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Markov Chain Monte Carlo from Lagrangian Dynamics

Shiwei Lan*, Vasileios Stathopoulos†, Babak Shahbaba*, and Mark Girolami†

* Department of Statistics, University of California, Irvine, Irvine, CA 92697, USA

†Department of Statistical Science, University College London, London, WC1E 6BT, UK

Abstract

Hamiltonian Monte Carlo (HMC) improves the computational e ciency of the Metropolis-Hastings 

algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the 

performance of HMC by exploiting the geometric properties of the parameter space. However, the 

geometric integrator used for RHMC involves implicit equations that require fixed-point 

iterations. In some cases, the computational overhead for solving implicit equations undermines 

RHMC's benefits. In an attempt to circumvent this problem, we propose an explicit integrator that 

replaces the momentum variable in RHMC by velocity. We show that the resulting transformation 

is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. 

Experimental results suggests that our method improves RHMC's overall computational e ciency 

in the cases considered. All computer programs and data sets are available online (http://

www.ics.uci.edu/~babaks/Site/Codes.html) in order to allow replication of the results reported in 

this paper.
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1 Introduction

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987) reduces the random walk behavior of 

the Metropolis-Hastings algorithm by proposing samples that are distant from the current 

state, but nevertheless have a high probability of acceptance. These distant proposals are 

found by numerically simulating Hamiltonian dynamics for some specified amount of 

fictitious time (Neal, 2010). Hamiltonian dynamics can be represented by a function, known 

as the Hamiltonian, of model parameters θ and auxiliary momentum parameters p ~ N(0, M) 

(with the same dimension as θ) as follows:

(1)

where M is a symmetric, positive-definite mass matrix.

Hamilton's equations, which involve di erential equations derived from H, determine how θ 

and p change over time. In practice, however, solving these equations exactly is di cult in 

general, so we need to approximate them by discretizing time, using some small step size ε. 

For this purpose, the leapfrog method is commonly used.
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Hamiltonian dynamics is restricted by the smallest eigen-direction, requiring small step size 

to maintain the stability of the numerical discretization. Girolami and Calderhead (2011) 

propose a new method, called Riemannian HMC (RHMC), that exploits the geometric 

properties of the parameter space to improve the e ciency of standard HMC, especially in 

sampling distributions with complex structure (e.g., high correlation, non-Gaussian shape). 

Simulating the resulting dynamics, however, is computationally intensive since it involves 

solving two implicit equations, which require additional iterative numerical computation 

(e.g., fixed-point iteration).

In an attempt to increase the speed of RHMC, we propose a new integrator that is 

completely explicit: we propose to replace momentum with velocity in the definition of the 

Riemannian Hamiltonian dynamics. As we will see, this is equivalent to using Lagrangian 

dynamics as opposed to Hamiltonian dynamics. By doing so, we eliminate one of the 

implicit steps in RHMC. Next, we construct a time symmetric integrator to remove the 

remaining implicit step in RHMC. This leads to a valid sampling scheme (i.e., converges to 

the true target distribution) that involves only explicit equations. We refer to this algorithm 

as Lagrangian Monte Carlo (LMC).

In what follows, we begin with a brief review of RHMC and its geometric integrator. 

Section 3 introduces our proposed semi-explicit integrator based on defining Hamiltonian 

dynamics in terms of velocity as opposed to momentum. Next, in Section 4, we eliminate 

the remaining implicit equation and propose a fully explicit integrator. In Section 5, we use 

simulated and real data to evaluate our methods’ performance. Finally, in Section 6, we 

discuss some possible future research directions.

2 Riemannian Hamiltonian Monte Carlo

As discussed above, although HMC explores the parameter space more e ciently than 

random walk Metropolis does, it does not fully exploit the geometric properties of parameter 

space defined by the density p(θ). Indeed, Girolami and Calderhead (2011) argue that 

dynamics over Euclidean space may not be appropriate to guide the exploration of parameter 

space. To address this issue, they propose a new method, called Riemannian HMC (RHMC), 

that exploits the Riemannian geometry of the parameter space (Amari and Nagaoka, 2006) 

to improve standard HMC's e ciency by automatically adapting to the local structure. They 

do this by using a position-specific mass matrix M = G(θ). More specifically, they set G(θ) 

to the Fisher information matrix . As a result, 

, and the Hamiltonian is defined as follows:

(2)

where . Based on this Hamiltonian, Girolami and 

Calderhead (2011) propose the following Hamiltonian dynamics on the Riemmanian 

manifold:
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(3)

With the shorthand notation ∂i = ∂/∂θi for partial derivative, the ith element of the vector 

ν(θ , p) is

The above equations of dynamics are non-separable (they contain products of θ and p), and 

the resulting map (θ, p) → (θ*, p*) based on the standard leapfrog method is neither time-

reversible nor symplectic. Therefore, we cannot use the standard leapfrog algorithm 

(Girolami and Calderhead, 2011). Instead, they use the Stömer-Verlet (Verlet, 1967) method 

as follows:

(4)

(5)

(6)

where ε is the size of time step. This is also known as generalized leapfrog, which can be 

derived by concatenating a symplectic Euler-B integrator of (3) with its adjoint symplectic 

Euler-A integrator (See more details in Leimkuhler and Reich, 2004). The above series of 

transformations are (i) deterministic (ii) reversible and (iii) volume-preserving. Therefore, 

the e ective proposal distribution is a delta function δ((θ(1), p(1)), (θ(L+1), p(L+1))) and the 

acceptance probability is simply:

(7)

Here, (θ(1), p(1)) is the current state, and (θ(L+1), p(L+1)) is the proposed sample after L 

leapfrog steps.

As an illustrative example, Figure 1 shows the sampling paths of random walk Metropolis 

(RWM), HMC, and RHMC for an artificially created banana-shaped distribution. (See 

Girolami and Calderhead, 2011, discussion by Luke Bornn and Julien Cornebise.) For this 

example, we fix the trajectory and choose the step sizes such that the acceptance probability 

for all three methods remains around 0.7. RWM moves slowly and spends most of iterations 

at the distribution's low-density tail, and HMC explores the parameter space in an indirect 

way, while RHMC moves directly to the high-density region and explores the distribution 

more e ciently.
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One major drawback of this geometric integrator, which is both time-reversible and volume-

preserving, is that it involves two implicit functions: Equations (4) and (5). These functions 

require extra numerical analysis (e.g. fixed-point iteration), which results in higher 

computational cost and simulation error. This is especially true when solving θ(n+1) because 

the fixed-point iteration for (5) repeatedly inverts matrix G. To address this problem, we 

propose an alternative approach that uses velocity instead of momentum in the equations of 

motion.

3 Moving from Momentum to Velocity

In the equations of Hamiltonian dynamics (3), the term G(θ)−1p appears several times. This 

motivates us to re-parameterize the dynamics in terms of velocity, v = G(θ)−1p. Note that 

this in fact corresponds to the usual definition of velocity in physics, i.e., momentum divided 

by mass. The transformation p → v changes the Hamiltonian dynamics (3) to the following 

form (derivation in Appendix A):

(8)

where η(θ, v) is a vector whose kth element is . Here, 

 are the Christoffel symbols, where gij and gij 

denote (i, j)th element of G(θ) and G(θ)−1 respectively.

This transformation moves the complexity of the dynamics in the first equation for θ to its 

second equation where it spends more time in finding a “good” direction v. By resolving the 

implicitness of updating θ in the generalized leapfrog method, we reduce the associated 

computational cost. Concatenating the Euler-B integrator with its adjoint Euler-A integrator 

(Leimkuhler and Reich, 2004, see also Appendix B) leads to the following semi-explicit 

integrator:

(9)

(10)

(11)

Note that equation (9) updating v remains implicit (more details are available in Appendix 

B).

The introduction of velocity v in place of p is also advocated by Beskos et al. (2011) to 

avoid large variables p for the sake of numerical stability. They consider a constant mass so 

the resulting dynamics is still Hamiltonian. In general, however, the new dynamics (8) 
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cannot be recognized as Hamiltonian dynamics of (θ, v); rather, it is equivalent to the 

following Euler-Lagrange equation of the second kind:

which is the solution to variation of the Lagrangian: . That is, in our 

case,

Therefore, we refer to the new dynamics (8) as Lagrangian dynamics. Although the 

resulting dynamics is not Hamiltonian, it nevertheless remains a valid proposal-generating 

mechanism, which preserves the original Hamiltonian H(θ, p = G(θ)v) (proof in Appendix 

A); thus, the acceptance probability is only determined by the discretization error from the 

numerical integration as usual (to be discussed below).

Because , the distribution of v|θ is . We define the 

energy function E(θ, v) as the sum of the potential energy, U(θ) = − log p(θ) and kinetic 

energy K(θ, v) = − log(p(v|θ)):

(12)

Note that the integrator (9)-(11) is (i) reversible and (ii) energy-preserving up to a global 

error with order , where ε is the step size. (See Proposition 1 in Appendix B and a proof 

of distribution invariance in Appendix B.1.) The resulting map, however, is not volume-

preserving. Therefore, the acceptance probability based on E(θ, v) must be adjusted with the 

determinant of the transformation to ensure that a detailed balance condition is satisfied 

(Peter J. Green, 1995),

where JsLMC is the Jacobian matrix of (θ(1), v(1)) → (θ(L+1), v(L+1)) according to (9)-(11) 

with the following determinant (see more in Appendix B.2):

Here, Ω(θ(n+1), v(n+1/2)) is a matrix whose (i, j)th element is .
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The dynamics is now defined by the semi-explicit integrator (9)-(11). Algorithm 1 (see 

pseudocode in Appendix D) provides the corresponding steps. We refer to this approach as 

semi-explicit Lagrangian Monte Carlo (sLMC), which has a physical interpretation as 

exploring the parameter space along the path on a Riemannian manifold that minimizes the 

action (total Lagrangian). Contrast this to RHMC augmenting parameter space with 

momentum, sLMC augments parameter space with velocity. In Section 5, we use several 

experiments to show that switching from momentum to velocity may lead to improvements 

in computational e ciency in some cases.

4 Explicit Lagrangian Monte Carlo

To further resolve the the remaining implicit equation (9), we modify ηθ(n), v(n+1/2)), to be 

an asymmetric function of both v(n) and v(n+1/2) such that v(n+1/2) can be solved explicitly 

(see details in Appendix C). We now propose a fully explicit integrator for Lagrangian 

dynamics (8) as follows:

(13)

(14)

(15)

In Appendix C.1, we prove that the solution obtained from this integrator numerically 

converges to the true solution of the Lagrangian dynamics. This integrator is (i) reversible 

and (ii) energy-preserving up to a global error with order . The resulting map is not 

volume-preserving as the Jacobian determinant of (θ(1), v(1)) → (θ(L+1), v(L+1)) by (13)-(15) 

is (see details in Appendix C.2):

Here,  denotes G(θ)Ω(θ, v) whose (k, j)th element is equal to , with 

. As a result, the acceptace probability must be 

adjusted as follows:

We refer to this approach that involves a fully explicit integrator (13)-(15) as Lagrangian 

Monte Carlo (LMC). Algorithm 2 (see pseudocode in Appendix D) shows the corresponding 

steps for this method. In both algorithms 1 and 2, the position update is relatively simple 
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while the computational time is dominated by choosing the “right” direction (velocity) using 

the geometry of parameter space. In sLMC, solving θ explicitly reduces computation cost by 

 where F is the number of fixed-point iterations, and D is the number of 

parameters. This is because for each fixed-point iteration, it takes  elementary 

linear algebraic operations to invert G(θ). The connection terms  in  do not add 

substantial computational cost since they are obtained from permuting three dimensions of 

the array ∂G(θ), which is also computed in RHMC. The additional price of determinant 

adjustment is O(D2.373).

LMC avoids the fixed-point iteration method. Therefore, it reduces computation by 

. Further, it resolves possible convergence issues associated with using the 

fixed-point iteration method. However, because it involves additional matrix inversions to 

update v, its benefits could be undermined occasionally. This is evident from our 

experimental results presented in Section 5.

5 Experimental Results

In this section, we use both simulated and real data to evaluate our methods, sLMC and 

LMC, compared to standard HMC and RHMC. Following Girolami and Calderhead (2011), 

we use a time-normalized effective sample size (ESS) to compare these methods. For B 

posterior samples we calculate  for each parameter, where 

 is the sum of K monotone sample autocorrelations (Geyer, 1992). Minimum, 

median, and maximum values of ESS over all parameters are provided for comparing 

different algorithms. More specifically, we use the minimum ESS normalized by CPU time 

(s), min(ESS)/s, as the measure of sampling e ciency. All computer programs and data sets 

discussed in this paper are available online at http://www.ics.uci.edu/~babaks/Site/

Codes.html.

5.1 Simulating a banana-shaped distribution

The banana-shaped distribution, which we used above for illustration, can be constructed as 

the posterior distribution of θ = (θ1, θ2)| based on the following model:

The data  are generated with , σy = 2, and σθ = 1.

As we can see in Figure 2, similar to RHMC, sLMC and LMC explore the parameter space 

efficiently by adapting to its local geometry. Table 1 compares the performances of these 

algorithms based on 20000 MCMC iterations after 5000 burn-in. For this specific example, 

sLMC has the best performance followed by LMC. As discussed above, although LMC is 

fully explicit, its numerical benefits (obtained by removing implicit equations) can be 
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negated in certain examples since it involves additional matrix inversion operations to 

update v. The histograms of posterior samples shown in Figure 3 confirm that our 

algorithms converge to the true posterior distributions of θ1 and θ2, whose density functions 

are shown as red solid curves.

5.2 Logistic Regression Models

Next, we evaluate our methods based on five binary classification problems used in 

Girolami and Calderhead (2011). These are Australian Credit data, German Credit data, 

Heart data, Pima Indian data, and Ripley data. These data sets are publicly available from 

the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml). For each problem, we 

use a logistic regression model,

where yi is a binary outcome for the ith observation, xi is the corresponding vector of 

predictors (with the first element equal to 1), and β is the set of regression parameters.

We use standard HMC, RHMC, sLMC, and LCM to simulate 20000 posterior samples for β. 

We fix the trajectory length for different algorithms, and tune the step sizes so that they have 

comparable acceptance rates. Results (after discarding the initial 5000 iterations) are 

summarized in Table 2, and show that in general our methods improve the sampling 

efficiency measured in terms of minimum ESS per second compared to RHMC on these 

examples.

5.3 Results for Multivariate T-distributions

The computational complexity of standard HMC is . This is substantially lower than 

, which is the computational complexity of the three geometrically motivated 

methods discussed here (RHMC, sLMC, and LMC). On the other hand, these three methods 

could have substantially better mixing rates compared to standard HMC, whose mixing time 

is mainly determined by the condition number of the target distribution defined as the ratio 

of the maximum and minimum eigenvalues of its covariance matrix: λmax/λmin.

In this section, we illustrate how efficiency of these sampling algorithms changes as the 

condition number varies using multivariate t-distributions with the following density 

function:

(16)

where ν is the degrees of freedom and D is the dimension. In our first simulation, we fix the 

dimension at D = 20 and vary the condition number of Σ from 10 to 105. As the condition 

number increases, one can expect HMC to be more restricted by the smallest eigen-

direction, whereas RHMC, sLMC, and LMC would adapt to the local geometry. Results 
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presented Figure 4 (left panel) show that this is in fact the case: for higher conditional 

numbers, geometrically motivated methods perform substantially better than standard HMC. 

Note that our two proposed algorithms, sLMC and LMC, provide substantial improvements 

over RHMC.

For our second simulation, we fix the condition number at 10000 and let the dimension 

changes from 10 to 50. Our results (Figure 4, right panel) show that the gain by exploiting 

geometric properties of the target distribution could be undermined eventually as the 

dimension increases.

5.4 Finite Mixture of Gaussians

Finally we consider finite mixtures of univariate Gaussian components of the form

(17)

where θ is the vector of size D = 3K − 1 of all the parameters g=pk, μk and  and 

 is a Gaussian density with mean μ and variance σ2. A common choice of prior 

takes the form

(18)

where  is the symmetric Dirichlet distribution with parameter λ, and  is the 

inverse Gamma distribution with shape parameter b and scale parameter c.

Although the posterior distribution associated with this model is formally explicit, it is 

computationally intractable, since it can be expressed as a sum of KN terms corresponding to 

all possible allocations of observations xi to mixture components (Marin et al., 2005, chap. 

9). We want to use this model to test the efficiency of posterior sampling θ using the four 

methods. A more extensive comparison of Riemannian Manifold MCMC and HMC, Gibbs 

sampling and standard Metropolis-Hastings for finite Gaussian mixture models can be found 

at Stathopoulos and Girolami (2011). Due to the non-analytic nature of the expected Fisher 

Information, I(θ), we use the empirical Fisher information as metric tensor (McLachlan and 

Peel, 2000, chap. 2),

where N × D score matrix S has elements  and .

We show five Gaussian mixtures in Table 3 and Figure 5 and compare sampling efficiency 

of HMC, RMHMC, sLMC and LMC using simulated datasets in Table 4. As before, our two 

algorithms outperform RHMC.
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6 Conclusions and Discussion

Following the method of Girolami and Calderhead (2011) for more e cient exploration of 

parameter space, we have proposed new sampling schemes to reduce the computational cost 

associated with using a position-specific mass matrix. To this end, we have developed a 

semi-explicit (sLMC) integrator and a fully explicit (LMC) integrator for RHMC and 

demonstrated their advantage in improving computational efficiency over the generalized 

leapfrog (RHMC) method used by Girolami and Calderhead (2011). It is easy to show that if 

G(θ) ≡ M, our method reduces to standard HMC.

Compared to HMC, whose local and global errors are  and  respectively, 

LMC's local error is , and its global error is  (Proof in Appendix C.1). Although 

the numerical solutions converge to the true solutions of the corresponding dynamics at a 

slower rate for LMC compared to HMC, in general, the approximation remains adequate 

leading to reasonably high acceptance rates while providing a more computationally e cient 

sampling mechanism. Compared to RHMC, our LMC method has the additional advantage 

of being more stable by avoiding implicit updates relying on the fixed point iteration 

method: RHMC could occasionally give highly divergent solutions, especially for ill 

conditioned metrics, G(θ).

Future directions could involve splitting Hamiltonian (Dullweber et al., 1987; Sexton and 

Weingarten, 1992; Neal, 2010; Shahbaba et al., 2013) to develop explicit geometric 

integrators. For example, one could split a non-separable Hamiltonian dynamic into several 

smaller dynamics some of which can be solved analytically. A similar idea has been 

explored by Chin (2009), where the Hamiltonian, instead of the dynamic, is split.

Because our methods involve costly matrix inversions, another possible research direction 

could be to approximate the mass matrix (and the Christo el symbols as well) to reduce 

computational cost. For many high-dimensional problems, the mass matrix could be 

appropriately approximated by a highly sparse or structured sparse (e.g., tridiagonal) matrix. 

This could further improve our method's computational efficiency.
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Appendices: Derivations and Proofs

In what follows, we show the detailed derivations of our methods. We adopt Einstein 

notation, so whenever the index appears twice in a mathematical expression, we sum over it: 

e.g., . A lower index is used for the covariant 

tensor, whose components vary by the same transformation as the change of basis (e.g., 

gradient), whereas the upper index is reserved for the contravariant tensor, whose 
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components vary in the opposite way as the change of basis in order to compensate (e.g. 

velocity vector). Interested readers should refer to Bishop and Goldberg (1980).

A Transformation of Hamiltonian dynamic

To derive the dynamic (8) from the Hamiltonian dynamic (3), the first equation in (8) is 

directly obtained from the assumed transformation: θ.k = gklpl = vk. For the second equation 

in (8), we have

Further, from Equation (3) we have

which means

By multiplying G−1 = (gkl) on both sides, we have

(19)

Since i, j are symmetric in the first summand, switching them gives the following equations:

(20)

which in turn gives the final form of Equation (8) after adding equations (19) and (20) and 

dividing the results by two:

Here,  are the Christoffel symbols of second kind.

Note that the new dynamics (8) still preserves the original Hamiltonian H(θ, p = G(θ)v). 

This is of course intuitive, but it also can be proven as follows:
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where  is a vector whose kth element is . The second 0 is due to the 

triple form , where  is the Christoffel symbol 

of first kind with elements .

B Derivation of semi-explicit Lagrangian Monte Carlo (sLMC)

To construct a time-reversible integrator for (8), we concatenate a half step of the following 

Euler-B integrator of (8) (Leimkuhler and Reich, 2004, chap 4):

with another half step of its adjoint Euler-A integrator:

Then we obtain the following semi-explicit integrator:

The resulting integrator, however, is no longer volume-preserving (see subsection B.2). 

Nevertheless, based on proposition 1, we can still have detailed balance after determinant 

adjustment (Also see Peter J. Green, 1995).

Proposition 1 (Detailed Balance Condition with determinant adjustment). Denote z = (θ, v), 

z′ = T̂
L(z) for some time reversible integrator T ̂

L to the Lagrangian dynamic. If the 

acceptance probability is adjusted in the following way:

(21)
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then the detailed balance condition still holds

(22)

Proof.

Note, the acceptance probability should be calculated based on H(θ, G(θ)v). However, it 

could also be calculated as follows based on the energy function E(θ, v) defined in section 3. 

To show their equivalence, we note that  and prove as 

follows:

B.1 Distribution Invariance with Volume Correction

Now with proposition 1 we can prove that the Markov Chain derived by our reversible 

integrator with adjusted acceptance probability (21) converges to the true target density. One 

can also find the similar proof in (Liu, 2001, chap 9).

Starting from position θ~ p(θ|X) at time 0, we generate a velocity . Then 

evolve (θ, v) according to our time reversible integrator T̂ to reach reach a new state (θ*, v*) 

with θ* ~ f(θ*). We want to prove that f(·) = p(·|X), which can be done by showing Ef[h(θ*)] 

= Eθ|X[h(θ*)] for any square integrable function h. Denote z := (θ, v) and 

.

Note that z* = (θ*, v*) can be reached from two scenarios: either the proposal is accepted or 

rejected. Therefore,
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So it suffices to prove

(23)

Denote the involution ν : (θ, v) → (θ, −v). First, by time reversibility we have T̂ −1(z*)) = 

νT̂ν(z*)). Further, we claim . This is true because: i) E is 

quadratic in v so E(ν(z)) = E(z); ii) . Then that follows from 

definition of the adjusted acceptance probability (21) and the equivalence discussed under 

proposition 1. Therefore

(24)

Next, applying the detailed balance condition (22) to ν(z*) we get

substitute it in (24) and continue,

Therefore, Equation (23) holds, and we complete the proof.

B.2 Volume Correction

To adjust volume, we must derive the Jacobian determinant, det , which 

can be calculated using wedge products.

Definition 1 (Differential Forms, Wedge Product). The differential one-form 

on a differential manifold MD is a smooth mapping from tangent space T MD to , which 

can be expressed as a linear combination of di erentials of local coordinates: α = fidxi =: f · 

dx.
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For example, if  is a smooth function, then its directional derivative along a 

vector , denoted by df(v) is given by

then df(·) is a linear functional of v, called the differential of f at z and is an example of a 

differential one-form. In particular, dzi(v) = vi, thus

The wedge Product of two one-forms α, β is a 2-form αΛβ, an anti-symmetric bilinear 

function on tangent space which has the following properties (α, β, γ one-forms, A be a 

square matrix of same dimension D):

• α Λ α = 0

• α Λ (β + γ) = α Λ β + α Λ γ (thus α Λ β = − β Λ α)

• α Λ Aβ = AT α Λ β

The following proposition enables us to calculate the Jacobian determinant denoted as det J.

Proposition 2. Let TL : (θ(1), v(1)) → (θ(L+1), v(L+1)) be evolution of a smooth flow, then

Note that the Jacobian determinant det J can also be regarded as a Radon-Nikodym 

derivative of two probability measures: , where 

. We have

where  is a matrix whose (k, j)th element is . Therefore,
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For volume adjustment, we must use the following Jacobian determinant accumulated along 

the integration steps:

(25)

As a result, the acceptance probability becomes

C Derivation of explicit Lagrangian Monte Carlo (LMC)

To resolve the remaining implicit equation (9), we now propose an additional modification 

motivated by the following relationship (notice the symmetry of lower indices in ):

To keep time-reversibility, we make the modification to both (9) and (11) as shown below:

(26)

(27)

(28)

The time-reversibility of the integrator (26)-(28) can be shown by switching (θ, v)(n+1) and 

(θ, v)(n) and negating velocity. The resulting integrator is completely explicit since both 
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updates of velocity (26) and (28) can be solved by collecting terms containing v(n+1/2) and 

v(n+1) respectively:

(29)

(30)

C.1 Convergence of Numerical Solution

We now show that the discretization error 

 (i.e. the difference between the true 

solution and the numerical solution) accumulated over final time interval [0, T ] is bounded 

and goes to zero as the stepsize ε goes to zero. (See Leimkuhler and Reich (2004) for a 

similar proof for the generalized leapfrog method.) Here, we assume that 

 is smooth; hence, f and its derivatives are uniformly 

bounded as (θ, v) evolves within finite time duration T . We expand the true solution z(tn+1) 

at tn:

Next, we simplify the expression of the numerical solutions  for the fully 

explicit integrator and compare it to the above true solutions. To this end, we rewrite 

equation (29) as follows:

Similarly, from equation (30) we have
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Substituting v(n+1/2) in the above equation, we obtain v(n+1) as follows:

From (29), (27), and (30), we have the following numerical solution:

Therefore, the local error is

where  for some constant c > 0. Accumulating the local 

errors by iterating the above inequality for L = T/ε steps provides the following global error:

C.2 Volume Correction

As before, using the wedge product on the system (29), (27), and (30), the Jacobian matrix is

As these new equations show, our derived integrator is not symplectic so the acceptance 

probability needs to be adjusted by the following Jacobian determinant, det J, in order to 

preserve the detailed balance condition:
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(31)

As a result, the acceptance probability is

D Pseudocodes
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Figure 1. 
The first 10 iterations in sampling from a banana shaped distribution with random walk 

Metropolis (RWM), Hamiltonian Monte Carlo (HMC), and Riemannian HMC (RHMC). For 

all three methods, the trajectory length (i.e., step size ε times number of integration steps L) 

is set to 1. For RWM, L=17, for HMC, L=7, and for RHMC, L=5. Solid red lines are the 

sampling paths, and black circles are the accepted proposals.
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Figure 2. 
The first 10 iterations in sampling from the banana-shaped distribution with Riemannian 

HMC (RHMC), semi-explicit Lagrange Monte Carlo (sLMC) and explicit LMC (LMC). For 

all three methods, the trajectory length (i.e., step size times number of integration steps) is 

set to 1.45 and number of integration steps is set to 10. Solid red lines show the sampling 

path, and each point represents an accepted proposal.
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Figure 3. 
Histograms of 1 million posterior samples of θ1 and θ2 for the banana-shaped distribution 

using RHMC (left), sLMC (middle) and LMC (right). Solid red curves are the true density 

functions.
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Figure 4. 
Left: Sampling efficiency, Min(ESS)/s vs. the condition number for a fixed dimension (D = 

20). Right: Sampling efficiency vs dimension for a fixed condition number (λmax/λmin = 

10000). Each algorithm is tuned to have an acceptance rate around 70%. Results are based 

on 5000 samples after discarding the initial 1000 samples.
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Figure 5. 
Densities used to generate synthetic datasets. From left to right the densities are in the same 

order as in Table 3. The densities are taken from McLachlan and Peel (2000)
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Lan et al. Page 26

Table 1

Comparing alternative methods using a banana-shaped distribution. For each method, we provide the 

acceptance probability (AP), the CPU time (s) for each iteration, ESS (min., med., max.) and the time-

normalized ESS.

Method AP s ESS min(ESS)/s

HMC 0.79 6.96e-04 (288,614,941) 20.65

RHMC 0.78 4.56e-03 (4514,5779,7044) 49.50

sLMC 0.84 7.90e-04 (2195,3476,4757) 138.98

LMC 0.73 7.27e-04 (1139,2409,3678) 78.32
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Table 2

Comparing alternative methods using five binary classification problems discussed in Girolami and 

Calderhead (2011). For each dataset, the number of predictors, D, and the number of observations, N, are 

specified. For each method, we provide the acceptance probability (AP), the CPU time (s) for each iteration, 

ESS (min., med., max.) and the time-normalized ESS.

Data method AP s ESS min(ESS)/s

Australian D=14,N=690 HMC 0.75 6.13E-03 (1225,3253,10691) 13.32

RHMC 0.72 2.96E-02 (7825,9238,9797) 17.62

sLMC 0.83 2.17E-02 (10184,13001,13735) 31.29

LMC 0.75 1.60E-02 (9636,10443,11268) 40.17

German D=24,N=1000 HMC 0.74 1.31E-02 (766,4006,15000) 3.90

RHMC 0.76 6.55E-02 (14886,15000,15000) 15.15

sLMC 0.71 4.13E-02 (13395,15000,15000) 21.64

LMC 0.70 3.74E-02 (13762,15000,15000) 24.54

Heart D=13,N=270 HMC 0.71 1.75E-03 (378,850,2624) 14.44

RHMC 0.73 2.12E-02 (6263,7430,8191) 19.68

sLMC 0.77 1.30E-02 (10318,11337,12409) 52.73

LMC 0.76 1.15E-02 (10347,10724,11773) 59.80

Pima D=7,N=532 HMC 0.85 5.75E-03 (887,4566,12408) 10.28

RHMC 0.81 1.64E-02 (4349,4693,5178) 17.65

sLMC 0.81 8.98E-03 (4784,5437,5592) 35.50

LMC 0.82 7.90E-03 (4839,5193,5539) 40.84

Ripley D=2,N=250 HMC 0.88 1.50E-03 (820,3077,15000) 36.39

RHMC 0.74 1.09E-02 (12876,15000,15000) 78.83

sLMC 0.80 6.79E-03 (15000,15000,15000) 147.38

LMC 0.79 5.36E-03 (12611,15000,15000) 157.02
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Lan et al. Page 28

Table 3

Densities used for the generation of synthetic Mixture of Gaussian data sets.

Dataset name Density function Num. of parameters

Kurtotic 2
3

N(x ∣ 0, 1) +
1
3

N(x ∣ 0, ( 1
10 )2) 5

Bimodal 1
2

N(x ∣ − 1, ( 2
3 )2) +

1
2

N(x ∣ 1, ( 2
3 )2) 5

Skewed 3
4

N(x ∣ 0, 1) +
1
4

N(x ∣ 3
2

, ( 1
3 )2) 5

Trimodal 9
20

N(x ∣ −
6
5

, ( 3
5 )2) +

9
20

N(x ∣ 6
5

, ( 3
5 )2) +

1
10

N(x ∣ 0, ( 1
4 )2) 8

Claw 1
2

N(x ∣ 0, 1) + ∑i=0
4 1

10
N(x ∣ i

2
− 1, ( 1

10 )2) 17
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Table 4

Acceptance probability (AP), seconds per iteration (s), ESS (min., med., max.) and time-normalized ESS for 

Gaussian mixture models. Results are calculated on a 5,000 sample chain with a 5,000 sample burn-in session. 

For HMC the burn-in session was 20,000 samples in order to ensure convergence.

Data Method AP s ESS min(ESS)/s

claw HMC 0.88 7.01E-01 (1916, 3761, 4970) 0.54

RHMC 0.80 5.08E-01 (1524, 3474, 4586) 0.60

sLMC 0.86 3.76E-01 (2531, 4332, 5000) 1.35

LMC 0.82 2.92E-01 (2436, 3455, 4608) 1.67

trimodal HMC 0.77 3.43E-01 (2244, 2945, 3159) 1.30

RHMC 0.79 9.94E-02 (4701, 4928, 5000) 9.46

sLMC 0.82 4.02E-02 (4978, 5000, 5000) 24.77

LMC 0.80 4.84E-02 (4899, 4982, 5000) 20.21

skewed HMC 0.83 1.78E-01 (2915, 3237, 3630) 3.27

RHMC 0.85 5.10E-02 (5000, 5000, 5000) 19.63

sLMC 0.82 2.26E-02 (4698, 4940, 5000) 41.68

LMC 0.84 2.52E-02 (4935, 5000, 5000) 39.09

kurtotic HMC 0.78 2.85E-01 (3013, 3331, 3617) 2.11

RHMC 0.82 4.72E-02 (5000, 5000, 5000) 21.20

sLMC 0.85 2.54E-02 (5000, 5000, 5000) 39.34

LMC 0.81 2.70E-02 (5000, 5000, 5000) 36.90

bimodal HMC 0.73 1.61E-01 (2923, 2991, 3091) 3.62

RHMC 0.86 5.38E-02 (5000, 5000, 5000) 18.56

sLMC 0.81 2.06E-02 (4935, 4996, 5000) 48.00

LMC 0.85 2.06E-02 (5000, 5000, 5000) 46.43
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Algorithm 1

Semi-explicit Lagrangian Monte Carlo (sLMC)

Initialize θ(1) = current θ

Sample new velocity v(1) ~ N(0, G-1(θ(1)))

Calculate current E(θ(1), v(1)) according to equation (12)

for n = 1 to L (leapfrog steps) do

    % Update the velocity with fixed point iterations

        v̂
(0)

= v
(n)

    for i = 1 to NumOfFixedPointSteps do

                v̂
(i) = v

(n)
−

ε
2

G(θ (n))−1 (v̂(i−1))TΓ
~(θ (n))v̂(i−1)

+ ∇θ ϕ(θ (n))

        end for

        v
(n+1∕2)

= v̂
(last i)

    % Update the position only with simple one step

        θ (n+1) = θ (n) + εv
(n+1∕2)

        Δ log detn = log det(I − εΩ(θ (n+1), v
(n+1∕2))) − log det(I + εΩ(θ (n), v

(n+1∕2)))

    % Update the velocity exactly

        v
(n+1)

= v
(n+1∕2)

−
ε
2

G(θ (n+1))−1 (v(n+1∕2))TΓ
~(θ (n+1))v(n+1∕2)

+ ∇θ ϕ(θ (n+1))

end for

Calculate proposed E(θ(L+1) , v(L+1)) according to equation (12)

logRatio = − ProposedH + CurrentH + ∑n=1
N Δ log detn

Accept or reject the proposal (θ(L+1), v(L+1)) according to logRatio
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Algorithm 2

Explicit Lagrangian Monte Carlo (LMC)

Initialize θ(1) = current θ

Sample new velocity v(1) ~ N(0, G(θ(1))-1)

Calculate current E(θ(1), v(1)) according to equation (12)

Δ log det = 0

for n = 1 to L do

        Δ log det = Δ log det − log det(G(θ (n)) + ε ∕ 2Ω
~(θ (n)

, v
(n)))

    % Update the velocity explicitly with a half step:

        v
(n+1∕2)

= G(θ (n)) +
ε
2
Ω
~(θ (n)

, v
(n))

−1
G(θ (n))v(n)

−
ε
2
∇θ ϕ(θ (n))

        Δ log det = Δ log det + log det(G(θ (n)) − ε ∕ 2Ω
~(θ (n), v

(n+1∕2)))
    % Update the position with a full step:

        θ (n+1)
= θ (n)

+ εv
(n+

1
2 )

        Δ log det = Δ log det + log det(G(θ (n+1)) − ε ∕ 2Ω
~(θ (n+1), v

(n+1∕2)))
    % Update the velocity explicitly with a half step:

        v
(n+1)

= G(θ (n+1)) +
ε
2
Ω
~(θ (n+1)

, v
(n+1∕2))

−1
G(θ (n+1))v(n+1∕2)

−
ε
2
∇θ ϕ(θ (n+1))

        Δ log det = Δ log det + log det(G(θ (n+1)) − ε ∕ 2Ω
~(θ (n+1)

, v
(n+1)))

end for

Calculate proposed E(θ(L+1) , v(L+1)) according to equation (12)

logRatio = -ProposedE + CurrentE + Alogdet

Accept or reject the proposal (θ(L+1) , v(L+1)) according to logRatio
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