum is achieved, is

1/2

L= 2(M0/q0)

Thus Pb and L constitute a characteristic force and a characteristic

length of the beam system.

It is convenient to carry out the subsequent analysis in dimension-

less variables and thus, by making use of Pb and L as obtained above, the
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following are defined:

t . - X
W o T

(My/a,) M,

: £
= 5 S ds/dar =
—5“‘7'2 e / 1/uq01/17m1/2

a

V= 1/h 1/1;/ 172} V' = av/ar = 2q,/m

The mass ratio p and the force ratio ¢ are defined by:

P

M 0
= s ¢ =
an(Mo/qo)l/ 2 h(Moqo)l; 2

The case when ¢ = 1 has a trivial solution and it will be assumed

that ¢ > 1, for which case the motion has two parts. In the first stage,
the contact force is given by P = PO and the beam accelerates from rest,
the velocity of the beam being different from that of the mass. At a
certain time the velocities are equal and subsequently the contact force
drops below PO. The mass is then rigid and both the beam at the point
of contact and the mass have the same velocity. In this stage, the

motion of the beam is decelerative.

Accelerative Phase

In the first stage it is assumed that P = Po, constant. The equa-
tions (3.2.5) (3.2.8) admit a unique solution with £ = constant which,

after some simple algebra, takes the form:

= (P, - 29.£)/mE (3.2.9)
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with:
2 1/2
(P~ + uBMOqO) - P,
24

Thus, during this phase the beam accelerates with constant central

€ = (3.2.10)

acceleration a and fixed hinge distance §; the impacting mass decelerates
with acceleration - PO/M. The time t¥* at which the velocities are equal
is given by:

v,(0)

R Y,

and the velocity then is vg given by:

= %
VS at

These quantities provide the initial conditions for the second state,

which in terms of dimensionless quantities, are:

s(Tx) = s% = (52 + 3)2 - 4 (3.2.11)
g% (T*) = (g - s*)/s% (3.2.12)
u (g - s%)
V(T*) = W =~y (3.2.13)
uVOS*
™* = (3.2.14)

gS* + u(g - S*)

where V. is the dimensionless velocity at T = O.

0]

Decelerative Phase

In this phase P(t) = P. and a = a. Thus, using equation (3.2.5),

0
equations (3.2.7) and (3.2.8) become, in physical quantities:

k3



1M + q g
5T E(a+ mE)
and

12(0/mE )M, + 12M) - 3(M/n)q E° - af”
Vo= 7 2(M + nf)

and in dimensionless quantities:

2
s< +
V! = - o T (3.2.15)
3 2
l__S+ S '33"32,

subject to the initial conditions equations (3.2.11), (3.2.12) and
(3.2.13) at T = T*.

Since the equations of motion are valid only when the velocity of
the mass is positive and the deformed region is non-decreasing it is

necessary that

3

35 +3u -85 - 38220

This places an upper bound on S depending on p; it is found that

0=S=S8
where 1 s § s~N3 with § = 1 corresponding to p = ®» and § =~3 corre-

sponding to p = O. Since it is clear from equation (3.2.16) that when

s3 4382 -35-31=0 (3.2.17)
i.e., 8 = S5, either V = 0, in which case the motion stops, or S' = 0,
in which case the deformed region remains constant, that the limitation

that 1 =S =V3 places close bounds on the final extent of the deformed



region. This allows a good estimate to be made of the final extent of
the magnitude of the damage, regardless of the velocity or mass of the
impacting object.

A general solution of equations (3.2.15) and (3.2.16) can be

obtained by dividing them, giving:

. 2
%.: 3 S 2+3 s (3.2.18)
S 4+ 3uS™ - 35 - 3u
writing S5 + 3u8 - 35 - 3u = (S - a)(5 + B)(S + y)
where:
N3zazl
0sps1l
N3S Y=o

the left limit corresponding to u = O and the right to p = o, and

integrating the above equations gives:

S + S +
V/ve = S* - a) (S* + E) (s* + \Y( (3.2.19)

where:

= (3 +a®)/(a + B)(a + )

(3 +82)/(a +B)(B - ¥)

o)
]

(3 +v2)/(y +a)(y = B)

Q
1}

Substitution of equation (3.2.18) into equation (3.2.16) gives:

_ar _ 25(s + 2u)(s - )™(s + B)B(s + Y)© as
VE (s - ) (s* + B)B(s* + v)%(s - a)(s + B)(S +v)
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which on integration provides the required relation between S and T in

this phase in the form:

T = T* + L  s(s +2u)(s +y)°" as
(ax - 5)¥e* +8)B(s% + y)€ Usx (o - 5)17A(s + p)1 B
(3.2.20)

The time T¥¥* at which S = a when the motion ceases is given by:

Dok = T 4 2y f“us+mxs+ﬂ*1@
S

(« - s%)(e* + B)B(s* + v)Usx (a - 8)1 (s + p)"B
and making use of the results that

0OsAsl, -1sBsO, Cz1l

and that a > S* it is possible to establish an upper bound to the motion

of the form:

< (e + ) (a + y)°t

A(s* + B)(s% + v)°

T** - T*

which is always finite for finite u.

In the case where the impacting mass is rigid, for which ¢ = o and
T™* =0, V% = Vo and S* = 0, a solution for small S can be obtained by
neglecting powers of S higher than the first in equations (3.2.15) and

(3.2.16) leading to:

s =/37/2V,
V/V, = e H



Valid for T/VO such that S << 1. An approximate solution valid over

the entire range of S can be obtained for large values of p, for example
greater than 10. It is easy to show that as p -+ o, x - 1, p -+ 1, Y -» 3u
and A -+ 2/3u, B - -2/3p and C » 1 which when substituted into equa-
tion (3.2.20) leads after integration to:

2o

T=--3—1n(1/1-32)

and in equation (3.2.19) to:

v, = (28 /3
0 1 +S

from which by inversion is obtained:

-31/2V
\/l -e 0

S =
and
2
-31/2v =
1 -\/l - e 0 3u
v/vO =
-3T/2v,
L4+ -e

In these cases the deceleration of the mass at the instant of impact is
infinite, and the assumption of a rigid mass clearly leads to results
which are useless from the point of view assessing the decelerations
experienced by the vehicle. In the following section certain more

realistic examples will be presented.

Vehicle Damage

An estimate of the damage suffered by the impacting vehicle can be made
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by noting that in the first phase of the motion the vehicle center of
mass moves through a distance (in dimensionless variables) v, T* - % % ™2
while the point of contact on the beam moves a distance % V'T*e. The
difference between these gives the change in the distance between the

center of mass and the point of contact during the impact. Denoting

this by D, we find:

. -5
= _lg DX 17 O0T¥
D=Vy™(1-3] v, 2 8, V >

Hence:

D _ ul(g® +3) - g]
Vg (0(s2 + 3)21 - 62 + ul2p - (6% + 3)3)

Curves of D/Vg against p for various force ratios g are given in

figure 3.2.4. We note that the damage is bounded above by

D/Vg

(62 +3) -5
29 - (g° + 3)1/2

1A

;

8 -3

(ii) Numerical Examples

In obtaining numerical values of the solution from equa-
tions (3.2.18) and (3.2.19) it is necessary first to specify ¢ and then
compute T%*, S*, V*, and dimensionless deflection W¥. Newton's method may

conveniently be used to compute a from equation (3.2.16) for the specified



value of M since it is known to lie within the close limits 1 and./3.
The other constants B, vy, A, B, and C are then computed in order.
It is then possible to compute V as a function of S from (3.2.19)
and T as a function of § from (3.2.20) by quadrature.
It is worth noting that V and T for fixed values of S are proportional

to VO and that W where

T
W= w* +f V(T')ar’
T*

is proportional to Vg.

In computing the time from equation (3.2.20) and the velocity from
equation (3.2.19) it was found convenient to use a changing step width
in variable S. The initial value SO is known, as is the final value
S = a, and the difference a - SO was divided into steps which varied from
(x - SO)/lO at the initial stage of the computation to («x - SO)/lOOO at
the final stage, this being necessary since the integrand becomes in-
creasingly singular as S -+ a. The value for the time of the motion,

denoted by T**/VO, was computed by quadrative up to the step immediately

before S = a, to which was added the term I, where

I= i f“ 2s(s + 2u)ds
(o« = 55045, + BIB(s, + V) Ve (& - 8)1(s + B) (s + )™
o - SO
where ¢ = 1000 The integral is evaluated by expanding the terms

in (x - S) and retaining up to the second order. Integrating the result

gives:
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v 2x(2p + a)
(o = 5085, + BYP(sy + V)¢ (e + 8) e + 1)'C

I-=

L 1-B 1-¢c_1__1
A a+pf a+y o 2utoal+A

It is clear from this result that the computation in the final step is
extremely sensitive if p is large (when A = 0), and including the second
term allows us to obtain good accuracy while retaining a reasonable step
length.

The results given in figure 3.2.2 show the motion of the hinges for
different mass ratios. It is significant that the approach to S =«
is very slow in the case of the large values of u. The velocity and
displacement increases with increasing mass ratio. It is significant
that altering the force ratio has little effect on the motion.

The solution for a particuler case involving a typical vehicle
mass and velocity is given in terms of real variables in figure 3.2.3.
These solutions given above can be used, if necessary, to give approxi-
mate results for the motion of the system and to provide estimates of
the damage to the barrier system and to the vehicle, these estimates
being in a particularly simple form. Of the physical parameters appearing
in the solutions, the only one which cannot be readily determined is the
value of PO for the vehicle. However, tests have recently been performed
in which vehicles have been statically crushed or dropped onto a rigid
surface. Such tests could provide the necessary data.

The results obtained are limited in range of validity by the neglect

of axial forces produced by large displacements. This is probably not a
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serious neglect in the case of the beam which has a continuous support.
Another limitation is the neglect of strain rate effects implicit in

the assumption of rate independent values for the yield parameters Mb,
9> PO. Mild steel is known to be very strain rate sensitive. It is
possible to estimate values of Mb, 9y PO which are somewhat higher than
the static values to take this effect into partial account. This is
somewhat unsatisfactory since a correct theory including rate effects
precludes the existence of hinges as assumed here. A study of the in-
clusion of this effect is given later in the report.

Although the solution obtained here is for an infinite beam it is
applicable without modification to a finite beam with clamped ends
providing the dimensionless length of the beam exceeds 2x. If the length
is less than 2x the solution is the same up to the time when the hinge
reaches the end of the beam; thereafter the rigid portion rotates about
the end until the motion stops. When this happens the force between the
mass and the beam is constant and consequently the mass experiences a

constant deceleration.
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(iii) Notation for Section 3.2

a, a acceleration of barrier and vehicle

A, B, C constants of integration

m mass per unit length of barrier

M mass of vehicle

Mo yield moment of barrier

P force between barrier and vehicle

Po yield force of vehicle

9 yield force per unit length of support

S dimensionless hinge distance

S* dimensionless hinge distance at start of deceleration phase
t, T time and dimensionless time

th, T* time and dimensionless time at start of deceleration phase
T dimensionless time when motion stops

v(x, t) velocity of points of barrier

vo(t) velocity of barrier at point of impact

v, VO, V* dimensionless velocities corresponding to Vos vo(o), vg

x, X real and dimensionless coordinate along barrier axis
a, By Y constants

3 small parameter

@ force ratio

u mass ratio

W angular velocity

£ hinge distance

52



RIGID PLASTIC SUPPORT \\
,——RIGID PLASTlC BEAM—\\

A&’///////////////

Figure 3.2.1 Coordinate System and Physical Quantities



N |

)
§o) 1.0 1.5 T/
Figure 3.2.2 Hinge Distance S and Barrier Velocity and Displacement

Against T/VO



140+ 1.6

BARRIER MASS =14 Ib/ft
¢ VEHICLE MASS = 2 Kips
i VEHICLE VELOCITY =30 MPH
YIELD MOMENT=200K-in
i STIFFNESS =0.105 K/in
105 1.2 INITIAL FORCE =40 K
70 4-
1L =19.674
@= 2182
35 + 0.4 Vo= 0.214
528 + : * - %00
500 W W
v, 2 \
v Ve | Gin)
(in
/s,eqL 08 160164
400 — Vv, |
00 \9 ’\6 [
Vo
L 06 120448
300 i
W, 2
AR T
= 8.0-1+32
200 04 L
0o 4 02 40—+16
4 8 12 16 20
0 | . 1 | } 0
0.03 0.06 0.09 0.2 0.15 0.18 t(sec)

Figure 3.2.3 Solution for a Typical Impact in Terms of Real Variables



D/ 2
) /fffaffaa——_———"'——' ®=2.0
04F
Cl3"k]
02 @=3.0
o.l ¢=4'O =
' #=5.0
?=10.0
L | I l A ,
0 5 10 1) 20 25 30

Figure 3.2.4 Vehicle Damage as a Function of Mass Ratio for Various

Force Ratios




3.3 Oblique Impact of a Moving Mass on Rigid-Plastic System

In the previous section the problem of normal impact was

treated and a rather simple closed form solution was obtained. In this
section the more relevant oblique impact problem is considered and here
it is no longer possible to obtain analytic solutions due to the increased
number of unknown quantities which, in the absence of symmetry about the
contact point, have to be treated. Also included in oblique impact but
not in normal impact are terms which arise from convection of quantities
by the moving load system.

Thus the approach used here is characterized by the same assumpticn

as in section 3.2.

(1) Analytical Approach

Kinematic Relationships

In setting up the equations of motion it is assumed that there
exists a system of three hinges, one at the point of contact, and the
other two on either side of it. Since the bending moment is at the
yield limit and negative at the central hinge and at the yield limit,
and positive at the lateral hinges, it follows that the beam is rigid,
but not necessarily straight between the central hinge and a lateral
hinge.

The question of the continuity of various quantities across a hinge
can be treated by the general kinematic compatibility relation for moving
discontinuities, given for example by Thomas [3.13], which with [f]
denoting the jump in a quantity f across a moving section takes the

form
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% [£] = [%f-} + C [%] (3.3.1)
where C is the velocity of the moving section, x is the Lagrangian
position of a point on the beam middle surface and t the time., If a
hinge is moving, then it is easy to show that the lateral velocity and
the slope of the beam are continuous, while the acceleration and curva-
ture can be discontinuous. If the hinge is stationary the acceleration
is continuous. In addition, the bending moment at a moving hinge is
continuous as are the spatial and temporal derivatives of the bending
moment. Since at a hinge the moment must be a maximum according to the
yield condition it follows that the shear force must vanish if no con-
centrated loads act there. We consider a beam of unlimited extent
- o < x < w, of mass m per unit length acted on by a force P(t) at the
point x = f(t) where the origin x = O is taken to be the point of initial
contact.

In the following, the lateral displacement of the centroidal axis
of the beam will be denoted by w(x, t) and the velocity ow/dt by v(x, t)
It is assumed that the magnitude of the force is sufficient to produce
plastic deformation of the beam and the velocity field of the beam

v(x, t) is taken (figure 3.3.1) to be:

0

v(x, t) -w<x s £(t) - £,(t)

vo(t) {1 + ig-;%ﬂ} s £(8) - g,(t) 5 x = £(t)
vo(t) {1 - 2‘-8;7-,591} , £(t) 5 x 5 £(t) + £ ()

=0 , f(t)+£l(t)§x<oo

(3.3.2)
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Here vo(t) is the lateral velocity of the point of the beam in contact

. . 0
with the force P(t), i.e., vo(t) = [5% w(x, t):’x=f t)’ El(t), Ea(t) are

the variable distances from the point of contact to the lateral hinges.
If the force P(t) is produced by a mass sliding along the beam, then

it is necessary to relate the lateral component of the mass velocity vn

and acceleration ;n* to the above quantities. Assuming contact between

mass and beam we have:

Y BRI MR ENCORE - ey @3

where vy = f is the longitudinal component of the vehicle velocity. We
note that vy may be either a specified function of time or may be com-
puted on the basis of an idealized frictional behavior between mass and

barrier. Further, the accelerations are related by

eS| RG] )

=f(t) x=f(t)
Providing the point of contact is moving, i.e., vy # O, the slope of
the beam is continuous and the third term may be interpreted as
follows. The displacement w(x, t) is obtained by integration from the

velocity field and from this

Y ov(x, t

Substituting from equation (3.3.2) we have for any point x,
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ow _
> =0 , 0<ts b

t
=k/; g% (x, Tt)dr, t, <t
1

In particular where x = f(t) we have

| j’° o) (3.3.8)

where tl is the solution of

£(t) = £(t,) + &,(¢,) (3.3.5)

i.e., tl is the time at which the right hinge passed the point x = £(t)

or is zero if t. from the above turns out to be negative. Using this

1
we obtain:

. . v,V v (t ) dt, tv (T)
Vo= vy - 2 HO _(—ydt + v {f —ﬁdT} (3-3.6)

The two terms following %O are convective terms which arise from the
rate of change in the slope of the beam at the point of contact and the

last term from the variation in v An approximate theory corresponding

H.
to a "linear" theory for elastic systems would be obtained by neglecting
these terms. However, since the equations of motion neglecting them

are highly nonlinear by virtue of the material response characteristics

no useful simplification actually results by identifying %n and %0 and

for this reason they have been retained in the subsequent analysis.

Equations of Motion

The forces and stress resultants acting on a typical element of

the beam when it is deforming are shown in figure 3.3.2. The equations

60



of dynamic equilibrium are simply:
o
%§=p-qo-ma—z (3.3.7)

% =Q (3.3.8)

In these equations the beam moment is denoted by M and the shear force
by Q; p is zero except at the point of contact where it is a Dirac delta
function of intensity P(t) and q, is constant. Suitable equations of
motion, which are the counterpart of conservation of momentum and moment
of momentum for the two rigid elements of the deforming region, can be
obtained by inserting %% from equation (3.3.2) in equation (3.3.7) above

and integrating. From equation (3.3.2) Vo takes the form:

Vs, =0 , ~ o< x< £(t) - £2(t)
e fox-fg@) YoX: Vo' 3
= {1+ HON R 6 = g 2 () - £y(8) <x < 2(t)

vV, .X V.V
v 1+—7(-)-lx'ft}+°é+°H,f(t)<x<f(t)+g(t)
0{ g, (t Ei 1 & 1

=0 £(t) +£l(t)<x<oo

-

(3.3.9)

Using this and integrating equation (3.3.7) from x = f(t) - £2(t) to
x = £(t) + El(t), taking into account the fact that @ = O is zero at

both limits, leads to:

P =qy(f + ) +3mv (8 + &)+ 3w (€ +E)

61



Insertion of the integrated form of Q from equation (3.3.7) in equation
(3.3.8) and use the fact that M = M, &t x = £(t) - 52(1:), and M = - M,

at x = £f(t), leads on integration to:

.2

I‘Vg
_ %2 1 1, 1.2
My = m{ g "3 VoHta * 3 "05252}'* 2 962

for the rigid portion on the left, and

o 2
&
N o) B | 1 ; 1, .2
My=m{"6 *2 V01 "3 "051&1} * 2 %%
for the rigid portion on the right.

By suitable manipulations the above equations can be put into the

more convenient form:

. -12M, 4Lp

Vo mEE, TmE +vE) m

. oM (& +E) 2P¢ 98
_ o\e1 TS/ A o
Vo8 = mglgz - m(gl " £2) - % Yo'y (3.3.10)
i . Mo(Ey +85) 26 afy L3
Voo2 wg, £, mE +&)  m 2 Yo'H

If the contact force is less than the yield threshold for the mass the

contact force is given by:

P(t) = - Mvw}n (3.3.11)

where M is the mass of the vehicle and ;n is given by equation (3.3.6).
On the other hand if the mass is behaving plastically P(t) is then pre-
scribed and v 1is to be determined. It is clear that at the instant of
impact either or both the mass and barrier must yield. If the mass only

yields the solution is trivial and need not be considered. If, on the
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other hand, the yield force for the barrier is less than that of the
vehicle the motion has two parts. In the first stage the contact force

is given by the yield condition of the vehicle and the barrier accelerates
from rest, after a certain time the contact force drops below the yield
force of the vehicle at which time the mass becomes rigid. In the
following stage, the motion of the barrier is decelerative.

It is convenient to carry out the subsequent analysis in dimension-
less quantities and to this end we introduce a certain characteristic
force and characteristic length. These are obtained from the static
problem. It is easy to show that the static load carrying capacity of

the system is given by a force:

1/2

P, = h(MOqo) (3.3.12)

and the mechanism of deformation corresponding to this collapse load is

of the form of equation (3.3.2) with:
£(t) =0, & =&, =L =2(/q)"> (3.3.13)

Using Pb and Lc as above, the following are defined:
T, T, = ol N X = X

B T v-a v R e v/
m M?)' 2(Mo/qo)

qu i (3.3.14)

S - 1.2 . g' =a4s . 51,2
1,2 W 1,27 gp T A7k 1/
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0 0
Voo V., V.. = 5 V, =50 = etc
N’ "0’ 'H /4 1/ 0~ dar "~ 2q¢./m ‘
M/ o7 %

m172
(3.3.14)
(cont.)
W= ¥ 5 F(T) ='—-——£1§l—7- .
2(Mo/qo)l72 2(Mo/qo)l 2
The mass ratio p and the force ratio y are defined by:
. ————fP° ( )
u= s YF 3.3.15
2n(, /a,)*? b(Ma,)?

It is advantageous to consider the two phases of motion separately.

Accelerative Phase

During the accelerative phase the contact force is given by the
yield force of the vehicle and thus P(t) in equations (3.3.10) is con-

stant P,. In dimensionless form equations (3.3.2) become:

0 5,5, 5, +5,

S, +8 2YS

vy 3 371 T2 1. _ 1

o Q?l *2Vn % 5.5 55 "5 75 (3.3.16)
1%2 1

. S, +8 S

v Qg' 3y)-32"% 1, 2%

o\82 "2V 55, 2°%75 +s,

At the instant of impact T = O, the response of the system is identical
to that of the normal impact problem since the effect of axial forces is

neglected. Thus the initial conditions are (see [3.10]):
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s,(0) =

1
(42}
n
~~
(@]
N’
]
~
=

(3.3.17)

|
(@]

v,(0) =

The equations are nonlinaar and we have not been able to obtain a
closed form solution. The numerical technique used to obtain a solution
is given in detail in section 3.3 (ii).

However, if the constant load is moving with constant velocity along
the beam it is clear that a steady condition will eventually be reached.
Setting Vé, S! and S! zero in equations (3.3.16) and subtracting the

1 2
second from third gives with the first:

S;8,=1, 8 +85,=2y (3.3.18)

Substitution of these results into the second and the third gives:

n
n

1 =Y " Voly

[72]
[}

Y + VOVH

but from equation (3.3.18) we have:

2 _ l)J./2

[<2}
n

1 == (v
(3.3.19)

p =Yt (v2 - 1)Y/2

(2]
|

giving:

v, = (- 1)1/2/VH

This steady state solution can be used as a check on the accuracy of the
numerical method. We might note that steady solution which bears a

merked resemblance to the above was given by Eason and Shield [3.14] in
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studying the steady state motion of a rigid perfectly plastic cylindrical
shell subject to a moving ring of force. The mechanical behavior of the
two systems at the level of approximation employed is very similar.
Transient solutions for moving problems were not considered in [3.14].

A typical example of the transition from the initial hinge configura~

tion of 8, = §, to that given by equations (3.3.19) is shown in figure

2
3.3.3. In this Y was taken as 2 with VH and VN as 1 (which in physical
terms for a typical system would represent a fairly high impact velocity).
The rapid separation of the hinges is evident although the steady state

value of S, is achieved much more rapidly than S2’ and also it is inter-

1
esting to note that VO goes above the asymptotic value and approaches
it from above.

The steady state is not of practical importance since it is not
achieved in the problem under study. During the transient phase the
mass is decelerating and the beam accelerating. At a certain time the
requirement of contact between barrier and vehicle will require that the
contact force decrease below the value PO after which time the mass be-

comes rigid and the force P(t) is then unknown, and must be determined

from the equation
P(t) = - MV,

where Gn is given by equation (3.3.6). The values of 8,5 8, and V

2

at which the accelerative phase ends become the initial conditions for

the decelerative phase.



Decelerative Phase

In the second phase of the motion the contact force is given by
equation (3.3.11) with %n related to 60 by equation (3.3.6). Taken
together and normalized using equations (3.3.14), (3.3.15), these equa-
tions indicate that the term y in equations (3.3.16) must be replaced

by the expression

V.V
Y=~ u-{ 0" _g_é} - UR (3.3.20)
1
where
v (T,) ar TV (1)
_ o1/ 1, [ U/” 0 ]

R=V + V' |- dt (3.3.21)

H leTlS ar H T, s, (t

with Yy so replaced the first of equations (3.3.16) can be put into the

form:

buv. v
. "i'o (8,8, +3)(8) +8)
0 sl(sl + 32 + ly) 23132(5l +85, + by) S, +8,+ Ly

When Y is replaced as above in the second and third of equations (3.3.16)
and Vé is eliminated using equation (3.3.22) above we obtain the fol-

lowing equations for Si, Sé:

el 8, +5, ) Ei ) usl(sls2 + 3)
0°1 5,5, 2 slsa(sl +5, ¢+ Iy)
(3.3.23)
S VvV
-3vyy, - =

5 0'H _ #)
2 Sl + 82 + L Sl
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rer a3t B #8855, * 3)
2

02 & 8182 8182(81 +8, + )
(3.3.24)
2us VV
3 - 2 oH )
+=VV - R
2 0N sl+sa+hu(sl

We note that when VH is zero these equations simplify considerably and
reduce to essentially one equation for which a closed form solution can
be obtained. Including Vﬁ makes 1t necessary to solve the problem
nunerically and the detalils of the approach are given in the following

section.

(ii) Numerical Examples

Numerical Approach
Both sets of equations (3.3.16) and (3.3.21) (3.3.22), (3.3.23)

can be put into the form:

o

Vo <.i -'E VbVé) = gl(sl, 8,5 Vb) (3.3.25)

K] =
Yo (sa *+2 Vo¥n) = &(8y5 8,5 Vo)

In the first phase, g, 8> g2 are independent of Vb and also

82(81’ Sz) = gl(Sa, Sl). The equations are linearized in each time
step and the values of the functions g, 8> 8, are estimated at the
center of the step. For exsmple, for the first of equations (3.3.25)

we use:



VA(T,) = lS) (T ),8,( ),Vo(T)] + 3 %g; [, (T,),8,(T_),V,(T_)]sJaT

A e CRCRENCRRACR] +1%8 T CTCRIENCRRACRI

and similarly for the second and third of equations (3.3.25). These

reduce to a system of the form ale5 =cy) i=1, 2, 3 applicable
=1

. . 1 ] 1] ] 1 2
in each time step where Yj, Y, Y3 denotes VO(Tn), Sl(Tn), Sz(Tn) respectively
in the time step in particular and the aij’ ci are computed from equa-

tions (3.3.25). These are solved for Y& and we obtain:

Y.( ) = Y, (T) + Y (T AT, j=1,2, 3

n+1

The initial conditions for the first phase are given by equations (3.3.17)
and the initial conditions of the second phase are obtained as the final
state of the first phase. It is necessary in the computation process

to retain V(X, T) for all X of interest and determine W(X, T) by inte-
gration. Also it is necessary to retain the function H(T) = F(T) + Sl(T)

in order to solve for T, to be used in computing R in each time step.

1l

Examples and Discussion

Numerical examples showing the hinge configuration and the velocity
of the beam at the point of contact during the beam motion in both
phases were carried out using the above numerical technique. In all
cases, the mass and force parameters were taken to be p = 5.0, y = 2.0,
and VH was taken to be constant. Figure 3.3.4 shows same results of

computation for impact with vehicle arriving velocity Vv = 0.6 and impact

angles a = 15°, 30°, 45° with respect to the beam. Because of the
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inclusion of the convective terms in the computation, the curves for Vo
in decelerative phase are concave downward in contrast to those in the
normal impact case 3.10 , which were fairly straight. It is also
worth noting that when the beam motion comes to rest the final hinge

N

distance S, is equal to S This is due to the fact that the beam motion

1 2°
is non-decreasing and if V, = O equations (3.3.23), (3.3.25), become
identical.. Using these equations, it is easy to show that the final

hinge distance is given by the positive root of the cubic equation.

3+ (3-Rws®-35-3u=0
where R is given by equation (3.3.21).
A typical beam deflection pattern and vehicle impact trajectory
during the motion is shown in figure 3.3.6. In this example, compu-
tations were performed for V

H

v, = 0.46 and « = 60 . The corresponding results for 5,5 8

= 0,23, Vn = 0.4 which correspond to
0 Vb are
shown in figure 3.3.5.

The results obtained in this section are limited in validity by
the idealized assumptions stated in introduction. The neglection of the
effect of the axial forces in the beam enables us to justify ignoring
the effect of frictional forces on the beam itself while taking them
into account in determining the horizontal component of the mass
velocity as a prescribed function. This may be unsatisfactory in actual
cases. Nevertheless, it is believed that the results presented herein
are useful for gaining a qualitative picture of the chareacteristics of
the problem.

One important feature of the present solution is the derivation of

the relationships between v, (t) and v (), %O(t) and %n(t). The

T0



convective terms included in these relations allow us to determine the
impact mass trajectory. It is clear by equation (3.3.3) that at the
end of the beam motion when t = t, vo(tf) = 0, therefore vn(tf) =

Egl s ;]Vﬁ(tf) which, in fact, is negative. Thus the impacting mass
xX=
f

leaves the system with velocity components vn(tf) and VH(tf). If however,
these terms were neglected, the trajectory would be a non~decreasing
function leading to an absurd conclusion in real cases.

The results are further limited in that strain rate effects are

ignored by the assumption of fixed values of the yield parameters MO’

%’ Fo
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(iii) Notation for Section 3.3

C

£(t), F(t)

g’ gl’ gg
M(x’t): MO

v(x,t)

Vo(t) ’ VO(T)
v_(£), V(@)

VH(t) ’ VH(T)

velocity of a moving section in barrier
Lagrangian position of point of contact of vehicle and
barrier, and its dimensionless quantity

notations for function

moment and yield moment of barrier

mass of vehicle

mass per unit length of barrier

force between impacting mass and barrier

static load carrying capacity of the barrier system

yield force of vehicle

distributed load on per unit length of barrier

shear force of barrier

yield force per unit length of support

dimensionless right and left lateral hinge distances
with respect to the central hinge

time and dimensionless time

time and dimensionless time when the rightest hinge

passes & specific section of barrier

velocity field of barrier

velocity of barrier at point of contact with vehicle

and its dimensionless quantity

normal (to the barrier) component of the velocity of the

vehicle and its dimensionless quantity
horizontal (parallel to the barrier) component of the

velocity of the vehicle and its dimensionless quantity



w(x,t), W(X,T)

displacement field of barrier and its dimensionless
quantity

final time when the beam motion ends

real and dimensionless Lagrangian coordinate along
barrier axis

dimensionless variable

angle of impact with respect to barrier

mass ratio

force ratio

dummy time varieble

real distances of the right and left hinges with respect

to the central hinge
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Figure 3.3.1. Velocity Field and Coordinate System
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Figure 3.3.2. Displacement Field and Beam Element
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3.4 Combined Loading in Rigid Perfectly Plastic Beams

(i) Interaction Effects due to Shear and Axial Forces

In a general one-dimensional structure such as a beam subject
to general arbitrary static or dynamic loading, three stress resultants
can exist in two principal planes of the beam, namely torsional moment,
bending moment and shear force, and also an axial force may exist along
the axis of the beam. For the present discussion, we assume that the
beam has a plane of symmetry and the load is applied in this plane so
that the torsional effect disappears and only the other three forces
remain. Bending moment and shear forces are always present when the
beam is under transverse load, while the axial force may arise due to the
presence of initial tension (or compression) or may develop due to the
existence of axial constraints and the geometric changes in the beam
axis. The static analysis of a rigid plastic beam shows that the in~
fluences due to shear are small and can be neglected. However, this is
not true in the case when the beam is subjected to large localized
dynamic loading transverse to the beam axis like impact of a mass on the
beam. Also in an indeterminant system, axial constraints are always
present, and the axial force arises immediately when the transverse
deflection of the beam axis is finite. The catenary effect of this
axial force becomes very significant when the deflection is large. In
an analysis of a fixed-fixed beam of rectangular section subjected to
transverse dynamic loading, Symonds and Mentel [3.15] have shown that
when the central deflection of the beam axis reaches a magnitude roughly
equal to the beam depth, the axial force becomes equal to the yield
limit of the beam in tension and the bending resistence vanishes. The

beam thus behaves like a plastic string carrying the load purely by means
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of the axial force without moment. Therefore, in a dynamic analysis of
a rigid plastic beam with axial constraints, the effect of shear and
axial force must be taken into account and a discussion of the inter-
action problem becomes necessary.

On the assumption of rigid perfectly plastic behavior of the beam
material and according to the general theory of limit analysis [3.16],
there exists some function of the stress resultants, the yield function,
which along with the corresponding flow rule characterizes the materiél
behavior in the plastic range. It is assumed that if, in a beam element,
the yield function takes a certain critical value, the yield limit is
reached and the beam element deforms plastically according to the flow
rule. If we denote the bending moment, shear and axial forces by M, Q
and N respectively, and the corresponding individual yield limits by

MO, QO’ and NO, that is M, Qo, and N. are the yield limits of the beam

0
element in pure bending, pure shear and pure estension, then in a three
dimensional Cartesian stress space with M/MO, /Ry, and N/No as coordinate
axes, the yield condition can be represented in the form:
f=¢f (ﬂ—, %—, %g) =0 (3.4.1)
0 0

Assuming that the plastic strain rate sensitivity is ignored in the
present treatment, the yield function in equation (3.4.1) represents a
fixed closed surface called yield surface in the stress space for both
static or dynamic loading. The stress state in a beam element is
identified by a stress point in this space with coordinates (M/MO,
Q/Qo, N/NO). When inside the yield surface, no plastic deformation

takes place. A stress point outside the yield surface is not acceptable.

Plastic strains (generalized strains) can only occur when the point lies
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on the yield surface. In such case, the associated flow rule requires
that the strain rate vector with components (Mok, Q0§, Noé) is is the
direction of the outward normal to the yield surface, wherever the
surface is smooth and must lie in the region bounded by the normals to
the adjacent yield surface when the stress point corresponds to a point
on a corner of the yield surface. Mathematically, we can represent the

flow rule as

M PQEU | : (3.4.2)

i D)

where K is the curvature rate of the beam axis, § the shearing strain

L]

rate and £ the extensional strain rate. In spite of the fact that shear
cannot be considered properly as a purely local yielding condition

[3.17], approximate forms of the yield function for combined action of

M, Q, and N have been proposed and used by various authors (see Symonds
[3.18]) for the analysis of a particular beam cross section and a specific
type of structure. For example, Symonds and Nonaka [3.19] have suggested

a yield function for & rectangular beam in the form:

= {l &) - g - 6.3

while Neal [3.20] has used the different form

N (%) (3.4.4)
AN i

for analysis of a cantilever beam under tip loading.
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The fact that the interaction of shear with bending moment and -
axial force in a yield function is approximate and uncertain and also
that comparison between theoretical and experimental results for a
fixed-fixed beam under dynamic loading [3.21] has shown that dynamic
rigid plastic analysis neglecting strain rate sensitivity over-estimates
the final deflection and the inclusion of shear effects would worsen
rather than improve the correspondence, suggests that it is reasonable
for the present analysis to ignore the shear interaction in the yield
function. Thus in the subsequence analysis, we will use the yield

function in the form:

fEfGi—,y—)=0 (3.%.5)
M N
0

and the associated flow rule:

.ol (A
Noe ) / (Né)

. (3.4.6)

ANV (—3;)

For a rectangular beam section, Egs. (3.4.5) and (3.4.6) are:

, 2
= |M NY 4=
f= ‘Mol +<N0> 1=0 (3.4.7)
and
N &
o- _ , M.

To obtain a qualitative picture of the influence of axial force on

dynamic beam behavior in plastic deformation, it is worthwhile to examine



first its influence on static cases, Consider here a pin-pin supported
uniform beam of rectangular section with length L subjected to a static
concentrated load P at mid-span. The pin supports at both ends constraint
the beam against axial motion. Suppose the load P is sufficiently large
to cause collapse of the beam, a central plastic hinge forms under the
load P and the beam deforms plastically as shown in Figure 3.k4.l.

Denoting the central deflection of the beam axis by d, the rotation at
central plastic hinge by 6, and the corresponding rates by § and é,

and choosing the origin of the coordinate of beam axis at mid-span, the

L] L] *
curvature rate becomes k = 66(x) . The flow rule (3.4.8) requires that

L] MON L3
£ =2 —«k (3.4.9)
NO NO
hence
) Lfe My N My N b3
u=f de=2N—-ﬁ-9=2——T (3.4.10)
-2/2 00 070

where u is the extensional rate of the beam and N(x) is assumed uniform
along the beam axis.

From the geometry of the deformation we have:

08 2] M2 262
u=2[<§>+6; -Ez—z—

thus:

O

i = 299 (3.14.11)

Comparing (3.4.10) and (3.4.11) we get:

*
6(x) is the Dirac Delta Function.

83



(3.4.12)

zlz
Sl
[V I3

0
It is therefore clear that when the beam is at incipient collapse,

6 = 0, thus N = O and no axial force develops. However, when ¢ becomes
finite then N develops according to (3.4.12). Since for a rectangular
beam NO/MO = 4/h, hence when ¢ = h/2, N/No = 1, that is when the central
deflection of the beam increases to half of the beam depth at which time
the beam reaches the yield limit in tension, thelbending resistance of
the beam vanishes and the beam then behaves like a "plastic string.”

If we picture the stress states of the beam element at mid-span
(yield hinge) by points on the yield curve figure 3.4.2, it can be seen
that when the beam is at incipient collapse the stress state corresponds
to the point A on the yield curve. As J increases from zero to a finite
value, N grows and the point A shifts along the yield curve to an

intermediate point B, where the components of plastic strain rate

vector has the ratio

RO
MOK N, *
When ¢ = h/2 and N = Ny» the point B reaches the corner C of the yield
curve and this beam element deforms according to =2 s Noé/MbR s 2.

An interesting result is that if the beam was originally subjected
to an initial tension Ni’ this initial tension releases instantaneously
when the beam is at incipient collapse, provided that the end supports
are constrained to move axially. The reason is that if the beam carries

an initial tension Ni, at incipient collapse the stress state at yield

hinge corresponds to the point, say B on the yield curve, thus according



to (3.4.9), we have:

= IOZ

o
o =
X

Since Ny # 0, kK # 0 at incipient collapse, hence ¢ # O, and the beam
extends instantaneously and releases the initial tension Ni due to the
rigid axial constraints. Thus the point B shifts instantaneously to the
point A on the yield curve.

By equilibrium consideration of the system, we are led to

_aM
Q'z
2Q + N6 =P

after incipient collapse. Combining two equations, we get:

';—’4 + N6 =P (3.4.13)

Eliminating N from (3.4.13) and the yield condition (3.L4.7) and

use of (3.4.12) gives

2
Mo, N 82,
Y/ MO £
or
2 2
N £
pe o, (Nofy s
*,IM—-O-—1+(MO>(22> (3.’4.1’4)

Since for a rectangular beam MO/NO = h/4, thus equation (3.4.14) becomes:

RN
%C-) =14 Km‘%) , 65 -g (3.1.15)

For 6 > h/2 we have
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U
p=—24¢

or

(3.4.16)

Sl
o
i}
sl
o

PL__
e,
The P - § relationship is shown in figure 3.4.3.

If, instead of a rectangular beam, we consider the genersal case

where the yield condition can be represented as

£ = |§;| +-<%:ju -1=0 (3.4.17)

we note that as a = 1, it represents the yield condition for an ideal I
Section; a = 2 for rectangular beam. The family of yield curves for
(3.4.17) are plotted for one quadrant as shown in figure 3.4.4. The
limiting case when a =+ « represents a yield curve formed by two straight
lines M/MO =1 and N/NO = 1 in the first quadrant.

With the yield condition (3.4.17), the P - § relationship for this

beam system can be obtained easily, following the same derivation, in

the form
& &
N 2 a-1 o=-1
Py _ 0 '§ -
E—_M-(;—l-f ﬁ(-)— &a_l (x -1l), lsa<w (3.4.18)
for N/NO <1 and where
1 <
) a-1 a-1
N <_0_> %) (3.4.19)
Ny N\,

when N/No = 1 we obtain



PL

T, -

ZL;Z

(3.4.20)

A family of P - 6 curves for values of a is shown in figure 3.4,5.

It is worthwhile to note that if the beam in previous discussion is
clemped at both ends, the same argument follows except for some minor
changes to account for the resisting moments at the two additional yield
hinges at the clamped ends. For example, if the beam is of rectangular

section, we can easily find that

SSl™

. % (3.4.21)

zpz
O
i

and

“KM ) <2> <1 (3.4.22)
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(ii) Moving Mass Impact on a Rigid Perfectly Plastic Beam with

Axial Force Interaction

Consider a beam of unlimited extend, - < x < o of mass m per
unit length subjected to a concentrated impact force P(t) normal to the
beam axis at x = O, The beam is supported laterally by a rigid perfectly
plastic backing material which provides a continuous normal reaction
to the beam. The lateral beam displacement rate is zero if the normal
reaction is below & yield value denoted by q, (force per unit length).
The shear resistance of the backing material parallel to the beam axis
is assumed to be zero, so that no distributed axial face acts along the
beam during deformation and no combined stress problem is considered in
the supporting material. Furthermore, it is assumed that the beam is
held rigid at infinity so that the axisl motion of the beam is con-
strained.

It is clear that at the instant of impact the beam remains straight
and, as discussed in the preceeding section, no axial force can be de-
veloped. However, finite axial force can arise as soon as the beam
acquires a finite deflection, and the axial force will grow continuously
as the beam deflection increases. The axial force may or may not reach
the limiting value No at some later time. The correlations between the
axial force and the beam deflection will be discussed in the following
section.

It is assumed that the change of the slope angle of the deformed
beam is sufficiently small that the axial force N can practically be
taken as uniform throughout the beam. Mathematically, this requires that
the slope Ow/dx be so small that (aw/ax)2 << 1, where w = w(x, t) is

the deflection of the beam. Due to the magnitude of the axial force,
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the mechanical behavior of the beam-support system during motion should
be separated into two cases, namely (i) when N/NO < 1 (ii) when N/NO =1
and discussed separately.

At the instance of impact, the beam is subjected to a concentrated
impact force P(t) at x = O, The beam will deform provided that the
magnitude of the force is sufficiently large to produce plastic defor-
mation of the beam and convert the beam into a mechanism. It is assumed
that there exists a system of three yield hinges one at the point of
contact and the other two on either side of it with distance * £(t)
from the central hinge. In the first stage of the beam motion, the
axial force N is small and uniform throughout the beam, the bending
moment takes the same maximum value at the yield hinges as in the case
of no axial force interaction according to the yield condition. Since
the bending moment at the central hinge is at negative maximum and are
at the positive maximum at the lateral hinges, it follows that the beam
is rigid between the central hinge and a lateral hinge, and that the
shear force must vanish at the yield hinges if no concentrated load
acts there. With this consideration, the velocity field of the beam

v(x, t) assumes the form

v(x, t)

I

v, (t) {? - —f%i} , 0s=xs g(t)

=0 , &E(t) s x

(3.4.23)

where vo(t) = v(0, t) is the velocity of the central yield hinge

(figure 3.4.6). The deflection w(x, t) of the beam is then given by

89



t
w(x, t) =L/; v(x, t')dt’

1l.e.

w(x, t)

t
fo vo(t') [1 - a—%,—ﬂ at', 0= x=s &(t)
(3.4.24)

o , E(t) s x

provided that £(t) is a non-decreasing function.

Dynamic Equations of Motion

To include the effect of the axial force N in a consistent manner
the dynamical equations of the motion of the beam are written in the
deformed configuration. However the spatial variation of the axial
force N is neglected thus ignoring the effects of inertia due to axial
accelerations of the beam. The notation and sign conventions are indi=-
cated in figure 3.4.7.

By considering the dynamic equilibrium of a beam element as shown

in figure 3.4.7, we obtain the differential equations of motion as

%% = - -mw+ N QEE
9% N
N(x, t) = N(t) (3.4.25)
M
X =@

where, as before, @ = Q(x, t) denotes the shear force in the beam
element N = N(x, t) the axial force; M = M(x, t) the bending moment.
Combining and integrating equations (3.4.25) from x = O to x and

using the fact that



90_' -E
W= \} £ + v, =3

g

we obtain

Q(x, t) = Q(0, t) = qx - mv, (3 - %g)

- mv, % + N'(x, t) - N'(0, t)
2t

And integrating the above equation from x = O to x leads to

(3.4.26)

2
2
3 (3.4.27)
- mv xg + Nw(x, t) - nw(0, t)

When x = § is inserted in the two equations above, and using the boundary

conditions x = 0, §, that is

Q0, £) =Z+W'(0, t) , Qg ) = 0
and
M(0, t) =-M ’ M(&s t) =M

where M according to the yield condition

is the reduced yield moment of the beam due to interaction of axial

force N, we then obtain the dynamical equations of motion

(V] L)

= qf + 3 (Vo + v E) (3.1.28)

and
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5
2+ Ny = 55 - G - B (2VE” + vifh)

Kinematic Constraints

To obtain the necessary kinematic conditions we consider the
successive displacement pattern of a beam segment OA as shown in
figure 3.4.8.in a small time interval At. In At, the beam segment OA
between the central hinge and one lateral hinge, undergoes plastic
deformation which consists of a rotation A@ and an extension of amount
€AE to a new configuration O'A'., It is clear that these plastic defor-
mations occur at each yield Hinge.

From the examination of the successive geometric change in the

interval At it is clear that

BB' = A"B' tan 6
BB'-AE-E-I}-E-Q-fAE
= EAS = €y T T EADS,

where the subscripts O and A denote the corresponding quantities at the
hinge O and the lateral hinge A.
Assuming small deflection so that the projective length of the beam

will not differ from its real length appreciably, we have

A"B' =& « A6
and
wo(t)
A= O]
Therefore



5 EOAE + € AE L A9 (3.4.29)

the curvature changes at central hinge O and lateral hinge A are

respectively
_=h8 _ XA8

Combining (3.4.29) and (3.4.30) and considering the limiting values

when At approaches to zero, we get
€ €
0 A
-s + 'e =w (t) (3-)"'.31)

where wb(t), as defined before, is the displacement of the beam at

central hinge w(0, t).

Using the flow rule (3.4.6) we then have

Noo

G /), %/

therefore

) [ d éf—() /a é;)]o * [ (__0>/ 0>J = M—O wo(t) (3.4.32)

Equations (3.4.5), (3.4.28) and (3.4.32) in unknowns M, N, Vo £ thus

completely describe the beam motion valid for N/NO < 1 if the impact

force P(t) is prescribed.

For a rectangular beam, the yield function and flow rule take the

forms as in (3.4.7) and (3.4.8). Therefore we have
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Since N is uniform throughout the beam. Equation (3.4.32) thus becomes

- (& k) (N s) o 2 () (3.4.33)

0]
Substituting (3.4.33) into the yield condition (3.4.7) gives
i 2
B _, .1 o
M, " 62"
Mb

Inserting the above two equations into (3.4.28) leads to

o8 52
M, =§§'T'%{2‘.’o€2+"ogé}'%iq' ¢
which is substituted into (3.4.28) gives
N 2
3 {ZP - af - %(12)40 + g ﬁﬁ— w02>} (3.4.34)

and
2

. N
=L E._Q_ 2 _pr . g2
voE = mg'{lZMo + M L Pg qo&:}
These two equations in unknowns v and § are to be solved.
The same non-dimensionelization is followed here as in Section 3.3
with the addition of an axial force parameter
NO, N

no, n= h( qo) 1/2

In dimensionless variables defined in 3.3 and the above, equations

(3.4.34) becomes

gl



(3.4.35)

Accelerative Phase

In this phase, the impact force P(t) is given by the yield force, or
limiting load P, of the impact mass, i.e. P(t) = P, = constant in this
phase. Equations of motion are obtained from (3.4.34) by replacing P

by PO, i.e.

o

N
. _1 1 2
"o:—mg{apo'qo‘c"gklmo'*% 5 Wo)}

=

. N 2
vob = %E {leo + ¢ i‘i— w,2 - B - qoﬁa}
In dimensionless parameters and using the force ratio ¢O defined before,
these become
2

ro—0._.1_1/3 2
Vo=75 "2 SzQ2+6"02"o>

v =21(3 2. 5.
VoS ‘sk2+6”02wo> 2~ %

(3.4.36)

Thus VO and S can be solved using these two equations with the initial
conditions
vo(o) =0, wo(o) =0

and (3.4.37)

5(0) = - o +./¢02 +3

as previously discussed.
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During the accelerative phase, the impact mass Mv decelerates with
deceleration a,

-P
a = -9 = const.
v

and the velocity of the impact mass is
PO
vv(t) = vv(o) vl
v
At a certain time t*, the central velocity of the beam vo(t*) is equal
to the velocity of the impact mass vv(t*). Whence the accelerative phase

ends. The time t¥* is given by

PO
To(#%) = v,(0) - 2 o

or in dimensionless form

¢
V(%) =V (0) - FQ % (3.4.38)

When the accelerative phase ends, the corresponding quantities Vb(T*),
S(T*), Wb(T*) then become the initial conditions for the subsequent

beam motion.

Decelerative Phase

In this phase the contact force P(t) drops down below the yield
force of the impact mass PO, thus the impact mass becomes rigid.
Assuming that there is always contact between the impact mass and the
beam then the deceleration of the mass a, is equal to the central beam

acceleration Go, and the contact force is given by

P(t) = - Ma =-Mv,



or in dimensionless variables

¢ = - uVé (3.4.38)

Substituting this into the equation (3.4.35) for ¢ gives

Vo =57 Eu{ *§ Ka * bng W, >}
[ S + 2 S(S +
-mﬁm@*(moz"o)'esmi

which are the equations governing the beam motion in this phase with

(3.4.39)

the initial conditions VO(T*), S(T*), Wo(’l‘*) given in (3.4.37). It is
clear that VJ in equation (3.4.39) is strictly negative and thus the
beam motion decelerates in this phase.

At some later time Tf, when the beam motion decelerates till
VO(Tf) = 0, the beam comes to rest. Denoting the corresponding final
central displacement of the beam Wb(Tf) by df and setting V, = 0 in

equation (3.4.39), we get

2(s + u) (‘% + 6n026f2 - Sa(S + 3u) =

2
then we obtain, by nozdfz = Af ,

3(s+ w2 + ]2 - s%(s + 3) =
i.e. (3.4.40)

e 3u32 - 3(1 + u;.f‘?)s - 3u(1 + u;.fQ) =0

It is seen that if Afg = 0, this reduces to the previous case where the
axial force interaction of the beam was neglected. Denoting the three

roots of equation (3.4.40) by a, B, Y and by equating the coefficients
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we obtain the system of equations as

a+B+y=-3=0 , pzo
2 2

af + By + ya = - 3(1 + hkf )<o, As 2O

apy =3 (1 + hhfz) 20, ng o

The mass ratio p can take the value in the range 0 3 p < » and by
above equations, the corresponding bounds for the three roots a, 8, Yy

are

Osp<ow ,
~/3(l+l+)tf2)za>l s

ozg>-1 ,

-./3(1+lmf2) VI

Since the equations of motion are valid only when S is non-decreasing

i.e., S' 2 0, therefore the final hinge distance is bounded by

~/3(:L+l|LAi?)za(>:L

which corresponds to the range O = p < o,
If the analysis were to neglect the effects of the axial con-

straints, then Afz = 0, and the final hinge distance is simply bounded

by
J3za>1

This confirms the result obtained in the previous analysis as in section

3.2.



Numerical. Solution

Since the differential equations in (3.4.36) for the beam motion in
the accelerative phase and (3.4.39) for the motion in the decelerative
phase are highly non-linear and also involve the integral of an unknown
function, the closed form solution has not been able to obtain. It is
thus necessary to adapt the same numerical technique as discussed in
section 3.3, in which both sets of the equations in (3.4.36) are put into

the form

<
I

Q= (s, vo)
(3.4.41)
v.s' = g(s, vo)

and the unknown functions VO and S are obtained by integrating equa-

tions (3.4.41) step by step. The set of equations in (3.4.41) are

linearized using Taylor Series expansion in each time step and we are

lead to solve the system of linear equations in the form

D) yln) 4 ((Dygn) _ (o)
(3.4.42)

ay(®) 4 ofDygl) 0

at a certain time instant Tn’ n=1, 2, 3, eeo

where
i "%I"T)(n)
@ E@),
o3 =ty - &



and

(n) _ _ AT (3
821 5773 (av

(n)
(n-1)
n AV )
aég) =V( )+-—c-)-é-——-§£ ?&F(n)
a.’(ag) = &) " AT

Knowing AV(n) and As(“) at Tn then we can compute VO and S at Tn-t-l by

S(=#) _ y(m)

(n)
0 o *4v

((m11) _ (0) , po(n)

and

T
W) - yle) +ann+l Vo(T')ar'

(n)
A
= W(()n) + V(()n)AT + —v%— AT

The procedure can be repeated for every time interval AT, until

end of the beam motion when Vo(Tf) = 0.

In accelerative phase, we have by equations (3.4.36)

20
28, Vo) =5 - 3 - 3 @ * 6r|02“02)

S
]

t = -.']_'3 2 -§=
Vs g(s, Vo)—s<2+6noawo> > ¢0

and
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26
of 0 2
'gg:-'?-i-';%(l'l'lmo O)
oW
of _ 1 0
N, T2 (}2n02wb av;>

%53 o) - 3

: oW
o) 1y 0
$ =2(1 W2
V, S K 2Ny 0 oV
where
awo ) awb(T) 'aVo ) XQ i v,
avo oT oT vy £(s, v,

Starting at time Tl = O with the initial conditions

vél) =0
wél) =0
S(l) = - ¢O +‘/¢02 + 3

we can successively compute Vén), Wén), S(n), n=2, 3, ¢ till T = T*
when VO(T*) =V, then accelerative phase ends.

The beam motion in decelerative phase follows after T = T%, where
T* is determined by equation (3.4.37). Inthis phase, we have by

(3.4.39)
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and
%%ﬁis_-?l'zﬂ@"‘"oa"o;@
¥ - fodmy - A (3 ene)
'22818 :a‘$+ss+ 2
2(S + 2u)
§=a§—%‘577<12n02w0%
and similarly g% = Y—g = 5 :‘,’OVO

The complete beam motion ends at time T_ when Vo(Tf) = 0,

f
By previous discussion, the final hinge distance s(Tf) =a is

given by the only positive real root of the equation

s3 3u82 - 3(1 + lmfa)s - 3u(1l + 19\1,2) =0

for a specified p, and @ is bounded by
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1<as/3(1+ mfz)

This result can be used to check the accuracy of the numerical output.
A numerical example was computed and the results were plotted for
8, V, and W, as shown in Figure 3.4.9.
In this example, we have used the values p = 0.5, ¢ = 2,0,
Vv = 1.0 and Ny = 2.5 and the results are compared to the case where
the axial force interaction is ignored (no = 0). It is noted that the
inclusion of the axial force effect in the analysis reduces the final
central displacement of the beam by 2.5% for g = 2, 12.5% for o = 5
in this example and also reduces the time duration for the beam motion

to end.

Plastic String Behavior

The foregoing treatment of the dynamic motion of a rectangular beam
in both accelerative and decelerative phases is valid only for the case
when N/NO < 1 during the entire history of motion. This restriction on
the mechanical behavior of the beam also imposes a necessary bound on

the maximum central displacement of the beam. By equation (3.4.33)

we have
N
N 10
N, In 5 o<1
or
Nowo < 4,

in dimensionless parameters, this is

1l
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Hence, for the previous analysis to hold, the condition must be satisfied
i.e. noWb(T*) < 1/2 in accelerative phase and nOWb(Tf) < 1/2 in de-
celerative phase. Since noWb(Tf) = nodf = Af and since Af 2 0 thus the
condition (3.4.43) becomes

05 A° <1/ (3.4.4k)

The final hinge distance a = s(Tf) is therefore bounded by

J6 >.J/3(1 + uafa) za>1

lsu<om

for

If, however, at a certain time t = tp, the condition (3.4.43) is
violated and N/NO =1i.e. NOWO(tp) = by or “owb(Tp) = 1/2, the axial
force in the beam reaches its yield limit NO and the whole beam behaves
as a "Plastic String."

For t = tp, the differential equation governing the beam motion in

this phase can be obtained by combining equations in (3.4.35) and setting

M = 0. Hence we get

v % m w

The necessary initial conditions for the above equation can be ob-
tained by considering the quantities v(x, tp) and w(x, tp). By eque-

tions (3.4.23) and (3.4.34), we have

vix, &) = vt ) [1 - E(%T] , 0% x5 E(t)

=0 ’ E(tp)éx

(3.4.46)
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and

w(x, tp) =L/;tp v(x, t')dt*

Since vo(tp) and &(tp) can be determined from the previous analysis,
the initial conditions v(x, tp) and w(x, tp) are prescribed at t = tp.

To obtain the proper boundary conditions for equation (3.4.45),
we consider the mechanical behavior of the system for t = tp. By
equation (3.4.46) the velocity field v(x, tp) is non-vanishing only in
the range - E(tp) £ xs i(tp), and in zero elsewhere. It follows from
the assumption that the supporting material is rigid if the beam dis-
placement rate is zero, hence the supporting material provides a rigid
base for the string le 2 E(tp), and the subsequent beam motion takes
place only in the range |x| s i(tp).

Since £(t) is a non-decreasing function of, hence

w(x, t)|x=€(tp) =0, t=2 tp (3.4.47)

the other boundary condition may be obtained by considering the local

equilibrium at x = 0, for t tp. It is clear that

p(t) =y (o', 8), sz (3.4.48)

If tp < t¥, the transition from the plastic beam behavior to the plastic
string behavior occurs in the accelerative phase, then P(t) = Py =
constant, and hence condition (3.4.48) is prescribed. However, if

t, > t*, since P(t) = - Mvi}(o, t) in this phase, thus the condition

(3.4.48) becomes
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2
ow ow _
2 Ny 5 (o, t) + Mv 525 (o, t) =0, t=z tp

which is not a prescribed condition but is the equation which has to be
satisfied along with equation (3.4.45).

Due to the complicated behavior in this phase, further details
concerning the solution of the wave equation (3.4.45) subjected to the
initial conditions (3.4.46) and boundary conditions (3.4.47) and (3.4.L48)
has not been attempted. Nevertheless, some general results concerning
the mechanical behavior of the beam can be drawn by considering the
mechanical equations [3.15].

When the bean motion becomes a plastic string motion governed by
(3.4.45), the entire beam is strictly in tension, and so all strains in
the beam must also be extensional. This places a limitation on the ratio
of the rate of curvature change k and the beam centerline extensional
strain rate €.

By flow rule (3.4.6) for N/NO = 1, we have

.

Nof _ [ f d

E@‘Q/Bé‘(})}%:f”

i.e. the flow rule requires that the condition

N.€
-os-2 g2

Mor
should be satisfied for the entire plastic string. Since for a

rectangular beam NO/ M, = 4/h, thus
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-géfég (3.14.49)
Since
)]
, t
and

e

X!
=i

therefore inequality (3.4.49) is equivalent to

&,

ki
axa-,t

=

ES

e
Nl
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Figure 3.4.1. Pin-Pin Rigid Perfectly Plastic Beam under Concentrated

Load at Mid-span.

Figure 3.k.2. M/MO - N/NO Interaction Curve for a Rectangular Beam,



Figure 3.4.3. P - 6 Curve for a Pin-Pin Beam in Figure 3.4.1.
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Figure 3.4.4. Yielding Curves for General Sections.
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Figure 3.4.5. P - 6 Curves for the Pin-Pin Beam in Figure 3.l4.1 using

the Yielding Conditions in Figure 3.k.k.
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Figure 3.4.6. Velocity Field v(x, t).
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Figure 3.4.7. Notations and Signs of the Forces in a Beam Element.
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Figure 3.4.8. Beam Displacement Patterns in Time Interval At.
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Figure 3.4.9. Resulting Curves of the Example in Section 3.4 (ii).



3.5 Influence of Delay Time on Mass Impact on Beams

The discussion of yield delay time given in section 2.3 allows
a useful extension to the bending of beams. In obtaining a moment-
curvature relation the usual assumptions of beam theory will be made,
namely, that plane-sections normal to the middle surface remain plane and
normal and that the behavior of the material in tension is identical to
that in compression.

Since the strain rate varies linearly through the cross section,
the fiber furthest from the neutral axis will have the smallest delay
time. Thus the cross section will behave elastically up to a yield
moment M¥ given by the o% of the outermost fiber., For times greater
than the delay time of the outermost fiber a yield zone will spread into
the beam, the stress in fibers lying outside this yield zone will be
relaxing from the o%* corresponding to the strain rate at the fiber in
question. The material lying inside the yield zone will have an elasti-
cally increasing fiber stress.

Consider first a rectangular cross section (b X 2c) subject to a
constant rate of curvature. The strain at a point in the cross section

distant y from the neutral axis is

=€ y/c

The maximum elastic moment carried by the section is

M* = % bceo*

where

Lok (3.5.1)
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At any time greater than the delay time of the material at y = fc the
material in the region |y| < ¥ is relaxing viscoplastically. The
piastic region is determined by the fact that o(y) is on the point of

yielding. Thus,

=) ()

E e T/

o*(y)

Thus

)-(l-'ﬁ)/B

E(L +p)ac P ¢ 1/8
;/C =< 0 ma.x) (E €

3

& max

For |y| > ¥ the stress is given by (2.2.8a) with a = émax y/c and in this
region the integration with respect to y, needed for the computation of
the moment induced in the cross section, must be carried out numerically.
For € greater 0.5 percent the approximation to (2.2.8b) becomes
sufficiently accurate to be used in the computation and the result for

the moment can be given in simple terms.

Transverse Impact of a Mass on a Beam

It has been shown in section 3.1 that the bending moment at the
point of impact in an infinite elastic beam of cross sectional area A,
moment of inertia I, density p and modulus of elasticity E that is
struck transversely by a mass M moving before the instant of impact
with velocity VO and which remains in contact with the beam after

impact, is given by
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2
M(0, t) = 2ETK?V, & © erfe (x./t) (3.5.2)

/4 and « = dEIkz/M. The above equation implies that

where K = (pA/Y4EI)
the bending moment at the instant of impact jumps to the value 2EIk2VO,
which is independent of M and decays from this value more or less rapidly
depending on a and thus on M. If the upper yield point is ignored then

the velocity to produce plastic behavior is given by

Vo/cl = (r/y) &,

where T = (I/A)l/2

is the radius of gyration of the section, ey, is the
yield strain and c the velocity of longitudinal waves in the beam
material. However, if the upper yield point is considered the possi-
bility exists that for finite values of the mass the stresses induced
by the impact might decay rapidly enough that they fall to values below
the yield stress in a time which is less than the delay time at the most
highly stressed fiber.

The delay time t. for the extreme fiber is given by ( . . ) with

d
(3.5.2) in the form

3 2EIK2v

. oy> f a ﬂat{erfc [aJt]} at =

Due to the high value of the exponent B the contribution to the integral
when the stress is below the lower yield point is negligible and thus

to obtain a bound on Vo for finite M it is enough to set td-* o,

Using the substitution s = aat and suitable manipulations the above

equation can be transformed into an inequality for the range of velocity

leading to elastic impacts. Using the notation
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A(B) =h/;m ePs (erfc,/s)B ds

the result becomes

1/p -2/8

\' ro -

250 Gy

The integral for A(B) is easily computed numerically and on sub-

stituting the same values of the parameters as used in section 2.3 the

limiting velocities for the two grain sizes are given by

v _ -2/
Dz 1.75 x 10 3 (:;31-{> for 2030 grains/mm2
s ETIO
and
\ -2/
c—° s £ 1,295 x 1073 <-é-—’i—§> for 346 grains/mm2
1 Y ETk

It is clear from these results that for values of M/8EIk? greater than 1
the increased in Vo predicted by this theory over that predicted by the
simple theory is not important. However, for smaller values of M/8EIR?

the increease in Vo can be very substantial.
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4y, IMPULSIVE LOADING ON RATE DEPENDENT STRUCTURAL SYSTEMS

4,1 Combined Loading on Viscoplastic Beams
4.1 (i) The Generalized Constitutive Equation for the Pure

Bending of Viscoplastic Beams

In this part of the study, the constitutive equation of a visco-
plastic material will be generalized in terms of moments, curvature
and their rates, to obtain a moment curvature relation for a typical
beam element with a vertical axis of symmetry.

The assumption that plane sections remain plane leads to a linear

strain rate distribution over the cross section given by

(4.1.1)

Me
]

e

N

where z is the distance from the center section.
The form of the constitutive equation to be used in the analysis

is the following
EE =G + —9(-—--1) (4.1.2)
‘r* @ ohe @
Substituting (4.1.1) in the constitutive equation (4.1.2) gives

c
) ) O g
Exz =0 + (—"GO - 1) (4.1.3)

It is convenient to express this equation in terms of the following

dimensionless quantities
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(]|
]
A1

G ==
%
>~ gT*
o =2 (4.1.4)
0
T=-t
Ll
X = EI;T*h
0
in terms of which equation (4.1.3) becomes
Kz =G+ (5 - 1) (4.1.5)

Before we can generslize equation (4.1.5), the boundary line
between the elastic and viscoplastic zones in the cross section has to
be established. The boundary line is a moving one, and its position is
a function of the time t. This line is established by integrating
equation (4.1.5) between the limits

when

cH
"
o
al
n
o

and when

1.0

al
]

t=1

Therefore, for time t the position of the boundary line is given by,

Z = - (4.1.6)

It is clear that with increase in time the elastic zone shrinks and
when t - ®, Eb -+ 0, when the section is fully plastic, and the stresses

have relaxed to the steady state level. Figure 4.l.1 shows the stress
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distribution over the cross section.
Now, multiplying equation (4.1.5) by z and integrating over the

cross section gives

1.0 1o _ 1.0, 1.0
2f szz=2f czdz+2f - 1)Z &
0 0 0

The second integral on the right hand side of the above equation
will be different from zero in the viscoplastic zone of the cross
section. Therefore, two conditions are recognized, either the cross
section is still elastic, and this corresponds to a time t s ?-l or
the cross section is partially elastic, partially viscoplastic, and

this corresponds to a time t 2 L. Therefore, for t = ri

_2_:.._;
SK=M (k.1.7)
and for
tz K
2+ = 1_1
Sk=M+M-1.0+% (4.1.8)
3 3(';(-.5)2

where M: is the bending moment in the cross section, M: is the bending
moment rate of change.

Equations (4.1.7) and (4.1.8) are the generalized constitutive
equations for pure bending of a rectangular cross section. Equation
(4.1.7) applies only when the cross section is still elastic. Equation
(4.1.8) applies when the cross section is partially elastic and partially

viscoplastic.
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For the moment curvature relationship we integrate equations (4.1.7)
and (4.1.8) with appropriate initial conditions.
The solution of equation (4.1.7) with ¥ constant and the initial

condition M = O when T = 0 is
¥ = % K, Tskt (4.1.9)
and the solution of differential equation (4.1.8) with the initial

condition M = % when t = KT is

= 2 = 1 1
M=1l0+Z Kk + =5 —
3 322 T
-t t X —
- & LS ax t2K (4.1.10)
3k 1/k
1.1 24) 1/ %
S +tI+Fk)e e
<37€ 3 3

To transform equations (4.1.9) and (4.1.10) into a moment curvature

relationship, substitute the following

= Kkt

=1

where k is the curvature, in equations (4.1.9) and (4.1.10).

M Ky K =1.0 (k.1.11)

n
win
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3k (4.1.12)
- /K x
- LeKK . %dx Xz 1.0
3K 1/k

Equation (4.1.12) gives the moment curvature relationship for a
rectangular cross section subject to constant curvature rate. A plot
of equation (4.1.12) for different curvature rates is shown in fig-
ure 4.1.2.

Figure 4.1.2 shows that with the increase in curvature rate the
dynamic moment curvature curve is raised above the static one. It is
clear that the rate effect has an influence only after the elastic
moment capacity of the cross section is reached.

In order to find the maximum value of the dynamic moment capacity

of a cross section, we let t - ® in equation (4.1.10), therefore,
- o=
H=10+5k (4.1.13)

Equation (4.1.13) shows that the increase in moment capacity of a
cross section above the static fully plastic capacity (M = 1.0) is
proportional to the curvature rate.

It is important to emphasize that the above development was based
on the constitutive equation (4.1.2). If another constitutive equation
is used, it will give a different moment curvature relationship. However,

it is clear that similar conclusions will be reached.
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Based on the above development of moment curvature relations for
viscoplastic material, approximate but simplified relations could be

obtained, in the following way
1) M= 1.0+ % kK ifk>0 (k.1.14)

In this model the cross section will remain undeformed until the
dynamic moment capacity of the cross section is reached; after that the

curvature increases indefinitely, as in figure 4.1.3

1.5 + %

A

2) M=%k if k

wirn

(4.1.15)

iPK21.5+4K

v

M

i
-
o
+

wirn
Xl

In this model the cross section is agsumed to be elastic until
the dynamic moment capacity of the cross section is reached. Then the

curvature will increase indefinitely, as in figure 4.1.3.

3) H=£5% irksl.0
R 2r L (10 2E) (o £F D) uang

if x 2 1.0

This model is close to the viscoplastic one. It assumes elastic
behavior until the elastic moment capacity of the cross section is
reached and then assumes an exponential behavior in the viscoplastic
zone, as in figure 4.1.3.

This model could be improved by introducing in the exponential

term a constant a, which depends on K.



M-2 gex(k-1) (1.0 +£%) (1.0 - e (k-1), (4.1.17)
if ¥ 2 1.0

o has to be chosen in such a way so as to have (4.1.17) represent the

exact curve as closely as possible.

Equations (4.1.12) to (4.1.17) are possible approximate forms of

dynamic moment curvature relations.
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4,1 (ii) The Generalized Constitutive Equation for Combined Bending

and Extension

To study the effect of combined bending and axial rates on a
rectangular cross section of a beam, a curvature rate k and an extension
rate A will be applied to that cross section, as in figure 4.1l.k., Two

different cases can be recognized immediately

a)

-’_‘— s 1.0
K

b) A0
K

In case (a) the bending rate is dominant, while in case (b) the
extension rate is dominant,

To account for the fact that the strain rate could be here negative
as well as positive, the constitutive equation has to be modified in the

following way. PFor positive viscoplastic strain rate we have the

following
G
. - . —o .g- -
Ee = 0 + ¢("o 1) (4.1.18)

where

(o] o]

¢(— -1) =0 if — s 1.0

% %

or

¢(g—-1)=¢<g—-1> 12 %z 1.0
0 0 0

and for negative viscoplastic strain rate we have

. . 0'O 0‘
Ee =0 + — ¢(3-; + 1) (4.1.19)



where

¢(%—+1)=o 1f§—>-1.o
0 0

or

(] o] o
¢(-—-+1)=¢<—-+1> irS<-1.0
% % %

Now taking the function ¢ to be a linear one, the constitutive equa-

tions (4.1.18) and (4.1.19) will be

o
EE=6+—2(=-1) iriTzo0
0
or (4.1.20)
. . GOO’ ovP
Ee =0 + — (—+1) ife =0
%

From figure U4.l.L4, assuming plane sections remain plane, the strain rate

at any level z in the cross section will be
€ =X + Kz (k.1.21)
Substituting (4.1.21) into the constitutive equation (4.1.20) gives

(o)
3 . . oo‘
E(A+Kz)=G+T—*(G—O'-l)

VP 5

if ¢ 0
(k.1.22)
° o Y GO o‘
B(A + kz) -c+g(0—0-+1)
ir e%¥ s 0

To be able to integrate equation (4.1.22) over the cross section,
the boundary lines between the elastic and the viscoplastic zones have

to be established, and these are different in case (a) and (b).
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Case {a): % = 1.0

K

There are two lines in this case which separate the elastic zone
from the viscoplastic zones. One line is in the positive strain rate
area, and the second one is in the negative strain rate area. These
boundaries are obtained easily from equation (4.1.22), by integrating
with respect to time and finding the z corresponding to positive and

negative yield stress. The results are

G '3
z; == - % for eVP 20
Ext «
(4.1.23)
6 .
zg = - -9— - = for EVP =0
Ext

The position of the boundary lines is changing with time, and as
t » » the elastic zone shrinks to zero, as it is clear from (4.1.23).
Three main conditions are recognized, namely
c
1) O§t§+
E(kh + 1)
during which the stresses at the cross section at every point are still

below the static yleld stress.

() ()

2) L] 0 d é t é L] O (d
E(kh + A) E(xh -~ A)
In this condition some of the stresses have exceeded the static yield

stress in the positive strain rate area

%

3) teg————-
E(kh - A)
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Here some of the stresses have exceeded the static yield stress in both
the negative as well as the positive strain rate areas. Figure 4.1.5
shows the stress distribution over the cross section.

For the first condition, the integration of the constitutive

equation (4.1.22) over the cross section gives

j::(>’\+i<z)dz=f_z&dz

or (k.1.24)

EAA = N

and multiplying the constitutive equation (4.1.22) by z and integrating

it over the cross section leads to

h I L h L]
Jf (A + kz)zdz =J[ ozdz
“h -h

or (4.1.25)

where A: is the area of the cross section

I: is the moment of inertia of the cross section

:"_,:u

is the rate of change of the axial force over the cross section

.g.o

is the rate of change of the moment over the cross section

For the second condition, the integration of the constitutive

equation gives

o. ph ,
EAA=f¢+—T-2-f (—G—-ldz
o . \%
O _A
Ext K

and
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EIK = M+—f (-d—-l>zdz
%

_A
EKt K
this leads to
R S 1. by lA Exth _ 1m<1-,h
m'“*r*[”"‘o(a % - o )1 (k.1.26)
and
¢ G
EIk=ﬂ+l;{M-Mo[%-%<.° S1 'Ob> (g
Ext Ext %o
1B/ % Voo 1 Edh 1 Et
T2 ( b)r'*gEﬁ 235 (k.1.27)
0 \BxT¥ 0 0

22 (3 5]}

where N: is the axial force in the cross section
N.: is the static, fully plastic axial capacity of the cross
section
M: is the bending moment in the cross section
¢ is the static, fully plastic bending capacity of the cross

section

For the third condition, we get

s

s+ |y-n A
EAX-N+T*[N N, ;(h] (4.1.28)

and

128



=M+ -— M-M [ Qb>2 - %(ﬁ;}a]} (4.1.29)
Case (b): -}l z 1.0
K

In this case there is only one boundary line between the elastic
and viscoplastic zone. This boundary line is obtained in a similar way
to what was done in (a). The main difference between (a) and (b) is
that in (b), there will be no change in the sign of the strain rate
over the cross section. Figure L4.1l.6 shows the stress distribution in
the cross section. Again three main cases are recognized here.

c

0

l) Oété-——.———.—
E(A + kh)

For this the integration of the constitutive equation will give

EAA = N
EIk = M
which is similar to case (a).
o o
2) ———— st 5
E(A + kh) E(A - kh)

And the integration of the constitutive equation gives

e .1 1 1 % A 14 Ecth 1 Exth
W=N+-N'No[--n—.-+%g *E o, “Eo, 1}
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Gn \2 AN
EI;’(:}'&+%{M-M0 [%-%<_9:> _% .0h> (F:‘;T*)
Ext Ext 0
L) G 2 /. °
L1 <___mr*> <___o ™, 1 ___._racth) _1E
2\ ¢ . t 3 (.o 20
0 Ext 0

0

G E) e

M

which is again the same as in (a)

3) t >
and this gives

(4.1.30)

and

(k.1.31)

It is only here where there is a difference between case (a) and
case (b). This could be explained easily due to the fact that, only
in this condition is there a change in sign of the strain rate in
case (a), while there is no change in (b).

In order to have the generalized constitutive equations in dimension-
less forms which would help in establishing the yield surface, the fol-

lowing generalized dimensionless quantities will be used
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=
]
zlz

Xl

(4.1.32)

o+|
"

We should mention here that the generalized rates are chosen in
such a way as to have the product AN + kM give the rate of work.
Therefore, equations (4.1.24) to (4.1.31) in a dimensionless form will

be as follows

Case (a): § 2.0
K
for
1) 0s%Ts l,
= X
K + 2
we get
X
2
(4.1.33)
22 =
3 K =M
for
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2) L _sgs—L
E+->-2:- ',;+52.
we get
o fegol tlz 3% _ 14,12
> N+ N 2+H-—t 8= ER*-H?E
K K
2: _H.moL.i_1 +1®2_1H _lx
23
li— l‘htz
+ t - -
I E(m)a
(4.1.34)
or
I A, Ky €
E.—N.’-N-Nl(A’K’ )
and (4.1.35)
o2 = _ S
-§K=M+M-M1(X,x,'€)
where N, and M, are functions of 7.\', 7.<', T.
For
3) T>——
2 %
2
we get
X o+ - 1%
2=N+F-32
(4.1.36)




or

=ﬁ+ﬁ-N2 (i’t)

.'_'ﬁ"'ﬁ'ue(i’ts-f)

N>t
L}
ije >4

wio
i
1
=

+
Xl
(M b

A
2
2_
3 K
where N,, M, are functions of A, k, t.
Case (b):
For
1)
we get
for
2)
we get
and
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(4.1.38)

(4.1.39)



1/%2 1 3 1
+2(T) ~ T3 -3t
43 1S
3
1 1 (2
i g G2
(xt)
or
O .
-2-=N+N-N1(A,K,t)
and (4.1.40)
for
3) %zil
‘?:"K
we get
5=N+¥F-1
%i:ﬁ-ﬁM (L".l.l"'l)

Equations (4.1.33) to (4.1.41) are the generalized constitutive
equations for bending and extension of a rectangular cross section made
of viscoplastic material., They are in terms of the axial force, bending
moment and their rates, and curvature and extension and their rates also.
They are an uncoupled system of linear first order differential equa-
tions, which could be solved in a way similar to that of the pure bending

case, taking into account the different initial conditiomns.
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4.1 (iii) The Dynamic Yield Surface for Combined Bending and Extension

In the previous section the constitutive equation of the elastic
viscoplastic material was generalized in terms of moments, axial
force, curvature rate and extension rate. In this section a yield
surface which is a function of axial force N and bending moment M will
be developed for different rate effects.

When t - ® in equations (4.1.36) and (L4.1.41), the following will

result
Case (a):
= 1Xx.,X
N=32%3
K A
For = = 2.0 (k.1.42)
1/AN 2= 3
M=l.0-):<-_-> +§K
K
Case {b):
- x
N=1 +3 .
For);z 2.0 (4.1.43)
- 22 K
M=§K

Equations (4.1.42) and (4.1.43) are in terms of two parameters A and K.
However, for the purpose of establishing the dynamic yield surface, two

new parameters will be used

(4.1.44)

=
]
Xl 1>l
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9.

is a measure of a generalized rate effect which is a combi-
nation of the extension and bending rates.

R: is the ratio between the generalized extension and generalized
curvature rates, It varies from O, which is the pure bending
case to o which is the pure extension case.

Substituting (4.1.4k4) in (4.1.42) and (k.1.43) will give

Case (a): R = 2.0

=l
]
N
=
+
-

(4.1.45)

=i
!

r
(o]

]
Fir
=
+
1

Case §b2: R=z2,0

(4.1.46)

wiro

Now, given any value for D, the generalized rate parameter, equa-
tions (4.1.45) and (4.1.46) will give the yield surface for that rate.
In equation (4.1.45), there is no way of getting explicitly the equa-
tion of the yield surface, so we have to use the parametric representa-

tion. However, for equation (4.1.46), an explicit form of the yield
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surface is possible., By eliminating R from equation (4.1.46) we get
W(F - 1)% + I = P (b.1.47)

Equation (4.1.47) is applicable for all R 2 2.0. Differentiating equa-

tion (4.1.47) with respect to N will give

8(ﬁ-l)+m§§=o
ON

or (L.1.48)

Equation (4.1.48) indicates that the rate vector which has two
components i and i is normal to the yield surface. This is an appro-~
priate flow law for that surface. Figure 4.1.7 shows the yield surface
for different rates.

It is of interest to look at some extreme cases of the yield

surface

1) D=0 and X=k=0

This will give the static yield surface

M+§ =1.0, OSRSw
2) D> 1.0

In this case, equations (4.1.45) and (4.1.46) will give the same results

W2 + 3 =b°, OSRsSw
Therefore the dynamic yield surface for high rates is approximately

an elliptical one. It is an expanding surface. It has the property that

the flow vector is normal to the yield surface.
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L.2 Direct Methods for the Study of Impulsive Loading on Elastic

Viscoplastic Beams

4.2 (i) Transformation of the Uniaxial Constitutive Equation into

an Incremental Form

A constitutive equation for the viscoplastic material in the fol-

lowing form will be assumed
. . % ,a(t)
Ee(t) = o(t) + = St 1) (k.2.1)
0]

This constitutive equation is a differential equation which relates
strain rate, stress rate and stress. For the purpose of this study, an
incremental form of this equation is more useful. Integrating equa-

tion (4.2.1) between the limits t and t + At will give

EAe = Ao +b/ﬁttAt % o(m)
. = o 3 + 1) ar (4.2.2)
where
Ae = e(t + At) - €(t)
A = o(t + At) -~ o(t)

Ag: is the increase in strain over the increment of time At.

Ac: is the increase in stress over the increment of time At.

The integration in the right hand side of equation (4.2.2) is due
to the viscoplastic character of the material. It is clear that it will
be equal to O, if the stress is still below the elastic limit, and this

will lead to Hooke's Law

EAe = Ao if |o| <o,
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If the integration on the right hand side is divided by E, the
elastic modulus of the material, it will give the viscoplastic component
of the increase in strain over the increment of time At. To be able to
evaluate this integral the quantity under the integral sign will be

expended in a Taylor series as follows

(o (o)
0 4o(T) = 0 o2(t)
r*‘p(oo 1) T*c»(ao + 1)

.- ¢'(9§‘§l £1) 5(£)(T - 1)

o cp'(-“—((,-1il £ 1) §()(T - £)° (k.2.3)

1 n,o(t) . 2 2
t oo ¢(6 £ 1) o(t)(T - t)
0] 0]
4 oo
Also, if we expand o(t + At) into a Taylor series we get

- . P Ata
o(t + At) = o(t) + G(t)at + &(t) TF+ ..

or
&(t) = 73‘-?; - 5(t) -g’ﬁ - e (4.2.4)

Substituting the above results (4.2.4) in the expansion of ¢(g§l +1)
0

will give
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+

¢'(9§-§1 £ 1) G(£)(T - £)2
0 (4.2.5)

2
+ = ¢"(°§t) £ 1) 8 (1 - t)°

*

21*0‘0 At

.o 2
1 olt olt 2 2
2':*50 * §o) *1) _(17)_ ALS(T - t)

21ico n(°(t) £ 1) Mo G(t)(T - ¢)°

4 ooe

Now integrating this

t + At will give

f t+At
t

expression (4.2.5) between the two limits t and

%0 ¢(9-(11 £ 1)ar = 22 ¢(‘l§ﬂ: 1)at
(0]

1 geo(t)
+ 55 0K oA + 1)Ac At

6-:*0

"(-(—1 £ 1)002 At (14.2.6)
0

o(t) 4 1)5(¢) at3

o' (=5
127* A

L ¢"(°§t) £ 1)5(%) Ao At3

- 61*0
* S wﬂﬁl £ 1)5(t)2 at?
0

+
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As an approximation of this integral the first two terms will be chosen,

therefore

t+At ¢ c
f - o(9Z) & 1yar = 0 o(SE) & 1
t % ™ %9

(4.2.7)

—l— 'Gt soe
+55 0 (—é;l * 1)Ac At +

The error involved in this expression is of the same magnitude as the
absolute value of the rest of the terms in the expansion (4.2.6).

Substituting the above result in equation (4.2.2) gives

_ At o(t % ot
EAe -(} t o ¢'(-§;l 1) Ao + g ¢(—§;l + 1)At

or
% _,o(t)
= o( + 1)At
g
A o (&) = b0+ —— 0] (4.2.8)
—— t ——
1+2T*¢(G + 1) 1+2T*d>'((7 1)
0 0
if we call
ax = 1
1+ 8 ¢'(9§Q— * 1)
. 0 (4.2.9)
-1_—2 o3t + 1yt
(o
Act = - 0
At ,,0(t)
1455 0% e + 1)
then equation (4.2.8) will be
xEAe = Ad + Ao (4.2.10)
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Equation (4.2.10) is the incremental form of the constitutive equa-
tion (4.2.1). The two coefficients a and Ac' will change from one
increment to the other according to equation (4.2.9) but will stay
constant during each increment.

It should be mentioned here that an incremental formulation of the
constitutive equation (4.2.1) where the coefficient a is always equal to
1.0 is possible. However, it was found that the coefficient « helps in
the convergence of the numerical solution. This is due mainly to the
fact that the tangent modulus of the viscoplastic material relaxes with
time from its initial elastic value until it reaches the zero value.

To improve the approximation assumed here, an iteration scheme
within each increment could be used. After obtaining a solution to the
problem using the incremental constitutive equation (4.2.10) the in-
crease in stress Ac will be determined. Using this as a starting point
again, a new value for a and Ac', for the same increment, is calculated

in the following way

1
o(t) + Ac/2

%

Q=
At
1+ 2t*

o' t 1)

(k.2.11)
29- ¢(9_§I'l + 1)At

AI
° 1+A_¢(§.(.§)_+Asz£2

and the procedure is repeated many times.

We should mention here that the unloading criteria associated with

(4.2.10) are the following
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(1) for tensile stresses, 0 2 0

g > GO’ for loading i.e. EVP >0
(4.2.12)
- VP
G = Oy for unloading i.e. €~ =0
(2) for compression stresses, o = 9,
- VP
(4.2.13)
g > - 0 for unloading 1i.e. EVP =0

However, if the load is removed instantaneously, i.e., 0 ==
in the case of tensile stresses, or O = + » in the case of compression
stresses, the unloading will follow Hooke's Law immediately.

It is clear that this incremental procedure could be applied to
other types of constitutive equations for viscoplastic material with
slight modification. It could also handle very easily the case where
strain hardening exists. It could also be applied to the multi-axial

constitutive equation.
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4.2 (ii) Incremental Constitutive Equation for a Beam of Rectangular

Section

Assuming plane sections remain plane, the incremental increase in

strain at any level in the cross section will be

M=%+%z (4.2.14)

if we call

Where Asm: is the increase in strain of the center line of the cross
section, Ak is the increase in curvature of the cross section.

therefore

Ae

m
Ae = (1 -2z) (k.2.15)

Ak
We now apply at the cross-section virtual displacements AX and Ak and
use the principle of virtual work, which states that for any body in
equilibrium, the work done by the external forces during a virtual dis-

placement will be equal to the work done by the internal forces, or

Wﬁ = Wi

where WE is the work done by the bending moment and axial force in the
cross section, and WI is the work done by the stresses during the same
virtual displacements. Therefore
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AN

2
(& &) =u/‘h/ BAEL Ao dz - Ax
A -n/2

If we substitute (4.2.10) and (4.2.15) into (4.2.16) we get

- f i@ 2TaE (@ -z az
AM -b/2 A
h/2 "
- bf (1 z)" Ac' az
-h/2
or
AN EA' -BS'| Ac AN’
AM EBS' -EI'| & AM!

which in matrix notation takes the form

(a8} = [k]{av} - (as')

where

h
Al =f badz
-h

h/2
S'=f baz 4z

-h/2

h/2 5
I'= /\ baz~ dz
v -h/2
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(4.2.17)

(4.2.18)

(4.2.19)



h/2
AN' =Jf bAG' dz

h/2
h/2
AM' =\/1 bAc'z dz
-h/2
EA' -ES'
[k] =
ES' -EI'
Aem
{av} =
Ak
AN
{as} =
AM
ANI
{as'}) =
AMI

Equation (4.2.17) is the generalized incremental constitutive equa-
tion. The coefficients of this equation are changing with time, and
they have to be calculated at the beginning of each increment. It can
be shown that if the stresses everywhere in the cross section were below

the yield stress, then (4.2.17) reduces to the well known result

AN EA 0 Ae
m
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We should mention here that a simllar incremental relation could
be obtained directly from the generalized constitutive relation which

was developed in Section 4.1 (ii).
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4,2 (iii) Dynamic Equilibrium Equations for Beam Element in Incremental

Form

Consider a beam element (I), figure 4.2.1, which is at an arbitrary
position X. This position will be considered as an initial position.
The material of the beam will be assumed to be concentrated in the center
line. It behaves according to the generalized constitutive equation
(4.2.17). This element will be referred to two coordinate systems, the
first is global one xo, and the second is a local one X. Suppose now
that the element (I) is moved to a new position'i. This position will
be referred again to a global coordinate XO and a local one X. There-
fore a point (P) in the element (I) will move to a new position (P).

The displacement vector of point (P) referred to the coordinate system

X is

Aw
Au
and to the coordinate system XO is

-

Awbw
{Aro] = < Aeo >

Au

L O

The relation between {Ar} and {Aro] could be established in terms
of the rotation |y of the X-coordinate system with respect to the Xb-

coordinate system.
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(Aw)  [cos ¢ O - sin ¢] av,
<A9L =| 0 1 0 <A60L (4.2.20)
\Au J  sin ¢ O cos | \AuOJ
or
(ar} = [Q] {ar,)
now let:

[Ari] and {Ar‘j] be the increase in the nodel displacements vectors
between position X and position X , referred to the X-coordinate system.

{Ri], and (R} are the nodal forces vectors at position X referred
to the X-coordinate system.

(R + AR }, and (RY + ARY) are the nodal forces vectors at position
X referred to the X-coordinate system.

{F)} is the body force vector at position X measured per unit
length of the X-coordinate system.

(F + AF} is the body force vector at position X referred to and
measured per unit length of the X-coordinate system.

{8} are the internal forces at position X referred to and measured
per unit length of the X-coordinate system.

{8 + AS} are the internal forces at position X measured per unit
length of the X-coordinate system.

{Av} is the increase in the internal displacements from position
X to position X referred to the X-coordinate system. {Av]} can be
obtained in terms of the component of the position vector (Ar} in the

following way
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Ag
m
{av} =
Ax

But Aem and Ak can be expressed in terms of Av and Au as follows

-3 (@) -3

and (k.2.21)

Equation (4.2.21) can be considered as generalized strain displacement
relation. The first part of equation (4.2.21) is the well known Lagrangian
strain. Therefore {Av} can be considered as having two camponents; a

linear one, {AV}L, and a nonlinear one, {AVNL}

rBAu‘\
ox

{AvL} = { >

2Aw

ax2

. Y

Q

(k.2.22)

, 2 ’ 2
(&) 3 (&)

then

{av) = {AYL} + {AVNL) (k.2.23)
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From the above definitions we are able to write an expression for thg
virtual work at positions X and X. Since all forces at X are in
equilibrium, we give the system a virtual displacement d{Ar} during
which the work done by the external forces will be egual to the work
done by the internal forces.
That is

Ari * Ri L T L P

| | +f s(ar) T (Fyax =f stav)T(s)ax (h.2.24)
Ard RY 0 0

L: is the length of the element (I) in position X.

The expression of virtual work at position X is obtained by giving
the system again a virtual displacement d{Ar)} and setting the external
work done equal to the internal work done, or:

NT (1 4

Ar AR™ + R L P
d +‘/p 6{Ar}"(F + AF}ax

Apd ARY + RY 0
(k.2.25)

L T
= f 6(Av)T(S + AS)dx
0

Now, subtracting equation (4.2.24) from equation (4.2.25) we get
the incremental virtual work relation

T
At AR* L .

8 + f s{ar)T (AF ) ax
Ard AR’ 0

(k.2.26)

L L
T T
fo savy ) (8 )ax +f0 s(av)Tas)ax
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To develop the dynamic equilibrium equations we assume that the
position vector {Ar} could be expressed in terms of the incremental
displacements vectors of the nodal points {Ari} and (Arj} in the fol-
lowing way

Aw (ow)
(ar) = <M} = |(ow| [art (4.2.27)
Au (6u) | ard

where (¢w) and (%u) are called interpolation functions. They are chosen
in such a way as to insure compatibility between the adjacent elements,
and they include the rigid body motion and uniform straining modes. For
the purpose of our problem, they are chosen in the following way

(¢w) is a third degree polynomial function which is obtained by
releasing one at a time the degrees of freedom of a fixed end beam
while keeping the others fixed.

(¢u) is a linear function.

The forms of (¢w) and (¢u) are as follows

-~

(2

€560

(ow)T = o (4.2.28)

15 '
2

0]

|\ 7

and
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£ (k.2.28)

(¢u)T = ¢ \ (cont.)

x x
where El =l-71, 52 =7 .

After establishing the interpolation functions we can proceed to
express the incremental internal displacement {Av} in terms of the
nodal displacements vectors in the following way

Substituting (4.2.27) in (4.2.22) and taking the variation of the

results will give

(¢ 'u) Ari
d(AvL] = ¢ d 5 '
(¢"W) Ar
and (k.2.29)
TR BN T, o] i
Ar (o'u) (o'u) + (¢o'w) (¢'W) Ar
d{AvNL} = dé
Ar'j [¢] Arj

Now, substituting the incremental constitutive equation (4.2.18)

and (4.2.29) into (4.2.26), after some operations we get
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AR (ow)
L L
+ ! = ' T !
| fo oy | (aF)ax fo [(6 "w)T(0 "u)
ARY {du)
Ari
+ (o'w)(o'w)] (N - AN')dx
Ar'j
(4.2.30)
T .
L [(orw (01u) A
+ [k] dx _
0 (¢ "w) (6"w) AI‘J
L (¢ 'u)
2
-kjp (AS'}dx + O{Ar)
0 (¢"w)

All higher order terms in (4.2.30) were dropped because they are
small in comparison to the remaining terms.

The only term which still has to be defined in (4.2.30) is the
inertia term. Applying D'Alembert's principle, the increment inertia

force vector (AF) is given by

T-l .
{AF} = - p[Q"] A Aw

I A8, (k.2.31)

p¢ is the mass per unit volume at position X.

As for the position vector (Ar]}, the inertia vector [A;o] may be
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expressed in terms of the nodal inertia vectors [Afé} and [Afg] using

the same interpolation functions, or

(ar) = - o[@*17 [ A 1| cow ||a o] [aF
I (o'w) (4.2.32)
A (ouw) ||lo «q A'fg
or
(AF} = - p _A i r-(dm) ] TQ d- Afg
I (¢ 'w) (4.2.33)

All ow) ||o @ Ai"g

Equation (4.2.30) is expressed in the coordinate system X. However,
in order to be able to assemble all the elements together, later, the
dynamic equilibrium equations of each element should be referred to a
global coordinate system Xo. Carrying out a coordinate transformation

on (4.2.30) and substituting (4.2.33) in (4.2.30) will give

i i i i

AR AF Ar AR}
= [M] + [K] - (4.2.34)

J +2J J J

ARO Aro Aro AR6

Equation (4.2.34) is the incremental dynamic equilibrium equation
of element (I) referred to the global coordinate system Xy+ The terms

which appear in this equation are defined as follows
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l. The applied loads

which are the incremental nodal forces.

2. The mass matrix [M]

T
g o (ow) A (ow) Q o
L
M]= u/; (o'w) | o I (¢'w) dx
o qF (ou) | a ] (ou) 0

(k.2.35)

This mass matrix is called the consistent mass matrix. It includes
the effect of the rotational inertia of the cross section as well as
its mass. It could be substituted by a lumped mass matrix, where the
mass of the element is assumed to be concentrated at the nodal points.
It could also be replaced by a diagonal matrix, obtained by diagonalizing
the consistent mass matrix itself. Both approaches have been used
extensively in many problems. They offer great simplicity. However,
for the purpose of this study the original consistent mass will be used
to be able to include directly the rotational inertia.

3. The element global stiffness matrix [K]

&< o Qe o
[K] = [[K1] + [K2]] (k.2.36)
0 Q,T 0
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where [Kl1] is the elastic viscoplastic element stiffness matrix and
[K2] is the geometric stiffness matrix.
Both of these matrices are referred to the local coordinate system,

and they are as follows

(o'u) (o'u)
(K] = [K] ax
O [(orw) (0"

(4.2.37)

L
(k2] =fo [(6"uf(6 u) + (6'w){0'w)] (N - AN')ax

The stiffness matrix [K1] is the usual elastic stiffness if the
stresses anywhere in the element were less than the static yield
stress. But if the stress in some points of the element exceeds the
static yield stress, this will have an effect on [KL] and it will be
reduced.

The stiffness matrix [K2] is due mainly to the change in geometry
of the element between position X and position X. It is of a second
order in comparison to [Kl].

4, The viscoplastic loads

i
AR,
' J
AR,
T
ary* & o M RCEN
= (as'}ax  (4.2.32)
AR o Y9 [(e"w
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These viscoplastic loads will be equal to zero if the stresses
everywhere in the element were below the static yield stress. They are
due to the viscoplastic character of the material which is clear in the
constitutive equation (4.2.10), They came from the coefficient (Ac"')
in the constitutive equation, which is defined in equation (4.2.11).

They amount to adding an extra load in the nodal points of the element.

The procedures for the solution of the beam problem:

In order to be able to solve the problem of impact on a beam, some
preliminary details are needed. First, the beam will be divided into a
number of elements, with the number depending on the particular problem.
The geometry of each element is defined with respect to a global system
of coordinates. Each individual element will have a certain length L,
will be straight, and will have a uniform rectangular cross section.

The length, the cross section, and the orientation of the element could
be different from one element to the other. The material properties of
each element have to be specified. The boundary condition at each nodal
point has to be specified also, as for example, a fixed boundary or a
free boundery has to be specified.

The loads which are applied to the beam impulsively have to be
specified as increments of loads over a short period of time, which is
the duration of the impulse. The loads will be applied only at the
nodal points. They could be either vertical, horizontal or bending
forces. At the end of the impulse time the applied loads will be zero.
Also the point at which we want to terminate the solution to the problem
has to be specified, and the total number of time increments needed to

do so should be specified. Concentrated masses and their moments of
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inertia may be added at the nodal points, and they have to be specified.
Once all the above is done, it is possible then to proceed with the
actual solution of the problem.

Using a direct stiffness approach, the incremental dynamic equi-

librium equations are assembled in the following way

(4R} = M1 (a¥), + [KI (Ar), - (AR'}g (4.2.39)

[M] : is the mass matrix of the whole beam
[K]B: is the stiffness matrix of the whole beam
{AR}_.: is the incremental applied load vector for all the nodal
points
{A¥}_: is the incremental acceleration vector for all the nodal
points
{Ar}_: is the incremental displacement vector for all the nodal
points

{AR'}: is the viscoplastic load vector for all the nodal points.

In order to solve equation (4.2.39), the incremental acceleration
vector [Af]B has to be expressed in terms of the incremental displacement
vector {Ar]B. The approximate procedure used for that is as follows.

The vector {r(t + At)}B, which is the total displacement vector,

is expanded into a Taylor expansion, giving

i . A2 . A3
(r(t + 86))y = (x(6))y + (F(£)1gat + (F(e))y 25 + (2(6)) A5 4 ..

(k.2.%0)
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Assuming that the expansion is terminated after At3 and substituting

the following, for the rate of acceleration vector ff(t)]B,

F(t))y = —

into (4.2.40) gives
(a5}, = 5 (ar), - & (), - 30#(8)) (4.2.52)
B At2 B At B B *e
giving the incremental acceleration vector in terms of the incremental
displacement vector and the velocity and acceleration vector at the
beginning of the time increment., The velocity and acceleration vectors
at the end of the time increment are easily obtained in terms of the

incremental displacement vector [Ar}B.

{r(t + At)}B = %E {Ar]B - 2{i~(t)}B -.5{¥(t)}BAt (k.2.42)
and

(#(s + av))y = Z‘ig (ar)y - & G0y - 308D}, (h.2.43)

The above approximate procedure is equivalent to assuming the
acceleration vector to be linear over the time increment At. This
procedure could be improved by using an iteration scheme within each
increment similar to the one which was suggested for the constitutive
equation (4.2.10).

Substituting equation (4.2.41) into (4.2.39) gives the following
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(AR}; + {AR'); + % M) (r()}; + 3MM]; (¥(t))y

At
= [k, (ar)y + =S5 M1 ()
B At
or
(aR¥); = [K]} {ar}g ~ (k.2.44)

where {AR*}B s [K*]B is defined as follows

(aR)E = (AR} + (AR} + S IMIL(F(6))y + 3IMIL(E(E));  (b.2.k5)

and

[l = K]y # ;6? (M1,

Now equation (4.2.44) is transformed into a system of a linear
simultaneous algebraic equation which could be solved using any of
the many schemes available for that purpose.

Once equation (4.2.4k4) is solved, a back substitution procedure is
carried out until the incremental increase in stresses, strains, axial
force, etc. are determined. An iteration procedure within each time
increment could be carried out to improve the accuracy of the solution
and its convergence once the values of all the unknowns of the problem
are determined at the end of the time increment. The same procedure is
repeated for the new increment with the new values obtained at the end

of the previous increment taken as initial values for the new increment.

However, before it is possible to do so, some of the variables of the
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problem should be referred to the new local coordinate system obtained
at the end of the previous increment. A new length, a new orientation,
and a new mass per unit length of the element should be used in developing
the incremental dynamic equilibrium equations. Also, the internal forces
{s + AS} obtained at the end of the time increment should be measured
per unit length of the new position.

A computer program was developed using the procedure presented here

and was used to solve some numerical examples.
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4,3 Numerical Examples of Impulsive Loading Problems in Elastic Visco-

plastic Beams

In order to evaluate the method of solution which was developed in
this chapter, some numerical examples have been treated. Two of these
examples are chosen from a paper by Bodner and Symonds [4.1]. In the
paper the authors presented the results of impulsive loading tests which
were conducted on cantilever beams with varying tip mass. The third
example is one of a cantilever without a tip mass, the purpose of which
is to investigate the solution in the absence of a tip mass and show
its stability.

The constitutive equation which will be used for the numerical
examples is one modified from that used by Bodner and Symonds [U4.1]
for mild steel

Ee =& +40 - E (g—o +1)° (4.3.1)

Example (1): A cantilever beam with a tip mass, figure 4.3.1

Length of beam L = 14.0"

Height of beam H=.177"

Width of beam B = .644"

Modulus of Elasticity E = 30 x 10° 1b./in.2
Yield Stress o, = 29,000 1b./in.?
Mass/unit volume by = -000736 1b. sec.2/in."
Tip mass ‘= ,00381 1b. sec.2/in.
Impulse at tip = 975 1b. sec.

Duration of impulse = ,001 sec.
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Number of increments during the

impulse period

The time increment At for the

rest of the solution

The beam was divided into 14 elements.

of 1".

= 10

.00l sec.

Each element has a length

Final configuration of the beam corresponding to zero velocity of

the tip is shown in figure 4.3.2. A plot of the displacements of the

tip are shown in figure 4.3.3.

Example (2): A cantilever beam with a tip mass, figure 4.3.1

Length of beam

Height of beam

Width of beam

Modulus of elasticity
Yield stress

Mass/unit volume

Tip mass

Impulse at the tip
Duration of the impulse

Number of increments during the
impulse time

The time increment At for the
rest of the solution

The beam was divided into 10 elements.

L

H

by, 34"

. 053ﬂ

.312"

30 x 10° 1b./in.2

44,000 1b./in.2

.000736 lb.sec.2/in.h

.000030 1b.sec.>/in.

.031 1lb, sec.

.0001 sec.

= 10

.0002475 sec.

Each has a length of .434".

Final configuration is shown in figure 4.3.4. The displacements

of the tip mass are shown in figure L4.3.5.
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Example (3): A cantilever beam without a tip mass, figure 4.3.1.

Length of beam L = 14.0"

Height of beam H=.177"

Width of beam B = .6L4"

Modulus of elasticity E = 30 x 10° 1b./in.?
Yield stress oo = 29,000 lb.in.2
Mass/unit volume Po = -000736 lb./sec.a/in.l‘t
Impulse at the tip = ,075 1b. sec
Duration of impulse = ,001 sec.

Number of increments during

the impulse time = 10

The time increment for the

rest of the solution = ,0001 sec.

The beam was divided into 1l elements each, with a length of 1".
Final configuration is shown in figure 4.3.6. The displacements

of the free end are shown in figures L4.3.7.

Discussion of the results:

Comparing the results obtained here for example (1) and (2) with
those obtained by Bodner and Symonds [L4.1l], shows a good agreement between
the theory and their experiments. The damage angle which is predicted
here is very close to what the experiments showed.

In example (1) the ratio of the tip mass to the beam mass was
(3.33), while in example (2), the ratio was (.56) and for example (3)
there was no tip mass. This covers a wide range of tip mass to beam
mass ratios, and all the solutions obtained were stable. The beam with
the large tip mass behaved mainly like a rigid body with a very slight

change in curvature across the beam except near the base, where there
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was a major change in curvature. In case of example (3), some change in
curvature was noticed all over the beam and even near the tip. This is
due mainly to the absence of a tip mass which tends to dominate and
affect the configuration of the beam considerably. In all the three
examples the vertical velocity of the tip was increased during the
impulse time and reached its peak at the end of the impulse time, and
started to decrease until it reached zero. A similar behavior was
noticed for the horizontal velocity except that it reached its maximum

value somewhat later than the vertical velocity.
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