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Abstract

Model-based Online State and Parameter Estimation for Lithium-ion Battery Management
Systems

by

Dong Zhang

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Associate Professor Scott J. Moura, Chair

Lithium-ion (Li-ion) batteries have emerged as one of the most prominent energy storage
devices for large-scale energy applications, e.g., hybrid electric vehicle (HEV), battery electric
vehicles (BEV) and smart grids, due to their high energy and power density, low self-discharge
and long lifetime. This dissertation focuses on developing and validating real-time model-
based state and parameter estimation algorithms for Li-ion battery management systems.
An overview of individual chapters are provided below.

Chapter 2: This chapter examines an online battery capacity estimation scheme from a
thermal perspective. Mathematically, a cylindrical battery is modeled by coupling an elec-
trical model that describes the dynamics of state of charge (SOC) with a two-state thermal
dynamics. The critical challenges, however, are that (i) only input current, battery terminal
voltage, and surface temperature are measureable in real time, and (ii) the sub-models are
nonlinearly coupled. Consequently, the proposed hierarchical estimation algorithm uses a
combination of input-to-state stability and sliding mode observer to collectively estimate
cell capacity. Furthermore, the algorithm also presents real-time estimation for SOC, core
temperature, heat generation, and thermal model parameters, making the algorithm a novel
methodology for combined state of charge/state of health (SOH) estimation. The results
demonstrate the benefits of thermal model based battery capacity estimation against tradi-
tional equivalent circuit based estimation.

Chapter 3: An electrochemical battery cell relies on the intercalation and de-intercalation
of Li-ions between electrode solid-phase and electrolyte. An important cell capacity fade
mechanism is the particle fracture due to intercalation-induced stresses. Volume changes of
the electrode particles due to stress may induce particle fracture if the stress exceeds the
yielding stress of the electrode material. In this chapter, we design a nonlinear observer
based on a Single Particle Model (SPM) coupled with intercalation-induced stress to esti-
mate battery bulk SOC, the particle stress profile, and the anode lithium diffusivity from
online current and terminal voltage measurements only. Practically, real-time monitoring of
aging related parameters in battery model and internal mechanical stress enables a battery
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management system (BMS) to apply optimal control methods that protect against particle
fracture, and consequently extend battery life.

Chapter 4: This chapter seeks to derive insight on estimation problem for battery packs.
A battery pack system generally consists of hundreds or thousands of single cells connected in
parallel and series in order to fulfill the requirements of high-energy and high-power applica-
tions. Mathematically, an equivalent circuit model is coupled with a thermal model to form
a single cell model, which is then electrically interconnected with other cell models to form
a pack model utilizing Kirchhoff’s law. For cells in parallel, the resulting model is depicted
by a differential-algebraic system (i.e. a descriptor system). The first part of this chapter
aims at designing a Lyapunov-based asymptotic state observer for both differential (state of
charge) and algebraic (local cell current) state estimation subject to reduced sensing. On the
other hand, however, when number of cells in a pack becomes large, executing estimation
algorithm for each and every cell becomes intractable computationally. The second part of
this chapter proposes a monotone system based interval observer while taking into account
modeling and measurement uncertainties in a pack. The estimated SOC intervals (upper
and lower bounds) are guaranteed to envelop all SOC trajectories in the pack. The inter-
val observer loses the tractability of single cell states but maximize the scalability of the
algorithm.

Chapter 5: Battery thermal effects have been shown to be key factors in the rate of
battery degradation. In practical applications, many cases of thermal runaways leading to
fire and explosion of Li-ion batteries have been reported. This chapter proposes a model-
based estimation algorithm for the battery temperature relying on a reduced high-fidelity
nonlinear distributed parameter thermal model using surface measurements. Theoretically,
the work extends the traditional partial differential equation (PDE) backstepping technique
for a nonlinear parabolic PDE state estimation problem without performing linearization
and spatial discretization prior to the observer design. When modeling and measurement
disturbances exist, the algorithm quantifies the estimation error bounds in terms of L2 spatial
norm.

Chapter 6: The modeling for electrochemical phenomena inside a battery cell generally
adopts a diffusion process. This chapter exclusively investigates a class of reaction-advection-
diffusion system subject to boundary disturbance. Theoretically, we design a disturbance
estimator for boundary disturbance in an unstable reaction-advection-diffusion PDE system,
and derive a sufficient condition on the reaction coefficient, for which the disturbance estima-
tor achieves asymptotic convergence. Subsequently, we propose an asymptotically convergent
state estimator for the unstable reaction-advection-diffusion PDE using the estimated dis-
turbance signal, adopting the backstepping technique. This chapter builds a solid foundation
for PDE-based Li-ion concentration, and therefore SOC, estimation in a electrochemical cell
subject to boundary disturbances.

Chapter 7: This chapter provides concluding remarks of the dissertation and discussions
on future works.
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Chapter 1

Introduction

The transportation sector accounts for approximately 25% of global greenhouse gas emis-
sions, per report [1]. Despite low penetration of electrical vehicles (EV), they are new
innovative technology to solve climate change and air pollution problems [2]. EVs provide
an alternative for fossil-fueled vehicles in order to reduce CO2 emission. With the aggressive
push in policy from automotive industry, the rapid evolution of EVs and smart grid technolo-
gies have driven the Li-ion battery to become a prominent device for energy storage. Li-ion
batteries offer one of the best energy-to-weight ratios, have no memory effect, and undergo
low self-discharge when not in operation [3]. The growing demands are pressing for batter-
ies with better performance and safety. This dissertation combines electrochemical physics
and dynamical system estimation/control theory to achieve accurate real-time monitoring of
critical conditions of Li-ion battery systems to enhance battery energy, safety, and life.

Battery packs used for EV and utility storage usually demand high energy (kWh to
MWh systems) [4]. Increased number of battery cells and higher energy eventually lead to
greater impact under failure caused by immature management of battery system. Figure
1.1 and 1.2 demonstrate explosion of Li-ion battery packs in a Boeing 787 airplane and a
Tesla Model S, respectively. Although the latter incident was a result of a highway accident,
misuse of Li-ion batteries poses critical threats to its safe operation. The model-based
online estimation/control methodologies proposed in this dissertation aims at addressing
some of the challenges when understanding the current operational and health status of
Li-ion batteries.

The remainder of this introduction is structured as follows. First we review the fun-
damentals of a Li-ion battery cell and battery management systems. Second, we provide
formal statement of battery state of charge and state of health estimation problems. Third,
we summarize the research challenges and the contribution of the dissertation. Finally, the
dissertation organization is provided.
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Figure 1.1: A Li-ion battery pack on-board a Japan Airlines Boeing 787 Dreamliner destroyed
by fire at the General Edward Lawrence Logan International Airport, Boston, Massachusetts,
in January 2013 [5].

Figure 1.2: Tesla Model S battery fire in Washington State in 2013 [4].

1.1 Battery Fundamentals
A typical Li-ion battery Cell (Figure 1.3) is built from several principal components, namely
a negative electrode, a positive electrode, the electrolyte, and a separator. The negative
electrode usually contains graphite, which is an intercalation material [3]. The positive elec-
trode can be composed of different chemistries, but it is usually a metal oxide or a blend of
multiple metal oxides, e.g., LiMO2. The separator is an ionic conductor but an electronic
insulator which is used to physically isolates the positive and negative electrodes [6]. The
electrolyte is an ionic conductor that provides the medium for internal ionic charge transfer
between the electrodes. The charged species in the electrolyte can move in response to an
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Figure 1.3: Anatomy of an electrochemical battery cell. The cell consists of four main
regions: negative electrode (green), positive electrode (purple), separator (shaded grey), and
electrolyte (blue) [6].

electrochemical potential gradient [3, 6]. At full charge the majority of lithium exists within
the negative electrode solid phase particles, typically a lithiated carbon LixC6 [7]. During
discharge, lithium diffuses from the interior to the surface of these negative electrode ma-
terial. At the surface, an electrochemical reaction (1.1) separates lithium into a positive
lithium ion and electrons. Through this reaction, the negative electrode gives up electrons,
a process by which the electrode is oxidized,

LixC6 −−⇀↽−− C6 + xLi+ + xe−. (1.1)

Next, the lithium ion diffuses from the negative electrode, through the separator, to the
positive electrode. The electrons travel through the external circuit to power the connected
load since the separator is an electrical insulator. The positive electrode accepts electrons
from the external circuit, a process by which the electrode is reduced, and the electrons meet
lithium ions at the positive electrode particle surface, and undergo the reverse electrochemical
reaction according to

Li(1−x)MO2 + xLi+ + xe− −−⇀↽−− LiMO2. (1.2)

This entire process is reversible by applying sufficient potential across the current collec-
tors — rendering an electrochemical storage device [7]. Electrochemical potential energy at
the negative electrode favors a chemical process that would release electrons into the exter-
nal circuit and positively charged ions into the electrolyte. Also, electrochemical potential
energy at the positive electrode favors a chemical process that would accept electrons from
the external circuit and positively charged ions from the electrolyte. The resulting electrical
potential difference between the terminals of the cell is the cell voltage [6].
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Figure 1.4: Experimental setting for a lab testing of a cylindrical Li-ion battery cell.

1.2 Battery Systems
This dissertation concerns the proper management of battery cells/packs, which is a task
that requires both hardware and software components. While both components are equally
important in a battery management system (BMS), we devote our attention to software
methods, i.e., algorithms. The calculations in algorithms utilize measured data to esti-
mate cell/pack present operational status, to control charging/discharging trajectory, and
to predict its performance limits. This sections briefly introduces viable/available on-board
measurements for BMS, and the hardware equipment for collecting the data.

First of all, the operating voltage of a single cell for various Li-ion battery chemistries is
typically between 2 and 4.2 volts [8]. Individual cell voltages must be carefully monitored
since Li-ion batteries are vulnerable to overcharge and overdischarge. For instance, over-
charging a Li-ion cell can initiate undesired chemical side reactions that leads to degradation
[6]. Second, battery cell dynamics are strong functions of temperature. Practically, many
cases of thermal runaways leading to fire and explosion of Li-ion battery have been previously
reported in [9]. Thermal effects have also been shown to be key factors in the rate of battery
degradation [10]. Finally, a BMS must also monitor battery current to detect abuse condi-
tions and to ensure safety. These measurements, i.e., current, voltage, and temperature, are
critical inputs to most state of charge and state of health estimation algorithms that will
be introduced later in this dissertation. It should be pointed out that there exists advanced
sensors used to measure battery internal conditions, such as internal temperature [11] and
stress [12]. However, installation of these sensors usually involves destruction of battery
cell packaging and therefore requires safety protection, prohibiting the usage in real-time
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operation. Hence, a BMS commonly adopts only current, voltage, and (lumped) surface
temperature measurements for online management.

Fig. 1.4 shows a typical experimental setting for a Li-ion battery cell at the University
of California, Berkeley. An Arbin high current cylindrical cell holder is used to hold the
battery cell inside of an ESPEC BTL-433 environmental chamber that maintains the test
ambient temperature at the desired point. A thermocouple is placed on the surface of the
cell to measure surface temperature. A PEC SBT2050 cycler (not shown in the figure) is
used to input charge-discharge profiles and simultaneously record applied current and the
corresponding voltage.

1.3 State of Charge and State of Health Estimation
This section introduces two of the most critical properties of an electrochemical Li-ion battery
cell: state of charge (SOC) and state of health (SOH), and outlines the state and parameter
estimation problem statements.

SOC Estimation Problem

SOC is the indication for the quantity of lithium within each electrode’s solid phase. A
Li-ion cell stores electrochemical energy in the form of lithium. We define SOC of a cell to
be 100% when the cell is fully charged and 0% when the cell is fully discharged. When a cell
is at an intermediate status between fully charged and fully discharged, the value of SOC is
between 0% and 100%. In terms of lithium concentration, SOC can be represented by the
ratio between the average Li-ion concentration at either positive or negative electrode and
the maximum possible Li-ion concentration can be held at that electrode.

SOC is analogous to a fuel tank level. Unlike fuel tank levels, SOC cannot be directly
measured and must be estimated. From system modeling point of view, SOC is one of the
system states and its effect can be reflected by the measured voltage through a nonlinear
mapping. When a battery cell is at its equilibrium, the voltage typically increases with
respect to increasing SOC, and vice versa. The key challenges for SOC estimation are lack
of complete observability and model nonlinearities [7].

SOH Estimation Problem

On the other hand, battery SOH metrics indicate a battery’s relative age. To completely
understand aging, we must consider a cell from a physics based perspective. In a Li-ion
cell, aging occurs in both the negative electrodes and positive electrodes. In the negative
electrode, aging effects are observed at three different scales. First, at the surface of the elec-
trode active-material particles, solid–electrolyte interphase (SEI) surface film can be formed
as a result of unwanted side reactions. Second, aging can take place within the interior of
the active material particles, such as particle fracture and changes in porosity due to volume
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change. Third, the overall composite electrode structure can lead to degradation, including
lithium plating that eventually causes short circuit, etc. Understanding and mathematically
modeling aging is a hard task and unfortunately there is no universally agreed-upon defini-
tion of SOH [6]. However, at system-level, SOH estimation normally refers to the process
by which appropriate cell model parameters are estimated as the cell ages. The two most
common SOH metrics are charge capacity fade and impedance rise (i.e. power fade). Charge
capacity fade indicates how charge capacity has degraded relative to its fresh value, e.g. a 2
Ah cell may hold 1.6 Ah after several years of use. Power fade represents how power capacity
has decreased relative to its fresh value, e.g. a fresh cell may provide 360W of power for 10
seconds, but only 300W after two years of use [7]. There is a consensus in the literature that
a cell reaches it end-of-life (EOL) if its charge capacity decreases by 20% or its impedance
doubles.

A typical Li-ion cell can be charged and discharged for more than 1000 times until it
reaches the EOL, so battery SOH changes slowly. Hence, the estimation algorithm for SOC
needs to operate at a fast time scale (e.g. every 1 second) wheres SOH can be updated at a
much slower time scale (e.g. days).

1.4 Technical Challenges
The design of online model-based estimators for Li-ion battery states and parameters is
particularly challenging for the following reasons:

• Full-order electrochemical models for Li-ion batteries are structurally complex and they
are not suited for real-time estimation and control design due to high computational
requirements. Hence, the reduced-order models are required.

• The electrochemical (or even some simple equivalent circuit) battery models are over-
parameterized. The states/parameters of such systems are generally not completely
observable/identifiable from the input-output data, i.e., current, voltage, and temper-
ature measurements.

• A large-scale battery pack consisting of hundreds or thousands of cells are not well-
understood due to its natural differential-algebraic structure. An efficient monitoring
framework for battery packs is demanding.

• The intercalation and de-intercalation processes inside an electrochemical battery cell
are generally modeled by partial differential equations (PDEs). However, the available
techniques that can be utilized to deal with nonlinear PDEs are lacking.
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1.5 New Contribution of this Dissertation
The overall goal of this dissertation is to provide model-based estimation techniques for
accurate battery crucial internal states monitoring. The contributions towards this objective
are summarized as follows.

• Chapter 2: The design of real-time battery SOC and charge capacity estimation from a
thermal point of view with guaranteed convergence proof, which demonstrates perfor-
mance enhancements over traditional current-voltage based capacity estimator. This
chapter is produced based upon the following publications:

– Dong Zhang, Satadru Dey, Hector E. Perez, and Scott J. Moura. “Real-Time
Capacity Estimation of Lithium-Ion Batteries Utilizing Thermal Dynamics”. In:
IEEE Transactions on Control Systems Technology (2019).

– Dong Zhang, Luis D. Couto, Saehong Park, Preet Gill, and Scott J. Moura,
“Nonlinear Observer for Lithium-Ion Batteries with State-Dependent Parameters”.
In IFAC Proceedings, 2020.

• Chapter 3: The model development of a reduced-order electrochemical model with
diffusion induced mechanical stress, and a nonlinear adaptive observer for SOC and
SOH monitoring. This allows a BMS to apply optimal control methods that protect
against particle fracture, and consequently extend battery life. This chapter integrates
and re-produces the results from

– Dong Zhang, Satadru Dey, Luis D. Couto, and Scott J. Moura. “Battery Adap-
tive Observer for a Single-Particle Model With Intercalation-Induced Stress”. In:
IEEE transactions on control systems technology (2019).

• Chapter 4: The modeling framework for cells connected in parallel/series to form
a battery pack via a differential-algebraic system (a.k.a. a descriptor system), the
design for descriptor system based estimator for obtaining individual cell SOC, and a
scalable interval observer for packs with large number of heterogeneous cells. It tackles
the challenging parallel cell estimation problem and the computational burden when
executing single cell estimators for a large amount of cells. This chapter is inherited
from the following publications:

– Dong Zhang, Luis D. Couto, Sebastien Benjamin, Wente Zeng, Daniel F. Coutinho,
and Scott J. Moura. “State of Charge Estimation of Parallel Connected Battery
Cellsvia Descriptor System Theory”. 2020 American Control Conference (ACC),
Denver, CO, USA, 2020, pp. 2207-2212.

– Dong Zhang, Luis D. Couto, Preet Gill, Sebastien Benjamin, Wente Zeng, and
Scott J. Moura. “Interval Observers for SOC Estimation of Lithium-ion Battery
Packs”. 2020 American Control Conference (ACC), Denver, CO, USA, 2020, pp.
1149-1154.
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• Chapter 5: The framework for a high-dimensional temperature PDE model reduction
and a PDE model-based thermal estimation using only the boundary temperature
measurements, which enables an accurate temperature monitoring using high-fidelity
models and nonlinear PDE estimation techniques. This chapter is currently under
development with the following manuscript:

– Dong Zhang, Satadru Dey, Shu-Xia Tang, Ross Drummond, and ScottJ. Moura.
“Battery Temperature Estimation with an Uncertain Semilinear Thermal PDE
Model”.

• Chapter 6: The mathematical foundation for the combined state and disturbance esti-
mation for an unstable reaction-advection-diffusion PDE subject to boundary distur-
bances, which facilitates the disturbance rejection control that can be readily applied to
battery SOC estimation via solid-phase lithium concentration estimation. This chapter
is originated and produced using

– Dong Zhang, Shu-Xia Tang, and Scott J. Moura. “State and Disturbance Estima-
tor for Unstable Reaction-Advection-Diffusion PDE with Boundary Disturbance”.
In: 2019 Proceedings of the Conference on Control and its Applications. SIAM.
2019, pp. 67–74.

1.6 Dissertation Organization
The remaining chapters of this dissertation are organized as follows. Chapter 2 presents a
real-time battery capacity estimation algorithm utilizing thermal dynamics. Chapter 3 pro-
poses a battery adaptive observer for a reduced order electrochemical model, namely the sin-
gle particle model, with intercalation-induced stress, for accurate battery health monitoring.
Chapter 4 examines estimation algorithms for battery packs, especially for cells connected in
parallel. Chapter 5 discusses the battery thermal estimation with an uncertain high-fidelity
semilinear PDE model, followed by a general framework for state and disturbance estimator
for an unstable reaction-advection-diffusion PDE with boundary disturbance in Chapter 6.
Finally, the key contributions of this dissertation and potential future works are summarized
in Chapter 7.
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Chapter 2

Real-Time Capacity Estimation of
Lithium-Ion Batteries Utilizing Thermal
Dynamics

2.1 Introduction
This chapter proposes and rigorously analyzes a thermal model-based online battery charge
capacity estimation algorithm.

An advanced BMS implements real-time control/estimation algorithms that enhance bat-
tery performance while improving safety. A crucial function of a BMS is to estimate the SOC
and the SOH. Capacity fade is one of the most important metrics among all of principal ef-
fects of battery aging [13]. Accurate real-time capacity estimation with certified convergence
properties is still an unsolved problem.

The existing literature contains several approaches to battery capacity estimation. They
can be broadly categorized into offline and online approaches.

Offline approaches generally develop capacity estimation scheme in specific laboratory
settings with access to large amounts of battery data under varying operating conditions [14,
15, 16]. However, the applicability of the offline approaches is limited due to the following
reasons: i) in real-time, we have access to very limited amount of data; ii) battery degradation
depends significantly on users, operating conditions, etc. Therefore, a single offline capacity
estimation scheme may not be sufficient for these cases.

Online capacity estimation methods operate on embedded BMS micro-controllers uti-
lizing real-time measurements. Generally, online approaches are comparatively more chal-
lenging than their offline counterparts, due to lack of measured information and limited
computation power. Several studies have investigated this. Seminal work exploring com-
bined SOC and model parameter estimation using Kalman Filter (KF) were introduced in
[17, 18]. In [19], a dual sliding mode observer consists of a fast-paced and a slow-paced
time-varying observer was presented for estimating the SOC and SOH of Li-PB batteries.
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Lin et al. developed an adaptive observer based on online parameterization method for bat-
tery core temperature estimation and health monitoring [20]. Electrochemical model-based
battery aging studies provide a sharp understanding of the underlying physical and chemical
processes occurring during battery utilization. For instance, a reduced-order electrochemical
model for a composite electrode battery combined with KF was utilized for a dual-observer
design to estimate SOC and capacity [21]. Moura et al. performed combined SOC/SOH esti-
mation based on single particle model (SPM) and the concept of backstepping state estimator
for partial differential equations (PDEs) [22]. Several other authors used Particle Filter (PF)
for battery state of health estimation [23, 24]. Machine learning tools for SOH estimation
are attracting extensive attention in recent years. For example, the Support Vector Machine
(SVM) is commonly used as a regression tool for SOH estimation [25]. Efforts have also been
made to improve accuracy of battery health estimation by combining SVR with a Bayesian
framework [26]. However, none of the aforementioned approaches explore battery capacity
estimation from a thermal perspective. Moreover, only few of these algorithms have proven
convergence properties - a crucial requirement for ensuring reliable operation in real-world
BMS. In this chapter, we propose and rigorously analyze a capacity estimation scheme that
utilizes battery thermal dynamics.

In this chapter we design a thermal model-based scheme for battery capacity (SOH)
estimation from only input current and output voltage measurements. The results specifically
(i) analyze the observer convergence with modeling uncertainties; (ii) provide algorithm
validation on experimental capacity fade data from a commercial battery cell; (iii) enhance
the estimation algorithm by having a real-time thermal model parameter identification step.

The reminder of this chapter is organized as follows: Chapter 2.2 presents battery elec-
trical and thermal models. Chapter 2.3 examines thermal model parameter identifiability,
state estimation with unknown input, and sliding mode observers with convergence analy-
sis. Chapter 2.4 highlights the benefits of thermal model-based capacity estimation against
conventional methods sorely based on current-voltage data. Chapter 2.5 discusses the ca-
pacity estimation algorithm validation on simulation and experimental data. Conclusions
are drawn in Chapter 2.6.

2.2 Battery Model
A coupled electro-thermal model is detailed for a cylindrical lithium-iron-phosphate battery
cell (A123 ANR26650M1). The model utilizes a coulomb counting method to capture the
dynamics of SOC and a two-state thermal model that predicts battery surface and core
temperatures.
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Electrical Model

The SOC is computed via the coulomb counting method by integrating the applied current
normalized by battery capacity over time. The dynamical equation is given by:

dSOC(t)

dt
= −I(t)

Cbat
, (2.1)

where I(t) is the input current, and we specify positive I(t) for discharge and negative I(t)
for charge. Parameter Cbat is the battery charge capacity in Ampere-second.

Thermal Model

We consider a two-state lumped thermal model for a cylindrical battery, adopted from [27].
This model assumes homogeneity along the cell’s longitudinal axis. The model states are
core temperature (Tc) and surface temperature (Ts):

Cc
dTc(t)

dt
=
Ts(t)− Tc(t)

Rc

+ Q̇(t) + νc(t), (2.2)

Cs
dTs(t)

dt
=
Tf (t)− Ts(t)

Ru

− Ts(t)− Tc(t)
Rc

+ νs(t), (2.3)

Q̇(t) = I(t)

[
OCV

(
SOC(t)

)
− VT (t)− T (t)

dU

dT

]
, (2.4)

T (t) =
1

2

(
Ts(t) + Tc(t)

)
, (2.5)

y(t) = Ts(t) + n(t), (2.6)

where Rc, Ru, Cc and Cs represent heat conduction resistance, convection resistance, core
heat capacity, and surface heat capacity, respectively. Symbol Q̇(t) is internal heat gener-
ation. Heat generation from resistive dissipation and entropic heat are considered, where
dU/dT is the entropic coefficient and T (t) is the average of surface and core temperature
[28]. VT denotes the measureable terminal voltage, whereas OCV is the open circuit volt-
age as a function of state of charge. We assume the coolant flow rate is constant and the
ambient temperature Tf is nearly constant [11]. We also introduce bounded terms νc(t) and
νs(t) to model the uncertainties in the thermal dynamics, where νc(t) ≤ νc and νs(t) ≤ νs.
Estimates of νc and νs can be found by comparing the open-loop thermal model output with
experimental data. Moreover, a time-varying but bounded measurement noise n(t) ≤ n is
considered, with n > 0.

Re-arranging (2.2)-(2.6) into state-space form:

ẋ(t) = Ax(t) +Bu(t) +GQ̇(t) + ν(t), (2.7)
y(t) = Cx(t) + n(t), (2.8)
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Figure 2.1: Cascaded online capacity estimation structure

where the input, states, and uncertainties are given by

x(t) =

[
Tc(t)
Ts(t)

]
, u(t) = Tf , ν(t) =

[
νc(t)
νs(t)

]
< ν =

[
νc
νs

]
, (2.9)

and the corresponding system matrices are

A =

− 1
RcCc

1
RcCc

1
RcCs

−
(

1
RuCs

+ 1
RcCs

) , B =

[
0
1

RuCs

]
, G =

[
1
Cc

0

]
, C =

[
0 1

]
. (2.10)

Remark 1. The local observability of the thermal model (2.2)-(2.6) has been verified by
computing the rank of the linearized system at the equilibrium points.

2.3 Online Capacity Estimation Scheme
The goal of this work is to develop an online battery capacity estimation scheme. We
present a hierarchical structure depicted in Figure 2.1. In Stage 1, heat generation Q̇ in the
Tc-dynamics (2.2) is treated as a bounded unknown input. An output error injection based
state and unknown input estimation technique, along with the two-state thermal model are
employed to estimate the unmeasured state (Tc) and unmeasured input (Q̇), using the online
measurements of input current (I) and surface temperature (Ts). Based on the thermal model
parameter sensitivity analysis, Rc is updated in real time to improve model and estimation
accuracy. Next, the estimated core temperature T̂c and heat generation ̂̇Q, as well as the
measured terminal voltage (VT ), are utilized to algebraically compute a pseudo-measurement
of OCV within Stage 2, where a sliding mode observer based on the SOC-model is applied
to simultaneously estimate the unmeasured state (SOC) and unknown parameter (Cbat). In
the following subsections, we detail the design of each stage.
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Stage 1: Core Temperature & Heat Generation Estimation

The Stage 1 aims to estimate the core temperature (unmeasured state) and heat generation
(unmeasured input).

Thermal Model Parameter Identification

We first evaluate the thermal parameter identifiability. The method for ranking output sen-
sitivity with respect to parameters and determining parameter linear dependence is outlined
in [29]. Consider the thermal model parameters:

θt =
[
Cc Cs Rc Ru

]>
. (2.11)

The sensitivity vector

S =

[
∂y

∂Cc

∂y

∂Cs

∂y

∂Rc

∂y

∂Ru

]
∈ RN×4, (2.12)

represents each parameter’s sensitivity in the output, where N is the number of measure-
ments. The Gram-Schmidt orthonormalization of S>S reveals information about linear
dependence between parameters. Let S>S = D>CD with D ∈ R4×4 and C ∈ R4×4, where
D(i, i) = ‖Si‖ and D(i, j) = 0 for i 6= j, and C(i, i) = 1 and C(i, j) =

〈Si,Sj〉
‖Si‖‖Sj‖ . Herein, ‖ · ‖

denotes the Euclidian norm and 〈·, ·〉 is the inner product. Diagonal matrix D provides a
quantification of parameter sensitivity. Strong linear dependence exists between θt,i and θt,j
if the value of 〈Si,Sj〉

‖Si‖‖Sj‖ is near ±1. This indicates that if the off-diagonal element of matrix
C is near ±1, then the corresponding pair of parameters are difficult to identify separately.
An example of the thermal parameter sensitivity analysis based on the profile shown in the
right plot of Figure 2.3 for a LFP cell is performed, and the result reveals that the model
output is most sensitive to Ru (yet assumed to be constant in this work) and Rc, and strong
linear dependence exists between Ru, Cc, and Rc. Consequently, Rc is chosen to be identified
in real time, considering parameter sensitivity and linear dependence.

Remark 2. According to Ref. [20], the heat capacities Cc and Cs are relatively constant
over battery lifetime since they depend on the material thermal properties and the mass of
the rolled electrode assembly and the casing. Meanwhile, Ru is affected by the coolant flow
rate, which is assumed to be constant. Coincidently, the implication of sensitivity analysis
matches the physical intuition, where the change of Rc over lifetime is the consequence of
battery degradation.

An online parameter estimation algorithm, which aims to minimize the instantaneous
squared error between measured surface temperature and model output by updating Rc, is
running in real time to ensure estimation accuracy. A parametric model for such identifi-
cation can be derived by performing Laplace Transformation on thermal model (2.2)-(2.3)
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[20]:

s2Ts − sTs,0 =
−1

CcCsRc

[
(Cc + Cs)sTs − CsTs,0 − CcTc,0

]
+

1

CcCsRc

̂̇Q
+

1

CcCsRcRu

(Tf − Ts) +
1

CsRu

s(Tf − Ts), (2.13)

where Ts,0 and Tc,0 are initial conditions of surface and core temperatures. Herein, notice in
(2.13) that we feedback the heat generation estimation ̂̇Q from the upper block in Stage 1 to
improve the estimates of thermal parameter, which is visualized by the red arrow in Figure
2.1. It is assumed that battery evolves from the steady state, and thus Ts,0 = Tc,0. Further,
the ambient temperature Tf is assumed to be constant, namely sTf = 0:

s2Ts − sTs,0+
1

CsRu

sTs =
1

Rc

[
− Cc + Cs

CcCs
(sTs − Ts,0) +

1

CcCs

̂̇Q+
1

CcCsRu

(Tf − Ts)
]
,

(2.14)

To avoid time differentiation, a filter needs to be applied in both sides of (2.14). The filter
takes the form

1

Λ(s)
=

1

(s+ λ1)(s+ λ2)
, (2.15)

where λ1 and λ2 are time constants of the filter [30]. Then we can derive a linear parametric
model

Z(s) = θ>Φ(s). (2.16)

with

Z(s) =
s2

Λ(s)
Ts +

1

CsRu

s

Λ(s)
Ts −

s

Λ(s)
Ts,0, (2.17)

θ =
1

Rc

, (2.18)

Φ(s) =
1

Λ(s)

[
−Cc + Cs

CcCs
(sTs − Ts,0) +

1

CcCs

̂̇Q+
1

CcCsRu

(Tf − Ts)
]
, (2.19)

Both observation Z and regressor Φ are measured or generated from measured signals. Pa-
rameter θ will be identified recursively. For practical implementation, the identification
is formulated along with signals z(t) and φ(t) in the time domain, where Z(s) and Φ(s)
are Laplace transform of z(t) and φ(t). For instance, z1(t), whose Laplace transform is
Z1(s) = s2Ts/Λ(s) (the first term on the right hand side of (2.17)), can be obtained by
computing the convolution of Ts(t) and the inverse Laplace transform of s2/Λ(s). Hence, we
would be able to avoid time differentiation of Ts(t), which can be corrupted by noises.



CHAPTER 2. REAL-TIME CAPACITY ESTIMATION OF LITHIUM-ION
BATTERIES UTILIZING THERMAL DYNAMICS 15

With a linear parametric model, the recursive least squares algorithm is applied in an
online fashion, as parameters are updated continuously by

˙̂
θ = Pε(t)φ(t), (2.20)

ε(t) =
z(t)− θ̂>φ(t)

m2(t)
, (2.21)

Ṗ = −P φφ
>

m2
P, P (0) = P0 (2.22)

m2(t) = 1 + αφ>(t)φ(t), α > 0, P0 = P>0 � 0, (2.23)

where θ̂ is the estimate of θ, α > 0 is a scalar constant, and P = P> � 0 is a symmetric
positive definite matrix.

Before running the above online parameter update law, a reasonable initialization θ̂0 needs
to be determined. For the initial offline parameter identification, particle swarm optimization
(PSO) is employed to minimize the root mean squared error between the measured surface
temperature and thermal model output. The initial thermal parameters identified by PSO
are summarized in Table 2.1.

Table 2.1: Initial Thermal Parameters for an LFP Cell
Cc [J/K] Cs [J/K] Rc [K/W] Ru [K/W]
59.5 4.4 1.61 3.14

Core Temperature & Heat Generation Estimation

We consider the following observer structure based on the thermal plant model (2.7)-(2.8):

˙̂x(t) = Ax̂(t) +Bu(t) + L
[
y(t)− ŷ(t)

]
, (2.24)

ŷ(t) = Cx̂(t), (2.25)

where x̂ =
[
T̂c T̂s

]>
denotes the estimated state vector, and L =

[
L1 L2

]>
, with L1, L2 >

0, is the observer gain vector to be designed. The following theorem provides the convergence
results of the observer (2.24)-(2.25).

Theorem 1. Consider the locally observable thermal system (2.7)-(2.8) with bounded heat
generation |Q̇(t)| ≤ MQ, ∀ t ∈ R+, and bounded model uncertainties ν < ν, along with the
observer (2.24)-(2.25). If there exists a gain matrix L and a positive definite matrix M such
that

(A− LC)> + (A− LC) = −M, (2.26)

λmin(M)‖x̃(0)‖ > 2
(

Ω + Ln
)
, (2.27)
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then the state estimation error x̃(t) = x(t)− x̂(t) remains bounded in the following sense as
t→∞:

‖x̃‖ ≤ Rb ,
2
(

Ω + Ln
)

λmin(M)
, (2.28)

where Ω = ‖G‖MQ + ‖ν‖ and λmin(M) denotes the minimum eigenvalue of matrix M .

Theorem 1 leads to the notion of input-to-state (ISS) stability [31]. The proof for Theorem
1 is provided as follows.

Proof. Subtracting (2.24) from (2.7), the state estimation error dynamics can be written as

˙̃x(t) = f(x̃) = (A− LC)x̃(t) +GQ̇(t) + ν − Ln
= (A− LC)x̃(t) + Ω− Ln, (2.29)

where Ω = GQ̇(t) + ν, and let ‖Ω‖ ≤ Ω , ‖G‖MQ + ‖ν‖. As in [31], if there exists a class
KL function β(·, ·) and a class K function γ(·), which is called a gain function, such that for
any input Q̇(·) ∈ Lm∞ and any x̃(0),

‖x̃(t)‖ ≤ β(‖x̃(0)‖, t) + γ(‖Q̇(·)‖∞), (2.30)

then the system (2.29) is said to be ISS.
Consider the Lyapunov function candidate

V1 = x̃>x̃ = ‖x̃‖2, (2.31)

The derivative of V along the trajectory of x̃ is

V̇1 = ˙̃x>x̃+ x̃> ˙̃x

= [(A− LC)x̃+ Ω− Ln]>x̃+ x̃>[(A− LC)x̃+ Ω− Ln]

= x̃>[(A− LC)> + (A− LC)]x̃+ 2x̃>(Ω− Ln)

≤ −λmin(M)‖x̃‖2 + 2‖x̃‖
(

Ω + Ln
)

= −λmin(M)V1 + 2
(

Ω + Ln
)√

V1. (2.32)

Comparison principle [32] provides the solution to the differential inequality (2.32):

‖x̃‖ ≤ ‖x̃(0)‖e−
λmin(M)

2
t +

2
(

Ω + Ln
)

λmin(M)

[
1− e−

λmin(M)

2
t
]
, (2.33)



CHAPTER 2. REAL-TIME CAPACITY ESTIMATION OF LITHIUM-ION
BATTERIES UTILIZING THERMAL DYNAMICS 17

where M and ‖x̃(0)‖ verify λmin(M)‖x̃(0)‖ > 2(Ω + Ln). To satisfy the ISS condition, let

β(‖x̃(0)‖, t) = ‖x̃(0)‖e−
λmin(M)

2
t, (2.34)

γ(‖Q̇‖∞) =
2Ω

λmin(M)

[
1− e−

λmin(M)

2
t
]
, (2.35)

and it is straightforward to show that β is a class KL function and γ is class K. Hence we
conclude that the system (2.29) is ISS. In addition, due to the exponentially decaying terms
at right hand side of Eq. (2.33),

‖x̃‖ ≤ Rb =
2
(

Ω + Ln
)

λmin(M)
as t→∞. (2.36)

Therefore, with bounded unknown input Q̇ and bounded uncertainties ν in thermal dynam-
ics, ‖x̃‖ will settle on or within a norm ball of radius Rb in the error space. �

Remark 3. The size of Rb may be reduced by optimally selecting gain L to balance conver-
gence speed and robustness to uncertainty. A large L enlarges the denominator of Rb, but
also amplifies the measurement noise in the numerator.

According to [33], we can compute heat generation Q̇ by inverting plant model dynamics
(2.7). Nonetheless, we do not know the exact value of states x(t). By using certainty
equivalence [30], the unknown input estimate can be obtained by replacing the state x(t)
with its estimation x̂(t):

̂̇Q(t) = G†
(

˙̂x(t)− Ax̂(t)−Bu(t)
)
, (2.37)

where G† = (G>G)−1G> is the left inverse of G. Heat generation estimation calculated in
(2.37) will be utilized to design observers in Stage 2.

Remark 4. There exists a loop between the two blocks in Stage 1. Specifically, the heat gen-
eration estimates are used for thermal parameter identification, and meanwhile the identified
thermal parameters alter the system matrix A. Herein, we analyze each block separately, and
only verify the stability of the coupling in the simulation.

Stage 2: Battery SOC and Capacity Estimation

The Stage 2 simultaneously estimates battery SOC (unmeasured state) and capacity (un-
known parameter) by receiving the core temperature and heat generation estimates from
Stage 1 as input signals. We consider the following sliding mode observer structure for the
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Stage 2:

˙̂
SOC = L3 · sgn

(
OCVm − ÔCV

)
, (2.38)

OCV m =
̂̇Q
Im

+ VT,m + T̂
dU

dT
, (2.39)

T̂ =
1

2

(
Ts,m + T̂c

)
, (2.40)

where Im, VT,m, and Ts,m are current, terminal voltage, and surface temperature measure-
ments. Gain L3 is the scalar observer gain to be designed. ÔCV is the OCV estimation
corresponds to SOC estimation ŜOC. Note that ̂̇Q and T̂c are the estimated heat generation
from (2.37) and estimated core temperature from (2.24). As analyzed in the previous section,
the ̂̇Q and T̂c estimation are biased due to thermal model uncertainties and unknown heat
generation. Consequently, OCVm obtained from (2.39) is biased. We model the uncertainty
between OCVm and the actual OCV by an additive error term ξ, with OCVm = OCV + ξ.
Note that ξ may also include the measurement noise from Im and VT,m. Under this scenario,
we provide the convergence analysis of observer (2.38)-(2.40).

Theorem 2. Consider the SOC dynamics (2.1), estimated heat generation and core tem-
perature from Stage 1. Furthermore, assume OCV is a monotonically increasing function of
SOC over domain 0 ≤ SOC ≤ 1. Also, assume bounds MI > 0,mCbat > 0 are known, where∣∣I(t)

∣∣ ≤MI , ∀ t ∈ R+, mCbat ≤ Cbat. If the scalar observer gain L3 verifies

L3 >
MI

mCbat

, (2.41)

then the estimation error S̃OC(t) = SOC(t)−ŜOC(t) from observer (2.38)-(2.40) converges
to an bounded error ball defined by

∣∣∣ÕCV ∣∣∣ ≤|ξ|, where ÕCV = OCV − ÔCV . Furthermore,
estimated battery capacity is given by

Ĉbat = − I

L3v
, (2.42)

where v is the filtered version of sgn(OCVm−ÔCV ), computed by passing sgn(OCVm−ÔCV )
through a low pass filter with unity steady-state gain in real time, i.e. v(t) = {ω/(s +

ω)}sgn(OCVm(t)− ÔCV (t)), where ω is the cut-off frequency.

Remark 5. We have assumed that OCV is a monotonically increasing function of SOC
over the 0%-100% SOC range. This assumption is verified for most of the popular Li-ion
chemistry, e.g. LiCoO2 -Graphite and LiFePO4-Graphite [34].



CHAPTER 2. REAL-TIME CAPACITY ESTIMATION OF LITHIUM-ION
BATTERIES UTILIZING THERMAL DYNAMICS 19

Proof. Under the condition of
∣∣∣ÕCV ∣∣∣ > |ξ|,

sgn
(
OCVm − ÔCV

)
= sgn

(
ÕCV + ξ

)
= sgn

(
ÕCV

)
. (2.43)

Strict monotonicity of the OCV-SOC relationship guarantees

sgn
(
OCV − ÔCV

)
= sgn

(
SOC − ŜOC

)
. (2.44)

Consequently, we can re-write observer (2.38) based on (2.44):

˙̂
SOC = L3 · sgn

(
SOC − ŜOC

)
. (2.45)

The dynamics of S̃OC = SOC − ŜOC can be written as:

˙̃
SOC = ˙SOC − ˙̂

SOC = − I

Cbat
− L3sgn

(
S̃OC

)
. (2.46)

We consider the following Lyapunov function candidate:

V3(t) =
1

2
S̃OC

2
, (2.47)

and the derivative of V3 along the trajectories of S̃OC is

V̇3(t) = S̃OC · ˙̃
SOC = S̃OC

[
− I

Cbat
− L3 · sgn

(
S̃OC

)]
= − I

Cbat
S̃OC − L3 · sgn

(
S̃OC

)
· S̃OC

≤ |I|
Cbat

∣∣∣S̃OC∣∣∣− L3

∣∣∣S̃OC∣∣∣
=
∣∣∣S̃OC∣∣∣ · ( |I|

Cbat
− L3

)
. (2.48)

Choose the gain L3 high enough such that L3 > MI/mCbat . Furthermore, note from (2.47)
and (2.48) that

V̇3 ≤ −α
√

2V3, where α = L3 −
MI

mCbat

. (2.49)

Applying the comparison principle on (2.49) suggests the finite time for S̃OC to converge to
the error ball defined by

∣∣∣ÕCV ∣∣∣ ≤|ξ| to be tf =
√

2V3(0)/α. Hence, based on the selection

of some high gain L3, V̇3 will decrease until
∣∣∣ÕCV ∣∣∣ > |ξ| is violated. At the sliding mode, we
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have S̃OC = ε, where ε is less than or equal to the size of the SOC error space corresponds
to
∣∣∣ÕCV ∣∣∣ < |ξ|, and ˙̃

SOC = 0. Substituting these expressions in (2.46) yields:

Ĉbat = − I

L3v
, (2.50)

where v(t) is the signal produced from low-pass filtering sgn
(
OCVm(t)− ÔCV (t)

)
. �

Remark 6. The battery capacity estimation computed from (2.50) is expected to be biased
as a result of the Stage 1 estimation error ξ. Nevertheless, ξ can be reduced by optimally
selecting observer gain L, based on Remark 3.

Remark 7. Given that the thermal parameters vary slowly, the lower block in Stage 1 oper-
ates on slow time scale (cycles) while the upper block and the entire Stage 2 evolve on a fast
time scale (second).

2.4 Benefits of Thermal model-based Capacity
Estimation

The fundamental difference between the thermal based and the equivalent circuit based
approach is that the thermal based scheme estimates capacity, thermal resistance, heat
generation, temperature, and SOC without any need of output voltage model and estimates
of Rs (internal resistance) and Vc (voltage of R-C pairs). In the equivalent circuit based
SOH estimation, the SOH estimation error stems from the combined errors of capacity
and internal resistance estimation. We hereby show conceptually how leveraging thermal
dynamics enables to isolate away the estimation error of internal resistance. Essentially, we
design an observer to estimate OCV using available online measurements.

Thermal model-based estimation: Consider the thermal model-based estimation
scheme shown in Figure 2.1. In Stage 2, we use the estimated heat generation as the feedback
signal in the observer. For a given input current profile and measured terminal voltage within
a certain cycle, the heat generation estimation are given according to Eq. (2.4):

̂̇Q(t) = Im(t)

[
ÔCV (t)− VT,m(t)− T̂ (t)

dU

dT

]
, (2.51)

Subtract (2.51) from (2.4), the feedback error signal is given as

˜̇Q(t) = I(t)

[
ÕCV (t)− T̃ (t)

dU

dT

]
, (2.52)

Assume T̃ (t) is negligible due to robust temperature estimation in Stage 1, and the feedback
error signal becomes: ˜̇Q(t) = I(t) · ÕCV (t), (2.53)
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which captures OCV estimation error only, which is in turn dependent only on the capacity
estimation error.

Electrical model-based estimation: In this case, we use terminal voltage as the
feedback signal. Consequently, the feedback error signal is given as

ṼT (t) = ÕCV (t)− Ṽc(t)− I(t)R̃s, (2.54)

where ṼT , Ṽc, and R̃s are the estimation errors for the terminal voltage, voltage across R-C
pairs, and the internal resistance. Under this scenario, the estimation errors for capacity
(ÕCV ) and internal resistance (R̃s) both emerge.

Methods that estimate capacity and internal resistance from an equivalent circuit per-
spective, e.g. [19], need crucial assumptions, e.g. linearly varying capacity and internal
resistance with respect to time, to distinguish the estimation errors of capacity and internal
resistance. However, the thermal based estimation completely decouples capacity estima-
tion error from the combined SOH estimation error without requiring any such restrictive
conditions.

Moreover, though the primary objective for this work is real-time battery charging ca-
pacity estimation, the algorithm presented in this chapter can be considered as a novel
methodology for combined SOC/SOH estimation. Specifically, it provides estimates for SOC
and charge capacity. Even more, Stage 1 produces estimates for thermal model parameters,
core temperature, and internal heat generation. To the best of our knowledge, this is the
first estimation framework in the literature to estimate all the aforementioned states and
parameters simultaneously, with provable convergence properties, under suitable conditions.

2.5 Results and Discussion
We present studies on simulation and experiments to validate the performance of the pro-
posed capacity estimation scheme. The battery under test is a LiFePO4/LiC6 A123 26650
cell with initial capacity of 2.3 Ah.

Simulation Study

This section presents the simulation study. The parameter values for thermal model (2.2)-
(2.3) are taken from [11]. To illustrate the performance, we apply a driving cycle to the
battery model. The left plots in Figure 2.2 demonstrate the evolution of input current and
output terminal voltage from the plant model simulation. The estimates (unknown states,
input, and parameter) are initialized with incorrect values to illustrate the convergence
properties.

We first evaluate the performance of observer (2.24)-(2.25) and (2.37) in Stage 1. The
core temperature estimate is initialized with 3◦C error. Figure 2.2 portrays the evolution
of the unknown state (Tc) and unknown input (Q̇) from the simulation of thermal system
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Figure 2.2: Left: Input current and output terminal voltage in the plant model. Right:
Estimation performance for the charge-discharge cycle in simulation study, for core temper-
ature, heat generation, SOC, and capacity.

(2.2)-(2.3), with their estimated values. Note that with an appropriate choice of observer
gain L as presented in Theorem 1, T̂c and ̂̇Q converge rapidly. Similarly the effectiveness
of SOC and capacity (Cbat) estimation are investigated by initializing SOC estimate with
15% initial error. These results from Figure 2.2 confirm the finite-time convergence analysis
conclusions for the Stage 2 observers in Section 2.3.

Experimental Studies

We further illustrate the proposed algorithm on experimentally obtained capacity data. The
battery cell was placed inside of an ESPEC BTL-433 environmental chamber that maintains
the ambient temperature at 25.5oC (298.65 K). A thermocouple was attached to the surface
of the cell to measure sueface temperature. A PEC SBT2050 cycler was used to apply a
repeated charge-discharge cycle (a charging protocol based on SPMeT model - Fig. (10) in
[35]) to the battery cell to induce aging (see left plots in Figure 2.3). The effect of battery
aging on terminal voltage and surface temperature is noticeable, especially towards the final
50 cycles, where the cell experiences higher voltage and temperature changes for the same
input.

Figure 2.3, on the right, shows the charge-discharge profile for the first cycle, along with
the measured voltage (VT ) and surface temperature (Ts). The cell is first charged under
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Figure 2.3: Left: Experimental data of a repeated charge-discharge profile for 210 cycles,
including measurements of input current (I), output terminal voltage (VT ) and surface tem-
perature (Ts). Right: The first cycle of the charge-discharge profile.

Imax = 6C constant current for 300 seconds which elevates SOC from initial value 25% to
final value 75%, followed by a 300-second resting period (I = 0). In the discharge phase,
the current initially holds constant but eventually decays over time, resulting in a constant
voltage discharge. The capacity was determined using a 1C Constant Current-Constant
Voltage (CC-CV) cycling test at cycle numbers {0, 10, 60, 110, 160, 210}. For real-time
implementation, accurate parameter estimation in the thermal model plays a critical role
in capacity estimation, due to the fact that the uncertainties in heat generation estimation
and OCVm could accumulate error, since a large portion (nearly 85%) of OCV plot lies in
the flat region of OCV-SOC curve. Put simply, the SOC estimation is sensitive to OCVm
uncertainty.

Here, we demonstrate the estimation performance for the first charge-discharge cycle.
The SOC estimate is initialized with 30% error and capacity estimate is initialized with 0.3
Ah (13%) error. Figure 2.4 presents the convergence of SOC and capacity estimates to their
true values. The blue solid line in the upper figure represents the evolution of SOC generated
by coulombic counting method. The value of measured battery capacity (2.31 Ah) is shown
in the lower figure in blue.

Finally, we examine the capacity estimation performance across 210 cycles under two
scenarios.
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Figure 2.4: Evolution of true/estimated SOC and battery capacity (Cbat) for the charge
period of the first charge-discharge cycle.

Effect of updating Rc in real time.

Figure 2.5(a) plots the values of Rc every five cycles as black dots. In spite of the apparent
uncertainties stemming from the noisy experimental measurements, the trend of Rc over
cycles bears accelerated growth behavior, especially towards the end of the experiments.
The frequency for updating Rc (every 5 cycles) is somewhat arbitrary, but it is selected to
adequately track the change rate. We explicitly evaluate the estimation results by comparing
two cases: (i). when Rc is updated online, and (ii). when Rc remains at the value from the
first cycle throughout the experiments. Specifically in Figure 2.5(b), the blue and green plus
symbols (‘+’) represent the estimated capacities from case (i) and case (ii). Moreover, the red
star symbols (‘*’) are the six capacity measurements, and the black dotted line is the fitted
curve using the measured data. Note that both cases follow the black curve closely until
Rc starts to deviate. Ultimately, after cycle 180, the estimation from case (ii) without Rc

being updated experiences more disturbances and reveals relatively larger error. The same
observation can be made in Figure 7(c) where the percentage errors of capacity estimation
from both cases against the experimentally fitted values are plotted.

Effect of measurement uncertainties.

Despite the fact that the cycled data are experimentally collected, the measurement signals
are in fact accurate and almost noise-free. In order to mimic the real-world applications, a
2% random error is manually added to the signals from Figure 2.3 to validate the robustness
of the estimation scheme. One may clearly observe from Figure 2.5(d) that the capacity
estimation result indeed suffers from errors. According to Remark 3, the observer gain L
is supposed to be selected to appropriately balance the convergence rate and robustness to
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Figure 2.5: Battery capacity estimation results, plotted every five cycles. Figure (a) presents
the evolution of Rc, and (b) and (c) suggest a more accurate estimation with updating Rc

in real time. Figure (d) depicts the observer robustness against the measurement noise.

measurement noise to minimize the size of Rb. Here, the maximum percentage error between
the estimates and the fitted capacity curve is 4.7%.

2.6 Conclusions
This chapter rigorously analyzes an online capacity estimation scheme for Li-ion batter-
ies from a thermal prospective. Stage 1 estimates core temperature, heat generation, and
thermal resistance based on a two-state thermal model, and the second stage receives these
estimation signals to estimate SOC and capacity utilizing a sliding mode observer. The
convergence for the observers are mathematically analyzed using Lyapunov stability theory.
This approach only requires the tuning of three scalar observer gains, wheres the number of
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tuning parameters in commonly adopted KF based methods is polynomial with respect to
the number of states. Experimental results demonstrate the capacity estimation accuracy
and robustness by comparing with real data. The benefit of using thermal dynamics for
capacity estimation is that it decouples capacity estimation error from the combined SOH
estimation error.
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Chapter 3

Battery Adaptive Observer for a Single
Particle Model with
Intercalation-Induced Stress

3.1 Introduction
Safe operation and degradation of Li-ion batteries have always been critical especially when
the usage of batteries gets ubiquitous. Battery models are typically used in a BMS for infer-
ring internal states based on measured current, voltage and temperature [36, 37]. The equiv-
alent circuit models possess simple structure but sacrifice the information of internal states,
while high-fidelity electrochemical models can capture the underlying physical and chemical
processes [38]. Though electrochemical models accurately predict the internal states, their
mathematical structures are often very complicated for control/estimation design. This point
motivates model reduction techniques to reduce the complexity of full order electrochemical
models. Among the numerous reduced order models, the single particle model (SPM) is the
most commonly used one. The SPM is derived from the full order electrochemical model,
and hence it inherits some important properties. Each electrode of the SPM is assumed
to be a single spherical particle and the current distribution is uniform across both elec-
trodes. In addition, the electrolyte concentration is assumed to be constant in space and
time [37]. Based on the SPM, Kalman filter (KF) for SOC estimation was designed in [39,
40]. The shortcoming of KF approaches arise from the difficulties to verify the asymptotic
convergence properties. The authors of [41] proposed a SOC estimation technique using the
SPM, where the radial-domain dependence of solid phase lithium concentration is approxi-
mated by a fourth-order polynomial. One of the important drawbacks of the SPM is that it
does not accurately predict voltage at high C-rate1, since the electrolyte dynamics are ne-
glected. In order to compensate this, models that combine the SPM with other components

1C-rate is a normalized measure of electric current. It is defined as the ratio of current in Amperes (A)
to a cell’s nominal capacity in Ampere-hours (Ah).
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are developed. For instance, electrolyte phase contribution are approximated by polynomial
functions in [42]. State estimation scheme with provable convergence for the SPM with
electrolyte dynamics is derived and analyzed in [43]. Temperature distribution inside the
battery is a crucial quantity for thermal management in BMS. An electrochemical model
coupled with electrolyte dynamics and temperature dependent parameters is presented for
SOC estimation [44]. Battery SOC and internal temperature are estimated from a reduced
and reformulated electrochemical model in [45].

In recent years, battery SOH has gained increased focus due to concerns over battery
safety and life. Various factors contribute toward battery degradation, e.g. capacity fade
and resistance growth. See [13] for a particularly excellent review. Though simultaneous
SOC and SOH estimation problem has been well-studied using circuit models [19, 46, 47], it
is less examined for electrochemical models. Moura et al. created an adaptive PDE observer
for combined SOC and SOH estimation by adopting PDE backstepping observer design
procedure [48]. A nonlinear Luenberger-type adaptive observer is designed on a coupled
electrochemical-thermal model in [49]. In the aforementioned papers, certain parameters,
e.g. diffusion coefficient and contact resistance, are used as indicators of SOH, and these
parameters are identified in real time.

Other than the model parameter dependent health indicator for Li-ion batteries, this
chapter inspects another quantity for studying battery health, namely the intercalation-
induced stress generated inside the solid phase particles. An important capacity fade mech-
anism is the particle fracture due to intercalation- and deintercalation-induced stresses [50].
Volume changes of the electrode particles due to stress generation may induce particle frac-
ture if the stress (radial or tangential [51, 52]) exceeds the yielding stress of the material [53].
This phenomenon motivates the development of models that incorporate stress mechanics
into the SPM. Seminal work conducted by Christensen and Newman developed a mathemat-
ical model to capture volume expansion and contraction during lithium insertion [53]. Later,
models that combine the SPM with diffusion-induced stress was introduced in [54], relying
on an analogy to thermal stress. In [55], a modified SPM that incorporates stress-enhanced
diffusion and electrolyte concentration distribution was developed. This model strikes an
intriguing balance of fidelity and structural simplicity. An interesting BMS application of
these models is introduced in [56], where the authors performed optimal charging under
stress constraints. It is worth noting that spatial non-uniformity in battery electrode can
cause degradation even when operating within the manufacturer specified limits. Although
applying the SPM-based model for battery SOH estimation and monitoring can not capture
this spatial distribution of degradation patterns due to heterogeneities in electrode geometry
[57], we seek quantitative aggregated stress prediction to better understand battery SOH in
this chapter.

In summary, there now exists a keen interest to address the SOH estimation problem,
and recent model developments on diffusion induced stress can be enabling. However, no
work currently exists on state and parameter estimation with coupled SPM-Stress models to
the authors’ best knowledge. In this chapter, we design a nonlinear observer based on this
coupled model to estimate the bulk SOC, the particle stress profile, and the anode lithium
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diffusivity from current and voltage measurements only [58]. Consequently, the real-time
electrochemical model parameter can be monitored as a battery health indicator, and the
electrode stress supports the studies on several physical degradation phenomena associated
with battery health. This contribution departs from existing works in estimation for battery
electrochemical models in the following ways:

• It makes one of the first attempts to exploit the stress-enhanced electrochemical model
for the estimation of internal stress on top of SOC and model parameters. This issue
is relevant for batteries consisting of electrodes that tend to expand and fracture due
to stress.

• It considers a nonlinear state dynamical model stemming from intercalation-induced
stress effects, which contrasts with linear state dynamics in [48, 49].

• A sliding mode observer based adaptive estimation scheme is proposed, which differs
from e.g. output inversion and least squares estimation [48]. The used observer is
known to be robust against model uncertainties.

• It performs state and parameter estimation simultaneously while providing convergence
conditions for the proposed estimation scheme through a rigorous stability analysis.

The remainder of the chapter is organized as follows: Chapter 3.2 presents the battery
single particle model with intercalation-induced stress. Chapter 3.3 motivates the importance
of monitoring the electrode stress via a simulation example. Chapter 3.4 discusses model
properties, model reduction, and state-space model formulation. The observer design with
convergence analysis is presented in Chapter 3.5. Chapter 3.6 demonstrates the performance
of designed observer via simulation and utilizing experimental data. The limitations of the
proposed scheme and future work are enumerated in Chapter 3.7. Finally, conclusions are
drawn in Chapter 3.8.

3.2 Model Description
Figure 3.1 portrays the concept of the SPM. In the full order electrochemical model (a.k.a.
Doyle-Fuller-Newman model [38]), Li-ion transports in the solid and electrolyte phases. The
key idea of the SPM is that the solid phase of each electrode can be modeled as a single
spherical particle, and Li-ion concentration in electrolyte phase is assumed to be constant
in space and time [48]. The SPM captures less dynamic behavior than the full order model,
and specifically does not include mechanical responses, whose effect on diffusion becomes
significant when the electrode material has high modulus and high partial molar volume
[54].

The model equations for the coupled SPM and stress presented here closely follow the
derivation by Zhang et al. [54]. A list of description for symbols can be found in Table 3.1.
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Figure 3.1: Sketch of the Single Particle Model (SPM) Concept

For the case of a two dimensional spherical particle, the intercalation of Li-ions in the solid
phase is modeled as a process due to diffusion and stress generation, given by
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ijn(t)

F
, (3.2)

where cjs = cjs(r, t) : [0, Rj
s] × [0,∞) → R maps the radial position and time to solid phase

lithium concentration in electrode j, and σjh = σjh(r, t) : [0, Rj
s]× [0,∞)→ R maps the radial

position and time to hydrostatic stress in electrode j. The current density ijn is proportional
to the input current by the relation ijn(t) = ±I(t)/ajALj.

The stress tensor consists of radial stress σr and tangential stress σt, which are functions
of the lithium concentration:

σjr(r, t) = 2βj

 1

(Rj
s)3

∫ Rjs

0

c̃jsr
2dr − 1

r3

∫ r

0

c̃jsρ
2dρ

 , (3.3)

σjt (r, t) = βj

 2

(Rj
s)3

∫ Rjs

0

c̃jsr
2dr +

1

r3

∫ r

0

c̃jsρ
2dρ− c̃js

 , (3.4)
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Table 3.1: SPM-Stress Model Symbol Description

Symbols Description Units
aj Specific interfacial surface area [m2/m3]
A Cell cross Chapteral area [m2]
c0
e Li-ion concentration in electrolyte phase [mol/m3]
cjs Solid phase Li-ion concentration [mol/m3]
cjss Li-ion concentration at particle surface [mol/m3]
cjs,max Max Li-ion concentration in solid phase [mol/m3]

c̃js
Concentration change from

stress-free value [mol/m3]

Dj
s Solid phase diffusion coefficient [m2/sec]

Ej Young’s Modulus [GPa]
F Faraday’s constant [C/mol]
ijn Particle surface current density [A/m2]
I Applied current [A]
kj Charge transfer reaction rate [A·m2.5/mol1.5]
Lj Electrode thickness [m]
nLi,s Lithium in the solid phase [mol]
r Radial coordinate [m]
R Universal gas constant [J/mol-K]
Rf Contact film resistance [Ohm]
Rj
s Particle radius [m]
t Time [Second]
T Battery cell temperature [K]
U j Open circuit potential [V]

Θj
min Lower stoichiometry point [-]

Θj
max Upper stoichiometry point [-]
αj Charge transfer coefficient [-]
εjs Volume fraction of solid phase [-]
νj Poisson’s ratio [-]
σjh Hydrostatic stress [MPa]
Ωj Partial molar volume [mol/m3]

where βj = ΩjEj/3(1− νj). The hydrostatic stress is a weighted sum of σr and σt:

σjh =
σjr + 2σjt

3
=

2

3
βj
[

3

(Rj
s)3

∫ Rjs

0

c̃jsr
2dr − c̃js

]
. (3.5)
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Substituting (3.5) into (3.1) yields

∂cjs
∂t

= Dj
s

[
(1 + θjcjs)

(
∂2cjs
∂r2

+
2

r

∂cjs
∂r

)
+ θj

(
∂cjs
∂r

)2
]
, (3.6)

where θj = (Ωj/RT )[(2ΩjEj)/9(1 − νj)] is a constant depending on electrode material me-
chanical properties. The boundary condition is obtained by substituting (3.5) into (3.2):

−Dj
s

(
1 + θjcjs(R

j
s, t)
) ∂cjs
∂r

(Rj
s, t) =

±I(t)

FajALj
. (3.7)

For well-posedness, the Neumann boundary condition at r = 0 is required:

∂cjs
∂r

(0, t) = 0. (3.8)

The two variables, concentration and stress involved in PDE (3.1), are decoupled into a
single nonlinear PDE (3.6) that describes the diffusion of Li-ion under the influence of stress,
and concentration-dependent radial and tangential stresses in (3.3) and (3.4). Therefore, the
dynamical equation for the solid phase Li-ion concentration with intercalation-induced stress
is given by (3.6), with the boundary conditions (3.7)-(3.8). The nonlinearities in PDE (3.6)
can be regarded as a diffusion with state-dependent diffusivity as well as a square of the
spatial derivative of the state. Note that the intercalation-induced stress effect is ignored if
θj = 0, resulting in the regular SPM.

The output terminal voltage VT is a function of solid phase surface concentration, open
circuit potentials, electric overpotentials, and Butler-Volmer kinetics:

VT (t) =
RT

α+F
sinh

[
−I(t)

2a+AL+i+0 (c+
ss(t))

]
− RT

α−F
sinh

[
I(t)

2a−AL−i−0 (c−ss(t))

]
+ U+(c+

ss(t))− U−(c−ss(t))−RfI(t), (3.9)

where the exchange current density ij0(·) is

ij0(cjss) = kj
√
c0
ec
j
ss(t)(c

j
s,max − cjss(t)), (3.10)

cjss(t) = cjs(R
j
s, t). (3.11)

U+(·) and U−(·) in Eq. (3.9) are the equilibrium potentials of positive and negative electrode
material as functions of solid phase surface concentrations.

3.3 Motivation
In this section, we illustrate the importance of monitoring stress inside the electrode solid
particle via a simulation study. The model parameters are identified from the experimen-
tal data presented in Figure 3.5(a) in Chapter 3.6, and they correspond to a commercial
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Figure 3.2: Maximum radial and tangential stresses for a commercial NMC cell under UDDS
cycle loads

LiNiMnCoO2 (NMC) - LiC6 cell. A transient electric vehicle-like charge/discharge cycle
generated from urban dynamometer driving schedule (UDDS) is applied, and the maximum
absolute radial and tangential stresses for anode (graphite) are simulated and plotted in
Figure 3.2. The maximum absolute radial and tangential stresses are located at the center
and the surface of the electrode particle, respectively [54], and they are dependent on the
change of radial Li-ion concentration from its stress-free value:

σ−r,max(t) = 2β−

[
1

(R−s )3

∫ R−
s

0

c̃−s r
2dr − 1

3
c̃−s (0, t)

]
, (3.12)

σ−t,max(t) = β−

[
3

(R−s )3

∫ R−
s

0

c̃−s r
2dr − c̃−s (R−s , t)

]
. (3.13)
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The dotted red lines in Figure 3.2 represent the yielding stress for graphite. It is evident
that the yielding stresses of materials are generally lowered by repeated cycling, and it is
possible that the yielding stress of carbonaceous materials will fall below 30 MPa when the
cell is cycled [53]. Consequently, the maximum absolute radial and tangential stresses exceed
the yielding stress at approximately 4 minutes and 1.2 minutes after the current switches to
non-zero value, respectively. The anode particle may fracture during the large portion of this
driving cycle since the maximum stresses are significantly higher than the yielding stress.
Hence, from the safety point of view, the users of the BMS shall greatly benefit from the
real-time particle stress information to ensure safe operation and longevity of the battery.

Remark 8. The electrode particles are very likely to fracture if the maximum stresses exceed
the yielding stress of the electrode material. However, the stresses at which particles actually
fracture may greatly vary, and the yielding stress of the material is an upper limit on the
stress required for particle fracture. It is possible to fracture during cycling even when the
maximum stress is below the yielding stress [59]. Although the exact condition for particles to
fracture may not be determined, criteria for electrode fracture tendency have been identified
in [52], namely strength-based and energy-based criteria.

3.4 Model Analysis and Reduction
This Chapter presents model properties, system observability analysis, and state-space for-
mulation for observer design.

Conservation of solid-phase lithium

The moles of lithium in the solid phase nLi,s is conserved, where

nLi,s(t) =
∑

j∈{+,−}

εjsL
jA

4
3
π(Rj

s)3

∫ Rjs

0

4πr2cjs(r, t)dr. (3.14)
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The lithium conservation can be verified by differentiating (3.14) with respect to time:

d

dt
nLi,s =

∑
j∈{+,−}

εjsL
jA

4
3
π(Rj

s)3

∫ Rjs

0

4πr2∂c
j
s(r, t)

∂t
dr

=
∑

j∈{+,−}

Dj
sε
j
sL

jA
4
3
π(Rj

s)3

∫ Rjs

0

4πr2

[
θj
(
∂cjs
∂r

)2

+ (1 + θjcjs)

(
∂2cjs
∂r2

+
2

r

∂cjs
∂r

)]
dr

=
∑

j∈{+,−}

3Dj
sε
j
sL

jA

Rj
s

[
(1 + θjcjs(R

j
s, t))

∂cjs(R
j
s, t)

∂r

]

=
∑

j∈{+,−}

−3Dj
sε
j
sL

jA

Rj
s

±I
Dj
sFajALj

=
I

F
− I

F
= 0, (3.15)

where the second equality comes from the dynamical equation (3.6), the third equality follows
from integration by parts, the fourth equality results from the boundary conditions (3.7),
and the last equality utilizes the relation εj = ajRj

s/3.
The lithium conservation property will be leveraged for model reduction in the next

section.

Model Reduction

The cell voltage in (3.9) depends on U+(c+
ss) − U−(c−ss), which makes the difference of the

open circuit potential observable from the voltage measurement but does not guarantee
the observability of each open circuit potential [40]. This chapter adopts the idea in [40]
to overcome this issue by seeking a relation between the positive and negative solid phase
surface concentrations by the lithium conservation property in (3.14):

c+
ss =

nLi − ε−s L−Ac−ss
ε+
s L

+A
, (3.16)

and the output function (3.9) can be adjusted accordingly:

VT (t) =
RT

α+F
sinh

[
−I(t)

2a+AL+i+0 (γc−ss(t) + κ)

]
− RT

α−F
sinh

[
I(t)

2a−AL−i−0 (c−ss(t))

]
+ U+(γc−ss(t) + κ)− U−(c−ss(t))−RfI(t), (3.17)

where γ = −(ε−s L
−)/(ε+

s L
+) and κ = nLi/(ε

+
s L

+A). The reduced system is then modeled by
the anode dynamics (c−s -system) from diffusion equation (3.6) and output function (3.17).
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Ideally, we intend to check the observability of the reduced nonlinear PDE system (3.6) and
(3.17), but the theoretical results of the PDE system observability is not well-developed, and
as a result we discretize the PDE system into a system of ODEs in the subsequent Chapter
and evaluate the local observability of the spatially discretized system.

Remark 9. In the present work, we introduce state and parameter observer for the graphite
anode in particular. Although the above model reduction is motivated by the observability
condition from control theory perspective, the anode selection arises from the physics. The
graphite anodes are prone to degradation due to volume changes and concentration gradients
[60, 61, 62], and such degradation results in diffusion-induced stress that might lead to particle
fracture [53, 63].

State-Space Model Formulation and Analysis

There is a growing but small body of theoretical results on adaptive estimation of parabolic
PDEs. For instance, an extended Luenberger-type observer is designed for a class of semi-
linear parabolic PDEs in [64], achieving exponential stability of the linearized observer error
dynamics. However, the model therein reflects only semi-linearity and no parameter uncer-
tainties. The methods introduced in [65] stands out as it provides a thorough analysis and
proof of adaptive scheme using output feedback for linear parabolic PDEs with spatially
varying coefficients. Nonetheless, this approach doesn’t directly extend to this chapter as
the SPM-Stress model contains highly nonlinear components. In [66], the authors devel-
oped an adaptive boundary observer for parabolic PDEs with both domain and boundary
parameter uncertainties, with convergence results, where the PDE is linear in the states
and parameters, making it more tractable for the backstepping technique. In the context of
battery applications, Ascencio derives an adaptive PDE observer for the SPM, including a
parameter estimate for the diffusion coefficient [67]. Sum-of-squares programming is used for
solving the kernel PDE online. Although these results have advanced our understanding of
adaptive estimation for parabolic PDEs in infinite dimensional space, the considered problem
in this chapter is still extremely difficult. Hence, we use model discretization so that finite
dimensional estimation tools can be leveraged.

Henceforth, we will only consider dynamics for anode and drop the subscripts and su-
perscripts to simplify notation, namely c = c−s , D = D−s , Rs = R−s , a = a−, L = L−, and
θ = θ−. Suppose (N+1) nodes are used for discretization in the r direction, and ∆r = Rs/N .
Define the parameter

τ =
D

(∆r)2
. (3.18)

The central difference method is used for discretizing the PDEs into ODEs. The system of
ODEs for the internal nodes of the anode diffusion dynamics are

∂ci
∂t

= τ

[
(1 + θci)(ci−1 − 2ci + ci+1) +

(
2

i
+ θ

ci+1 − ci−1

2
+

2θ

i
ci

)(
ci+1 − ci−1

2

)]
, (3.19)
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where i ∈ {1, 2, · · · , N − 1}. At the right boundary point i = N (r = Rs), the method of
imaginary points is utilized to discretize the governing equations:

∂cN
∂t

= τ

[
(1 + θcN)

(
cN−1 − cN −

I ·N
3τεFAL(1 + θcN)

)]
+ τ

[
1

N
+
θ

4

(
cN − cN−1 −

I ·N
3τεFAL(1 + θcN)

)
+

θ

N
cN

]
×
[
cN − cN−1 −

I ·N
3τεFAL(1 + θcN)

]
. (3.20)

The terms including 1/r has singularity at r = 0. Applying L’Hopital’s rule eliminates the
singularity, and (3.6) becomes

∂c

∂t
= D

[
3(1 + θc)

∂2c

∂r2
+ θ

(
∂c

∂r

)2
]
. (3.21)

Method of imaginary points can be employed again to discretize the governing equation at
i = 0 (r = 0):

∂c0

∂t
= 6τ(1 + θc0)(c1 − c0). (3.22)

The state-space model can be written in the following form based on (3.19), (3.20), (3.22),
and (3.17):

ẋ = τAx+ τθf(x, τ, u),

y = h(cN , u), (3.23)

where the state vector x =
[
c0 c1 c2 ... cN

]>
∈ RN+1, input u = I ∈ R is the applied

current, output terminal voltage y = h(cN , u) = VT ∈ R, nonlinear function f(x, τ, u) =[
f0(x) f1(x) ... fN−1(x) fN(x, τ, u)

]>
∈ RN+1, and matrix A ∈ R(N+1)×(N+1). Following

the derivation from (3.19), (3.20), and (3.22), we have

A =



−6 6 0 0 · · · · · · 0
0 −2 2 0 · · · · · · 0
0 1

2
−2 3

2
· · · · · · 0

0 0 2
3
−2 · · · · · · 0

...
...

... . . . . . . . . . ...
0 0 0 0 · · · −2 N

N−1

0 0 0 0 · · · N−1
N

−N−1
N


, (3.24)
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and

f(x, τ, u) =


6c0(c1 − c0)

...
ci
(
i−1
i
ci−1 − 2ci + i+1

i
ci−1

)
+ (ci+1−ci−1)2

4...
fN(cN−1, cN , τ, u)

 , (3.25)

where

fN(cN−1, cN , τ, u) = −N + 1

θN

I ·N
3τεFAL(1 + θcN)

+ cN

[
cN−1 − cN −

I ·N
3τεFAL(1 + θcN)

]
+

[
1

4

(
cN − cN−1 −

I ·N
3τεFAL(1 + θcN)

)
+

1

N
cN

][
cN − cN−1 −

I ·N
3τεFAL(1 + θcN)

]
.

(3.26)

Assumption 1. It has been verified by numerous literature, e.g. [68], that the nonlinear
output function h(cN , u) is strictly increasing with respect to the surface concentration cN .
We can conclude that for any given finite input u and any two different surface concentration
values cN,i, cN,j ∈ [Θ−min,Θ

−
max] · c−s,max, the following expression holds:

sgn
(
h(cN,i, u)− h(cN,j, u)

)
= sgn

(
cN,i − cN,j

)
, (3.27)

where the operator sgn(·) is the signum function.

This property will become important, as it eases the analysis of observer convergence in
the next section.

Remark 10. The function f(x, τ, u) is continuously differentiable with respect to the state x
and the parameter τ , a sufficient condition for Lipschitz continuity [68]. For any two vectors
X1, X2 ∈ RN+1, where each entry of X1 and X2 is within the range [Θ−max,Θ

−
min] · c−s,max, a

Lipschitz constant with respect to the state x can be obtained by computing the infinity norm
of ∂f/∂x, i.e., Kx = ‖∂f/∂x‖∞, such that

‖f(X1, τ, u)− f(X2, τ, u)‖ ≤ Kx‖X1 −X2‖. (3.28)

Similarly, for any two scalars T1, T2 ∈ R, a Lipschitz constant with respect to the parameter
τ is expressed as Kτ = ‖∂f/∂τ‖∞, such that

‖f(x, T1, u)− f(x, T2, u)‖ ≤ Kτ‖T1 − T2‖. (3.29)

From (3.28) and (3.29), a multi-variable Lipschitz continuous condition for the function
f(x, τ, u) is inferred:

‖f(X1, T1, u)− f(X2, T2, u)‖ ≤ Kx‖X1 −X2‖+Kτ‖T1 − T2‖. (3.30)
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It also immediately follows from (3.28) that fN(cN , cN−1, τ, u) is bounded within the compact
operating interval cN−1, cN ∈ [Θ−min,Θ

−
max] · c−s,max, for all finite input current u and finite

parameter τ . Mathematically, for any (cN−1, cN) and (c′N−1, c
′
N),

|fN(cN−1, cN , τ, u)− fN(c′N−1, c
′
N , τ, u)| ≤M, (3.31)

where 0 < M <∞.

Remark 11. It should be pointed out that the considered set-up can be readily transferred
to the case of concentration dependent parameters, eg. D = D(c) and θ = θ(c). Suppose
the dependence is continuous, then the Lipschitz continuity property on nonlinear function
f(x, τ, u) introduced in Remark 3 still holds since the discretized concentration ci is bounded
by [Θ−min,Θ

−
max] · c−s,max.

Observability Analysis

The observbility of a nonlinear finite-dimensional system can be verified by a rank test based
on the concept of Lie Derivatives. It should be pointed out that the local observability of a
nonlinear system is not equivalent to the observability of the linearized system, which was
examined previously in [69, 70] for battery equivalent circuit models. Here, we present local
observability rank test by considering the following form of nonlinear system:

ẋ = η(x) +
m∑
i=1

uigi(x), (3.32)

y = φ(x), (3.33)

where x ∈ Rn is the state, ui ∈ R is the input, y ∈ R is the output, and η, gi, and φ are
real-valued smooth functions. The gradient of φ, denoted by dφ, is expressed by

dφ =

[
∂φ

∂x1

∂φ

∂x2

· · · ∂φ

∂xn

]
. (3.34)

The Lie Derivative of φ with respect to function η is denoted by

Lηφ = dφ · η =
n∑
i=1

∂φ

∂xi
· ηi. (3.35)

The following theorem [71] provides the rank test for local observability of a nonlinear system
in the form of (3.32)-(3.33).

Theorem 3. Suppose x0 ∈ Rn is given. Consider the expression

Γ = (dLzsLzs−1 · · ·Lz1φ)(x0), (3.36)

where s ≥ 0, zi ∈ {η, g1, · · · , gm}, evaluated at x0. If there are n linearly independent row
vectors in Γ, then the system is locally observable around x0.
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Herein, for the simplicity of the calculation, we evaluate the local observability under
constant input current. The expressions of η(x), g1(x), g2(x), and φ(x) can be derived from
the state-space model (3.23)-(3.26), and u1 = I and u2 = I2. The calculation of Γ in (3.36)
reveals that the system is locally observable at x0.

3.5 Observer Design and Analysis
The state and parameter estimation problem seeks to design an adaptive observer system
to reconstruct the unknown state x and parameter τ in the plant model (3.23) with the
knowledge of output y and input u measurements. In this present work, the available energy
of the battery cell is quantified by the bulk SOC in the anode, and it can be computed
from normalizing the anode volume average of Li-ion concentration against the maximum
concentration:

SOC(t) =
3

(R−s )3c−s,max

∫ R−
s

0

r2c−s (r, t)dr. (3.37)

Note that the SOC calculation in (3.37) yields an un-normalized value. The actual bulk SOC
should be normalized with respect to the difference of upper and lower stoichiometry points
of anode material. The estimation of radial and tangential stresses are computed using solid
phase Li-ion concentration estimation by (3.3)-(3.4).

Remark 12. The magnitude of diffusion induced electrode stress is not a comprehensive
indicator of battery health, but certainly is a contributor to several physical degradation phe-
nomena associated with battery health. Examples include the growth of particle surface cracks
as a function of maximum tangential stress according to Paris’ Law [72], and mechanical fa-
tigue described by the Palmgren-Milner (PM) rule [73].

The primary unknown parameter considered in this chapter is the diffusivity in the anode
D−s , or equivalently τ , as it directly affects the dynamics of Li-ion transportation in the solid
phase. There is also consensus within the literature that the diffusion coefficient is one of
the most sensitive parameters to the battery cycling aging [74]. Aside from improving the
state estimation accuracy, the estimated parameter can be regarded as an indicator of SOH.
Thus, the battery health condition is assessed by both model parameter values and physical
degradation phenomena associated with the diffusion induced stress.

Systematic ways for adaptive observer design for nonlinear systems have been studied
in the existing literature [75, 76]. These approaches often consider certain dynamic model
structures with linear model output function, where the linearity in the output is an essential
property for deriving the update law for parameter estimate. Nonetheless, the output map
in the battery application is highly nonlinear with respect to the states and input, which
makes the adaptive observer design intricate. In this chapter, we adopt a similar approach as
in [75], with the extension to (i) a nonlinear output equation and (ii) a more general model
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Figure 3.3: Block diagram of adaptive observer structure. It consists of the solid phase sur-
face concentration observer (blue), the adaptive observer (yellow), and the stress estimation
calculation (coral). The adaptive observer is comprised of two parts: diffusion coefficient
identification (yellow/left) and and full state observer (yellow/right). The observers utilize
measurements of input current and output terminal voltage only.

dynamics structure. The stability of the the proposed observer will be rigorously analyzed
by the Lyapunov’s direct method.

Figure 3.3 depicts the observer design concept. The surface concentration observer (blue
block) takes the measurements of input current and output voltage to estimate the surface
concentration only. The estimated surface concentration becomes a pseudo-measurement sig-
nal utilized in the subsequent adaptive observer (yellow blocks). The model used for adaptive
observer design is reformulated such that the surface concentration estimation becomes the
model output, which is a linear function of the state vector. Finally the stress estimation
(coral block) can be calculated from the state estimates. The details are illustrated in the
following sections.



CHAPTER 3. BATTERY ADAPTIVE OBSERVER FOR A SINGLE PARTICLE
MODEL WITH INTERCALATION-INDUCED STRESS 42

Surface Concentration Observer Design

In this section, we present the observer design for estimating solid phase surface concentration
(blue block in Figure 3.3), and the corresponding convergence analysis using the Lyapunov’s
direct method.

In order to obtain surface concentration information and reformulate the state space
model for adaptive observer design, we separate the state vector x into two components,

namely define ξ =
[
c0 c1 · · · cN−1

]>
that contains the first N entries of x, and x =[

ξ> cN

]>
. Re-write the plant model (3.23) as

ξ̇ = τAx+ τF (x), (3.38)

ċN = τ
N − 1

N
cN−1 − τ

N − 1

N
cN + τθfN(x, u), (3.39)

y = h(cN , u), (3.40)

where A is the matrix A excluding the last row, and F (x) =
[
f0(ξ) f1(ξ) · · · fN−1(x)

]>
.

Note that in the plant model (3.38)-(3.40), the unknown parameter is τ and the unknown
states are ξ and cN . Despite the fact that τ is unknown, proper upper and lower bounds of
τ is assumed. These bounds can be retrieved from existing literature based on the electrode
materials. Mathematically, we have

0 < τ ≤ τ ≤ τ <∞. (3.41)

Consider the following observer structure:

˙̌cN = τ o
N − 1

N
čN−1 − τ o

N − 1

N
čN + τ oθf̌N + L · sgn (y − y̌) , (3.42)

where the quantities with the “inverse hat" symbols denote their estimation, and the scalar
observer gain L > 0 is to be designed such that the estimation converges to the actual
value. Moreover, f̌N = fN(čN−1, čN , τ

o, u). The parameter τ o is a nominal value chosen
a priori such that τ ≤ τo ≤ τ , and we further assume that τ = τ o + δτ . Our objective
is to estimate the surface concentration with the presence of parameter uncertainty, which
can be achieved by selecting a sufficiently high observer gain L. The above sliding mode
observer structure adopts the error injection concept and is well-known for its robustness
against parameter/model uncertainty when applied to nonlinear systems [77].

Proposition 1. Consider the surface concentration dynamics (3.39) with bounded unknown
parameter τ ≤ τ ≤ τ , and observer (3.42). If there exists a scalar gain such that

L > τ
N − 1

N
|c̃N−1|max + τθM + Ψ, (3.43)

in which Ψ > 0 is finite and given by (3.45), then the estimation error c̃N = cN−čN converges
to zero in finite time.
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Proof. Consider the estimation errors c̃N = cN − čN and c̃N−1 = cN−1 − čN−1. Subtracting
(3.42) from (3.39), and the error dynamics can be written as:

˙̃cN = τ o
N − 1

N
c̃N−1 − τ o

N − 1

N
c̃N + τ oθf̃N − Lsgn(c̃N)

+ δτ
N − 1

N
cN−1 − δτ

N − 1

N
cN + δτθfN , (3.44)

where f̃N = fN(cN−1, cN , τ, u)− fN(čN−1, čN , τ
o, u). Notice that we have utilized the mono-

tonicity property of y (see Assumption 1) to substitute sgn(y − y̌) with sgn(c̃N). Based on
the fact that cN , cN−1 and fN are bounded under finite input current, let

Ψ , δτ
N − 1

N
cN−1 − δτ

N − 1

N
cN + δτθfN ≤ Ψ, (3.45)

with Ψ > 0 being the upper bound of Ψ.
We analyze the error dynamics (3.44) using the Lyapunov function candidate

V =
1

2
c̃2
N , (3.46)

and the derivative of the Lyapunov function along the trajectory of c̃N is

V̇ = c̃N ˙̃cN

= c̃N

[
τ o
N − 1

N
c̃N−1 − τ o

N − 1

N
c̃N + τ oθf̃N − Lsgn(c̃N) + Ψ

]
≤ |c̃N |

[
τ
N − 1

N
|c̃N−1|+ τθ|f̃N |+ Ψ

]
− Lc̃Nsgn(c̃N)− τ oN − 1

N
c̃2
N

≤ |c̃N |
[
τ
N − 1

N
|c̃N−1|+ τθ|f̃N |+ Ψ

]
− L|c̃N |

≤ |c̃N |
[
τ
N − 1

N
|c̃N−1|+ τθM + Ψ− L

]
. (3.47)

If the gain L is chosen high enough such that

L > τ
N − 1

N
|c̃N−1|max + τθM + Ψ, (3.48)

then we have that V̇1 ≤ 0.
Choose L∗ that meets the condition in (3.48), and define

ρ = L∗ −
[
τ
N − 1

N
|c̃N−1|max + τθM + Ψ

]
> 0. (3.49)

From (3.47) and (3.49), we have that

V̇ ≤ −
√

2ρ
√
V . (3.50)
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The time required for c̃N to converge to zero can be analytically computed by solving (3.50)
for V using the comparison principle [32], and setting V = 0 and solving for tf :

tf =

√
2V (0)

ρ
, (3.51)

where V (0) is the initial condition of V . Therefore after t ≥ tf , c̃N → 0. Finite time
convergence of čN → cN is attained. �

Adaptive Observer Design

In this Chapter, we develop the adaptive observer by extending the results from [75]. The
surface concentration estimation čN from the surface concentration observer is leveraged as
a pseudo-measurement signal for a reformulated plant model. The dynamical equations in
(3.23) are preserved while the output is reformulated as a linear function of the state vector:

ẋ = τAx+ τθf(x, τ, u),

ys = Cx, (3.52)

where ys = cN and C =
[
0 0 · · · 0 1

]
∈ R1×(N+1). The adaptive observer is designed

such that the unknown state x and parameter τ are converging to their actual values si-
multaneously. The estimation system consists of a copy of the plant model (3.52) plus the
output error injection, as follows:

˙̂x = τ̂Ax̂+ τ̂ θf(x̂, τ̂ , u) + La(ys − ŷs),
ŷs = Cx̂, (3.53)

where the quantities with the “hat" symbols denote their estimation, and La ∈ RN+1
+ is a

vector of positive scalar gains to be designed. We seek to derive an update law for τ̂ and
conditions on La that guarantee the convergence of state and parameter estimates. Theorem
1 summarizes the convergence results for adaptive observer (3.53).

Theorem 4. Consider the plant model (3.52) and observer system (3.53), given accurate
estimation of surface concentration from Proposition 1. Let the error between the actual and
the estimated quantities to be x̃ = x− x̂, τ̃ = τ − τ̂ , and ỹs = ys − ŷs. Furthermore, assume
the actual value of the unknown parameter is bounded by τ ≤ τ < τ . Then the estimation
error x̃ and τ̃ converge to zero asymptotically, if the observer gain vector La is designed such
that for all τ † ∈ [τ , τ ], there exists a positive semidefinite matrix Q that verifies

τ †A+ τθKxIN − LaC � −Q, (3.54)

and τ̂ evolves according to the system

˙̂τ =
ỹsCAx̂+ ỹsθfN(x̂, τ̂ , u)

γ
, (3.55)

where IN denotes a (N + 1)× (N + 1) identity matrix, and γ > 0.
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Proof. The state error dynamics are expressed by subtracting (3.53) from (3.52):

˙̃x = τAx− τ̂Ax̂+ τθf(x, τ, u)− τ̂ θf(x̂, τ̂ , u)− Laỹs,
ỹs = Cx̃. (3.56)

The Lyapunov function candidate is chosen as

Va =
1

2
x̃>x̃+

1

2
γτ̃ 2, where γ > 0. (3.57)

The derivative of Va along the trajectory of x̃ is

V̇a =
1

2
˙̃x>x̃+

1

2
x̃> ˙̃x+ γτ̃ ˙̃τ

= x̃> ˙̃x+ γτ̃ ˙̃τ

= x̃>[τAx− τ̂Ax̂+ τθf(x, τ, u)− τ̂ θf(x̂, τ̂ , u)− Laỹs] + γτ̃ ˙̃τ

= x̃>[τAx− (τ − τ̃)Ax̂+ τθf(x, τ, u)− (τ − τ̃)θf(x̂, τ̂ , u)− LaCx̃] + γτ̃ ˙̃τ

= x̃>[τAx̃+ τ̃Ax̂+ τθ(f(x, τ, u)− f(x̂, τ̂ , u)) + τ̃ θf(x̂, τ̂ , u)− LaCx̃] + γτ̃ ˙̃τ

≤ τ̃ [x̃>Ax̂+ x̃>θf(x̂, τ̂ , u)− γ ˙̂τ ] + x̃>(τA− LaC)x̃+ τθ‖x̃‖‖f(x, τ, u)− f(x̂, τ̂ , u)‖
≤ τ̃ [x̃>Ax̂+ x̃>θf(x̂, τ̂ , u)− γ ˙̂τ ] + x̃>(τA− LaC)x̃+ τθ‖x̃‖(Kx‖x̃‖+Kτ‖τ̃‖)
= τ̃ [x̃>Ax̂+ x̃>θf(x̂, τ̂ , u)− γ ˙̂τ ] + x̃>(τA+ τθKxIN − LaC)x̃+ τθKτ‖x̃‖‖τ̃‖, (3.58)

where we have applied the Lipschitz continuity of the function f with respect to x and τ at the
second inequality according to Remark 3, and the last equality follows from ‖x̃‖‖x̃‖ = x̃>x̃.

Now choose the update law for τ̂ by eliminating the terms associated with τ̃ in the last
line of (3.58):

x̃>Ax̂+ x̃>θf(x̂, τ̂ , u)− γ ˙̂τ = 0. (3.59)

Since x̃ is unavailable because the actual states are unknown, we multiply both sides of (3.59)
by CC> = 1 to get

ỹsCAx̂+ ỹsCθf(x̂, τ̂ , u)− γ ˙̂τ = 0. (3.60)

Then the update law for τ̂ can be explicitly written as

˙̂τ =
ỹsCAx̂+ ỹsθfN(x̂, τ̂ , u)

γ
, (3.61)

and the inequality (3.58) is simplified to

V̇a ≤ x̃>(τA+ τθKxIN − LaC)x̃+ τθKτ‖x̃‖‖τ̃‖. (3.62)

Choose gain La such that for all τ † ∈ [τ , τ ], there exists a positive semidefinite matrix Q
that satisfies

τ †A+ τθKxIN − LaC � −Q, (3.63)
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and therefore,

V̇a ≤ −x̃>Qx̃+ τθKτ‖x̃‖‖τ̃‖
≤ −λmin(Q)‖x̃‖2 + τθKτ‖x̃‖‖τ̃‖

= −
[
‖x̃‖ ‖τ̃‖

] [λmin(Q) −τθKτ

0 0

][
‖x̃‖
‖τ̃‖

]
, −ṽP ṽ>, (3.64)

where ṽ =
[
‖x̃‖ ‖τ̃‖

]
. Apparently the matrix P is positive semidefinite since the eigenvalues

of P are {λmin(Q), 0}, where λmin(Q) ≥ 0. Hence, it follows that V̇a ≤ 0. Next we analyze
the convergence of state and parameter estimation errors.

Convergence of state estimation

Integrating both sides of (3.64) and we have that

Va(t) ≤ Va(0)−
∫ t

0

ṽ>P ṽdt, (3.65)

which implies 0 ≤ Va(t) ≤ Va(0), so Va ∈ L∞. From (3.57), x̃ ∈ L∞ and τ̃ ∈ L∞. Moreover,
x̂ = x − x̃ ∈ L∞ and τ̂ = τ − τ̃ ∈ L∞. Since Va(0) is finite and Va(t) ∈ L∞, x̃ ∈ L2.
In addition, from (3.56) and the fact that f is bounded, we have ˙̃x ∈ L∞. According to
Barbalat’s Lemma [78], x̃, ˙̃x ∈ L∞ and x̃ ∈ L2 allows us to conclude that

lim
t→∞

x̃ = 0. (3.66)

Therefore, x̂ converges to x asymptotically.

Convergence of parameter estimation

It has been shown in the previous suctions that x̃ is differentiable and has a finite limit
as t → ∞. Since f is Lipschitz continuous, f is immediately uniformly continuous. Let
χ = τAx− τ̂Ax̂− Laỹs = τAx̃ + τ̃Ax̂− LaCx̃, which are the terms at the right hand side
of (3.56) that are not associated with function f , and we would like to show χ is uniformly
continuous by verifying the boundedness of χ̇. Taking the derivative of χ with respect to
time:

χ̇ = τA ˙̃x+ ˙̃τAx̂+ τ̃A ˙̂x− LaC ˙̃x. (3.67)

Since x̂ ∈ L∞ and f is bounded, we have ˙̂x ∈ L∞ from (3.53). Based on (3.61), ˙̃τ = − ˙̂τ is
bounded because x̂ and f are bounded. Then it can be concluded that χ̇ is bounded, which
reveals that χ is uniformly continuous. Therefore, ˙̃x is uniformly continuous. Again, apply
Barbalat’s Lemma [78],

lim
t→∞

˙̃x = 0. (3.68)
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Table 3.2: Summary of Observer Design

System Variables Design Params. Convergence Type

Observer
Concentration

Surface
čss L in (3.42) Finite-Time

Concentration
Solid Phase

x̂ La in (3.53) Asymptotic

Diffusivity
Parameter -

τ̂ γ in (3.61) Asymptotic

Consider the first N state error dynamical equations in (3.56), and it implies that when
t→∞,

τAx− τ̂Ax̂+ τθF (x)− τ̂ θF (x̂)→ 0. (3.69)

Theoretically if the states converge asymptotically, i.e. x̂ → x as t → ∞, then from (3.69)
we have [

Ax+ θF (x)
]

(τ − τ̂)→ 0 as t→∞, (3.70)

so τ̂ converges to τ asymptotically. �

The value which τ̂ converges to highly relies on whether x̂ provides an accurate estimation.
In other words, the state estimation error determines how accurate the parameter estimation
will be. The uncertainties in the adaptive observer may result from uncertainties in current
and voltage measurements, and model mismatch. Additionally, the performance of the
adaptive observer is highly sensitive to the accuracy of the surface concentration observer
since its output becomes the input of the adaptive observer. Any uncertainties in the surface
concentration observer are passed into the adaptive observer stage.

Summary of Observer Design

The design of the complete observer is summarized in Table 3.2. It lists equations for each
subsystem, the corresponding design parameters, as well as the convergence type based on
the analysis in previous sections.

3.6 Results and Discussion
In this Chapter, we present results from simulation and experimental data to demonstrate
the performance of the proposed nonlinear observers.
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Table 3.3: SPM-Stress Model Parameters

Symbols Simulation Experimental Units
L− 100× 10−6 123× 10−6 m
L+ 100× 10−6 119× 10−6 m
D−s 3.9× 10−14 7.98× 10−16 m2/s
R−s 10× 10−6 8.21× 10−6 m
ε−s 0.6 0.7215 N/A
ε+
s 0.5 0.6516 N/A
k− 1× 10−5 2.19× 10−6 A·m2.5/mol1.5
k+ 3× 10−7 2.68× 10−7 A·m2.5/mol1.5
Rf 1.0× 10−3 1.0× 10−3 Ω×m2

nLi,s 2.5 0.14 mol
c−s,max 24983 31168 mol/m3

c+
s,max 46171 42649 mol/m3

A 1 0.049 m2

En 60 60 GPa
νn 0.25 0.25 N/A
Ωn 4.926× 10−6 4.926× 10−6 m3/mol

Simulation Study

The parameters used in the simulation are adopted from the DUALFOIL simulation package
that is publicly available [79]. The model parameters for anode, including diffusion and
mechanical properties, are enumerated in Table 3.3. The mechanical parameters of anode
material are obtained from [55]. We illustrate the observer performance by initializing the
state and parameter estimates at incorrect values.

We apply a constant 1C discharge cycle for around 45 minutes. Figure 3.4(a) and 3.4(b)
portrays the evolution of input current and the surface concentration estimate from the
surface concentration observer. The surface concentration estimation is initialized with a
12.8% error to validate the convergence property. Notice that with a proper selection of the
gain as presented in (3.48), the convergence time for č−ss is 15 seconds. Next, the surface
concentration estimate is fed into the adaptive observer as a pseudo-measurement signal for
combined state and parameter estimation. The estimation for surface concentration, terminal
voltage, bulk SOC, and anode diffusivity are plotted against their simulated values from the
plant model (3.23) in Figure 3.4(c)-(f). Figure 3.4(g)-(h) provide the plots of the estimation
for maximum absolute radial and tangential stresses over time, which are located at the center
and the surface of the anode electrode particle, respectively. With an appropriate choice of
gain as presented in Chapter 3.5, the estimates effectively converge to their simulated values
from plant model. It is worth mentioning that the internal stress estimates can be monitored
in real time to prevent it from getting higher than the yielding stress of the electrode material,
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Figure 3.4: Estimation performance under an 1C discharge current in simulation. (a) in-
put current; (b) surface concentration; (c) voltage; (d) surface concentration from adaptive
observer; (e) bulk SOC; (f) anode diffusivity; (g) max radial stress; (h) max tangential stress.

and utilized to analyze the stress-related physical degradation.

Experimental Studies

In this Chapter, the performance of the designed adaptive observer is demonstrated via
experimental data from a commercial LiNiMnCoO2 (NMC) – LiC6 cell. The ambient tem-
perature of the battery cell under test is retained at 25.5 ◦C inside an ESPEC BTL-433
environmental chamber, and an Arbin High Current Cylindrical Cell Holder is used to hold
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Figure 3.5: Estimation performance from experimental data under an UDDS drive cycle. (a)
input current; (b) surface concentration; (c) voltage; (d) surface concentration from adaptive
observer; (e) bulk SOC; (f) anode diffusivity; (g) max radial stress; (h) max tangential stress.

the battery cell. A PEC SBT2050 cycler applies a vehicle charge-discharge cycle. The exper-
imentally collected data, current and voltage, have been used for identification of SPM-Stress
model parameters. For the model identification, we utilized Particle Swarm Optimization
(PSO) to minimize the root mean squared voltage error between experimental data and
model output to get the best model fit [80]. Besides the parameters associated with battery
geometry, mechanical properties, and equilibrium structure, the model parameters that are
fitted by PSO are D−s , R−s , k−, and k+. The mechanical parameters are adopted from [55]
for graphite. A summary of the parameter values are listed in Table 3.3. The state and



CHAPTER 3. BATTERY ADAPTIVE OBSERVER FOR A SINGLE PARTICLE
MODEL WITH INTERCALATION-INDUCED STRESS 51

parameter estimation are initialized with random (incorrect) guess to evaluate the conver-
gence of the observers. Unlike the cases in the simulation study, we no longer know the true
solid phase Li-ion concentration and SOC. As a consequence, the criteria for assessing the
observer performance is through the comparison of measured voltage and voltage estimates
computed from Li-ion concentration estimation.

The “actual” quantities plotted in the figures are obtained through the following ways:

• The “actual” diffusion coefficient is obtained by fitting the voltage output from the
plant model in (3.23) to the experimental voltage measurement offline by PSO.

• The “actual” surface concentration, maximum radial stress, and maximum tangential
stress are simulated utilizing the plant model (3.23) with the identified parameters
from the last step.

• The “actual” bulk SOC is computed by the coulomb counting technique, by integrating
the applied current normalized with battery capacity.

During the experiment, the battery cell was first charged to 100% SOC using a standard
constant-current-constant-voltage (CCCV) protocol, followed by a discharge period until the
SOC drops down to 80% SOC. An electric vehicle-like charge-discharge cycle is then applied
to the battery cell, plotted in Figure 3.5(a). The results for the surface concentration observer
and adaptive observer are given in Figure 3.5(b) and 3.5(c)-(f), respectively. The root mean
squared percentage error (RMSPE) is selected to quantified the estimation accuracy:

RMSPE(z, ẑ) =

√√√√ 1

n

n∑
i=1

(
ẑi − zi
zi

× 100%

)2

, (3.71)

where z and ẑ denote the true and estimated quantities and n is the number of data points.
After the initial transition period, the RMSPE between the voltage estimation and experi-
mentally measured voltage is 0.143%. Similarly, the RMSPE for SOC and anode diffusivity
estimation against their true values are 1.24% and 5.53%, respectively. As expected, the
estimated variables converge to their actual values starting with an incorrect initialization.
Notice that the estimated variables from the adaptive observer exhibit large uncertainties at
the beginning, mainly because the adaptive observer requires correct surface concentration
estimation from the previous stage.

This chapter presents and rigorously analyzes simultaneous state and parameter estima-
tion utilizing the nonlinear coupled SPM and stress model. Similar to most other existing
techniques [74, 60], the method proposed here is capable of estimating aging related param-
eters in the battery model, e.g. diffusivity. Moreover, estimation of stresses generated inside
the electrode particles provide another crucial measure for evaluating stress-related battery
degradation phenomena.

Remark 13. This work addresses observer design for nonlinear PDEs by projecting the
PDEs onto a finite-dimension subspace, and applying nonlinear observer design for ODEs.
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Figure 3.6: The effect of measurement noise on the sliding mode observer in the Surface
Concentration Observer stage with constant input current (in simulation). Uniformly dis-
tributed noise with magnitudes of 1 mV, 10 mV, 30 mV, and 70 mV are manually injected
to the voltage signal.

For linear PDEs, one can avoid projection in the observer design by utilizing methods such
as backstepping [81] or optimal estimation [82]. Unfortunately, a unified theory for nonlinear
PDE observer design does not yet exist. Nevertheless, results can be obtained in special cases
- a topic for future work.

3.7 Limitation of the Proposed Scheme
The adaptive estimation performance is reasonably well in the simulation study and using
experimental data. Nonetheless, there are limitations in the proposed algorithm. In this
Chapter, we discuss and illustrate these limitations.

Flatness of Anode OCP

For the purpose of system observability, we reduce the coupled SPM and stress model by only
considering the anode dynamics. A potential issue is that the open circuit potential (OCP)
of the anode is generally flat, which means the sensitivity of output voltage with respect
to the state is low. This may lead to large estimation error due to sensor and modeling
uncertainties [83]. In order to compensate for the low sensitivity, observer with high gain is
proposed. However, high gains amplify the output measurement noise, but we expect the
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sliding mode observer to provide certain robustness. The effect of measurement noise on the
sliding mode observer performance in the surface concentration observer stage is tested in
simulation with constant input current (see Figure 3.6). Uniformly distributed noise with
magnitudes of 1 mV, 10 mV, 30 mV, and 70 mV are manually injected to the voltage signal.
Due to the effect of high observer gain, the surface concentration estimation deviates from
the actual (simulated) signal when uncertainties grow. This illustration reveals that the
measurement uncertainty weakens the effectiveness of the estimation scheme owing to high
observer gain.

Modeling Inadequacy

The coupled SPM and stress model adopted from [54] is derived from physical principles
relying on an analogy to thermal stress, and provides a quantitative aggregated stress pre-
diction, which is useful to understand battery SOH associated with stress. This model also
has desired computational simplicity for our application. However, the model is never vali-
dated against experimental data. It is derived based on the SPM, so (i) it cannot capture the
electrode localized stress as a function of position along the electrode, and (ii) its accuracy
can be compromised for high input current, and electrolyte dynamics are expected to be
incorporated as the electrode region in which fracture takes place depends on the electrolyte
properties [84]. Moreover, reviewing dynamical equation (3.6) and Remark 4, it is evident
that the effects of temperature and concentration on θj and Dj

s were not taken into account.
Finally, the model used here does not account for phase change and staging in the electrodes,
which have a significant impact on the stress generation of some materials [59].

Unknown Actual Initial Condition

To compute the estimates σ̂r,max and σ̂t,max in real time, one needs to know the change of
solid phase concentration estimation from the actual stress-free value, which is recognized as
the concentration profile after relaxation. In the numerical studies, the “stress-free value of
concentration" is simply the actual initial condition of the solid-phase concentration in the
battery cell, and apparently this information is unavailable. In the above numerical studies
(for instance see Figure 3.5(a)), zero current is injected at the beginning of an input profile,
which allows 1) the battery cell to relax and 2) the state observer to converge to the actual
initial concentration instantly. The concentration estimation at the end of zero current can
be used as the “actual” initial concentration. However, the convergence of observer within
zero-current period is not guaranteed.

3.8 Conclusion
This chapter presents a nonlinear observer for mechanical stress estimation in Li-ion batter-
ies, along with solid-phase Li-ion concentration, i.e. state of charge, and diffusion coefficient
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estimation. A key feature is utilizing a single particle model coupled with an intercalation-
induced stress model. Monitoring the mechanical response of electrode materials is crucial
because particle fracture due to stress generation is a major source of battery capacity fade.
The reduced PDE system for the SPM-Stress model is approximated by nonlinear ODEs us-
ing the finite difference method. A nonlinear observer based on the sliding mode observer con-
cept is proposed for estimating the surface concentration from current and voltage measure-
ments only. The estimated surface concentration is then utilized as a pseudo-measurement
signal for combined state and parameter estimation in the subsequent adaptive observer.
The observers’ convergence is mathematically proved using Lyapunov stability theory and
Barbalat’s Lemma. Real-time monitoring of aging related parameters in battery model and
internal mechanical stress enables (i) a BMS to apply optimal control methods that protect
against particle fracture, and consequently extend battery life, and (ii) further understand-
ing of battery degradation behavior associated with diffusion-induced stress. Studies from
simulation and experimental data are carried out to demonstrate observer performances.
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Chapter 4

State of Charge Estimation for battery
Packs With Heterogeneous Cells

A battery pack system generally consists of hundreds or thousands of single cells connected
in parallel and series connections in order to fulfill the requirements of high-energy and high-
power applications [85]. It is well-known that Li-ion cells are sensitive to over-charge and
over-discharge [86]. An accurate estimation of the internal states for battery packs, including
SOC, enables a BMS to prolong battery service life by ensuring individual cells within a pack
do not over-charge or over-discharge.

Battery pack system modeling can be divided into three categories. The first approach
treats the entire pack as one lumped single cell [87]. However, the internal states of individual
cells within the pack are likely to be different, due to parameter heterogeneity. Therefore,
some cells are more prone to violate safety-critical constraints than others, which cannot be
resolved from the lumped single cell approach. The second modeling approach also relies
on a single cell model, but it focuses on a set of specific in-pack cells – the weakest and the
strongest ones, as representatives of the pack dynamics [85, 88]. The last modeling approach
is based on the interconnection of single cell models [89, 90, 91]. This approach benefits from
high fidelity cell-by-cell resolution, but it might suffer from high real-time computational
burden. To counteract this computational challenge, most of these approaches resort to
equivalent circuit models, which tend to have a low complexity when compared to more
sophisticated electrochemical models.

The state estimation problem for series arrangements of battery cells has been stud-
ied previously [86, 92], whereas the estimation for cells in parallel has been overlooked for
multiple reasons. First, cells in parallel are widely considered to behave as one single cell.
However, an implicit assumption behind this reasoning is that the applied current is evenly
split amongst the cells in parallel. This is hardly true in practice due to cell heterogeneities,
such as non-uniform parameter values and temperatures [93]. This fact makes the estimation
problem for parallel battery cells relevant. Secondly, the estimation problem for battery cells
in series is arguably easier to solve than the parallel counterpart, because in the series case
the input current to each battery cell is the same and it can be practically measured. In the
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parallel case, each cell’s local currents are unknown and determined by algebraic constraints.
Due to sensing limitations, only the total current can be measured. Therefore, the parallel
configuration turns out to be a differential algebraic equation (DAE) system that requires
non-trivial estimation theories.

A DAE system, a.k.a. a descriptor system, involving both differential and algebraic
equations, is a powerful modeling framework that generalizes ordinary differential (normal)
systems [94]. The state observer design for linear descriptor systems is a rich research topic
[94, 95, 96, 97]. In contrast, state observers for nonlinear descriptor systems is less prolific.
Some relevant contributions encompass a local asymptotic state observer [98], looking at the
system as differential equations on a restricted manifold [99], and an index-1 DAE observer
[100]. Other works consider the case of Lipschitz nonlinearities [101], which have served
as a basis for Lyapunov-based observer design using the linearized system [102], and LMI
approaches producing state observers in singular [103] and non-singular [104] forms. Another
Lipschitz system was considered in [105], where the temporal separation between slow and
fast dynamics was exploited to design a robust state observer. Nonlinear descriptor systems
have also been estimated through moving horizon approaches [106] and Kalman filters [107,
108, 109].

An important fact often ignored during battery modeling is the time-varying electrical
parameters. In practice, electrical model parameters, e.g. resistances and capacitance, are
non-linearly dependent on the cell’s SOC and temperature. High-fidelity temperature models
have more accurate predictions, but suffer from high computational cost, rendering them of
little use for on-board thermal management [110]. First principles-based two-state thermal
model for the cell’s core and surface temperatures provide a balanced trade-off between
computational efficiency and fidelity [111]. Coupled equivalent circuit-thermal models with
temperature dependent parameters have been studied and used for state estimation via an
adaptive observer in [112]. Existing techniques for battery pack state estimation includes
Luenberger observers [113], Kalman filters [114], unscented Kalman filters [115], and sliding
mode observers [116], among others. However, all the previously mentioned techniques
require a state observer for each cell, making them computationally intractable for large
packs.

In the stochastic estimation/filtering framework, the process and measurement noises
are often assumed to be Gaussian. The system characteristics, e.g. mean and variance, are
required by filtering algorithms. Nonetheless, the statistical and calibration procedures to
obtain these characteristics are often tedious [117]. In contrast, interval estimation [117,
118, 119] assumes that the measurement and process noises are unknown but bounded.
In a battery pack with thousands of cells, executing state estimation algorithms based on
highly nonlinear and coupled dynamics for every single cell in real time becomes intractable.
The interval observer benefits from its scalability by deriving only upper and lower bounds
that enclose all unmeasured internal states for all cells in a pack. Previously, only Perez
et al. designed a sensitivity-based interval observer for single cell SOC estimation from
an electrochemical perspective [120], but without provable observer stability and inclusion
properties.
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In light of the aforementioned literature, the contributions of this chapter are fourfold:

1. Propose a novel framework for modeling Li-ion battery cells in parallel as a nonlinear
descriptor system. Existing studies for cells in series yield ODEs;

2. Conduct observability analysis of such a system;

3. Design a Lyapunov-based asymptotic state observer for both differential and algebraic
state estimation, using only voltage and total current measurements;

4. Design/apply a novel interval observer with guaranteed stability and inclusion, given
uncertain model parameters, initial conditions, and measurements.

This chapter is organized as follows. Chapter 4.1 introduces the modeling framework for
parallel cells using constant electrical parameters. Chapter 4.2 motivates cell heterogeneity
in a parallel cell arrangement and the importance of observer design with cell heterogeneity.
Chapter 4.3 provides the local observability analysis for the nonlinear descriptor system.
Chapter 4.4 discusses the state observer design and its convergence analysis. Further, a
coupled electrical-thermal model considering state-dependent model parameters is developed
in Section 4.5, for battery cells connected in parallel. Monotone system based interval
observer preliminaries are given in Section 4.6. The interval observer design for batteries is
pursued in Section 4.7. Finally, the effectiveness of the proposed approaches is illustrated in
Chapter 4.8 via numerical simulations. Conclusions are drawn in Chapter 4.9.

Notation. Throughout this chapter, the symbols Ip×q and 0p×q denote the identity
matrix and the zero matrix with dimension p× q, respectively. The symbols Idn denotes the
identity matrix with dimension n×n. For a matrix A ∈ Rn×n, ‖A‖max = maxi,j=1,2,··· ,n

∣∣Ai,j∣∣
(the elementwise maximum norm). The relation Q � 0 (Q ≺ 0) means that the matrix
Q ∈ Rn×n is positive (negative) definite. The inner product between x, y ∈ Rn is given by

〈x, y〉 =
n∑
i=1

xiyi.

4.1 Parallel Battery Model With Constant Prameters
This section first reviews an equivalent circuit model (ECM) for a single battery cell, which
is then electrically interconnected with other cell models to form a parallel arrangement of
cells.
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Figure 4.1: The schematic of an equivalent circuit model

Single Battery Cell

Consider the ECM for a single battery cell, shown in Fig. 4.1, represented by the following
continuous-time state-space representation,

ẋk(t) = Akxk(t) +Bkuk(t), (4.1)

yk(t) = hk(xk(t)) +Dkuk(t), (4.2)

where xk ∈ R2 is the state vector for k-th battery cell in the parallel connection defined as

xk =
[
zk Vc,k

]>
,

with zk as the SOC and Vc,k as the capacitor voltage of the RC pair for the k-th battery
cell. In (4.1), uk ∈ R is the applied current uk = Ik(t), and state matrix Ak∈ R2×2 and input
matrix Bk∈ R2×1 are given by

Ak =

[
0 0
0 − 1

R2,kCk

]
, Bk =

[
1
Qk
1
Ck

]
, (4.3)

where Qk represents the capacity of cell k, and R1,k, R2,k, Ck are resistances and capacitance
shown in Fig. 4.1. The output equation (4.2) for the k-th cell provides the voltage response
characterized by the nonlinear function,

hk(xk) = OCV (zk) + Vc,k, Dk = R1,k, (4.4)

where yk ∈ R is the battery terminal voltage, function hk : R2 → R consists of the open
circuit voltage as a function of SOC denoted as OCV (zk), voltage across the RC pair Vc,k,
and voltage response due to an ohmic resistance R1,k.

Parallel Arrangement of Battery Cells

For a block of n cells in parallel, in order to reduce sensing effort, we assume only the total
current and voltage for one of the cells are measured. Fig. 4.2 depicts a parallel connection of
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Figure 4.2: Parallel connection of five battery cells. Each battery cell is modeled by an ECM
given in Fig. 4.1.

n = 5 cells. Electrically, Kirchhoff’s voltage law indicates that a parallel connection of cells
constraints terminal voltage to the same value for all cells. Kirchhoff’s current law indicates
that the overall current is equal to the summation of cell local currents. Mathematically,
the following nonlinear algebraic constraints, according to Kirchhoff’s voltage law, need to
be enforced:

OCV (zi) + Vc,i +R1,iIi = OCV (zj) + Vc,j +R1,jIj, ∀i, j ∈ {1, 2, · · · , n}, i 6= j. (4.5)

Similarly, Kirchhoff’s current law poses the following linear algebraic constraint with respect
to cell local currents,

n∑
k=1

Ik(t) = I(t), (4.6)

where I(t) is the total current applied to the parallel battery system. It is worth highlighting
that (4.5) imposes (n− 1) nonlinear algebraic constraints with respect to differential states
and local currents, whereas (4.6) imposes 1 algebraic constraint with respect to local currents.
In this manuscript, it is assumed that all cells have different electrical model parameters. In
addition, when only the total current is measured, the local currents of cells are unknown.
Hence, the system of differential-algebraic equations must be solved such that the algebraic
equations (4.5) and (4.6) are fulfilled for all t. Such methodology is realized by augmenting
the local currents to the differential state vector to form a nonlinear descriptor system [94],
which takes the form

Eẇ(t) = Aw(t) + θ(w(t)), (4.7)
y(t) = Hw(t) + φ(w(t)), (4.8)

where w = [x u]> ∈ R3n with

x =
[
x1 x2 · · · xn

]>
∈ R2n, (4.9)

u =
[
I1 I2 · · · In

]>
∈ Rn, (4.10)

y =
[
y1 y2 · · · yn

]>
∈ Rn. (4.11)
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Equation (4.7) encodes both the system dynamical equations and algebraic equations, and
the matrix E is a singular matrix of the form

E =

[
I2n×2n 02n×n
0n×2n 0n×n

]
∈ R3n×3n, (4.12)

where I2n×2n is an identity matrix of size 2n-by-2n. Matrix A accounts for the linear part of
the system equations with

A =

[
A11 A12

A21 A22

]
∈ R3n×3n, (4.13)

where

A11 = diag
(
A1, A2, · · · , An

)
, A12 = diag

(
B1, B2, · · · , Bn

)
,

A21 =


0 1 S 0 · · · 0
0 1 0 S · · · 0
...

...
...

... . . . ...
0 1 0 0 · · · S
0 0 0 0 · · · 0

 ∈ Rn×2n, S =
[
0 −1

]
,

A22 =


R1,1 −R1,2 0 · · · 0
R1,1 0 −R1,3 · · · 0
...

...
... . . . ...

R1,1 0 0 · · · −R1,n

1 1 1 · · · 1

 ∈ Rn×n. (4.14)

Notice that matrix A22 is full rank, i.e. the linear part of the descriptor model is regular and
impulsive free.

Function θ(w) constitutes the nonlinear portion in the system equations from the voltage
algebraic constraints (4.5):

θ(w) =

[
θx(w)
θu(w)

]
=


02n×1

OCV (z1)−OCV (z2)
...

OCV (z1)−OCV (zn)
−I(t)

 ∈ R3n, (4.15)

where θx ∈ R2n represents nonlinearity in the dynamical equations and corresponds to row 1
through row 2n of θ(w), and θu ∈ Rn is nonlinearity appears in the algebraic equations and
corresponds to row (2n + 1) through row 3n of θ(w). The output (4.8) models the voltage
of each battery cell, with

H = [Hx Hu] , φ(w) =
[
OCV (z1) · · · OCV (zn)

]> (4.16)
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Figure 4.3: Simulation results of two cells in parallel using coupled electrical-thermal dy-
namics with temperature and SOC dependent electrical parameters. In (b)-(c), cells are
initialized at the same SOC, and the total current distributes unevenly due to parameter
heterogeneity. In (d)-(e), the initial cell SOCs are distinct. The total current again dis-
tributes unevenly due to both parameter and initialization heterogeneity.

where Hx corresponds to column 1 through column 2n of matrix H, and Hu corresponds to
column (2n+ 1) through column 3n of matrix H:

Hx = diag(−S,−S, · · · ,−S) ∈ Rn×2n, (4.17)
Hu = diag(R1,1, R1,2, · · · , R1,n) ∈ Rn×n. (4.18)

The model introduced above will be used in the analysis and designs in the subsequent
sections.
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4.2 Motivation
We demonstrate heterogeneity for cells connected in parallel via an open-loop simulation.
Without loss of generality, we study a block configuration of two LiNiMnCoO2/Graphite
(NMC) type cells with 2.8 Ah nominal capacity in parallel. In this embodiment, the cells
have identical SOC-OCV relationship, and the heterogeneity arises from:

• Difference in SOC initialization;

• Difference in electrical parameters;

• Unevenly distributed currents due to parameter variation;

• Difference in temperature due to uneven current distribution;

A transient electric vehicle-like charge/discharge cycle generated from urban dynamometer
driving schedule (UDDS) is applied. Specifically, the total applied current (summation of
local currents) is plotted in Fig. 4.3(a).

Two cases are examined here. In the first case, the cells are initialized at the same SOC,
zk(0) = 0.25 for k ∈ {1, 2}, but they differ in model parameters. Since Cell 2 has larger
resistance, its local current is smaller in magnitude relative to local current of Cell 1, while
the summation of the local currents equals to the total applied current for all t, as shown
in Fig. 4.3(b) and (c). In the second case, illustrated in Fig. 4.3(d) and (e), the cells are
initially different in both SOC initialization (z1(0) at 0.35 and z2(0) at 0.25) and model
parameters. It can be observed that even though the applied total current is small (around
zero) initially, Cell 1 takes large negative current (around -10 A) and Cell 2 positions itself
at a large positive current (around 10 A). This occurs because z1(0) is initialized higher, and
even though the z values for two cells follow a similar trend, they do not synchronize. Since
conventional BMSs do not monitor the local current of each parallel cell, some cells might
be operating outside their safe operating region. Therefore, it will be of significant value to
estimate and monitor the local currents and SOCs caused by cell heterogeneity to ensure
safe battery pack operation.

Additionally, in a battery pack composed of hundreds or thousands of heterogeneous
cells, executing state estimation algorithms based on a highly nonlinear and coupled model
consists of differential-algebraic equations for every single cell in real-time is intractable and
not scalable. This motivates the study on interval observers to increase algorithm scalability
and reduce computation and design complexity

4.3 Observability Analysis
In this section, we mathematically analyze the observability of the nonlinear descriptor
system with the input-output setup, via (i) linearization and (ii) Lie algebra.
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Observability from Linearization

In order to study the observability of the nonlinear descriptor system (4.7)-(4.8), we linearize
the system around an equilibrium point w = w and check the observability conditions for
the linearized system. If the linearized system is observable at w = w, then the nonlinear
system is locally observable. However, the observability conditions arising from linearizing
the nonlinear system can be conservative, and nothing can be concluded for the nonlinear
system if the linearized system is not observable. The linearized model of (4.7)-(4.8) takes
the form

Eẇ(t) = Fw(t) +Bu(t), (4.19)
y(t) = Cw(t), (4.20)

where the state matrix F ∈ R3n×3n and output matrix C ∈ Rn×3n are given by

F = A+
dθ

dw
(w)

∣∣∣∣
w=w

, C = H +
dφ

dw
(w)

∣∣∣∣
w=w

. (4.21)

with matrix A and H provided in (4.13) and (4.16), respectively.
Let us now introduce the definition of complete observability (C-observability) for the

descriptor system (4.19)-(4.20).

Theorem 5 ([94]). The regular descriptor linear system (4.19)-(4.20) is C-observable if and
only if the following two conditions hold:

C.1 rank
{

[E>, C>]>
}

= 3n;

C.2 rank
{

[(sE − F )>, C>]>
}

= 3n, ∀s ∈ C.

Condition C.1 concerns C-observability of the fast (algebraic) subsystem while C.2 in-
volves the slow (dynamic) subsystem. Focusing first on condition C.1, it can be verified by
construction since all cells in a parallel connection have the same voltage and therefore it
is equivalent to measure the voltage of cell i or j, with i 6= j. Looking at condition C.2, it
can be verified if the considered battery cells in parallel are different in terms of any model
parameter among {Q,R1, R2, C, dOCV/dz}. Finally, dOCV/dz 6= 0 is also required in order
to guarantee condition C.2, i.e. if one of the cell’s OCV curves becomes flat, then the observ-
ability of the dynamic linearized subsystem is lost. Notice that the verification of condition
C.2 requires the numerical computation of the generalized eigenvalues of the pair (E,A).

Local Observability from Lie Algebra

To elucidate if less conservative observability conditions exist, we analyze local observability
for the nonlinear system resulting from a reduced descriptor system. That is, we analyze
the system that results from eliminating the algebraic states through substitution. System
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(4.7)-(4.8) can be divided into differential and algebraic states with an explicit input current,
i.e. [

I2n×2n 0
0 0

]
ẇ(t) =

[
A11 A12

A21 A22

]
w(t) +

[
0
θI

]
I(t) +

[
θx(w)

θOCV (w)

]
, (4.22)

y(t) =
[
H1 H2

]
w(t) + φ(w). (4.23)

where θI = [0, · · · ,−1]> ∈ Rn and θOCV (w) = θu(w) − θII(t). Eq. (4.22) can be solved for
the algebraic state, resulting in the following transformation

u = −A−1
22

(
A21x(t) + θII(t) + θOCV (w)

)
(4.24)

where matrix A22 in (4.14) is non-singular. Notice that (4.24) is an explicit solution for
the algebraic state u(t), i.e. the w-dependent functions θOCV (w) and φ(w) are now only
dependent on the dynamic state x(t). With an abuse of notation, these functions are denoted
as θOCV (x) and φ(x) in the remainder of this Chapter. For its part, θx(w) = 02n×1 = θx.

Substituting (4.24) back into the differential part of the state equation (4.22) and the
output equation (4.23) yields the following nonlinear (control affine) reduced model

ẋ(t) = f(x(t)) + g(x(t))I(t), (4.25)
y(t) = h(x(t)), (4.26)

with

f(x) = (A11 − A12A
−1
22 A21)x(t)− A12A

−1
22 θOCV (x) + θx, (4.27)

g(x) = − A12A
−1
22 θI , (4.28)

h(x) = (H1 −H2A
−1
22 A21)x(t)−H2A

−1
22 θOCV (x) + φ(x), (4.29)

where the output y(t) = y(t)−H2A
−1
22 θII(t).

Let us now introduce the notion of local observability [121] for system (4.25)-(4.26).

Theorem 6. The system (4.25)-(4.26) is locally observable around x0 ∈ X if there exists n
linearly independent row vectors in the set

(dLzsLzs−1 . . . Lz1hj)(x0)

where Lzshj are Lie derivatives of hj with respect to zs and dhj is the gradient of hj to be
defined below, s ≥ 0 and zi ∈ {f, g}, with j = 1, . . . , p (p is the number of outputs) and
i = 1, . . . , s (for s = 0, the set comprises dhj(x0)).

In Theorem 6, the gradient of hj and Lie derivatives of hj with respect to function f are
given by

dhj =

[
∂hj
∂x1

∂hj
∂x2

· · · ∂hj
∂xn

]
,

Lfhj = 〈dhj, f〉, (4.30)
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and similarly for function g. The 0th order Lie derivative L0
fhj is defined as hj whereas the

2nd order Lie derivative takes the form L2
fhj = LfLfhj.

According to Theorem 6, the observability rank condition can be derived. Define the
observability matrix as

O(x) =



dh(x)
dLfh(x)
dLgh(x)
dL2

fh(x)
dL2

gh(x)
...


. (4.31)

Then the model (4.25)-(4.26) is locally observable around x0 if rank(O) = 2n. Note first
that the observability matrix O is not bounded from above. Secondly, this matrix depends
on states xk = [zk, Vc,k]

>, functions OCVk(zk) as well as parameters θk = [R1,k, τk, Ck, Qk]
>,

where τk = −1/(R2,kCk).
To keep the observability analysis tractable, we consider two cells in parallel, i.e. k ∈

{1, 2}. From the observability rank condition, we conclude: (i) the system is locally observ-
able at x0 if cells have different parameter values θk, and (ii) observability conditions are not
fulfilled if the cells are completely equivalent, i.e. all parameter values are uniform across
the cells. In the second case, the cells are presumably indistinguishable and a single cell
model can be utilized to represent the parallel connection. In between these two extremes,
the observability conditions cannot be verified if any of the following conditions hold:

1. the parameters τ1 = τ2 and R1,1Q1 = R1,2Q2 and R1,1C1 = R1,2C2;

2. the functions OCV (z1) = OCV (z2) and dOCV (z1)/dz1 = dOCV (z2)/dz2;

3. at least one of the l-th OCV derivatives satisfy dlOCV (zj)/dz
l
j = 0, for the j-th cell

and l = 1, . . . ,∞.

Note that a classical approach to study observability of a single ECM is to linearize the
model, as done in e.g. [122], for the case of two battery cells in parallel. By doing so,
the ECM is observable if dOCV/dz 6= 0. This condition on the first OCV derivative is
conservative as it was found in [123] through the local observability analysis of a single cell.
This more detailed analysis showed that an OCV derivative must be different than zero to
guarantee local observability, but it does not need to be the first derivative. This fact was
also verified above with a similar analysis for two ECMs in parallel.

A similar observability analysis as the one proposed here was also carried out in [86] con-
sidering cells in series. However, the observability matrix for a series string differs from that
of a parallel arrangement. Namely, in the series arrangement, each cell’s parameters/states
appear in a column ofO. This is not the case for a parallel topology, where parameters/states
of the cells are scattered all over the different entries in O. Therefore, parameters/states of
one cell influence the local observability of the neighbouring cell in a parallel arrangement.



CHAPTER 4. STATE OF CHARGE ESTIMATION FOR BATTERY PACKS WITH
HETEROGENEOUS CELLS 66

When compared to the observability analysis of Theorem 5 based on the linearized de-
scriptor system, the local observability analysis of the nonlinear system using Theorem 6 is
less conservative [121] and more informative. The latter aspect relies on the fact that the
observability matrix O explicitly depends on model parameters, and it can be analytically
obtained through e.g. symbolic software.

4.4 Design of State Observers
The following observer with linear output error injection is proposed for the plant model
(4.7)-(4.8)

E ˙̂w = Aŵ + θ(ŵ) +K(y −Hŵ − φ(ŵ)), (4.32)
ŷ = Hŵ + φ(ŵ), (4.33)

where K ∈ R3n is the observer gain vector to be designed and ŵ is the estimation for w. The
following theorem based on [101, 102] establishes the convergence results of the proposed
observer.

Theorem 7. Consider the plant model dynamics (4.7)-(4.8), and suppose the matrix
[
A22 Hu

]>
has rank n. Let

G = (A−KH) =

[
G11 G12

G21 G22

]
, (4.34)

and define the matrix
G̃ = (G11 −G12G

−1
22 G21). (4.35)

Suppose the function

f(w) = θx(w)−G12G
−1
22 θu(w) + (G12G

−1
22 Ku −Kx)φ(w), (4.36)

is Lipschitz continuous with respect to x, i.e.,

‖f(x1, u)− f(x2, u)‖ ≤ γ‖x1 − x2‖, (4.37)

where γ ∈ R is the Lipschitz constant. If the observer gain K is chosen to ensure that G̃ is
stable, and

min
ω∈R+

λmin(A−KH − jωI3n×3n) > γ, (4.38)

then the zero equilibrium of the dynamics of estimation error e(t) = w(t)− ŵ(t) given by

Eė = Ge+ θ(w)− θ(ŵ)−K
[
φ(w)− φ(ŵ)

]
(4.39)

is asymptotically convergent to zero.
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Proof. Let the state estimation error e =
[
ex eu

]>
, with ex = x − x̂ being the estimation

error for the differential states and eu = u− û the estimation error for the algebraic states.
Then (4.39) can be written as[

I2n×2n 0
0 0

][
ėx
ėu

]
=

[
G11 G12

G21 G22

][
ex
eu

]
+

[
θx(w)− θx(ŵ)
θu(w)− θu(ŵ)

]
−

[
Kx

Ku

]
[φ(w)− φ(ŵ)]. (4.40)

We highlight that G22 can be non-singular (i.e., invertible) if the linear part of (4.7) is impulse

observable [102], i.e., the matrix
[
A22 Hu

]>
has rank n. Then the estimation error system

(4.40) is equivalently described by

ėx =
(
G11 −G12G

−1
22 G21

)
ex +

[
θx(w)−G12G

−1
22 θu(w)

]
−
[
θx(ŵ)−G12G

−1
22 θu(ŵ)

]
+
(
G12G

−1
22 Ku −Kx

)
φ(w)−

(
G12G

−1
22 Ku −Kx

)
φ(ŵ)

= G̃ex + f(w)− f(ŵ), (4.41)

along with the algebraic equation

eu =−G−1
22 G21ex −G−1

22

[
θu(w)− θu(ŵ)

]
+G−1

22 Ku

[
φ(w)− φ(ŵ)

]
. (4.42)

Consider the following Lyapunov function for the error system (4.41), corresponding to
the differential states ex,

W (t) =
1

2
e>x Pex. (4.43)

The derivative of the Lyapunov function W (t) along the trajectory of ex is computed by

Ẇ =
1

2
ė>x Pex +

1

2
e>x P ėx

=
1

2
e>x (G̃>P + PG̃)ex + e>x P

[
f(w)− f(ŵ)

]
≤ 1

2
e>x (G̃>P + PG̃)ex + ‖Pex‖

[
‖f(w)− f(ŵ)‖

]
≤ 1

2
e>x (G̃>P + PG̃)ex + γ‖Pex‖‖ex‖

≤ 1

2
e>x

[
G̃>P + PG̃+ γ2PP + I

]
ex, (4.44)

where the inequality
2γ‖Pex‖‖ex‖ ≤ γ2e>x PPex + e>x ex (4.45)

has been utilized. According to Theorem 2 in [101], the estimation error ex is asymptotically
stable if the conditions of Theorem 7 hold. Under this scenario, when t → ∞, [θu(w) −
θu(ŵ)] → 0n×1, and [φ(w) − φ(ŵ)] → 0. Hence, the estimation error eu for the algebraic
states also converge to zero asymptotically. �
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In the subsequent sections, we incorporate battery thermal dynamics and SOC and tem-
perature dependent electrical parameters for a more realistic representation of battery packs.
In this scenario, estimation of the states for each individual cell in a parallel connection be-
comes intractable to design and execute. This fact stimulates the interval observer design,
which is detailed in Chapter 4.6 and 4.7.

4.5 Parallel Battery Model With State-Dependent
Parameters

This section reviews an equivalent-circuit model coupled with a two-state thermal model for
a single battery cell, which is then electrically and thermally interconnected with other cell
models to form a parallel arrangement of cells.

Single Battery Cell

The ECM for a single cell k, consisting of an open circuit voltage (OCV) in series connection
with an ohmic resistance and an R− C pair in parallel, is described by

żk(t) =
1

Qk

Ik(t), (4.46)

V̇c,k(t) = − 1

R2,k(zk, Tk)Ck(zk, Tk)
Vc,k(t) +

1

Ck(zk, Tk)
Ik(t), (4.47)

Vk(t) = OCV (zk(t)) + Vc,k(t) +R1,k(zk, Tk)Ik(t), (4.48)

where zk(t) represents the SOC for the k-th cell, and Vc,k(t) denotes the voltage across
the R2,k − Ck pair. Symbol R1,k is the ohmic resistance, and Tk is the cell temperature
given by (4.52). The electrical model parameters, namely R1,k, R2,k, and Ck, are dependent
on cell local SOC and temperature, and such dependence can be explicitly characterized
via an offline experimental procedure for a cell of interest (see [11] for an example for a
LiFePO4/Graphite cell). The output equation (4.48) for the k-th cell provides the voltage
response characterized by a nonlinear open circuit voltage (OCV) as a function of SOC,
voltage from the R-C pair, and voltage associated with an ohmic resistance R1,k. We specify
positive current for charging and negative current for discharging.

A two-state thermal model for a cylindrical cell describes the dynamics of core and surface
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temperatures [11]:

CcṪc,k(t) = Q̇k(t) +
Ts,k(t)− Tc,k(t)

Rc

, (4.49)

CsṪs,k(t) =
Tf,k(t)− Ts,k(t)

Ru

− Ts,k(t)− Tc,k(t)
Rc

, (4.50)

Q̇k(t) =
∣∣∣Ik(t) [Vk(t)−OCV (zk(t))

]∣∣∣ , (4.51)

Tk(t) =
1

2

(
Ts,k(t) + Tc,k(t)

)
, (4.52)

where Tc,k and Ts,k are the core and surface temperatures for the k-th cell. Symbols Rc,
Ru, Cc, and Cs represent heat conduction resistance between core and surface, convection
resistance between ambient and surface, core heat capacity, and surface heat capacity, re-
spectively. Symbol Q̇k(t) ≥ 0 is the internal heat generation from resistive dissipation. Note
that the electrical model (4.46)-(4.48) and the thermal model (4.49)-(4.52) are coupled via
Q̇k(t) in a nonlinear fashion.

The measured quantities for the coupled electrical-thermal model (4.46)-(4.52) are the
cell voltage and surface temperature:

yk(t) =
[
Vk(t), Ts,k(t)

]
. (4.53)

Parallel Arrangement of Battery Cells

As described in Chapter 4.1, for a block of n cells in parallel, only the voltage and total
current for the block are measured. Electrically, Kirchhoff’s voltage law and current must
be obeyed. See Chapter 4.1 for more details.

On the other hand, when cells are packed. they are thermally coupled through coolant
flow and heat exchange between adjacent cells [124]. For cell k,

CcṪc,k(t) = Q̇k(t) +
Ts,k(t)− Tc,k(t)

Rc

, (4.54)

CsṪs,k(t) =
Tf,k(t)− Ts,k(t)

Ru

− Ts,k(t)− Tc,k(t)
Rc

+
Ts,k−1(t) + Ts,k+1(t)− 2Ts,k(t)

Rcc

, (4.55)

Tf,k(t) = Tf,k−1(t) +
Ts,k−1(t)− Tf,k−1(t)

RuCf
, (4.56)

Q̇k(t) =
∣∣∣Ik(t) [yk(t)−OCV (zk(t))

]∣∣∣ , (4.57)

Tk(t) =
1

2
(Ts,k(t) + Tc,k(t)), (4.58)

where Tf,k is the coolant flow temperature at the k-th cell, and Rcc denotes heat conduction
resistance between adjacent battery cell surfaces. Heat conduction between battery cells is
driven by the temperature difference between cell surfaces, and this process is described by
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the third term on the right hand side of (4.55). Inside the block of n cells in parallel, the
coolant flows through individual cells, and the coolant flow temperature at the k-th cell is
determined by the flow heat balance of the previous cell, as illustrated in (4.56). Suppose
that all the battery cells have the same thermal parameters, namely Rc, Ru, Cc, and Cs.

4.6 Interval Observer Preliminaries
The development of finite-dimensional interval observers based on monotone system theory
closely follows the work in [117, 118, 119]. In this section, the preliminaries is reviewed.

Consider the following nonlinear model dynamics [119]:

ẋ = f(x) +B(θ(t))u+ δf(x, θ(t)), (4.59)
y = h(x) + δh(θ(t))u, (4.60)

where x ∈ Rn is the state vector, and u ∈ R and y ∈ R are the system input and output,
respectively. The considered system is single-input-single-output (SISO). The functions f(x)
and h(x) are deterministic and smooth, and δf is uncertain and assumed to be locally
Lipschitz continuous with respect to x. It is noted that the nominal terms f(x) and h(x) can
be freely assigned by the designer via the modification of δf and δh. The initial conditions
for the states belong to a compact set x0 ∈ [x0, x0], where x0 and x0 are given. Suppose
the uncertain parameters θ(t) belong to a compact set Θ ⊂ Rp, where p is the number of
parameters. The values of the parameter vector θ(t) are not available for measurement,
and only the set of admissible values Θ is known. One can obtain a nominal system of
(4.59)-(4.60) by setting B = 0, δf = 0, and δh = 0:

ẋ = f(x), (4.61)
y = h(x). (4.62)

According to [117, 31], a time-varying nonlinear and invertible state transformation, based
on the Lie derivatives, yields a partial-linear dynamics in the new state coordinate.

Denote the gradient of a scalar field h by dh, and the Lie derivative of h along a vector
field f is given by the inner product Lfh(x) = 〈dh(x), f(x)〉. High-order Lie derivatives are
computed with the iteration Lkfh(x) = Lf (L

k−1
f h(x)) where L0

fh(x) = h(x). The nominal
system (4.61)-(4.62) is locally observable around x = xe if the matrix

O(xe) =


dh(xe)

dLfh(xe)
...

dLn−1
f h(xe)

 (4.63)
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has full rank. Under this scenario, the vectors h(x), Lfh(x), · · · , Ln−1
f h(x) form the new

coordinate for the states in a neighborhood of x defined by

Φ(x) =


φ1(x)
φ2(x)

...
φn(x)

 =


h(x)
Lfh(x)

...
Ln−1
f h(x)

 , (4.64)

and the transformation map ξ = Φx is a local diffeomorphism. The coordinate transforma-
tion obtained from the locally observable nominal system (4.61)-(4.62) is then utilized to
transform the original uncertain system (4.59)-(4.60) into a partial-linear expression

ξ̇ = A0ξ + δA(θ)ξ + b(ξ, θ), (4.65)
y = Hξ + v(θ, t), (4.66)

where v(θ, t) = δh(θ)u. The matrix A0 ∈ Rn is deterministic and the matrix δA(θ) ∈ Rn

represents the uncertain part inherited from the uncertain nonlinear system (4.59)-(4.60).
Symbol b(ξ, θ) indicates a lumped uncertain nonlinear function. Since θ ∈ Θ, the following
assumptions will be used.

Assumption 2. δA ≤ δA(θ) ≤ δA, b(t) ≤ b(ξ, θ) ≤ b(t),
∣∣v(θ, t)

∣∣ ≤ V (t), for all θ ∈ Θ and
t ≥ 0.

Definition 1 ([118]). For a matrix A ∈ Rn×n, define A+ = max{0,A} and A− = A+ −A.
For a vector ξ ∈ Rn, define ξ+ = max{0, ξ} and ξ− = ξ+ − ξ.

According to Assumption 2 and Definition 1, the following lemma is then realized.

Lemma 8 ([118]). Let δA ≤ δA(θ) ≤ δA for some δA, δA, δA ∈ Rn×n, and ξ ≤ ξ ≤ ξ for
ξ, ξ, ξ ∈ Rn, then

δA+ξ+ − δA+
ξ− − δA−ξ+

+ δA
−
ξ
− ≤ δA(θ)ξ ≤ δA

+
ξ

+ − δA+ξ
− − δA−ξ+ + δA−ξ−.

(4.67)

For a vector L ∈ Rn, system (4.65)-(4.66) can be rewritten as

ξ̇ = A0ξ + δA(θ)ξ + b(ξ, θ) + L(y −Hξ − v(θ, t))

= (A0 − LH)ξ + δA(θ)ξ + b(ξ, θ) + L(y − v(θ, t)), (4.68)

The following interval observer structure is proposed [118],

ξ̇ = (A0 − LH)ξ + (δA+ξ+ − δA+
ξ− − δA−ξ+

+ δA
−
ξ
−

) + Ly −|L|V (t) + b(t), (4.69)

ξ̇ = (A0 − LH)ξ + (δA
+
ξ

+ − δA+ξ
− − δA−ξ+ + δA−ξ−) + Ly +

∣∣∣L∣∣∣V (t) + b(t) (4.70)

The following theorem provides a sufficient condition for stability and enclosure of the
interval observer design.
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Theorem 9 ([118]). Let Assumption 2 be satisfied and the matrices (A0−LH) and (A0−LH)
are Metzler. Then ξ(t) ≤ ξ(t) ≤ ξ(t), ∀ t ≥ 0 is satisfied provided that ξ

0
≤ ξ0 ≤ ξ0.

Furthermore, if there exists P ∈ R2n×2n, P = P> � 0 and γ > 0 such that the following
Riccati matrix inequality is verified

G>P + PG+ 2γ−2P 2 + γ2η2Id2n + Z>Z ≺ 0, (4.71)

where η = 2n‖δA− δA‖max, Z ∈ Rs×2n, 0 < s ≤ 2n and

G =

[
A0 − LH + δA+ −δA−

−δA− A0 − LH + δA
+

]
, (4.72)

then ξ, ξ ∈ Ln∞. Moreover,

x = inf
(
Φ−1(η)

)
, x = sup

(
Φ−1(η)

)
, (4.73)

where η ∈
[
ξ, ξ
]
.

The proof for Theorem 9 is omitted here. Interested readers may refer to [118] Theorem
7 for more details. This theory is translated to battery pack state estimation next.

4.7 Interval Observer for Batteries
In this section, the interval observer design introduced in Section 4.6 is applied to the Li-ion
battery state estimation problem. Two scenarios are examined – (i) a single battery cell
with temperature and SOC-dependent electrical parameters; (ii) electrically and thermally
coupled cells in parallel, with SOC and temperature-dependent electrical parameters.

Single Battery Cell

It is hereby assumed that the input current, terminal voltage and surface temperature of the
k-th single cell are experimentally measured. Ideally, a deterministic state observer could be
proposed for the state estimation of the coupled nonlinear electrical-thermal system (4.46)-
(4.53). However, this approach is intractable due to the system nonlinearities like electrical-
thermal coupling, state-dependent parameters and voltage output function. To tackle this
issue, the electrical parameters’ dependence on the internal states is suppressed, and we treat
these parameters as uncertain. Specifically, θ ∈ Θ ⊂ R4, where θ =

[
R1,k R2,k Ck Qk

]>.
The objective is to design a robust interval observer, using the measurements, to determine
the set of admissible values for cell SOC at each time instant, when the plant model is subject
to bounded uncertainties in the parameters and states’ initial conditions.

Let τk = 1/(R2,kCk), and consider a known nominal value τk,0 such that τk = τk,0 + δτk,
where τk,0 is a deterministic scalar and δτk represents the uncertain component. The single
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cell electrical system (4.46)-(4.48) can thus be formulated in terms of uncertain system
(4.59)-(4.60), with

x =

[
x1

x2

]
=

[
zk
Vc,k

]
, f(x) =

[
0

−τk,0x2

]
, δf(x, θ) =

[
0

−δτkx2

]
, B(θ) =

[
1
Qk
1
Ck

]
, u = Ik(t),

h(x) = OCV (x1) + x2, δh(θ) = R1,k. (4.74)

It is assumed that the following upper and lower bounds are imposed on the uncertain
parameters:

R1,k ∈
[
R1,k, R1,k

]
, δτk ∈

[
δτ , δτ

]
, Ck ∈

[
C,C

]
, Qk ∈

[
Q,Q

]
, (4.75)

so that Θ is a four-dimensional polytope. These bounds might be found in practice through
parameter identification of the weakest and strongest cells in the pack. The local observability
matrix for the nominal system is then given by

O(x) =

[
dh(x)

dLfh(x)

]
=

[
dOCV

dx1
(x1) 1

0 −τk,0

]
, (4.76)

whose rank is 2 if and only if the first derivative of the OCV function with respect to SOC
is non-zero around an equilibrium point x1 = x1,e and τk,0 6= 0, i.e.

dOCV

dx1

(x1,e) 6= 0, τk,0 6= 0, (4.77)

which aligns with existing results on local observability for battery models [125]. Hence, the
coordinate transformation based on Lie algebra

Φ(x) =

[
ξ1(x)
ξ2(x)

]
=

[
OCV (x1) + x2

−τk,0x2

]
(4.78)

transforms the system (4.59), (4.60), with (4.74) to the nonlinear parameter-varying system
(4.65)-(4.66), with

A0 =

[
0 1
0 −τk,0

]
, δA(θ) =

[
0 δτk

τk,0

0 −δτk

]
, H =

[
1 0

]
, b(ξ, θ) =

[
1
Qk
ϕ
(
ξ1 + 1

τk,0
ξ2

)
+ 1

Ck

− τk,0
Ck

]
I,

(4.79)

where
ϕ(·) =

dOCV

dx

(
OCV −1(·)

)
. (4.80)

An interval observer can be designed based on (4.69)-(4.70) and Theorem 9. The bounding
functions δA and δA for δA can be readily obtained by applying the parameter bounds. The
bounding functions b(t) and b(t) are carefully evaluated according to the direction of current
I(t) for all t.
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Battery Cells in Parallel

As opposed to having one interval observer for a single cell in the preceding discussion,
the proposed design is generalized for a cluster of battery cells in parallel. One practical
advantage for using an interval observer for a group of cells is its scalabilty. An interval
observer, composed of only two dynamical systems estimating upper and lower bounds that
all trajectories of unknown states live in, significantly reduces computation and design effort.
Due to cell heterogeneity, an interval observer constructs two trajectories that upper and
lower bound all SOC trajectories, without dealing with the differential-algebraic nature of
the circuit dynamics.

The interval observer design for parallel cells inherits the essence of the design for single
cells. The only difference is to compute a single set of bounding functions that bound
uncertainties from all cell in the parallel configuration.

Remark 14. A crucial step in designing interval observers for cells in parallel is to find
the bounding functions for the uncertainties. Namely, the bounding functions are closely
associated with the instantaneous bounds on the local currents. Unlike the single cell scenario,
the local currents of parallel cells are not available for measurement. In this work, it is
assumed that appropriate bounds on the local currents are given.

Remark 15. The width/tightness of the estimated intervals is dependent on the magnitude
of model uncertainties, and our knowledge of the uncertainties when defining the bounding
functions.

4.8 Simulation Studies
In this section, we illustrate the performance of i) the observer for the nonlinear descriptor
system, and ii) the interval observer.

Observer for Parallel Cells via A Descriptor System

A simulation study using a battery block with n = 2 NMC cells connected in parallel is
conducted to evaluate the performance of the proposed estimation scheme. Without loss
of generality, a pair of cells is preferred over a larger block to facilitate the presentation
of results. Consider the situation in which the cells may differ in their initial SOCs and
model parameters, but subject to the same SOC-OCV relationship. The considered setup
guarantees local observability based on the analysis in Chapter 4.3.

The model parameters and initial SOCs are shown in Table 4.1. Under these circum-
stances, the state vector is given by

w =
[
z1 Vc,1 z2 Vc,2 I1 I2

]>
∈ R6. (4.81)
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Figure 4.4: Left: The estimation performance for SOCs of a two-cell parallel configuration.
Right: The estimation performance for local currents of a two-cell parallel configuration.
The results verify the asymptotic convergence.

Table 4.1: Model Parameters in Simulation Study

Cell 1 Cell 2 Units
R1,k 0.0025 0.0015 [Ω]
R2,k 0.004 0.0035 [Ω]
Ck 1500 2000 [F]
Qk 2.3 2.0 [Ah]
z0 0.4 0.5 [–]

In this simulation study, the total applied current comes from a UDDS drive cycle provided
in Fig. 4.3(a) with appropriate scaling. The observer in (4.32)-(4.33) is used to estimate
the individual cell SOCs and the local currents by using only the voltage and overall current
measurements. The initial SOC errors between the plant model and the observer are 15%
and 10%, respectively. The observer gain is chosen to be L = [−30 − 30 − 20 2 4 − 20]>,
which satisfies the conditions of Theorem 7.

Figs. 4.4 demonstrates the estimation performance, where the solid blue curves are the
true states (differential and algebraic) from the plant model and the dashed red curves are
the estimated ones. The left plots in Fig. 4.4 displays the estimates for the differential
states (SOCs), whereas the right ones portray the estimates for the algebraic states (local
currents). The state observer is able to recover the true signals quickly (in approximately
100 seconds) from large initial estimation errors. These results confirm the asymptotic zero
error convergence conclusions in Theorem 7.
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Interval Observer for Parallel Cells

In order to validate the interval observer design, numerical studies are carried out on
NMC battery cells modeled with a lumped electrical-thermal model (4.46)-(4.6). The state-
dependent electrical model parameters are taken from [11]. The total current fed to the
battery is a UDDS driving cycle. The interval observer from Theorem 9 is used to estimate
the bounds on the internal states from only total current and voltage measurements. Two
scenarios are considered. First, the state estimation of a single battery cell is tested, which
accounts for uncertainties linked to state dependent parameters. Then, the same observer
is used to estimate the state interval for a parallel arrangement of five cells, which involves
uncertainty due to cell heterogeneity as well as SOC and temperature dependent parameters.

Interval Observer for Single Battery Cell

Let us first consider a single cell and design the interval observer according to Section 4.7.
The initial value for SOC in the plant model is 30%, and the initial values on the interval
observers (lower and upper bounds) are 20% and 40%. The observer gains are chosen to
be L = [10 − 0.1]> and L = [10 − 0.1]>, which ensure that (A0 − LH) and (A0 − LH)
are Metzler and Hurwitz. The black signal in Fig. 4.5(a) shows the applied current. The
solid black curve in Fig. 4.5(b) is the plant model simulated SOC, and the shaded green
region represents feasible SOC values between the estimated intervals. From these plots, the
interval observer recovers quickly (less than 20 s) from large initial errors and always enclose
the true SOC of the battery. These results confirm the stability and inclusion properties of
the designed interval observer stated in Theorem 9, given uncertain initial conditions and
state-dependent parameters.

Interval Observer for Battery Cells in Parallel

Let us now consider a parallel arrangement of five cells, which differ in their initial SOCs
and model parameters. The interval observer is designed according to 4.7. The initial SOCs
are 20%, 30%, 34%, 37%, and 49%, and the initial bounds (interval observer) on SOCs are
15% and 54%. The applied total current is given by the orange signal in Fig. 4.5(a). In
Fig. 4.5(c), the solid curves represent the true SOC of each cell, and the shaded green area
highlights the feasible SOC values for all cells between the estimated intervals. These plots
show that the interval observer is close to the minimum and maximum states during its
temporal evolution. It also envelops the state distribution across the five cells. Hence, the
results show that cell heterogeneity can be included as unknown but bounded uncertainties,
which is exploited to develop an interval observer that provides reliable bound estimates for
the states. Moreover, stability and inclusion of the observer are guaranteed by Theorem 9.
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Figure 4.5: The interval observer bounds enclose the true states of charge for (b) a single
cell and (c) five cells in parallel.

4.9 Conclusion
The state estimation problem for battery cells in parallel has been overlooked due to multi-
ple unrealistic assumptions. We demonstrate heterogeneity between cells when connected in
parallel. A nonlinear descriptor system has been proposed to model parallel arrangements
of lithium-ion battery cells, and a state observer for such systems has been developed. This
modeling framework fits naturally with battery applications, given the interconnections aris-
ing from Kirchhoff’s laws. The design procedure used to build the state observer from this
model avoids linearization or canonical transformations, and it only relies on the assumption
of Lipschitz nonlinearities. The resulting state observer benefits from considering the cell
currents as algebraic states to be simultaneously estimated with the differential states.

Secondly, an interval observer based on an equivalent circuit-thermal model for lithium-
ion batteries has been presented in this paper. The SOC-temperature-dependent parameters
are considered as unknown but bounded uncertainties. Then, a parallel arrangement of five
cells is used for observer design, where cell heterogeneity is now accounted for through the
uncertainty bounding functions. Given that the nominal battery model is locally observable,
the original uncertain model can be transformed into a partial-linear form, which enables in-
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terval estimation based on monotone systems. By properly choosing the observer gains, the
state matrix of the estimation error is Hurwitz and Metzler, which guarantees stability and
inclusion of the state bound estimates. A major feature of the proposed estimation approach
is its scalability, since the number of states of interval observers is independent of the number
of cells in a pack. Simulation showcases the effectiveness of i) the descriptor system based cell
state (differential and algebraic) estimator, and ii) the interval observer design. Future work
includes developing a systematic methodology for computing the bounding functions asso-
ciated with unknown local currents, and potential extended studies of control/stabilization
problems utilizing the estimated state intervals [126, 127].
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Chapter 5

Battery Temperature Estimation with an
Uncertain Semilinear PDE Model

As batteries insert themselves more and more into our society, their operation is becom-
ing increasingly safety critical, meaning that any battery failure can have an increasingly
important impact upon systems of increasing size. One of the existing challenges that sub-
stantially impacts the battery safety and performance is its thermal behavior. In particular,
many cases of thermal runaways leading to fire and explosion of Li-ion battery have been
previously reported in [9]. As well as safety issues, thermal effects have also been shown to
be key factors in the rate of battery degradation [10, 128]. Hence, in order to improve bat-
tery safety and longevity, it is crucial to develop thermal management strategies to alleviate
the effects of temperature and prevent the drastic failure of the battery from happening. In
light of the above concerns, this chapter proposes a model-based estimation algorithm for
the battery temperature based on a high-fidelity nonlinear distributed parameter thermal
model. As well as addressing this important application, the observer developed in this work
is one of the first designed for a nonlinear parabolic partial differential equation (PDE) state
estimation problem without performing linearization and spatial discretization prior to the
observer design.

Modeling of battery thermal performance has been extensively studied in the literature
[129]. Comprehensive high-dimensional thermal models, e.g., [130, 131, 132], provide an ac-
curate and thorough understanding of the cell temperature behavior from an electrochemical
point of view. Nevertheless, since these high-dimensional models are too complicated and de-
mand a great amount of computational power, their application to real-time estimation and
control in a battery management system (BMS) will not be feasible for applications outside
of industrial/stationary storage [133]. To balance physical relevance and model structural
simplicity, reduced-order PDE thermal models have been proposed [134, 135, 136]. A few
other finite-dimensional approaches for battery thermal modeling stand out, and one such
model is a two-state thermal model that predicts the surface and core temperature of a
cylindrical battery cell [27]. A lumped thermal model has also been proposed by Smith et al.
in [137]. Note that battery thermal behavior exhibits certain nonlinearity that are originated
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from ressistive heat generation, reversible entropic heat, and enthalpy of reactions, etc.
Catastrophic thermal failures stimulate significant work on the development of next-

generation thermal estimation schemes. Previous studies on battery state estimation can be
categorized into two main groups, i.e., the equivalent circuit model-based estimation [138,
139, 47, 18], and the electrochemical model-based estimation [45, 43, 140, 141, 68]. The
existing BMS generally uses a thermal sensor attached to the surface of the cell and em-
ploy the online measured surface temperature for estimation. In [20], an adaptive observer
for battery core temperature estimation was designed for a two-state thermal model with
surface measurements. As well as estimation, studies on thermal fault diagnosis, e.g., the
detection and isolation of the faults that influence the surface and core temperature in the
two-state thermal model [133] and a PDE observer based fault detection [142], have also
demonstrated benefits. A dual Kalman filter based temperature distribution estimation for
cylindrical batteries under unknown cooling, based on a reduced radially distributed one-
dimensional thermal modeling, was proposed in [143]. The work in [144] introduces an
internal temperature distribution estimation in cylindrical cells by combining measured elec-
trochemical impedance and surface temperature, relying on a combined thermal-impedance
model. However, these methodologies suffer from one or more of the following drawbacks:
(i) Early lumping approaches, where the thermal PDE models are discretized and approxi-
mated by systems of ordinary differential equations (ODE) a priori, are used to design the
observers. This leads to the loss of PDE model accuracy and the state estimates from the
discretized systems may not always converge to the true states. (ii) Only a small portion of
these works provide theoretically certified convergence properties for the proposed estimation
scheme. (iii) Finally, most of these works do not consider the inherent nonlinearity of battery
thermal model. In this chapter, we attempt to address these drawbacks by proposing an es-
timation scheme that designs an observer directly on nonlinear battery PDE thermal model,
i.e., using late lumping, and provide theoretical guarantee of estimation error convergence.

From a theoretical viewpoint, methods for control/estimation of linear parabolic PDEs
based on the late-lumping approach have been well studied. The stabilization of unstable
heat equations using boundary observation was addressed in [145] by means of an auxiliary
functional observer. Smyshlyaev et al. applied the backstepping method to controller design
based on a model with space-dependent diffusivity or time-dependent reactivity [146]. The
authors in [66] presented an adaptive boundary observer for parabolic PDEs with domain and
boundary parameter uncertainties, with the PDE being linear in the states and parameters.
The techniques introduced in [65] provides a thorough analysis of the stability of adaptive
control for linear parabolic PDEs with spatially varying coefficients. Nonetheless, extending
these observer designs from linear to nonlinear PDE system require a more intricate analysis,
with only a few designs having been developed so far. For instance, an extended Luenberger-
type observer was proposed for a class of semilinear parabolic PDEs in [64]. The authors
therein verified the exponential stability of the linearized observer error dynamics, in which
the design extends the well-known backstepping method [147] to include the Volterra trans-
formation with a time-varying kernel. A series of studies by Vazquez et al. discussed the
control design for a 1-D parabolic PDE with Volterra nonlinearities [148, 149]. Boundary
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controller have also been designed towards Burgers’ equation [150]. Additionally, designs
based upon the plant models with modeling and parametric uncertainties, have also been
explored. Cheng considers the stabilization of the heat equation with parameter variation
and boundary uncertainties by designing a sliding mode controller [151]. Parabolic PDEs
that are subject to in-domain and boundary parameter uncertainties are examined in [66].
However, none of the aforementioned works discuss observer design for nonlinear parabolic
PDE systems simultaneously subjected to Lipschitz nonlinearity and model uncertainties.

In this context, we advance the aforementioned work by proposing a PDE-based observer
for a one-dimensional distributed parameter thermal model subject to in-domain and output
uncertainties, with the measurements from the cell surface. The thermal behavior for a Li-ion
battery cell can be described by a semilinear parabolic PDE with Robin boundary condition,
provided mild assumption on the nonlinear in-domain heat generation. The design is unique,
since it exploits fundamental thermal dynamic properties. In addition, we rigorously prove
the stability of the estimation error dynamics.

The remainder of the chapter is organized as follows. Chapter 5.1 formulates the one-
dimensional semilinear thermal PDE model with nonlinear Lipschitz continuous heat gener-
ation. Chapter 5.2 presents the state estimation scheme based on the aforementioned model
without the in-domain and output uncertainties, and the corresponding stability analysis of
the estimation error dynamics. Chapter 5.3 proposes the strategies for observer gain selec-
tion. Chapter 5.4 develops a robust state estimation for the plant model with in-domain and
output uncertainties. The performance of the observers is demonstrated via simulations in
Chapter 5.5. The conclusions and future works are discussed in Chapter 5.6.

Notation. Throughout this chapter, T (x, t) denotes the plant’s state variable, which
depends on nondimensionalized space x and time t. The x and t subscripts represent partial
derivatives with respect to the notated variable: ut = ∂u/∂t, ux = ∂u/∂x, and uxx =
∂2u/∂x2. The dot symbol denotes derivative with respect to time t, e.g. ν̇ = dν/dt. The
spatial L2 norm is defined as

∥∥T (·, t)
∥∥ =

√∫ 1

0

T 2(x, t)dx.

5.1 Distributed Parameter Thermal Model
This section presents the development of a one-dimensional nonlinear PDE thermal model
for batteries, oriented towards state estimation design.

One-dimensional Thermal Model

An unsteady non-homogeneous heat equation can be employed to describe the temperature
distribution over the three-dimensional region for a prismatic battery cell shown in Fig. 5.1



CHAPTER 5. BATTERY TEMPERATURE ESTIMATION WITH AN UNCERTAIN
SEMILINEAR PDE MODEL 82

x

z

y

Figure 5.1: A schematic of a prismatic cell. The length in z dimension is typically much
smaller than the dimensions in x and y dimensions.

[152]:

ρcp
∂T

∂t
= kx

∂2T

∂x2 + ky
∂2T

∂y2 + kz
∂2T

∂z2 + q̇, (5.1)

where T = T (x, y, z, t) and q̇ = q̇(x, y, z, t). Symbol T is the battery distributed temperature
with respect to spatial position and time, and q̇ denotes the volumetric heat generation rate.
Moreover, ki, i ∈ {x, y, z}, is the thermal conductivity, ρ represents density, and cp is the
specific heat. The length Lz in the z–dimension is typically much smaller than the dimensions
in x– and y–dimensions, i.e. Lx and Ly. Since prismatic Li-ion cells are composed by layers
of anode, cathode, and separator materials, in the x–y plane the thermal conductivity is
dominated by the high conductivity of metals, whereas in the z–dimension the conductivity
is limited by the stacked layers and high thermal contact resistances. Thus, the thermal
conductivity in the x– and y–dimensions are much larger than those in the z–dimension, i.e.
kx ≈ ky � kz. Define τi to be the characteristic diffusion time in the i–dimension, where
i ∈ {x, y, z}:

τi =
L2
i

Di

= ρcp
L2
i

ki
, (5.2)

where Di is the heat diffusion coefficient. As a numerical example, let Lx = 0.216m, Ly =
0.129m, Lz = 0.0072m, kx = ky = 28W/(m·K), and kz = 1.5W/(m·K) [136, 153]. This leads
to τx ≈ 48τz and τy ≈ 17τz. The heat diffusion in the z–dimension can thus be treated as
instantaneous relative to those in x- and y–dimension.

Assumption 3. The characteristic diffusion time in the x–dimension is much larger than
that in the y–dimension, i.e. τx � τy.

Although the above numerical example indicates that, with the specific cell geometry
and cell material used, τx ≈ 3τy, the Assumption 3 allows the original high-dimensional heat
diffusion process (5.1) to be approximated by a reduced-order one-dimensional heat diffusion
equation in the x–dimension. An investigation of a two-dimensional (in x–y plane) model
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is expected in future works. Therefore, a one-dimensional heat diffusion model has been
elected in this study to describe the dynamics of the temperature distribution:

1

σ

∂T

∂t

(
x, t
)

=
∂2T

∂x2

(
x, t
)

+
q̇
(
x, t
)

kx
, (5.3)

where σ = ρcp/kx, with Robin boundary conditions

∂T

∂x
(0, t) =

hx
kx

(
T∞ − T (0, t)

)
, (5.4)

∂T

∂x
(Lx, t) =

hx
kx

(
T∞ − T (Lx, t)

)
, (5.5)

where x ∈ [0, Lx] is the spatial coordinate and t ∈ R+ denotes time. T∞ represents the
constant ambient temperature. Symbol hx is the convective heat transfer coefficient in x–
dimension. The temperatures at both boundaries can be measured by physical sensors, as
follows

ym
(
t
)

=
[
T
(
0, t
)
, T
(
Lx, t

)]
. (5.6)

Model Reduction and Analysis

Next we perform normalization and coordinate transformation to simplify the mathematical
structure of the distributed parameter thermal model (5.3)-(5.6). Scale the position x and
time t coordinates as follows,

x =
x

Lx
, t =

αt

L2
x

, k =
kx
L2
x

, h =
hx
Lx
, T (x, t) = T (x, t), Q̇(x, t) = q̇

(
x, t
)
, (5.7)

where x and t are dimensionless. The above coordinate transformation yields

∂T

∂t
(x, t) =

∂2T

∂x2
(x, t) +

Q̇(x, t)

k
, (5.8)

with Robin boundary conditions

∂T

∂x
(0, t) =

h

k
(T∞ − T (0, t)), (5.9)

∂T

∂x
(1, t) =

h

k
(T∞ − T (1, t)), (5.10)

where x ∈ [0, 1] and t ∈ R+. The measurement signals in the transformed coordinate become

ym(t) =
[
T (0, t), T (1, t)

]
. (5.11)
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The equation for computing heat generation proposed by Bernardi et al. [154] is employed
frequently in its simplified form,

Q̇(x, t) = I2(t)
Rs

(
T (x, t), SOC(t)

)
V

− I(t)T (x, t)
dVoc
dT

, (5.12)

where I(t) is the applied current, Voc denotes the open circuit voltage, and V = LxLyLz
represents the volume of the battery cell. Symbol Rs stands for the lumped resistance
distributed over the spatial and time domain and is generally dependent on temperature
and state of charge (SOC) of the battery cell [155]. The term Rs

(
T (x, t), SOC(t)

)
can be

characterized experimentally, e.g., see Fig. 6 in [155] for an illustrative example. For the
heat generation expression in (5.12),

• The first term is the heat generation from resistive dissipation, which is always positive.

• The second term is the reversible entropic heat. The term dVoc
dT

varies with SOC and
can be determined by offline experimental studies, e.g., [28].

Remark 16. As noted in [156, 157], with fixed SOC, the behavior of Rs due to the variation
in temperature should nearly follow an Arrhenius type relationship:

Rs(T ) = Rs(T0) exp

[
−Ea
R

(
1

T0

− 1

T

)]
, (5.13)

where T0 is a given reference temperature, Ea is the activation energy, and R denotes the
gas constant. Observe that

dRs

dT
(T ) = −Rs(T0)

Ea
RT 2

exp

[
−Ea
R

(
1

T0

− 1

T

)]
(5.14)

is a monotonically increasing function with respect to T when T > Tc = −Ea/2R. Numer-
ically, the admissible temperature range for a Li-ion battery cell is significantly larger than
Tc.

In this work, for the purpose of model simplicity and observer design, the heat generation
formulation (5.12) is reduced by (i) ignoring the entropic heat generation in the subsequent
discussion as the entropic coefficient is significantly small for certain types of batteries, e.g.,
Lithium-ion Phosphate cell, and (ii) suppressing the dependence of Rs on SOC, and only
taking into account the temperature dependence, e.g., Rs = Rs(T (x, t)). Consequently, the
modeling error from the reduction is compensated by a distributed uncertainty δ(x, t), i.e.,

Q̇(x, t) = I2(t)
Rs

(
T (x, t)

)
V

+ δ(x, t), (5.15)

where δ(x, t) is upper and lower bounded, and these bounds can be numerically retrieved by
experiments.
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Hence, subbing this reduced heat generation (5.15) into (5.8) gives the final plant model
under consideration in this study:

∂T

∂t
(x, t) =

∂2T

∂x2
(x, t) + f

(
T (x, t)

)
+ ε(x, t), (5.16)

where ε(x, t) = δ(x, t)/k and

f(T (x, t)) =
1

kV
I2(t)Rs(T (x, t)), (5.17)

with Rs given by (5.13), and Robin boundary conditions

∂T

∂x
(0, t) =

h

k
(T∞ − T (0, t)), (5.18)

∂T

∂x
(1, t) =

h

k
(T∞ − T (1, t)). (5.19)

The initial condition of the plant model is

T (x, 0) = T0(x). (5.20)

The temperature signals at both boundaries are experimentally measured,

y0(t) = T (0, t) + µ(t), y1(t) = T (1, t) + ν(t), (5.21)

where we impose disturbances µ(t) and ν(t) in the output equations to account for uncer-
tainties from the ambient environment or sensor inaccuracies. Let U = L2(0, 1) denote the
state space of T (x, t).

Assumption 4. f(T ) is C1 in T , for all x ∈ [0, 1], t ∈ [0,∞), and T ∈ U .

Theorem 10 (Lipschitz Continuity). The nonlinearity f(T (x, t)) is globally Lipschitz con-
tinuous in T (x, t), i.e., for every T1, T2 ∈ U , there exists a positive constant γ such that∥∥∥f (T1(·, t)

)
− f

(
T2(·, t)

)∥∥∥ ≤ γ
∥∥T1(·, t)− T2(·, t)

∥∥ . (5.22)

Proof. A Lipschitz constant with respect to T can be obtained by computing the infinity
norm of dRs/dT per Remark 16,

γ =
1

kV
|I|2max

∣∣∣∣dRs

dT
(T )

∣∣∣∣
max

=
1

kV
|I|2maxRs(T0)

Ea
RT 2

min

exp

[
−Ea
R

(
1

T0

− 1

Tmin

)]
. (5.23)

where |I|max is the maximum absolute value of the applied current I(t), and Tmin is the
minimum temperature allowed by the application. �
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Theorem 11. According to [64, 158], Assumption 4 and Theorem 10 ensure the existence
and uniqueness of a mild solution to the PDE system (5.16)-(5.20).

Assumption 5. The in-domain uncertainty ε(x, t) is finite and bounded by ε(x, t) ≤ ε,
∀(x, t) ∈ [0, 1]× [0,∞), where ε ≥ 0.

Assumption 6. The uncertainties µ(t) and ν(t) in the output equations are finite and
bounded by µ(t) ≤ µ, ν(t) ≤ ν, ∀t ∈ [0,∞), where µ, ν ≥ 0. We further assume that µ(t)
and ν(t) are continuously differentiable with respect to time t.

Our objective is to estimate the spatially distributed temperature T (x, t) in PDE (5.16)
by utilizing only the boundary measurements y0(t) and y1(t). In Section 5.2, we present the
observer design and observer convergence analysis based on the uncertainty-free plant model,
i.e. ε(x, t) = 0, µ(t) = 0, and ν(t) = 0, ∀x ∈ [0, 1] and t ∈ [0,∞). Furthermore, in Section
5.4, we provide robust estimation scheme based on the plant model with uncertainties, i.e.
ε(x, t) 6= 0, µ(t) 6= 0, and ν(t) 6= 0, in the sense of minimizing the estimation error via
optimal observer gain selection.

Remark 17. Although the considered problem setup is for prismatic cells, the method pre-
sented here can be easily generalized to cylindrical cells. Specifically, suppose the cell is ther-
mally homogeneous, a distributed thermal dynamics for a cylindrical cell can be expressed as
[134]

1

α

∂T

∂t
(r, t) =

∂2T

∂r2
(r, t) +

1

r

∂T

∂r
(r, t) +

Q̇(r, t)

k
, (5.24)

∂T

∂r
(0, t) = 0, (5.25)

∂T

∂r
(Rp, t) =

h

k

(
T∞ − T (Rp, t)

)
, (5.26)

ym(t) = T (Rp, t), (5.27)

where Rp denotes the radius and r ∈ [0, Rp] is the radial coordinate. Performing a normal-
ization and transforming from spherical coordinate to Cartesian coordinate yields a similar
structure to system (5.8)-(5.11).
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5.2 State Estimation for Uncertainty-Free Plant Model
In this section, the following uncertainty-free plant model, namely ε(x, t) = 0, µ(t) = 0, and
ν(t) = 0, ∀x ∈ [0, 1] and t ∈ [0,∞), is considered:

Tt(x, t) = Txx(x, t) + f(T (x, t)), (5.28)

Tx(0, t) =
h

k
(T∞ − T (0, t)), (5.29)

Tx(1, t) =
h

k
(T∞ − T (1, t)), (5.30)

T (x, 0) = T0(x), (5.31)
y0(t) = T (0, t), (5.32)
y1(t) = T (1, t). (5.33)

State Observer Structure

A distributed parameter state observer is designed by using a copy of the plant model with
error injection, i.e.,

T̂t(x, t) = T̂xx(x, t) + f
(
T̂ (x, t)

)
+ p1(x)

(
y1(t)− T̂ (1, t)

)
, (5.34)

T̂x(0, t) =
h

k
(T∞ − y0(t)), (5.35)

T̂x(1, t) =
h

k

(
T∞ − T̂ (1, t)

)
+ p10

(
y1(t)− T̂ (1, t)

)
, (5.36)

where T̂ (x, t) stands for the estimation of T (x, t), and T̂ (1, t) is the boundary state estimate.
Symbols p1(x) and p10 are spatially varying and constant observer gains to be designed to
guarantee the stability of the observer error T̃ (x, t) = T (x, t)− T̂ (x, t). The initial condition
for the observer is

T̂ (x, 0) = T̂0(x). (5.37)

Remark 18. Despite the fact that the signals from both boundaries can be physically mea-
sured, only one of the boundary measurements are sufficient for the boundary observer design,
which will be demonstrated subsequently in this section.

Subtracting (5.34)-(5.37) from (5.28)-(5.31) yields the observer’s error dynamics:

T̃t(x, t) = T̃xx(x, t) + φ(x, t)− p1(x)T̃ (1, t), (5.38)

T̃x(0, t) = 0, (5.39)

T̃x(1, t) = −
(
h

k
+ p10

)
T̃ (1, t), (5.40)

T̃ (x, 0) = T (x, 0)− T̂ (x, 0), (5.41)
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where
φ(x, t) = f

(
T (x, t)

)
− f

(
T̂ (x, t)

)
. (5.42)

Remark 19. Although the explicit dependence of φ(x, t) on T (x, t) and T̂ (x, t) is suppressed
in the notation above, this explicit dependence remains and is crucial in the subsequent
stability analysis.

Backstepping Transformation

To determine the appropriate observer gains, we adopt the backstepping approach [147]. We
seek a linear backstepping transformation (a.k.a. a Volterra transformation) that transforms
the state of the error system T̃ (x, t) to a target state ω(x, t), by making use of the following
expression with kernel function j(x, y):

T̃ (x, t) = ω(x, t)−
∫ 1

x

j(x, y)ω(y, t)dy, (5.43)

which maps the error system (5.38)-(5.40) to the target system

ωt(x, t) = ωxx(x, t) + ψ(x, t)− cω(x, t), (5.44)
ωx(0, t) = 0, (5.45)

ωx(1, t) = −
(
c1 +

h

k

)
ω(1, t), (5.46)

where the constants c > 0 and c1 are parameters to be designed. ψ(x, t) is the transformed
function from φ(x, t) by the same backstepping transformation, as follows,

φ(x, t) = ψ(x, t)−
∫ 1

x

j(x, y)ψ(y, t)dy. (5.47)

To explicitly determine the kernel j(x, y) we differentiate both sides of the transformation
in (5.43) with respect to x and t and take into account target system (5.44)-(5.46). The
computation reveals that the kernel j(x, y) must satisfy the following Klein-Gordon PDE:

jxx(x, y)− jyy(x, y) = −cj(x, y), (5.48)
jx(0, y) = 0, (5.49)

j(x, x) = − c
2
x, (5.50)

in which the boundary condition (5.49) emerges from evaluating (5.43) together with the
boundary conditions (5.39)-(5.40). An unique and closed-form analytic solution exists for
the PDE (5.48)-(5.50) [147, Chapter 4]:

j(x, y) = −cy
I1

(√
c(y2 − x2)

)
√
c(y2 − x2)

, (5.51)
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where I1(·) is the modified Bessel Function of the first kind. Moreover, the observer gains
are computed as

p1(x) = −jy(x, 1)−
(
c1 +

h

k

)
j(x, 1), (5.52)

p10 = c1 − j(1, 1) = c1 +
c

2
. (5.53)

Therefore, the observer gains (5.52)-(5.53) can be determined offline utilizing the kernel PDE
solution (5.51).

Remark 20. The fact that ψ(x, t) is the transformed version of φ(x, t) under the same
backstepping transformation makes the PDE system (5.48)-(5.50) for kernel function j(x, y)
to exhibit the same structure as the linear case, e.g., [147, Chapter 4]. The challenge lies in
the stability verification of the target system.

It is necessary to certify the existence and uniqueness of the inverse backstepping trans-
formation, so that the stability of the target system implies the stability of the original error
system. Consider the inverse backstepping transformation [147]:

ω(x, t) = T̃ (x, t) +

∫ 1

x

`(x, y)T̃ (y, t)dy, (5.54)

with the kernel function `(x, y). Similarly, differentiating both sides of the inverse backstep-
ping transformation with respect to x and t yields the kernel PDE for `(x, t):

`xx(x, y)− `yy(x, y) = c`(x, y), (5.55)
`x(0, y) = 0, (5.56)

`(x, x) = − c
2
x, (5.57)

which has an analytic solution of

`(x, y) = −cy
J1

(√
c(y2 − x2)

)
√
c(y2 − x2)

, (5.58)

where J1(·) is the Bessel Function of the first kind [147, Chapter 4].

Stability of the Target System

Based on the analysis in Section 5.2, the analytic solutions for the backstepping and in-
verse backstepping kernels j(x, y) and `(x, y) exist and are unique. Therefore, the stability
properties of the target system (5.44)-(5.45) implies the stability of the original error system
(5.38)-(5.40). In this section, we perform the Lyapunov analysis to establish the stability of
the target system in the sense of spatial L2 norm. We first present and prove the following
lemma on Lipschitz continuity of the transformed nonlinearity ψ.
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Lemma 12. The nonlinear function ψ(x, t) in the target system verifies the following in-
equality for all t ∈ [0,∞), ∥∥ψ(·, t)

∥∥ ≤ κ(c; γ)
∥∥ω(·, t)

∥∥ , (5.59)

with κ(c; γ) := γ(1 + ρ(c))(1 + η(c)), where

ρ(c) :=

√∫ 1

0

∫ 1

x

`2(x, y; c)dydx, (5.60)

η(c) :=

√∫ 1

0

∫ 1

x

j2(x, y; c)dydx, (5.61)

and c is the design variable of the target system in (5.44).

Proof. The inverse backstepping transformation from ψ(x, t) to φ(x, t) specified by the kernel
function `(x, y) in (5.58) is written as

ψ(x, t) = φ(x, t) +

∫ 1

x

`(x, y)φ(y, t)dy. (5.62)

Applying the triangle inequality yields

‖ψ(x, t)‖ ≤ ‖φ(x, t)‖+

∥∥∥∥∫ 1

x

`(x, y)φ(y, t)dy

∥∥∥∥
= ‖φ(x, t)‖+

√∫ 1

0

(∫ 1

x

`(x, y)φ(y, t)dy

)2

dx

≤ ‖φ(x, t)‖+

√∫ 1

0

(∫ 1

x

`2(x, y)dy

)(∫ 1

x

φ2(y, t)dy

)
dx

≤ ‖φ(x, t)‖+

√√√√∫ 1

0

(∫ 1

x

`2(x, y)dy

)
‖φ(y, t)‖2dx

=

1 +

√∫ 1

0

∫ 1

x

`2(x, y)dydx

 ‖φ(x, t)‖

≤ γ

1 +

√∫ 1

0

∫ 1

x

`2(x, y)dydx

 ‖T̃ (x, t)‖, (5.63)

where the first inequality originates from the Cauchy-Schwarz Ineuqality, and the last in-
equality stems from the Lipschitz continuity of function f(T (x, t)) in Remark 10. A similar
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computation can be performed based on the forward backstepping transformation (5.43) to
conclude

‖T̃ (x, t)‖ ≤

1 +

√∫ 1

0

∫ 1

x

j2(y, t)dydx

 ‖ω(x, t)‖. (5.64)

Therefore, in view of (5.63) and (5.64), function ψ(x, t) verifies the inequality ‖ψ(·, t)‖ ≤
κ(c; γ)‖ω(·, t)‖. �

Through Lemma 12, the stability analysis of the error system (5.38)-(5.42) defined in
terms of the spatial L2 norm can then be established via the target system.

Theorem 13 (Convergence of State Observer). Consider the observer error dynamics (5.38)-
(5.40), and let the observer gains p1(x) and p10 be as in (5.52) and (5.53). Given Lipschitz
constant γ, if the design parameters c and c1 are chosen such that

c > κ(c; γ)− 1

4
, c1 ≥

1

2
− h

k
, (5.65)

then the origin of the error dynamics T̃ (x, t) = 0 is exponentially stable in the sense of spatial
L2 norm, without the presence of the in-domain uncertainty and the output uncertainty, i.e.,
ε(x, t) = 0, µ(t) = 0, and ν(t) = 0.

Proof. Consider the Lyapunov functional candidate for system (5.44)-(5.46):

W1(t) =
1

2

∫ 1

0

ω2(x, t)dx =
1

2
‖ω(x, t)‖2. (5.66)

The time derivative of the Lyapunov function W1(t) along the state trajectory can be com-
puted as

Ẇ1 =

∫ 1

0

ω(x, t)ωt(x, t)dx =

∫ 1

0

ωωxxdx+

∫ 1

0

ωψdx− c
∫ 1

0

ω2dx. (5.67)

Applying the integration by parts to the first term, and Cauchy-Schwarz Inequality to the
second term at the right hand side of (5.67) result in

Ẇ1 ≤−
(
c1 +

h

k

)
ω2(1)− ‖ωx‖2 + ‖ψ‖‖ω‖ − c‖ω‖2. (5.68)

Applying Poincaré Inequality, −‖ωx‖2 ≤ 1
2
ω2(1) − 1

4
‖ω‖2, to the second term at the right

hand side of (5.68), and substituting the third term with (5.59), yields

Ẇ1 ≤ −
(
c1 +

h

k
− 1

2

)
ω2(1)−

[
c+

1

4
− κ(c; γ)

]
‖ω‖2. (5.69)
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Figure 5.2: Illustration of design parameter selection. As γ increases, the function κ(c; γ)
shifts towards the upper-left dimension and the span between c and c shrinks accordingly.
When γ < γ∗ ≈ 1.053, it is insured that there always exists a design parameter c such that
the conditions in (5.65) hold.

If the design parameters are chosen such that c1 ≥ 1
2
− h

k
and c > κ(c; γ) − 1

4
, (5.69) is

simplified to
d

dt
‖ω‖ ≤ −

[
c+

1

4
− κ(c; γ)

]
‖ω‖, (5.70)

which confirms the exponential stability of ω(x, t) as well as T̃ (x, t) in the sense of spatial
L2 norm. �

Remark 21. The state observer design imposes a simple linear output error injection for
a nonlinear plant model, without having to perform linearization and compute time-varying
kernel functions [64]. However, its limitation is analogous to that of observer design for
Lipschitz nonlinear ODE system [101], which will be discussed in the next section.

5.3 Numerical Selection of Design Parameters
The design criteria (5.65) for the stability of the origin of the error system enforces c1 to be
greater than a fixed constant (1/2 − h/k), and an affine function of c to be greater than a
nonlinear function κ(c; γ). It should be highlighted that for a Lipschitz constant γ, κ(c; γ)
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increases near exponentially with respect to c since the backstepping kernel function j(x, y)
is dependent on the modified Bessel function I1(·). The condition in (5.65) requires a linear
function to dominate an exponential function, no matter that the argument of function I1(·)
in (5.51) is a square root of c. Satisfaction of the condition in (5.65) is then totally dependent
upon the Lipschitz bound of the nonlinearity γ. A numerical study is now presented to
explore the space of γ for which a feasible solution to the inequality of (5.65) exists.

Fig. 5.2 provides the visualization for the affine function (c + 1/4) and the nonlinear
function κ(c; γ) with respect to c. As an illustrative example, when γ < γ∗, κ(c; γ) (the
black solid line) intersects with (c+ 1/4) (the blue solid line) at two distinct points, namely
c = c and c = c. Hence, under this scenario, c + 1/4 > κ(c; γ) if and only if c < c < c.
With increasing γ, the plot of κ(c; γ) shifts towards the up-left direction, and the span on
the c-axis between c = c and c = c shrinks accordingly. At the critical point when γ = γ∗,
the straight line (c+1/4) is tangential to κ(c; γ) (the black dotted line) and they intersect at
a single point c = c∗. Furthermore, when γ > γ∗, κ(c; γ) will never intersect with (c + 1/4)
for all possible c. Thus, when γ < γ∗, there always exists a c such that c + 1/4 > κ(c; γ)
stays true. Using a bisection method, the critical value of the Lipschitz constant for which
a solution to (63) exists is γ∗ ≈ 1.053.

5.4 State Estimation for Uncertain Plant Model
In the previous section, a state observer as well as its convergence properties for an uncertainty-
free plant model was analyzed. In this section, the plant model with in-domain and output
uncertainties emerged from the heat generation reduction is under examination. We employ
the same observer structure as in (5.34)-(5.37) for the uncertain plant model (5.16)-(5.20),
and analyze the boundedness of the estimation error in the sense of spatial L2 norm.

Subtracting (5.34)-(5.37) from (5.16)-(5.20) produces the observer’s error dynamics:

T̃t(x, t) = T̃xx(x, t) + φ(x, t)− p1(x)T̃ (1, t)

− p1(x)ν(t) + ε(x, t), (5.71)

T̃x(0, t) = − h

k
µ(t), (5.72)

T̃x(1, t) = −
(
h

k
+ p10

)
T̃ (1, t)− p10ν(t), (5.73)

The analysis in this scenario is different from the traditional backstepping approach, where
the boundary conditions and dynamics are uncertainty-free. The system of interest here,
(5.71)-(5.73), imposes not only a nonlinearity, but also in-domain and output uncertainties.
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Backstepping Transformation

The backstepping transformation (5.43) maps the error system (5.71)-(5.73) to the target
system

ωt(x, t) = ωxx(x, t) + ψ(x, t)− cω(x, t) + r(x)ν(t)

+ ζ(x, t), (5.74)

ωx(0, t) =− h

k
µ(t), (5.75)

ωx(1, t) =−
(
c1 +

h

k

)
ω(1, t) +

(
j(1, 1)− c1

)
ν(t). (5.76)

The term r(x)ν(t) accounts for the term p1(x)ν(t) in the original error dynamics, and ζ(x, t)
is the transformed functions from ε(x, t) by the backstepping transformation

ε(x, t) = ζ(x, t)−
∫ 1

x

j(x, y)ζ(y, t)dy. (5.77)

To explicitly determine j(x, y) and r(x) we differentiate both sides of the transformation in
(5.43) with respect to x and t and take into account target system (5.74)-(5.76),∫ 1

x

ω(y, t)
[
jxx(x, y)− jyy(x, y) + cj(x, y)

]
dt+ ω(1, t)

[
p1(x) + jy(x, 1) +

(
c1 +

h

k

)
j(x, 1)

]

+ ν(t)

[
r(x)−

∫ 1

x

j(x, y)r(y)dy + p1(x) + p10j(x, 1)

]
− ω(x, t)

[
2
∂

∂x
j(x, x) + c

]
= 0.

(5.78)

Note that (5.78) has to hold for all (x, t) ∈ [0, 1]× [0,∞). Hence, we arrive at the same kernel
PDE for j(x, y) as the kernel PDE in (5.48)-(5.50) for the uncertainty-free case. Moreover,
the observer gains also remain unchanged from those in (5.52) and (5.53). Finally, in view
of (5.78), r(x) has to verify ∆(x) = 0 with

∆(x) := r(x)−
∫ 1

x

j(x, y)r(y)dy + p1(x) + p10j(x, 1). (5.79)

The exact analytic expression of r(x) will be derived in the subsequent section.
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Inverse Backstepping Transformation

We employ the same inverse backstepping transformation (5.54) as that used for the uncertainty-
free case. Differentiating both sides of (5.54) with respect to x and t produces∫ 1

x

T̃ (y, t)
[
−`xx(x, y) + `yy(x, y) + c`(x, y)

]
dt

− T̃ (1, t)

[
p1(x) + `y(x, 1) +

(
h

k
+ p10

)
`(x, 1) +

∫ 1

x

`(x, y)p1(y)dy

]

− ν(t)

[
r(x) + p1(x) + p10`(x, 1) +

∫ 1

x

`(x, y)p1(y)dy

]

− T̃ (x, t)

[
2
∂

∂x
`(x, x) + c

]
= 0. (5.80)

Again, (5.80) has to hold for all (x, t) ∈ [0, 1]× [0,∞). Interestingly, in this case, the inverse
backstepping kernel `(x, y) still satisfies the kernel PDE (5.55)-(5.57), so that the analytic
solution for `(x, y) is given by (5.58). Now, define the following:

(?) := p1(x) + `y(x, 1) +

(
h

k
+ p10

)
`(x, 1) +

∫ 1

x

`(x, y)p1(y)dy, (5.81)

(??) := r(x) + p1(x) + p10`(x, 1) +

∫ 1

x

`(x, y)p1(y)dy. (5.82)

Proposition 2. Let (?) and (??) be as in (5.81) and (5.82). Then

(?) = 0, (??) = 0, (5.83)

for all x ∈ [0, 1], if and only if

r(x) = `y(x, 1) +
h

k
`(x, 1). (5.84)

We verify Proposition 2 with the assistance of the following Lemma.

Lemma 14. For j(x, y) and `(x, y), which are the kernels for the backstepping and the
inverse backstepping transformations, it holds from [64] and [147] that

`(x, y) = j(x, y) +

∫ y

x

j(x, ξ)`(ξ, y)dξ (5.85)

= j(x, y) +

∫ y

x

`(x, ξ)j(ξ, y)dξ. (5.86)

We are now positioned to provide the proof for Proposition 2 utilizing Lemma 14.
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Proof. Differentiate both sides of (5.86) with respect to y, and evaluate at y = 1:

`y(x, 1) = jy(x, 1) + `(x, 1)j(1, 1) +

∫ 1

x

`(x, ξ)jy(ξ, 1)dξ. (5.87)

Then substitute jy(x, 1) and j(1, 1) from (5.52)-(5.53) into (5.87):

`y(x, 1) =− p1(x)−
(
c1 +

h

k

)
j(x, 1) + `(x, 1)(c1 − p10)

+

∫ 1

x

`(x, ξ)

[
− p1(ξ)−

(
c1 +

h

k

)
j(ξ, 1)

]
dξ. (5.88)

Re-arranging terms in (5.88) yields

(?) = −
(
c1 +

h

k

)[
j(x, 1)− `(x, 1) +

∫ 1

x

`(x, ξ)j(ξ, 1)dξ

]
. (5.89)

In addition, note from (5.86) that

`(x, 1) = j(x, 1) +

∫ 1

x

`(x, ξ)j(ξ, 1)dξ. (5.90)

In view of (5.89) and (5.90), we have (?) = 0. Moreover,

(?)− (??) = `y(x, 1) +
h

k
`(x, 1)− r(x). (5.91)

Hence, (??) = 0 if and only if r(x) verifies

r(x) = `y(x, 1) +
h

k
`(x, 1). (5.92)

Finally, we need to check if the proposed r(x) in (5.92) satisfies ∆(x) = 0. First, notice from
(5.85) that

`y(x, 1) = jy(x, 1) + `(1, 1)j(x, 1) +

∫ 1

x

j(x, ξ)`y(ξ, 1)dξ. (5.93)

Substitute r(x) from (5.92), p1(x) in (5.52), and p10 from (5.53), altogether into (5.79), and
we arrive at

∆(x) = `y(x, 1) +
h

k
`(x, 1)− jy(x, 1)−

(
c1 +

h

k

)
j(x, 1) +

(
c1 +

c

2

)
j(x, 1)

−
∫ 1

x

j(x, ξ)

[
`y(ξ, 1) +

h

k
`(ξ, 1)

]
dξ

=
h

k

[
`(x, 1)− j(x, 1)−

∫ 1

x

j(x, ξ)`(ξ, 1)dξ

]
≡ 0, (5.94)

where the second equality stems from substituting `y(x, 1) from (5.93), and the last equality
is obtained from (5.85). �
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Stability of the Target System

Often the disturbances µ(t) and ν(t) that enter the system via the boundary conditions
(5.75) and (5.76) become problematic when proving the stability of the target system, due
to the terms that have multiplication between the uncertainties and state ω if L2 spatial norm
is used as the Lyapunov function. To tackle this issue, we utilize the following invertible
transformation ω(x, t) 7→ z(x, t) to transfer the boundary uncertainties into the in-domain
dynamics:

ω(x, t) = z(x, t) +
h

2k
µ(t)(1− x)2 − 1

2
p10ν(t)(x2 − 1). (5.95)

The second and third terms at the right hand side of (5.95) is utilized to cancel the uncer-
tainty terms in the boundary conditions of the target system. It is also worth noting that
z(1, t) = ω(1, t). Differentiating the above transformation with respect to x and t yields the
dynamics for z(x, t):

zt(x, t) = zxx(x, t) + ψ(x, t)− cz(x, t) + eµ(x, t) + eν(x, t) + ζ(x, t), (5.96)

where eµ(x, t) and eν(x, t) are terms that are associated with the uncertainties in the output
equation:

eµ(x, t) =
h

k
µ(t)− h

2k
(1− x)2(cµ(t) + µt(t)), (5.97)

eν(x, t) = (r(x)− p10)ν(t) +
1

2
p10(x2 − 1)(cν(t) + νt(t)). (5.98)

The boundary conditions for z(x, t) is given by

zx(0, t) = ωx(0, t) +
h

k
µ(t) = 0. (5.99)

zx(1, t) = ωx(1, t) + p10ν(t) = −
(
c1 +

h

k

)
z(1, t), (5.100)

The uncertainties are no longer at the boundaries in the z-system. We provide the stability
analysis in the sense of spatial L2 norm for the original error system through the analysis of
the transformed system (5.96)-(5.100).

Theorem 15 (Convergence of Robust Observer). Consider the observer error dynamics
(5.71)-(5.73), and let the observer gains p1(x) and p10 be as in (5.52) and (5.53). Given
Lipschitz constant γ, if the design parameters c and c1 are selected such that (5.65) is sat-
isfied, then in the presence of the in-domain uncertainty and the output uncertainty, i.e.,
ε(x, t) 6= 0, µ(t) 6= 0, and ν(t) 6= 0, the estimation error remains bounded in the sense of L2

norm denoted by
∥∥T̃ (·, t)

∥∥ ≤ RB(c, c1) as t→∞, where

RB(c, c1) := η(c)

[
β(c, c1)

α(c)
+ λ(c, c1)

]
. (5.101)
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Specifically,

α(c) := c− κ(c; γ) +
1

4
, (5.102)

β(c, c1) := κ(c; γ)λ(c, c1) +
h

k
µ+

h

2
√

5k
U + ‖r(x)− p10‖ν

+

√
2

15
|p10|V + (1 + ρ(c))ε, (5.103)

λ(c, c1) :=

√
h2

20k2
µ+

2

15
p2

10ν +
3h

20k
|p10|E, (5.104)

where p10 is given by (5.53), and

U = max
t
{cµ(t) + ν̇(t)}, (5.105)

V = max
t
{cν(t) + ν̇(t)}, (5.106)

E = max
t
{µ(t)ν(t)}. (5.107)

Proof. Consider again the Lyapunov functional candidate for system (5.96)-(5.100) using
spatial L2 norm,

W2(t) =
1

2

∫ 1

0

z2(x, t)dx =
1

2
‖z(x, t)‖2. (5.108)

The time derivative of the Lyapunov function W (t) along the state trajectory can be com-
puted as

Ẇ2(t) =

∫ 1

0

z(x, t)zt(x, t)dx

=

∫ 1

0

zzxxdx+

∫ 1

0

zψdx− c
∫ 1

0

z2dx+

∫ 1

0

zeµdx+

∫ 1

0

zeνdx+

∫ 1

0

zζdx. (5.109)

Applying the integration by parts to the first term, and Cauchy-Schwarz Inequality to the
second, fourth, fifth, and sixth term at the right hand side of (5.109) results in

Ẇ2(t) ≤−
(
c1 +

h

k

)
z2(1)− ‖zx‖2 − c‖z‖2 +

(
‖ψ‖+ ‖eµ‖+ ‖eν‖+ ‖ζ‖

)
‖z‖. (5.110)

Now consider the transformation (5.95) and apply triangular inequality to conclude

‖ω‖ ≤ ‖z‖+

∥∥∥∥ h2kµ(t)(1− x)2 − 1

2
p10ν(t)(x2 − 1)

∥∥∥∥
≤ ‖z‖+ λ(c, c1), (5.111)
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so that the upper bound for ‖ψ‖ given by (5.59) is explicitly expressed in terms of state in
z system:

‖ψ‖ ≤ κ(c; γ)‖z‖+ κ(c; γ)λ(c, c1). (5.112)

Furthermore, from (5.97) and (5.98), the following upper bounds are imposed on eµ and eν ,

‖eµ‖ ≤
h

k
µ+

h

2
√

5k
U, (5.113)

‖eν‖ ≤‖r(x)− p10‖ν +

√
2

15
|p10|V . (5.114)

Finally, by recognizing the inverse backstepping transformation ζ(x, t) 7→ ε(x, t),

ζ(x, t) = ε(x, t) +

∫ 1

x

ε(y, t)`(x, y)dy, (5.115)

similar strategy as that in (5.63) can be employed to derive the upper bound on ‖ζ(·, t)‖:

‖ζ(·, t)‖ ≤ (1 + ρ(c))ε. (5.116)

Substituting (5.111)-(5.114) and (5.116) into the right hand side of (5.110), and applying
the Poincaré Inequality, −‖zx‖2 ≤ 1

2
z2(1)− 1

4
‖z‖2, to the second term in the right hand side

of (5.110), yields

Ẇ2 ≤ −
(
c1 +

h

k
− 1

2

)
z2(1)− α(c)‖z‖2 + β(c, c1)‖z‖. (5.117)

If c1 is chosen such that c1 ≥ 1
2
− h

k
and α(c) > 0, or equivalently c > κ(c; γ) − 1

4
, the

comparison principle applied to (5.117) gives

‖z(·, t)‖ ≤ β(c, c1)

α(c)
+

[
‖z(·, 0)‖ − β(c, c1)

α(c)

]
e−α(c)t. (5.118)

Since the inverse transformation z(x, t) 7→ ω(x, t) is unique:

z(x, t) = ω(x, t)− h

2k
µ(t)(1− x)2 +

1

2
p10ν(t)(x2 − 1), (5.119)

and the backstepping transformation (5.43) is invertible, an upper bound of ‖T̃ (·, t)‖ is
computed via the sequence of inequalities based on (5.64) and (5.111):

‖T̃ (·, t)‖ ≤ η(c)
[
‖z(·, t)‖+ λ(c, c1)

]
. (5.120)

When t→∞, the exponential terms at the right hand side of (5.120) decays to zero. Under
this scenario,

‖T̃ (·, t)‖ ≤ η(c)

[
β(c, c1)

α(c)
+ λ(c, c1)

]
(5.121)

This completes the proof. �
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Figure 5.3: Summary of the coordinate transformations. The forward backstepping transfor-
mation (5.43) transforms the original error system T̃ to the target system ω. Moreover, the
transformation (5.95) transfers the boundary uncertainties in ω system into the in-domain
dynamics of z system. It has been proven that all transformations are invertible and the
inverse transformations are uniquely defined.

Symbols Values Units
T0 298.15 K
Tmin 298.15 K
Rs(T0) 4.7 mΩ
Ea 36.9 kJ/mol
kx 28 W/(m·K)
hx 13.4 W/(m2· K)
R 8.314 J/(mol·K)
Lx 0.216 m
Ly 0.129 m
Lz 0.0072 m
ρ 2118 kg/m3

cp 711 J/(kg·K)

Table 5.1: Model Parameters for a Prismatic Cell

For a given Lipschitz constant γ < γ∗, one can minimize the size of the error ball RB to
achieve robust estimation by formulating and solving the optimization problem

minimize
c,c1

RB(c, c1)

subject to κ(c; γ)− c− 1/4 < 0,

− c1 + 1/2− h/k ≤ 0,

c > 0.

A complete description of model transformations are depicted in Fig. 5.3.

5.5 Simulation Studies
In this section, we present simulation studies to demonstrate the performance of the proposed
observers. In this study, the distributed one-dimensional thermal model (5.16)-(5.21) is used
as the plant model. The model parameters and the geometric properties for a prismatic



CHAPTER 5. BATTERY TEMPERATURE ESTIMATION WITH AN UNCERTAIN
SEMILINEAR PDE MODEL 101

Figure 5.4: The plant model behavior under a constant charging profile. (a) Applied input
current; (b) Boundary measurements; (c) spatially distributed state.

cell are adopted from [136, 156, 159], and are enumerated in Table 5.1. Let the premises
in Assumption 1 hold, and then we evaluate the effectiveness of the proposed observer with
and without the in-domain and output uncertainties. For all simulations, the state estimates
are initialized with incorrect values. Specifically, T (x, 0) = 292.15 + exp(2x) and T̂ (x, 0) =
300 + 10 sin(8x).

No In-domain and Output Uncertainties

We first illustrate the performance of the proposed temperature estimation approach under
no uncertainties, i.e. ε(x, t) = 0, µ(t) = 0 and ν(t) = 0, ∀(x, t) ∈ [0, 1]× [0,∞). A constant
current, shown in Fig. 5.4(a), is applied to the battery thermal model. The simulation time is
t ∈ [0, 60min], and the spatial domain is x ∈ [0, 0.216m], i.e., x ∈ [0, 1]. The finite difference
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Figure 5.5: Left: The in-domain and boundary observer gains. The observer gains are an-
alytically calculated using (5.52) and (5.53), based on the selection of parameter c and the
analytic expression of backstepping kernel (5.51). Right: Observer results for a constant
charging profile. True initial condition: T (x, 0) = 292.15 + exp(2x). Observer initial con-
dition: T̂ (x, 0) = 300 + 10 sin(8x). The estimation error converges to zero exponentially in
the sense of L2 spatial norm, thus confirming the conclusion from Theorem 13. (a) Observer
state; (b) Estimation error.

method is employed to numerically discretize the plant model. The plant model is discretized
spatially with 50 grid points. The PDE boundary conditions are handled by the method of
imaginary point. The simulation is performed in MATLAB. The measured boundary signals
and the spatially distributed temperature are sketched in Fig. 5.4 (b) and (c), respectively.
The maximum absolute current in this specific case is |I|max = 20A. The expression in (5.23)
provides the numerical value of the Lipschitz constant for the nonlinearity f(T (x, t)) with
respect to T (x, t) in the plant model, i.e. γ = 0.62 < γ∗. This guarantees that there
always exists a design parameter c such that the observer convergence conditions presented
in Theorem 13 are fulfilled. In fact, the feasible ranges for the design parameters in this case
are 0.55 < c < 12.74 and c1 ≥ 0.4. With the choice of c = 8 and c1 = 5, the in-domain
observer gain p1(x) and the boundary observer gain p10 can be computed with the assistance
of backstepping kernels (5.48) and (5.55), and their spatial evolution is plotted in the left
of Fig. 5.5. Finally, the right of Fig. 5.5 presents the observer state and the exponential
convergence of the L2 norm of temperature estimation error to zero, even with the incorrect
initialization. The numerical simulation results confirm our conclusion in Theorem 13.
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Figure 5.6: The plant model behavior for a vehicle-like charging and discharging cycle,
extracted from an UDDS cycle. Gaussian noise with 1 ◦C variance and zero mean, i.e.,
µ(t) ∼ N (0, 1) and ν(t) ∼ N (0, 1), are injected to the boundary measurement signals y0(t)
and y1(t). Uniformly distributed random noise ε(x, t) is injected into the dynamical equation
(5.16). (a) Noise-corrupted boundary measurements; (c) Spatially distributed state.

With In-domain and Output Uncertainties

In this section, Gaussian noises with 1◦C variance and zero mean, i.e. µ(t) ∼ N (0, 1)
and ν(t) ∼ N (0, 1), are manually injected to the boundary measurement signals y0(t) and
y1(t). Further, an uniformly distributed random noise ε(x, t) is included in the dynamical
equation (5.16). The profile of the applied current, which is extracted from the Urban
Dynamometer Driving Schedule (UDDS) driving cycle, is shown in Fig. 5.6(a). The noise-
corrupted boundary measurements and spatially distributed temperature state are plotted
in Fig. 5.6(b) and (c), respectively. Once again, the observer state is initialized to incorrect
spatially distributed values, and the norm of estimation error converges quickly to a ball of
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Figure 5.7: Observer results for a vehicle-like charging and discharging cycle extracted from
UDDS cycle, subject to in-domain and output uncertainties. True initial condition: T (x, 0) =

293.15 + 3 exp(3x). Observer initial condition: T̂ (x, 0) = 300 + 10 sin(8x). The estimation
error converges to a ball of radius RB around the equilibrium point T̃ = 0 in the sense of
L2 spatial norm, thus justifying the conclusion from Theorem 15. (a) Observer state; (b)
Estimation error.

radius RB around the equilibrium point T̃ = 0, as can be seen in Fig. 5.7. Notice that the
same observer gains p1(x) and p10 as that from the uncertainty-free case are utilized (in the
left of Fig. 5.5). The simulation results support the conclusion in Theorem 15.

Estimation with Constant Resistance

In this section, we demonstrate the benefit of using a nonlinear resistance with respect to
temperature in the observer dynamics (5.34), against adopting simply a constant resistance.
Specifically, we examine the following state observer

Γt(x, t) = Γxx(x, t) + I2(t)R0 + p1(x)
(
y1(t)− Γ(1, t)

)
, (5.122)

Γx(0, t) =
h

k

(
T∞ − y0(t)

)
, (5.123)

Γx(1, t) =
h

k

(
T∞ − Γ(1, t)

)
+ p10

(
y1(t)− Γ(1, t)

)
, (5.124)

where Γ(x, t) is the temperature estimation produced by the observer system (5.122)-(5.124).
Symbol R0 represents a constant resistance, and the value of R0 is the resistance at the
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Figure 5.8: Spatial L2 norm of the estimation errors produced by (i) the observer with
a nonlinear resistance with respect to temperature, and (ii) the observer using a constant
resistance.

reference temperature, i.e. R0 = Rs(T0). The measurements y0(t) and y1(t) are generated
from the uncertainty-free nonlinear plant model (5.28)-(5.33). Fig. 5.8 demonstrates the
spatial L2 norm of the estimation errors under a constant current (given by Fig. 5.4(a))
produced by (i) the observer with nonlinear resistance with respect to temperature, namely
the observer system (5.34)-(5.36), and (ii) the observer using a constant resistance, namely
the observer system (5.122)-(5.124), utilizing the same set of observer gains p1(x) and p10

as those in (5.52)-(5.53). It is noted that the estimation error from case (i) converges to
zero exponentially in the sense of spatial L2 norm, whereas the error generated by case (ii)
initially decays toward zero with a similar decaying rate in case (i), but starts to deviate
from zero when the real resistance evolves with changing temperature.

5.6 Conclusion and Future Works
The knowledge of real-time battery temperature enables safe operation in battery manage-
ment systems. In this study, a boundary observer is proposed for a one-dimensional Li-ion
battery distributed parameter thermal model subject to in-domain and output uncertainties.
The thermal model is formulated such that the nonlinear heat generation term is Lipschitz
continuous with respect to state, thus the considered plant model fits the structure of a
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parabolic semilinear PDE. The observer is designed based on the backstepping technique,
by converting the error system to a prescribed stable target system. Without the presence
of the uncertainties, it is shown that the observer error dynamics is exponentially stable,
thanks to the Lipschitz continuous nonlinearity. In the presence of uncertainties, we trans-
fer the uncertainties in the boundary conditions of the target system into the in-domain
dynamics. If the uncertainties are unknown but with appropriate known bounds, the state
estimation error converges to an error ball around the equilibrium point, which is explicitly
characterized in terms of uncertainty bounds, observer parameters, and model parameters.
The sufficient condition on the Lipschitz constant such that the proposed estimation scheme
guarantees exponential convergence is derived. The numerical study illustrates the effective-
ness and robustness of the observer algorithm with respect to Lipschitz nonlinearities, and
in-domain and output uncertainties. Moreover, the observer design here is one of the first
for a semilinear parabolic PDE state estimation problem without performing linearization.

Future works include extending the proposed estimation algorithm to higher-dimensional
thermal model, e.g., three-dimensional models, and exploring the necessary and sufficient
conditions to ensure observer’s exponential convergence.
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Chapter 6

State and Disturbance Estimator for
Unstable Reaction-Advection-Diffusion
PDE with Boundary Disturbance

6.1 Introduction
This chapter investigates a general reaction-advection-diffusion partial differential equation
(PDE) with unknown boundary disturbances, which can be utilized to describe a variety of
systems such as electrochemistry (Li-ion batteries) [38], thermal/fluid flows [160], and struc-
tural acoustics [161], with uncertain flux at one end. As we have discussed in Chapter 1,
the working principle of an electrochemical Li-ion battery cell is based on the intercalation
and de-intercalation of lithium ions in the electrode active materials and the transport of
the lithium ions between two electrodes. These mechanisms are often modeled by the dif-
fusion/transport processes. The objective of this chapter is to estimate the disturbance at
the boundary of a reaction-advection-diffusion partial PDE, in order to attenuate the effect
of disturbance in the feedback controller design. With the disturbance estimation signal, a
state estimator is also proposed.

In the past few decades, the boundary control and estimation of PDE systems has gained
significant research attention, due to their high-fidelity model accuracy in describing many
processes. When uncertainties enter the PDE system through the boundaries or in-domain
dynamics, there generally have been three types of methods developed to tackle such issue:
adaptive control [66], sliding mode control [162, 163], and active disturbance control [164,
165]. See [162] for an excellent review.

The active disturbance rejection control (ADRC) method was initially introduced by Han
[166], which has been proven to be effective in dealing with disturbances in PDE systems. A
crucial step in ADRC is to estimate the time-varying disturbance using available boundary
measurements. The convergence problem of ADRC was solved in [167], and this approach
has been widely applied to disturbance attenuation in feedback controller design in PDE
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systems. For instance, a boundary output feedback stabilization for a one-dimensional anti-
stable wave equation with control matched disturbance is examined in [165]. A disturbance
estimator for a wave PDE on a time-varying domain is studied in [168], and an output
feedback controller is further designed utilizing the disturbance estimates [164]. The output
feedback stabilization for an unstable wave equation with general boundary measurement
disturbance is introduced in [169]. The application of ADRC on the unstable heat equation
with boundary uncertainties is presented in [162], as well as the sliding mode controller
design. In [170], stabilization of an unstable 1-D heat equation with boundary uncertainty
and external disturbance is achieved by designing an unknown input type state observer.

In this chapter, we design a combined disturbance and state estimator for an unstable
reaction-advection-diffusion PDE with boundary disturbance, by adopting a similar method-
ology from [168, 170]. The contribution of this paper lies in

• Designing a disturbance estimator for boundary disturbance in an unstable reaction-
advection-diffusion PDE system, and derive a sufficient condition on the reaction co-
efficient, for which the disturbance estimator achieves asymptotic convergence.

• Proposing an asymptotically convergent state estimator for the unstable reaction-advection-
diffusion PDE using the estimated disturbance signal, adopting the backstepping tech-
nique.

The reminder of this chapter is organized as follows. Chapter 6.2 discusses the problem
set-up, well-posedness of the plant model. The disturbance estimator and the corresponding
convergence analysis are presented in Chapter 6.3. Chapter 6.4 presents the state estima-
tor design using the estimated disturbance signal, by employing the backstepping method.
Chapter 6.5 provides a numerical simulation to visualize the performance of the proposed
estimators. Chapter 6.6 summarizes and concludes the paper.

Notation. Throughout this chapter, u(x, t) denotes the state variable with the depen-
dence on space variable x and time variable t. The x and t subscripts represent partial deriva-
tives with respect to the notated variable: ut = ∂u/∂t, ux = ∂u/∂x, and uxx = ∂2u/∂x2.
The dot symbol denotes derivative with respect to time t, e.g. Ṫ = dT/dt, and the prime
symbol represents derivative with respect to space x, e.g. X ′ = dX/dx. The L2(0, 1) spatial
norm is defined as

‖u(·, t)‖ =

√∫ 1

0

u2(x, t)dx.
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6.2 Problem Specification.
We consider the following reaction-advection-diffusion PDE with boundary disturbance,
where the disturbance is anti-collocated with the applied control input:

zt(x, t) = zxx(x, t) + bzx(x, t) + λ0z(x, t), (6.1)
zx(0, t) = q0z(0, t) + d0(t), (6.2)
zx(1, t) = Q(t), (6.3)
z(x, 0) = z0(x), (6.4)
y(t) =

[
z(0, t), z(1, t)

]
, (6.5)

where b, λ0, and q0 are constants, d0(t) represents the boundary disturbance, and Q(t)
denotes the control input. The signals at both boundaries are measured. The following
change of variables (gauge transformation) [81]:

u(x, t) = z(x, t)e
b
2
x, (6.6)

transforms the system (6.1)-(6.5) to (6.7)-(6.11), with coefficients, disturbance, and control
input mapped accordingly, as follows,

ut(x, t) = uxx(x, t) + λu(x, t), (6.7)
ux(0, t) = qu(0, t) + d(t), (6.8)
ux(1, t) = U(t), (6.9)
u(x, 0) = u0(x). (6.10)
ym(t) =

[
u(0, t), u(1, t)

]
. (6.11)

Symbol d(t) represents the disturbance on the heat flux at one boundary, U(t) denotes the
known control input, and λ and q are constants.

Assumption 7. The disturbance d(t) ∈ R is upper and lower bounded:∣∣d(t)
∣∣ ≤ d, ∀t ∈ [0,∞), (6.12)

where d is an unknown positive number.

The analysis in this paper is based on the system (6.7)-(6.11). Our objective is to estimate
the disturbance d(t) as well as the state u(x, t) by utilizing the boundary measurements ym(t).

Theorem 16. The linear boundary value problem (BVP) (6.7)-(6.10) is well-posed with
initial data u0(·) ∈ L2(0, 1), provided that the disturbance d(t) and control input U(t) are
bounded.

We utilize Lemma 21 [171] (in Appendix) to prove Theorem 16.
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Proof. Define the operator

(Lu)(x, t) = −uxx(x, t)−λu(x, t), (x, t) ∈ (0, 1)× [0,∞). (6.13)

Similarly, define the boundary condition operator

(Bu)(x, t) =

{
ux(0, t)− qu(0, t) x = 0, t ∈ [0,∞)

ux(1, t) x = 1, t ∈ [0,∞)
(6.14)

which allows the boundary condition to be expressed as

(Bu)(x, t) = h(x, t), (6.15)

where h(0, t) = d(t) and h(1, t) = U(t). Then, by defining

(Hu) =


ut(x, t) + (Lu)(x, t) (x, t) ∈ (0, 1)× [0,∞)

(Bu)(x, t) (x, t) ∈ {0, 1} × [0,∞)

u(x, 0) x ∈ [0, 1], t = 0

(6.16)

and

F(x, t) =


0 (x, t) ∈ (0, 1)× [0,∞)

h(x, t) (x, t) ∈ {0, 1} × [0,∞)

u0(x) x ∈ [0, 1], t = 0

(6.17)

the BVP (6.7)-(6.10) can be written in the compact form:

(Hu)(x, t) = F(x, t). (6.18)

The operator H is linear. The inverse monotonicity of H can be confirmed by contradiction.
Moreover, a non-negative comparison function φ(x), x ∈ [0, 1], can be computed by con-
structing a low-degree polynomial, for example, φ(x) = Ax2 +Bx+C, and choose constants
A,B,C to verify Hφ(x) ≥ 1 for x ∈ [0, 1]. Then the well-posedness follows immediately from
Lemma 21, by choosing ‖ψ‖u = ‖ψ‖∞ = max(x,t)∈[0,1]×[0,∞) ψ, for ψ ∈ L2(0, 1). Furthermore,
from (A.4) we have that

max
x∈[0,1]

∣∣u(x, t)
∣∣ ≤ [max

x∈[0,1]
φ(x)

]
·max

{
‖h(x, t)‖∞, ‖u0(x)‖∞

}
, (6.19)

which dictates that a bound on the magnitude of the solution has been determined. �

Remark 22. The plant model dynamics (6.7)-(6.10) is unstable for sufficiently large λ and q.
This motivates future ADRC design where the disturbance estimation is required to attenuate
the actual disturbance.
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6.3 Disturbance Estimator Design
In this section, we detail the disturbance estimator design for the system (6.7)-(6.10) using
the boundary measurement ym(t). We introduce the following auxiliary system:

ηt(x, t) = ηxx(x, t) + λη(x, t), (6.20)
η(0, t) = u(0, t)− ζ(0, t), (6.21)
ηx(1, t) = −αη(1, t), (6.22)

where ζ(x, t) satisfies the following system:

ζt(x, t) = ζxx(x, t) + λζ(x, t), (6.23)
ζx(0, t) = qu(0, t), (6.24)
ζx(1, t) = U(t) + α(u(1, t)− ζ(1, t)). (6.25)

Specifically, ζ system consists of a copy of the plant model (6.7)-(6.10) with the output error
injection using the measurement of u(1, t). The η system is completely determined by the
measured signal u(0, t) and the boundary value from the ζ system. We further define the
estimate for the disturbance d̂(t) to be

d̂(t) = ηx(0, t). (6.26)

The system (6.20)-(6.22), (6.23)-(6.25), together with (6.26), is the disturbance estimator.
The constant α > 0 is to be determined such that the disturbance estimate d̂(t) reconstructs
the actual disturbance d(t) asymptotically.

Convergence of Disturbance Estimator

Define the variable y(x, t) = u(x, t)− ζ(x, t), which satisfies the system:

yt(x, t) = yxx(x, t) + λy(x, t), (6.27)
yx(0, t) = d(t), (6.28)
yx(1, t) = −αy(1, t), (6.29)

and we also define w̃ = y − η, which verifies

w̃t(x, t) = w̃xx(x, t) + λw̃(x, t), (6.30)
w̃(0, t) = 0, (6.31)
w̃x(1, t) = −αw̃(1, t). (6.32)

The purpose of w̃ system is that the disturbance estimation error d̃(t) = d(t)− d̂(t) can be
expressed by the boundary signal of w̃, as follows,

d̃ = d− d̂ = yx(0, t)− ηx(0, t) = w̃x(0, t). (6.33)

Thus, the convergence analysis of disturbance estimation error d̃(t) is equivalent to the
convergence of w̃x(0, t).
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Remark 23. The systems (6.27)-(6.29) and (6.30)-(6.32) are well-posed. The structure of
the proof is analogous to Theorem 16 using Lemma 21.

From now on, we aim to determine the values of parameter λ such that there always
exists a tuning parameter α > 0 for which w̃(x, t) and w̃x(x, t) converge to zero as t → ∞
in the sense of L2 norm. Prior to presenting the main theorem, we require a few lemmas.
The next lemma is the extension of the well-known Poincaré Inequality [81, 172]. For the
reader’s convenience, we provide a sketch of the proof.

Lemma 17. For any function w̃(x, t) with x ∈ [0, 1] and t ∈ [0,∞), that is twice continuously
differentiable on x ∈ [0, 1],

‖w̃x(x, t)‖2 ≤ 2w̃2
x(1, t) + 4‖w̃xx(x, t)‖2. (6.34)

Proof.∫ 1

0

w̃2
xdx = xw̃2

x

∣∣∣1
0
− 2

∫ 1

0

xw̃xw̃xxdx ≤ w̃2
x(1) +

1

2

∫ 1

0

w̃2
xdx+ 2

∫ 1

0

x2w̃2
xxdx, (6.35)

where Young’s Inequality has been used. Therefore,∫ 1

0

w̃2
xdx ≤ 2w̃2

x(1) + 4

∫ 1

0

w̃2
xxdx. (6.36)

�

Lemma 18. System (6.30)-(6.32) admits an unique solution w̃(x, t) which satisfies

‖w̃xx(·, t)‖ ≤ ‖w̃xx(·, 0)‖Le−Ωt, t ≥ 0, (6.37)

where L and Ω are positive constants, given that λ < x2
0, where x0 is the smallest positive

solution to
tan(x) = −x

α
. (6.38)

The proof of Lemma 18 is omitted here. The readers may refer to Lemma 3.1 in [170]
for details.

Now we present the following lemma describing the stability results for the system (6.30)-
(6.32).

Lemma 19. For any initial data w̃0(·) ∈ L2(0, 1), and λ < 3− 2
√

2, there exists a constant
α > 0 such that w̃(x, t) in the system (6.30)-(6.32) is asymptotically stable for all x ∈ [0, 1].
Moreover, w̃x(0, t) converges to zero as t→∞.
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Proof. Consider the Lyapunov functional

V (t) =
α

2
w̃2(1, t) +

1

2
‖w̃‖2 +

1

2
‖w̃x‖2 . (6.39)

The time derivative of the Lyapunov functional V (t) along the trajectory of w̃(x, t) is

V̇ (t) = αw̃(1)w̃t(1) +

∫ 1

0

w̃w̃tdx+

∫ 1

0

w̃xw̃xtdx

= αw̃(1)w̃t(1) + w̃(x)w̃x(x)
∣∣∣1
0
−
∫ 1

0

w̃2
xdx+ λ

∫ 1

0

w̃2dx+ w̃t(x)w̃x(x)
∣∣∣1
0
−
∫ 1

0

w̃tw̃xxdx

= − αw̃2(1)− ‖w̃x‖2 + λ‖w̃‖2 − ‖w̃xx‖2 − λ
∫ 1

0

w̃w̃xxdx

= − αw̃2(1)− ‖w̃x‖2 + λ‖w̃‖2 − ‖w̃xx‖2 + λαw̃2(1) + λ‖w̃x‖2

= − α(1− λ)w̃2(1) + λ‖w̃‖2 − (1− λ)‖w̃x‖2 − ‖w̃xx‖2

≤ − α(1− λ)w̃2(1) + λ‖w̃‖2 − (1− λ)‖w̃x‖2 +
1

2
w̃2
x(1)− 1

4
‖w̃x‖2

= −

[
α(1− λ)− α2

2

]
w̃2(1) + λ‖w̃‖2 −

(
5

4
− λ
)
‖w̃x‖2, (6.40)

where integration by parts has been utilized multiple times, and Lemma 17 is applied in the
last inequality. Observing the last line of (6.40), λ clearly has a significant impact on the
sign of V̇ (t). A sufficient condition posed on λ for which there always exists a α > 0 such
that V (t) is asymptotically stable is to be determined.

We first require λ < 5/4 in view of the last term involving ‖w̃x‖ in (6.40), and introduce
two positive constants p1 and p2 as follows,

p1 + p2 =
5

4
− λ, and p1, p2 > 0, (6.41)

so that (6.40) becomes

V̇ (t) =−

[
α(1− λ)− α2

2

]
w̃2(1) + λ‖w̃‖2 − p1‖w̃x‖2 − p2‖w̃x‖2

≤−
[
(1− λ)− α

2
− p1

2α

]
αw̃2(1)−

(
p1

4
− λ
)
‖w̃‖2 − p2‖w̃x‖2. (6.42)

where the Poincaré Inequality is used. According to (6.42), if there exists a p1 such that
there always exists a α > 0 so that the following conditions hold:

(1− λ)− α

2
− p1

2α
> 0,

p1

4
− λ > 0,

5

4
− λ− p1 > 0, and p1 > 0, (6.43)
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Figure 6.1: Visualization of analysis of sufficient condition for reaction coefficient λ.

then the Lyapunov functional V (t) decays exponentially with decaying rate β:

V̇ ≤ −βV. (6.44)

where β > 0 is defined by

β = min

{
(1− λ)− α

2
− p1

2α
,
p1

4
− λ, 5

4
− λ− p1

}
. (6.45)

In order for p1 to be well-defined by (6.43) for some α, we must enforce

max{0, 4λ} < p1 < min

{
2α(1− λ)− α2,

5

4
− λ
}
. (6.46)

We solve for the values of λ such that there always exists a α > 0 so that (6.46) holds. We
consider two cases: λ ≤ 0 and λ > 0.

Case 1: λ ≤ 0. In this case, the left hand side (LHS) of (6.46) is LHS = max{0, 4λ} = 0.
On the right hand side (RHS) of (6.46), we have 5/4 − λ > 0. Let f(α) = 2α(1 − λ) − α2,
and f(α) takes its peak value fmax = (1 − λ)2 > 0 at α = (1 − λ) > 0, which means that
there always exists a α > 0 such that RHS > 0. Thus, there always exists a p1 > 0 that
satisfies (6.46) if λ ≤ 0.

Case 2: λ > 0. In this scenario, LHS = 4λ. Let g(λ) = 4λ, f1(λ;α) = 2α(1 − λ) − α2,
and f2(λ) = 5/4−λ. Note that function f1 is parameterized by α. Our objective is to search
for the values of λ > 0 such that there exists a α so that the minimum of f1 and f2 is larger
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than g. Observe that f1 intersects the y-axis at (0, 2α−α2), which is below the point (0, 5/4)
where f2 intersects the y-axis, because 2α−α2 ≤ 1 ∀α > 0. On the other hand, f1 intersects
the x-axis at ((2 − α)/2, 0), which is to the left of (5/4, 0) where f2 intersects the x-axis,
because (2 − α)/2 < 1 ∀α > 0. Therefore, we can conclude that RHS = min{f1, f2} = f1

due to these two facts, and the fact that f1 is linear in λ. These arguments are geometrically
illustrated in Fig. 6.1, where the family of f1 parameterized by α > 0 (in black) is always
less than f2 (in red). Hence, the maximum value of λ such that there exists α such that
g ≤ f1 can be obtained by finding the value of λ where f1 and g intersect. Equating f1 and
g yields

λ =
2α− α2

4 + 2α
, and λmax = 3− 2

√
2. (6.47)

Consequently, there always exists a α > 0 such that (6.46) is satisfied when 0 < λ < 3−2
√

2.
Combining Case 1 and 2, we conclude that there always exists a α > 0 such that (6.46)

is satisfied provided that λ < 3− 2
√

2. Under this condition, (6.44) gives us

V (t) ≤ V0e
−βt, (6.48)

where V0 is the initial condition of V (t). With this, we can also conclude from (6.39) that

‖w̃‖, ‖w̃x‖ → 0, as t→∞. (6.49)

Applying Agmon’s ([81], Lemma 2.4) and Young’s Inequality yields

max
x∈[0,1]

|w̃|2 ≤ w̃2(0) + 2‖w̃‖‖w̃x‖ ≤ ‖w̃‖2 + ‖w̃x‖2, (6.50)

where (6.31) is used, and we have thus proved that

w̃(x, t)→ 0 ∀ x ∈ [0, 1], as t→∞. (6.51)

According to the Fundamental Theorem of Calculus, triangle inequality, and Cauchy-Schwarz
Inequality:

w̃x(0, t) = w̃x(1, t)−
∫ 1

0

w̃xxdx

≤ α
∣∣w̃(1, t)

∣∣+

(∫ 1

0

w̃2
xxdx

) 1
2

≤ α
∣∣w̃(1, t)

∣∣+ ‖w̃xx(·, 0)‖Le−ωt, (6.52)

where Lemma 18 has been imposed in the last inequality. As t→∞, w̃(1, t)→ 0 according
to (6.51), and it can be concluded that w̃x(0, t)→ 0 as t→∞. This concludes the proof for
Lemma 19. �



CHAPTER 6. STATE AND DISTURBANCE ESTIMATOR FOR UNSTABLE
REACTION-ADVECTION-DIFFUSION PDE WITH BOUNDARY DISTURBANCE 116

With Lemma 19, we are now positioned to present and prove the main result of the
disturbance estimator.

Theorem 20. For any initial data d̃0 which is finite, and λ < 3 − 2
√

2, there exists a
constant α > 0 such that the error for the disturbance estimation d̃(t) converges to zero
asymptotically,.

Proof. According to (6.33),

d̃ = d− d̂ = ũx(0, t)− ηx(0, t) = w̃x(0, t), (6.53)

which according to Lemma 19, is asymptotically stable. �

Remark 24. The state in the system (6.20)-(6.22) is bounded in the sense of L2 norm, as
follows,

lim
t→∞
‖η(·, t)‖ <∞. (6.54)

This can be verified by using the Lyapunov functional W = 1
2
‖η(·, t)‖2. Since η is bounded

and w̃ is asymptotically stable in the sense of L2 norm, y is bounded in the sense of L2 norm.
In addition, as u is bounded according to (6.19), ζ is also bounded in the sense of L2 norm.
We have thus proved that all the states in disturbance estimator stay bounded in the sense of
L2 norm.

Remark 25. The sufficient condition on λ for the asymptotic convergence of the disturbance
estimator is conservative, since the majorization of V̇ (t) in (6.42) using Poincaré Inequality
is not tight.

6.4 State Estimator Design
This section presents a state estimator utilizing the asymptotically convergent disturbance
estimation signal. The state estimator is designed by using a copy of the plant model (6.7)-
(6.10) with an error injection, i.e.

û(x, t) = ûxx(x, t) + λû(x, t) + k(x)ũ(1, t), (6.55)

ûx(0, t) = qu(0, t) + d̂(t), (6.56)
ûx(1, t) = U(t) + k1ũ(1, t), (6.57)
û(x, 0) = û0(x), (6.58)

where û(x, t) represents the estimation of u(x, t), and k(x) and k1 are, respectively, spatially-
distributed and constant observer gains to be determined to achieve stability of state esti-
mation error ũ(x, t) = u(x, t)− û(x, t). Note that the disturbance estimation d̂(t) is injected
into the boundary of the state estimator. The disturbance estimator is autonomous and
upstream from the state estimator, so they are convergent independently.
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Subtracting (6.55)-(6.58) from (6.7)-(6.10) yields the state estimation error dynamics:

ũt(x, t) = ũxx(x, t) + λũ(x, t)− k(x)ũ(1, t), (6.59)

ũx(0, t) = d̃(t), (6.60)
ũx(1, t) = −k1ũ(1, t), (6.61)
ũ(x, 0) = u0(x)− û0(x). (6.62)

As t → ∞, the disturbance estimation error d̃(t) at x = 0 boundary vanishes when λ <
3−2
√

2, according to Theorem 20. Hence, when d̂(t) converges to d(t), we recover a boundary
condition with left end insulated, i.e.

ũx(0, t) = 0. (6.63)

To determine the observer gains, we adopt the backstepping approach [81]. We seek a
linear Volterra transformation that transforms the state of the error system ũ(x, t) to the
target state ṽ(x, t), by making use of the following expression:

ũ(x, t) = ṽ(x, t)−
∫ 1

x

`(x, y)ṽ(y, t)dy, (6.64)

which maps the error system (6.59), (6.61)-(6.63) to the exponentially stable heat equation
(target system):

ṽ(x, t) = ṽxx(x, t), (6.65)
ṽx(0, t) = 0, (6.66)
ṽx(1, t) = 0, (6.67)

where `(x, y) is the gain kernel. To explicitly determine `(x, y), we differentiate the transfor-
mation (6.64) with respect to x and t, and conclude that `(x, y) must satisfy the following
Klein-Gordon PDE:

`xx(x, y)− `yy(x, y) = −λ`(x, y), (6.68)
`x(0, y) = 0, (6.69)

`(x, x) = −λ
2
x, (6.70)

in which the boundary condition (6.69)-(6.70) emerges from evaluating (6.64) together with
the boundary conditions (6.63) and (6.61). An unique and closed-form analytic solution
exists for the kernel p(x, y) [81]:

`(x, y) = −λy
I1

(√
λ(y2 − x2)

)
√
λ(y2 − x2)

, (6.71)
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Figure 6.2: The convergence of disturbance estimator and backstepping state estimator.

where I1(·) is the Modified Bessel Function of the first kind. Moreover, the observer gains
are computed as

k(x) = −`y(x, 1), k1 = −`(1, 1). (6.72)

Therefore, the observer gains can be determined offline using the kernel PDE solution (6.71).
It can also be proven that the linear Volterra transformation (6.64) is invertible [81]. Thus,
the exponential stability of the target system (6.65)-(6.67) implies the stability of the original
error system (6.59), (6.61)-(6.63).

6.5 Numerical Simulation and Discussion
In this section, we demonstrate the effectiveness of the proposed estimators. The plant model
(6.7)-(6.10), disturbance estimator (6.20)-(6.26), and the backstepping state estimator (6.55)-
(6.58) are implemented in MATLAB. The finite difference method is employed in spatial
discretization. 51 points has been utilized to discretize in space, and the spatial discretization
step is dx = 1/50. The simulation end time is chosen as T = 6s. We use reaction coefficient
λ = −1, constant q = 0.5, the disturbance d(t) = 0.1 sin(5t), and input U(t) = 0 for an
illustrative example. As demonstrated in Figure 6.2, with an appropriate selection of design
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variable α > 0, the disturbance estimation d̂(t) converges to its true value d(t) asymptotically,
and the backstepping observer reconstructs the actual state asymptotically.

6.6 Conclusion
In this paper, we propose and rigorously analyze a combined disturbance and state estimator
for a class of unstable reaction-advection-diffusion PDEs, subject to unknown boundary
disturbance. A sufficient condition on the reaction coefficient is derived, for which the
disturbance estimation error is asymptotically stable. The disturbance estimate is combined
with a backstepping state observer to also yield asymptotically convergent state estimates.
The convergence of the estimators are analyzed by Lyapunov stability analysis. The results
of this paper can be applied to ADRC where the disturbance estimate is required to attenuate
the actual disturbance in a feedback controller design, as the plant model becomes unstable
for certain combination of λ and q. Future work will also examine the necessary condition
on reaction coefficient λ for the disturbance estimator to be asymptotically convergent.
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Chapter 7

Conclusion

7.1 Dissertation Summary
This dissertation presents frameworks for online model-based state and parameter estimation
techniques for Li-ion batteries utilizing nonlinear reduced-order electrochemical, equivalent
circuit, and thermal models. In particular, we apply real-time estimation and control tech-
niques for battery state of charge, state of health, and temperature estimation with math-
ematically provable stability and convergence. As a consequence, the proposed algorithms
may improve the remaining life of battery cells/packs by closely monitoring the charge and
health status. This is significantly crucial for large-scale battery energy storage systems,
ranging from EVs to stationary grid-scale storage, where model-based state feedback control
is required for maintaining optimal operation within safe limits.

In Chapter 2, a battery electrical model was coupled with a two-state thermal dynamics
to study the battery charge capacity estimation. We proposed a hierarchical estimation
scheme. Stage 1 estimates the core temperature, heat generation, and thermal resistance
based on a two-state thermal model, and the second stage receives these estimation signals
to estimate SOC and capacity (SOH) utilizing a sliding mode observer. We have showed that
the algorithm presented can be considered as a novel methodology for combined SOC/SOH
estimation, with provable convergence properties, under suitable conditions. This chapter
also qualitatively demonstrated the advantages of thermal model-based capacity estimation
relative to the traditional current-voltage based methodologies.

Chapter 3 investigates an adaptive observer framework for a reduced-order single particle
model couple with diffusion-induced mechanical stress in the electrode solid-phase material.
We motivated the importance of monitoring the mechanical response of electrode materials
since particle fracture due to stress generation is a major source of battery capacity fade.
First, the nonlinear PDE system for the SPM-Stress model is approximated by ODEs using
the finite difference method. Next we designed a nonlinear observer based on the sliding
mode observer for estimating the anode lithium surface concentration from current and
voltage measurements signals. Finally the estimated surface concentration is utilized as a
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pseudo-measurement signal for combined state and parameter estimation in the adaptive
observer, through which the diffusion coefficient and the stress profile are obtained. This
chapter extends the understanding of battery degradation associated with diffusion-induced
stress, thus protects the battery against particle fracture and consequently extends battery
life.

Chapter 4 introduces a novel modeling structure for a battery pack with heterogeneous
cells connected in parallel using a differential-algebraic system. Specifically, this chapter
analyzed the local observability of a parallel structure from the reduced current and voltage
measurements. The designed state observer from this model avoids linearization or canon-
ical transformations, and it only relies on the assumption of Lipschitz nonlinearities. The
resulting state observer benefits from considering the cell currents as algebraic states to
be simultaneously estimated with the differential states. The results provided a guideline
for parallel cell estimation problem which has been overlooked due to multiple unrealistic
assumptions. Further, an interval observer was designed and implemented for estimating
feasible bounds of cell SOCs in a pack when cell uncertainties are accounted for. A major
feature of the proposed interval estimation approach is its scalability, since the number of
states of interval observers is independent of the number of cells in a pack.

Chapter 5 captures the thermal dynamics of a Li-ion battery cell using a reduced-order
high-fidelity semilinear PDE model. The thermal model was formulated such that the non-
linear heat generation is Lipschitz continuous with respect to the system state. The observer
was designed based on the backstepping technique, by converting the error system to a
prescribed stable target system. Without the presence of the uncertainties, it was shown
that the observer error dynamics is exponentially stable. In the presence of uncertainties,
we transformed the uncertainties in the boundary conditions of the target system into the
in-domain dynamics. If the uncertainties are unknown but with appropriate known bounds,
the state estimation error converges to an error ball around the equilibrium point, which is
explicitly characterized in terms of uncertainty bounds, observer parameters, and model pa-
rameters. Ultimately, the knowledge of real-time battery temperature enables safe operation
in battery management systems. From a theoretical point of view, this chapter also made
an invaluable attempt to address the state estimation for a nonlinear parabolic PDE subject
to uncertainties without taking linearization.

Chapter 6 exclusively investigates a class of reaction-advection-diffusion PDE system
subject to boundary disturbance. The mathematical modeling for electrochemical phenom-
ena inside a battery cell generally adopts a diffusion/transport process. Theoretically, we
designed a disturbance estimator for the boundary disturbance in an unstable reaction-
advection-diffusion PDE system, and derived a sufficient condition on the reaction coeffi-
cient, for which the disturbance estimator achieves asymptotic convergence. Subsequently,
we proposed an asymptotically convergent state estimator using the estimated disturbance
signal, adopting the backstepping technique. The results of this paper is crucial for the
active disturbance rejection control where the disturbance estimate is required to attenuate
the actual disturbance in a feedback controller.

In summary, the research reported in this dissertation advances knowledge on the on-
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line model-based adaptive estimation that is crucial in the on-board management for Li-ion
energy storage systems. This dissertation has demonstrated that this task is crucial for
enhancing battery safety, remaining useful lifetime, and subsequent control actions. Impor-
tantly, these theoretical developments take steps towards increasing the adoption of Li-ion
batteries in the large-scale energy storage systems.

7.2 Perspectives on Future Extensions
The proposed modeling framework and resulting algorithms made notable progress towards
intelligently monitoring and managing of battery systems in real time. However, there exist
several opportunities to advance the work presented here.

Electrochemical Modeling

The coupled SPM and Stress model utilized in Chapter 3, which is adopted from [54], is
derived from physical principles relying on an analogy to thermal stress, and provides a
quantitative aggregated stress prediction, which is useful to understand battery SOH as-
sociated with intercalation-induced stress. Opportunities exist for estimator designs based
on improved electrochemical stress models that account for temperature and high current.
Furthermore, the stress-enhanced models need to be validated against experimental stress
data. Towards this goal, there exists a burgeoning body of research on sensors for electrode
stresses, e.g. [12].

Modeling for battery packs naturally inherits a DAE nature as illustrated in Chapter
4. An states estimator based on such descriptor system was possible thanks to the fact
that the input current appears linearly the in the equivalent circuit models. Electrochemical
model-based modeling for packs creates opportunities for estimation and control design for
nonlinear DAEs and partial differential algebraic equations (PDAEs) [173].

Model Observability

It is noted in many previous studies that the battery electrochemical models, e.g. SPM, is not
locally observable from the current and voltage measurements in the linear sense [22, 40, 141,
174]. Many attempts have been proposed to mitigate issue, including representing dynamics
of one electrode as a function of another using conservation of lithium and designing an
open-loop observer for one electrode and a closed-loop estimator for another. However, the
locally unobservable conclusion for the electrochemical models are mostly derived based on
the fact that the observability matrix constructed from the linearized system matrices loses
rank. Local unobservability based linearization does not provide a comprehensive indication
for the observability of the original nonlinear electrochemical models. Potential extensions
on the observability studies could be significant by (i) exploring nonlinear observability, and
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Figure 7.1: A block diagram for electrochemical model-based closed-loop control system [7].

(2) examining the local observability using the linearized system in a more comprehensive
manner.

Battery Pack Modeling and Estimation

It was highlighted in Chapter 4 that battery pack system modeling can be divided into three
categories. The first approach treats the entire pack as one lumped single cell [87]. However,
in practice, some cells are more prone to violate safety-critical constraints than others, which
cannot be resolved from the lumped single cell approach. The second modeling approach
also relies on a single cell model, but it focuses on a set of specific in-pack cells – the weakest
and the strongest ones [85, 88]. The last modeling approach is based on the interconnection
of single cell models [89, 90, 91], which benefit from high fidelity cell-by-cell resolution, but it
might suffer from high real-time computational burden. Similar to Chapter 4, recent works
have been recognizing that parallel-connected cells are as crucial as cells in series, which
involves a more challenging mathematical system [175, 176]. Detailed physical-based cell
models for pack modeling will generate intractable computational burden, whereas empirical
models lose track of the actual electrochemistry. Modeling and estimation tasks for packs
still require careful designs to seek appropriate balances.

Feedback Control

The ultimate objective of a model-based control system in a battery management system is
to close the loop, i.e. optimally control the applied current for some defined objective [177].
One of the examples of such an electrochemical model-based control topology is shown in Fig.
7.1 [7]. The EChem-based Controller in Fig. 7.1 uses the estimated states and parameters,
which is the focus of this dissertation, to determine an optimal current trajectory. To advance
this research, the closed-loop stability must be established for the electrochemical models
[146, 164, 165]
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Appendix A

Well-Posedness for Linear BVP

The following lemma is well-established to deal with the well-posedness of a linear BVP
[171].

Lemma 21. Suppose the BVP under consideration is written in the form

(Hu)(x, t) = F(x, t), (A.1)

where H contains both the differential and boundary operators, and F the data terms compris-
ing the right hand side of the differential equation and the boundary conditions. Moreover,
suppose

1. H is linear.

2. H is inverse monotone: Hv ≥ 0 implies v ≥ 0.

3. A bounded and non-negative comparison function φ(x) exists, such that Hφ(x) ≥ 1 for
all x ∈ [0, 1].

If an appropriate norm ‖ · ‖u is defined such that

−‖F‖u ≤ F ≤ ‖F‖u, (A.2)

then the problem (Hu) = F is well-posed:

−‖F‖uφ ≤ u ≤ ‖F‖uφ (A.3)

at all points x ∈ [0, 1], which means that

max
x∈[0,1]

|u| ≤ γ‖F‖u, (A.4)

where γ = maxx∈[0,1] φ.

The proof of Lemma 21 is omitted here. The detailed steps of the proof can be retrieved
in Section 5.2 of [171].




