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Genome-scale models of microbial metabolism have become a commonly used 

tool in the systems biology toolbox.  These tools can predict, based solely on an 

organism’s genome sequence, its metabolic capabilities and unique phenotypes in 

different conditions and under unique perturbations.  Furthermore, an array of in-silico 

methods have been developed that can be applied to these models to more deeply 

characterize an organism, re-engineer it and even to design effective ways to interrupt 

and kill it.  This dissertation discusses the creation and analysis of multiple  
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genome-scale models of metabolism for different microbial pathogens.   

Chapter 1 describes aspects of systems biology that are used throughout this 

thesis.  Topics include the theory and practice of metabolic network reconstruction, 

genome-scale modelling and flux balance analysis.   

Chapter 2 focuses on the reconstruction and analysis of multiple genome-scale 

metabolic reconstructions of diverse Escherichia coli strains.  The results highlight strain-

specific adaptations to nutritional environments. 

Chapter 3 details comparative genome-scale modelling of multiple S. aureus 

strains to identify strain-specific pathogenic characteristics and unique metabolic 

capabilities that are related to infectious capabilities. 

Chapter 4 engages in a comparative metabolic network analysis and modelling of 

four Leptospira species that provide insight into pathogenesis of Leptospirosis. 

Chapter 5 examines seven industrially relevant strains of E. coli using 

transcriptomics and genome-scale models to quantifying variation between the strains 

that will likely have an impact on host strain selection for metabolic engineering 

applications. 

Chapter 6 conducts an in-depth analysis of existing metabolic network 

reconstructions and identifies areas where they may need further development. 

Chapter 7 details the construction of an updated comprehensive and high-quality 

genome-scale reconstruction for Escherichia coli K-12 MG1655. The model is 

experimentally validated with gene-knockout studies.  Extension to the model are 

provided, including an application involving production of reactive oxygen species. 
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Chapter 8 describes the reconstruction of a metabolic network and associated 

three-dimensional protein structures for Staphlyococcus aureus USA300.  The model is 

used to examine basic S. aureus biochemistry. 

Chapter 9 examines the current state and predicted future of systems biology 

applications for studying, examining and comparing microbial pathogens. 
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Chapter 1 Using Genome-Scale Models to Predict Biological 

Capabilities
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1.1 Introduction 

Bottom-up approaches to systems biology rely on constructing a mechanistic 

basis for the biochemical and genetic processes that underlie cellular functions. 

Genome-scale network reconstructions of metabolism are built from all known metabolic 

reactions and metabolic genes in a target organism.  Networks are constructed based on 

genome annotation, biochemical characterization, and the published scientific literature 

on the target organism; the latter is sometimes referred to as the bibliome.  DNA 

sequence assembly provides a useful analogy to the process of network reconstruction 

(Figure 1A).  The genome of an organism is systematically assembled from many short 

DNA stubs, called reads, using sophisticated computer algorithms.  Similarly, the 

reactome of a cell is assembled, or reconstructed, from all the biochemical reactions 

known or predicted to be present in the target microorganism. Importantly, network 

reconstruction includes an explicit genetic basis for each biochemical reaction in the 

reactome as well as information about the genomic location of the gene. Thus, 

reconstructed networks, or an assembled reactome, for a target organism represents 

biochemically, genetically, and genomically structured knowledge bases, or BiGG k-

bases. Network reconstructions have different biological scope and coverage. They may 

describe metabolism, protein-protein interactions, regulation, signaling, and other cellular 

processes, but they have a unifying aspect: an embedded, standardized biochemical 

and genetic representation amenable to computational analysis. 

A network reconstruction can be converted into a mathematical format and thus 

lend itself to mathematical analysis and computational treatment. Genome-scale models, 

called GEMs, have been under development for nearly 15 years and have now reached 

a high level of sophistication. The first GEM was created for Haemophilus influenza and 
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appeared shortly after this first genome was sequenced (Edwards and Palsson, 1999), 

and GEMs have now grown to the level where they enable predictive biology (Oberhardt 

et al., 2009, McCloskey et al., 2013a, Bordbar et al., 2014). Here, we will focus on 

reconstructions of metabolism and the process of converting them into GEMs to produce 

computational predictions of biological functions. 

The fundamentals of the Constraints-Based Reconstruction and Analysis 

(COBRA) approach and its uses are also described in this primer, which lays out the 

constraint-based methodology out at four levels.  First, there is a textual description of 

the methods and their applications.  Second, visualization is presented in the form of 

detailed figures to succinctly convey the key concepts and applications.  Third, the figure 

captions contain more detailed information about the computational approaches 

illustrated in the figures. Fourth, the primer provides a table of selected detailed 

resources to enable an in-depth review for the keenly interested reader. 

The text is organized into six sections, each one addressing a grand challenge in 

today’s world of “big data” biology:   

• Section 1.2 addresses the collection and organization of disparate data types for 

an organism of interest and the conversion of this information into a biochemical 

reaction network reconstruction.   

• Section 1.3 focuses on the conversion of biochemical reconstructions into 

computational models that can be used to predict metabolic capabilities.   

• Section 1.4 explains the validation of qualitative model predictions and their 

reconciliation with experimental results to discover new biology.  

• Section 1.5 details advanced genome-scale modeling methods used to make 

quantitative predictions.  
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• Section 1.6 highlights the integration of high-throughput “omics” data with 

genome-scale models.  

• Section 1.7 examines the future of genome-scale modeling and the prospect of 

extending these principles to processes beyond metabolism, including 

transcription and translation. 

1.2 A network reconstruction is the systematic assembly of 

knowledge 

A large library of scientific publications exists that describe different model 

organisms’ specific molecular features.  Molecular biology’s focus on knowing much 

about a limited number of molecular events changed once annotated genome 

sequences became available, leading to the emergence of a genome-scale point of 

view.  Now, putting all available knowledge about the molecular processes of a target 

organism in context and linked to its genome sequence has emerged as a grand 

challenge. Genome-scale network reconstructions were a response to this challenge.   

 Network reconstructions organize knowledge into a structured format. The 

reconstruction process treats individual reactions as the basic elements of a network, 

somewhat similar to a base pair being the smallest element in an assembled DNA 

sequence (Figure 1.1). To implement the metabolic reconstruction process, a series of 

questions need to be answered for each of the enzymes in a metabolic network: 1) What 

are the substrates and products? 2) What are the stoichiometric coefficients for each 

metabolite that participates in the reaction (or reactions) catalyzed by an enzyme? 3) Are 

these reactions reversible? 4) In what cellular compartment does the reaction occur? 5) 

What gene(s) encode for the protein (or protein complex) and what is (are) their genomic 

location(s)? Genes are linked to the proteins they encode and the reactions they 
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catalyze using the gene-protein-reaction relationship (GPR). All of this information is 

assembled from a range of sources including organism specific databases, high-

throughput data, and primary literature. Establishing a set of the biochemical reactions 

that constitute a reaction network in the target organism culminates in a database of 

chemical equations. Reactions are then organized into pathways, pathways into sectors 

(such as amino acid synthesis), and ultimately into genome-scale networks, akin to 

reads becoming a full DNA sequence.  This process has been described in the form of a 

96-step standard operating procedure (Thiele and Palsson, 2010a). 

Today, after many years of hard work by many researchers, there exist 

collections of genome-scale reconstructions (sometimes called GENREs) for a number 

of target organisms (Monk et al., 2014a, Oberhardt et al., 2011) and established 

protocols for reconstruction exist (Thiele and Palsson, 2010a) that can be partially 

automated (Henry et al., 2010a, Agren et al., 2013a). 

Network reconstructions represent an organized process for genome-scale 

assembly of disparate information about a target organism. All this information is put into 

context with the annotated genome to form a coherent whole that, through computations, 

is able to recapitulate whole cell functions.  The grand challenge of disparate data 

integration into a coherent whole is achieved through the formulation of a GEM.  A GEM 

can then compute cellular states such as an optimal growth state.  This process is 

further explored in the next section. A detailed reading list is available in Table 1 on the 

network reconstruction process and software tools used to facilitate it. 

1.3 Converting a genome-scale reconstruction to a computational 

model.    
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Before a reconstruction can be used to compute network properties, a subtle, but 

crucial step must be taken in which a network reconstruction is mathematically 

represented. This conversion translates a reconstructed network into a chemically 

accurate mathematical format that becomes the basis for a genome-scale model (Figure 

1.2A). This conversion requires the mathematical representation of metabolic reactions. 

The core feature of this representation is tabulation, in the form of a numerical matrix, of 

the stoichiometric coefficients of each reaction (Figure 1.2B). These stoichiometries 

impose systemic constraints on the possible flow patterns (called a flux map, or flux 

distribution) of metabolites through the network. These concepts are detailed below. 

Imposition of constraints on network functions fundamentally differentiates the COBRA 

approach from models described by biophysical equations, which require many difficult-

to-measure kinetic parameters.  Constraints are mathematically represented as 

equations that represent balances or as inequalities that impose bounds (Figure 1.2C). 

The matrix of stoichiometries imposes flux balance constraints on the network, ensuring 

that the total amount of any compound being produced must be equal to the total 

amount being consumed at steady state. Every reaction can also be given upper and 

lower bounds, which define the maximum and minimum allowable fluxes through the 

reactions, that in turn are related to the turnover number of the enzyme and its 

abundance. Once imposed on a network reconstruction, these balances and bounds 

define a space of allowable flux distributions in a network; the possible rates at which 

every metabolite is consumed or produced by every reaction in the network. The flux 

vector, a mathematical object, is a list of all such flux values for a single point in the 

space. The flux vector represents a ‘state’ of the network that is directly related to the 

physiological function that the network produces. Many other constraints such as 
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substrate uptake rates, secretion rates, and other limits on reaction flux can also be 

imposed, further restricting the possible state that a reconstructed network can take 

(Reed, 2012). The computed network states that are consistent with all imposed 

constraints are thus candidate physiological states of the target organisms under the 

conditions considered.  The study of the properties of this space thus becomes an 

important subject. 

Flux balance analysis (FBA) calculates candidate phenotypes. FBA is the oldest 

COBRA method. It is a mathematical approach for analyzing the flow of metabolites 

through a metabolic network (Orth et al., 2010c). This approach relies on an assumption 

of steady-state growth and mass balance (all mass that enters the system must leave). 

The constraints discussed above take the form of equalities and inequalities to define a 

polytope (blue area within the illustration in Figure 1.2C) that represents all possible flux 

states of the network given the constraints imposed. Thus, many network states are 

possible under the given constraints and multiple solutions exist that satisfy the 

governing equations.  The blue area is therefore often called the ‘solution space’ to 

denote a mathematical space that is filled with candidate solutions to the network 

equations given the governing constraints. FBA uses the stated objective to find the 

solution(s) that optimize the objective function.  The solution is found using linear 

programming, and, as indicated in Figure 1.2D, the optimal solution lies at the edges of 

the solution space impinging up against governing constrains. 

 The utility of FBA has been increasingly recognized due to its simplicity and 

extensibility: it requires only the information on metabolic reaction stoichiometry and 

mass balances around the metabolites under pseudo-steady state assumption. It 

computes how the flux map must balance to achieve a particular homeostatic state. 
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However, FBA has limitations. It balances fluxes, but cannot predict metabolite 

concentrations. Except in some modified forms, FBA does not account for regulatory 

effects such as activation of enzymes by protein kinases or regulation of gene 

expression. More details are found in the caption of Figure 2, and computational 

resources are summarized below that can be deployed to find the optimal state and to 

study its characteristics. 

 Models impose constraints and allow prediction. One of the most basic 

constraints imposed on genome-scale models of metabolism is that of substrate, or 

nutrient, availability and its uptake rate (Figure 1.2E).  Metabolites enter and leave the 

systems through what are termed “exchange reactions” (i.e., active or passive transport 

mechanisms).  These reactions define the extracellular nutritional environment and are 

either left ‘open’ (to allow a substrate to enter the system at a specified rate) or ‘closed’ 

(the substrate can only leave the system).  Measurements of the rate of exchange with 

the environment are relatively easy to perform and they prove to be some of the more 

important constraints placed on the possible functions of reaction networks internal to 

the cell. More biological- and data-derived constraints can also be imposed on a model.  

These advanced constraints are detailed in sections 4, 5 and 6. 

1.3.1 What is needed to create a new cell?  

The next step in converting a network reconstruction to a model is to define what 

biological function(s) the network can achieve (Figure 1.2F). Mathematically, such a 

statement takes the form of an ‘objective function.’ For predicting growth, the objective is 

biomass production, that is, the rate at which the network can convert metabolites into all 

required biomass constituents such as nucleic acids, proteins, and lipids needed to 

produce biomass. The objective of biomass production is mathematically represented by 
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a ‘biomass reaction’ that becomes an extra column of coefficients in the stoichiometric 

matrix. One can formulate a biomass objective function at an increasing level of detail: 

Basic, Intermediate, and Advanced (Monk et al., 2014a, Feist and Palsson, 2010a). The 

biomass reaction is scaled so that the flux through it represents the growth rate (µ) of the 

target organism. 

 It is important to note that the biomass objective function is determined from 

measurements of biomass composition, the uptake and secretion rates from measuring 

the nutrients in the medium, and the model formulation is based on a network 

reconstruction that is knowledge-based.  Thus, the growth rate optimization problem 

represents “big data” integrated into a structured format and the hypothesis of a 

biological objective; grow as fast as possible with the resources available. This is a well-

defined optimization problem. 

GEMs are input-output “flow models” with an explicit genetic basis. The inner 

workings of a GEM are readily understood conceptually. In a given environment (i.e., 

where the nutritional inputs are defined) GEMs can be used to compute network outputs. 

Flux balance analysis (FBA) can computationally trace a fully balanced path through the 

reactome from the available nutrients to the prerequisite output metabolite.  Such 

calculations are performed as detailed above with an objective function that describes 

the removal of the target metabolite from the network. The synthesis of biomass in a cell 

requires the simultaneous removal of about 60-70 different metabolites. Using FBA, a 

GEM can also compute the balanced use of the reactome to produce all the prerequisite 

metabolites for growth simultaneously, and does so in the correct relative amounts while 

accounting for all the energetic, redox, and chemical interactions that must balance to 
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enable such biomass synthesis.  This exercise is one of genome-scale accounting of all 

molecules flowing through the reactome. 

 Given its simplicity and utility, FBA has become one of the most widely employed 

computational techniques for the systems-level analysis of living organisms (Bordbar et 

al., 2014, Lewis et al., 2012a). It has been successfully applied to a multitude of species 

for modeling their cellular metabolisms (Oberhardt et al., 2009, Feist and Palsson, 

2008a, McCloskey et al., 2013a), and therefore, enabled a variety of applications such 

as metabolic engineering for the over-production of biochemicals (Yim et al., 2011), 

(Adkins et al., 2012), identification of anti-microbial drug-targets (Kim et al., 2011), and 

the elucidation of cell–cell interactions , (Bordbar et al., 2010). Further reading and 

detailed descriptions of FBA and sources for existing genome-scale models are 

available in Table 1. 

1.4 Validation and reconciliation of qualitative model predictions 

Ensuring the consistency and accuracy of all the information available for a target 

organism is a grand challenge of genome-scale biology. Since model predictions are 

based on a network reconstruction that represents the totality of what is known about a 

target organism, such predictions are a critical test of our comprehensive understanding 

of the metabolism for the target organism.  Incorrect model predictions can be used for 

biological discovery by classifying them and understanding their underlying causes. 

Performing targeted experiments to understand failed predictions is a proven method for 

systematic discovery of new biochemical knowledge (Orth and Palsson, 2010b). This 

section will focus on evaluating qualitative model predictions, their outcomes, underlying 

causes of incorrect predictions, and how to go about correcting them.  Section 4 

discusses the same process for quantitative model predictions. 
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1.4.1 Genetic and environmental parameters 

Genome-scale models have many genetic and environmental parameters that 

can be experimentally varied. Altering the composition of the growth media changes 

environmental parameters. Alteration of genetic parameters is achieved through genome 

editing methods.  Both environmental and genetic parameters are explicit in GEMs and 

thus the consequence of both types of perturbations can be computed, predicted, and 

analyzed.  The scale of such predictions has grown steadily since the first genome-scale 

model of E. coli appeared in 2000 (Edwards and Palsson, 2000b).   

Genome-scale gene essentiality data are available from specific projects or 

organism-specific databases.  One can systematically remove genes from a 

reconstruction, and thus the corresponding reactions from the reactome, and repeat the 

growth computation to predict gene essentiality; i.e., if a growth state cannot be 

computed without a particular gene, the GEM predicts it to be essential (Figure 1.3A).  

Such growth rate predictions of gene deletion strains have gone from a hundred 

predictions in the year 2000 (Edwards and Palsson, 2000b), to over 100,000 predictions 

in 2012 (Yamamoto et al., 2009), and may be heading for over a million predictions in 

just a few years (Monk and Palsson, 2014).   

Both environmental and genetic parameters can be varied when performing FBA. 

The simplicity of computing growth states (i.e., an output) as a function of media 

composition (i.e., the nutritional inputs) with the selective removal of genes (Figure 

1.3B) has led to a number of studies that cross environmental parameters with gene 

deletions. The explicit relationship between a gene and a reaction makes the deletion of 

genes and their encoding reactions straightforward.  You can readily do this for your 

target organism, provided that you can construct a library of gene deletion strains. 
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Improved molecular tools for generating knockout collection libraries (Tn-seq, CRISPR 

systems, etc.) and improved high-throughput methods for measuring knockout 

phenotypes have enabled a massive scale-up in the number of phenotypes that can be 

measured.   

1.4.2 Classification of model predictions 

Computational predictions of outcomes fall into four categories: true-positives, 

true-negatives, false-positives and false-negatives.  The true-positive and true-negative 

predictions, where computational predictions and experimental outcomes agree, have 

generally exceeded 80% to 90% for well-characterized target organisms.  Going beyond 

single gene knockouts to double genes knockouts and more, true negative predictions 

are particularly significant as they indicate model predictions of true genetic, or epistatic, 

interactions.  In a screen of double-gene yeast knockouts, Szappanos et al. found that 

models could predict 2.8% of negative genetic interactions (Szappanos et al., 2011).  

While this indicates poor recall of prediction, of these, 50% were correct, indicating that 

model predictions are highly precise, but may miss several interactions.  These missed 

predictions represent cases that are currently difficult for functional geneticists to 

understand.  For applications where the goal is to have true predictions, such as for 

antibiotic design, precision is more important than recall. 

 FBA based models are highly precise because they are good at predicting 

impossible states (such as when a gene knockout leads to death).  This assumes that 

the network structure is complete, an assumption that can be a problem when 

promiscuous enzyme activity arises, leading to a reaction with an encoding gene that is 

not captured in the model.  Models have lower accuracy because FBA assumes that all 

reactions can happen at maximum rates.  Model false positives often occur because an 
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enzyme is either transcriptionally repressed or does not catalyze the designated reaction 

at a high enough rate (Table 2, Evaluation of Model Predictions). Predictive failure is 

perhaps of more interest than success as it represents an opportunity for biological 

discovery. False negative predictions occur when a GEM predicts the inability to grow in 

a given environment without the deleted gene, but the experiments show growth.  This 

discrepancy indicates that the reconstructed reactome is incomplete. In contrast, false 

positive predictions occur when a GEM predicts growth but the experiment results in no 

growth.  This outcome indicates possible errors in the knowledge on which the reactome 

was based, or that a regulatory process is missing that prevents the use of a gene 

product factored in the computed solution. An example would be regulation that either 

represses gene expression or a metabolite-enzyme interaction that inhibits the function 

of an enzyme that the GEM used to compute the predicted growth state. 

Prediction failures can be used to systematically (i.e., algorithmically) generate 

hypotheses addressing the failures.  Such hypotheses have been shown to direct 

experimentation to improve our knowledge base for the target organism.  Computations 

that vary environmental and genetic parameters become part of a workflow (Figure 

1.3C). The outcome of the workflow is a set of qualitative model predictions of growth or 

no growth that are then compared to the experimental outcome of a growth screen. 

Correct predictions align with experimental results, while incorrect predictions do not. 

The two are then compared and classified into four categories as shown in Figure 1.3C.  

The failure modes lead to systematic experimentation. 

1.4.3 Discovering new metabolic capabilities using model false negatives.    

 Reconciling such discrepancies between predicted and observed growth states is 

now a proven approach for biological discovery.  A series of algorithms have been 
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developed that have been shown to compute the most likely reasons for failure of 

prediction that in turn led to a model-guided experimental inquiry and discovery.  

Furthermore, high-throughput tools such as phenotypic microarrays and robotic 

instruments are becoming available to screen cells at high rates.  Such discoveries are 

then incorporated into the reconstruction, leading to its iterative improvement. 

The discrepancies between GEM predictions and experimental data have been 

used to design targeted experiments that correct inaccuracies in metabolic knowledge. 

In this subsection we provide three illustrative examples that detail how reconciliation of 

model errors led to the discovery of new metabolic capabilities in three model 

organisms. 

Human: The activity of open reading frame 103 on chromosome 9 (C9orf103) of 

the human genome was discovered (Rolfsson et al., 2011a) using established gap-filling 

protocols (Orth and Palsson, 2010b, Reed et al., 2006b).  The authors focused on 

unconnected, “dead end” metabolites in the human metabolic network reconstruction, 

Recon 1 (Duarte et al., 2007a).  Dead end metabolites lead to model errors by creating 

blocked reactions due to a violation of mass balance.  Any flux leading to them cannot 

leave the network.  In an attempt to connect these dead end metabolites, a universal 

database of metabolic reactions was used to predict the fewest reactions required to 

fully connect all metabolites in the network.  Focusing on gluconate, which is a 

disconnected metabolite, the authors experimentally characterized (C9orf103), 

previously identified as a candidate tumor suppressor gene, as the gene that encodes 

gluconokinase, thereby consuming this metabolite and connecting it to the rest of the 

human metabolic network.   
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E. coli: Gap-filling methods combined with systematic gene knockouts in E. coli 

(Nakahigashi et al., 2009b), were used to discover new metabolic functions for the 

classic glycolytic enzymes phosphofructokinase and aldolase.   Single, double, and triple 

knockout strains of central metabolic genes were grown on 13 different carbon sources.  

Concurrently, the same gene knockouts and growth conditions were simulated using the 

E. coli GEM. Several discrepancies between model predictions and experimental results 

were related to talAB interactions in the pentose phosphate pathway and could not be 

reconciled.  A metabolomic analysis identified a new metabolite, sedoheptulose-1,7-

bisphosphate, that had not been previously characterized.  Using metabolic flux analysis 

and in vitro enzyme assays, the investigators confirmed that phosphofructokinase 

carries out the reaction and that glycolytic aldolase can split the seven-carbon sugar into 

three- and four-carbon sugars, glyceraldehyde-3-phosphate (G3P) and D-erythrose 4-

phosphate (E4P) respectively. 

Yeast: An analysis of synthetic lethal screens and gap-filling methods were used 

to correct incorrect pathways leading to NAD+ synthesis in yeast (Szappanos et al., 

2011).  The study compared an experimental set of genetic interactions for metabolic 

genes against interactions that were predicted by FBA.  Using machine-learning 

techniques, key changes to the metabolic network that improved model accuracy were 

identified. Model refinement identified one of the two NAD+ biosynthetic pathways from 

amino acids in the GEM as a source of inaccurate predictions. Using growth screens 

with mutant strains, the authors validated that the synthesis of NAD+ from amino acids 

was only possible from L-tryptophan (L-trp) but not from L-aspartate (L-asp). 

1.4.4 Adaptive laboratory evolution can be used as a part of the discovery 

process.  
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In contrast to false negatives, false positives arise when the model predicts 

growth, but experiments show no growth.  False positives occur in cases where 

experimental data show a particular gene to be essential but model simulations do not 

Figure 1.3D. Metabolic models can be used to predict efficient compensatory pathways, 

after which cloning and overexpression of these pathways are performed to investigate 

whether they restore growth and to help determine why these compensatory pathways 

are not active in mutant cells.  

Discovering context-specific regulatory interactions using false positive 

predictions. Cloning and overexpression of a false positive associated gene has been 

demonstrated for a ppc knockout of Salmonella enterica serovar Typhimurium (Fong et 

al., 2013).  A metabolic model of S. Typhimurium predicted that the cells could route flux 

through the glyoxylate shunt when ppc is removed due to the backup function of 

isocitrate lyase encoded by aceA.  However, the ∆ppc cells were nonviable 

experimentally.  The protein IclR is a transcription factor that regulates the transcription 

of genes involved in the glyoxylate shunt, including aceA.  Therefore a dual knockout 

∆ppc∆iclR mutant was constructed.  Growth was restored in this double mutant at ~60% 

of the wild type growth rate.  Therefore, the prediction of the metabolic model of S. 

Typhimurium failed because it erroneously allowed flux through the glyoxylate shunt 

when ppc was deleted due to the absence of regulatory information in the model.   

Adaptive laboratory evolution can also be used to reconcile false positive 

predictions.  Often, cell populations may need time to adapt to a genetic change or shift 

in media conditions, giving them the appearance of slow or no growth, despite a model 

prediction of growth.  However, it has been shown that incorrect predictions of in 

silico models based on optimal performance criteria may be incorrect due to incomplete 
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adaptive laboratory evolution under the conditions examined. It has been shown that E. 

coli K-12 grown on glycerol over 40 days (or about 700 generations) and subjected to a 

growth rate selection pressure (passing a small fraction of the fastest growers) achieves 

a final growth rate that is predicted by the GEM (Ibarra et al., 2002).  The quantitative 

prediction of growth rates is discussed in section 4. Thus, a false positive result may 

indicate that the model is in fact correct and a researcher should be patient while the cell 

adapts to achieve the model-predicted growth. 

 Since our knowledge of any target organism is incomplete, its network 

reconstruction will also be incomplete.  Thus, failures in GEM prediction of qualitative 

outcomes of growth capability are informative about the completeness of a network 

reconstruction and the consistency of its content.  Furthermore, these approaches can 

be extended beyond model improvement.  As genome editing techniques improve, in 

silico prediction of the effect of multiple gene-knockouts will be vital for contextualizing 

results of knockout studies and engineering genomes to achieve a desired phenotype 

(Campodonico et al., 2014). Additionally, reconciliation of model false negatives have 

been used to explore the role that underground metabolism plays in adapting to 

alternate nutrient environments (Notebaart et al., 2014).  The algorithmic procedures that 

have been developed to address failure of prediction have led to some computer-

generated hypotheses resulting in productive experimental undertaking. Further reading 

about the gap-filling process and algorithms for its implementation are available in Table 

1.  

1.5 Quantitative phenotype prediction through optimality principles 

The previous section treated qualitative predictions that relate to the presence or 

absence of parts from a reconstruction.  Quantitative predictions of phenotypic functions 
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are more challenging, but possible. The ability to compute quantitative organism 

functions from a genome-scale model represents a grand challenge in systems biology. 

Quantitative predictions are achievable with GEMs (even if they are based on 

incomplete reconstructions) by deploying cellular optimality principles. Evolutionary 

arguments underlie the deployment of optimality-based hypotheses. Phenotypes 

maximizing a hypothesized fitness function (as represented by an objective function) can 

be computed with constrained-optimization methods (Orth et al., 2010c). 

As for qualitative binary predictions of possible growth states, incorrect 

quantitative predictions often lead to new biological hypotheses and understanding. 

However, the discoveries arising from quantitative phenotype predictions are typically of 

a different nature than qualitative predictions. Rather than relating to missing 

reconstruction content (Section 3), the discoveries from quantitative phenotype 

prediction often relate to broad, fundamental organismal constraints (Beg et al., 2007, 

Zhuang et al., 2011b) and evolutionary objectives and trade-offs (Shoval et al., 2012).

 Quantitative phenotype prediction has also proven to be a useful capability for 

bioengineering applications. By optimizing an engineering (instead of evolutionary) 

objective, the best possible performance of an engineered biological system can be 

determined. Furthermore, the specific flux states needed to achieve high performance 

can guide engineering design (King et al., 2015b). 

1.5.1 Workflow for quantitative phenotype prediction.  

Quantitative phenotypes can be predicted through the same computational 

procedures used for qualitative growth predictions (Figure 1.4A). An objective (either 

evolutionary or engineering) is assumed, and maximized computationally (subject to flux 

balance and other constraints). The flux state(s) that maximize the objective are then the 
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predicted quantitative fluxes. These predictions can then be compared to experimental 

measurements. In cases of agreement, the evolutionary hypothesis is supported. In 

cases of a disagreement between experimental and theoretical predictions, either: a) the 

biological system has not been exposed to the selection pressure to reach the 

theoretical optimum (i.e., the assumed evolutionary objective is incorrect or partially 

correct), or b) there are missing biological constraints that affect the theoretical 

predictions (i.e., the relevant biological constraints are incomplete).  

Experimental evolution can discriminate these alternatives (Ibarra et al., 2002, 

Schuetz et al., 2012) by exposing the biological system to the appropriate selection 

pressure, leading it to evolve towards the stated optimum.  For example, in one study, 

strains carrying deletions of one of six metabolic genes were evolved on four different 

carbon sources.  A total of 78% of strains tested reached the metabolic model predicted 

optimal growth rate after adaptive laboratory evolution after 40 days of passage (Fong 

and Palsson, 2004). 

1.5.2 Flux variability analysis (FVA) calculates possible flux states.  

Flux balance analysis computes an optimal objective value and a flux state that is 

consistent with that objective (and all of the imposed constraints). While the objective 

value is unique, multiple flux states can typically support the same objective value in 

genome-scale models. For this reason, flux variability analysis (FVA) is used to 

determine the possible ranges for each reaction flux (Mahadevan and Schilling, 2003b). 

With FVA, the objective value is set to be equal to its maximum value, and each reaction 

is maximized and minimized. For some fluxes, their maximum value will be equal to their 

minimum, enabling a specific prediction. For others, there may be a wide range of 

possible values due to alternative pathways. Often, a parsimonious flux state is also 
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assumed and computed with parsimonious-FBA (pFBA) (Lewis et al., 2010a). With 

pFBA, the sum of fluxes across the entire network is minimized (again, subject to the 

optimal objective value determined); pFBA will eliminate some alternative pathways. 

Typically, many reaction fluxes can by uniquely predicted with optimality and parsimony 

assumptions. Additional biological constraints in next-generation models (Section 6) 

reduce the possible flux states further (Lerman et al., 2012a). 

1.5.3 Types of possible (evolutionarily optimal) quantitative predictions.  

The simplest type of quantitative phenotype predictable with constraint-based 

models is nutrient utilization. While metabolic models do not predict absolute rates of 

nutrient uptake, they predict the optimal ratios at which nutrients are utilized. For 

example, metabolic models predict an optimal oxygen uptake rate relative to the carbon 

source uptake rate (resulting in a predicted optimal ratio between the two nutrients). In 

an early study, the ratios of oxygen and carbon uptake were shown to be predictable for 

a number of carbon sources in E. coli (Edwards et al., 2001). In a later study, E. coli was 

evolved in the laboratory on a carbon source (glycerol) for which the wild-type strain did 

not match the predicted nutrient utilization; after evolution, the strain exhibited the 

optimal uptake rates predicted theoretically (Figure 1.4B) (Ibarra et al., 2002). 

Comparison of experimental and predicted phenotypes therefore reveals the 

environments to which an organism has been evolutionary exposed. 

Metabolic fluxes for central carbon metabolism can be estimated with 13C carbon 

labeling experiments, making them candidates for quantitative prediction (Figure 1.4B). 

Since the dimensionality of carbon labeling data is larger than that for nutrient uptake, 

there is more opportunity to dissect the differences in computed and measured fluxes to 

better understand the multiple objectives and constraints underlying microbial 
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metabolism. Impressively, the biomass objective function can explain a large amount of 

the variability of fluxes (Schuetz et al., 2007). Failure modes in prediction have led to the 

appreciation of the importance of protein cost (O'Brien et al., 2013a), and membrane 

(Zhuang et al., 2011b) and cytoplasmic spatial constraints (Beg et al., 2007), which 

affect the optimal flux state (Figure 1.4C). Furthermore, failure modes have led to the 

understanding that metabolism is simultaneously subject to multiple competing 

evolutionary objectives, resulting in trade-offs (e.g., growth versus maintenance) 

employed by different species  (Figure 1.4C). In this way, outliers in quantitative 

predictions can improve the understanding of constraints and objectives underlying a 

particular organism’s metabolism. 

Optimality principles from stoichiometric models have also been expanded from 

single populations of cells to microbial communities. To model microbial communities, 

multiple species are linked together through the exchange of nutrients extra-cellularly 

(Stolyar et al., 2007) or through direct electron transfer (Nagarajan et al., 2013). The 

secretion rate from one species limits the uptake rate for others, resulting in balanced 

species interactions. For a number of cases of communities composed of two or three 

members, the optimal rate of nutrient exchange and the ratio of the species in the 

population (Wintermute and Silver, 2010) can be predicted. The effects of spatial 

organization of community members are also being uncovered (Harcombe et al., 2014). 

The constraints on nutrient flow between organisms (e.g., diffusion) have proven to be 

important for predicting community composition and behavior, highlighting the 

importance of abiotic constraints and community structure in the behavior of biological 

communities. 
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Evolution is a natural counterpart to optimality-based predictions with constraint-

based methods. Constraint-based optimality predictions have focused on predicting the 

endpoints of short-term experimental evolution. However, this scope of application has 

increased in recent years to study long-term phenotypic and enzyme evolution (Nam et 

al., 2012, Plata et al., 2015).  

1.5.4 From optimality principles to prospective design 

Quantitative phenotype prediction via optimization is also commonly used for 

bioengineering applications (Figure 1.4D). For example, in metabolic engineering, 

optimal pathway yields are used to prioritize pathways to be built into a production strain 

and to benchmark their performance. Furthermore, the flux states required to achieve 

these optima (and how they differ from wild-type growth states) can guide strain design 

(Cvijovic et al., 2011).  

A number of design algorithms have been built to work with metabolic models 

and predict the genetic and environmental modifications to increase performance 

(Ranganathan et al., 2010, Burgard et al., 2003). While many design algorithms and 

applications have been focused on metabolite production (e.g., for production of fuels 

and chemicals), metabolic models have also been utilized for the design of biosensors 

(Tepper and Shlomi, 2011) and biodegradation (Scheibe et al., 2009, Zhuang et al., 

2011a). Also, design has expanded beyond single populations to microbial 

communities/ecosystems (Klitgord and Segre, 2010).  

Quantitative phenotype predictions initially focused on simple physiological 

predictions and are still expanding to more complex phenotypes, biological systems 

(Levy and Borenstein, 2013), and environments. Although there have been notable 

successes of quantitative phenotype prediction, certain phenotypes are still difficult to 
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predict. Historically, difficult predictions have led to the development of new 

computational methods and an appreciation of new biological constraints. Table 2 

(Evaluation of Model Capabilities) summarizes several types of predictions and the 

approximate performance of constraint-based methods utilized to date. The expansion in 

the scope and accuracy of predictions continues today with models of increased scope 

(O'Brien et al., 2013a, Chang et al., 2013a), discussed in section 6.  

Thus far, quantitative phenotypes have been limited primarily to microbial 

systems and, more recently, plants (Williams et al., 2010, Collakova et al., 2012). For 

multi-cellular organisms, specialized cell types support the fitness of the entire organism. 

Cell-type specific ‘objectives’ have been constructed (Chang et al., 2010), though they 

typically are used for qualitative (Section 3) instead of quantitative phenotype prediction. 

Instead, quantitative phenotypes in multi-cellular organisms are typically determined 

through model-driven analysis of experimental data, discussed in Section 5. 

1.6 Multi-omic data integration: constraining and exploring possible 

phenotypic states 

With the expanding quantity of omics and other phenotypic data, there is an 

increasing need to integrate these datasets to drive further understanding and 

hypothesis generation. Phenotypic data types can be integrated with metabolic GEMs to 

determine condition-specific capabilities and flux states in the absence of assumed 

objectives (Section 4). Computational methods that identify the possible range of 

phenotypic states given the measured data allow one to quantify the degree of 

(un)certainty in metabolic fluxes. Some types of data are quantitative and directly 

indicative of metabolic fluxes, whereas other data are qualitative or indirectly related to 

metabolic fluxes. By layering different data types, the true state of a biological system 
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can be determined with increased precision.  The need for formal integration of disparate 

data types represents a grand challenge that has been termed Big Data to Knowledge 

(BD2K, bd2k.nih.gov). 

1.6.1 Workflow for multi-omic data integration.  

The overall procedure for multi-omic integration with genome-scale models is an 

iterative workflow (Figure 1.5A). Once experimental data from the particular biological 

system under study is obtained, it is converted into constraints on model function 

(Figure 1.5B). The successive application of experimentally derived constraints to the 

reaction network results in the generation of a cell-type and condition-specific model 

(Figure 1.5C). Several computational procedures can then be used to explore the 

metabolic capabilities and achievable phenotypes of the experimentally constrained 

model (Figure 1.5D). Evaluation of these phenotypic capabilities and comparison of 

different cells or environments leads to identification of their molecular differences 

(Figure 1.5E), providing biological insight and driving further hypotheses. 

1.6.2 Converting data to model constraints.  

Successive imposition of constraints is a basic principle of COBRA (Palsson, 

2000).  Some data types can be directly converted into constraints on model variables. 

Biomass composition and growth rate affect the metabolic demands of cellular growth 

(Feist and Palsson, 2010a). Time-course exo-metabolomics can be used to set the 

uptake and secretion rates of nutrients (Mo et al., 2009). Intracellular quantitative 

metabolomics combined with reaction free energies can discern condition-specific 

reaction directionalities (Henry et al., 2007). Isotopomer distributions from cellular 

biomass or metabolite pools can be used to infer and constrain intracellular fluxes 



   25 

 

 

(Zamboni et al., 2009). These data can be used separately or combined to identify with 

increasing precision the true state of the cell. 

Other data types affect metabolism more qualitatively. In theory, quantitative 

metabolite, transcript, and protein levels can be used to constrain metabolism 

quantitatively, but in practice this requires many parameters that are hard-to-measure 

and are organism-specific. Instead, these data types can be used as qualitative 

constraints relating to gene product or metabolite presence/absence; that is, if a 

metabolite is present, a reaction must be active that produces it (Shlomi et al., 2008), 

and if a gene product is absent, it’s catalyzed reactions cannot carry flux (Jerby et al., 

2010, Schmidt et al., 2013a). Similarly, regulatory interactions can be added to affect the 

presence/absence of a gene product based on condition-specific activity of a 

transcription factor (Chandrasekaran and Price, 2010). 

1.6.3 Cell-type and condition-specific models 

Starting from a large reconstructed reaction network (e.g., representing all 

metabolic reactions encoded in the human genome (Thiele et al., 2013b)), the imposition 

of experimental data results in the generation of cell-type and condition-specific models. 

Experimentally derived constraints pare down the achievable phenotypes from those 

encoded by the totality of the cell’s genome. By eliminating phenotypes that cannot be 

achieved, this new model represents the capabilities of the particular cell-type and 

environment assayed. This model summarizes the experimental data in a self-consistent 

and integrated format, and forms the starting point for further computational and 

biological inquiry (Shlomi et al., 2008, Agren et al., 2012) (see Figure 1.5D,E). 

1.6.4 Quantifying uncertainty with Flux variability analysis (FVA) and Sampling.  
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Once a cell-type and condition-specific model is created, computational methods 

are used to determine the possible flux states of the cell. FVA (which is described in 

section 4) (Mahadevan and Schilling, 2003b) can be used to determine the range of 

fluxes that are consistent with the experimental data. A more refined approach is flux 

sampling (Schellenberger and Palsson, 2009a) (typically with Markov Chain Monte 

Carlo, MCMC, methods), which determines the distribution of fluxes for all reactions 

(instead of simply the range). When no cellular objective is assumed, the feasible flux 

space is very unconstrained and a particular reaction could be operating at nearly any 

flux value. As more data is layered, the feasible flux space decreases. When no 

objective is assumed, fluxes are rarely precisely known, and many will remain 

completely unknown. However, an imprecisely known flux space is often sufficient to 

discern differences between two environments/states as discussed in the following 

subsection. 

1.6.5 Using computed states to drive discovery and experimentation.  

Once the range of possible phenotypic states is quantified, they must be 

analyzed to gain biological insights. Often a comparative approach is employed, in which 

two experimental states (e.g., neurons from Alzheimer’s disease patients compared to 

healthy controls (Lewis et al., 2010b)) are compared. Reactions that have a non-

overlapping FVA range must be different between the two states, and can be indicative 

of important metabolic changes. In cases where the FVA ranges are overlapping, the 

flux distributions from MCMC sampling can still be different – that is, the reactions are 

likely different between the two states, but the current experimental data is insufficient to 

guarantee it. 
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Pathway visualization is also helpful in gaining insight into changes in cell 

states—fluxes (or flux ranges) are most comprehensible in a network context. A few 

tools exist for the visualization of metabolic fluxes; some are based on static maps 

(Schellenberger et al., 2010), whereas others create auto-generated layouts and new 

tools allow for the drawing of maps based on flux solutions (King and Ebrahim, 2014).  

Finally, identifying reactions or subsystems that remain partially identified (e.g., based on 

a large FVA range) can guide further experimentation, resulting in an iterative 

computational and experimental elucidation of a cell’s state. 

GEMs can be used to integrate numerous data types. In fact, as more 

experimentally derived constraints are successively imposed, analysis often becomes 

easier (as the range of possible solutions shrinks (Reed, 2012)), instead of more 

challenging as often occurs with statistically based data integration procedures. A 

current challenge with metabolic GEMs is the explicit integration of data types that do 

not directly reflect metabolic fluxes (e.g., transcriptomics, proteomics, and regulatory 

interactions). This challenge is primarily due to the fact that these processes are not 

explicitly described in metabolic models. Expansions of metabolic models to encompass 

gene expression hold promise to address this challenge and are discussed in section 6.  

1.7 Moving beyond metabolism to molecular biology 

Up to this point, this primer has focused on metabolic models, or M-Models.  M-

models have reached a high degree of sophistication after 15 years of development, 

resulting in standard operating procedures for their construction (Thiele and Palsson, 

2010a) and use (Schellenberger et al., 2011b). However, M-Models are limited in their 

explicit coverage to metabolic fluxes. Thus, a grand challenge in the field has been to 

expand the concepts of constraint-based models of metabolism to other cellular 
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processes to formally include more disparate data types in genome-scale models (Reed 

and Palsson, 2003a). 

1.7.1 Computing properties of the proteome.  

The process of addressing this grand challenge has begun. Recently, genome-

scale network reconstructions have expanded to encompass aspects of molecular 

biology (Figure 1.6A). Two significant expansions are genome-scale models integrated 

with protein structures, GEM-PRO, and integrated models of metabolism and protein 

expression, ME-Models. GEM-PRO allows for structural bioinformatics analysis to be 

performed from a systems-level perspective, and have those results in turn affect 

network simulations. ME-Models allow for the simulation of proteome synthesis, and 

account for the capacity and metabolic requirements of gene expression. 

1.7.2 GEM-PRO -- A structural biology view of cellular networks 

GEM-PRO reconstructions can have varying degrees of detail, which affects the 

types of analysis possible (Figure 1.6B). So far, GEM-PRO reconstructions have been 

created for T. maritima (Zhang et al., 2009) and E. coli (Chang et al., 2013a, Chang et 

al., 2013b). Initial reconstructions have focused on single peptide chains (Zhang et al., 

2009), and utilized homology modeling to fill in gaps where organism-specific structures 

have not been identified. Further reconstruction detail has included protein-ligand 

complexes (Chang et al., 2013a) and quaternary protein assemblies (Chang et al., 

2013b). To link the structures to the metabolic model, structural data directly references 

the GPRs in the metabolic reconstruction. For cases of protein-metabolite complexes, 

the metabolites also need to be properly annotated in the structural data. The structural 

reconstruction therefore provides a physical embodiment of the gene-protein-reaction 

relationship.  
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There are a few notable cases demonstrating the unique analysis possible with 

the combination of protein structures and network models. In T. maritima, network 

context and protein fold annotations were combined to test alternative models for 

pathway evolution (Zhang et al., 2009). The T. maritima GEM-PRO supported the 

patchwork model for genesis of new metabolic pathways. In E. coli, the effect of 

temperature on protein stability and enzyme activity was simulated at the systems level, 

recapitulating the effects of temperature on growth (Chang et al., 2013a). Also in E. coli, 

protein-ligand interactions were combined with gene essentiality predictions to discover 

new antibiotic leads and off-targets (Chang et al., 2013b). These examples just scratch 

the surface of analyses made possible with the integration of network and structural 

biology. 

1.7.3 Modeling molecular biology and metabolism with ME-Models.  

ME-Models formalize all of the requirements for biosynthesis of the functional 

proteome. They compute the proteome composition and its integrated function to 

produce phenotypic states and all the metabolic processes needed for its synthesis.  

This represents an integrated view of metabolic biochemistry and the core processes of 

molecular biology. As with GEM-PRO, the first ME-Models were formulated for T. 

maritima (Lerman et al., 2012a) and E. coli (O'Brien et al., 2013a, Thiele et al., 2012). 

The reconstruction of a ME-Model starts with the formation of reactions for gene 

expression and enzyme synthesis (Thiele et al., 2009b). The processes explicitly 

accounted for in ME-Models are very detailed, including transcription units and initiation 

and termination factors for transcription, tRNAs and chaperones needed for translation 

and protein folding, and metal ion and prosthetic group requirements for catalysis. In 

other words, the reconstructions strive to match as closely as possible all the 
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biochemical processes required to synthesize fully functional enzymes. To create a ME-

Model, the reactions for enzyme synthesis are coupled to the totality of metabolic 

reactions with pseudo-kinetic constraints, termed ‘coupling constraints’ (Thiele et al., 

2010, Lerman et al., 2012a). These constraints relate the abundance of an enzyme (or 

any ‘recyclable’ chemical species, e.g., mRNA, tRNA), to its degradation rate and 

catalytic capacity. 

ME-Models thus significantly expand the scope of phenotype predictions possible 

to include aspects of transcription and translation. RNA and protein biomass composition 

are variables in ME-Models, and are no longer set a priori (as in the biomass objective 

function of M-Models). ME-Models predict the experimentally observed linear changes in 

the ratio of RNA-to-protein mass fractions as a consequence of changes in protein 

synthesis demands (O'Brien et al., 2013a). Furthermore, the mass fractions of protein 

subsystems agree well with those predicted by the ME-Model.  This shows that the 

broad distribution of protein subsystem abundance is predictable using optimality 

principles and the comparison reveals that some subsystems were under-predicted, thus 

identifying them as gaps in knowledge and targets for further reconstruction and model 

refinement (Liu et al., 2014b). While the quantitative prediction of individual protein 

abundances is currently out of scope of the ME-Model (as these demands depend on 

enzyme-specific kinetics) the ME-Model has been shown to accurately predict 

differential expression across certain environmental shifts, due to the differential 

requirements of proteins across conditions (a more qualitative than quantitative 

prediction) (Lerman et al., 2012a). 

A recent expansion to the ME-Model includes the addition of protein 

translocation, allowing for the localization of protein to be computed (Liu et al., 2014b) 
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(i.e., into cytoplasm, periplasm, inner and outer membrane). Translocase abundances 

and compartmentalized proteome mass was accurately predicted from the bottom-up 

based on optimality principles. Addition of compartmentalization also allows for 

membrane area and cytoplasmic volume constraints to be formalized, which, if 

combined with GEM-PRO, approaches a digital embodiment of a three-dimensional cell. 

Metabolic models are limited in their predictive ability dictated by the scope of the 

reconstruction. Nearly all of the predictions of metabolic models outlined in the previous 

sections can be refined and expanded with GEM-PRO or ME-Models. Advances to 

include protein structures and protein synthesis open new vistas for constraint-based 

modeling.  

The scope of genetic perturbations (Section 2) that can be simulated is 

significantly larger due to the inclusion of genes for gene expression (and accounting for 

protein cost) and the effects of coding mutations on protein structures; GEM-PRO also 

expands the scope of environmental perturbation to enable simulation of changes in 

temperature. GEM-PRO allows for new gap-filling approaches (Section 3) based on 

structural bioinformatics methods. ME-Models expand the scope of quantitative 

molecular phenotypes to include transcript and protein levels (Section 4), and 

transcriptomics and proteomics can be analyzed in mechanistic detail (Section 5). 

With the added capabilities of GEM-PRO and ME-Models also come additional 

computational challenges. While single optimization calculations with M-Models take 

less than a second on a modest laptop computer, growth-maximization with a ME-Model 

can take over an hour. The ME-Model also requires specialized high-precision solvers. 

Many promising applications of GEM-PRO will require simulation of protein dynamics 

with molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics 
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(QM/MM) simulations on protein structures. High-performance computing environments 

are required for such simulations, and there is a pervasive trade-off between the 

precision of simulations and the scope of structural coverage. However, advances in 

high-precision solvers for ME-Models (Sun et al., 2013) and structural simulations for 

GEM-PRO are rapid and are likely to ameliorate these challenges. 

Like discoveries enabled by comparing M-Model predictions to experimental 

data, we anticipate much biology can be learned from comparing in silico and in vivo 

proteome allocation (O'Brien and Palsson, 2015), leading to increasingly predictive 

models. The E. coli ME-Model currently encompasses many key cellular functions, 

covering ~80% of the proteome by mass in conditions of exponential growth; the 

remaining proteome mass outside of the scope of the model can guide model 

expansion. In addition to DNA replication and cell division (Karr et al., 2012), much of the 

remaining proteome mass involves cellular stress responses (e.g., pH, osmolarity, 

osmotic); like with temperature, GEM-PRO will aid in modeling these cellular stresses. 

1.8 Perspective 

Genome-scale models have been under development since the first annotated 

genome-sequences appeared in the mid to late 1990s.  For most of this history, the 

focus of GEMs has been on metabolism.  After initial successes with metabolic GEMs it 

became clear that the same approach could be applied to other cellular process that 

could be reconstructed in biochemically accurate details.  Thus, a vision was laid out in 

2003 that the path to whole cell models was conceptually possible and that such models 

could be used as a context for mechanistically integrating disparate omic data types 

(Reed and Palsson, 2003a).  This vision is now being realized. This primer shows how 

six grand challenges in cell and molecular and systems biology can be addressed using 
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GEMs.  A surprising range of cellular functions and phenotypic states can be now dealt 

with.  

We now have the tools at hand to develop quantitative genotype-phenotype 

relationships from first principles and at the genome-scale.  Current models of 

prokaryotes account for metabolism, transcription, translation, protein localization, and 

protein structure. Processes not described in the current ME models will be 

systematically reconstructed over the coming years to gain a more and more 

comprehensive description of cellular functions.  Biology can thus look forward to the 

continued development and use of a mechanistic framework for the study of biological 

phenomena as physics and chemistry have enjoyed for over a century. 
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Figure 1.1. Network Reconstruction.  
An organism’s reactome can be assembled in a way that is analogous to DNA sequencing 
assembly.  From right to left: first the interacting compounds must be identified.  Then, the 
reactions acting on these compounds are tabulated and the protein that catalyzes the reaction 
and the corresponding open reading frame is identified in the organism of interest. These 
reactions are assembled into pathways that can be laid out graphically to visualize a cell's 
metabolic map at the genome-scale.  Several tools for reactome assembly and curation exist 
including the COBRA Toolbox (Schellenberger et al., 2011c, Ebrahim et al., 2013), KEGG 
(Kanehisa et al., 2014), EcoCyc (Keseler et al., 2013), ModelSeed (Henry et al., 2010c), BiGG 
(Schellenberger et al., 2010), Rbionet (Thorleifsson and Thiele, 2011), Subliminal (Swainston et 
al., 2011), Raven toolbox (Agren et al., 2013a) and others. 
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Figure 1.2. Formulation of a computational model 
A) After the metabolic network has been assembled it must be converted into a mathematical 
representation.  This conversion is performed using a stoichiometric (S) matrix where the 
stoichiometry of each metabolite involved in a reaction is enumerated.  Reactions form the 
columns of this matrix and metabolites the rows.  Each metabolite's entry corresponds to its 
stoichiometric coefficient in the corresponding reaction.  Negative coefficient substrates are 
consumed (reactants), and positive coefficients are produced (products).  Converting a metabolic 
network reconstruction to a mathematical formulation can be achieved with several of the 
toolboxes listed in Table 1. Care must be taken to ensure that all reactions are mass and charge 
balanced and that all are thermodynamically feasible in the condition of interest, and that their 
cellular location is accurate. Such checks represent quality controls on the reconstruction to 
ensure that it is chemically accurate and that the computations from the corresponding GEM are 
physico-chemically meaningful. B) Constraints can be added to the model such as 1) 
enforcement of mass balance and 2) reaction flux (v) bounds.  The blue polytope represents 
different possible fluxes for reactions 5 and 6 consistent with stated constraints.  Those outside 
the polytope violate the imposed constraints and are thus ‘infeasible.’  C) At their base, 
constraint-based models predict the flow of metabolites through a defined network.  The predicted 
path is determined using linear programming solvers and termed Flux Balance Analysis (FBA).  
FBA can be used to calculate the optimal flow of metabolites from a network input to a network 
output.  The desired output is described by an objective function.  If the objective is to optimize 
flux through reaction 5, the optimal flux distribution would correspond to the levels of flux 5 and 
flux 6 at the blue point circled in the figure.  Alternatively if the objective was to optimize flux 
through reaction 6, the optimal flux distribution would correspond to the levels of flux 5 and flux 6 
at the red point.  The objective function can be a simple value or draw on a combination of 
outputs, such as the biomass objective shown in Figure 1.2E.  The optimize function in the 
COBRA toolbox returns the output of the objective function as well as the flux of each reaction in 
the network contributing to achieve that output.  Therefore, the optimizations displayed in the 
figure would be performed in the COBRA toolbox using flux 5 or 6 as the objective.  It is important 
to note that alternate optimal flux distributions may exist to reach the optimal state as discussed 
in Figure 1.4C.  D) Once a network reconstruction is converted to a mathematical format, the 
inputs to the system must be defined by adding consideration of the extracellular environment.  
Compounds enter and exit the extracellular environment via ‘exchange’ reactions.  The GEM will 
not be able to import compounds unless a transport reaction from the external environment to the 
inside of the cell is present.  E) In addition to exchange reactions, the biomass objective function 
acts as a drain on cellular components in the same ratios as they are experimentally measured in 
the biomass.  In FBA simulations the biomass function is used to simulate cellular growth.  This 
simulation can be performed using the optimize function in the COBRA toolbox.  The biomass 
function is composed of all necessary compounds needed to create a new cell including DNA, 
amino acids, lipids and polysaccharides.  The biomass objective function is not the only 
physiological objective that can be examined using COBRA tools.
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Figure 1.3. Using models for qualitative predictions and iterative improvement 
A) Each reaction in the network is linked to a protein and encoding gene through the gene-
protein-reaction (GPR) relationship.  Because each reaction in the network corresponds to a 
column in the stoichiometric matrix, simply removing the column association with a particular 
reaction can simulate gene knockouts.  The delete model gene function in the COBRA toolbox 
can be used to perform these functions automatically and takes into account isozymes and 
protein complexes. Multiple KO simulations can be performed.  An example could easily delete 
every pairwise combination of 136 central carbon metabolic E. coli genes to find double gene 
knockouts that are essential for survival of the bacteria. B) The simplicity of altering inputs to 
change cellular growth environments (for example using the function changeRxnBound) and 
removing genes in silico allows one to perform simulations in millions of experimental conditions 
(multiple gene knockouts can be crossed with multiple environments) quickly.  Even on a modest 
laptop computer a single FBA calculation runs in a fraction of a second, thus simulating the effect 
of all gene knockouts in E. coli central metabolism can be run in less than 10 seconds.  Such 
simulations can then be compared to experimental data to classify prediction success and failure 
modes.  C) Incorrect model predictions are an opportunity for biological discovery because they 
highlight where knowledge is missing.  Targeted experiments can be performed to discover new 
content that can then be added back to the model to improve its predictive accuracy.  Missing 
model content can be discovered using automated approaches known as 'gap-filling' (Orth and 
Palsson, 2010a).  The growMatch function in the COBRA toolbox can be used to query a 
database of potential reactions to fill gaps in a network and restore in silico growth to a model.  D) 
Gap-filling approaches have been used previously to discover new metabolic reactions in several 
organisms of interest, clockwise from upper left are examples from three model organisms: E. 
coli, human and yeast.  E. coli: Two new functions for two classical glycolytic enzymes 
phosphofructokinase (PFK) and fructose-bisphosphate aldolase (FBA) were discovered (red) 
(Nakahigashi et al., 2009a).  Also the E. coli talA and talB genes were newly discovered to 
catalyze a transaldolase reaction TALA (blue) based on knockout phenotypes. Human: 
Gluconokinase (EC 2.7.1.12) activity was discovered based on the known presence of the 
metabolite 6-phosphogluconolactonate in the human reconstruction(Rolfsson et al., 2011b) (red).  
Yeast: Automated model refinement suggested modifications in NAD biosynthesis pathway.  
Experimental results indicated negative genetic interactions in the NAD biosynthesis pathway 
(∆bna vs WT) starting from tryptophan indicating that a parallel pathway from aspartate thought to 
exist in yeast was not present (Szappanos et al., 2011). E) False positive predictions can be 
reconciled by adding regulatory rules derived from high throughput data (Covert et al., 2004), for 
example, a recent study was able to reconcile 2,442 false model predictions from the E. coli GEM 
by updating the function of just 12 genes using the GeneForce  algorithm (Barua et al., 2010).  
Additionally, a false positive growth inconsistency in the metabolic model of S. Typhimurium was 
reconciled by updating regulatory rules for the iclR gene product’s transcriptional repression of 
aceA encoding isocitrate lyase.  Also, transcriptional repression can often be relieved via adaptive 
laboratory evolution.  Such evolution drives experimental phenotypes to achieve model 
predictions.  Several experimental studies have shown that an organism can evolve to eventually 
achieve the model-predicted optimal growth state (Ibarra et al., 2002). 
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Figure 1.4. Quantitative phenotype prediction using optimization 

A) Quantitative phenotype prediction can be conceptualized as an iterative workflow. First, 
hypothesized biological constraints and objective are formulated mathematically, and 
computational optimization is used to determine optimal phenotypic states (see Section 2). The 
predicted phenotypic states can then be compared to experimental measurements to identify 
where predictions are consistent. When consistent, the hypothesized evolutionary objective and 
constraints are validated. When inconsistent, laboratory evolution can be used to gain further 
insight as to why the computed and measured states differ. Examples of validation of quantitative 
phenotypes are detailed in 4B and further hypotheses derived from incorrect predictions are 
detailed in 4C. B) The generic workflow in 4A has been successfully applied to several classes of 
phenotypes. i) The ratios of nutrient utilization can be predicted by maximizing biomass flux 
across different substrate uptake bounds (Edwards et al., 2001); the resulting surface is referred 
to as a phenotypic phase plane, and is a standard function in the Cobra toolbox. ii) Central 
carbon metabolism fluxes can be predicted. For some organisms, much of the variability in flux 
can be attributed to biomass flux maximization (Schuetz et al., 2012). Specific deviations have led 
to new understanding of relevant biological constraints and objectives (see Figure 1.4C). iii) The 
ratio of organism abundances and nutrient exchanges can be predicted for both natural and 
synthetic communities when appropriate constraints limiting nutrient exchange are applied. Note 
that one important feature of quantitative phenotype predictions is that optimal flux solutions are 
often not unique. That is, there are multiple equivalent phenotypic states that can achieve the 
same objective value. To address this, flux variability analysis (FVA) (Mahadevan and Schilling, 
2003b) can be used to identify the ranges of possible fluxes.  It should be noted that non-
uniqueness is not necessarily a handicap of COBRA as biological evolution can come up with 
alternate solutions (Fong et al., 2005). C) Inconsistencies with model predictions have led to the 
appreciation of new constraints and objectives underlying cellular phenotypes. i) Inconsistent 
predictions in by-product secretion have led to the hypothesis that membrane space limits 
membrane protein abundance and metabolic flux (Zhuang et al., 2011b). This constraint can be 
added by bounding fluxes across the membrane. ii) The range of metabolic fluxes observed 
across different environments have led to the understanding that fluxes can be understood as 
simultaneously satisfying multiple competing objectives, such as growth and cellular 
maintenance. Multi-objective optimization algorithms find solutions that maximize multiple 
competing objectives. D) Accurate prediction of quantitative phenotypes has led to prospective 
design of biological functions. A number of algorithms have been developed that predict genetic 
and/or environmental perturbations required to achieve a bioengineering objective. Relevant 
bioengineering objectives have included biosensing, bioremediation, bioproduction, the creation 
of synthetic ecologies, and the intracellular production of reaction oxygen species (ROS) to 
potentiate antibiotic effects (Brynildsen et al., 2013b). For example, growth-coupled production of 
metabolites can be computed with the OptKnock algorithm (Burgard et al., 2003). 
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Figure 1.5. Data integration and exploration of  possible cellular phenotypes 

A) The general workflow for multi-omic data integration begins with the conversion of the 
experimental data into model constraints (see Figure 1.5B). This procedure results in cell-type 
(e.g. neuron, macrophage) and condition-specific (e.g. healthy vs. diseased) models that 
represent the metabolic capabilities of those specific cells (see Figure 1.5C). Several 
computational procedures can then be used to explore the metabolic capabilities and determine 
achievable phenotypes systematically (see Figure 1.5D). Evaluation of these phenotypic 
capabilities and comparison of different cells or environments leads to identification of their 
molecular differences (see Figure 1.5E). Additionally, if the original experimental data cannot 
precisely distinguish between certain metabolic states, additional targeted experiments can be 
designed and integrated as further constraints. B) Numerous data types can be integrated into 
metabolic models. Some directly affects model structure and variables (e.g. growth rate, biomass 
composition, exchange fluxes, internal fluxes and reaction directionality). Standard processing of 
these data types allows for integration into the model. Other data types affect metabolic fluxes 
more indirectly. As such, different computational methods exist for formulating the appropriate 
constraints (Error! Reference source not found.). C) Experimental data is integrated to construct 
cell-type and/or condition-specific models. These models represent the metabolic capabilities in a 
certain state, and are then used for further inquiry (see Figures 5D,E). Specific algorithms for 
building cell-type specific models from gene expression data include MBA (Jerby et al., 2010) and 
GIMME (Becker and Palsson, 2008). D) After adding constraints to the model, computational 
procedures are used to assess the implication of the experimental data on metabolic fluxes. The 
two main methods for querying the consequences of the measured data on a cell’s phenotypes 
are flux variability analysis (FVA) and Markov-chain Monte-Carlo (MCMC) sampling. These are 
both standard functions in the Cobra toolbox. i) FVA determines the maximum and minimum 
values of all metabolic fluxes. ii) MCMC sampling randomly samples feasible metabolic flux 
vectors (usually resulting in tens to hundreds of thousands of flux vectors). These sampled flux 
vectors can then be used to derive the distribution of possible flux values for a given metabolic 
reaction. One common pitfall to be aware of in FVA and sampling is the presence of flux cycles 
(or loops) in the metabolic network. Cycles occur when a set of reactions perfectly balance each 
other, resulting in no net metabolite production or consumption. In actuality, these cycles are not 
thermodynamically feasible (Noor et al., 2012) and should be ignored or removed with 
computational approaches (Schellenberger et al., 2011a). E) Often a comparative approach is 
employed in which experimental data from two conditions are used to generate two condition-
specific models. Then, the achievable phenotypes of the two states are compared (e.g. though 
MCMC sampling, see Figure 1.5D). 
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Figure 1.6. Expansion of genome-scale models to encompass molecular biology  
A) Metabolic models have been expanded to encompass the processes of proteome synthesis 
and localization as well as data on protein structures. Models including protein synthesis and 
localization are referred to as ME-Models, which stands for metabolism and gene expression. 
GEM-PRO refers to genome-scale models integrated with protein structures. For GEM-PRO, a 
combination of structural data directly references the GPRs in the metabolic reconstruction; 
structures can be obtained from experimental databases or homology modeling. The E. coli ME-
Model mechanistically accounts for ~80% of the proteome mass in conditions of exponential 
growth and 100% of other major cell constituents (DNA, RNA, cell wall, lipids, etc). B) Addition of 
cellular processes vastly increases the predictive scope of models. ME-Models can predict 
biomass composition, abundances of protein across subsystems, and differential gene 
expression in certain environmental shifts (in addition to the predictions possible with M-Models); 
like FBA these were predicted by assuming growth maximization as an evolutionary objective, 
though the specific optimization algorithm differs due to the addition of coupling constraints. 
GEM-PRO has been used to predict the metabolic bottlenecks and growth defects of changes in 
temperature on protein stability and catalysis; protein stability is predicted with structural 
bioinformatics methods and then used to limit the catalyzed metabolic flux. The uses of these 
integrated models are just beginning to be explored. 
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Chapter 2 Comparative Genome-scale metabolic reconstructions 

of multiple Escherichia coli strains highlight strain-specific 

adaptations to nutritional environments
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2.1 Abstract 

Genome-scale models (GEMs) of metabolism were constructed for 55 fully 

sequenced Escherichia coli and Shigella strains. The GEMs enable a systems approach 

to characterizing the pan and core metabolic capabilities of the Escherichia coli species. 

The majority of pan metabolic content was found to consist of alternate catabolic 

pathways for unique nutrient sources. The GEMs were then used to systematically 

analyze growth capabilities in over 650 different growth-supporting environments. The 

results show that unique strain-specific metabolic capabilities correspond to pathotypes 

and environmental niches.  Twelve of the GEMs were used to predict growth on six 

differentiating nutrients and the predictions were found to agree with 80% of 

experimental outcomes.  Additionally, GEMs were used to predict strain-specific 

auxotrophies.  Twelve of the strains modeled were predicted to be auxotrophic for 

vitamins niacin (vitamin B3), thiamin (vitamin B1) or folate (vitamin B9). Six of the strains 

modeled have lost biosynthetic pathways for essential amino acids methionine, 

tryptophan or leucine. Genome-scale analysis of multiple strains of a species can thus 

be used to define the metabolic essence of a microbial species and delineate growth 

differences that shed light on the adaptation process to a particular micro-environment. 

2.2 Introduction 

Over the past decade, the E. coli K-12 MG1655 strain has been used extensively 

as a model organism for research on microbial metabolic systems biology. However, the 

increasing availability of genomic sequences for other E. coli strains suggests that this 

non-pathogenic laboratory strain’s genes are a small part of the genomic diversity in the 

E. coli species. For instance, the E. coli O157:H7 EDL933 strain responsible for 

worldwide outbreaks of hemorrhagic colitis has one million more base pairs of DNA than 
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K-12 MG1655 (approximately 20% larger) (Hayashi et al., 2001, Perna et al., 2001, 

Canchaya et al., 2003). Multiple genomic sequences have defined a set of genes that is 

common to all E. coli strains (i.e., a ‘core’ genome), and it has been determined that they 

represent a small fraction of the entire E. coli gene pool. The growing availability of 

whole genome sequences for E. coli strains thus brings into focus the question ‘what is a 

strain and what is a species?’ 

A recent study of 20 E. coli strains found that a large fraction of the shared 

genomic elements with known function are related to metabolism (Touchon et al., 2009). 

Therefore, it is important to characterize the genes that encode a core set of metabolic 

capabilities to understand their effect on cellular functions, as they constitute a common 

denominator that can be used to define the core metabolic potential of the E. coli 

species. Metabolic network reconstructions have proven to be powerful tools to probe 

the genomic diversity of metabolism between organisms (Liao et al., 2011b, Baumler et 

al., 2011, Archer et al., 2011, Yoon et al., 2012, Charusanti et al., 2011, Thiele et al., 

2011). As useful as genome annotation is, it does not provide an understanding of the 

integrated function of gene products to produce phenotypic states. K-12 MG1655 was 

the first E. coli strain to have its genome entirely sequenced (Blattner et al., 1997). A first 

genome-scale metabolic reconstruction was completed for this strain three years later 

(Edwards and Palsson, 2000a). Since then, the reconstruction of MG1655 has 

undergone a series of expansions in the intervening 13 years as more information about 

the genome and its annotation has become available (Reed et al., 2003, Feist et al., 

2007, Orth et al., 2011). The most recent reconstruction, iJO1366 (Orth et al., 2011), 

accounts for 1366 genes (39% of functionally annotated genes on the genome) and their 

gene products. The genome-scale metabolic reconstruction for E. coli K-12 MG1655 is 
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the most complete metabolic reconstruction available to date (McCloskey et al., 2013c, 

Feist and Palsson, 2008b). However, as more E. coli genomic sequences have become 

available, it has become clear that E. coli K-12 MG1655 only partially represents the E. 

coli species. Thus, it is important to construct GEMs for other E. coli strains because of 

this species’ importance to human health, basic microbiological science and industrial 

biotechnology (Lee, 2009).  

The goal of this study was to construct GEMs for all E. coli strains with fully 

sequenced genomes and thus, for the first time, to reconstruct the metabolic network for 

an entire species and its strain-specific variants. Shigella strains were included on the 

basis of 16S ribosomal profiling experiments that classify Shigella strains as members of 

the E. coli species (Pupo et al., 2000), despite the historical distinction of having their 

own genus. Therefore, the formulated GEMs span commensal strains as well as both 

intestinal and extra-intestinal pathogenic strains of E. coli allowing for a comprehensive 

analysis of the representative metabolic capabilities of the E. coli species.  

2.3 Results 

2.3.1 Characteristics of E. coli core and pan metabolic content 

A set of 55 E. coli genome-scale reconstructions was built and used to compared 

gene, reaction, and metabolite content between strains (Dataset S1).  The content 

shared among all reconstructions thereby defines the ‘core’ metabolic capabilities 

among all the strains. Similarly, the metabolic capabilities of all the strains were 

combined to define the full set that encompasses all models and thereby define the ‘pan’ 

metabolic capabilities among all the strains. By analogy to mathematical set theory, the 

core metabolic content is the intersection of the gene, reaction, and metabolite content 
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of all 55 models while the pan metabolic content is the union of these features among 

the models ( 

Figure 2.1A). 

The size and content of the core metabolic content characterizes the metabolic 

foundation of E. coli as a species. The core model has 965 metabolic genes that 

catalyze 1,773 reactions using 1,665 metabolites. The most highly conserved 

subsystems were lipid metabolism, cell wall, membrane and envelope metabolism, 

nucleotide metabolism and cofactor and prosthetic group metabolism. Reactions 

involved in lipid metabolism, cell wall/membrane/envelope metabolism and cofactor and 

prosthetic group biosynthesis were highly represented (>80%) in the core reactome. 

Most of these reactions synthesize essential components such as vitamins and cofactors 

like riboflavin, coenzyme A and biotin, as well as quinones and isoprenoids. In contrast, 

only 36% of carbohydrate metabolism reactions were part of the core reactome. These 

reactions were comprised of central metabolism reactions including anaplerotic 

reactions, the citric acid cycle, glycolysis/gluconeogenesis and the pentose phosphate 

pathway. 

The pan metabolic capabilities are comprised of the total number of different 

reactions found in all strains and are thus an indicator of the full metabolic capabilities 

within a species. The E. coli pan reconstruction content contains 1460 metabolic genes, 

2501 reactions and 2043 metabolites. About 64% of reactions in carbohydrate 

metabolism were part of the pan reactome, the largest group ( 

Figure 2.1B). A majority of these reactions are involved in alternate carbon 

source metabolism. Cell wall and membrane envelope metabolism accounted for 18% of 

reactions in the pan reactome. These reactions account for a major phenotypic 
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distinction between E. coli strain’s serogroup, in particular the O-antigen (DebRoy et al., 

2011). Also, 30% of amino acid metabolism reactions are part of the pan reactome.  

2.3.2 The ability to catabolize different nutrient sources distinguishes metabolic 

models of E. coli strains 

The conversion of static metabolic network reconstructions into computable 

mathematical models allows computation of phenotypes based on the content of each 

reconstruction. Thus, the 55 strain-specific reconstructed networks were converted into 

genome-scale metabolic models (GEMs) that allow for the simulation of phenotype 

(Feist et al., 2009).  This set of GEMs allows for a meaningful interpretation of the 

content of each reconstruction and allows for the prediction of a strain’s micro-

environmental and ecological niche. 

Reactions belonging to the alternate carbon metabolism subsystem made up the 

majority of reactions in the pan reactome ( 

Figure 2.1B). Thus, it was hypothesized that these capabilities may reflect 

functional differences in the ability of different strains of E. coli to adapt to different 

nutritional environments. To test this hypothesis, growth was simulated in silico for all 55 

E. coli and Shigella GEMs on minimal media in 654 growth conditions.  The conditions 

were composed of all sole growth supporting carbon, nitrogen, phosphorous and sulfur 

sources in both aerobic and anaerobic environments (Figure 2.2).  

In contrast to the E. coli GEMs, the Shigella GEMs displayed a large loss of 

catabolic capabilities across the 654 growth conditions. This computational result 

supports evidence showing that Shigella strains have lost catabolic pathways for many 

nutrient sources (Bliven and Maurelli, 2012). Models of Shigella strains completely lost 

the capability to sustain growth on nutrient sources for which more than 90% of E. coli 
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models had growth capabilities. Some of these nutrients include D-alantoin, D-malate, 

and xanthine as carbon sources as well as inosine as a nitrogen source. Furthermore, 

only 1 out of the 8 Shigella strain models (13%) was able to sustain growth on choline or 

L-fucose, two carbon sources that most E. coli strain models examined were predicted to 

catabolize.  

2.3.3 A set of substrates differentiate pathogenic strains from commensal (non-

pathogenic) strains 

Based on simulated growth phenotypes, we observed a general separation of 

commensal strains from both Extra-intestinal Pathogenic E. coli (ExPec) and Intestinal 

Pathogenic E. coli (InPec) strains of E. coli suggesting that a classification schema of 

strains based on metabolic capabilities is possible (Figure 2.3).  Common lab strains of 

E. coli such as E. coli K-12 MG1655 are non-pathogenic, commensal strains.  As a first 

step towards establishing such a schema, the separation between ExPec and 

commensal strain models was examined. A Fisher’s exact test was used to establish 

that models of ExPec strains exhibited a statistically significant capability to catabolize 

four unique compounds with a p-value of less than 0.05 (Table 2.1A).   

Most models of strains widely regarded as safe lab strains such as K-12 strains, 

BW2952, and DH1 were unable to grow on a unique subset of nutrients.  Notably, N-

Acetyl-D-galactosamine supported growth in 100% of ExPec strain models compared to 

67% of commensal strain models (p=3.9x10-2). Additionally, several commensal strain 

models exhibited a statistically significant overrepresentation of catabolic pathways for 

13 nutrient sources (Table 2.1B). For example, fructoselysine and psiscoselysine share 

the same catabolic pathway and were not catabolizable by any of the ExPec models; 

however, 89% (p=2.2x10-6) of the intestinal strain models could utilize fructoselysine or 
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psiscoselysine as a sole carbon source. Fructoselysine is poorly digested in the human 

small intestine and little is excreted, hinting that the majority of dietary fructoselysine 

may be digested by the intestinal microbiota (Erbersdobler and Faist, 2001). Further, 4-

hydroxyphenylacetate, an aromatic compound, was catabolized as a sole carbon source 

for 55% of commensal strain models compared to only 9% of ExPec strain models 

(p=1.3x10-2). Hydroxyphenylacetic acids are produced by bacterial fermentation of short 

chain peptides and amino acids in the human large intestine (Smith and Macfarlane, 

1996).  4-hydroxyphenylacetate undergoes eight different enzymatic reactions before 

being converted to pyruvate and succinate-semialdehyde that can then be converted to 

succinate and enter the TCA cycle (Prieto et al., 1996).  

Next, the models of strains known to reside intestinally were compared to 

investigate differences between commensal and InPec strains.  Models of InPec strains 

displayed an advantage in their ability to support growth on seven unique carbon and 

nitrogen sources (Table 2.2A). Some of the substrates had unique enrichment 

specifically among the enterohemmorhagic (EHEC) strains, responsible for worldwide 

cases of diarrhea and hemolytic uremic syndrome (HUS) (Karch et al., 2005). Sucrose 

supported growth for 65% of the InPec strains including 100% of EHEC strains 

compared to only 33% of commensal strains (p=5.0x10-2). Also, consistent with other 

reports (Nakano et al., 2001), urease activity was present in EHEC strain models only. 

Urea supported growth as a sole nitrogen source for 47% of InPec strain models, 

including 100% of the EHEC models compared with 0% of commensal strain models 

(p=1.0x10-3). Urease degrades urea into CO2 and NH4 and therefore may provide an 

additional source of nitrogen for cells in nitrogen-limited environments.  
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In contrast to InPec strains, commensal strains displayed an advantage in their 

ability to degrade eleven unique carbon and nitrogen sources (Table 2B). The short 

chain fatty acids (SCFAs) acetoacetate and butyrate were found to support growth as 

sole carbon sources for 78% of commensal strain models compared to 47% of InPec 

models (p=5.0x10-2). Notably, none of the EHEC strain models were able to catabolize 

either of these two compounds and only 13% of Shigella models were able to utilize 

them as a sole source of carbon.  

2.3.4 Metabolic models combined with gap-filling methods facilitate investigation 

into the genetic basis of strain-specific auxotrophies 

In addition to investigating growth-supporting nutrients, GEMs can also be used 

to examine the genetic bases of strain-specific auxotrophies. Twelve of the 55 

reconstructed GEMs were unable to generate essential biomass components from 

glucose M9 minimal media without addition of growth-supporting compounds to the in 

silico media. The SMILEY algorithm, a method to fill gaps in metabolic networks (Reed 

et al., 2006a), was used to examine the genetic bases of these model auxotrophies 

(Figure 2.4). Based on this analysis, six of the eight Shigella strains exhibited an 

auxotrophy for niacin (vitamin B3) in silico. These simulation results are consistent with 

literature data indicating that many strains of Shigella, including Shigella sonnei Ss046 

and Shigella boydii sb227, are unable to grow without addition of niacin to M9 minimal 

media with glucose (Prunier et al., 2007a). Gap analysis attributes this auxotrophy to the 

lack of L-aspartate oxidase activity, encoded by the gene nadB, in the nicotinic acid 

biosynthesis pathway. A bioinformatic analysis of nadB suggests that it is a pseudogene 

due to numerous non-synonymous mutations compared to the sequence of nadB in E. 

coli K-12.  
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Two additional examples of identifying and confirming strain-specific 

auxotrophies involved models for Shigella flexneri 2a str 301, (auxotrophic for 

methionine) and E. coli strain DH10B (auxotrophic for leucine). Gap analysis of S. 

flexneri 2a str 301 suggested that the auxotrophy is due to the absence of homoserine 

O-trans-succinylase, encoded by metA in E. coli K-12 MG1655 (b4013). A bioinformatics 

analysis suggested that metA is a pseudogene in S. flexneri 2a str 301 due to single 

base pair deletion, causing a frameshift mutation at amino acid position 212/310 and 

hence premature termination of the full length protein. Both of these observations were 

confirmed with literature evidence. Specifically, S. flexneri strains are known to require 

methionine (Zagaglia et al., 1991) in minimal media and E. coli DH10B is known to 

require leucine due to a deletion of the leuABCD operon (Durfee et al., 2008). 

2.3.5 Experimental validation of unique nutrients shows high model accuracy 

To assess the accuracy of in silico growth simulations, 12 of the 55 reconstructed 

strains were screened for growth on six carbon sources. Growth was estimated by 

optical density 48 hours after inoculation.  OD values of >0.08 were considered growth. 

The 12 strains consisted of 3 ExPec strains, 3 InPec strains, 5 commensal strains and 1 

Shigella strain; thereby spanning the pathotypes discussed above.  Six carbon sources 

were selected based on their predicted ability to classify strains according to different 

pathotypes.  In other words, each of these six substrates was expected to support 

growth of certain strains but not others.  The models are validated by true positive and 

true negative results that highlight cases where the models are in agreement with 

experimental results.  In contrast, false positive and false negative cases indicate 

potential errors or gaps in the models (Feist and Palsson, 2008b) (Figure 2.5A).  The 
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experimental results showed a high level of accuracy with 80% of GEM predictions 

agreeing with experiments.  

Comparison of in silico and experimental results revealed complete agreement 

for two different carbon sources: acetoacetate and deoxyribose were predicted correctly 

with 100% accuracy (8 and 2 true positives, as well as 4 and 10 true negatives, 

respectively) across all 12 strains (Figure 2.5B). Acetoacetate is transported into the cell 

via a proton symporter encoded by atoE.  Growth of E. coli on short-chain fatty acids, 

such as acetoacetate, requires activation of the acid to its respective thioester (Jenkins 

and Nunn, 1987).  For acetoacetate, this activation is catalyzed by acetoacetyl-CoA 

transferase encoded by atoA and atoD that form a four unit enzymatic complex.  The 

four strains lacking these two genes were correctly predicted not to grow on 

acetoacetate as a sole carbon source.  Deoxyribose is the second compound predicted 

with 100% accuracy.  It is transported into the cell via a proton symporter encoded by 

deoP.  Deoxyribose is then phosphorylated to deoxyribose-5-phosphate by deoxyribose 

kinase, encoded by deoK (Bernier-Febreau et al., 2004).  Finally, deoxyribose-5-

phosphate is converted into acetaldehyde and glyceraldehyde-3-phosphate by 

deoxyribose-phosphate aldolase encoded by deoC.  Only two of the strains tested, E. 

coli O42 and E. coli CFTO73, possessed these genes and were correctly predicted by 

the models to be able to grow on deoxyribose as a sole carbon source. These cases 

validate the approach and demonstrate high accuracy to discriminate between different 

strains’ capabilities.  

A single pathway for two aromatic phenyl compounds, phenylacetaldehyde and 

phenylethylamine, was responsible for significant differences between model predictions 

and experimental results.  The growth predictions for phenylacetaldehyde and 
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phenylethylamine (tested individually) exhibited identical profiles of 7 false negatives and 

only 5 true positives during in vivo growth screens (42% accuracy).  These two 

compounds share a catabolic pathway whereby phenylethylamine is converted to 

phenylacetaldehyde by phenylethylamine oxidase encoded by tynA (Diaz et al., 2001). 

Phenylacetaldehyde dehydrogenase, encoded for by feaB, then converts 

phenylacetaldehyde to phenylacetic acid.  The acid is subsequently converted to 

phenylacetyl-CoA by phenylacetate-CoA ligase encoded by paaK.  The genes coding for 

enzymes that catalyze these reactions in E. coli K-12 MG1655 had very low identity 

(<40%) at the amino acid level to genes in strains that proved capable of utilizing these 

substrates as sole sources of carbon.  Therefore, the growth experiments indicate that 

either these low identity enzymes are carrying out the activity or there is an alternate 

pathway for catabolism of these two compounds. 

2.4 Discussion 

Genome-scale models (GEMs) of metabolism are powerful tools that can be 

deployed to investigate similarities and differences between strains of the same species. 

Unique GEMs for 55 different E. coli strains were constructed and used to: 1) compare 

and contrast core and pan metabolic capabilities within the E. coli species; 2) determine 

functional differences between strains by computing growth phenotypes on over 650 

different nutrients both aerobically and anaerobically; and 3) explore the genetic basis 

behind strain-specific auxotrophies. These computational classifications and studies 

were fortified by performing in vivo screens of select discriminating compounds and 

strains resulting in a high level of accuracy (80%). 

The majority of reactions found in pan metabolism fell into the metabolic 

subsystem of alternate carbon metabolism. It was hypothesized that these differences 
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give different strains advantages in preferred micro-environmental niches. A clustering 

analysis based on computed metabolic phenotypes clearly distinguished E. coli strains 

from Shigella and largely separated E. coli strains known to exhibit a commensal 

intestinal lifestyle from those known to exhibit both intestinal and extra-intestinal 

pathogenic lifestyles.  This separation was based solely on the catabolic capabilities of 

different strains for unique nutrient sources. A major distinction that appeared was the 

capability to degrade fructoselysine and psiscoselysine indicating that these compounds 

may be a defining feature of intestinal E. coli strains. This pathway is missing from all 

extra-intestinal E. coli strains investigated. One possible mechanism that explains this 

feature begins with the observation that fructoselysine is poorly digested in the small 

intestine and absorption occurs only through diffusion (Erbersdobler and Faist, 2001).  

As a result, fructoselysine moves to the large intestine where it is present in abundance. 

However, excretory levels of fructoselysine are low, thus it has been postulated that the 

intestinal microbiota, including E. coli, ferment almost all dietary fructoselysine. E. coli K-

12 MG1655 has been shown to sustain growth on fructoselysine as a sole carbon 

source in anaerobic environments (Erbersdobler and Faist, 2001) and 88% of the 

intestinal strains modeled are predicted to be capable of utilizing fructoselysine or 

psiscoselysine as a sole carbon source. 

Another example of strain discrimination was the aromatic compound 4-

hydroxyphenylacetic acid that was catabolized by 55% of commensal intestinal strain 

models compared to 9% of extra-intestinal strain models. Hydroxyphenylacetic acids are 

one of several classes of aromatic compounds produced by bacterial fermentation of 

short chain peptides and amino acids in the human large intestine (Smith and 

Macfarlane, 1996). Specifically, 3- and 4-hydroxyphenylacetic acid have been identified 



58 

 

 

 

as products of tyrosine fermentation (Diaz et al., 2001) by the diverse colonic microbiota. 

Therefore, these compounds are likely present at high levels in the intestine. Thus 

utilization of 4-hydroxyphenylacetic acid as a sole carbon source may provide a 

competitive advantage over other strains of E. coli in the gut.  

In addition to unique growth capabilities, the GEMs are also able to reliably 

predict strain-specific auxotrophies. This ability is important as auxotrophies often 

indicate cases of antagonistic pleiotrophy whereby ancestral traits that interfere with 

virulence are lost to a newly evolved pathogen. Traits absent in pathogenic strains of a 

species but commonly expressed in commensal ancestors are strong candidates for 

pathoadaptive mutations. Evidence of this model of pathogen evolution was first 

provided by Shigella and E. coli. Widespread niacin auxotrophies in Shigella strains 

were identified due to disruption of nadA and nadB genes that code for the enzyme 

complex that converts L-aspartate to quinolate, a precursor to NAD synthesis. This 

finding is validated by previous literature confirming that quinolate inhibits invasion and 

cell-to-cell spread of Shigella flexneri 5a. Reintroduction of functional copies of nadA and 

nadB into this strain restored the ability to synthesize quinolate but also resulted in 

strong attenuation of virulence in this strain (Prunier et al., 2007b). Therefore, several of 

the additional auxotrophies identified for other vitamins folate and thiamin as well as 

amino acids leucine, methionine and tryptophan may indicate further cases of 

antagonistic pleiotrophy. Future studies could explore the impact of these auxotrophies 

on virulence in each strain to potentially elucidate new pathoadaptive mutations.  

Growth experiments were performed for six carbon sources tested on twelve 

different strains to evaluate the predictability of the developed models.  The overall 

accuracy of the models was 80%, a level that is in line with predecessor models (Orth et 
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al., 2011, Feist et al., 2007, Reed et al., 2003, Edwards and Palsson, 2000a).   This high 

level of accuracy is notable because the substrates tested were selected due to their 

ability to differentiate amongst strains, making them some of the most difficult 

compounds to correctly predict.  Three of the strains, 8739, HS, and MG1655 had 100% 

predictive accuracy.  These are all safe, commensal lab strains which likely contributed 

to them having better genome annotations and subsequently more accurate model 

predictions.  Cases where the models are incorrect provide opportunities for biological 

discovery.  False positives represent missing context-specific information in a GEM.  

These occur when model predicted growth on a compound disagrees with the lack of 

growth observed experimentally.  For example, growth on D-malate was a false positive 

for two models of E. coli strains.  Even though both strains have a gene that has high 

identity to the D-malate decarboxylating oxidoreductase enzyme, encoded by yeaU, they 

were unable to grow on this compound.  This could indicate a case where expression of 

this enzyme is transcriptionally repressed.  Adaptive laboratory evolution of these two 

strains on D-malate may relieve the transcriptional repression of yeaU and lead to 

identification of novel regulators involved in controlling the catabolism of this compound 

(Lee and Palsson, 2010).   

In contrast to false positives, false negatives occur when comparing in silico and 

in vitro data to identify missing content in a GEM.  Growth predictions for 

phenylacetaldehyde and phenylethylamine consisted of seven false negatives.  These 

two compounds share the same catabolic pathway.  The three genes catalyzing 

reactions in this pathway for E. coli K-12 MG1655 had very low identity (<40%) to genes 

in strains that proved capable of utilizing these substrates as sole sources of carbon.  

Therefore, the growth experiments indicate that either a particular domain on these low 
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identity enzymes is carrying out the activity or there is an alternate pathway for 

catabolism of these two compounds.  Further characterization and studies on gene 

knock-outs for this pathway in each strain could lead to identification of a new alternate 

pathway for phenylacetaldehyde and phenylethylamine catabolism.  

The work presented here shows that strain-specific models of E. coli can guide 

further studies regarding the advantages conferred by unique nutrients to E. coli strains 

in different niches. Additionally, the models reliably predict strain-specific auxotrophies 

documented in the literature as well as novel auxotrophies that offer a strong case for 

future study. Taken together, this study represents a step towards the definition of a 

bacterial species based on common metabolic capabilities and its strains based on 

niche-specific growth capabilities. In addition to this fundamental advance, the niche-

specific characteristics provide a basis for understanding strain and species-specific 

pathogenesis. Similar studies of diverse strains for species beyond E. coli will further 

define the concept of a species.  Ultimately, this understanding can be leveraged to 

formulate strain- and species-specific drug development and therapeutic approaches. 

2.5 Materials and Methods 

2.5.1 Strain specific model reconstruction 

All genomes were re-annotated using the RAST server (Aziz et al., 2012, Aziz et 

al., 2008). Re-annotation led to 600 new genes being annotated.  Genes that were 

annotated as pseudogenes in the original NCBI annotation were treated as 

pseudogenes and the enzymatic function of the proteins they were removed from the 

final models.  A total of 567 metabolic pseudogenes were identified. Gene sequences 

from six metabolic models for E. coli K-12 MG1655 (Orth et al., 2011), Salmonella 

typhimurium LT2 (Thiele et al., 2011), Klebsiella pneumoniae MGH 78578 (Liao et al., 
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2011b) and Yersinia pestis CO92 (Charusanti et al., 2011), E. coli W (Archer et al., 

2011) and E. coli B REL606 (Yoon et al., 2012) were used for identifying orthologs. The 

SEED Corresponding Genes tool was used to identify orthologs in each strain of E. coli 

(Aziz et al., 2012). This tool identifies best bi-directional hits (BBH) and accounts for 

gene context (Binter et al., 2012). A 70% percentage identity (PID) cutoff was used for 

assigning orthologs. Genes that were missing orthologs in the original models were 

deleted from the model for the target strain. Additional reaction content was added from 

ModelSEED (Henry et al., 2010c) , KEGG (Kanehisa et al., 2012, Kanehisa and Goto, 

2000) and BIOCYC (Caspi et al., 2008). All reactions added were manually curated 

according to published protocol (Thiele and Palsson, 2010b). MetaNetX (Ganter et al., 

2013) was used to standardize metabolites and reactions to SBRG (Schellenberger et 

al., 2010) abbreviations. All genome sequences were downloaded from Genbank 

(Benson et al., 2005) on September 21, 2012.  Gene names conform to the NCBI locus 

name according to the original annotation in Genbank.  

2.5.2 Gap Filling 

The COBRA implementation of the SMILEY algorithm (growMatch) (Reed et al., 

2006c) was used to predict sets of exchange and gap-filling reactions for models that 

were unable to simulate biomass in silico on M9 minimal media with glucose aerobically 

using FBA. The universal set of reactions used to fill gaps was the identified E. coli pan 

reactome discussed in the text. The Gurobi 5.0.0 mixed-integer linear programming 

solver was used (Gurobi Optimization Inc., Houston, TX) to implement SMILEY. When 

adding content to enable the strains to grow, exchange reactions indicating strain-

specific auxotrophies were prioritized over adding new reactions without genetic 

evidence. 
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2.5.3 In silico growth simulations 

Each of the 55 metabolic network reconstruction were loaded into the COBRA 

Toolbox (Kanehisa et al., 2010). M9 minimal media was simulated by setting a lower 

bound of -1000 (allowing unlimited uptake) on the exchange reactions for Ca2+, Cl-, CO2, 

Co2+, Cu2+, Fe2+, Fe3+, H+, H2O, K+, Mg2+, Mn2+, MoO4
2-, Na+, Ni2+, SeO4

2-, SeO3
2 and 

Zn2+. A lower bound of -0.01 was placed on the cob(I)alamin exchange reaction. The 

default carbon source was glucose with a lower bound of -20, the default nitrogen source 

was NH4
- with a lower bound of -1000, the default phosphorous source was HPO4

2 with 

a default bound of -1000 and the default sulfur source was SO4
2- with a default bound of 

-1000. To identify sole growth supporting carbon, nitrogen, phosphorous and sulfur 

sources each of these default compounds were removed from the media (lower bound 

set to 0) one at a time and different compounds were added to determine if they 

supported growth. For aerobic simulations O2 was added with a lower bound of -20 and 

to 0 for anaerobic simulations. For models with identified auxotrophies, the compound 

for which a strain was auxotrophic was also added to the M9 minimal media for each 

simulation with a lower bound of -10. Model growth phenotypes were determined using 

FBA one at a time on each condition with the core biomass reaction as the objective. 

Nutrient sources with growth rates above zero were classified as growth supporting, 

while nutrient sources with growth rates of zero were classified as non-growth 

supporting. The Gurobi 5.0.0 linear programming solver (Gurobi Optimization Inc., 

Houston, TX) was used to perform FBA. 

2.5.4 Heatmap and phylogenetic tree construction 
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The binary results from the growth/no growth simulations for each strain were 

used to compute a correlation matrix based on dissimilarity indices calculated using the 

Jaccard method in the vegdist function of the Vegan R package. Ward’s agglomerative 

clustering of the matrix of correlations was used to cluster the species using the hclust 

function of the Vegan R package and used to form a dendrogram. The heat map was 

visualized using the gplots R package with values aligned based on the calculated 

dendrogram. 

2.5.5 Decision tree construction 

A decision tree (Figure 2.3) was calculated based on growth/no growth values 

for each strain classified into their major pathotypes: InPec, ExPec or commensal. The 

classification tree tool, part of the Orange Canvas software package (Demsar et al., 

2004) was used to calculate and display the decision tree using a Gini Index attribute 

selection criteria with no binarization and 2 minimum leaves for pre-pruning and m=2 

estimate for post-pruning with leaves of the same majority class being recursively 

merged. 

2.5.6 Strains 

Eleven strains of E. coli and one strain of S. flexneri were tested for their ability to 

grow on different carbon sources as part of this study. The eleven E. coli strains are: 

SMS 3-5; CFT073; HS; DH1; UMN 026; K011; Sakai; ATCC 8739; 042; EDL933; and 

K12 MG1655. The S. flexneri strain was 2457T. E. coli 042 was a gift from Ian 

Henderson at Birmingham University in Birmingham, England. All other strains were 

purchased from ATCC. 

2.5.7 Carbon source testing 
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Concentrated stock solutions of D-(+)-glucose, lithium acetoacetate, deoxyribose, 

malic acid, D-(+)-melibiose, ferric citrate, and butyric acid were made by dissolving them 

in M9 minimal media. Ferric citrate required heat to dissolve. The stock solutions were 

then filter sterilized using Millipore Millex GP 0.22 µm membranes (Millipore, Billerica, 

MA), after which they were diluted with sterile M9 media to a final working concentration 

of 20 mM. Phenylacetaldehyde and phenethylamine were dissolved directly into M9 

media at a 20 mM concentration prior to filter sterilization. The M9 medium contained 

(per liter): 6.8 g Na2HPO4; 3 g KH2PO4; 0.5 g NaCl; 1 g NH4Cl; 2 mM MgSO4; 0.1 mM 

CaCl2; 4.2 mg FeCl3•6H2O; 45 µg ZnSO4•7H2O; 30 µg CuCl2•2H2O; 30 µg MnSO4•H2O; 

45 µg CoCl2•6H2O; and 5.5 mg Na2EDTA•2H2O. All chemicals were sourced from 

Sigma-Aldrich (St. Louis, MO). Two hundred microliters of the 10 growth media were 

then pipetted into each row of an untreated, flat bottom 96-well plate. As a negative 

control, we also included one row containing M9 media only; no carbon source had been 

added to this row.   

The eleven strains of E. coli and S. flexneri 2a strain 2457T were then tested for 

growth on each of the carbon sources and the negative control sample. An overnight 

culture of each bacterium was diluted in M9 media to an OD600 value of approximately 

0.4. A 5 µL aliquot of each suspension was then inoculated into the designated wells of a 

96-well plate. Growth was estimated by optical density 48 hours after inoculation.  All 

OD600 measurements were made using a Molecular Devices Versamax plate reader. 

All tests were done in duplicate.  Butyric acid and butane sulfonate did not support 

growth for any of the E. coli strains – including K-12 MG1655 for which the model 

predicted growth.  This is likely because butyrate is toxic to E. coli cells at high 

concentrations such as those used in the growth screens. 
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Figure 2.1. Core and Pan metabolic capabilities of the E. coli species 
The core and pan metabolic content was determined for genome-scale metabolic models (GEMs) 
of 55 unique E. coli strains.  A) The core content, illustrated by the intersection of the Venn 
diagram, is shared with all strains. The pan content consists of all content in any model and 
includes the core content.  The Venn diagram is not to scale.  B) Classification of reactions in the 
core and pan reactomes by metabolic subsystem. 
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Figure 2.2. Clustering of species by unique growth-supporting conditions. 
Predicted metabolic phenotypes on the variable growth-supporting nutrient conditions composed 
of different carbon, nitrogen, phosphorous and sulfur nutrient sources in aerobic and anaerobic 
conditions. Strains are clustered based on their ability to sustain growth in each different 
environment. Rows represent individual strains and columns represent different nutrient 
conditions. In general, strains clustered into their respective pathotypes of commensal E. coli 
strains, intestinal pathogenic E. coli strains, extra-intestinal pathogenic E. coli strains and Shigella 
strains.  An asterix symbol indicates those strains that clustered outside of their respective 
pathotype.  
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Figure 2.3. Classification of E. coli pathotypes based on growth-supporting conditions 
Growth-supporting nutrients were used to create a classification tree.  This tree can be used to 
determine if an E. coli strain is commensal, an intestinal pathogen or an extra-intestinal pathogen.  
For example, following the tree to the right shows that 77% of E. coli strains that cannot grow on 
α-mannosylglycerate, fructoselysine, or taurine as sole carbon sources are expected to be Extra-
intestinal pathogens. Thus, a small number of nutrient sources can be used to classify E. coli 
strains of different types. 
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Figure 2.4. Model predicted strain-specific auxotrophies 

GEM predicted minimal media conditions for each auxotrophic strain.  Shigella strains lack 
essential vitamin biosynthesis capabilities for niacin (vitamin B3), thiamin (vitamin B1) and folate 
(vitamin B9). Other strains have lost biosynthetic pathways for the essential amino acids 
methionine, tryptophan and leucine, thus becoming auxotrophic for these compounds. 
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Figure 2.5. Comparison of GEM predictions to experimental results 
A) Comparison of GEM predictions to experimental results revealed a high level of accuracy 
(80%) both true positives (Quadrant 1) and true negatives (Quadrant 4). False negative cases 
(Quadrant 2) represent missing knowledge and are an opportunity for biological discovery.  False 
positive cases (Quadrant 3) represent missing context-specific information such as transcriptional 
regulation. B) A detailed breakdown of the comparisons based on the pathways (rows) and 
screened strains (columns).  
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Table 2.1. GEM predicted advantages for sole growth-supporting nitrogen and carbon 
sources between commensal and extra-intestinal pathogenic E. coli (ExPec) strains 

 

Source Commensal ExPec P-value 

A. ExPec strain nutrients:    

3-Phospho-D-glycerate 0% 36% 1.3E-2 

L-Arginine exchange 11% 64% 5.0E-3 

Cellobiose exchange 33% 82% 1.3E-2 

N-Acetyl-D-galactosamine 67% 100% 3.9E-2 

B. Commensal strain 

nutrients: 

   

Fructoselysine 89% 0% 2.2E-6 

Psiscoselysine 89% 0% 2.2E-6 

Dopamine 89% 0% 2.2E-6 

Phenethylamine 89% 0% 2.2E-6 

Tyramine 89% 0% 2.2E-6 

Phenylacetaldehyde 72% 0% 1.2E-4 

Alpha-Mannosylglycerate 94% 9% 5.7E-6 

4-hydroxyphenylacetate 56% 9% 1.3E-2 

Cyanate 83% 27% 3.8E-3 

Melibiose 78% 27% 9.7E-3 

Phenylpropanoate 72% 27% 2.0E-2 

3-(3-hydroxy-

phenyl)propionate 

89% 36% 5.0E-3 

3-hydroxycinnamic acid 89% 36% 5.0E-3 
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Table 2.2. GEM predicted advantages for sole growth-supporting nitrogen and carbon 
sources between commensal and intestinal pathogenic E. coli (InPec) strains. 

 

Source Commensal InPec P-value 

B. InPec strain nutrients:    

Sucrose 33% 65% 5.0E-2 

Raffinose 28% 65% 2.6E-2 

L-Arginine 11% 65% 1.3E-3 

D-Arabitol 0% 24% 4.6E-2 

Ribitol 0% 24% 4.5E-2 

Agmatine 0% 47% 1.0E-3 

Urea 0% 47% 1.0E-3 

A. Commensal strain 

nutrients:  

   

Galactonate 100% 65% 7.6E-3 

α-Mannosylglycerate 94% 35% 2.6E-4 

Dopamine 89% 41% 3.5E-3 

Phenethylamine 89% 41% 3.5E-3 

Tyramine 89% 41% 3.5E-3 

5-Dehydro-D-gluconate 78% 24% 1.6E-3 

L-Idonate 78% 24% 1.6E-3 

D-Allose 78% 41% 2.5E-2 

Butyrate 78% 47% 5.0E-2 

Acetoacetate 78% 47% 5.0E-2 

4-hydroxyphenylacetate 56% 18% 2.0E-2 
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3.1 Abstract 

Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse 

ecological niches within its human host, including the respiratory tract, skin and nasal 

passages. Possessing numerous immune resistance factors and toxins, S. aureus is a 

leading cause of skin and soft tissue infections, pneumonia, sepsis and endocarditis.  

Numerous studies have focused on S. aureus genomics, molecular epidemiology and 

antibiotic resistance; however, few studies have analyzed the totality of the pathogen’s 

metabolic functions and virulence capabilities at the genome-scale.  To fill this gap, we 

constructed genome-scale models (GEMS) of 64 diverse S. aureus strains that spanned 

ecological niches, host types and antibiotic resistance profiles.  The GEMs enabled a 

systems approach to characterizing the pan and core metabolic capabilities of the S. 

aureus species.  We found that S. aureus has an open pan-genome comprised of 7,411 

genes for a chosen set of 64 S. aureus strains and a core-genome composed of 1,441 

genes. GEMs were used to systematically predict growth capabilities in more than 300 

different growth-supporting environments.  Most S. aureus strains show similar 

metabolic capabilities, but some important differences were identified in amino acid and 

nucleotide biosynthesis pathways, including predicted strain-specific auxotrophies. All 

models were predicted to be auxotrophic for the vitamins niacin (vitamin B3), thiamin 

(vitamin B1) and riboflavin (vitamin B2).  GEM computations led to the identification of 

148 core essential genes.  In addition, a virulome of 81 known S. aureus virulence 

factors was constructed and compared across the strains.  Of these 81 genes, 27 were 

found in all strains, forming a core virulome.  The core and pan metabolic capabilities, 

combined with presence or absence of specific virulence factors, can be used to classify 

S. aureus strains according to their preferred host and infectious niche. 
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3.2 Background 

Staphylococcus aureus is a Gram-positive pathogen responsible for several 

infection types in humans, ranging from simple skin infections, such as boils, to more 

complicated ones like pneumonia, endocarditis and necrotizing fasciitis (Davis et al., 

2007). S. aureus can reside asymptomatically in the human nostril, and it has been 

estimated that approximately 30% of humans are healthy (Kluytmans et al., 1997).  In 

recent years, clinical management of this leading pathogen has been complicated by its 

continuous acquisition of resistance to front-line antibiotics.  Resistance to all antibiotic 

classes has developed rapidly in sequential epidemic waves (Chambers and Deleo, 

2009), starting from the mid-1940s, with the emergence of penicillin resistance to the 

late 1990s, characterized by the emergence and wide dissemination of community-

associated methicillin-resistant S. aureus (CA-MRSA) and continued sporadic reports of 

vancomycin resistance in hospital settings.  In the last decade, MRSA alone has caused 

more than double the number of invasive infections than other major pathogens 

including Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria 

meningitidis (Klevens et al., 2007). The emergence of CA-MRSA represented a 

particularly worrisome global threat because serious infections can occur in healthy 

individuals (Herold et al., 1998), highlighting their enhanced virulence compared to many 

forms of hospital-associated MRSA (HA-MRSA). Different clones of CA-MRSA have 

been identified in the United States, Canada, Asia, South America, Australia and 

throughout Europe, including countries with historically low prevalence of MRSA, such 

as Norway, Netherlands, Denmark and Finland (Larsen et al., 2008, Laupland et al., 

2008, Wannet et al., 2005) . Global spread of MRSA infections led to increased 

vancomycin usage against serious infections, promoting the emergence of vancomycin-
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intermediate (VISA) and resistant (VRSA) strains (Fridkin et al., 2003, Hiramatsu et al., 

1997).  For these reasons, S. aureus remains one of the most challenging pathogens of 

our time. 

Despite many studies focusing on S. aureus genomics, molecular epidemiology 

and mechanisms of drug resistance and cytotoxicity, there are relatively few studies that 

examine S. aureus basic biochemistry and metabolic function on a genome-scale.  One 

way to accomplish this is the use of Genome-scale Network Reconstruction (GENRE) 

(Becker and Palsson, 2005). GENREs represent all of the biochemical reactions 

occurring in an organism directly connected to their genetic basis. GENRE can be 

expressed mathematically in the form of a genome-scale model (GEM) which can be 

computationally analyzed by various methods (Lewis et al., 2012a, Price et al., 2004) 

that predict experimentally testable phenotypic properties (Bordbar et al., 2014).These 

predictions include growth capabilities on different nutrient sources, allowing 

identification of strain-specific auxotrophies, and prediction of essential genes and 

reactions required to sustain in silico microbial growth.  Such analyses have led to 

potential targets for enzymatic inhibition using ad hoc designed drugs (Becker and 

Palsson, 2005, Lee et al., 2009, Schmidt et al., 2013b, Aziz et al., 2015a). Considering 

the global health threat posed by drug-resistant strains (WHO, 2014), identification of 

putative weak points in S. aureus metabolism would represent a major step forward in 

control of MRSA infections. 

Becker et al. provided a well-curated GENRE of S. aureus N315 (named iSB619) 

that represented the first biochemically, genomically and genetically structured 

knowledge base for S. aureus metabolism. However, knowledge from one strain is never 

sufficient to represent an entire species (Monk et al., 2013).  Currently there are 49 
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complete genome sequences available for S. aureus strains in NCBI Genome database 

(Benson et al., 2009) with an additional 450 draft sequences for comparison to provide 

comprehensive insight into the pan-genome of the S. aureus species.  A bacterial 

species can be effectively described by its pan-genome (Tettelin et al., 2008), which can 

be divided into the core genome (genes shared by genomes of all strains in the species 

and that are likely to encode functions related to basic cellular biology) and the 

dispensable genome (genes present in some, but not all, the representatives of a 

species (Medini et al., 2005).  The dispensable genome likely includes functions that 

confer specific advantages under particular environmental conditions, such as 

adaptation to distinct niches, antibiotic resistance, and the ability to colonize new hosts 

or proteins/functions that are recognizable by phages or immune cells, and are thus 

under positive selective pressure.  

In this study we used three different GEMs available for S. aureus N315 (Becker 

and Palsson, 2005, Heinemann et al., 2005, Lee et al., 2009) to build a reference GEM 

that served as a platform for development of GEMs for an additional 64 S. aureus 

strains.  Strains were selected to provide a heterogeneous dataset of the species. We 

expanded and updated the reference GEM based on new annotations, recent literature 

and metabolic databases, thus providing a reliable foundation for the development of the 

other strain-specific GEMs. Together, the genomic sequences and the GEMs provide 

two different and complementary ways to explore diversity within the S. aureus species 

and to compare core vs. pan genomic functionality and metabolic capabilities. 

Furthermore, we used the GEMs to simulate phenotypes of different S. aureus strains in 

a variety of environments and to compute essential genes and biochemical reactions. 

The collection of S. aureus GEMs were also used to develop a core GEM representing 
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the conserved metabolic capabilities of the S. aureus species, which, in principle, can be 

used to design targeted therapeutics against the pathogen (Kim et al., 2010a). 

3.3 Results 

3.3.1 Building an initial reconstruction of S. aureus as a species 

A set of 225 publically available S. aureus genome sequences were downloaded 

from the NCBI including all 48 completely assembled genomes (Geer et al., 2010).  

From this set, a phylogenetic tree was constructed using the concatenated sequence of 

7 conserved housekeeping genes (arcC, aroE, glpF, gmk, pta, tpi and yqiL) commonly 

used to define clonal complexes in clinical studies of S. aureus also known as multi-

locus sequence tags (MLST) (Figure 3.1A). The most distantly related strain was the 

Australian S. aureus isolate MSHR1132 belonging to the clonal complex 75 lineage.  

The average nucleotide divergence between orthologous genes in MSHR1132 and 

typical S. aureus is approximately sevenfold greater than the maximum divergence 

previously observed (Holt et al., 2011).  Next, a representative set of 64 S. aureus 

strains were filtered from this larger dataset for further analysis.  Strains were selected 

based on four criteria: i) drug resistance (MRSA: methicillin-resistant S. aureus, 

MSSA: methicillin-sensitive S. aureus, VRSA: vancomycin-resistant S. aureus, 

VISA: vancomycin-intermediate S. aureus) (Figure 3.1B), ii) host specificity (human 

vs. animal) (Figure 3.1C), iii) epidemiological source (CA-MRSA: community-associated 

MRSA, HA-MRSA: healthcare-acquired MRSA, LA-MRSA: livestock-associated MRSA) 

(Figure 3.1D), and iv) evolutionary distance based on tree topology.  Thus, the topology 

of the tree coupled with clinical and epidemiological phenotypic information allowed for 

development of a heterogeneous dataset spanning representative strains of the S. 

aureus species. 
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3.3.2 Characteristics of the S. aureus core and pan-genomes 

To gain insight into the genomic diversity of the selected dataset of 64 S. aureus 

strains, we used them to compute the pan-genome of the species. Gene content of the 

pan-genome can be used to effectively describe a bacterial species.  The pan-genome is 

divided into three sections: i) the core-genome (the set of genes shared by virtually all 

strains in a species), ii) the accessory genome (the set of genes present in some, but not 

all, representatives of a species) and iii) the unique genome (genes unique to individual 

members of the species, commonly known as ORFans or singletons).  Because the pan-

genome is made up of thousands of genes, it offers a much higher resolution for strain 

typing compared to genotyping techniques such as MLST (Hall et al., 2010).  

 The 64 S. aureus strains examined yielded a pan-genome size of 7,457 genes.  

This set can be divided into the core, accessory and unique genomes.  Based on this 

dataset, the core-genome is composed of 1,441 genes, the accessory genome is 

composed of 2,871 genes and the unique genome is composed of 3,145 genes (Figure 

3.2A).  To estimate the core-genome size, the asymptotic limit of the pan-genome size 

and the expected rate of discovery of novel genes, we used a sampling approach to 

obtain a comprehensive set of randomly permuted pan-genomes, measuring the number 

of total genes, shared genes and new genes, respectively. By fitting a double 

exponential decay function to the number of shared genes, we estimate the S. aureus 

core genome to have 1,425 genes (Figure 3.3). New genes and total genes were 

similarly used to obtain two additional fits of the Heap's law function, resulting in γ values 

of -0.58 and 0.31, respectively. The γ parameter determines the behavior of the curve.  

For γ values > 0, the function does not have any asymptote indicating that the S. aureus 

gene repertoire is likely to grow indefinitely as more strains are sequenced. Indeed, the 
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best fit for total genes was obtained with γ value = 0.23, which denotes an open pan-

genome, while for the novel genes the best fit was obtained with γ value = 0.58.  

 Functional annotation of genes in the pan-genome was achieved using the COG 

database (Tatusov et al., 2003) and is shown in Figure 3.2, revealing a heterogeneous 

distribution of functional categories among the three different pan-genome sets. When 

genes were classified into metabolic and non-metabolic, the largest fraction of the core 

genome consists of metabolic genes (58%), this consisted of primarily genes involved in 

central metabolism including glycolysis/gluconeogenesis, the pentose phosphate 

pathway and TCA cycle.  A much lower fraction of metabolic gene content is observed in 

the accessory and unique genome (33% and 18%, respectively).  

 The average S. aureus genome encodes 2,800 genes; therefore the size of the 

core-genome represents a high portion (56%, on average) of each S. aureus genome 

(Figure 3.2B). The fact that each S. aureus strain has such a high portion of shared 

genes can be interpreted as a direct consequence of the proposed clonal structure for 

the species (Feil et al., 2003) . The majority of 1,441 core genes (shared by all 64 S. 

aureus strains examined) are involved in housekeeping processes. These include non-

metabolic functions such as transcription (15%), translation, ribosomal structure and 

biogenesis (14%), RNA processing and modification (7%), and genes associated with 

metabolic functions such as amino acid transport and metabolism (11%), carbohydrate 

transport and metabolism (7%), coenzyme transport and metabolism (4%), cell wall and 

membrane biosynthesis (5%) and energy production and conversion (12%).  

 Completely different gene functional assignments were observed for those genes 

in the accessory and unique genomes, with the accessory genome comprising mostly 

genes associated with mobile genetic elements such as transposons and 
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bacteriophages (replication, recombination and repair 24%) or with non-metabolic 

functions such as transcription (14%) and translation (10%).  Metabolic functions were 

also included in the accessory genome, including those related to amino acid 

metabolism (8%), inorganic ion transport (7%) and carbohydrate metabolism (6%).  The 

unique genome is heavily enriched in genes related to mobile elements (62%), with the 

other categories being poorly represented.  This high proportion of mobile elements in 

the unique genome is similar to other organisms, including E. coli, where horizontal gene 

transfer has had a large impact on species evolution (citation).   

3.3.3 Analysis of atypical S. aureus genes 

To investigate the impact of HGT events on the S. aureus species, we searched 

for atypical genes within each strain by computing DNA composition (GC content) 

differences between core and pan genes as well as by using a Hidden Markov Model 

(HMM) based tool (SIGI-HMM) (Waack et al., 2006) that detects genomic islands based 

on statistical analysis of codon usage with high precision (Langille et al., 2008).  A total 

of 4,277 atypical genes were identified based on GC and the average genome had 49 

unique genes present Figure 3.2B).  Based on the codon analysis we identified 1,788 

unique genes with an average of 28 unique genes per genome.  

We assigned functional categories to these atypical genes and examined the 

distribution of genes assigned to each functional category in the S. aureus genomes. 

Most of the identified atypical genes have no known COG functional class.   The 

phylogenetic origin of each atypical S. aureus gene was traced using the nr-database.  

For each gene, the best non-S. aureus hit was taken as the putative transfer source 

(PTS).  We hypothesized that more recent HGT events were indicated by genes with 

fewer S. aureus hits, i.e. those more similar to the query gene than the PTS.  We used 
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this number as an index to estimate the ancestrality of the HGT events for each PTS, a 

measurement we term the Ancestrality Index (AI).  It was only possible to find a 

significant PTS for 25% of the atypical genes we identified. Those PTS with an AI > 2 

mostly corresponded to HGT events that occurred at the genus level, while the majority 

of the more “recent” PTS (an AI <= 2) corresponded to HGT events at higher 

taxonomical levels (order, class and phylum).  In this group we found a high 

representation of proteins such as hypothetical proteins, mobilization proteins, metal and 

antibiotic resistance genes and virulence factors. 

3.3.4 Characteristics of S. aureus core and pan metabolic content 

Because so much of the S. aureus core-genome is dedicated to metabolic 

functions, metabolic characteristics of the sequenced S. aureus strains were studied to 

further develop a definition of a S. aureus species and its metabolic capabilities.  The 64 

S. aureus genome sequences were used to construct strain-specific genome-scale 

metabolic reconstructions that were used to compare gene, reaction, and metabolite 

content between the strains.  Each reconstruction serves as a comprehensive 

representation of the metabolic capabilities of an S. aureus strain. Content shared 

among all reconstructions defines the ‘core’ metabolic capabilities of the S. aureus 

species. Similarly, the metabolic capabilities of all strains were combined to define the 

full potential of metabolic capabilities for the S. aureus species, or its ‘pan’ metabolic 

network (Figure 3.3A) (Monk et al., 2013). 

 The size and content of the core metabolic network characterizes the metabolic 

foundation of S. aureus as a species, comprising 729 metabolic genes that catalyze 

1,411 reactions involving 1,232 metabolites. Highly conserved metabolic subsystems 

across all S. aureus models included lipid metabolism, energy metabolism, glycan 
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biosynthesis and metabolism of polyketides and terpenoids.  Reactions involved in these 

metabolic subsystems were highly represented (>95% conserved) in the core 

“reactome”.  By contrast, only 80% of amino acid biosynthesis reactions were part of the 

core reactome.  Conserved amino acid biosynthesis pathways included those for valine, 

leucine and isoleucine, and alanine (but not aspartate) biosynthesis. The core reactome 

also contained catalase, an enzyme that hydrolyzes hydrogen peroxide into water and 

oxygen and that is used in the clinical laboratory to distinguish staphylococci from 

enterococci and streptococci.  Catalase production and oxidant resistance have been 

shown to be a predisposing factor for nasal colonization and subsequent infection (Park 

et al., 2008).  

 The pan metabolic capabilities are comprised of the total number of different 

reactions found in all strains and thus indicate the pool of metabolic capabilities within a 

species. The S. aureus pan metabolic network contains 877 metabolic genes, 1,524 

reactions and 1,313 metabolites. About 20% of reactions in amino acid metabolism were 

specific to the pan reactome, forming the largest group (Figure 3.3B). A majority of 

these reactions are involved in arginine and proline metabolism, histidine metabolism 

and tryptophan metabolism.  Furthermore, metabolic reactions for the synthesis of amino 

acids L-proline, L-cysteine and L-Leucine were lacking from either the core or pan 

reactome, indicating that S. aureus as a species is incapable of synthesizing these 

amino acids in agreement with previous studies (Lee et al., 2009).   

3.3.5 Determining strain-specific auxotrophies 

The conversion of metabolic network reconstructions into computable 

mathematical models enables computation of phenotypes in diverse nutrient 

environments. The 64 S. aureus strain-specific reconstructed networks were converted 
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into genome-scale metabolic models (GEMs) that were used to interpret the content of 

each reconstruction and predict strain-specific nutritional requirements.  The GEMs use 

a biomass objective function of to represent cell growth.  It consists of 58 metabolites 

including amino acids, lipids, nucleotides and cell wall components that all must be 

produced for cellular growth that have been measured in specific ratios for various S. 

aureus strains (Becker and Palsson, 2005, Heinemann et al., 2005). 

 Reactions belonging to the amino acid metabolism subsystem made up the 

majority of reactions in the pan-reactome (Figure 3.3).   We hypothesized that functional 

differences in amino acid biosynthesis capabilities of different strains of S. aureus may 

allow different strains to adapt to different nutritional environments. To test this 

hypothesis, we simulated growth in silico for all 64 S. aureus GEMs on a variety of 

minimal media growth conditions, including a minimal growth media reported for S. 

aureus N315 (Becker and Palsson, 2005). 

Computing in silico growth rates can identify strain-specific auxotrophies.  These 

auxotrophies arise when a model lacks the metabolic capabilities to synthesize biomass 

components from the minimal media components or when a gap in the metabolic 

network disrupts a metabolic pathway central for the production of biomass components. 

The in silico growth analysis revealed that all 64 models i) require a minimal set of 

nutrients including vitamin B1 (thiamin), vitamin B2 (riboflavin), vitamin B3 (niacin) and 

spermidine ii) require at least one of four amino acids (proline, arginine, glutamine or 

ornithine) for growth, iii) were auxotrophic for methionine and cysteine. Adding these 

amino acids to the in silico media alone was not sufficient to replace those listed 

previously. 
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There were also several strain-specific auxotrophies, with 23 of 64 models 

unable to grow with the minimal media defined.  These models lacked the ability to 

synthesize additional compounds including uracil, putrescine and the amino acids 

arginine, histidine and tryptophan (Figure 3.4). Moreover, 8 closely related strains, 

members of the same clade, also known as the Italian or South German clone (citation), 

were all auxotrophs for tryptophan.  We tested these predicted auxotrophies in four 

strains of S. aureus (USA300, N315, Mu50 and 8325-4) and found that none of these 

strains grew in a minimal chemically defined media supplemented with proline, serine 

and leucine.  However, when threonine was added to the media, N315 and USA300 

were able to grow.  Addition of arginine, phenylalanine or valine to the minimal media did 

not support growth of any of the strains, but addition of all 20 amino acids supported 

growth in all four strains (Supplementary Figure 1).   

3.3.6 Calculating alternative nutrient sources 

The 64 S. aureus GEMs were used to predict growth capabilities on alternative 

carbon, nitrogen, phosphorous and sulfur sources by removing glucose, ammonia, 

sulfate and phosphate from the in silico growth media and adding alternative sources 

one at a time. A total of 300 alternative nutrient sources were tested using flux balance 

analysis (FBA) (Orth et al., 2010b)to assess whether each S. aureus strain grew in silico,  

allowing grouping of strains according to predicted growth abilities. Here very low 

variability was identified in terms of carbon usage, reflecting minimal differences among 

the metabolic capabilities of the strains analyzed.  We specifically looked to see if the 

models were predicted to be able to utilize arginine for growth.  The arginine mobile 

catabolic element (ACME) is present in MRSA USA300 strains (citation), however we 
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found that the argine catabolic capability, ecoded for by ArcA-ArcD was conserved 

across all S. aureus strains consistent with previous work (Zhu et al., 2007). 

3.3.7 Prediction of essential metabolic genes 

The effects of gene deletion in a metabolic network can be determined 

computationally.  In this way, one can predict a set of genes essential for the production 

of biomass and growth of the organism. A gene is considered essential if its deletion in 

silico blocks production of biomass by the GEM.  Such genes represent good targets for 

ad hoc design of enzymatic inhibitors. Additionally, essential genes predicted for each 

strains can be used to identify: i) the set of essential genes shared between all the 

strains (“core essential genes”), which could be used as a testing pool for designing 

drugs that target all S. aureus representatives, and ii) the set of essential genes specific 

to some strains (“unique essential genes”), which can be used to design strain-specific 

drugs.  These computations identified a total of 148 core essential genes.   

3.3.8 S. aureus strains share a core set of ubiquitous genes encoding proteins 

involved in transcription and translation 

Most modern antibiotics do not only target an organism’s metabolic functions, but 

also target the transcriptional and translational machinery of the target organism.  We 

compared the conservation of transcriptional and translational machinery within S. 

aureus strains across the species.  Genes involved in these processes were curated 

from E. coli and B. subtilis because E. coli is the organism for which almost all 

components of transcription and translation machinery have been identified and 

experimentally characterized.  However, because S. aureus is phylogenetically closer to 

B. subtilis (both are Firmicutes), additional proteins from B. subtilis were used to 

assemble this dataset.  Although B. subtilis homologs exist for most of the E. coli genes 
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involved in transcription and translation, a few B. subtilis genes exist for which no 

homologs are found in the E. coli genome and vice versa.  Altogether we selected 289 

query genes of which 192 are shared between E. coli and B. subtilis while 59 are unique 

to E. coli and 42 are unique to B. subtilis. The set included genes that encode functions 

for transcription, ribosome biogenesis, tRNA maturation and aminoacylation, and 

proteins and cofactors required for mRNA translation and RNA decay.  Using these 

experimentally validated genes as input (Grosjean et al., 2014), genes encoding proteins 

of the core transcription and translation machinery were predicted in the 64 S. aureus 

strains.   

A core set of 239 genes involved in transcription and translation was found in all 

S. aureus strains examined.  The majority of genes coding for ribosomal proteins, 

aminoacyl-tRNA synthetases, translation factors and several ribosome 

biogenesis/maturation enzymes are universally conserved in S. aureus strains.  These 

same genes are essential in both E. coli and B. subtilis (Fang et al., 2005, Koonin, 2003, 

Mushegian, 2008) and other bacterial organisms (Ciccarelli et al., 2006, Yutin et al., 

2012).  Conversely, 47 of the 289 genes were absent in all S. aureus strains examined.  

Of genes absent in all S. aureus strains examined, seven are present in both E. coli and 

B. subtilis, 33 are unique to E. coli and seven are unique to B. subtilis.  Most of these 

missing genes encode functions in transcription, tRNA modifications, rRNA modifications 

and RNA processing.   

Next we examined genes present in some S. aureus strains, but not others.  

These included the ribonuclease RNE involved in RNA processing and the 50s 

ribosomal protein L33 (RPMGA).  These two proteins were conserved in 28 of the S. 

aureus strains examined.  RMPGA was missing in 19 strains and RNE was missing in 
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10 strains.  While most of the S. aureus strains retained the two genes encoding L33a 

(RpmGa) and L33b (RpmGb), L33a was lost in 19 of the 64 strains examined.  L33 is 

responsible for cellular ribosome heterogeneity and may generate specialized ribosomes 

in response to stress conditions and environmental changes (Byrgazov et al., 2013).  

These proteins could have evolved to fulfill specific non-essential innovation (Lecompte 

et al., 2002) and hence easily be lost in reductive evolutions.  The L33 gene is also non-

essential in E. coli and B. subtilis (Akanuma et al., 2012, Baba et al., 2006, Bubunenko 

et al., 2007, Shoji et al., 2011).  Our analysis defines the minimal and conserved set of 

genes needed to encode functions that sustain protein synthesis in various S. aureus 

strains.  Because the constraints-based reconstruction and analysis approach has been 

applied to macromolecular synthesis via the processes of transcription and translation 

(O'Brien et al., 2013b, Liu et al., 2014a) genes identified in this study serve as a starting 

point for reconstructed of an expression matrix ‘E’ matrix for S. aureus.  A detailed 

discussion of these ‘E’ genes present in S. aureus is provided in the supplementary text.  

Therefore inhibitors of these proteins may be good targets for future antibiotic therapies 

against S. aureus. 

3.3.9 Construction of a virulome for the S. aureus species 

To gain insight into the conservation of virulence factors across the S. aureus species 

we curated a set of virulence factors (VFs) present in different strains based on literature 

and database searches (Chen et al., 2012b).  This set of VFs forms a comprehensive 

“virulome” of the S. aureus species.  The virulome comprised a total of 90 different VFs 

that are uniquely present in the different S. aureus strains examined (Figure 3.5).  

Of the 90 VFs, 35 were shared by all of the strains forming a core set of VFs.  Nine of 

the conserved VFs are cap8 genes (B, C, E, F, L, M, N, O and P), which are involved in 
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the synthesis of the polysaccharide capsule (PC). The PC evolved in S. aureus to impair 

the opsonophagocytic uptake by neutrophils, and the vast majority of clinical isolates are 

known to express surface capsules composed of serotype 5 or 8 polysaccharide (Nanra 

et al., 2013). Because the PC genes are found in the core virulome, all the S. aureus 

strains represented in our dataset are potentially able to synthesize either the cap5 or 

cap8 PC.   

Other conserved VFs included five involved in the production of two different cytotoxins, 

namely the Panton-Valentine leukocidin (PVL), encoded by the genes lukS and lukF, 

and the gamma-hemolysin, encoded by hlgA, hlgB and hlgC.  Six other conserved VFs 

encode iron-regulated proteins (isdA, isdC, isdE and isdF) that bind to extracellular 

matrix components such as fibrinogen and fibronectin to promote cell adherence.  

Among these, the isdA gene plays a role in the S. aureus iron acquisiton system, 

important for S. aureus in vivo replication and disease pathogenesis (Kehl-Fie and 

Skaar, 2010). In vertebrates, the vast majority of iron is stored within the cells, but 

bacterial cytotoxins can damage host cells including erythrocytes to liberate iron. The 

host releases lactoferrin during the innate immune response to restrict iron availability 

and provide antimicrobial activity, but IsdA can bind to lactoferrin conferring resistance to 

this host defense pathway (Clarke and Foster, 2008) . 

Additional conserved virulence factors include the ica genes (icaA and icaR) involved in 

the production of the polysaccharide poly-N-acetylglucosamine (PNAG), which promotes 

biofilm formation (Cerca et al., 2008).  Additional core virulence determinants included 

hysA encoding hyaluronate lyase, which cleaves the extracellular matrix 

glycosaminoglycan within the connective tissues, and sbi encoding an IgG binding 

protein that thwarts immunoglobulin host defense.  Other canonical S. aureus virulence 
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factors were highly conserved but were not found across all 64 strains.  Protein A (binds 

immunoglobin G to disrupt phagocytosis, encoded for by spa) was found in 90% of 

strains.  Alpha toxin (disrupts the membrane and enhanced invasiveness, encoded for 

by hla) was found in 96% of strains.  Biosynthesis genes for the staphyloxanthin pigment 

discussed above (encoded for by crtMNPQ) were found in 95% of strains.  A previous 

analysis of clinical S. aureus isolates found that 90% were positive for staphyloxanthin, 

agreeing with the results presented here. 

Several other VFs were strain-specific.  For example, the SCIN protein 

(Staphylococcal complement inhibitor, encoded by scn) that was present in 48 of the 64 

strains and CHIPS (Chemotaxis inhibitory protein of staphylococci, encoded by chp) was 

present in 27 of the 64 strains.  The AGR quorum sensing system (regulates biofilm 

development, encoded for by agrABCD) was found in 25% of strains Meanwhile, the 

exfoliative toxin B was found only in in a single strain (11819-97).  S. aureus MW2 was 

found to have the most established virulence factors (79 VFs) followed by MSSA476 (74 

VFs) and Mu3 and Mu50 (70 VFs).  In contrast, the ST288 strains had the fewest 

number of VFs (53-54 total).  These VFs can be used to classify strains of S. aureus 

based on lifestyle and niche.  For example, most livestock associated strains of S. 

aureus can be distinguished from human associated strains by searching for the 

presence only three VFs, staphylokinase precursor (sak), staphylococcal enterotoxin 

(seg2), Immunoglobulin G binding protein A precursor (spa) (Figure 3.5B). 

3.4 Discussion 

In this study, we compared the genomes of 64 strains of S. aureus to gain 

insights into the diversity of this species from different perspectives.  We used both 

genomic comparisons and metabolic modeling to gain insight into the metabolic and 
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genetic diversity that define different strains of the species.  Using a comparative 

genomics approach, we computed a pan-genome of the S. aureus species, which, to the 

best of our knowledge, provides the most comprehensive pan-genome produced for this 

taxon. Identification and characterization of the makeup of a species’ pan-genome is a 

powerful tool to analyze genomic diversity within a clade, and can be used to predict, via 

extrapolation, the number of genome sequences required for bounding the gene 

repertoire of any analyzed clade. Our regression analysis shows that the S. aureus pan-

genome is open, indicating that the gene repertoire of this species is theoretically 

boundless. This result is in agreement with a previous DNA microarray experiment 

involving 36 S. aureus strains (Fitzgerald et al., 2001), in which extensive genetic 

variability was reported.  

 The pan and core-genome comprise respectively 7,457 and 1,441 clusters of 

orthologous genes, which were functionally classified according to the COG database. 

The different functional distributions in the pan-genome categories (core, accessory and 

unique) revealed that core genes are mostly associated with housekeeping functions 

(i.e. control of gene expression machinery and basic biochemistry), while accessory and 

unique genes are more associated with niche specific functions including degradation of 

antibiotics and production of different antimicrobial compounds. In particular, a high 

portion of unique genes were found to be related to mobile genetic elements (i.e. 

transposon, phages, plasmids), that may drive acquisition of novel functional modules 

via HGT, including drug resistance and virulence (McCarthy and Lindsay, 2012).  Beyond 

these evolutionary insights, the pan-genome has important practical implications. For 

instance, the pan-genome can be used to design vaccines by reverse vaccinology 

(Donati and Rappuoli, 2013).  This approach has been successful for influenza and 
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streptococcus where polyvalent vaccines have been designed to target specific strains 

of the species based on a search of the pan-genome to identify accessory genes that 

are only present to those strains that are most dangerous. Such efforts are critical for S. 

aureus where intensive vaccine research has seen many failures (Jansen et al., 2013). 

The functional differences between the pan-genome components can be 

interpreted as follows: i) core genes are associated with functions related to the basic 

biology of the cell, such as central biochemistry and control and maintenance of gene 

expression machinery (housekeeping functions); ii) accessory genes are functionally 

similar to core genes, except for a relatively high proportion of genes associated with 

mobile genetic elements. Some of these genes are associated with lineage-specific 

replicons (i.e. plasmidic rep genes), which in turn may harbor resistance and virulence 

determinants (McCarthy and Lindsay, 2012); iii) unique genes are strongly associated 

with mobile elements. The lack of homology of unique genes with other S. aureus strains 

indicates that they have probably been acquired through horizontal gene transfer (HGT) 

events from relatively distant strains, or they are rapidly evolving genes such as those 

encoding outer membrane proteins.  

It should be noted that our sampling of S. aureus strains for genome sequencing 

may be biased toward infections strains.  Therefore it’s possible that the dataset we 

selected is lacking commensal strains of S. aureus and more sequences of these strains 

would provide deeper insight into pathogenicity. 

We found that S. aureus genomes are mostly composed of conserved genes 

(56% of genes in the average S. aureus genome are part of the core genome), with a 

very small proportion of strain-specific genes, thus revealing a high level of clonality for 

this species.   It has been argued (Medini et al., 2005) that an open pan-genome is 
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typical of a taxon that can exchange genetic material with a variety of different sources. 

This, together with the fact that a greater portion of the unique genes have been 

assigned to COG category L (DNA recombination/repair), suggested that HGT is one of 

the major evolutionary forces shaping the genomic diversity of the S. aureus species. 

The impact of HGT was further investigated and we identified recent HGT-derived 

genes, their functional characterization and assigned a putative donor.    

We assessed the impact of HGT events in shaping the diversity within this 

species. Analysis of atypical genes showed how these are mostly derived from 

taxonomically related donors (i.e. representatives of the same species/genus), with a 

minor portion of genes coming from host-associated bacteria. This finding suggests the 

presence of a taxonomical barrier limiting the amount of HGT in this species. The HGT 

events may be a major source of newly acquired antibiotic resistances.  Therefore, the 

number of unique genes per genome may identify strains more prone to HGT and hence 

more likely to acquire new functionalities. Since virulence and antibiotic resistance genes 

are often involved in HGT events (McCarthy and Lindsay, 2012, Noble et al., 1992), 

strains with a higher portion of unique genes (and thus more predisposed to exchange of 

exogenous DNA) may represent a major public health threat, since these can develop 

virulent and/or multidrug-resistant phenotypes by horizontally acquiring corresponding 

gene cassettes (Corvaglia et al., 2010, Sung and Lindsay, 2007, Weigel et al., 2003) 

however we did not see any correlation between number of atypical genes and the 

number of identified virulence factors. 

To gain insights into the metabolic diversity between S. aureus strains, we 

produced 64 strain-specific GEMs of our selected S. aureus strains and observed the 

presence of an extremely conserved metabolic core, both in terms of reactions and 
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genes. GEMs were analyzed to simulate in silico growth, to test alternative nutrient 

source usage and to compute genes essential for growth of S. aureus. Knowledge of 

essential genes may be used to guide future experiments aimed at finding molecular 

targets for the inhibition of pathogenic S.aureus.  Moreover, we found a set of 148 

essential genes shared between all the strains, representing potential broad-spectrum 

drug targets for this species.  

Overall, most of the S. aureus virulome is conserved across the 64 strains we 

examined.  There is only one VF unique to a single strain (i.e. the etb gene, encoding 

the exfoliative toxin B), while 54 VFs were shared by a small number of strains, but not 

present in all strains.  The vast majority of the virulome is composed of core and pseudo-

core (shared by most of the strains) genes. The presence of these genes is interesting 

from an evolutionary point of view, since it implies that the S. aureus has evolved a 

highly conserved system to carry out its infectious cycle, and from a translational 

viewpoint, these genes may represent targets for virulence inhibitor or antibody based 

therapeutic strategies (Morrison, 2015). 

In conclusion, the multi-scale comparative approach used in this work allowed for 

deeper insights into the diversity of the S. aureus species. Results obtained from the 

pan-genome and the comparison of GEMs highlighted a low diversity at the genome-

scale level, which is reflected both in small differences between GEM composition (in 

terms of genes, reactions, metabolites) and predicted phenotypes. 
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Figure 3.1. S. aureus dataset construction.  
A) Phylogenic tree of 225 S. aureus genomes based on 7 housekeeping genes (arcC, aroE, glpF, 
gmk, pta, tpi and yqiL).  A set of 64 strains (labeled) were selected from this set to create a 
heterogeneous dataset of S. aureus strains based on B) drug resistance (MRSA, MSSA, VRSA, 
VISA), C) host specificity (human vs animal), D) virulence/environmental association (CA-MRSA: 
Community-Associated MRSA, HA-MRSA: Healthcare-Acquired MRSA, LA-MRSA: Livestock-
Associated MRSA), iv) evolutionary distance based on tree topology.
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Figure 3.2. S. aureus pan-genome statistics.  
A) The S. aureus pan-genome can be subdivided into three categories: i) the core genome (the 
set of genes shared by all genomes), ii) the accessory genome (the set of genes present in some, 
but not all genomes) and iii) the unique genome (genes that are unique to a single genome). The 
function of each gene in a group is classified using clusters of orthologous croups (COGS).  COG 
categories are as follows: Cellular processes and signaling: [D] Cell cycle control, cell division, 
chromosome partitioning, [M] Cell wall/membrane/envelope biogenesis, [N] Cell motility, [O] Post-
translational modification, protein turnover, and chaperones, [T] Signal transduction mechanisms, 
[U] Intracellular trafficking, secretion, and vesicular transport, [V] Defense mechanisms, 
[W] Extracellular structures, [Y] Nuclear structure, [Z] Cytoskeleton. Information storage and 
processing: [A] RNA processing and modification, [B] Chromatin structure and dynamics, 
[J] Translation, ribosomal structure and biogenesis, [K] Transcription, [L] Replication, 
recombination and repair. Metabolism: [C] Energy production and conversion, [E] Amino acid 
transport and metabolism, [F] Nucleotide transport and metabolism, [G] Carbohydrate transport 
and metabolism, [H] Coenzyme transport and metabolism, [I] Lipid transport and metabolism, 
[P] Inorganic ion transport and metabolism, [Q] Secondary metabolites biosynthesis, transport, 
and catabolism.  B) Distribution of the genes in the pan genome for each examined S. aureus 
strain. 
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Figure 3.3. Pan-genome, core and novel genes of the 64 analyzed S. aureus strains. 
Pangenome features: the purple squares denote the number of novel genes discovered with the 
sequential addition of new genomes.  The yellow dots denote the values of the core genes as 
genomes are added to the pangenome.  The purple bars indicate the number of new genes 
added to the total pan genome size as new genomes are added.  Each of the values represents 
the median from a distribution of randomly selected genomes at each genome addition.  The 
purple line represents the number of new genes found for each genome addition. For 
comparison, the same trend for a closed genome is reported as a dashed line. 
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Figure 3.4. Core and Pan metabolic capabilities of the S. aureus species.  
The core and pan metabolic content was determined for genome-scale metabolic models (GEMs) 
of 64 unique S. aureus strains.  A) The core content, illustrated by the intersection of the Venn 
diagram, is shared with all strains. The pan content consists of all content in any model and 
includes the core content.  The Venn diagram is not to scale.  B) Classification of reactions in the 
core and pan reactomes by metabolic subsystem. 
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Figure 3.5. S. aureus virulome.   
The virulome consists of curated virulence factors known to be present in different strains of S. 
aureus.  A) Presence and absence of these S. aureus virulence factors across the strains 
examined in this study.  Purple = present, Yellow=absent.  Full matrix with strains and virulence 
factor is available in the supplement. Virulence factor profiles can be used to classify strains, for 
example in (B) a classification is constructed that separates human associated S. aureus strains 
from livestock associated strains using the presence of three specific virulence factors.  
Abbreviations: Staphylokinase precursor (sak), staphylococcal enterotoxin (seg2), 
Immunoglobulin G binding protein A precursor (spa). 
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Chapter 4 Comparative metabolic network analysis and 

modelling of four  Leptospira species provides insight into 

pathogenesis of Leptospirosis
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4.1 Abstract 

Multiple Leptospira genome sequences and new omics data have recently been 

made available by advances in DNA sequencing.  Analysis of these genomes shows 

that the fraction of genes common to all Leptospira represents a small fraction of the 

entire Leptospire gene pool.  Thus the question arises: what makes a species of 

Leptospira pathogenic?  We constructed genome-scale models of four Leptospira 

species that ranged in their level of pathogenicity.  From the pathogenic L. interrogans, 

to intermediate species L. kmetyi and L. licerisae to the non-pathogenic, saprophyte, L. 

biflexa.  The GEMs enable a systems approach to characterizing the core and pan 

metabolic capabilities of the Leptospira genus.  The majority of shared metabolic content 

was found to consist of lipid metabolism, energy production and conversion and amino 

acid metabolism, while reactions unique to specific species were often found in 

carbohydrate metabolism, nucleotide metabolism and cofactor and prosthetic group 

metabolism.  The results show that unique species-specific metabolic capabilities 

correspond to pathotypes and environmental niches.  All four species were predicted to 

be auxotrophic for L-asparagine and vitamin B1. Cob(1)Alamin (vitamin b12) was 

required for growth of the saprophytic strain but not for the other strains.  GEMs were 

used to predict shared and species-specific essential genes and reactions. The 

Leptospira genus is predicted to have 264 universally essential metabolic reactions and 

112 reactions that are essential to sets of Leptospira species.  A total of 366 metabolites 

were predicted to be essential across the Leptospira genus with 44 that were specific to 

specifically essential to sets of Leptospira species.  These results indicate that species 

specific drug targets and metabolite analog inhibitors may be capable of selectively 

targeting individual species of or groups of Leptospira (e.g. pathogens).  Genome-scale 
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analysis of multiple species in a genus can thus be used to define the metabolic essence 

of a microbial genus and delineate nutrient and essentiality differences that shed light on 

the metabolic determinants of pathogenicity. 

4.2 Introduction 

Leptospira is a genus of highly motile gram negative spirochetes capable of 

penetrating the mucous membrane, eyes and abraded skin to cause systemic disease 

(Bharti et al., 2003).  Several species of Leptospira are the causative agents of 

leptospirosis, a zoonotic disease that affects nearly one million people per year in 

countries worldwide (Lau et al., 2010).  Live imaging of bioluminescent cells of 

Leptospira interrogans, the best characterized leptospiral species, revealed that, once 

inside the host, these pathogenic leptospires can evade the host immune system and 

antibiotic treatment by colonizing the kidneys (Ratet et al., 2014).  Patients diagnosed 

with severe leptospirosis, also known as Weil’s disease, can suffer from jaundice, renal 

failure and pulmonary hemorrhage.  This disease is endemic in countries with tropical 

climates, often as a result of floods caused by heavy rain (Saito et al., 2014, Lau et al., 

2010). Because the disease is transmitted through the infected urine of mammalian 

carriers either directly or via contamination of water or soil, individuals living with poor 

sanitary conditions are more frequently infected.   

Worldwide, leptospirosis is one of the most common diseases transmitted by 

animals.  It is a major cause of illness in tropical areas and is often associated with 

epidemics during natural disasters and flooding.  For this reason, climate change is 

expected to increase the incidence of leptospirosis infection in tropical regions 

worldwide.  Leptospirosis is often unrecognized or misdiagnosed due to its symptoms 

that are similar to many other diseases.  These symptoms frequently present themselves 
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as fever or myalgia, making the actual incidence of leptospirosis underreported.  Further 

complicating matters, laboratory tests used to detect and confirm the disease are not 

always available in developing countries (WHO, 2003).  For these reasons, 

Leptospirosis has been recognized as a neglected tropical disease of global importance 

that necessitates further research. 

        The Leptospira genus has both pathogenic and saprophytic members.  More 

than twenty species of Leptospira have been described and grouped into three distinct 

lineages.  These are 1) pathogenic (nine species), 2) intermediate (five species) and 3) 

saprophytic (non-infectious) (six species) (Ricaldi et al., 2012).  Pathogenic and 

intermediate species such as L. interrogans, L. Kmetyi and L. licerasiae can infect a 

wide range of animals, including rats, domestic pets, and humans (Lau et al., 

2010).  Saprophytic strains such as L. biflexa cannot infect humans (Picardeau et al., 

2008). 

The amount of literature regarding Leptospiral organisms has increased in recent 

years reflecting the growing rate of leptospirosis worldwide (Figure 4.1A) and a 

newfound desire to investigate and combat this epidemic.  Furthermore, advances in 

DNA sequencing technologies have enabled the generation of new -omics data types 

(genomic, proteomic, and transcriptomic) for Leptospira in the last decade.  However, as 

useful as this new data and genome annotations are, they do not provide an 

understanding of the integrated function of gene products to produce phenotypic states 

(Bordbar et al., 2014).  Metabolic network reconstructions have proven to be powerful 

tools to probe the genomic diversity of metabolism between organisms (Monk et al., 

2013).  Despite an increase in Leptospira-specific data types, no genome-scale network 

reconstructions (GENREs) of any Leptospira species exists.  Indeed, the entire 
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spirochetes phylum is void of any representative GENRE at this time (Monk et al., 

2014b) (Figure 4.1B).  Thus, constructing new metabolic network reconstructions of 

Leptospira species will increase biochemical insight into a unique branch of the tree of 

life.   

We set out to construct metabolic network reconstructions of a set of 

representative species within the Leptospira genus by selecting species that span a 

range of infectious capabilities from the extremely infectious (L. interrogans serovar 

Copenhageni Fiocruz L1-130) to the intermediate-infectious strains (L. kmetyi serovar 

Malaysia Bejo-Iso9 and L. licerasiae VAR010) to the non-infectious, saprophytic (L. 

biflexa). 

L. interrogans is responsible for worldwide cases of the waterborne zoonosis 

leptospirosis.  It infects wild and domestic animals, including pet dogs.  It is usually 

transmitted to humans via contact with infected animal urine where it invades directly 

through broken skin and can infect the kidney and liver.  The two intermediate 

leptospires, L. kmetyi and L. licerasiae display some phenotypic characteristics of 

saprophytic leptospires, however 16S rRNA gene sequence analysis suggests that they 

are more closely positioned phylogenetically among pathogenic Leptospires and a whole 

genome analysis supports this conclusion as well (Ricaldi et al., 2012).  L. licerasiae has 

also been proposed to have proteins involved in nitrogen, amino acid and carbohydrate 

metabolism unique to the genus, which could explain L. licerasiae’s quick growth in 

artificial media, reportedly posing contamination problems for biopharmaceutical groups 

(Chen et al., 2012a). 

The non-pathogenic, saprophytic leptospire, L. biflexa, is found in aquatic 

environment.  In contrast to many pathogenic leptospires, the genome of free-living L. 
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biflexa contains high gene density and few transposable elements, key features for the 

study of laterally transferred genes in Leptospira (Picardeau et al., 2008).  Comparative 

genome analyses have shown that nearly one third of L. biflexa genes are absent from 

pathogenic leptospires.  Thus, studies elucidating the gene functions present in L. 

biflexa, but absent in pathogenic leptospires can provide insight regarding the evolution 

of leptospiral species. 

In this study, we present curated metabolic network reconstructions of these four 

species of Leptospira displaying a range of infectious phenotypes.  The reconstructions 

incorporate available literature and experimental data on the Leptospira species and are 

used to investigate the metabolic capabilities that may be prerequisites of pathogenicity. 

4.3. Results 

4.3.1 Core Leptospira metabolism 

The four metabolic network reconstructions were built following an established 

protocol (Thiele and Palsson, 2010b). Annotations of the genomes were downloaded 

from NCBI and functional assignment and metabolic content were curated from 

metabolic databases including model seed (Devoid et al., 2013, Henry et al., 2010c) 

Metacyc (Caspi et al., 2014) and Metanetx (Ganter et al., 2013).  An analysis of 

transport proteins related to metabolic intermediates was performed based on a recent 

study (Buyuktimkin and Saier, 2015).  The detailed list of the contents of each model is 

available in Supplementary Dataset 1. 

The set of four Leptospira genome-scale reconstructions were used to compare 

gene, reaction, and metabolite content between species (Figure 4.2A).  The content 

shared among all reconstructions thereby defines the core metabolic capabilities among 

all of the species. Similarly, the metabolic capabilities of all of the species were 
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combined to define the full set that encompasses all models and thereby define the 

“pan” metabolic capabilities among the species. 

The size and content of the core metabolic content characterizes the metabolic 

foundation of the Leptospira genus. The core reconstruction has 581 metabolic genes 

that catalyze 943 reactions using 736 metabolites. The most highly conserved metabolic 

subsystems were lipid metabolism (88% core), amino acid metabolism (82% core) and 

cell wall, membrane and envelope metabolism (78% core). Most of these reactions are 

responsible for synthesizing essential components fatty acids, cell wall components and 

amino acids. In contrast, only 63% of carbohydrate metabolism reactions were shared 

among all four species. These shared reactions mostly consisted of reactions in central 

metabolism reactions including glycolysis/gluconeogenesis, the citric acid cycle, 

anaplerotic reactions, and the pentose phosphate pathway.   

The core metabolic content contains the complete set of genes for the 

Tricarboxylic Acid Cycle (TCA) and respiratory electron transport chain (Ren et al., 2003, 

Nascimento et al., 2004a).  In L. interrogans, genes associated with the TCA cycle have 

been shown to be expressed at similar levels under in vitro conditions (EMJH medium at 

30C) and mammalian host conditions (dialysis membrane chamber, or DMC, within the 

peritoneal cavities of R. norvegicus) (Caimano et al., 2014).  ATP generated by the 

respiratory electron transport chain uses an F0F1-type ATPase that is encoded in a 

single operon, atpBEFHAGDC, and shared among leptospires (BIGG: ATPasel) (Ren et 

al., 2003). 

All genes required for glycolysis and glucose uptake are also represented in the 

core metabolic content.  RNA-seq experiments have shown that reads for all genes 

involved in glucose metabolism and transport were detected and expressed at similar 
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levels in mammalian host conditions (DMC) and in vitro conditions (EMJH medium) 

(Caimano et al., 2014).  A glucokinase gene is proposed to substitute for a hexokinase 

gene in leptospires (Picardeau et al., 2008, Zhang et al., 2011).  While many Leptospira 

species do contain these genes, pathogenic leptospires are proposed to not utilize 

glucose from the environment (Baseman and Cox, 1969).  Only the enzymes that 

catalyze reversible reactions (all those except glucose-6-phosphate isomerase (PGI) 

and pyruvate kinase (PYK)) have been shown to be expressed at high levels in L. 

interrogans, which provides support for gluconeogenesis activity, but not glycolytic 

activity.  Additionally, the two genes, LIC13358 (bigg: RZ5PP) and LIC20119 (bigg: 

PGM), encoding putative phosphoglucomutases, and LIC12908 (sglT; FRUt4pp; 

GALt4pp), encoding the only glucose transporter identified in L. interrogans (Nascimento 

et al., 2004b), were expressed at extremely low levels under both mammalian host 

conditions and in vitro conditions (Caimano et al., 2014).  These experimental findings 

suggest that utilization of glucose is unlikely. 

Finally, the genes encoding enzymes in the non-oxidative phase of the pentose 

phosphate pathway are all present in the core genome.  Only one gene (LIC12161) for 

the oxidative phase encoding 6-phosphogluconolactonase (PGL) is represented in the 

core genome, supporting the claim that leptospires use an alternative pathway, (possibly 

the the NAD+ salvage pathway) to generate NADPH (Qu, 2007). 

4.3.2 Pathways unique to core Leptospira metabolism 

 Beyond these canonical metabolic pathways that are widely conserved across 

bacteria, the core Leptospira metabolic reconstruction also contained several interesting 

metabolic pathways that are less frequently observed in gram negative bacteria.  All four 

of the Leptospira organisms possess an alternative menaquinone biosynthesis 
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pathway.  In most bacteria menaquinone is an essential vitamin that is a required 

component of the electron transport chain.  In E. coli menaquinone is derived from 

chorismate by eight enzymes, MenA-H (Bentley and Meganathan, 1982).  Bioinformatic 

analysis of the four leptospira species showed a lack of orthologs to the men 

genes.    Instead orthologs were found that correspond to an alternate menaquinone 

pathway originally characterized in Streptomyces coelicolor known as the futalosine 

pathway (Seto et al., 2008, Hiratsuka et al., 2008) (Figure 4.3A).  Furthermore, all 4 

species were found to possess transporters for 4-Hydroxybenzoate, which acts as an 

intermediate in this biosynthesis pathway.  This pathway is also found in several 

pathogenic organisms including Helicobacter pylori and Campylobacter jejuni (Dairi, 

2009), however is missing in humans and other commensal bacteria, making the 

enzymes in this pathway promising antibiotic targets that could specifically target growth 

of pathogens like Leptospira with minimal effect on the intestinal microflora. 

Another essential vitamin for cellular growth is folate (vitamin B9).  Analysis of 

the core Leptospira metabolic content indicates that all four strains of Leptospira can 

synthesize folate de novo, however they possess a unique dihydroneopterin aldolase 

(FolB) enzyme.  FolB catalyzes the conversion of dihydroneopterin to 6-hydroxymethyl 

dihydropterin (HMDMP) in the classical folate biosynthesis pathway, however standard 

folB genes are missing in several phyla including the Spirochaetes (de Crecy-Lagard et 

al., 2007).  These organisms, including the four Leptospira examined here instead 

possess an unusual paralog of the tetrahydrobiopterin synthesis enzyme 6-

pyruvoyltetrahydropterin synthase (PTPS) (Pribat et al., 2009) also making this enzyme 

a potential target for novel antifolate compounds. 
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Lysine biosynthesis in Leptospira occurs via a pathway that utilizes 

diaminopimelic acid (DAP) as a central intermediate.  However Leptospires utilize an 

alternative lysine biosynthesis pathway shared with cyanobacteria that utilizes a novel 

transaminase to catalyze the interconversion of tetrahydrodipicolinate and LL-

diaminopimelate.  Thus accomplishing in a single step a conversion that requires three 

enzymes in the DAP-pathway variant found in Escherichia coli (Hudson et al., 2006).  

Also, methionine biosynthesis in leptospires is reportedly similar to that in yeast, where 

the final step has been proposed to be exclusively catalyzed by a cobalamin-dependent 

homocysteine- N5-methyltetrahydrofolate transmethylase (MetH), rather than by a 

cobalamin-independent methionine synthase (MetE) (Ren et al., 2003).  The four models 

in this study are shown to contain the metH gene (KEGG R00946; LIC20085; LBF_4176; 

LEP1GSC185_3695; LEP1GSC052_0294 → bigg: METSr), and lack the metE gene 

(bigg: MHPGLUT, MTHPTGHMr) thus making them dependent on cobalamin for 

methionine synthesis. 

Genomes of leptospires contain the complete set of genes necessary for 

protoheme uptake and biosynthesis (Guegan et al., 2003, Murray et al., 

2009).  Sequence analysis of chromosome II shows that an almost complete cluster of 

genes coding for the protoheme biosynthesis pathway is present (hemAIBCENYH), and 

another gene, hbpA, has been characterized to encode a hemin-binding protein that is 

expressed under iron starvation. Although no homologue of the gene coding for 

uroporphyrinogen III synthetase (hemD) has been found, experimental evidence has 

shown that the hemC gene contains hemD activity (Guegan et al., 2003). Therefore all of 

the Leptospires examined here are predicted to have the ability to synthesize protoheme 

de novo.  RNA-seq studies with L. interrogans have demonstrated that 5 genes related 
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to de novo heme biosynthesis (LIC20008/hemA, LIC20009/hemCD, LIC20010/hemB, 

LIC20011/hemL and LIC20014/hemE) were downregulated under mammalian host 

conditions (DMCs) compared to in vitro (EMJH) conditions.  In L. interrogans, the 

LIC20017/hemG/hemeY and LIC20018/hemH, encoding enzymes responsible for the 

last two steps in heme biosynthesis, respectively, appear to be transcribed as 

monocistronic messages at similar levels in vitro (EMJH) and under mammalian host 

conditions (DMCs) (Caimano et al., 2014).  Additionally, genes for heme oxygenase 

(LIC20148/hol) and a TonB-dependent heme receptor (LIC10964/phuR) were 

upregulated under mammalian host conditions (DMCs) compared to in vitro 

(EMJH).  These data support the notion that pathogenic leptospires preferentially use 

exogenously derived heme within the mammal (Caimano et al., 2014).  And further 

suggest that protoheme biosynthesis in pathogenic leptospires is reduced when 

scavenging protoheme from the mammalian host is possible (Caimano et al., 2014). 

Such scavenging occurs via the high-affinity TonB-dependent outer membrane 

receptor (TB-DR) proteins.  Based on bioinformatic analysis, L. interrogans encodes at 

least 13 putative TB-DRs (Louvel et al., 2006), however, only two (LIC10964 and 

LIC11694) were upregulated within DMCs (Caimano et al., 2014). The transport of heme 

and/or iron across the outer membrane requires energy produced by an inner membrane 

complex of the energy transduction protein TonB and two accessory proteins, ExbB and 

ExbD (Noinaj et al., 2010). L. interrogans encodes at least two TonB-ExbB-ExbD 

complexes, arranged in separate operons, one on each chromosome (Caimano et al., 

2014). Leptospira species have been shown to possess multiple outer membrane 

energizer systems (e.g TonB-ExbB-ExbD and TolA-TolQ-TolR) (Buyuktimkin and Saier, 
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2015) with the latter facilitating assembly and stability of the outer membrane (Lazzaroni 

et al., 1999).   

4.3.3 Pan Letospira metabolism 

 The pan metabolic reconstruction of the Leptospira genus encodes complete 

pathways for most amino acids and all nucleic acid biosynthesis.  However, genomes of 

L. licerasiae and L. biflexa encode additional proteins involved in nitrogen, amino acid, 

and carbohydrate metabolism that are missing from pathogenic Leptospires.  This may 

account for the ease of growth of these species in vitro (Ricaldi et al., 2012).  L. 

licerasiae (LEP1GSC185_2652) and L. biflexa (LEPBI_I1590; LBF_1539) both possess 

ilvA (bigg:THRD_L; also bigg:SERD_L), which encodes threonine ammonia-lyase, an 

enzyme that catalyzes the conversion of threonine to 2-oxobutanoate. L. interrogans and 

L. kmetyi do not contain the ilvA gene. 

In addition to unique amino acid metabolism, only 74% of cofactor and prosthetic 

group metabolism reactions were shared among all four species.  Reactions in this 

group are responsible for biosynthesis of essential vitamins including vitamins B12 

(cobalamin), B9 (folate) and B1 (thiamin).  A major difference was found to be 

presence/absence of the cobalamin (vitamin B12) biosynthetic pathway.  Cobalamin is 

the largest and most complex of natural organometallic cofactors and coenzymes, its de 

novo synthesis requires nearly 30 energetically costly enzymatic steps (Raux et al., 

2000).   Two distinct biosynthetic pathways exist, which are referred to as the aerobic 

(Heldt et al., 2005) and anaerobic (Moore and Warren, 2012) routes (Figure 4.3A) that 

differ based upon the timing of cobalt ion insertion into the corrin ring and specific genes 

needed.  Our analyses indicate that pathogenic Leptospira contain genes necessary to 

synthesize B12 de novo while the saphrophyric L. Biflexa, does not.  All of the metabolic 



115 

 

 

 

reactions, genes and metabolites discussed in this manuscript can be visualized and 

compared between all four species using the BiGG database at http://bigg.ucsd.edu 

(King et al., 2015c) (Figure 4.3B,C). 

Previous studies have identified 13 genes clustered in chromosome II coding for 

the cobalamin biosynthesis pathway (cobC, cobD, cbiP, cobP, cobB, cobO, cobM, cobJ, 

cbiG, cobI, cobL, cobH, cobF) (Nascimento et al., 2004b). Orthologues of cobGKN 

genes, known to function as cobalt chelatases in the cobalamin pathway (Rodionov et 

al., 2003), were not found. However, two predicted coding sequences inside this operon 

in chromosome II have been proposed to perform these steps. One has an 

oxidoreductase NAD-binding domain (LIC20133) and the other is a [2Fe-2S] ferredoxin 

involved in electron transfer (LIC20135) (Nascimento et al., 2004b). In addition, other 

genes present in the genome coding for reductases such as LIC11145, LIC13354, 

LIC12391, and LIC10522 could also fulfill these activities (Spencer et al., 1993). The 

presence of cysG in chromosome I, a gene that encodes a multifunctional protein with 

methylase, oxidase and ferrochelatase activities, may function as a cobalt-inserting 

enzyme in the B12 pathway. Other genes involved in this biosynthesis pathway were 

found in chromosome I (cysG/hemX/cobA, cobT/cobU, cobS).  Further, the presence of 

cbiX (LB_165) and cbiG [DEF1] (LB_158) in cob I/III suggests that infectious Leptospira 

utilize the anaerobic biosynthetic route for cobalamin biosynthesis.  It was recently 

experimentally confirmed that L. interrogans Copenhageni PL1, L. licerasiae Varillal 

VAR010 grow indefinitely in media without B12 while the saprophyte L. biflexa Patoc 

Patoc1 (Paris) does not (manuscript in preparation – Vinetz group).   Our analysis 

therefore predicts that L. biflexa requires B12 for growth.  All four species are predicted 
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to possess vitamin B12 transporters and a TB-DR system in L. interrogans sv. 

Copenhageni (LIC12374/btuB) is annotated as being specific for vitamin B12.   

Though only infectious Leptospira contained the genes necessary to synthesize 

B12 de novo, both infectious and non-infectious Leptospira contain reactions necessary 

to synthesize the vitamin from the intermediate adenosylcobinamide (through an 

ortholog for CobU, which converts adenosylcobinamide to andeosylcobinamide-

guanosine diphosphate, has not been found in non-infectious species).  Why only 

infectious and not non-infectious Leptospira synthesize B12 de novo is not known, but 

considering that cob I/III clusters are widely distributed amongst pathogenic strains and 

that in mammals the vitamin is sequestered in vivo, it is likely that this capacity is 

essential for growth in vivo.  Therefore B12 biosynthesis may be an important virulence 

trait. 

4.3.4 Metabolic models reveal species-specific nutrient requirements  

Based on the analysis of metabolic content described above, we set out to 

investigate the required nutrients for growth of each species of Leptospira.  Converting a 

genome scale reconstruction into a mathematical format, called a Genome-scale Model 

(GEM) allows for explicit computation of growth capabilities and the examination of 

nutrients required for growth in different environments that can be linked back to their 

genetic basis.   The first step in converting a genome scale network reconstruction into a 

genome-scale model is to define a biomass objective function (Feist and Palsson, 

2010b).  The biomass objective function consists of all nucleic acids, amino acids, lipids 

etc. needed for a cell to grow (and produce biomass). The biomass objective function 

must be determined from measurements of biomass composition.  A detailed analysis of 

Leptospira biomass has not been performed, however coarse grain measurements 
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exist.  We tailored a generic gram-negative biomass function to match these 

measurements to form a core biomass function representative of the Leptospira genus 

(Table 4.1). 

None of the four reconstructed GEMs were able to generate essential biomass 

components from glucose M9 minimal media without addition of growth-supporting 

compounds to the in-silico media. The SMILEY algorithm, a method to fill gaps in 

metabolic networks (Reed et al., 2006a), was used to examine the genetic bases of 

these model nutrient requirements. We defined a minimal media for growth of Leptospira 

that supports the growth of each species of leptospira (Table 4.2).   

All models predicted that fatty acids were required for growth.    It is known that 

Leptospira are unable to synthesize fatty acids from pyruvate or acetate due to an 

absence of genes involved in fatty acid biosynthesis chain elongation (Johnson et al., 

1970, Stern et al., 1969).  However, the complete set of genes for beta-oxidation are 

present.    Therefore, fatty acids must be obtained through a given growth medium or 

from the solid-liquid interfaces in natural environments where fatty acids are located 

(Kefford and Marshall, 1984).  L. biflexa growth can be supported on long or short, 

saturated or unsaturated FAs (Johnson et al., 1969, Khisamov and Morozova, 1988) 

while L. interrogans requires the addition of long chain unsaturated FAs to be added to 

the growth medium in order to synthesize saturated FAs.  Also, in vitro growth of 

leptospires is greatly improved with the addition of glycerol as an additional carbon 

source beyond the fatty acids mentioned here (Staneck et al., 1973).  This observation is 

recapitulated by our models where addition of glycerol to the in-silico media increases 

predicted growth rates. 
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All models were capable of synthesizing all 20 amino acids except for 

asparagine.  This was determined to be due to a lack of asparagine synthase (EC: 

6.3.1.1, ASNS1).  It has previously been demonstrated that growth of Leptospira 

pomona is stimulated upon addition of L-asparagine to the media and L-asparagine was 

the only amino acid that markedly stimulated growth (Johnson and Gary, 1962).  

Furthermore, L-asparagine has long been recognized as a standard addition to 

Leptospira Medium.   

Metabolic models predicted also predicted auxotrophies for essential vitamins.  

All species were predicted to require thiamin (vitamin B1) for growth due to a lack of 

thiazole synthase (THZPSN, EC: 2.8.1.10).  Thiamin auxotrophy is a well-documented 

feature of leptospires. (Faine, 1959, Staneck et al., 1973). Furthermore, vitamin B12 was 

predicted to be required for growth of L. Biflexa.  This is because it lacks the genes 

required for B12 biosynthesis (described above).  All other models of Leptospira did not 

require B12 to be added to the in-silico minimal media indicating that they were capable 

of synthesizing this vitamin de-novo. 

The metabolic models predicted that all strains require a nitrogen source which 

was provided in the form of ammonium (Faine, 1999).  However, the pathogenic species 

were predicted to be capable of substituting ammonia with urea due to the presence of 

urease (EC: 3.5.1.5) which hydrolyzes urea into carbon dioxide and ammonium for use a 

nitrogen source.  It has previously been observed that one representative of each of five 

different pathogenic serotypes of Leptospira were capable of growing on medium 

containing urea in place of an ammonium salt as a nitrogen source (Kadis and Pugh, 

1974).   

4.3.5 Using genome-scale models to predict essential reactions and metabolites 
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Genome scale models have been used to predict essential genes and reactions 

in several organisms (Monk and Palsson, 2014) with up to 90% accuracy for well-studied 

organisms (Orth et al., 2011).  Using the minimal media formulation defined above, we 

used the models to systematically probe Leptospira metabolism using a systematic 

deletion of all metabolic reactions encoded in each model (Figure 4.4A).  The model for 

L. interrogans had the most predicted essential reactions (335) followed by L. licerasiae 

(327), L. Kmetyi (318), and L. biflexa (313).  Of these, the four models shared 264 

essential metabolic reactions (Figure 4.4B), while 112 reactions were uniquely essential 

to specific sets of species (Figure 4.4C).  The largest group of shared essential 

reactions fell into the metabolic subsystem of cofactor and prosthetic group biosynthesis 

(70 reactions), followed by amino acid metabolism (59 reactions) and cell envelope 

biosynthesis (20 reactions).  The unique essential reactions fell into different subgroups 

of species.  For example the three pathogenic leptospires shared 21 essential reactions 

that were dispensable in the saprophyte L. biflexa while 7 reactions were predicted to be 

specifically essential to L. biflexa but dispensable in the other three species.  The full list 

of model-predicted universally essential reactions and their catalyzing genes in each 

species is available in Supplementary Data File 2. 

In addition to an analysis of essential reactions, metabolic models can be used to 

study essential metabolites by removing their consuming reactions from the model, 

thereby predicting the effect of potentially growth inhibiting metabolite analogues (Kim et 

al., 2010b)  (Figure 4.4D).  We predicted essential metabolites for each species using 

the metabolic models and found that L. Interrogans had the most predicted essential 

metabolites (397) followed by L. kmetyi (386), L. licerasiae (384) and L. biflexa (383) for 

an average of 390 essential metabolites out of a total average of 950 metabolites in 
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each model (41%) this is in line with other organisms like H. pylori (40.9%) , but 

considerably more essential metabolites than for E. coli (24.8%) (Kim et al., 2007) and 

V. vulnificus (25.2%) (Kim et al., 2011).  However those studies examined essential 

metabolites using an in-silico complex media that included all amino acids, unlike the 

minimal media defined here which may have caused a larger number of essential 

metabolites to be predicted in the case presented here.  Among the essential 

metabolites we predicted here, 366 of them were shared among the four species and 44 

were unique to different sets of species.  For example, four metabolites were predicted 

to be specifically essential to L. interrogans.   

The analysis of essential metabolites relies on removing reactions based on their 

consumption of a particular metabolite. Therefore it is similar to the essential reaction 

analysis conducted above but also accounts for multiple consuming reaction deletions 

that may result due to the presence of a metabolite inhibitor.  Given the genetic 

intractability of several Leptospira species (Picardeau et al., 2001, Girons et al., 2000) 

using predicted essential metabolites to experimentally test Leptospira metabolism may 

be easier than exploring essential reactions (and knockout of their catalyzing genes).  

Indeed specific metabolite analog inhibition of Leptospires has already been 

documented as a way to distinguish species of Leptospira.  Johnson and Rogers 

demonstrated in 1964 that the guanine analog 8-azaguanine specifically inhibited the 

growth of pathogenic Leptospires while Saprophytic species were almost unaffected 

(Johnson and Rogers, 1964).  Therefore the in-silico predictions of metabolite inhibitors 

presented here might be a useful approach to delineate species or groups of Leptospira 

(eg. pathogenic species) for rapid identification and classification of individual Leptispira 

species based on their response to specific chemical inhibitors. 
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4.4 Discussion 

 The study of the Leptospira genus and its species-specific differences has 

progressed significantly since Edward Hindle found in 1925 that leptospires isolated from 

London tap water would grow in feces medium while pathogenic strains would not 

(Hindle, 1925).  Modern advances in DNA sequencing technologies and microbiology 

techniques have made the study of this difficult to culture organism tractable.  Here we 

report the first genomically-predicted metabolic network analysis (O'Brien et al., 2015) of 

Leptospira, comparing members of the pathogen, intermediate pathogen and saprophyte 

clades. These reconstructions allow comparison of the conserved metabolic capabilities 

(core metabolic network) and the unique metabolic capabilities (pan metabolic network) 

for the Leptospira genus.  Leptospira core metabolism is unique and distinct from other 

gram-negative organisms such as E. coli in several ways including a unique 

menaquinone biosynthesis pathway, alternate enzymes involved in folate metabolism, a 

unique lysine biosynthesis pathway and more. 

The most striking difference between the metabolism of the infectious Leptospira 

species examined and the non-pathogenic species L. biflexa was found in cofactor and 

vitamin biosynthetic capabilities.  The models of L. interrogans, L. L. Kmetyi and L. 

licerasiae have a complete vitamin B12 biosynthetic pathway that enables de novo B12 

synthesis from an L-glutamate precursor, while L. biflexa completely lacked this 

pathway.  These differences in biosynthetic capabilities may allow such pathogens to 

survive in nutrient-limited niches within the human body. These observations are 

consistent with previous observations that found that the pathogenic strain L. interrogans 

serovar Canicola can grow in vitro in the absence of vitamin B12 but not vitamin B1 

(Stalheim and Wilson, 1964).  In addition to biotin, our analyses identified urea utilization 
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as an important factor differentiating the pathogenic Leptospira interrogans from the 

other species.  Pathogenic leptospires can cause renal failure (Yang et al., 2001) and 

other studies have suggested that highly active urease influences the persistence of 

pathogens in the kidney (Braude and Siemienski, 1960, Lovell and Harvey, 1950). 

We used the metabolic models generated here to predict a minimal media 

capable of supporting of growth for all of the Leptospires.   The media required L-

arginine, thiamin, cobalamin (for L. biflexa) and medium and long chain fatty acids along 

with nitrogen, phosphorous, sulfur sources and essential ions to support growth.  This 

predicted media is consistent with established Leptospira culture conditions.  Next we 

used the models to predict essential reactions and metabolites for each species of 

Leptospira.   This analysis demonstrated that a large set of essential functions is shared 

between species of Leptospira is (70% of reactions and 88% metabolites), but that 

species-specific essentialities exist.  Such knowledge represents potentially new 

species-specific drug targets as well as new ways to test, classify and identify species of 

Leptospira among the genus. 

Metabolic models can also be used to answer longstanding questions of 

Leptospira biology.  One such questions relates to why L. interrogans grows more slowly 

than do intermediate pathogens and saprophytes, such as L. licerasiae and L. biflexa, 

which grow rapidly in defined EMJH media (Matthias et al., 2008).  The metabolic 

network model of L. interrogans was shown to lack L-glutamate oxidoreductase, an 

enzyme involved in recruiting ammonia as a nitrogen source (Murachi and Tabata, 1987, 

Bohmer et al., 1989), predicting a lower growth yield compared to the other Leptospira 

models in our in-silico minimal media analysis.   The model of L. biflexa predicted the 

greatest yield with this reaction because this Leptospira contains L-aspartate ammonia-
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lyase, allowing it to convert L-aspartate into fumarate and ammonia, in addition being 

capable of using this nutrient for biomass generation.  These observations could hint at 

one possible solution to the question of different growth rates, but further model-guided 

experimentation is required to validate this prediction.   

Further curation and experimental validation of the four metabolic models 

presented here for members of the Leptospira genus will open reconstruction 

opportunities for other related organisms in the spirochetes phyla including Borrelia spp., 

which cause Lyme borreliosis and relapsing fever, and Treponema spp., which cause 

syphilis, yaws, periodontitis and other diseases.  Such an approach will yield new, 

fundamental insights into the diverse metabolic capabilities of this phylum. 

 

4.5 Materials and Methods 

4.5.1 Metabolic network reconstruction procedure 

The genome-scale metabolic networks were reconstructed according to an 

established protocol (Thiele and Palsson, 2010a) Reactions and metabolites 

incorporated in each model are presented in Supplementary Data File 1. Briefly, the 

initial version of the network was first reconstructed using the ModelSeed platform 

(Devoid et al., 2013). Then, the metabolic network was refined based on the information 

present in the KEGG (Kanehisa et al., 2012)  and MetaCyc (Caspi et al., 2008) 

databases.  Genome annotation data was used to confirm gene-to-protein relationships 

and predicted functions for each gene incorporated in the network. Transporters were 

identified using the Transporter Classification Database (TCDB; www.tcdb.org (Saier et 

al., 2014)) and the program GBlast (Reddy and Saier, 2012) using parameters described 

previously (Buyuktimkin and Saier, 2015).  The biomass composition was determined 
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based on a generic gram-negative composition.  The amino acid and lipid compositions 

were tweaked based on Leptospira-specific literature where available.   

4.5.2 Simulations and conversion to a mathematical model 

Each model exists as an SBML file.  These files were used to perform 

simulations and constraint-based analyses using COBRApy (Ebrahim et al., 2013) and 

the GUROBI solver v6.0 (Gurobi Optimization, 2015). The constraint-based model 

consists of an S matrix with x rows and y columns, where x is the number of distinct 

metabolites (in all three compartments) and y is the number of reactions including 

exchange and biomass reactions. Each of the reactions has an upper and lower bound 

on the flux it can carry. Reversible reactions have an upper bound of 1000 mmol 

gDW−1 h−1 and a lower bound of −1000 mmol gDW−1 h−1, making them practically 

unconstrained, while irreversible reactions have a lower bound of zero.  The GapFind 

MILP algorithm (Satish Kumar et al., 2007) was used to identify required minimal media 

components.  Metabolic pathways were constructed using Escher (King et al., 2015a). 

All four models are available as SBML downloads in the BiGG database 

(http://bigg.ucsd.edu) (King et al., 2015c). 

4.5.3 Analysis of essential reactions and metabolites 

To simulate the effects of gene knockouts, each model was constrained using 

default values and the minimal media defined in this study.  All reactions in the model 

were knocked out one a time and growth was simulated by FBA. Reaction knockout 

strains with a growth rate above zero were considered non-essential.  Similar to reaction 

essential, metabolite essentiality was simulated by removing each metabolite one by 

one. This was accomplished by deleting all the outgoing (consuming) reactions around 

the metabolite to be removed. If the removal of a certain metabolite led to zero predicted 
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cell growth, the metabolite was deemed essential.  The essential metabolites were 

grouped into their relevant metabolic subsytems by taking the largest set of subsytems 

related to the reactions deleted. 
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Figure 4.1 Increase in Leptospira knowledge.  
Growth in leptospiral literature on NCBI pubmed over the last 20 years.  Bar values represent the 
number of new articles published per year on the topic of Leptospira.  B) Summary of four 
representative species of Leptospira selected for this study.  The strains range from non-
pathogenic (saprophytic, L. biflexa, to intermediately pathogenic, L. licerasiae and L. kmetyi, to 
pathogenic, L. interrogans).  C) Leptospira species genome and metabolic reconstruction 
properties.  Number of open reading frames (ORFS), metabolic enzyme encoding genes, 
reactions and unique metabolites. D) Complete and curated metabolic network reconstructions 
across the phylogenetic tree of life (http://sbrg.ucsd.edu/optimizing-genres) Bacteria (blue), 
archaea (green) and eukaryota (red). E) Leptospira (grey) are in the bacterial kingdom in the 
spirochaetes phylum.  The reconstructions presented here represent the first curated 
reconstructions of any species in the spirochaetes phylum and thus their content can be 
compared to other spirochaetes to aid future reconstruction efforts in this underrepresented 
phyla. 
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Figure 4.2. Comparison of reaction content among the four leptospira reconstructions. 
A) Venn diagram with shared reaction content and sets of reactions specific to unique 
models.  B) Reaction content shared among all four reconstructions is noted as core (green), 
reactions that are missing in at least one reconstruction are denoted as pan (orange).  The 
reactions are organized by metabolic subsystem. 
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Figure 4.3. Metabolic map of Leptospira interrogans vitamin B12 biosynthesis.   
A) The b12 biosynthesis pathway is displayed in detail.  Reactions shared by all four leptospires 
are marked in orange.  Reactions specific to individual species are marked in green.  B) A 
zoomed-in view of one reaction in the B12 biosynthesis pathway: precorrin-3B C17-
methyltransferase (PC17M, EC: 2.1.1.131) along with its catalyzing gene (cobJ) and the locus 
encoding this gene in L. interrogans.  C) All metabolic content and maps are available for 
download and exploration in the BiGG database (http://bigg.ucsd.edu) where all metabolic 
content can be compared between the species analyzed here and any other organism for which a 
genome-scale metabolic model is available. 
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Figure 4.4. Essential reactions and metabolites predicted by genome-scale modelling.  
A)  Genome scale models can be used to predict essential reactions (green).  All essential 
reactions were predicted across the four Leptospira species of which 264 were universally 
essential across all species (B) and 112 were unique to individual sets of species (C). (D) 
Genome scale models can also predict essential metabolites (orange) by computationally 
removing consuming reactions of each metabolite in the network.  All essential metabolites were 
predicted across the four Leptospira species of which 366 were universally essential across all 
species (E) and 44 were unique to individual sets of species (F). The essential reactions were 
group by metabolic subsystem. Abbreviations: P: Cofactor and Prosthetic Group Metabolism, A: 
Amino Acid Metabolism, W: Cell Wall/Membrane/Envelope Metabolism, L: Lipid Metabolism, N: 
Nucleotide Metabolism, C: Carbohydrate Metabolism, E: Energy Production and Conversion, TO: 
Transport, Outer Membrane, TI: Transport, Inner Membrane and O: Other. 
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5.1 Abstract 

Escherichia coli strains are widely used in academic and applied research as well 

as in biotechnology for production of various compounds. Despite its status as a model 

organism, strain-specific differences and their underlying contributing factors are still not 

well characterized. These differences have a major impact on cell physiology and for the 

applied purposes of synthetic biology, metabolic engineering, and process design. In this 

study, strain-specific differences are quantified in seven widely-used applied 

biotechnology strains of E. coli (BL21, C, Crooks, DH5a, K-12 MG1655, K-12 W3110, 

and W) using genomics, phenomics, transcriptomics and genome-scale modelling to 

guide the choice of strain for a given product. Even given the genetic similarity of the 

strains, metabolic physiology and gene expression varied widely with downstream 

implications for productivity, product yield, and titre. Further, these differences can be 

linked to differential regulatory structure. Analysing high flux reactions and the 

expression levels of their encoding genes revealed a quantitative link between these 

sets and show that often, these sets are correlated with strain-specific caveats. 

Integrated modelling also revealed that certain strains are better suited to produce a 

given compound or express a desired construct considering native expression states of 

pathways that enable high-production phenotypes. The result of this study is a resource 

comparing strains in an important model species and a general strategy for choosing a 

host strain or chassis selection for applied biotechnology. 

5.2 Introduction 

Escherichia coli dominate the world of biological sciences as a model prokaryote 

for physiology studies, as an important pathogen, and as a key host for metabolic 

engineering and synthetic biology. This diversity in lifestyle and application reflects the 
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high level of genetic diversity within the species. Thanks to the genomics revolution in 

microbiology that has enabled sequencing of diverse strains for any species, it is now 

know that the genomes of different strains of E. coli range in size from 4.5 to over 5.5 

Mbp, and the species has a pan-genome composed of more than 15,000 unique 

proteins (Lukjancenko et al., 2010, Gordienko et al., 2013). Part of this large pan-

genome consists of unique metabolic capabilities that have been shown to have 

important implications for infectious disease studies and pathogenic niches(Monk et al., 

2013, Baumler et al., 2011, Vieira et al., 2011). This metabolic diversity is likely to be 

equally impactful on synthetic biology applications. The massive genomic diversity of the 

E. coli species provides a deep pool of strains to use for basic research and for potential 

host strains to be chosen for metabolic engineering and synthetic biology applications. It 

also raises an important question: what range of phenotypic behaviours exist and how 

can these be leveraged to further exploit E. coli as a model organism and host strain?  

A review of industrial biotechnology publications and patents that use E. coli as a 

host strain yielded seven representative E. coli strains that are used often and are good 

candidates for detailed study: the K-12 strains MG1655, W3110, and DH5a, as well as 

strains BL21, C, Crooks and W (Figure 5.1A). The selection of both closely related 

strains (K-12 strains) and more distantly related strains also allowed an examination of 

whether close genetic relatedness is a useful predictor of physiological relatedness and 

production potential. The existing body of work evaluating different E. coli strains in 

metabolic engineering and synthetic biology(Archer et al., 2011, Arifin et al., 2014, Yoon 

et al., 2012, Vijayendran et al., 2007, Marisch et al., 2013, Chae et al., 2010) 

demonstrated a need for the comprehensive analysis of strain-specific differences. 

Despite significant success in engineering E. coli for industrial production of chemicals 
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and proteins(Lee et al., 2012b, Kim et al., 2015), there is no unified fundamental basis 

for selection of one strain over another for a given metabolic engineering project or 

expression of a given construct. Previous studies have shown that the choice of host 

strain for production of a given compound has a significant impact on results(Na et al., 

2013, Kim et al., 2014) and up until now represented a major brute force screening 

effort. Thus, an important question remains to be addressed: what strain of E. coli is best 

suited for production of a desired product?  

Here, a comprehensive comparison incorporating transcriptomics, genomics, and 

phenomics with genome-scale modelling of seven common E. coli production strains is 

presented and a mechanistic basis for the selection of a given E. coli strain for 

production of particular compound is established. The data and models are further used 

to develop a general strategy for synthetic biology host strain selection that can be 

applied to any production organism with sufficient genetic diversity. The work presented 

here establishes a workflow and represents a resource for similar efforts with other 

organisms and/or additional omics data types. 

5.3 Results 

5.3.1 Whole-genome sequencing and comparative analysis 

 

Seven strains of E. coli were sequenced to comprehensively compare and 

examine their strain-specific genetic differences. Accurate genome sequences were 

determined to be essential due to recent studies that demonstrate several differences 

between the reference sequence of E. coli K-12 MG1655 and the stock strains of 

laboratory E. coli available from culture collections (Freddolino et al., 2012). These 

differences were shown to have substantial physiological effects that could confound 

experimental results and have downstream impacts on bioprocess design(Nahku et al., 
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2011). One of the widely-used E. coli strains, C, had no public genome sequence 

available, thus whole genome sequencing was performed to establish the genetic parts 

list for this strain (see Methods). The E. coli C draft genome was predicted to be 4.54 

Mbp in size and has 4,424 open reading frames.  

The whole genome sequences of the seven strains were then used to classify 

the strains based on their genetic content. First, a classical MLST scheme (Jaureguy et 

al., 2008) was used to assign the E. coli strains to phylogroups. All strains were 

assigned to group A, containing primarily safe, commensal strains, except for E. coli W 

that was assigned to group B1, a group that contains several pathogenic members. A full 

genome alignment and comparison of conserved proteins was also performed 

(Methods). A total of 6,626 unique protein-coding sequences were discovered across all 

seven genomes. Of these, 3,316 genes were shared between all seven strains, forming 

a “core” genome. Of the non-core genes, 1,493 were present in 2-6 of the strains and 

1,817 of the genes were unique to a single strain alone (Figure 5.1B). A full-genome 

DNA alignment showed that the E. coli K-12 strains, MG1655, W3110, and DH5a were 

all part of the same clade. E. coli BL21 and C were also part of a similar clade, and E. 

coli Crooks and W strains were separate from the others with E. coli W being the most 

distantly related strain (Figure 5/1C). 

5.3.2 Phenotypic characterization of host strains highlights physiological 

differences 

To assess growth dynamics and by-product secretion rates, phenotypic 

characterizations were performed in aerobic and anaerobic M9 minimal media 

(Methods, Supplementary Figure 4). Major differences were observed between the 

strains during exponential growth phase. Aerobically, the growth rates ranged from 0.61 
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h-1 (W3110) to 0.96 h-1 (W and Crooks), with a mean growth rate of 0.80 ± 0.12 h-1, see 

Table 1. Anaerobically, DH5a grew slowest (0.18 h-1) and W grew fastest (0.90 h-1), with 

a mean growth rate of 0.53 ± 0.25 h-1. This difference is stark given that the strains share 

more than 95% of genes in central metabolism at greater than 95% amino acid identity 

(see Methods) indicating vastly different utilization of similar central metabolic genetic 

content. 

While the overall biomass and by-product yields between strains were similar, 

the strains exhibited different organic acid secretion profiles. In aerobic conditions, four 

of the strains, C, DH5a, MG1655, and W3110 exhibited acetate overflow metabolism in 

this well-aerated experiment (Figure 5.1D) in agreement with past studies (Archer et al., 

2011, Marisch et al., 2013). Anaerobically, all strains exhibited common mixed acid 

fermentation with production of acetate, formate, ethanol, and succinate. Only two 

strains, BL21(DE3) and DH5a, produced lactate anaerobically (Figure 5.1E). This 

physiological characterization clearly shows that strains differ in their propensity to make 

certain molecules, e.g., lactate, an industrially-relevant biologically-produced chemical, 

when growing in their native state (Jang et al., 2012). 

The rate of substrate consumption in the different strains (Table 1, 

Supplementary Figure 4) also exhibited significant variation (a 1.9 and 3.6 fold 

difference aerobically and anaerobically, respectively), a fact that has important 

implications for productivity and bioprocessing costs. 

5.3.4 Strain-specific genome-scale models (GEMs) of metabolism reveal 

differences in metabolic capabilities 

The large physiological differences across the selected E. coli strains motivated 

the construction of seven strain-specific GEMs (Supplementary Data Files 1 and 2) 
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that were used to integrate, model, and contextualize the measured physiological data. 

The models were first validated by demonstrating that they could recapitulate a 

functional flux state by setting the measured physiological data (i.e., inputs and outputs – 

glucose uptake rate, growth rate, byproduct production rates). All models passed this 

test, indicating consistency between the models and physiological data (Supplementary 

Figure 5). Next, each model’s metabolic content was compared to classify reactions as 

part of “core” or “pan” metabolic capabilities (Supplementary Table 2 and 3). The core 

content (reactions present in all seven strains) consisted of 1,265 genes, catalysing 

2,315 reactions that utilize 1,776 different metabolites. The total content, present in at 

least one strain, but not shared among all, consisted of 2,526 reactions – indicating that 

211 reactions were variably present in different strains. The average model had 2,425 

+/- 17 reactions. In a recent study of 55 strains of E. coli (Monk et al., 2013) including 

pathogens and environmental isolates, the average model had 2,337 +/- 52 reactions, 

indicating that there was more diverse metabolic content among the 55 strains than 

exists between the seven industrially useful strains examined here. However, several of 

the differences between the seven strains are present in subsystems important for 

metabolic engineering, including the pentose phosphate pathway and amino acid 

biosynthesis. For this reason, strain-specific GEMs of metabolism were used to examine 

maximum theoretical yield of growth precursors and industrial chemicals to explore the 

functional differences and metabolic capabilities of each strain. 

5.3.5 Strain-specific metabolic models highlight differences in theoretical yields of 

industrially-relevant compounds 

The theoretical yields of industrially-relevant native and non-native compounds 

were examined by utilizing strain-specific models. A total of 245 heterologous pathways 
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for the production of non-native compounds from a recent study (Campodonico et al., 

2014) were integrated with each strain-specific model to compare theoretical yields. The 

yields were calculated using glucose as the sole carbon source in both aerobic and 

anaerobic conditions (Supplementary Data File 3). Overall, the majority of the 

maximum theoretical yields were similar across strains (83% of pathways had identical 

maximum yields across the seven strains). However, several differences were identified 

between the seven strains. For example, the model of E. coli BL21 is unable to produce 

acrylic acid from a specific heterologous pathway (pathway 23) because it lacks N-

acetylglucosamine kinase. This means that it cannot make N-Acetyl-D-glucosamine 6-

phosphate from N-acetyl D-glucosamine (acgam) – a requirement for this heterologous 

pathway to produce acrylic acid. Also, DH5a cannot make 3-hydroxypentanoic acid via a 

predicted heterologous route (pathway 223) due to the lack of homocysteine S-

methyltransferase encoded for by mmuM (Song et al., 2015). A histogram of differential 

yield by pathway in each strain is given in Supplementary Figure 6.  

While most strains have equal theoretical yields, some of the heterologous 

pathways displayed strain-specific differences (591 of the 3,430 total pathway (245), 

strain (7) and condition (2) combinations). In this variable set, E. coli W and Crooks often 

had the greatest yield for a given product (max yield in 194 and 102 pathways, 

respectively, out of 245 pathways in aerobic and anaerobic conditions), while strains C 

and BL21 (max yield in 40 out of 245 pathways in aerobic and anaerobic conditions) 

often had decreased yields. Strain BL21 had reduced yields for production of all 

compounds in aerobic conditions due to the lack of 6-phosphogluconolactonase (PGL) 

reaction activity (Meier et al., 2012) in the oxidative pentose phosphate pathway (PPP), 

encoded by the gene pgl. This requires an alternate pathway for production of ribulose-
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5-phosphate that does not generate NADPH, one of the primary purposes of the 

oxidative PPP (Fan et al., 2014) (Supplementary Figure 7).  

Analysis using strain-specific models revealed several increased maximum 

theoretical yield advantages. E. coli Crooks and W had a 4-12% greater yield of 2-

oxobutanoate on five of the different heterologous pathways in anaerobic conditions 

because of an alternate isoleucine biosynthesis pathway (see Supplementary Text). 

Furthermore, models of BL21 and Crooks had 21% higher yield of 1,4-butanediol in 

anaerobic conditions for two of the heterologous pathways (i.e., pathways 176 and 177) 

due to the ornithine aminotransferase reaction (see Supplementary Text). These 

differences in maximum theoretical yields demonstrate that major differences in strain 

behavior exist based solely on internal reaction content and the unique metabolic 

network structure of each strain. Next, to gain a deeper understanding of strain specific 

behavior, the measured physiological data was integrated with each strain-specific 

model. 

5.3.6 Integration of phenomics with strain specific models classifies shared and 

strain-specific high flux pathways  

The analysis of theoretical yields presented above represents the maximum (i.e., 

ideal) capabilities of each strain. In vivo wild-type strain-specific behaviour can be 

analysed by integrating the measured strain-specific physiological data with its 

corresponding model. The constraint-based modelling techniques of flux variability 

analysis (FVA) (Mahadevan and Schilling, 2003a) and Monte Carlo Markov Chain 

(MCMC) sampling (Schellenberger and Palsson, 2009b) were performed to determine 

minimum, maximum, and likely flux through each reaction in each strain based on the 

imposed physiological constraints (for example E. coli C, Figure 2A, Supplementary 
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Figure 8, Supplementary Data File 5). The resulting probable flux distributions were 

used to classify reactions that must carry high flux (Methods) to achieve the measured 

physiological secretion and growth rates, and were compared in both aerobic (Figure 

5.2B) and anaerobic (Figure 5.2C) conditions.  

High flux reactions were compared across the different strains (Figure 5.2D). 

Aerobically, there were 62 reactions classified as high flux in at least one strain. Of 

these, 37 were shared among all seven strains. Most of the shared reactions were 

involved in glycolysis, the TCA cycle, and the PPP (Supplementary Data File 4). In 

addition, reactions involved in glutamate metabolism were classified as high flux across 

all seven strains. The remaining 25 reactions were classified as high flux in at least one 

strain, but not shared by all. Some of these differences were obvious on a genetic level – 

for instance, five reactions in the oxidative PPP were classified as high flux in all strains 

except BL21, because, as discussed above, BL21 lacks the pgl gene, disabling flux 

through the oxidative PPP in this strain. Other differences in high flux reactions were 

related to differences in physiological behaviour. For example, acetaldehyde 

dehydrogenase was only a high flux reaction in two strains (DH5a and MG1655 – two of 

the strains that exhibited acetate overflow metabolism). Acetate secretion negatively 

correlated with flux through TCA cycle reactions, including citrate synthase (CS), 

aconitase (ACONTa/b), and isocitrate dehydrogenase (ICDHyr) (Supplementary Data 

File 7, Supplementary Figure 9). Under anaerobic conditions, there were a total of 64 

high flux reactions classified in at least one strain. Of these, 29 reactions shared high 

flux across all seven strains. These included predominantly glycolysis reactions and 

pentose phosphate pathway reactions as well as pyruvate formate lyase (PFL).  
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5.3.7 Transcriptome analysis classifies shared and strain-specific gene 

expression profiles 

  

To delve deeper into strain-specific behaviour and the observed genetic and 

physiological differences, RNA-seq was used to collect genome-wide transcriptomic 

profiles of each strain at exponential phase in aerobic and anaerobic conditions 

(Supplementary Figure 10, Supplementary Data File 8). Pairwise differential 

expression was compared between each of the seven strains (Supplementary Figures 

11 and 12, Supplementary Data Files 9 and 10) and correlation coefficients were 

calculated to quantify the level of similarity between full expression profiles of shared 

genes for the different strains (Figure 5.3A and B). A PCA was also performed that 

focused on metabolic genes (Figure 5.3C and D). The analysis highlights major 

differences in expression states. For example, BL21 displayed significantly different 

expression profiles in anaerobic conditions due to high expression of TCA cycle genes. 

This difference is most likely due to a nonsense mutation in the gene encoding the 

global oxygen-responsive transcriptional regulator FNR (Pinske et al., 2011) making this 

strain’s gene expression behave more similarly to an aerobic state. Further differences 

are discussed in the Supplementary Text. 

As with reaction flux, gene expression values were analysed for each growth 

condition and classified into highly expressed gene sets (Methods). This analysis 

identified a group of genes that were highly expressed species-wide. In aerobic 

conditions, 199 metabolic genes were classified as highly expressed in at least one of 

the seven strains (Supplementary Figure 13, Supplementary Data File 11), but only 

11 of these genes were significantly highly expressed across all strains. Three of these 

were involved in glycolysis: enolase (eno), fructose-bisphosphate aldolase (fbaA), and 

glyceraldehyde-3-phosphate dehydrogenase (gapA). In anaerobic conditions, 174 
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metabolic genes were classified as highly expressed in at least one of the strains, and 

23 of the genes were highly expressed in all seven strains including eno and fbaA as 

well as acetaldehyde dehydrogenase (adhE) and methionine adenosyltransferase 

(metK).  

5.3.8 Transcription factors involved in differential regulation illuminate differential 

regulatory strategies  

 

The major differences observed in transcription profiles demonstrate unique 

regulatory mechanisms between strains. Knowledge of transcriptional control is directly 

applicable to bioprocessing and synthetic biology applications for tuning gene 

expression levels. Most transcription factors (TFs) have been characterized in E. coli K-

12 MG1655, thus gene expression profiles between this strain and the other six were 

compared in both aerobic and anaerobic conditions. An enrichment analysis of TFs 

known to regulate gene expression was performed (see Methods). There are 196 TFs 

with known regulons available in Regulon DB (Huerta et al., 1998). For each strain, an 

average of 28±3 TFs were enriched for differential control of expressed genes in aerobic 

conditions and 29±6 TFs were enriched in anaerobic conditions (Supplementary Data 

File 12). An informative example is that of the galactitol regulon which includes 

gatYZABCD and is negatively repressed by the gatR TF (Nobelmann and Lengeler, 

1995). The gatR TF is highly enriched for differential expression in all of the strains 

except W3110. In MG1655 and W3110 the gatR gene has an IS3E insertion leading to 

constitutive expression of these genes (Nobelmann and Lengeler, 1996). This aberrant 

regulation leads to expression and translation of gat genes that are ultimately 

responsible for nearly 1% of the wild-type E. coli K-12 MG1655 proteome (Li et al., 

2014). In the other strains, gat gene expression is low due to repression by gatR.  
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Other TFs that were significantly enriched for differential expression include, in 

aerobic conditions: arcA (anoxic redox control), cra (the catabolite reporessor activator), 

and gadE (glutamic acid decarboxylase involved in maintenance of pH homeostasis), 

and anaerobically: fnr (mediates aerobic to anaerobic transistion), iHF (integration host 

factor, responsible for maintaining DNA architecture), and purR (controls purine 

nucleotide biosynthesis) (Supplementary Table 4). Examining TF enrichment between 

strains identifies unique, strain-specific control mechanisms for different genes, even 

those that are conserved between strains. Further analysis will aid in determining 

differential regulatory mechanisms between strains of E. coli with the ultimate goal of 

manipulating gene expression to enhance metabolic engineering strategies.  

5.3.9 Intersection of high flux pathways with highly expressed genes 

A quantified correlation between high flux reactions and gene expression is key 

to understanding overall cell physiology and is of great interest to industrial 

biotechnology as overexpression of genes desired to carry high flux is a widely-adapted 

approach to increase production of a target molecule (Lee et al., 2012a). In this study, 

50±8% of model-determined high flux reactions also had encoding genes that were 

highly expressed. This overlap occurred significantly more often than random (empirical 

p-value < 0.001, permutation test, see Methods, Supplementary Figure 14). Several 

genes, such as eno, fbaA, and gapA, were consistently high flux and highly expressed in 

all seven strains (Figure 5.4A, Supplementary Data File 13). Other gene/reaction pairs 

were less conserved, including those involved in amino acid metabolism such as ilvD, 

serC, and aspC, perhaps indicating large differences in amino acid use and biosynthesis 

between each of the strains. While a correlation between high flux reactions and gene 

expression is observed, it is unsurprising that several genes/reactions do not correlate 
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as recent work has demonstrated that gene expression can be a poor indicator of 

enzymatic activity (Machado and Herrgard, 2014). 

Prior to determining which strain might be best suited to produce a given target 

compound, an analysis was performed to answer the question of whether GEMs can be 

used to a priori predict changes in gene expression from one state to another. Using 

physiological data in aerobic and anaerobic conditions, the fluxes were predicted for a 

shift from aerobic to anaerobic conditions (Supplementary Figure 15). Overlap between 

model-predicted changes in reaction fluxes and experimentally observed changes in 

gene expression were analysed. On average, the metabolic models correctly predicted 

major changes in flux during a shift from aerobic to anaerobic conditions for 82±8% of 

the major reaction flux changes (30±12 genes per strain, see Supplementary Table 5 

and 6, Supplementary Data File 14). The results of this analysis indicated a level of 

predictability suitable for de novo strain-specific prediction in production strains 

(examples are given in Figure 5.4B-C). 

5.3.10 Model-driven analysis of production potential 

An analysis was performed to determine the strain best suited for the production 

of a given compound as well as expression of a given construct from the set of E. coli 

strains examined in this study. A common metabolic engineering approach is to increase 

expression of the genes in a pathway of interest that lead to a product (Lee et al., 2007, 

Lee et al., 2012a, Huo et al., 2011). Based on this approach, it was reasoned that strains 

with natively high expression in a pathway of interest are likely better poised to produce 

a given product, as they would require less interventions to achieve a production goal. 

Therefore, genome-scale modelling was integrated with expression data to determine 

strains that are inherently best poised for production of a given product. Strain-specific 
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models were used to predict the optimal flux distribution for production of two different 

sets of compounds in aerobic and anaerobic conditions: 1) all 20 amino acids using 

native E. coli pathways and 2) 20 non-native compounds using 245 heterologous 

pathways (Campodonico et al., 2014) (Supplementary Data File 15). Combining 

predicted fluxes with gene expression values allowed for the generation of a relative 

production potential score (‘R-score’, see Methods) that gauges a strain’s suitability for 

producing a given compound (e.g., Figure 5.5C and 5D). 

An integrated analysis using transcriptomic data and genome-scale modelling 

revealed that each of the seven strains may be preferentially suited for production of 

different target metabolites. Strains that most often had an R-score >1 for amino acid 

production were MG1655 and DH5a for aerobic conditions (12/20 and 5/20, respectively) 

and MG1655 and W for anaerobic conditions (7/20 and 3/20, respectively). The targeted 

product also highlighted strain-specific differences. For example, in aerobic amino acid 

over-production (Figure 5.5A), it was found that E. coli W was predicted to be better at 

production of pyruvate-derived amino acids leucine and valine due to a more than two-

fold greater expression of leuC, leuD, and ilvE compared to the other six strains. 

Variations in production potential were also prevalent across the 245 heterologous 

pathways examined (corresponding to one of 20 different industrial compounds, some 

targeted products originated from multiple native precursors in the cell). Similarly, R-

scores >1 were distributed across all seven strains examined. K-12 MG1655 had the 

highest number of R-scores >1 for 94 pathways aerobically, and W and C had 42 and 41 

under anaerobic conditions, respectively (Figure 5.5B).  

Grouping the 20 different targeted heterologous products leads to a further 

characterization based on which strains were best suited for production of a particular 
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class of compound. For example, strain W was best suited for production of 5/20 

compounds (2-methyl-1-butanol, 1-butanol, 3-methyl-1-butanol, 2-keto-isovaleric acid, 

and 2,3-butanediol) independent of the heterologous pathway used (Supplementary 

Table S7). In contrast, the best production strain for 1,4-butanediol varied based on the 

heterologous pathway used. For example, strain K-12 MG6155 had high expression of 

2-oxogluterate dehydrogenase encoding genes sucA, sucB, and lpd (2-fold greater than 

expression for strains C, Crooks, DHa, and W3110) that produce succinyl-CoA, a branch 

point for several of the pathways leading to 1,4-butanediol production. However, other 

heterologous pathways leading to production of 1,4-butanediol start from 4-aminobutanal 

and DH5a was predicted to be best suited for these pathways.  

Extending the model-driven analysis to selection of host strains (i.e., chassis) for 

synthetic biology applications revealed strain preferences based on amino acid 

requirements of a given construct. Coding sequences of synthetic biology constructs 

were obtained from the registry of standard biological parts and their amino acid 

composition were calculated. Further, the overall amino acid makeup of the E. coli 

proteome is stable (Li et al., 2014) and this trend holds true for amino acid frequencies 

across bacteria (Gilis et al., 2001, Hormoz, 2013, Latif et al., 2015). Thus, constructs 

with amino acid compositions that are significantly over-represented may require higher 

demand for a given amino acid if the goal is to significantly produce the contract as a 

large part of the host strain’s proteome. Analysing this concept, the R-score analysis for 

amino acid production capability was applied to each construct by comparing the overlap 

of a strain’s highly expressed amino acid biosynthetic pathways (found to be 1-4 amino 

acid pathways per strain based on the R-score) with those overrepresented in each 

construct. This approach led to a prediction of which strains may be best at expressing a 
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certain synthetic biology construct considering both construct required and total amino 

acid pathways enriched in a strain (Supplementary Figure 16). Under aerobic 

conditions, strain DH5a was predicted to be the best producer for the most constructs 

(568/3,983 or 14% of constructs) due to its inherent high expression of the biosynthetic 

pathways for tyrosine (Y) and phenylalanine (F) (amino acids that are often small 

fractions of the proteome, Supplementary Figure 16A) followed by BL21 (473/3,983 or 

12% constructs) for similar reasons. This result aligns well with the fact that DH5a is 

often preferred and used in cloning applications (Taylor et al., 1993, Song et al., 2015) 

and BL21 is popular for expression of recombinant proteins (Robichon et al., 2011, 

Marisch et al., 2013). 

In summary, this approach emphasized the importance of strain-specific 

advantages in terms of network structure and native expression states that should be 

considered when choosing a host strain or chassis. Full results are provided in 

Supplementary Data Files 15 and 16.  

5.4 Discussion 

This study establishes a workflow to compare and presents a resource on the 

important bacterial species E. coli that was used to guide selection of the best host for 

applied biotechnology. The omics data generated here addresses a gap in E. coli 

knowledge comparing this well-known species and in strain-specific information for 

seven industrially important strains grown in two well-defined conditions. This unified 

multi-omics dataset was integrated with GEMs to characterize strain-specific and 

species-wide properties of E. coli by comparing metabolic fluxes, gene expression, and 

differential regulation across the strains. New, quantified relationships between these 

datasets were drawn, along with an evaluation of the production potential of the strains 
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based on maximum theoretical production yields and strain-specific native expression 

states. The compendium of data, GEMs, and production pathway analyses presented 

here provide the basis for analysing the overall diversity and production capabilities of 

the seven E. coli strains studied. Key findings are available in Supplementary Table 8. 

A number of important strain-specific and species-wide properties for E. coli were 

identified. The K-12 strains are genetically very similar considering the overall genetic 

diversity of the 7 strains, yet their expression profiles under aerobic conditions showed 

significant variability (Table 5.1). Previous studies have shown that W3110 has an 

amber mutation (stop codon) at position 33 in rpoS which is not found in MG1655 

(Vijayendran et al., 2007). This mutation has been shown to reduce RpoS activity 

(Subbarayan and Sarkar, 2004). RpoS is one of the primary global regulators of E. coli’s 

complex regulatory network. Thus, a small change can have a large effect on cellular 

expression patterns. This highlights the need to better understand and elucidate 

transcription factor network architecture in even closely related strains of E. coli; this 

data resource enables such a study. 

The phenotypic differences observed between the strains, despite the fact that 

they have largely similar genomes and metabolic reaction networks compared to other 

sequenced E. coli strains (Monk et al., 2013, Baumler et al., 2011, Vieira et al., 2011), 

were among the most striking results from this study. The glucose uptake rates 

measured for the different strains were observed to vary more than 3-fold in anaerobic 

conditions. If the measured wild-type uptake rates can be even partially conserved when 

generating a bioprocessing strain, selection on this criterion alone could have major 

implications for strain productivity and bioprocess titres (Arifin et al., 2014). Also, there 

are a number of cases where some strains have additional or are lacking certain 
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metabolic enzymes. The maximum theoretical production analysis presented here 

(Supplementary Figure S5) demonstrates that these details are crucial to consider 

when selecting strains for a metabolic engineering project. Further, the pan-genome of 

this set is relatively small compared to all E. coli strains which have been sequenced 

thus far (Gordienko et al., 2013), implying that other strains may have pathways and 

enzymes available to mine for production purposes. Another key result was the 

identification of a 50±8% overlap of high-flux reactions with highly-expressed genes that 

is in line with other studies (Holm et al., 2010, Ishii et al., 2007). This significant overlap 

defines an expected outcome for such data sets. Failure modes may be unnecessarily 

expressed for a given bioprocess and are therefore targets for expression reduction. 

Maximum theoretical production and the native expression state of the cell are 

important considerations when choosing a strain. The case studies presented here show 

that specific strains have unique flux and gene expression patterns that, in turn, may 

affect the production capacity of compound or construct. The native expression of genes 

within a pathway of interest is not the only factor influencing the generation of a 

successful production strain. For example, E. coli strain DH5a is often used in cloning 

applications due to an endA1 mutation that inactivates an intracellular endonuclease 

(Taylor et al., 1993) and BL21 is well established in recombinant protein production due 

to a lack of the Lon and OmpT proteases (Ratelade et al., 2009). Thus, aspects such as 

transformation efficiency (Liu et al., 2014c), phage resistance (Furukawa and 

Mizushima, 1982), product tolerance (Lennen and Herrgard, 2014) and other traits must 

also be considered. Furthermore, maximizing theoretical yield does not necessarily lead 

to increases in titre or productivity. However, the workflow presented here, combining 

GEMs and omics data, could result in significant time and cost savings by reducing the 
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number of genetic modifications necessary to develop high-level production strains or 

find a host to produce a construct of interest in a sufficiently high amount.  

The new multi-omics data set provided in this study was generated using 

consistent and defined conditions for multiple strains of a species. Combined with the 

integrated analysis performed here, it will be of great use for industrial, basic biology, 

and human health applications. For example, this data and the R-score method could be 

applied to examine the production of reactive oxygen species across different strains to 

determine the impact on antimicrobial treatment (Brynildsen et al., 2013a, Adolfsen and 

Brynildsen, 2015). This unified and normalized data set allows one to quantitatively 

compare strains and represents a comprehensive compendium of unique strain 

characteristics. The generation of similar datasets integrated with genome-scale 

modelling will enable rational strain-selection and design for metabolic engineering and 

synthetic biology projects in other common production host organisms. 

5.5 Material and Methods 

5.5.1 Bacterial strains, media and growth conditions 

Escherichia coli strains E.coli C (DSMZ 4860), E. coli Crooks (DSMZ 1576), E. 

coli DH5α (DSMZ 6897) E. coli W (DSMZ 1116), E. coli W3110 (DSMZ 5911) were 

obtained from DSMZ-German Collection of Microorganism and Cell Cultures; E. coli 

BL21 (DE3) was purchased as competent cells from Agilent (Agilent Technologies Inc., 

USA), E. coli K-12 MG1655 (ATCC 700926). All strains were cultured in M9 minimal 

medium (Miller, 1972) containing Na2HPO4 x 7H2O (6.8 g), KH2PO4 (3 g), NaCl (0.5 g), 

NH4Cl (1 g), MgSO4 (2 mmol), CaCl2 (0.1 mmol), trace elements, Wolf’s vitamin solution 

(Atlas, 2010) and glucose (2 g L-1). Anoxic M9 minimal media with glucose was obtained 

by flushing solution with oxygen free nitrogen (95%). Overnight cultures from single 
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colonies of each of seven E. coli strains were diluted to a starting optical density 

(OD600) of 0.01. Cultures were grown in 250 ml flasks or 300 ml oxygen-free sealed 

bottles containing 50 ml glucose-M9 minimal media in a shaking incubator at 37°C and 

250 rpm. 

5.5.2 Growth rates and analytical measurements 

Bacterial growth and cell numbers were determined by OD600 measurements 

using an Evolution 220 UV-Visible spectrophotometer (Thermo Fisher Scientific, 

Germany) with 10 mm optical-path cuvettes. Growth curves of the seven strains were 

performed in glucose-M9 minimal media. For growth curves, the starter cultures of all 

strains were pre-adapted to the medium to be tested, for 72 h. Samples were taken in 

regular intervals and OD600 was measured as three independent replicates.  The 

concentration of glucose and organic acids (acetate, formate, lactate, succinate, ethanol) 

were determined by high-performance liquid chromatography (HPLC), using Ultimate 

3000 pump, (Dionex, USA)  fitted with an Animex HPX- 87 H column (300 × 7.8 mm) 

(BioRad, USA) eluted isocratically with 5 mM H2SO4 at 30°C and a flow rate of 0.6 

ml.min-1. The compounds were detected using UV/VIS (Dionex UVD170U/340U) and 

refractive index (Shodex RI-101, Japan) detectors. Ethanol production rates had to be 

estimated for 4 of the 7 strains (C, Crooks, W, W3110) using the measured acetate 

production rate as a proxy as there was a complication measuring ethanol in some of the 

samples for these strains (likely due to evaporation). This assumption was justified given 

that the accurate measurements for ethanol in the 3 other strains resulted in 

approximately equal acetate and ethanol production rates. 

5.5.3 Genomic DNA extraction and DNA sequencing 
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Genomic DNA was extracted from 5 ml of overnight cultures of seven E. coli 

strains using QIAamp DNA Mini Kit (QIAGEN, Germany). The genomic libraries were 

generated using the TruSeq DNA Sample Preparation Kit (Illumina Inc., USA). Briefly, 1 

µg of bacterial genomic DNA was fragmented for 40s using Crimp Cap microTUBE and 

Covaris AFA System (Covaris E220, USA). The ends of fragmented DNA were repaired 

by T4 DNA polymerase, Klenow DNA polymerase, and T4 polynucleotide kinase. The 

Klenow exo minus enzyme was then used to add an 'A' base to the 3' end of the DNA 

fragments. After the ligation of the adapters to the ends of the DNA fragments, samples 

were subjected to 2% 1×TAE agarose gel electrophoresis. DNA fragments ranging from 

300 - 400 bp were recovered from the gel and purified using the MinElute Gel Extraction 

Kit (QIAGEN, Germany). Finally, the adapter-modified DNA fragments were enriched by 

PCR and normalised to the final concentration of 10 nM. The libraries were sequenced 

using the Illumina MiSeq platform with a paired-end protocol and read lengths of 150 nt. 

Differences between reference sequences and those determined were analyzed with 

breseq. Genome alignments were performed with the MAUVE suite v2.3.1 (Darling et 

al., 2010).  Genome ring images were generated with BRIG v0.95 (Alikhan et al., 2011) 

5.5.4 Total RNA extraction and mRNA enrichment 

Cells were harvested from aerobic and anaerobic cultures of seven E. coli strains 

grown to an OD600 of 0.6 (exponential phase). Cultures were divided into 10 ml aliquots 

and were immediately mixed with 0.2 volumes of ice-cold STOP solution (95% ethanol, 

5% phenol (pH 4.7)). After 20 min incubation on ice, samples were spun down for 10 min 

at 4˚C and 7000 x g in a centrifuge. Pellets from one aliquot were gently resuspended in 

RNAProtect (QIAGEN, Germany) to further stabilize the RNA. Remaining samples were 

mixed with RNAlater (QIAGEN, Germany) and placed at -80˚C for archival storage. Total 



152 

 

 

 

RNA was extracted using RNeasy Mini kit (QIAGEN, Germany) and on column DNase 

treatment following the manufacturers’ instructions. The 23S and 16S rRNAs were 

removed by subtractive hybridization using the MICROBExpress kit (Ambion, USA) with 

modifications. Compared with the standard protocol, 50% more capture oligonucleotides 

and magnetic beads were used. 5S rRNAs (120 nt in length) were removed during the 

total RNA extraction on column. Specifically, ribosomal depletion on total RNA isolated 

from the E. coli BL21 (DE3) was performed using RiboZero (Gram Negative Bacteria) kit 

(Epicenter, USA). RNA samples were stored at -80°C.  

5.5.5 cDNA library preparation, RNA sequencing and assessment 

The sequencing libraries were constructed using the TruSeq RNA Sample 

Preparation kit (Illumina Inc., USA). Each library was prepared with RNA isolated from 

seven E. coli cultures grown in triplicate to an exponential phase under aerobic and 

anaerobic conditions. RT-PCR was performed with SuperScript® II One-step RT-PCR 

reagents (Invitrogen, USA). The libraries were sequenced using the Illumina HiSeq2000 

platform with a paired-end protocol and read lengths of 50 nt.  The final concentration of 

DNA and RNA was measured using a Qubit 2.0 Fluorometer (Invitrogen, USA). The 

integrity of total RNA, DNA contamination, removal of rRNAs and cDNA library validation 

were assessed with Agilent 2100 Bioanalyzer (Agilent Technologies, USA). 

5.5.6 Transcriptome Analysis 

Gene expression data (3 biological replicates per strain) were analyzed in the 

statistical software program R (www.r-project.org ) using the EdgeR package (Robinson 

et al., 2010). Data were normalized using the CQN package, which accounts for both 

gene length and GC content effects (Hansen et al., 2010). Differentially expressed 

genes were determined by comparing expression values under anaerobic and aerobic 
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conditions. Those genes with adjusted P values less than 0.01 (i.e., false discovery rate 

less than 1%) were identified as significantly differentially expressed genes. Finally, 

gene annotations were automatically made using the biomaRt package (Durinck et al., 

2005) together with the annotation files available at the Ensembl database 

(www.ensembl.org) and gene set enrichment analysis (GSEA) was performed using the 

piano package (Varemo et al., 2013). All R packages used in this study are available in 

Bioconductor (www.bioconductor.org). 

5.5.7 In-silico modelling growth conditions 

Each model was exported as an SBML file and used to perform simulations and 

constraint-based analyses using COBRApy (Ebrahim et al., 2013) and GUROBI linear 

programming solver. The constraint-based model consists of an S matrix with rows 

representing the number of distinct metabolites (in all three compartments) and columns 

representing the number of reactions including exchange and biomass reactions. Each 

of the reactions has an upper and lower bound on the flux it can carry. Reversible 

reactions have an upper bound of 1000 mmol gDW−1 h−1 and a lower bound of −1000 

mmol gDW−1 h−1, making them practically unconstrained, while irreversible reactions 

have a lower bound of zero. 

By default, the core biomass reaction is set as the objective to be maximized. 

Certain reactions are by default constrained to carry zero flux to avoid unrealistic 

behaviors. These reactions are CAT, DHPTDNR, DHPTDNRN, FHL (formate hydrogen 

lyase), SPODM, SPODMpp, SUCASPtpp, SUCFUMtpp, SUCMALtpp, and 

SUCTARTtpp. CAT, SPODM, and SPODMpp are hydrogen peroxide producing and 

consuming reactions that can carry flux in unrealistic energy generating loops. 

DHPTDNR and DHPTDNRN form a closed loop that can carry an arbitrarily high flux. 
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The succinate antiporters SUCASPtpp, SUCFUMtpp, SUCMALtpp, and SUCTARTtpp 

can form unrealistic flux loops with other transporters for aspartate, fumarate, malate, 

and tartrate. The genes encoding FHL are known to be active under anaerobic 

conditions, this reaction is constrained to zero in aerobic conditions to avoid unrealistic 

aerobic hydrogen production. The non-growth associated maintenance (NGAM) 

constraint is imposed by a lower bound of 3.15 mmol gDW−1 h−1 on the reaction ATPM. 

The exchange reactions that allow for extracellular metabolites to pass in and out of the 

system are defined such that a positive flux indicates flow out. All exchange reactions 

have a lower bound of zero except for glucose (−10 mmol gDW−1 h−1), the vitamin 

B12 precursor cob(I)alamin (−0.01 mmol gDW−1 h−1), and oxygen and all inorganic ions 

required by the biomass reaction (−1000 mmol gDW−1 h−1). The default lower bound on 

glucose uptake is based on typical glucose uptake rates. Because only a very small 

amount of B12 is required for growth, the lower bound on cob(I)alamin uptake is arbitrary 

and never actually constraining in practice. All models also includes drain reactions for 

six cytoplasmic metabolites without known consuming reactions that must be drained 

from the system to allow simulation of steady-state cell growth. These metabolites are p-

cresol, 5′-deoxyribose, aminoacetaldehyde, s-adenosyl-4-methylthio-2-oxobutanoate, 

(2r,4s)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran, and oxamate. 

5.5.8 Markov chain Monte Carlo Sampling procedure 

The distribution of feasible fluxes for each reaction in the models used here were 

determined using Markov chain Monte Carlo (MCMC) sampling (Schellenberger and 

Palsson, 2009b).  We used optGpSampler (Megchelenbrink et al., 2014) to uniformly 

sample the constrained solution space for each model in both aerobic and anaerobic 

conditions. The models were first constrained using the measured physiological uptake 
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rates by adjusting glucose uptake rate, maximum growth rate and by-product secretion 

rates for acetate, succinate, lactate, formate and ethanol.  Using these constraints, FVA 

was performed to constrain each reaction to its minimum and maximum possible fluxes.  

To model more realistic growth conditions, sub-optimal growth was modeled. 

Specifically, the biomass objective function, a proxy for growth rate (Feist and Palsson, 

2010b), was provided a lower bound of 90% of the optimal growth rate as computed by 

flux balance analysis (Orth et al., 2010b). Thus, the sampled flux distributions 

represented sub-optimal flux-distributions, but still simulated fluxes relevant to cell 

growth and maintenance.  MCMC sampling was then used to obtain thousands of 

feasible flux distributions (referred to here as “points”) using the artificially centered hit-

and-run algorithm (Megchelenbrink et al., 2014). For each reaction, a distribution of 

feasible steady-state flux values was acquired from the uniformly sampled points, 

subject to the network topology and model constraints. Some reactions were disabled to 

prevent unrealistic flux distributions.  The reactions F6PA and DHAPT are known to be 

utilized during growth on glycerol but are not active in growth on glucose (Gutknecht et 

al., 2001).  In sampling results these two reactions split flux away from upper glycolysis, 

thus they were constrained to carry zero flux in all conditions.  All sampling was 

performed with a step size of 100 for 10,000 points. 

5.5.9 Yield analysis for production of native and heterologous metabolites 

The maximum theoretical yield for native compounds was calculated by creating 

demand reactions for each metabolite in the model and optimizing for flux through the 

demand reaction while maintaining 10% of the maximum flux through the biomass 

objective function calculated using FBA.  Yields for the heterologous pathways were 

calculated in a similar manner after adding the required heterologous pathways from 
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Campodonico et al. (Campodonico et al., 2014).  All maximum theoretical yields were 

calculated using the standard E. coli uptake rates documented previously (Orth et al., 

2011).  Anaerobic conditions were simulated by setting the maximum oxygen uptake 

rate to 0. 

5.5.10 Classification of high flux reactions and highly expressed genes and 

correlation coefficients 

 

Reactions were classified as high flux (HFR) if their mean sampled distribution 

value was greater than 1.5 times the standard deviation over the mean of the absolute 

value of all mean sampled flux values:  

HFR = µ + 1.5 * σl. 

Genes were classified as highly expressed (HEG) if their expression count value 

(determined post normalization by CQN was greater than 0.5 times the standard 

deviation above the mean expression value for all metabolic genes:  

HEG = µ + 0.5 * σ. 

Metabolic genes are defined as those that are accounted for in the metabolic model.  

The Pearson correlation coefficient was calculated between measured physiological 

data and both gene expression and reaction fluxes for each of the seven strains.  

Correlations were calculated using python pandas (McKinney, 2011) 

5.5.11 Scoring scheme to compare model predicted flux changes with gene 

expression shifts 

A scoring scheme was developed to compare flux and expression shift changes.  

The scheme awarded model predictions of flux shifts that aligned with changes in gene 

expression (predicted flux increase, gene expression of encoding genes increased) and 

penalized predictions that were opposite in direction of gene expression. Reactions were 

classified as increasing or decreasing in a shift from aerobic conditions of the overlap if 
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their absolute flux change was greater than 10% of the glucose uptake rate and sampled 

distributions had minimal overlap.  Changes in gene expression were classified as 

significant if their log2-fold change was greater than half of the standard deviation of the 

mean expression changes and the their false discovery rate was less than 0.00001. 

With this shift set the corresponding catalyzing genes were analysed to 

determine if those were indeed the ones that changed significantly. A scoring scheme 

was developed to evaluate how well model predictions aligned with shifts in gene 

expression. The scheme awarded model predictions of flux shifts that aligned with 

changes in gene expression (predicted flux increase, gene expression of encoding 

genes increased) and penalized predictions that were opposite in direction of gene 

expression. Overall, this analysis led to the conclusion that the models could accurately 

predict major changes in gene expression.  

5.5.12 Analysis of major and minor isozyme transcript ratios 

In order to evaluate the correlation between high flux reaction and highly 

expressed genes, it was first necessary to understand isozyme behavior for targeted 

reactions as many of them have multiple catalytic isozymes in the E. coli GEM of 

metabolism.  This is because the reconstruction process is intended to be 

comprehensive and therefore lists all possible genes that can catalyze a reaction.  For 

high-flux reactions known to be catalyzed by more than one gene (isozymes) an analysis 

of the expression level for each catalyzing gene was performed to determine if any one 

gene was expressed significantly higher across all conditions analyzed, or uniquely to 

aerobic vs anaerobic conditions. For cases where there was a clear minor isozyme lowly 

expressed, it was necessary to remove them from the analysis of high flux vs. highly 

expressed reactions.  Isozymes identified this way were compared to a literature search 
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of enzyme efficiencies that was performed to define major and minor isozymes 

(Nakahigashi et al., 2009a, Kumar and Maranas, 2009, Covert et al., 2004).  Since all of 

the targeted reactions are well studied and the accepted major or minor roles of most 

isozymes are known (Sprenger, 1995, Keseler et al., 2009), all minor isozymes were 

removed from the comparison of high-flux reactions to highly expressed genes.  Gene 

expression transcripts were compared between major and minor isozymes.  For the 

most part, genes classified as major isozymes were expressed at least 2 fold greater 

than their counterpart minor isozymes in all 7 examined E. coli strains (Supplementary 

Table S3). 

5.5.13 Transcription factor enrichment analysis 

Transcription factors and the genes they are known to regulate were downloaded 

from regulon dB (Huerta et al., 1998) on 8/10/2014.  This list was used to perform 

hypergeometric enrichment analysis on the differentially expressed genes determined 

from RNAseq analyses.  The scipy (Jnes E et al., 2001) stats package hypergeom was 

used to calculate hypergeometric enrichment values. 

5.5.14 Comparison of core metabolic reaction content 

The genes and reactions involved in “core” metabolism were defined as those 

present in the core metabolic model (Orth et al., 2010a).  These include 56 genes, 96 

reactions and 72 metabolites involved in subsystems such as 

glycolysis/gluconeogenesis, pentose phosphate pathway and the TCA cycle. 

5.5.15 Heterologous and native pathway scoring 

Heterologous pathways were added to each strain-specific model individually.  

Each model was optimized for a ‘demand’ reaction that consumes the target metabolite 



159 

 

 

 

(or exchange reactions for native compounds, e.g. amino acids).  The standard uptakes 

rates were used for these simulations (not strain specific rates).  Flux variability analysis 

was run to determine minimum and maximum fluxes for all reactions when optimizing for 

the production of a given compound, then the models were sampled as described 

above.  The sampled flux distributions were used to determine active pathways used for 

production of a given target compound. 

The flux through the network was traced backwards from a target metabolite 

recursively by searching for all reactions that could produce a given compound, then 

following those reactions backwards to their substrates if they met a flux cutoff of >0.5x 

max production.  Currency metabolites (e.g. atp, nadh, h2o) were filtered from this 

analysis.  The pathways were traced back until they hit reactions classified in the 

subsystem of ‘glycolysis/gluconeogenesis’ or until their flux split such that the flux 

through the reaction was <0.5x max production.  This analysis resulted in reactions that 

were required to carry high-flux for max production of the target compound. 

P-score = ∑ log�|��| ∗ 
��
�

��  

p = pathway length, |V| = absolute reaction flux, Z = reaction catalyzing gene z-score, log of negative 

numbers were set to 0 

R-score = 
���������

�
 

σ = P-score standard deviation, µ = P-score mean, for a given pathway 

Next, we multiplied the flux of each reaction by the measured gene expression z-

score determined for the gene that codes the gene product involved in that reaction’s 

catalysis (for isozymes the highest expressed gene’s expression was used and for 

catalytic-complexes, the average of gene expression values was used).  We log 

transformed and summed up the result of this reaction flux combined with gene 
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expression to establish a final score for each strain’s estimated production capacity for a 

given compound. 

To determine outliers in this scoring scheme (strains that would be particularly 

good or bad at a given compound’s production) we calculated the number of standard 

deviations away from the mean a given score was.  All those strains that had a score >1 

standard deviation away from the mean production score were predicted to be 

particularly well suited for production of the target product compared to other strains. 

5.5.16 Synthetic biology construct production potentials 

All synthetic biology constructs were downloaded from the Registry of Standard 

Biological Parts.  Nucleic acid sequences were filtered for coding regions, yielding 3,982 

constructs that were then translated to determine amino acid composition.  The average 

abundance of protein in E. coli was taken from two ribosomal profiling datasets (Li et al., 

2014, Latif et al., 2015) for E. coli growing in different medias.  The amino acid 

composition of each E. coli protein was calculated and multiplied by its abundance to 

approximate the m(Li et al., 2014)(Li et al., 2014)(Li et al., 2014)(Li et al., 2014)(Li et al., 

2014)(Li, et al. 2014)(Li, et al. 2014)(Li, et al. 2014)(Li, et al. 2014)(Li, et al. 2014)(Li, et 

al. 2014)(Li, et al. 2014)(Li, et al. 2014) lean abundance of each amino acid in E. coli 

(Supplementary Dataset 16). Synthetic biology constructs that had amino acid 

abundances greater than 10 standard deviations above the mean amino acid abundance 

in E. coli were considered to be in demand for production of that given construct.  The 

average construct required 4 amino acids in abundancies greater than the mean with 

proline (P), tryptophan (W), histidine (H), cysteine (C) and Tryptophan (Y) most often 

required in greater amounts.  Next, R-scores from the amino acid production potential 

analysis were used to determine each strain’s production affinity for amino acid 
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production.  R-scores for each strain’s amino acid production potential were averaged.  

Amino acid production R-scores greater than 0.5 standard deviations above the mean 

were considered highly produced.  A sensitivity analysis on this cutoff was performed 

with cutoffs ranging from 0.25-1σ>µ examined.  These different cutoffs did not change 

the overall results of this analysis.  The overlap between demanded amino acids for 

each construct and amino acids highly produced by each strain were determined to 

predict which strain might be best suited for production of a given construct.  In aerobic 

conditions it was found that DH5a was often the best producer while in anaerobic 

conditions Crooks was often best (see main text). 
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Figure 5.1. Statistics of the 7 strains 
A) The seven industrially-relevant E. coli strains selected for this study. This panel establishes the 
colour scheme that will be used to represent strain-specific data on these strains throughout the 
rest of the manuscript, as well as the motility characteristics of each strain. B) A phylogenetic tree 
based on full-genome DNA alignment of the seven strains. C) Total protein families in the strains 
examined. Core genes (red) are those that were present in all 7 strains, genes present in 2-6 
strains are labelled accessory (yellow), and unique genes are only present in a single strain 
(purple). D & E) Physiological behaviour and comparison of the different strain’s carbon yield in 
aerobic and anaerobic growth conditions. Yields are calculated in terms of glucose uptake rates. 
Carbon dioxide was not measured. Overall, the by-product profiles differed across the strains and 
some anaerobic yields are not fully captured in the by-products measured. This is likely due to 
CO2 evolution from formate dehydrogenase. 
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Figure 5.2. Computationally determined high flux reactions from physiological data.  
A) Each strain-specific model was constrained using measured physiological data. Flux variability 
analysis and sampling were performed on each constrained model. All fluxes were normalized to 
glucose uptake rate and sorted by mean sampled flux value. All graphs for each strain and each 
growth condition are available in Supplementary Figure 7. The absolute values of normalized 
flux values were log transformed. High flux reactions were determined to be those reactions with 
sampled-flux values greater than 1.5 standard deviations above the mean of all sampled flux 
values. B and C) High flux reactions for each strain were clustered and plotted. The counts of 
high flux reactions for each strain are indicated next to the strain name in parentheses. Shared 
(core) and unique high flux reactions for each strain are shown for aerobic and anaerobic 
conditions. D) Sampled flux values were compared between the strains in aerobic and anaerobic 
conditions to highlight condition- and strain-specific behaviour. Reaction abbreviations are given 
in Supplementary Data File 3.  
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Figure 5.3. Gene expression analysis.  
A) Example of a comparison of the transcripts levels between strains W3110, MG1655, and 
BL21, as well as their correlation coefficient. Strains MG1655 and W3110 have a 0.94 correlation 
coefficient for expression of shared genes. In contrast, strain BL21 shows divergent gene 
expression compared to strains MG1655 and W3110 with a much lower correlation coefficient of 
0.44 and 0.45, respectively. B) The pairwise correlation coefficients for each strain in both aerobic 
(top, green) and anaerobic (bottom, red) conditions. C) PCA plot of expression values for shared 
metabolic gene expression between strains aerobically and D) anaerobically. Scale bars 
represent metabolic subsystems that majorly contribute to the given dimension. Abbreviations: 
TCA: Citric Acid Cycle, APM: Arginine and Proline Metabolism, GLC: 
Glycolysis/Gluconeogenesis, MET: Methionine Metabolism, HIS: Histidine Metabolism, OP: 
Oxidative Phosphorylation, TLM: Threonine and Lysine Metabolism, VLI: Valine, Leucine and 
Isoleucine Metabolism, PYR: Pyruvate Metabolism, TTP: Tryptophan, Tyrosine and 
Phenylalanine Metabolism, AA: Aspartate and Alanine Metabolism.  
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Figure 5.4. A comparison of high flux reactions and highly expressed metabolic genes.  
A) The occurrence of a given gene and the reaction it catalyses falling in the intersection of both 
high flux and highly expressed sets for the seven strains examined. Several pathways are 
enriched in this intersection set (e.g., lower glycolysis). Genes were grouped if they had identical 
counts under aerobic and anaerobic conditions. There were several genes that were in this 
intersection exclusively for aerobic or anaerobic conditions (right side of graph). B & C) The 
measured physiological data was integrated with genome-scale models to predict changes in 
gene expression during a shift from aerobic to anaerobic conditions. Shown are two examples for 
(B) malate dehydrogenase (MDH) and (C) the Electron Transport System. A map is shown of the 
predicted reaction and its neighbours (left) along with the prediction of the intracellular flux 
change between aerobic and anaerobic conditions (middle). The actual measured fold change in 
expression is graphed (right) for comparison with model-predicted flux changes (dashed lines 
indicate a threshold for minimum magnitude and * indicates significance for the predicted and 
measured changes). The example for prediction of mdh (B) demonstrates that the model 
correctly predicts a change in expression; all 7 models predicted a change in MDH flux that 
exceeded the minimum threshold and the measured expression change of mdh in each strain 
was large and significant. The nuo genes (C) that catalyse the NADH dehydrogenase reaction 
also demonstrate good model-based prediction of expression change. 
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Figure 5.5. Strain-specific production potential.  
The product potential for targeted metabolites was evaluated based on native gene expression 
for high yield pathways of interest measured using RNAseq and genome-scale modelling (see 
main text and methods). A) A heat map displaying the relative production potentials for all 20 
amino acids (left axis) for each strain (bottom axis) in aerobic and anaerobic conditions. Red 
indicates the highest potential and blue lowest (see legend). B) A heat map of the relative 
production potential for 245 and 200 viable heterologous pathways in aerobic (top) and anaerobic 
(bottom) conditions, respectively. Heterologous pathways are clustered (columns) based on the 
target product (there can be many compounds for a given compound) and some of the most 
abundant are labelled on the bottom axis. The right axis shows a plot of the number of instances 
where each strain has an ‘R-score’ (relative production potential score, see methods) > 1. C) 
Example demonstrating the production potential for histidine biosynthesis. Shown are the final 
five reaction steps and relative expression levels of their catalysing genes for each strain. Strain 
W3110 (pink) has greater gene expression of these his operon genes, making it particularly well 
suited to produce histidine. D) A similar example demonstrating production potential for 
heterologous production of 2-phenylethanol. Here, the last three steps (before the heterologous 
pathway) are shown with their relative native expression levels. This heterologous pathway 
branches from phenylpyruvate (phpyr), an intermediate of tyrosine biosynthesis. DH5a has high 
native expression of these 3 steps along with others in the pathway. All metabolite abbreviations 
are listed in Supplementary Data File 3. The scores for each product and contributing 
expression values and flux profiles are available in Supplementary Data File 15. 
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Chapter 6 Optimizing genome-scale network reconstructions
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6.1 Abstract  

Genome-scale Network Reconstructions (GENREs) are organism-specific 

knowledge-bases. GENREs can be converted to mathematical models that enable 

computation of an organism’s metabolic capabilities and phenotypic expression.  In 

conjunction with complex omics datasets, GENREs can be applied to solve basic and 

applied biological questions. Here, we present an analysis of the metabolic reaction lists 

(so called reactomes) and phylogenetic coverage of current GENREs, showing that their 

scope and content is more limited than generally appreciated. The causes and 

consequences of their limited scope are discussed and strategies for the continued 

development of the field are suggested. 

6.2 Introduction 

 A GENRE is built systematically through a quality controlled bottom-up workflow 

by using genome annotation, omics data sets, and legacy knowledge (Orth et al., 

2010c). Thus, GENREs should embody the best representation of the metabolic 

capabilities of a target organism based on the information available at the time of 

reconstruction. GENREs are knowledge-bases that integrate and reconcile genome 

annotation, legacy biochemical data, computational simulations, and phenotypic 

expression. They allow researchers to collaborate, test, and readily share new 

hypotheses about metabolic functions in a target organism. As a result, interest in 

network reconstructions as well as the scope of their applications has grown continually 

(Österlund et al., 2012, Bordbar and Palsson, 2012, Kim et al., 2012, Lewis et al., 2012b, 

McCloskey et al., 2013d).   

The ability to perform genome-scale network reconstruction has progressed 

rapidly.  The first GENRE was constructed for Haemophilus influenza in 1999(Edwards 
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and Palsson, 1999) just a few years after the first whole genome sequence appeared in 

1995(Fleischmann et al., 1995).  This initial reconstruction represented the development 

of a conceptual basis for forming and building GENREs and demonstrated that the 

metabolic genotype-to-phenotype relationship could be computed from a mechanistic 

and a genome-scale basis. Following this initial reconstruction, best practices for 

generating metabolic reconstructions were developed based on experience with highly 

studied and well-characterized model organisms.  Iterative updates to the GENRE for 

Escherichia coli created standards for the gene-protein-reaction association, elemental 

and charge balancing (Edwards and Palsson, 2000a) and addition of thermodynamic 

information (Feist et al., 2007).  Updates to the GENRE for Saccharomyces cerevisiae 

standardized cellular compartmentalization (Forster et al., 2003). Thus, high-quality 

protocols for metabolic reconstruction were established1, and the development of 

GENREs progressed to the successful reconstruction of human metabolism (Duarte et 

al., 2007b), photosynthesis (Nogales et al., 2012), and light-driven metabolism (Chang et 

al., 2011).  These developments have led to a multitude of successful applications 

reviewed elsewhere (Österlund et al., 2012, Bordbar and Palsson, 2012, Kim et al., 

2012, Lewis et al., 2012b, McCloskey et al., 2013d). 

Over the last five years the number of new GENREs has grown rapidly (Fig. 1a) 

and expanded the ‘metabolic space’ suitable for computational analysis (Kim et al., 

2012). Further, automated reconstruction approaches are now available to create draft 

reconstructions, reducing the time and effort required to make a metabolic 

reconstruction(Henry et al., 2010b, Vitkin and Shlomi, 2012, Agren et al., 2013b). 

GENREs have become accepted as valuable tools to teach and analyze biological 

processes at the systems level (Rabinowitz and Vastag, 2012). Therefore, more than a 
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decade after the publication of the first GENRE, it is timely to analyze the metabolic 

knowledge represented in published network reconstructions to assess the overall 

progress and status of this field. 

6.3 Coverage of metabolic reactions 

While the metabolic network reconstruction field may appear mature, there are 

still many challenges that need to be addressed. The metabolic scope and coverage of 

GENREs has not progressed in accordance with their rising number.  An analysis of the 

number of new metabolic reactions that have been incorporated into new GENREs in 

recent years shows that just a few reconstructions dominate the reaction list while most 

of the GENREs published have not contributed significantly to the represented metabolic 

space (Fig 1). This limited representation is further demonstrated by comparing the 

BRENDA (Schomburg et al., 2013) enzyme database to enzymatic activities found in 

current GENREs. Surprisingly, just 33% of the enzymatic activities in BRENDA assigned 

to metabolism are included in the group of GENREs that we analyzed. While this result 

could be biased due to incomplete mapping or redundant EC nomenclature, the small 

portion of the metabolic knowledge currently included in existing GENREs indicates 

incomplete coverage of known metabolic reactions.  

Since many new GENREs are based on existing ones, questions arise regarding 

their independence and contribution to new knowledge. If the metabolic knowledge 

included in a GENRE indeed reflects the metabolic capabilities of the target organism, 

we would expect clustering of content that mimics the evolutionary trajectory of different 

organisms.  However, a similarity analysis of GENRE reaction content shows that’s not 

the case.   Multiple Correspondence Analysis (MCA) of the content of 53 

(Supplementary Table 2 and File 1) curated GENREs out of the 117 published to date 
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(http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms) (Supplementary 

Table 1), shows that a surprisingly high degree of similarity is found among most of 

existing GENREs (Fig. 1b) regardless of their location in the phylogenetic tree (Fig. 2). 

Many GENREs cluster close to the center of the diagram showing that reconstructed 

organisms as metabolically diverse as Pseudomonas aeruginosa, Staphylococcus 

aureus, Clostridium beijerinckii, and Synechocystis sp. PCC 6803 have similar reaction 

content (Fig. 2b). This indicates that the metabolic space of currently published 

GENREs is limited to well-conserved metabolic pathways rather than being a 

comprehensive representation of the biochemical capabilities of these target organisms. 

This bias leads to over-representation of primary metabolic pathways in GENREs 

relative to the important aspect of secondary metabolism, which often defines the 

signature identity of a target organism.   

In contrast, three groups of GENREs, dominated by enterobacteria, yeasts and 

photosynthetic eukaryotes were distinguishable in their reactomes.  Whereas the first 

GENRE of E. coli, iJE660(Edwards and Palsson, 2000a), is in the cluster at the center of 

the diagram, further updates iJR904(Reed et al., 2003), iAF1260(Feist et al., 2007), and 

iJO1366(Orth et al., 2011) have moved steadily away from the center based on 

increasing organism-specific metabolic content (Fig 2c). A similar path can be observed 

for S. cerevisiae from the initial GENRE, iFF708 (Forster et al., 2003), to the latest 

version YEAST5 (Heavner et al., 2012). Given these two examples, it seems reasonable 

to expect that iterative reconstruction of a target organism should bring out its unique 

characteristics and distinguish them from the rest. Detailing species-specific reactomes 

may thus be a way to define biological diversity. 
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Beyond reconstruction content, the range of organisms for which GENREs exist 

is limited, raising questions about the breadth of coverage of metabolism across the 

biosphere.  The NCBI taxonomy database can be used to examine the phylogenetic 

distribution of published GENREs (Supplementary Table 1).  This examination reveals 

that while some phyla are well represented by multiple GENREs, there are many others 

without any reconstructions (Fig. 3). For example, there are 32 metabolic 

reconstructions of species that are members of the proteobacteria phylum. This 

represents over 40% of the 77 reconstructed species to date. In stark contrast, there are 

15 phyla containing species with sequenced genomes that have no reconstruction. 

These unrepresented phyla fall across the tree of life in all kingdoms; bacteria, archaea, 

and eukaryota. Thus, the narrow phylogenetic coverage of currently available GENREs 

is an insufficient representation of the metabolic capabilities found on earth and it is 

evident that further reconstructions of diverse organisms across the tree of life are 

needed in order to achieve broad and comprehensive phylogenetic coverage.  

In summary, it may be concluded that new organisms across the tree of life need 

to be reconstructed and that many current metabolic network reconstructions are still 

lacking a significant portion of their target organism’s reactome, suggesting that they are 

still in a development stage similar to the first reconstruction of E. coli, iJE660 published 

thirteen years ago.  

6.4 Multiple limitations hamper the full development of the genome-scale network 

reconstruction field  

The lack of comprehensive biological knowledge is primarily responsible for the 

limited metabolic coverage in current GENREs (Fig. 4). Even for a microorganism as 

well studied as E. coli, only half (~54%) of the protein-coding gene products have direct 
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experimental evidence for their function(Riley et al., 2006), and up to one-third of its 

proteome remains functionally un-annotated(Hu et al., 2009). This limitation has come 

into focus in recent years when extending network reconstruction to less-studied 

organisms with a low species knowledge index (SKI)(Janssen et al., 2005). The SKI is 

defined as the ratio of publications divided by the number of protein-encoding genes for 

a given organism.  GENREs for organisms with low SKI are often poorly curated and 

validated due a distinct lack of biological knowledge. Analogously to mistakes made with 

automated genome annotation(Schnoes et al., 2009), the inclusion of an incorrect gene-

to-protein-to-reaction (GPR) and/or wrong reaction in a GENRE can be disseminated to 

a new reconstruction.  

The lack of biological knowledge about a target organism is not the only limitation 

leading to poor coverage of existing metabolic reconstructions. Surprisingly, the amount 

of biochemical information available for a given organism seems to have a relatively 

small impact on the final metabolic coverage of its GENRE.  Species with high SKI 

values can still have GENREs with limited metabolic coverage (Fig. 2). This limitation 

may indicate under-utilization of existing biological knowledge when performing the 

reconstruction.  The primary reason for such under-utilization is a lack of substantial 

manual curation, most likely due to the extensive manual labor and resources required. 

Thus, genome annotation is often the main source of content in new GENREs. However, 

genome annotation cannot be considered a complete and accurate source of 

biochemical information(Schnoes et al., 2009).  In addition there are often a large 

number of un-annotated protein-coding genes.  This excludes a large portion of the 

metabolic space because 30-40% of known enzymatic activities are global orphans (i.e., 

no genes encoding their activity have been discovered)(Lespinet and Labedan, 2005, 
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Chen and Vitkup, 2007, Pouliot and Karp, 2007). Thus, the dominance of genome 

annotation over others sources of information and the disregard of legacy data on 

biochemical and/or physiological studies, leads to a significant underrepresentation of 

the metabolic potential of the target organism. 

The lack of inclusion of legacy data in the reconstruction process is particularly apparent 

for secondary metabolism. While central metabolism may be largely conserved, 

secondary metabolism tends to be organism-specific and thus much more difficult to 

reconstruct based on genome annotation alone. As a result, secondary metabolism is 

often passed over during the reconstruction process.  These unrepresented pathways 

often include the biosynthesis of cofactors and vitamins, lipids, cell envelope and 

organism-specific pathways. This impacts the Biomass Objective Function (BOF) that is 

used to define cellular growth requirements(Feist and Palsson, 2010c). Unfortunately, 

incomplete biosynthetic demands lead to simplified BOFs unrepresentative of the 

organism's true physiology. This widespread practice reduces the computable metabolic 

space by creating blocked reactions(Orth and Palsson, 2012). The consequence is an 

inability to use GENREs for fundamental systems biology studies like gene essentiality 

prediction and omics data contextualization for the target organism.  Often, the lack of 

biological knowledge and insufficient legacy data curation are partially mitigated through 

the use of high-throughput technologies. However, due to the high amount of resources 

required, the application of high-throughput datasets for modeling is not readily 

accessible to individual reconstruction efforts, and these technologies remains untapped 

in metabolic reconstructions.  

 The lack of rigor in applying well-established reconstruction protocols is another 

contributing factor to the limited metabolic coverage of current GENREs. Despite the fact 
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that standards for reconstruction exist, GENREs that include unbalanced mass and 

charge reactions, lumped reactions instead of complete pathways, and incompletely 

compartmentalized networks are still being published.  For example, it is striking that 

from 54 reconstructions of Gram negative bacteria, just 11 (or 20%) include periplasm as 

a cellular compartment.  

 Another weakness of the reconstruction process beyond biological limitations is 

the lack of a standardized representation for common metabolites and reactions 

included in current GENREs. This shortcoming makes metabolic reconstructions 

unintelligible and impedes automated omics data mapping.  It also negates the benefits 

that could be achieved by comparative analysis of GENREs, which is the main reason 

only 53 published reconstructions were compared in this analysis. Clearly, the field 

needs to recognize these limitations, and continue to develop and adhere to best 

practices.  The publication of poor quality reconstruction does not advance the field as a 

whole, and does injustice to a systems biology study of the metabolism of the target 

organism. 

6.5 Towards comprehensive metabolic coverage and broader 

deployment of GENREs   

 Thus we need to consider how to improve the status of the field, to advance 

it and broaden its scope.  We discuss three critical issues towards this end. 1. Targeted 

application of high-throughput technologies. To mature the metabolic reconstruction field 

we can increase biological knowledge by carefully applying high-throughput 

technologies. Several recent studies have used targeted high-throughput metabolomic, 

transciptomic and mutant screen data sets as well as computational structure and 
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metabolite docking predictions to discover new functions(Li et al., 2010, Baran et al., 

2013), (Nakahigashi et al., 2009a). 

There is a need to develop high-throughput reactome determination 

technologies, however unfortunately large-scale biochemistry presents a great 

challenge.  Efforts aimed at determining metabolite-protein interactions have shown 

promise in addressing this challenge.  A systematic large-scale investigation of in-vivo 

protein-metabolite interactions in yeast has been developed(Li et al., 2010) leading to 

the discovery of several new metabolite-protein regulatory interactions.  This technology 

could also apply to discovering metabolic interactions such as cofactors with enzymes 

and energy sources used in novel biochemical reactions.  Another approach, untargeted 

metabolomics, has been used to assign function to new genes in a high-throughput 

manner (Baran et al., 2013). 

The reconstruction process itself is an exciting opportunity to increase the 

biological knowledge for the target organism. Because GENREs represent a 

biochemically and genetically structured knowledge-base, they can be queried and 

interrogated using in-silico analytical methods.  Reconstruction is an iterative process 

where errors in model prediction drive new hypotheses(Orth and Palsson, 2012) (Fig. 4).  

A powerful example of using a GENRE to interpret experimental results and then 

discover novel biochemistry has been illustrated(Nakahigashi et al., 2009a). This study 

combined GENREs with systematic multiple gene knockout strains to discover new 

reactions carried out by phosphofructokinase and aldolase, two extensively studied 

enzymes in E. coli glycolysis.  Experimental results were compared to computational 

predictions and disagreements suggested missing reactions in the reconstruction.  The 

putative reactions were then confirmed using metabolome analyses and in vitro 
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enzymatic assays illustrating that even for extensively studied areas of metabolic 

biochemistry, there is still more to learn.  Combining GENREs with the high-throughput 

techniques above will further improve discovery of new biological functions in a 

synergistic manner.  2. Building high quality reconstructions with community participation 

and buy-in. As noted above, building a high quality reconstruction is non-trivial given that 

a high-quality reconstruction relies on extensive manual curation of legacy datasets, 

minute attention to biochemical and molecular detail and careful phenotyping.  Accurate 

and complete GENRE development is a multidisciplinary activity.  It requires community 

buy-in from domain experts in diverse disciplines.  An ideal team would combine strong 

biological knowledge of the target organism with access to legacy data. Following these 

guidelines, reconstruction jamborees have been carried out with success for three target 

organisms (Saccharomyces cerevisiae (Herrgard et al., 2008), Salmonella 

typhimurium LT2 (Thiele et al., 2011), and Homo sapiens (Thiele et al., 2013a)). Further 

and more structured efforts are needed to curate existing content and to expand the 

scope of GENREs, potentially through a “crowd-sourcing” mechanism where multiple 

individuals can contribute to a reconstruction so that it contains as much legacy data as 

possible. 

In order to form such teams, the reconstruction community must reach out to 

domain experts, many of whom are currently unfamiliar with the metabolic reconstruction 

process.  Recently, a multidisciplinary team of researchers (that included experts from 

Pharmaceutical Chemistry, Genomic Biology, Biochemistry, Bioengineering, Chemistry 

and Microbiology departments) used protein structure and genome context to 

functionally annotate new enzymes in Pelagibaca bermudensis(Zhao et al., 2013).  

Computational analysis of metabolite docking to three-dimensional structures 
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(experimentally derived or homology-based) was used to predict substrate-specificities 

of several enzymes in a new catabolic pathway.  Recent studies have integrated protein 

structure information into GENREs(Chang et al., 2013a), thus opening GENREs to 

similar analyses. This success should strongly encourage similar efforts for metabolic 

reconstruction. Such multi-disciplinary teams should be motivated by the broadening 

appreciation of the power of GENREs and the likelihood of increased prestige of their 

publication venue.  

3. Increase the coverage of phylogenetic tree. Above we observed that metabolic 

reconstructions do not exist across the tree of life.  Ignoring a major portion of living 

organism is a limitation that prevents full maturity of the field. If we wish to understand 

and study the metabolic capabilities resident on earth, reconstruction efforts must be 

undertaken for diverse organisms spread throughout the tree of life analogous to the 

GEBA project to sequence genomes of diverse organisms (Wu et al., 2009).  Those 

organisms down branches of the tree of life where no reconstructions currently exist, but 

for which biochemical and legacy data exists, should be targeted first.  Once high-quality 

reconstructions are completed for such target organisms, the content can be mapped to 

closely related species, akin to what has been done to generate reconstructions for 

Klebsiella (Liao et al., 2011a), Yersinia (Charusanti et al., 2011) and Salmonella (Thiele 

et al., 2011) based on the E. coli reconstruction(Feist et al., 2007).   

6.6 Outlook  

Genome-scale metabolic reconstructions and modeling represents an advance in 

genome-scale science and systems biology.  They allow for the study of living organisms 

as systems through the integration and contextualization of myriad high-throughput 
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experimental and computational data sets. GENREs allow us to globally examine our 

understanding and knowledge of metabolism for a target organism.  

GENREs in their current incarnation have enabled a surprisingly wide range of 

basic and applied biological studies(Österlund et al., 2012, Bordbar and Palsson, 2012, 

Kim et al., 2012, Lewis et al., 2012b, McCloskey et al., 2013d). Although notable 

successes have been achieved, the field is still immature. Most current metabolic 

reconstructions cannot strictly be considered genome-scale, but instead models of 

primary metabolism that may be unsuitable for deeper systems biological studies of the 

target organism. We need to undertake a concerted effort to improve metabolic 

coverage of well-studied organisms and to capture known metabolic capabilities in the 

various branches of the phylogenetic tree.  Furthermore, as anticipated over 10 years 

ago(Reed and Palsson, 2003b), GENREs can be expanded to include other cellular 

processes such as transcription and translation(Thiele et al., 2009a, Lerman et al., 

2012b), transcriptional regulation(Covert et al., 2004), and metabolic maintenance 

functions(Linster et al., 2013).  More comprehensive inclusion of such processes and 

their seamless integration with metabolism would allow for an assessment of their 

quantitative interrelations. But high-quality metabolic reconstructions must be a 

prerequisite. 

GENREs are foundational to the formulation of quantitative genotype-phenotype 

relationships and thus the more comprehensive and high quality a GENRE is the more 

phenotypic functions can be computed from the corresponding genome-scale model.  

Increased scope and quality of computed phenotypic functions and their experimental 

validation in turn steadily increases our understanding of the functions of the target 

organism, and thus the underlying multi-scale relationship between the genotype and the 
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phenotype. Such understanding will be a key to solving many basic and applied 

biological challenges that lie ahead.   
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Figure 6.1. Evolution of metabolic networks and global reactome coverage over time.  
(A) The cumulative number of GENREs (bar chart) and unique reactions (line chart) belonging to 
the current metabolically computable space. (B) Current coverage of EC (Enzyme Commission) 
numbers in published GENREs. (C) Contribution to the coverage of metabolic space per GENRE, 
as determined by the number of unique reactions added at the time of publication.   
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Figure 6.2. Multiple Correspondence Analysis showing similarity between current 
GENREs.  
Of 117 published curated GENREs (as of February 2013) up to 53 could be consistently 
represented and subsequently analyzed. The reason for the incomplete analysis was the 
unavailability of several metabolic reconstructions as well as the high disparity of nomenclatures 
for reactions and metabolites(Ganter et al., 2013). The human GENRE (Recon 1) was removed 
from this analysis because it is significantly different from the rest of the GENREs analyzed. A 
blue dot represents each GENRE. The tan dot indicates selected labeled models (see SBRG 

website(http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms) and 
SI). The axes represent degree of similarity, for example GENREs in the blue ellipse are highly 
similar to each other, but very different from those in the yellow ellipse.  A) The GENREs 
clustered in four different groups.  Most grouped close to the center of coordinates reflecting 
minimal differences between them (green).  However, enterobacteria (yellow), yeasts (blue), and 
photosynthetic eukaryotes (pink) grouped far away, indicating that these reconstructions are very 
different from each other and have content that covers a different section of the metabolic space. 
(B) Detail of the main group of GENREs. The tan circles represent metabolically different 
organisms with GENREs that clustered together.  C) Detail of the trajectory over time of multiple 
iterations of GENREs for the model organism E. coli.  
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Figure 6.3 Phylogenetic coverage of GENREs.  
A distribution of reconstructed species located across the phylogenetic tree of life.  The Bacterial 
kingdom has the most organisms with reconstructed GENREs.  Within the bacterial kingdom the 
proteobacteria phylum has the most organisms with reconstructed GENREs.  In stark contrast to 
proteobacteria, there are many other phyla across the tree of life without any GENREs present.  
These are denoted as “dead-end” phyla and are colored in red.  Also see the SBRG website for 
an interactive, up-to-date representation of reconstructed species and their location in the tree of 
life.   
 

 

 



187 

 

 

 

 

Figure 6.4. Shortcomings hampering the completeness of GENREs and main ways of 
improvement.  
Multiple limitations currently hamper the full development of the reconstruction field (in red). 
Although each shortcoming can be mitigated with specific actions (in grey), the complete 
development of the field requires a broad and synergistic strategy to address these shortcomings 
as a whole. Additionally, the reconstruction and analysis process represents a unique opportunity 
to systematize the completion for a given GENRE in an iterative manner. Several constraint-
based methods such as GapFind/GapFill, GrowMach, OMNI etc (in blue) can be applied toward 
GENRE refinement. The full collection of these methods have been exhaustively reviewed 
elsewhere.
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Chapter 7 A comprehensive genome-scale reconstruction of 

Escherichia coli metabolism for 2016
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7.1 Abstract 

The development of the bottom-up approach to systems biology has been driven 

by a genome-scale reconstruction of Escherichia coli K-12 MG1655 metabolism. A new 

version of this network is represented, named iML1502, which accounts for 1502 genes, 

2753 metabolic reactions, and 1202 unique metabolites.  The iML1502 model was first 

validated against growth conditions using experimental screens of 1502 gene knockout 

strains in 4 different conditions and achieved a greater than 90% success rate. Second, 

used for analysis of false-negative growth prediction that illuminates cases where 

alternative pathways and isozymes are yet to be discovered; Third, compared to 

outcomes of adaptive laboratory evolution studies to elucidate the fundamental nature of 

the elusive maintenance coefficients, and; Fourth, customized for specific classes of 

applications: 1) for conserved metabolic capabilities of E. coli as a species using 

genome sequences of over 1000  E. coli and Shigella strains;  2) for containing only 

primary isozyme activities that can be used to examine pathway usage under common 

growth and bioprocessing conditions;  3) for reactions that generate reactive oxygen 

species (ROS) for study of damage and repair pathways, and; 4) inclusion of 3D protein 

structural information of proteins.  All customized models are disseminated through 

BiGG Models, and they enable wide applications E. coli metabolic systems biology, 

ranging from studies of protein promiscuity and underground metabolism, to 

pathogenesis and metabolic engineering, to evolution and phylogenetics.  

7.2 Introduction 

Genome-scale network reconstructions of metabolism form a common 

denominator for bottom-up systems biology studies (Bordbar et al., 2014).  A network 

reconstruction represents a biochemically, genetically, and genomically (BiGG) 



190 

 

 

 

structured knowledge-base that contains detailed information about the target organism 

in a structured format (O'Brien et al., 2015).  For most effective use, these 

reconstructions must be of high-coverage and of high quality (Monk et al., 2014b, 

Heavner and Price, 2015, Ebrahim et al., 2015, Ravikrishnan and Raman, 2015). New 

biochemical functions and metabolic capabilities are constantly being discovered, even 

for the extensively studied bacteria E. coli.  Thus, these reconstructions must be 

periodically updated to account for new gene and cellular functions that continue to 

broaden their uses for discovery, new understanding and insights, and enablement of 

new applications (McCloskey et al., 2013b).         

Here, we present an updated version of the E. coli metabolic network 

reconstruction. This new version, titled iML1502, includes newly characterized genes 

and reactions, the majority of which have been discovered since 2011 (Figure 1).  It 

includes new structural information about protein and reactive oxygen species (ROS).  

iML1502 is the most complete and accurate E. coli metabolic reconstruction to date, and 

like its predecessors will likely aid in many new discoveries. 

7.3 Results 

7.3.1 Process for updating the reconstruction and its content 

An updated and expanded metabolic network reconstruction of E. coli K-12 

MG1655 was assembled and named iML1502. The reconstruction update process 

began with a review of all previously incorporated network content. As part of the 

reconstruction protocol (Thiele and Palsson, 2010b) confidence scores are assigned to 

all reactions in the reconstruction using evidence from functional assignments based on 

experimental data such as enzymatic assays, genetic interactions, sequence data, 

localization information and physiological and modeling evidence.  The previous 
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reconstruction, iJO1366, had 350 ‘0 confidence reactions’, meaning they had not 

undergone this quality check.  Most of these reactions were added in the first E. coli 

metabolic reconstruction, iJE660 (Edwards and Palsson, 2000a).  To fully quality control 

the reconstruction we started with an in-depth analysis of these ‘0-confidence’ reactions.  

This process led to the discovery of vestigial errors, for example we found that the beta-

frucofuranosidase reaction (FFSD) was added to the model without any gene 

association.  This reaction allows the model to catabolize sucrose, a function that E. coli 

K-12 MG1655 is known not to be able to perform (Tsunekawa et al., 1992).  Overall 332 

of the ‘0 confidence reactions’ were updated to confidence level 2 or above 

(Supplementary Table S4).   

During the update of ‘0 confidence’ reactions, we also identified metabolic 

subsystems that would benefit from further additions and refinement. One of these 

systems was the murein production network.  This network was re-curated based on 

new information.  Importantly, the genes mrdA and ftsL encoding DD-transpeptidases 

that have recently been discovered to be essential for proper cell division and murein 

elongation (Vollmer, 2012) were added. Previously, each of these genes was included 

as an isozyme in iJO1366, limiting the model’s predictive capabilities related to murein 

synthesis.  Beyond murein, there were several reactions missing in iJO1366 relating to 

reactions that elongate alcohols, aldehydes and fatty acids.  And the substrates and 

products for several carboxylate oxidoreductase were missing from the model as a 

result. These changes will now allow model predictions for metabolite yields of these 

compounds, many of which are of interest to the metabolic engineering community for 

synthesis of advanced long-chain fuels and chemicals (Dellomonaco et al., 2011). 
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During the re-curation process, a total of 25 reactions present in iJO1366 were 

adjusted with changes to product or substrate usage or to reaction reversibility. For 

example, allantoate amidohydrolase was previously thought to catalyze both hydrolysis 

reactions in the allantoin degradation pathway (Agarwal et al., 2007) to produce (S)-

Ureidoglycolate directly.  However, the recent discovery of S-ureidoglycine 

aminohydrolase shows that these two functions are carried out by two different enzymes 

(Serventi et al., 2010).  Thus, the allantoate amidohydrolase reaction (ALLTAM) was 

updated to produce S-ureidoglycine as a product and the conversion of S-ureidoglycine 

to S-ureidoglycolate catalyzed by the AllE aminohydrolase was added to the model.  

Changes were also made to some reaction reversibility constraints. For example, in 

iJO1366 the malate oxidase reaction (MOX) was erroneously set as reversible.  In 

iML1502 the MOX reaction has been set to irreversible.  Adjusting this reaction allowed 

previously removed reactions CAT, SPODM, SPODMpp, SUCASPtpp, SUCFUMtpp, 

SUCMALtpp and SUCTARTtpp to be re-included in iML1502 and their functions to be 

modeled. 

Changes were also made to the reconstruction based on recent model-driven 

‘gap-filling’ studies.  These studies use contradictions between model predictions and 

experimental results to identify errors in the model that can then be experimentally 

investigated (Orth and Palsson, 2010a, Molina-Henares et al., 2010).  Recent studies 

have used such approaches to identify new enzymes (Orth and Palsson, 2012), 

promiscuous isozyme function (Guzman et al., 2015) and corrections to model errors 

(Kumar and Maranas, 2009, Aziz et al., 2015a).  Thus, throughout the iML1502 

reconstruction process significant emphasis was placed on correcting FPs and FNs that 

have persisted in previous model versions.  Some of these errors were corrected by 
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applying the high confidence changes suggested in a previous iJO1366 gap filling study 

(Orth and Palsson, 2012) where a gap filling algorithm, SMILEY (Reed et al., 2006a) 

was used to suggest model changes.  Evidence was found supporting the reversibility of 

the two 2,5- diketo-D-gluconate reductase reactions, DKGLCNR1 (Habrych et al., 2002) 

and DKGLCNR2y  (Yum et al., 1999).  

In addition to previous gap filling attempts, the remaining FPs and FNs were 

critically examined. In iJO1366 an aldA gene knockout was incorrectly predicted as 

essential due to a glycolaldehyde dead end in the model following deactivation of 

glycoladehyde dehydrogenase GCALDD. This gap was corrected by adding a high 

confidence reversible reaction that converts glycoladehyde and glycine to 4-hydroxy-L-

threonine by ltaE (21119630), thus providing an alternative pathway for consumption of 

this metabolite.  Furthermore two model false negatives were filled for the genes pabA 

and pabB.  These two gene products form a complex to catalyze 4-amino-4-deoxychorismate 

synthase (ADCS) a function required for production of 4-aminobenzoate (PABA) that leads to 

folate synthesis. However, it has been observed experimentally that ∆pabA and ∆pabB mutants 

grow in LB rich media.  The model predicts cell death in this case.  A literature search found that 

PABA can be transported into E. coli as PABA-glutamate (4abzglu) that can then be 

hydrolyzed by p-aminobenzoyl-glutamate hydrolase catalyzed by Abg (a complex of 

abgA and abgB) (Carter et al., 2007).  Furthermore a transporter for abzglu has been 

discovered (Hussein et al., 1998).  Thus it is likely that 4abzglu exists in LB media and 

the cell is able to transport 4abzglu into the cell for growth in LB media when pabA 

and/or pabB are knocked out. 

Other gaps were also filled in the folate biosynthesis pathway.  The folate 

biosynthesis pathway is lacking in humans and thus enzymes in this pathway are often 
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targeted for design of antibiotics.  Thus, accurate understanding and model predictions 

for perturbations in this pathway are of the utmost importance.  Deeper analysis of false 

negatives led to a new missing link between the functions of UbiC and PabC that was 

included in the model.  These two genes catalyze essential reactions 4-aminobenzoate 

synthase (ADCL) and chorismate pyruvate lyase (CHRPL) in the folate biosynthesis 

pathway.  Knockout of either of these genes was predicted to be lethal. However, this is 

not observed experimentally; knockouts of pabC and ubiC are viable when grown in M9-

glucose minimal media (Baba et al., 2006).  A literature search found evidence that each 

enzyme can each catalyze the other’s function and that a pabC mutant can be rescued 

by overexpression of ubiC  (Nichols and Green, 1992).  The substrates for each enzyme 

differ only in the presence of a hydroxy group versus an amino group at position 4 of the 

cyclodiene ring, and the products are derived by elimination of the enol-pyruvyl moiety 

concomitantly with aromatization of the ring structure.  Thus future gap-filling studies 

should focus on metabolite similarity and shared enzyme functions to further fill gaps in 

the metabolic network. 

Following these model quality checks, an extensive literature and database 

search was performed across all E. coli K-12 MG1655 annotated genes to identify new 

or previously known metabolic reactions that were missing from the reconstruction.  New 

metabolic content was added to the reconstruction based on this extensive search. The 

Pubmed, EcoCyc and KEGG (Kanehisa et al., 2014) databases were used for this 

purpose. All manual curation followed an established protocol (Thiele and Palsson, 

2010b). 

A number of newly discovered E. coli metabolic pathways and reactions were 

added to the network. New catabolic pathways for environmentally relevant metabolites 
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have recently been discovered.  For example, a pathway for the consumption of 

sulphoquinovose (SQ, 6-deoxy-6-sulphoglucose) was recently elucidated (Denger et al., 

2014) and added to the reconstruction.  This pathway, termed sulphoglycolysis, is 

encoded by a ten-gene cluster (b3875-b3844) that yields dihydroxyacetone phosphate 

(DHAP), which powers energy conservation and growth of E. coli, and the sulphonate 

product 2,3-dihydroxypropane-1-sulphonate (DHPS), which is excreted. SQ is present in 

the photosynthetic membranes of all higher plants, mosses, ferns and algae and is 

expected to be produced at a rate of 10,000,000,000 tons (10 petagrams) per year 

(Harwood and Nicholls, 1979).  Thus, its degradation by bacteria comprises a major 

portion of the organo-sulphur cycle in nature (Roy et al., 2003). Another newly 

discovered pathway, catalyzed by enzymes in the phn operon (b4092-b4108), is used 

for the degradation of alkylphosphonates (Kamat et al., 2011).  Specifically, the enzymes 

that enable metabolism of methylphosphonate to phosphate and methane have been 

added to the reconstruction, allowing its use as a sole source of phosphorous.  

Furthermore, new pathways for the metabolism of curcumin (the active ingredient in 

tumeric) (Hassaninasab et al., 2011) and the pathway used to catabolize and process 

the signaling molecule AI2 have recently been discovered (Marques et al., 2011) and 

were added to the model. 

The model was also updated to include metabolite damage and repair pathways.  

The impact of such damage on cellular metabolism and energy demands is increasingly 

being recognized (Linster et al., 2013).  Such damage can occur due to side reactions of 

promiscuous reactions or by spontaneous chemical reactions.  The productions of these 

reactions are useless or toxic and their unchecked buildup can be lethal to cells.  New 

genetic and genomic evidence is elucidating conserved enzymes that repair metabolites 
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or pre-empt such damage.  For example, the nicotinamide ring of NADH or NADPH can 

undergo spontaneous or enzymatic hydration to form the hydrates, NADHX and 

NADPHX (Marbaix et al., 2011). Spontaneous hydration is promoted by low pH or high 

temperature while the enzymatic reaction is mediated by a side activity of 

glyceraldehyde 3-phosphate dehydrogenase (Rafter et al., 1954). NADHX and NADPHX 

cannot act as electron donors or acceptors and inhibit several dehydrogenases (Yoshida 

and Dave, 1975) making them toxic to the cell.  Both hydrates are reconverted to NADH 

or NADPH by an ATP- (or ADP-) dependent dehydratase.  The repair of these 

metabolites thus represents an energy demand on the cell.  This damage and repair 

mechanism has been included in the model along with 23 other mechanisms and their 

encoding genes.   

Furthermore, eleven new genes of the haloacid dehalogenase (HAD)-like 

hydrolase superfamily were added to the model.  This family of enzymes was largely 

uncharacterized until recent studies performed genome-wide analyses of this group of 

enzymes (Kuznetsova et al., 2006) and demonstrated that they possess phosphatase, 

betaphosphoglutamase, phosphonatase and dehalogenase activities on a broad set of 

substrates.  Some HAD-like enzymes also perform important functions, including a 

heretofore missing link in riboflavin biosynthesis: the dephosphorylation of the 

intermediate 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-phosphate (5aprbu).  

This function was recently discovered to be catalyzed by previously uncharacterized 

HAD enzymes YigB and YbjI in E. coli (Haase et al., 2013).   

In total, 147 new genes were added to the reconstruction, while 12 genes were 

removed (b2311, b2045, b3835, b3380, b4301, b2874, b4395, b1773, b0736, b3803, 

b3807, b0323). These 12 genes were removed from the model because it was deemed 
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that there was insufficient evidence for their inclusion.  For example ubiX was originally 

included in the GPR for the 3-octaprenyl-4-hydroxybenzoate decarboxylase (OPHBDC) 

reaction in ubiquinone synthesis because mutant phenotypes indicate that ubiX (b2311) 

and ubiD interact (Gulmezian et al., 2007).  However these two proteins are not 

expected to form a complex, no biochemical evidence for the enzymatic function of UbiX 

is available (Nonet et al., 1987) and ubiX knockouts are viable while ubiD mutants are 

not.  Thus, ubiX was removed from the GPR for OPHBDC. 

With all of these new additions, the iML1502 model represents a new, expanded 

and quality checked E. coli reconstruction.  It contains 1502 genes, 2710 metabolic 

reactions, and 1202 unique metabolites. A summary of the content of iML1502 and its 

predecessor, iJO1366, is presented in Table 1. Like iJO1366, iML1502 contains a wide 

range of metabolic functions (Figure 1). The complete lists of reactions and metabolites 

in iJML1502 can be found in Supplementary Tables S2 and S3, with a list of all 

references used in Supplementary Table S4.  The majority of new genes (80) added to 

this model have been characterized since iJO1366 was finalized in 2010 (Figure 1D). 

The fact that some references predate previous versions of the E. coli reconstruction 

does not necessarily mean that they were previously missed. Rather, as genes and 

reactions are often added on a pathway basis, complete functional pathways are 

typically fully elucidated over time from multiple sources. Thus, the citations in Figure 1 

are spread out over time. The new genes mostly add new pathways and systems to the 

network, but a significant number of them fill gaps and orphan reactions in existing 

systems. A complete list of all new and removed genes, reactions, and metabolites can 

be found in Supplementary Table S5. 
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7.3.2 Updating the biomass composition and growth requirements 

  The “core” and “wild-type” biomass reactions of iJO1366 have also been updated 

in iML1502. These are reactions that drain biomass precursor compounds in 

experimentally determined ratios to simulate growth (Feist and Palsson, 2010b, Varma 

et al., 1993). Each component of a biomass reaction has the units of mmol/gDW (milli-

moles per gram cell dry weight), and flux through a biomass reaction has the units of h-1, 

and is equivalent to the exponential growth rate of the organism (Thiele and Palsson, 

2010b). The “wild-type” biomass reaction contains the precursors to all the typical wild-

type cellular components of E. coli, while the “core” biomass reaction contains the 

precursors only to essential components. Bis-molybdopterin guanine dinucleotide 

(bmocogdp) was removed from the core and wild type biomass objective functions due 

to consistent growth by mutants deficient in the ability to synthesize this metabolite. 

Furthermore, succinyl co-A (succoa) was added to the core biomass function.  E. 

coli has only one lysine synthesis pathway that consumes 1 succoa and produces 1 

succinate.  Succinate can be converted back to succoa by succinyl-CoA synthase.  

Thus, in steady state FBA simulations the model is able to produce lysine using the core 

biomass function without new succoa being produced.  Realistically, some amount of 

succoa must be used by the lysine pathway and must be de novo synthesized as new 

biomass is produced, just like the other cofactors that mostly form conserved pools (e.g. 

NAD/NADH), which are included in the core biomass reaction.  Since lysine is essential 

and requires the succoa consuming reaction in order to be produced, succoa is an 

essential cofactor and should be included in the core biomass function. This change has 

no effect on gene knockout results predictions but should lead to more accurate flux 

distributions predicted by the model. 
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Growth-associated maintenance (GAM) and non-growth-associated maintenance 

(NGAM) are the amounts of ATP consumed during cell growth and by non-growth 

associated processes such as maintenance of membrane gradients, respectively. GAM 

is a component of the biomass reaction, while NGAM is manifest as a lower bound on 

the separate ATP draining reaction “ATPM.” These two parameters were recalculated for 

iML1502 based on extensive new datasets from adaptive laboratory evolution (ALE) 

endpoint strains for E. coli K-12 MG1655 (single substrate evolutions, Glucose, Xylose, 

Glycerol, Acetate, Central Carbon KOs on Glucose). Such evolution studies represent a 

global minimum of maintenance energy and are thus useful for calculation of GAM.  

Using these studies, GAM was determined to be 51.09 mmol ATP gDW-1, while NGAM 

was determined to be 3.15 mmol ATP gDW-1 h-1. It should be noted that the GAM and 

NGAM in a specific strain biomass reaction can vary given the experimental data set 

from which they were calculated. As such, these values should be based on the 

experimental data that most closely matches the field of use for a modeling application. 

For the complete core and wild-type biomass reactions see Supplementary Table S6. 

7.3.4 Prediction of all growth-supporting carbon, nitrogen, phosphorus, and sulfur 

sources 

  The iML1502 reconstruction can be converted to a mathematical model to 

computationally examine E. coli metabolism.  The model contains exchange reactions 

for 324 different compounds. It is therefore possible to use iML1502 to predict the growth 

capabilities of E. coli on a very wide range of media conditions. As a demonstration of 

the prediction of growth capabilities, FBA was used to predict growth on every possible 

carbon, nitrogen, phosphorus, and sulfur source, one at a time, under both aerobic and 
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anaerobic conditions (Supplementary Table S7). Aerobically, a total of 187 carbon 

sources (out of 297 carbon containing compounds), 94 nitrogen sources (out of 182), 50 

phosphorous sources (out of 67) and 11 sulfur sources (out of 30) were found to be 

growth supporting (Table 2). There are several reasons why a carbon containing 

metabolite cannot serve as a carbon source. First, not all extracellular compounds have 

transport reactions that allow them to enter the cell. Some may only have efflux 

reactions that allow them to be excreted. Second, some compounds are not connected 

to the central reactions of metabolism, from which all essential biomass components are 

constructed. For example, cob(I)alamin can be converted only to vitamin B12, but not to 

any other biomass components. Third, carbon sources must also generally serve as 

energy sources for E. coli, so a highly oxidized compound such as CO2 cannot be 

growth supporting. Not all compounds can serve as nitrogen, phosphorus, and sulfur 

sources for similar reasons.  

7.3.5 Prediction of gene essentiality 

  The iML1502 model can predict the effect of gene knockouts through the “gene-

protein-reaction’ relationship, or GPR.  Every reaction in iML1502 is linked to its 

catalyzing protein that in turn is linked to its encoding gene via this GPR relationship that 

enables to model to predict the effect of gene knockouts. FBA was used to predict the 

optimal growth rate of E. coli growing in four different conditions: glucose aerobic M9 

minimal medium, glucose anaerobic M9 minimal medium, lactate aerobic M9 minimal 

medium, and succinate aerobic M9 minimal medium (Orth et al., 2011). Complete results 

of these screens for all 1502 genes knocked out one at a time can be found in 

Supplementary Table S6.  When compared to experimental gene essentiality data, most 

of the predictions made by iML1502 are correct, confirming its overall accuracy (91%).  
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There are incorrect growth predictions made by iML1502. Comparing 

computational predictions to gene essentiality data leads to four possible outcomes.  

Correct predictions come in two forms: True Positives (TP; model growth/experimental 

growth) and True Negatives (TN; model no growth/experimental no growth).  False 

predictions are classified as False Positives (FP; model growth/experimental no growth) 

or False Negatives (FN; model no growth/experimental growth).  False positive 

predictions are the results of a model possessing unrealistic capabilities, such as 

pathways that are not normally expressed during the particular growth conditions. 

Because iML1502 is a metabolic network model that does not contain regulatory 

systems, FP predictions are possible. FN cases, on the other hand, indicate that some 

realistic content such as an essential transport or enzymatic reaction may be missing 

from the model. Both situations offer opportunities for model improvement and these 

predictions can be used to drive model-based biological discovery (Reed et al., 2006a). 

As a result of efforts to remediate previous model errors, iML1502 showed a 

10.6% increase over iJO1366 in the models’ ability to predict gene essentiality against 

the complete Keio Collection grown on glucose M9 minimal media in aerobic conditions, 

as determined by the Matthews Correlation Coefficient (MCC). This included a reduction 

in the number of FPs and FNs by 2 and 15, respectively.   Improvement was seen 

across all other conditions as well. It was predicted that the remaining 38 false positives 

were likely due to the regulatory conditions specific to E. coli K-12 MG1655 growth on 

glucose aerobic M9 minimal media. These were considered further when construction 

iML1502-iso (see Modularized extensions of iML1502).  

7.3.6 Customization of iML1502 to enable broad use cases 
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Comprehensive genome-scale models of metabolism can be customized them to 

specific situations.  Such customization is achieved through adding or removing content 

from the full reconstruction to describe specific conditions of interest. Below we detail 

four specific modules that can be used to extend the predictive capabilities of iML1502 to 

address new questions.  First, the reconstruction can be reduced to contain only the 

metabolic content shared among all sequenced E. coli strains to examine the capabilities 

of the so-called core genome (Lukjancenko et al., 2010, Medini et al., 2005).  Then strain 

specific capabilities can be determined as augmentations to this core.  Second, iML1502 

can be expanded to include the reactions (many of which are spontaneous non-

catalyzed reaction) that generate reactive oxygen species (ROS) as by-products. Each 

customized model is released with this paper and housed in BiGG Models. 

1) iML1502-csvd: A large number of strains of a given bacterium are now being 

sequenced. This opens up the possibility to study and define a bacterial ‘species,’ its 

common functionalities and its variability. Over a 1000 genomes of diverse E. coli strains 

have now been sequenced.  Based on these sequences it is possible to establish the 

conserved metabolic capabilities of E. coli as a species by determining which metabolic 

genes are shared among all strains (Figure 2A).   

 

We compared metabolic genes in iML1502 across 1,129 sequenced strains of E. coli 

and Shigella .  We found that 983 metabolic genes were shared among >99% of the 

strains.  iML1502 was stripped of those genes not present in greater than 1111 strains 

(99% of strains) to form iML1502-csvd.  This model of conserved E. coli metabolism 

contained 983 genes, 1867 reactions and 1202 unique metabolites making it similar in 

size to the conserved model formed among 55 strains of E. coli (Monk et al., 2013).  
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iML1502-cons is auxotrophic for nutrients including L-proline, L-phenylalanine, L-

tryptophan, L-arginine, L-tyrosine, L-glutamate, L-glutamine, biotin, thiamine and 

tetrahydrofolate indicating that the ability to synthesize these molecules is not conserved 

across all strains of E. coli.  When the in silico minimal media is supplemented with 

these nutrients, the conserved metabolic model is able to grow on 114/187 C sources, 

41/94 N sources, 6/11 S sources and 41/50 P sources.  iML1502-csvd is provided with 

this manuscript for use in applications studying conserved E. coli metabolic functions. 

2) iML1502-iso: Each prior iteration of the E. coli K-12 MG1655 metabolic 

reconstruction generated a marked improvement in prediction of gene essentiality. This 

improvement mostly stems from the improvement in the number of false negatives 

predicted as additional network content is added to the model. Conversely, there has 

been little improvement in the number of false positives. This lack of improvement can 

largely be attributed to the inclusion of secondary isozymes to the GPRs of metabolic 

reactions. While most of these are correct, the window of observation for gene 

essentiality experiments is often not long enough to observe the up-regulation of 

alternate isozymes in KO strains. Considering that many of these isozymes take multiple 

days to be effectively expressed and utilized they can be eliminated from iML1502 when 

it is used for sort term predictions. By contextualizing iML1502 to short term growth on 

glucose aerobic M9 minimal media, iML1502-iso was able to predict gene essentiality 

data with an MCC of 0.83 by reducing the number of FPs from 38 to 16.  iML1502-iso is 

customized for use to interpret or design experiments performed in glucose aerobic M9 

minimal media in which the window of observation is short enough so that up-regulation 

of reactions catalyzed by secondary isozymes will not take place. 
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The iML1502-iso model was constructed by filtering out genes with low RNAseq 

expression compared to the primary enzyme catalyzing the reaction. This identified 152 

secondary isozymes that resulted in 194 reaction GPR changes and the complete 

removal of 86 gene products from the model. The 86 genes that were removed 

synthesize proteins that have no primary function detailed in the model under these 

specific conditions. A set of additional genes and reactions was also removed due to 

known roles in solely anaerobic conditions. These reactions included OXAMC and 

CBMKr that are used under anaerobic conditions to metabolize allantoin as a nitrogen 

source. Furthermore, there were several gene knockouts that incorrectly predicted cell 

growth due to the model availability of lowly expressed alternative pathways/reaction.  

Additionally, the XAD reactions allowed the models to …. and were removed due to very 

low (<20 counts) expression on glucose aerobic M9 minimal media.  

In order for E. coli to grow in this specific condition, specific processes or 

pathways must be active in order for the cell to grow. One such change was made to 

facilitate the acquisition of iron (III) by adding enterobactin to the core and wild-type 

biomass objective functions. In several growth conditions (i.e. LB, anaerobic conditions, 

MOPS media) iron (II) is present in low levels in the media, which is the soluble oxidative 

state of iron that can taken up directly through a variety of direct transport systems. In 

glucose aerobic M9 minimal media, however, most all iron will exist in it insoluble, 

oxidized iron (III) state. In this case, a siderophore, primarily enterobactin in E. coli K-12 

MG1655, as well as its transport proteins are required to effectively import iron into the 

cell for use as a cofactor. Adding this compound to the biomass objective function will 

require the pathways producing and transporting enterobactin to be active in order to 

grow in these conditions. 
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3) iML1502-ROS: As genome-scale reconstructions expand in scope, modeling 

of some capabilities may only be desired in certain situations.  One such situation 

describing ROS production and detoxification in E. coli (Brynildsen et al., 2013a). 

However since this study appeared, the metabolic network has been expanded by over 

200 new genes and reactions.  Therefore we updated the description of ROS production 

using iML1502.  We added 334 ROS production reactions to the model based on 

identification of 167 ROS production sources (an increase of 34 reactions over iAF1260-

ros (Brynildsen et al., 2013a)) based on an analysis of enzymes that utilize reduced 

flavin, quinol and transition metal functional groups which have been shown to be a 

source of O2
- and H2O2 (Massey, 1994, Messner and Imlay, 1999).  Incorporating these 

reactions into the model allows for simulation of ROS production and mitigation in E. coli.  

We found that knockout of 41 different genes reliably increased ROS production, in line 

with previous studies that have experimentally validated this approach.  The iML1502-

ROS model is provided here for use in studying ROS production and detoxification. 

4) iML1502-PRO: Integrating genome-scale models with three-dimensional 

protein structures (GEM-PRO) has proven to be a powerful approach to extend the 

scope and predictive capability of genome-scale models. GEM-PRO enables studies 

that address how properties of individual proteins impact an entire metabolic network.  A 

previous version of the GEM-PRO for E. coli K-12 MG1655 has been released.  

This GEM-PRO, termed iRC1366-GP, contained 1365 genes, of which 98 had no 

structural information, 465 had available crystallographic structures and 803 were 

homology modeled.  Now, with iML1502, 153 new metabolic genes have been 

incorporated into the GEM-PRO model ready for structural modelling (12 genes have 

been removed).  97% of these genes had crystal structures available in PDB, in which 
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the majority were high resolution (< 3Å, see Supplementary Information) deemed to be 

of sufficient quality.  The remaining structures were obtained using a well-established 

homology modelling protocol (Zhang, 2008, Roy et al., 2010).  The iML1502-pro model 

can be used in structural applications including prediction of behavior at different 

temperatures (Chang et al., 2013a), docking predictions for antibiotic design (Chang et 

al., 2013c) and discovery of new promiscuous enzyme functions (Guzman et al., 2015). 

Connecting each enzyme to its three-dimensional structure also allows for a finer 

characterization of the gene-protein-reaction relationship.  This relationship is the link 

from genotype to phenotype in a genome-scale model, it allows for connection between 

gene coding (G) for a protein (P) that then catalyzes a reaction (R) used in the cell.  With 

three dimensional structures of proteins we can now get a finer grained detail into the 

catalytic process by actually determining the catalytic domain that performs an 

enzymatic transformation.  This enables a new relationship to be formed, termed the 

“DGPR” or domain-gene-protein-reaction.  The GEM-PRO enables us to assign all 

catalytic domains in proteins within the nextwork as well as their coding regions in a 

specific gene.  

7.4 Discussion 

iML1502 is the highest quality, most comprehensive metabolic reconstruction of 

E. coli K-12 MG1655 to date.  It was established here by validating the model’s 

predictions across mutant phenotype screens for all genes in the model across four 

conditions different conditions. By curating all of the low confidence reactions in the 

previous model, the average confidence of reactions increased from 2.58 to 3.25.  This 

process also illuminated subsystems in the model that could benefit from further 

curation. New metabolic content has been added to iML1502, including the newly 
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elucidated pathways for metabolism of environmentally relevant metabolites such as 

sulphoquinovose, methylphosphonate, curcumin and AI2.    Furthermore, a significant 

effort was made to gap fill and correct known model errors. When comparing the 

essentiality predictions of iML1502 to the previous model a 10% increase in predictive 

accuracy is observed across all gene knockouts and growth conditions. 

The presented reconstruction provides a useful tool for predicting the metabolic 

state of E. coli K-12 MG1655 as well as a high quality scaffold for constructing the next 

generation of cellular models. For the past decade, previous versions of this 

reconstruction have been used in a wide range of studies, from the discovery and 

characterization of new metabolic genes (Orth & Palsson, 2010; Reed et al, 2006b) to 

the design of high-yield production strains for industrially valuable compounds (Feist et 

al, 2010; Kim et al, 2008). Like its predecessors, iML1502 is expected to have many 

practical applications (Feist & Palsson, 2008). Given that this strain of E. coli is perhaps 

the most exhaustively studied prokaryote, this metabolic reconstruction can also act as 

an ideal platform for constructing the next generation of cellular models. Some of these 

have already come to fruition in the form of models of metabolism and expression as 

well as models with integrated protein structural information. The predictability of these 

new models, however, hinges on the quality of the scaffold, as any errors may percolate 

through the model extensions and invalidate results.  

In addition to a metabolic reconstruction specific to only the E. coli K-12 MG1655 

strain, we present four specific modules that can be used to augment iML1502’s 

capabilities and simulation metabolic functions under unique situations: iML1502-cons, 

iML1502-iso, iML1502-ros and iML1502-pro.  The iML1502 genome-scale metabolic 

network reconstruction of E. coli is the latest update to one of the workhorse models of 
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the microbial systems biology community. Some of the applications, such as prediction 

of growth phenotypes in different media and with gene knockouts, have been presented 

here. The accuracy of the model has been confirmed by comparisons to experimental 

data. More advanced uses of iMl1502 include guiding the discovery of metabolic genes 

and reactions and design of metabolic engineering production strains.  This model can 

now be integrated with genome-scale network reconstruction of other cellular systems 

such as transcriptional regulation and transcription and translation. iML1502 is the most 

advanced and comprehensive metabolic reconstruction of any microorganism to date, 

and can thus continue to serve as a basis for the metabolic reconstruction of other 

bacteria. Based on the success of it its predecessors, one may expect that iML1502 will 

be an important tool in microbial systems biology for years to come. 

7.5 Materials and Methods 

7.5.1 Network reconstruction procedure  

The iML1502 reconstruction was assembled by updating the iJO1366 E. coli 

metabolic reconstruction (Orth et al., 2011).  A 96-step procedure (Thiele and Palsson, 

2010b) for metabolic network reconstruction was followed when adding new genes, 

reactions, and metabolites to form iML1502. The reconstruction was assembled using 

the SimPheny (Genomatica Inc., San Diego, CA) software platform. All new metabolites 

were checked against public databases (e.g. KEGG, PubChem) for correct structure and 

charge at a pH of 7.2. New reactions were mass and charge balanced and reversibility 

was assigned based on experimental studies, thermodynamic information, or the 

heuristic rules in the standard reconstruction protocol (Thiele and Palsson, 2010b). 

Reactions were associated with genes and functional proteins to form GPRs. The 

iML1502 model was exported from SimPheny as an SBML file and the COBRApy 
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Toolbox was used for additional model testing. The Gurobi linear programming solver 

was used for all optimization procedures. 

7.5.2 In vivo phenotypic screens 

  The iML1502 E. coli K-12 MG1655 metabolic reconstruction was used to make 

computational predictions. The parent strain of the Keio Collection, BW25113, is derived 

from K-12 MG1655 and is missing several genes that are present in K-12 MG1655: 

araBAD, rhaBAD, and lacZ. Therefore, flux through the associated reactions without 

isozymes (ARAI, RBK_L1, RMPA, LYXI, RMI, RMK, and LACZ) was constrained by 

setting the upper and lower flux bounds of the reactions to zero. The lower bounds of 

exchange reactions were set to default values to simulate minimal media. For aerobic 

growth, oxygen uptake was allowed by setting the lower bound of the oxygen exchange 

reaction to -18.5 mmol gDW-1 h-1. Anaerobic growth was modeled by setting the lower 

bound of this reaction to zero. For growth on glucose, the lower bound of the glucose 

exchange reaction was set to -8 mmol gDW-1 h-1. For growth on L-lactate and succinate, 

the lower bounds were set to -16 mmol gDW-1 h-1. After setting the bounds for each 

condition, the predicted effect of the single deletion of each gene in iML1502 for each 

condition was computed using the COBRApy Toolbox delete_model_genes function, 

which uses GPRs to constrain the appropriate reactions to carry zero flux and then 

predicts maximum growth using FBA. A gene was considered essential for the simulated 

condition if deletion of the gene reduced optimal growth rate to less than 5% of the wild-

type strain as computed by FBA. 

  Knockout strains were taken from the Keio Collection (Baba et al, 2006; 

Yamamoto et al, 2009) (supplied by Open Biosystems), a genome-scale collection of E. 

coli K-12 gene knockouts created by the method of Datsenko and Wanner (Datsenko & 
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Wanner, 2000). Stocks of knockout mutants were streaked onto LB agar with kanamycin 

(50 µg/mL) from odd-numbered Keio collection plates only. Two single colonies of the 

Keio knockout strain were inoculated into 96-well plates containing 200 µL of LB media 

with kanamycin (50 µg/mL) and incubated overnight at 37°C without shaking. Plates 

were then centrifuged and pelleted cells were washed twice with 200 µL of 1X M9 salts 

per well. Disposable replicator pins were used to transfer cells from the pre-culture plate 

to four new plates, two containing glucose M9 minimal medium, one containing lactate 

M9 minimal medium, and one containing succinate M9 minimal medium. There was 200 

µL of minimal medium per well, and the minimal media also contained 50 µg/mL 

kanamycin. The four 96-well plates were covered with Aeraseal breathable film (Sigma) 

to minimize cross-well contamination. For aerobic conditions, the plates were incubated 

at 37° C without shaking in a sterile cabinet. For anaerobic conditions, the plates were 

incubated at 37° C in an anaerobic chamber ([O2] < 50 ppm). After 48 h, absorbance at 

600 nm of each well was determined using a VERSAmax microplate reader (Molecular 

Devices, Sunnyvale, CA). 

  A well was considered to have no growth or slow growth if its absorbance was 

less than a cut-off value specific to each of the four conditions. The cut-off value was 

determined by visual inspection of a histogram of absorbance values for all wells 

measured from a given condition. “Normal” growers are supposed to result in 

measurements lying in the roughly Gaussian shaped distribution that makes up most of 

the data, while slow- and non-growers are supposed to result in measurements falling 

outside the upper 0.95 area of the Gaussian distribution. The cut-offs were OD600 = 0.26 

for glucose aerobic plates, OD600 = 0.21 for glucose anaerobic plates, OD600 = 0.21 for 

lactate aerobic plates, and OD600 = 0.20 for succinate aerobic plates. If both colonies of 
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a gene knockout were determined to have normal growth, then the gene was considered 

a true positive (TP) if the model had predicted growth for the knockout, or a tentative 

false negative (TFN) if the model indicated the knockout should not have grown or 

previous experiments in glucose MOPS minimal medium had indicated the gene was 

essential (Baba et al, 2006). Similarly, if both colonies of a gene knockout were 

determined to have slow/no growth, then the gene was considered a true negative (TN) 

if the mode predicted the same outcome, or a tentative false positive (TFP) otherwise. A 

gene was considered inconclusive (INC) if for any condition only one colony showed 

slow/no growth. 

A second round of screening was performed for TFN, TFP, and INC gene 

knockouts. TFP and INC gene knockouts were rescreened with two colonies each; TFN 

gene knockouts were rescreened with four colonies and their pellets were washed four 

times before transfer to minimal media instead of twice to ensure that growth was not 

due to contamination from trace amounts of rich media from the precultures. For TFP 

and INC gene knockouts, a gene was considered essential for a condition if at least one 

colony showed slow/no growth in the condition in both the first and second round 

screens. If an essential gene was predicted by the model to be non-essential in the 

experimental condition, then the gene was concluded to be a genuine false positive (FP) 

for that condition. For TFN gene knockouts, a gene was considered a genuine false 

negative (FN) if two of four colonies demonstrated normal growth in the secondary 

screen. 

7.5.3 Constraint-based modeling 

The iML1502 model, constructed in SimPheny, was exported as an SBML file 

and used to perform simulations and constraint-based analyses using the COBRApy 
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Toolbox and Gurobi linear programming solver. The constraint-based model consists of 

a stoichiometric matrix (S) with m rows and n columns, where m is the number of distinct 

metabolites and n is the number of reactions. Each of the n reactions has an upper and 

lower bound on the flux it can carry. Reversible reactions have an upper bound of 1000 

mmol gDW-1 h-1 and a lower bound of -1000 mmol gDW-1 h-1, while irreversible reactions 

have a lower bound of zero. FBA can be used to identify optimal steady-state flux 

distributions of constraint-based models. Linear programming is used to find a solution to 

the equation Sv = 0, given the set of upper and lower bounds and an objective function 

defined by a vector c of length n. v is a vector of reaction fluxes of length n. Typically, c 

is a vector of 0s with a 1 at the position of the reaction flux to be maximized or 

minimized. For a thorough description of FBA, see (Orth et al, 2010). 

         For most growth simulations, the core biomass reaction is set as the objective to 

be maximized. Certain reactions that are not used under typical growth states are by 

default constrained to carry zero flux. These reactions are CAT, DHPTDNR, 

DHPTDNRN, FHL. The NGAM constraint is imposed by a lower bound of 3.15 mmol 

gDW-1 h-1 on the reaction ATPM. The exchange reactions that allow for extracellular 

metabolites to pass in and out of the system are defined such that a positive flux 

indicates flow out. All exchange reactions have a lower bound of zero except for glucose 

(-10 mmol gDW-1 h-1) and oxygen and all inorganic ions required by the biomass reaction 

(-1000 mmol gDW-1 h-1). 

7.5.4 Prediction of different carbon, nitrogen, phosphorus, and sulfur sources 

The possible growth-supporting carbon, nitrogen, phosphorus, and sulfur sources 

of E. coli were identified using FBA. First, all exchange reactions for extracellular 

metabolites containing the four elements were identified from the metabolite formulas. 
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Every extracellular compound containing carbon was considered a potential carbon 

source, for example. Next, to determine possible growth supporting carbon sources, the 

lower bound of the glucose exchange reaction was constrained to zero. Then the lower 

bound of each carbon exchange reaction was set, one at a time, to -10 mmol gDW-1 h-1, 

and growth was maximized by FBA using the core biomass reaction. The target 

substrate was considered growth supporting if the predicted growth rate was above zero. 

While identifying carbon sources, the default nitrogen, phosphorus, and sulfur sources 

were ammonium (nh4), inorganic phosphate (pi), and inorganic sulfate (so4). Prediction 

of growth supporting sources of these other three elements was performed in the same 

manner as growth on carbon, with glucose as the default carbon source. 

7.5.5 Gene essentiality predictions 

To simulate the effects of gene knockouts, the iML1502 model with its default 

constraints and core biomass reaction objective was modified to match the genotype of 

E. coli BW25113 (see In vivo phenotypic screens). For growth on glucose, the lower 

bound of the glucose exchange reaction was set to -10 mmol gDW-1 h-1. For growth on 

glycerol, the lower bound of the glucose exchange reaction was set to zero while the 

lower bound of the glycerol exchange reaction was set to -10 mmol gDW-1 h-1. All 1362 

genes in the model were knocked out one a time and growth was simulated by FBA 

using the delete_model_genes COBRApy Toolbox function. Gene knockout strains with 

a growth rate above zero were considered non-essential. The newly identified essential 

genes were added to the lists of essential genes under both conditions, while the genes 

whose essentiality was identified as uncertain were not changed from their original 

designations. 

7.5.6 Mapping to other E. coli strains 
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The protein sequences of all available E. coli and Shigella strains (1129 strains 

total) were downloaded from the RAST database (CITE RAST).  The RAST server 

get_corresponding_genes function was used to identify orthologs between E. coli K-12 

MG1655 and each of the other strains.  Genes were considered conserved if they were 

present in another organism at greater than 80% percentage identity with a best 

bidirectional hit (BBH).  Those genes that were not shared at this cutoff in less than 99% 

of strains were then removed from the iML1502 model to form iML1502-consv.  This 

model was investigated to determine which components of the biomass function could 

not be produced. When a strain is unable to synthesize a certain biomass component, it 

either has an alternate route to produce this biomass component or an auxotrophy 

requiring transport of this metabolite to sustain growth. This method can accurately 

determine known strain-specific auxotrophies.  

To simulate growth on all possible C, N, P and S sources the model was 

provided with exchange reactions for those components that it was auxotrophic for (btn, 

glu-L, dttp, thmpp, 2ohph, trp-L, 10fthf, udcpdp, tyr-L, phe-L) with a lower bound of -1.  

The biomass function was modified by removing four components that could not be 

exchanged (pe161_p, pe160_p, kdo2lipid4_e, murein5px4p_p) to form a conserved 

biomass function: ‘Ec_biomass_iML1502_CONS_53p95M’.  This biomass function was 

used to optimize for growth of the model by individually replacing the sole source of C, 

P, N or S.  Growth was considered to be present if the predicted growth rate was 5% 

greater than the growth rate with no exogenous source of C, N, P, or S (excluding the 

exchange reactions provided auxotrophies). 
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Table 7.1. Properties of iML1502 and iJO1366 

 

  
iML1502 (this 
study) 

iJO1366 (Orth et 
al, 2011) 

Included genes 1504 (35%) 1367 (32%) 
Unique functional proteins 1380 1254 
    Multigene complexes 284 262 
    Genes involved in complexes 508 475 
    Instances of isozymes 438 365 
Reactions 2372 2251 
    Biochemical evidence 1763 1343 
    Genetic evidence 378 283 
    Physiological evidence 332 277 
    Sequence evidence 106 83 
Metabolic reactions 1575 1473 
    Cytoplasmic 1319 1272 
    Periplasmic 241 193 
    Extracellular 15 8 
Transport reactions 797 778 
    Cytoplasm to periplasm 460 447 
    Periplasm to extracellular 334 329 
    Cytoplasm to extracellular 3 2 
Gene-protein-reaction associations     
    Gene association 
(metabolic/transport) 1510/698 1382/706 
    Spontaneous/diffusion reactions 19/25 21/14 
    Total (gene associated and no 
association needed) 

1529/723 
(95%) 1403/720 (94%) 

    No gene association 
(metabolic/transport) 46/74 (5%) 77/58 (6%) 
Exchange reactions 338 330 
Metabolites     
    Unique metabolites 1202 1136 
    Cytoplasmic 1103 1039 
    Periplasmic 462 442 
    Extracellular 338 324 
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Table 7.2. Gene essentiality predictions on 4 minimal medias. 

 

  Experimental 
  Growth No Growth 
  On Glucose 
Model Growth 931 41 
Model No Growth 10 83 
  On Glucose - Anaerobic 
Model Growth 922 42 
Model No Growth 15 86 
 On Lactate 
Model Growth 916 48 
Model No Growth 9 92 
 On Succinate 
Model Growth 909 51 
Model No Growth 9 96 
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Figure 7.1. Distribution of the reactions, genes, and metabolites in iML1502 by functional 
category.  
(A) The number of reactions in each of eleven categories. Each reaction was assigned to one of 
36 subsystems during the reconstruction process, and these subsystems were then assigned to 
broader categories. Non-gene-associated (orphan) reactions are indicated by the lighter portion 
at the far right of each bar. (B) The number of genes with associated reactions in each category. 
The number of genes unique to each category (i.e., associated only with genes in one category) 
is given as a percentage. (C) The number of unique metabolites that participate in at least one 
reaction in each category, with the number of metabolites unique to each category indicated. (D) 
Histogram of the years in which the function of each new gene was first unambiguously identified. 
Most new genes were characterized after iJO1366 was published in 2011, while some were 
characterized previously but not included in the E. coli metabolic reconstruction (see text). (E) 
Classification of each of the 147 new genes in iML1502 by metabolic subsystem. 
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Figure 7.2. Extensions of the iML1502 model.   
A) the content of iML1502 was compared to over 1000 sequenced E. coli strains.  983 of the 
genes are present in more than 99% of these strains.  These genes form a core model. B) Model 
predictions were improved by detailing isozyme usage in E. coli. C) ROS production by E. coli 
was added to the model. D) The model was combined with 3D protein structures to.  
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Chapter 8 A genome-scale reconstruction of metabolism and 

associated protein structures in Staphlyococcus aureus USA300
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8.1 Abstract 

Staphylococcus aureus is a gram-positive pathogen of humans and animals, 

causing significant morbidity, mortality, and economic loss worldwide.  USA300, a clone 

of methicillin-resistant Staphylococcus aureus (MRSA), is a major source of community-

acquired infections in the USA, Canada, and Europe. A genome-scale model (GEM) of 

metabolism in this facultative anaerobic opportunistic pathogen was built based on 

current genomic data, literature, and physiological information to elucidate the metabolic 

underpinnings of this strain’s distinctive epidemiological and virulence properties. The 

GEM comprises 1399 metabolic processes representing approximately 29% of all 

protein-coding regions. The GEM was extensively validated against experimental 

observations and correctly predicts the main physiological properties of the wild-type 

strain, such as aerobic and anaerobic respiration and fermentation. These results 

indicate that the GEM is useful in assisting future experiments to elucidate the 

interrelationship of bacterial metabolism and antibiotic resistance. To help directing 

future studies for novel chemotherapeutic targets, we conducted a large-scale in silico 

gene deletion study that identified 102 metabolic reactions essential to this bacteria’s 

survival.  The reason for the overwhelming success of the USA300 clone is not known, 

thus the GEM-PRO presented here should be of use for further integrated studies into 

the genetic factors that play a role in the success and virulence of this strain. 

8.2 Introduction 

Staphylococcus aureus strain USA300 is a strain of gram-positive bacteria 

responsible for Methicillin-resistant Staphylococcus aureus (MRSA) that has emerged as 

the predominant cause of community-associated infections in the United States, Canada 

and Europe (Moran et al., 2006).  Today in the United States more deaths are attributed 
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to MRSA infections than to HIV/AIDS (Bancroft, 2007, Klevens et al., 2007). USA300 

was first isolated in September, 2000, and has been implicated in wide-ranging and 

epidemiologically unassociated outbreaks of skin and soft tissue infections in healthy 

individuals (Diep et al., 2006). In 2006 the CDC reported that 64% of MRSA isolated 

from infected patients were of the USA300 strain, an increase from 11.3% since 2002 

(Tattevin et al., 2009) indicating a rapid spread throughout the country.  USA300 is 

capable of producing rapidly-progressing fatal conditions in humans that causes a wide 

variety of diseases, ranging from superficial skin and soft tissue infections to life-

threatening septicaemia, endocarditis, and toxic shock syndrome.  USA300 alone 

causes an estimated 20-40 thousand annual deaths worldwide (Highlander et al., 2007). 

Although many of the mechanisms for antibiotic resistance and infection have 

been elucidated for this organism, there is little published information regarding the basic 

and systemic biochemical function of S. aureus USA300, especially under carefully 

controlled environmental conditions in chemically defined media. The annotated genome 

of a microorganism, in conjunction with biochemical, physiological and 3D structural 

data, can be used to reconstruct a metabolic network integrated with protein structures 

for that organism (Chang et al., 2013a). Such reconstructed networks consist of a set of 

chemical reactions that together comprise the known metabolic transformations that take 

place in a particular organism linked to the 3D structure of the enzymes catalyzing these 

reactions. 

Genome-scale models (GEMs) combined with protein structure (GEM-PRO) 

represent a biochemically and genetically structured database that can be used to 

predict and simulated the metabolic features of an organism (Bordbar et al., 2014, 

O'Brien et al., 2015). With the imposition of appropriate constraints, the GEM-PRO can 
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be used to simulate the effect of drug binding (Chang et al., 2013c, Aziz et al., 2015a, 

Aziz et al., 2015b), protein temperature sensitivity (Chang et al., 2013a), evolution of 

protein fold families (Zhang et al., 2009) and discovery of new metabolic activities 

(Guzman et al., 2015).  Therefore GEM-PROs use the genotype to predict phenotypes 

of a cell that can then be validated experimentally (Monk and Palsson, 2014). 

The functionality of GEM-PROs can be further extended by applying a range of in 

silico analytical methods (Lewis et al., 2012a).  Recent studies have coupled the 

production of reactive oxygen species to the metabolic network, allowing predictions 

related to ROS production and detoxification as well as new ways to potentiate 

antibiotics (Brynildsen et al., 2013a).  Also, GEM-PROs can serve as a scaffold for high-

throughput data integration (Hyduke et al., 2013). This use allows interpretation of large 

datasets based on their effect on the network as a whole. 

This study describes the first manually curated, genome-scale, elementally and 

charge balanced metabolic reconstruction combined with protein structures (GEM-PRO) 

for the important pathogen S. aureus USA300, termed iUSA300_853-GP.  This GEM-

PRO allows for the formulation of hypothesis ranging from relative growth capabilities on 

different media to the outcome of gene deletion experiments and design of hypothetical 

new drugs. Importantly, due to the curation and refinement necessary to form a 

functional GEMPRO for S. aureus USA300, the work reported contains the most 

comprehensive metabolic reconstruction available for this significant pathogen that is 

consistent with known phenotypic functions. 

8.3 Results 

8.3.1 Reconstruction process and properties 
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The network reconstruction of S. aureus USA300 began with the metabolic 

network of the S. aureus N315 strain published in 2005 (Becker and Palsson, 2005).  

Further reconstruction data were obtained from two other metabolic networks 

(Heinemann et al., 2005, Lee et al., 2009) as well as literature and database searches.  

The MetaCyc (Keseler et al., 2009), KEGG (Kanehisa et al., 2010) and model SEED 

(Henry et al., 2010c) databases were used to examine newly characterized genes and 

reactions specific to the USA300 strain. All manual curation followed a standardized, 

well-established protocol (Thiele and Palsson, 2010b). 

The reconstruction of cell wall and membrane metabolism was also substantially 

improved in the current reconstruction.  The S. aureus cell wall is known to be important 

for bacterial resistance (Kuroda et al., 2003, Pechous et al., 2004) and cell wall structure 

and composition is known to fluctuate based on metabolic alterations (Cui et al., 2000).  

iJM755 has 242 reactions assigned to cell wall and membrane metabolism.  These 

include strain specific reactions for the specialized enzymes required to synthesize the 

lipoteichoic and wall-teichoic acids, the composition of which are known to differ by 

genus (Neuhaus and Baddiley, 2003, Reusch, 1984, Sutcliffe and Shaw, 1991) in 

contrast to the pathways leading to synthesis of peptidoglycan precursors, which are 

well conserved between Gram-positive organisms (Schleifer and Kandler, 1972). 

Detailed reconstruction of the respiratory chain was also performed as the 

iSB615 model was determined to incorrectly account for this feature of the organism.  S. 

aureus is capable of growing aerobically and thus has a full respiratory chain including 

membrane-associated dehydrogenases, quinone electron transfer and ATPase.  

Menaquinone is known to be the only quinone in S. aureus (McNamara and Proctor, 
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2000, Tynecka et al., 1999, Wilkinson et al., 1997).  Therefore, the ubiquinone 

dependency of the NADH dehydrogenase present in iSB615 was corrected. 

The efficiency of ATPase in S. aureus (F0F1) was taken to be 2.4H+/ATP (2.4 

protons transported across the membrane to synthesize one molecule of ATP), as 

determined by Heineman et al based on an experiment that determined the proton 

motive force in growing Streptococcus (Kashket, 1981) as well as applied experimental 

data on ATP, ADP and Pi concentrations for growing S. aureus cells (Tynecka et al., 

1999, Christian and Waltho, 1964).  This leads to approximately 1.7 molecules of ATP 

produced per mol of NADH, in agreement with the generally assumed ratio of 2 for S. 

aureus (Wilkinson et al., 1997). 

We also added the full staphyoxanthin pathway (Kim and Lee, 2012) to the 

model.  Staphyloxanthin  is a C(30) catotenoid biosynthesized by S. aureus.  This 

pigment acts as an antioxidant and its numerous conjugated double bonds enabling the 

detoxification of host immune system–generated reactive oxygen species (ROS) such as 

O2
–, H2O2, and HOCl (Clauditz et al., 2006, Liu et al., 2005).   

A full annotation of known S. aureus virulence factors present in USA300 was 

also performed.  Known staph aureus virulence factors were downloaded from 

databases (Chen et al., 2015) and identified from a literature search (Nizet, 2007).  

Overall we identified a total of 85 established virulence factors in USA300. We also 

identified genes involved in transcription and translation for this organism making future 

integration with an expanded model of metabolism and expression mechanisms (O'Brien 

et al., 2013b, Liu et al., 2014a) (ME-model) possible. 

8.3.2 Integration with 3D protein structures 
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Next, this reconstruction of metabolic, virulence and expression capabilities of S. 

aureus USA300 was integrated with 3-dimensional protein structures.  A standardized 

workflow was used to search the PDB for matching content.  Missing content was added 

by identifying the nearest homolog with an existing structure.  Homology models were 

built from this template modified to match the amino acid sequence of the USA300 query 

protein.  Overall 159 proteins were found in the PDB and 790 proteins required 

homology modelling. Of those that require homology modeling, we have modeled 75% 

(589 non-transport related proteins). 

The iUSA300_853-GP reconstruction represents a significant expansion beyond 

any other S. aureus reconstruction as it contains 853 genes, 1,558 metabolic reactions, 

and 1,338 unique metabolites. The genome sequence of S. aureus USA300 (isolate 

FPR3757, NCBI: NC_007793) has a length of 2,872,769 base pairs with 2,560 predicted 

protein coding regions (Diep et al., 2006).  Thus, our metabolic model covers 

approximately 33% of all ORFs.  A comparison of the content of iUSA300_853-GP and 

other S. aureus metabolic models is presented in Supplementary Figure 1.  

iUSA300_853-GP covers a wide range of metabolic functions (Figure 1). The complete 

lists of reactions and metabolites in iUSA300_853-GP can be found in Supplementary 

Table 1, with a list of all references used in Supplementary Table 2. The 

iUSA300_853-GP model accounts for two compartments: the cytoplasm and 

extracellular space. Thus, iUSA300_853-GP represents the most complete metabolic 

reconstruction of S. aureus USA300 available to date. 

8.3.4 Biomass objective function 

The biomass objective function (BOF) from iSB619 was updated in 

iUSA300_853. The BOF is a reaction that drains biomass precursor compounds in 
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experimentally determined ratios to simulate growth (Feist and Palsson, 2010b).  Both 

core and wild-type biomass functions were defined for S. aureus USA300.  No data on 

biomass composition were available specifically for strain USA300.  Hence, literature 

data from a variety of S. aureus strains were used to refine the biomass composition to 

form an average biomass function representative of the S. aureus species.  The ratio of 

nucleic acids was determined by the G/C content of the genome sequence.  Amino acid 

content was determined by assessing the average amino acid composition of genes in 

the genome as well as the pool of free solutes previously measured (Graham and 

Wilkinson, 1992, Hancock, 1960, Heinemann et al., 2005). The wild-type biomass 

function contains fatty acid composition of lipids required for growth specific to S. aureus 

(Theodore and Panos, 1973).  The most prominent lipids in S. aureus are phsopholipids 

(phosphatidyl glycerol, cardiolipin and lysyl-phosphatidyl glycerol (White and Frerman, 

1967, Hugo and Davidson, 1973b, Koch et al., 1984), glycolipids (monoglycosyldiacyl 

glycerol, diglycosyldiacyl dlycerol and lipoteichoic acid (Hugo and Davidson, 1973a) and 

apolar lipids (mainly menaquninone (White and Frerman, 1967)) as well as 1,2-

diacylglycerol (Koch et al., 1984). 

Intracellular concentration of metal ions and ATP were also taken from existing 

literature (Christian and Waltho, 1964, Graham and Wilkinson, 1992, Vinnikov, 1988). 

Furthermore, new ATP maintenance parameters were defined.  Not all consumed 

substrate is used for synthesis of new biomass and energy, therefore an estimation of 

“maintenance energy” (Varma et al., 1993) is required to account for ATP energy used to 

maintain the cell’s integrity.  The ATP maintenance requirements are generally divided 

into growth associated (GAM) and non-growth associated (NGAM) maintenance.  These 

parameters have not been determined for S. aureus, so we used experimentally 
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determined maintenance parameters determined from other organisms to assign these 

rates (NGAM: 5mmol ATP/(g cell dry weight), GAM: 40 mmol ATP/(g cell dry weight)/h).  

Our maintenance energy was dramatically different from those in iSB615 where GAM 

was set to 20,000 ATP/(g cell dry weight)/h. 

8.3.5 Prediction of metabolic phenotypes 

Flux balance analysis (FBA) (Orth et al., 2010b) can be used with a constraint‐

based model to predict metabolic flux distributions, growth rates, substrate uptake rates, 

and product secretion rates. The iJM755 model was used to make phenotypic 

predictions such as growth rates and central metabolic flux distributions.  To 

demonstrate the utility of the iUSA300_853-GP model in making these phenotypic 

predictions, we generated two large-scale sets of model phenotype predictions 

8.3.6 Prediction of a defined minimal media for S. aureus USA300 

The metabolic model was used to predict required growth supporting nutrients of 

S. aureus USA300.  With glucose as a carbon source, ammonia as a nitrogen source, 

phosphourous and sulfate along with trace elements and minerals the metabolic model 

predicted that growth was not possible indicating S. aureus USA300 was missing 

biosynthetic pathways for components in its biomass function.  Using this minimal 

media, production of each individual biomass component was simulated.  It was found 

that the model could not produce thiamin due to a lack of thiamine-phosphate kinase 

(TMPK: 2.7.4.16), indicating that this strain is auxotrophic for thiamin.  While our 

metabolic model predicts that USA300 can grow without addition of other amino acids, it 

is known that S. aureus exhibits complicated regulatory behavior related to amino acid 

growth.  We demonstrated that addition of threonine, proline, serine, leucine and thiamin 
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to minimal M9-glucose media was sufficient to enable experimental growth of S. aureus 

USA300.  

8.3.7 Prediction and validation of S. aureus USA300 catabolic capabilities for 

alternative nutrient sources 

FBA was used to predict growth capabilities of iUSA300_853 on alternative sole 

sources of carbon, nitrogen, phosphorus, and sulfur.  The prediction were validated by 

comparison to a biolog phenotypic microarray  experimental screen (Figure 2A). In total 

the model was predicted to be capable of catabolizing 113 different nutrient sources 67 

of which (65%) were experimentally confirmed. Those nutrient sources that did not show 

experimental growth may have be disabled due to regulatory restrictions that are outside 

the scope of this metabolic model (Orth and Palsson, 2010a, O'Brien et al., 2015).  The 

model incorrectly predicted that S. aureus could not catabolize 28 different nutrients.   

These cases represent an opportunity for future model improvement.  The model 

correctly predicted that S. aureus could not catabolize 86 nutrient sources (75%).  The 

overall prediction accuracy for ability to use different nutrient sources was 73% which is 

in line with metabolic models of other organisms (Monk and Palsson, 2014).   

8.3.8 Prediction and validation of essential genes in S. aureus USA300 

An in-silico screen of model predicted growth capabilities for all possible single 

and double gene knockout strains was performed. Growth phenotypes were predicted 

on defined rich media, and the results for single gene knockouts were compared with 

with an experimental transposon mutagenesis dataset (Chaudhuri et al., 2009).  A total 

of 83 metabolic genes were predicted to be essential, 65 of which (78%) agreed with 

experimental data.  The incorrect predictions indicate missing model content and could 

be explained by alternate pathways or isozymes not currently represented in the model 
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and thus an opportunity for model expansion and improvement.  Also, such false 

negative predictions have proven to be a way to target and discover new metabolic 

functions (Orth and Palsson, 2012, Guzman et al., 2015).  The model predicted that 665 

genes were nonessential for growth, 562 of which (85%) aligned with experimental data.  

The false positive predictions (model predicts growth but no growth is observed) are 

likely the results of regulatory restrictions or other factors that are outside the scope of 

the model.  It is possible that continued culture of these gene knockout strains would 

grow eventually (Lee and Palsson, 2010).  Overall the model correctly predicted the 

lethality of 627 (83%) of gene knockouts.  This accuracy is in line with other metabolic 

models. 

8.3.9 Integration of GEM-PRO with high-throughput data sets elucidates antibiotic 

mechanisms 

Beyond acting as a predictive model of an organism’s metabolic capabilities, a 

GEM-PRO can also serve as a scaffold for integration of high-throughput data.  Such 

integration allows for a deeper interpretation of the observed changes on a systems 

level.  To illustrate this capability, the RNA-seq omics transcriptome profiling technique 

was used to measure genome-wide transcriptomic profiles of S. aureus USA300 after 

treatment with two different drugs, Naficillin and the immune defense factor human 

cathelicidin LL-37.  We compared these transcription profiles to wild-type transcription 

data.  Figure 3 shows the gene expression comparison between wild type and treatment 

with either LL-37 (Figure 3A) or Naficillin (Figure 3B).  We classified the genes into 

categories of metabolic (M, blue), expression (E, green) and virulence (V, red).  

Under treatment with immune defense factor LL-37 there were 152 genes 

significantly differentially expressed (p<0.05) compared to wildtype conditions 
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(Supplementary Datafile X).  Of these 152 genes, 43 were metabolic genes (21 up-

regulated, 22 down regulated) including the respiratory nitrate and nitrite reductase 

genes nar, nir (all log2 FC> 4.5).  There were 42 E genes differentially expressed (41 up-

regulated, 1 down-regulated) including mostly 30S and 50S ribosomal proteins.  Finally, 

only 5 virulence genes were differentially expressed.  Most of these (4) were up-

regulated including fibrinogen binding protein, efb (log2 FC: 3.8), fibronectin binding 

protein B, fnbB (log2 FC: 2.0), staphylocoagulase, coa (log2 FC: 3.8), and sdrD (log2 

FC: 3.1) (read victor’s review on this).  Meanwhile, delta-hemolysin was down-regulated 

(log2 FC: -3.1).  The 62 genes that were not metabolic, expression or virulence related 

were primarily hypothetical proteins (37%). 

  Treatment with Naficillin showed 230 genes significantly differentially expressed 

(p<0.05) compared to wildtype conditions.  Of these 230 genes, 64 were metabolic 

genes (15 up-regulated, 49 down regulated) again including the respiratory nitrate and 

nitrite reductase genes nar, nir (all log2 FC> 4.5).  There were 25 E genes differentially 

expressed (19 up-regulated, 6 down-regulated) including mostly 30S and 50S ribosomal 

proteins.  Finally, only 7 virulence genes were differentially expressed.  Most of these (5) 

were up-regulated including penicillin binding protein mecA (Log2 FC: 5.4) , fibrinogen 

binding protein, efb (log2 FC: 2.7), staphylocoagulase, coa (log2 FC: 3.0), and the 

adherence genes sdrC (log2 FC: 2.3) and sdrD (log2 FC: 3.9).  Meanwhile, delta-

hemolysin (log2 FC: -7.4) and the type VII secretion system gene esxA (log2 FC: -2.2) 

were downregulated. The 134 genes that were not metabolic, expression or virulence 

related were primarily hypothetical proteins (43%), or involved in regulatory and sensory 

processes. 
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8.3.10 GEM-PRO enables prediction of reactive oxygen species production and 

detoxification in S. aureus 

One application that is enabled with a full GEM-PRO for an organism is the the 

modelling and prediction of reactive oxygen species (ROS) production and 

detoxification.  This approach has been applied and validated for the study of ROS 

production in E. coli (Brynildsen et al., 2013a).  Metabolic reactions in the GEM can be 

coupled with known ROS producing sources.  A major source of ROS in an organism 

are enzymes that use flavins, quninones, hemes and transition metals (Massey, 1994, 

Messner and Imlay, 1999).  Three-dimensional representations of proteins conserved 

domain structures can be used to predict flavin, quinone, transition metal and heme 

binding sites on proteins. Thus, they can be used to predict enzymes that utilize these 

cofactors and may serve as endogenous sources of ROS production.  We used the 

GEM-PRO of S. aureus to predict the enzymes in our metabolic network that bind bind 

flavins (34), quinones (7), hemes (19) and transition metals. We based these predictions 

on both protein sequence alignments with known protein fold families (PFAM), as well as 

secondary structural alignments, using the FATCAT algorithm (Ye and Godzik, 2003).  

We used an established approach to couple the reactions catalyzed by these 

ROS producing enzymes with production of ROS species H2O2 and O2s (Methods).  

Thus, whenever flux flows through these reactions, the ROS species are produced as 

by-products as well.  In total 122 reactions were coupled with ROS production.  The rate 

at which each enzyme produces ROS is unknown, therefore we used an ensemble 

approach to generate 1000 different ROS production coefficients for each of the 122 

reactions.  The 1000 values were generated using both a gaussian distribution for an 

assumption of uniform ROS production across the reactions and an exponential 

distribution to model individual high ROS producers with a majority of lower producers.  
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A representative ROS-coupled metabolic model of S. aureus USA300 termed 

iUSA300_853-ROS is available in Supplementary File 2. 

Using this ensemble of ROS-coupled metabolic models we ran simulations of 

single gene knockouts one-by-one to identify those that reliably led to increases in ROS 

production.  Such situations occur when a gene knockout leads to re-routing of 

metabolic flux through reactions that produce ROS, leading to an increase in overall 

ROS production by the network.  Overall we found 24 high-confidence gene knockouts 

that led to 5% ROS production increase in over 70% of the ensemble models.  15 of 

these knockouts are shared with predictions for E. coli, 6 of which were experimentally 

shown to increase ROS production and potentiate antibacterial activity. 

8.4 Discussion 

S. aureus USA300 is a strain of community-associated MRSA that is the cause 

of a new antibiotic resistant epidemic responsible for rapidly progressive, fatal diseases. 

Starting in the late 1990s, the USA300 lineage of methicillin-resistant Staphylococcus 

aureus (MRSA) underwent an extremely rapid expansion across the United States, 

replacing many other S. aureus strains (Tenover and Goering, 2009). Since that time, it 

has become a major cause of skin and soft-tissue infections (Moran et al., 2006), 

community-acquired pneumonia, catheter-related bloodstream infections (Moran et al., 

2006), and other systemic infections (Klevens et al., 2007).  Outbreaks of community-

associated (CA)-MRSA infections have been reported in correctional facilities, among 

athletic teams, among military recruits, in newborn nurseries, and among sexually active 

homosexual men. CA-MRSA infections now appear to be endemic in many urban 

regions and cause most MRSA infections in the United States (Maree et al., 2007, Diep 

et al., 2008). 
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Here we present a genome-scale metabolic network reconstruction of S. aureus 

USA300 integrated with three-dimensional protein structures of enzymes, virulence 

factors and proteins involved in transcription and translation.  The network reconstruction 

covers the function of 853 genes.  It can be converted to a genome-scale model using a 

mathematical representation that allows simulation of S. aureus USA300 metabolic 

capabilities and weaknesses based on its genotype.  The model is capable of 

reproducing known S. aureus physiology including anaerobic fermentation of lactate and 

metabolism of small colon variants.  We use the genome scale model to predict nutrients 

that S. aureus can use as sole sources of carbon, nitrogen, phosphorous and sulfur with 

73% accuracy.  Each of these capabilities is explicitly linked to its catabolic pathway, 

catalyzing reactions and encoding genes.  This connection could allow for the design of 

bacteriostatic therapies that target an organism’s ability to survive and thrive in its 

preferred infectious niche.  We also use the model to predict essential single-gene and 

double-gene knockouts in rich media conditions.  The single gene knockouts are 

predicted with an accuracy of 83% indicating that both the single gene predictions and 

double gene predictions are accurate enough to be used as targets for the design of  

anti-metabolite and anti-enzymatic inhibitors as well as synthetic lethal inhibitory 

combinations. 

We further illustrate the utility of iUSA300_853 to act as a scaffold for high-

throughput data integration.  We transcriptionally profiled USA300 under treatment with 

two different antibiotics Nafcillin and LL-37 and overlaid the transcriptional changes onto 

the model compared to wild-type growing cells.  We further integrated the model with 

ROS production reactions to predict the major source of ROS production and 

detoxification in S. aureus USA300.  We used the ROS-coupled model to predict gene 
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knockouts that would reliably lead to increases in ROS production.  Thus these 

predictions should be tested in S. aureus USA300 to may be used in conjunction with 

antibiotics to potentiate their activity and enhance killing effectiveness. 

The GEM-PRO for S. aureus USA300 presented here is the most accurate and 

complete genome-scale reconstruction for any strain of S. aureus.  It can be used for 

prediction of metabolic capabilities, essential genes, as a scaffold for high-throughput 

omics data integration, for the simulation of ROS production and detoxification and for 

the interpretation of genetic changes observed in clinical isolates of this rapidly 

spreading and constantly evolving pathogen. Its wide application and use should lead to 

a systems-level understanding of metabolism and virulence and will hopefully lead to 

new antibiotics and treatment therapies. 
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Figure 8.1. Properties of iUSA300_853-GP.   
A) The iUSA300_853-GP metabolic reconstruction covers the functions of 853 genes, 1,588 
reactions and 1,338 metabolites. B)  The reconstruction content is subdivided into different 
metabolic subsystems. 
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Figure 8.2.  Experimental validation of model predictions. A) Gene knockout predictions.  
The model was used to predict the effect of each gene knockout performed individually when 
grown in rich media conditions.  The results of this screen were compared to experimental 
genome-wide screens of gene essentiality.  Overall the model correctly predicted 562 genes to be 
non-essential (model growth/experimental growth) and 65 genes to be essential (model no 
growth/experimental no growth).  This represents an accuracy of 83%. B) Nutrient usage 
predictions. The model was used to predict growth capabilities on 210 different carbon, nitrogen, 
sulfur and phosphorous sources.  Overall the model correctly predicted growth capabilities 
(growth/no growth) on 73% of the compounds. 
  



239 

 

 

 

 

 

Figure 8.3.  Gene expression profile comparison for S. aureus USA300 treated with two 
antibiotics:  
The human immune defense factor human cathelicidin LL-37 and B) the beta lactam Naficillin.  
Both treatments are compared to wild-type expression profiles on the x-axis.  Genes in blue are 
those in the metabolic model (M), green are genes involved in protein expression (transcription 
and translation) (E) and red are genes marked as virulence factors (V).  Those in grey are not 
significantly differentially expressed (abs(log2 FC) < 1). 
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Figure 8.4. Model predicted gene knockouts in central metabolism that lead to increases in 
ROS production.   
A) Model predicted gene knockouts that lead to an increase in O2- levels. B) Model predicted 
gene knockouts that lead to increases in H2O2 levels.  Red indicates an increase of at least 
across more than of ensemble models.  Yellow indicates no that ROS production was not 
predicted to increase or that any increase in production did not meet the previous criteria. 
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9.1 Massive-scale assessment of phenotypic predictions will have 

broad consequences 

The genotype-phenotype relationship is fundamental to biology.  A cellular 

phenotype results from biochemical interactions amongst thousands of cellular 

components occurring in the confines of the cell.  With the availability of annotated 

genome sequences and a plethora of new omics data types, we are now able to 

assemble these biochemical interactions on a genome-scale for model microorganisms.  

Such an assembly of detailed biochemical information can be converted into a 

computational model using a simple mathematical representation (no theory involved!) 

that in turn can be used to compute phenotypic functions.  Both environmental and 

genetic parameters are explicitly accounted for in such in silico cellular models that 

enable predictions of the genotype-phenotype relationship in a given environment.  

Fifteen years ago, this pursuit may have sounded like a pipedream, but through the hard 

work of a small but growing community of researchers, such predictions have been 

realized.    

Shortly after the sequencing of the first genomes, genome-scale models (GEMs) 

of metabolic functions appeared1. The basis for a GEM is a highly curated reconstruction 

of the underlying biochemical reaction networks that the organism’s functions are based 

on. One can think of the process of network reconstruction in analogy to sequence 

assembly.  The genome of a cell is assembled from many short DNA stubs, called 

reads, using sophisticated computer algorithms.  Similarly, the reactome of a cell is 

assembled, or reconstructed, from all the biochemical reactions known or predicted to be 

present in the target microorganism. Importantly, the network reconstruction includes the 

genetic basis for each reaction in the reactome.  
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The inner workings of a GEM are readily understood on a conceptual basis. A 

GEM is a mathematical representation of a reconstructed network. In a given 

environment (i.e., where the nutritional inputs are defined) GEMs can be used to 

compute network outputs (a phenotype), such as the formation of biomass.  The 

synthesis of biomass in a cell requires about 60-70 different metabolites2.  A GEM can 

compute a path to the biosynthesis of each one of these prerequisite metabolites by 

computationally tracing a fully balanced path through the reactome from the available 

nutrients to the prerequisite metabolite.  A GEM can also compute the balanced use of 

the reactome to form all the prerequisite metabolites simultaneously and in the correct 

relative amounts while accounting for all the energetic, redox and chemical interactions 

that must balance to enable such biomass synthesis.  Such is the power of bottom-up 

systems biology.  It may seem like magic, but conceptually speaking, this is simply a 

genome-scale accounting exercise that is predicated on the reconstruction of an 

accurate reactome.  The challenges of building accurate reactomes have been recently 

discussed and the range of phenotypes that can be computed has been described3,4.  

Here we will focus on the prediction of possible cellular growth states and the 

implications of scaling up the number of such predictions. Similar considerations apply to 

other measureable phenotypes that are computable. 

Underlying the computation of a growth state is a simple model of inputs and 

outputs.  The inputs pass through a GEM’s internal reactome that is comprised of 

reactions linked to genes, giving them an explicit genetic basis (figure panel A).  The 

simplicity of computing growth states (i.e., an output) as a function of media composition 

(i.e., the nutritional inputs) with the selective removal of genes has led to a number of 

studies that cross environmental parameters (E) with gene deletions (G). This explicit 
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relationship between a gene and a reaction makes the deletion of genes and their 

encoding reactions straightforward. 

Phenotypic ExG growth screens have been performed with target organisms for 

which gene knock-out (KO) strain collections exist, such as Escherichia coli5, 

Saccharomyces cerevisiae6 and Bacillus subtilis7.  GEMs can compute the outputs of 

such experiments.  The number of phenotypic predictions with experimental validation 

from ExG screens has grown steadily over the past 15 years (figure panel B).  The 

initial comparisons included less than 100 predictions, and the more recent ones exceed 

100,000 predictions.  This series of studies represents the largest-scale attempts at 

bona fide predictions of phenotypic outcomes by a computational model. 

Computational predictions of outcomes fall into four categories.  The true-positive 

and true-negative predictions generally exceed 80% to 90% for the organisms 

examined. For double knockouts, true negative predictions are particularly significant as 

they indicate model predictions of true genetic interactions.  Highly curated models can 

predict up to 50% of such interactions and the missed predictions represent cases that 

are currently difficult for functional genomicists to understand8.  For this reason, the 

failure of prediction is perhaps of more interest as it represents an opportunity for true 

biological discovery. False negative predictions occur when a GEM predicts the inability 

to grow in an environment tested without the deleted gene, but the experiment results in 

growth.  This discrepancy indicates that the reconstructed reactome is incomplete. In 

contrast, false positive predictions occur when a GEM predicts growth but the 

experiment results in no growth.  This difference indicates possible errors in the 

knowledge that the reactome was based on, or that a regulatory process is missing; for 

example, regulation that either represses gene expression or a metabolite-enzyme 
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interaction that inhibits the function of an enzyme that the GEM used to compute the 

predicted growth state. 

Reconciling such discrepancies between predicted and observed growth states is 

now a proven approach for biological discovery.  A series of algorithms have been 

developed that have been shown to compute the most likely reasons for failure of 

prediction that in turn led to a model-guided experimental inquiry and discovery9.  A few 

recent studies illustrate how this approach works.  Two new reactions carried out by the 

classical enzymes phosphofructokinase and aldolase were discovered through such 

systematic inquiry in E. coli10.  Corrections of the pathways leading to NAD synthesis in 

yeast also resulted from analysis of synthetic lethal screens in yeast8 and gluconate 

kinase was described in human11 (figure panel C).  Fortunately, failure modes are not 

independent and many false predictions can be resolved by fixing relatively few 

components in a model’s reactome. Recently a reconciliation of 2,442 false model 

predictions was obtained for the E. coli GEM by updating the function of just 12 genes12. 

Thus, a GEM provides a platform not only for formalizing and solidifying our 

understanding of a target organism, but also for the systematic discovery of its missing 

parts and functions. With double KO collections being produced for E. coli where highly 

quantitative measurements under defined growth conditions can be obtained, we can 

foresee millions of growth predictions being possible in just a few years. Such 

experiments and computational predictions would enable a large-scale prediction of 

epistatic interactions and would represent an unprecedented probing of our 

understanding of the genotype-phenotype relationship for a target organism. 

If such efforts for model organisms are successful, and if genome-editing tools 

for lesser-characterized organisms become readily available, then we can foresee a 
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massive scale-up in phenotypic predictions for a spectrum of organisms. For instance, 

transposon libraries with sequencing (TnSeq) can now be used to examine the effect of 

gene knockouts in different environments for organisms with little to no existing legacy 

biochemical data13.  A draft GEM for such an organism can thus be improved quickly 

using the same computational tools mentioned above.   Such developments would 

hopefully make microbial physiologists just as happy as microbial genomicists have 

become over the past 15 years.  If target organisms can be strategically chosen from 

across the phylogenetic tree, we should be able to comprehensively discover the 

metabolic processes resident on earth that support growth of diverse organisms, and 

similarly the genotypic basis for other assayable phenotypic functions3,4. If pursued and 

accomplished, such an undertaking would represent the resolution of a grand challenge 

in biology. 
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Figure 9.1. Applications of genome scale modelling and its increases in predictive 
accuracy over time 
A) Genome-scale models (GEMs) are Input-Output (I/O) models where genetic knockouts (red) 
change internal reaction structure of the system. B) Historical profile of studies that use GEMs to 
predict experimental outcomes of phenotypic screens. The number of phenotypic predictions from 
ExG screens has grown steadily over the past 15 years.  The red line indicates accuracy of single 
gene knockout (SKO) prediction accuracy and the blue line indicates prediction of double gene 
knockout (DKO) accuracy.  C) The comparison of GEM computation and organism-specific 
experimental measurements identifies agreements and disagreements. The resolution of these 
disagreements can lead to new biological discovery, clockwise from upper left are examples from 
three model organisms: E. coli, human and yeast.  E. coli: Two new functions for the classical 
biochemistry enzymes phosphofructokinase (PFK) and fructose-bisphosphate aldolase (FBA) 
were discovered (red)10.  Also the E. coli talA and talB genes were newly discovered to catalyze a 
transaldolase reaction TALA (blue) based on knockout phenotypes. Human: Gluconokinase (EC 
2.7.1.12) activity was discovered based on the known presence of the metabolite 6-
phosphogluconolactonate in the human reconstruction11 (red).  Yeast: Automated model 
refinement suggested modifications in NAD biosynthesis pathway.  Experimental results indicated 
negative genetic interactions in the NAD biosynthesis pathway (∆bna vs WT) starting from 
tryptophan indicating that a parallel pathway from aspartate thought to exist in yeast was not 
present. 
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