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Neurons are large eukaryotic cells with high metabolic demands. Intracellular transport

plays an important role in maintaining metabolic functioning in neurons despite heterogeneous

spatio-temporal energetic demands. Mitochondria are the primary source of ATP in neurons

and are distributed through motor-driven transport along neuronal cytoskeleton from the cell

body of the neuron (soma) to long neuronal projections (axons and dendrites). Transport-based

organization of mitochondria is regulated through a combination of mechanisms that control

mitochondrial dynamics and its interplay with neuronal cytoskeleton.

One important regulatory mechanism is the control of mitochondrial motility through

molecules such as glucose and Calcium that are localized to high metabolic activity regions in

xiv



axons. In Chapter 2, we use a reaction-diffusion framework to analyze how glucose-regulated

mitochondrial motility can be an effective mechanism within physiological limits to adapt

metabolic organization to increase mitochondrial glucose turnover.

While local changes in motor activity of mitochondria create local stationary populations

to service high-demand sites, there is still the issue of how mitochondrial populations across

the long length scales of neuronal projections are maintained at varying distances from the

soma throughout neuronal lifetimes. In Chapter 3, we develop a quantitative framework to

understand how mitochondrial dynamics of transport, fusion-fission and mitophagy, can be tuned

to optimize the distribution of healthy mitochondria throughout interspersed sites located in long

and occasionally branched axonal projections.

On longer length scales, axons and dendrites have interesting branched morphologies.

Mitochondrial distribution patterns need to be robust to variations in subtree morphologies in

dendrites so that distal branches with high metabolic activity have equitable but increased supply

of mitochondria. In Chapter 4, we show that a combination of morphological scaling rules and

mitochondrial transport behavior can explain how mitochondria are ‘equitably’ distributed in a

Drosophila HS dendritic tree yet still maintaining increased densities in distal tips. Our predicted

laws are corroborated by experimental observations of dendritic morphology and mitochondrial

motility.

This dissertation combines various quantitative models at different scales in neurons to

understand how mitochondrial distribution patterns can lead to robust metabolic fulfilment in

neurons.
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Chapter 1

Introduction

Neurons are one of the most metabolically active cells in our body. Several neuronal

processes, such as synaptic transmission [212], neurotransmitter recycling [165] and generation

of axonal action potentials [108] have high ATP demands. The problem of energetic fulfilment

is further compounded by the long length scales of neuronal projections (hundreds of microns

to meters long) and spatio-temporal specificity of metabolic demands in neurons. For example,

presynaptic boutons and dendritic spines need large amounts of ATP during synaptic firing and

integration processes. However these sites can have interspersed locations at long distances from

the neuronal cell body (soma). The length scales between these sites are often larger than the

diffusivities of ATP and glucose [134], thus necessitating active redistribution of intracellular

components to maintain metabolic sufficiency. In addition, the time-sensitive nature of neuronal

processes [201] also requires robustness in metabolic organization.

Like most large eukaryotic cells, neurons have a large number of mitochondria positioned

throughout their extent to supply ATP in a timely and reliable manner [239]. In addition to

providing the bulk of ATP required by neurons, mitochondria are also involved in calcium

buffering important for intracellular processes[159]. Since mitochondria originate from the

soma, with replication not observed outside of the cell body [40], they are distributed to axons

and dendrites through active transport along microtubules forming neuronal cytoskeleton. The

resulting distribution patterns of stationary and motile mitochondrial pools in axons and dendrites
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is tuned to ensure proper servicing of high metabolic activity regions such as presynaptic boutons,

dendritic spines and nodes of Ranvier [166].

To create and maintain optimal distribution of mitochondria in neurons, several regulatory

mechanisms have been proposed. Mitochondrial motility has been observed to be modified

by substrates such as Ca+2 [216] and glucose [153], which, in turn, are regulated by neuronal

activity [8, 119]. Ca+2 binds to mitochondrial motor adapters to prevent kinesin binding to

microtubules, resulting in mitochondrial stopping [216]. Increased glucose concentrations at

locations of dense glucose entry channels at high demand regions lead to mitochondrial arrest

through action of Glucose to ATP pathway intermediates on mitochondrial motor adapters [153].

Such transport-regulation mechanisms ensure that stationary populations of mitochondria are

located at metabolic activity site to maintain a reliable supply of ATP. In Chapter 2, we use a

quantitative model with a reaction-diffusion formalism to delineate the physical limits of glucose-

dependent mitochondrial motility in being an effective mechanism in neurons. We find that

intracellular glucose concentrations are poised at the critical limit where this particular control

mechanism can be beneficial. We show that under physiological conditions, the distribution

changes caused due to glucose-mediated mitochondrial halting can lead to a significant increase

in glucose turnover.

Once an adequate distribution of mitochondria is established, it is also important that these

mitochondria remain functional throughout the lifetime of a neuron. Mitochondrial health may

degrade over hours due to protein degradation and oxidation [43]. On the other hand, neuronal

lifetimes are much longer. Mitochondria are stationed for long periods of time at locations far

away from the soma while they undergo degradation and reduction in ATP production capacity.

To address this problem, several quality control mechanisms have been proposed. Interactions

of stationary mitochondria with the small motile population through transient fusion events

and occasional replacement can lead to long-term equilibration of health levels between the

relatively-younger motile population of mitochondria and the stationary pool, thereby optimizing

overall mitochondrial quality. Some unhealthy mitochondria can also be primed for degradation
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and removed from the mitochondrial pool to further optimize the quality of the pool throughout

the long lengths of axonal and dendritic domains. Thus, mitochondrial transport and fission-

fusion dynamics need to be tuned to ensure a distribution of healthy mitochondria throughout

the extended and branched morphology of neuronal projections. In Chapter 3, we develop a

quantitative framework to explore how a healthy population of mitochondria can be maintained

across interspersed demand sites in neurons, through a combination of interaction dynamics

and selective turnover through mitophagy. We find that a low number of interaction events as

well as a high stationary fraction of mitochondria optimize overall and distal mitochondrial

health over a long range of degradation rates for mitochondrial components. These optimizing

parameters don’t change even if we introduce small amounts of local translation, which is another

mechanism that could be employed towards mitochondrial health maintenance. We also show

that stochastic interchange of motile and stationary mitochondria as well as transient fusion

events both lead to similar steady-state health levels of mitochondria, but transient fusion could

be more robust in mitochondrial health maintenance. We also show that introducing small levels

of mitophagy can significantly enhance mitochondrial health when coupled with mitochondrial

dynamics, but transient fusion events are better at leveraging mitophagy for quality control.

Neuronal projections over small length scales appear as simple linear domains, but over

longer length scales they tend to have branched structures. Dendritic trees, in particular, have a

complex tree-like morphology over short distances from the soma. Dendritic spines, that connect

to presynaptic terminals, tend to be localized in the distal branches of dendrites. Mitochondria

need to be distributed in such a way that these distal branches, irrespective of the parent tree

structure, have balanced fulfilment of metabolic needs. In Chapter 4, we show that a combination

of morphological scaling rules for dendritic trees and mitochondrial transport behavior can

explain how mitochondria can be ‘equitably’ distributed in a Drosophila HS dendritic tree while

still making sure distal mitochondrial densities increase away from the soma, despite variations

in subtree morphology. These laws are corroborated by experimental measurements of dendritic

morphology and mitochondrial motility in HS neurons.
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This thesis aims to highlight some quantitative frameworks to understand how neurons

maintain metabolic sufficiency and flexibility through mitochondrial transport regulation and

organization. In addition, we also analyze the interplay of transport and morphology as another

lens for intracellular organization. Broadly, this work provides an example of how intracellular

organization, regulated through a combination of morphology and transport [2], forms an

important part of the metabolic compartmentalization strategy in eukaryotic cells especially

neural cells.
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Chapter 2

Spatial Control of Neuronal Metabolism
Through Glucose-Mediated Mitochondrial
Transport Regulation

2.1 Abstract

Eukaryotic cells modulate their metabolism by organizing metabolic components in

response to varying nutrient availability and energy demands. In mammalian axons, mitochondria

respond to glucose levels by halting active transport in high glucose regions. We employ

quantitative modeling to explore physical limits on spatial organization of mitochondria and

localized metabolic enhancement through regulated stopping of processive motion. We delineate

the role of key parameters, including cellular glucose uptake and consumption rates, that are

expected to modulate mitochondrial distribution and metabolic response in spatially varying

glucose conditions. Our estimates indicate that physiological brain glucose levels fall within

the limited range necessary for metabolic enhancement. Hence mitochondrial localization is

shown to be a plausible regulatory mechanism for neuronal metabolic flexibility in the presence

of spatially heterogeneous glucose, as may occur in long processes of projection neurons.

These findings provide a framework for the control of cellular bioenergetics through organelle

trafficking.
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2.2 Introduction

Cellular metabolism comprises an intricate system of reactions whose fine-tuned control

is critical to cell health and function. A number of quantitative studies have focused on metabolic

control through modulating reactant and enzyme concentrations and turnover rates [66, 3].

However, these studies generally neglect the spatial organization of metabolic components within

the cell. By localizing specific enzymes in regions of high metabolic demand[102, 233], as well

as clustering together consecutively acting enzymes[146], cells have the potential to substantially

enhance their metabolism.

Spatial organization is particularly critical in highly extended cells, such as mammalian

neurons, whose axons can grow to lengths on the meter scale. Metabolic demand in neurons

is spatially and temporally heterogeneous, with especially rapid ATP turnover found in the

presynaptic boutons[165], and ATP requirements peaking during synaptic activity and neuronal

firing[189, 53, 220]. Neurons rely primarily on glucose as the energy source for meeting these

metabolic demands[154]. Due to the long lengths of neural processes, the glucose supply can

vary substantially over different regions of the cell[53, 220, 70]. In myelinated neurons, for

instance, it has been speculated that glucose transport into the cell is localized primarily to narrow

regions around the nodes of Ranvier[121, 72, 169], which can be spaced hundreds of microns

apart[81, 20]. Glucose transporters in neurons have also been shown to dynamically mobilize

to active synapses, providing a source of intracellular glucose heterogeneity[8].Furthermore,

varying levels of activity in the mammalian brain may lead to varying extracellular glucose levels,

resulting in spatially heterogeneous nutrient access[76]. Individual axons have been shown to

span across multiple regions of the brain[131], enabling them to encounter regions with different

glucose concentrations.

Most ATP production in neurons occurs within mitochondria: motile organelles that range

from interconnected networks to individual globular structures that extend throughout the cell.

As energy powerhouses and metabolic signaling centers of the cell, mitochondria are critical for
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neuronal health [145]. Their spatial organization within the neuron plays a pivotal role in growth

and cell physiology [111]. Defects in mitochondrial transport are involved in the pathologies of

several neurological disorders such as peripheral neuropathy and Charcot-Marie-Tooth disease

[11, 12].

A number of studies have shown that mitochondria are localized preferentially to regions

of high metabolic demand, such as the synaptic terminals [111, 28]. Such localization can

occur via several molecular mechanisms, mediated by the Miro-Milton mitochondrial motor

adaptor complex that links mitochondria to the molecular motors responsible for transport[136].

Increased Ca2+ levels at active synapses lead to loading of calcium binding sites on Miro,

releasing mitochondria from the microtubule and thereby halting transport[216, 119]. High

glucose levels can also lead to stalling, through the glycosylation of motor adaptor protein Milton

by the glucose-activated enzyme O-GlcNAc transferase (OGT)[153]. This mechanism has been

shown to lead to mitochondrial accumulation at glucose-rich regions in cultured neurons[153]. It

is postulated to regulate mitochondrial spatial distribution, allowing efficient metabolic response

to heterogeneous glucose availability.

Mitochondrial positioning relies on an interplay between heterogeneously distributed

diffusive signaling molecules (such as Ca2+ and glucose), their consumption through metabolic

and other pathways, and their effect on motor transport kinetics. While the biochemical mecha-

nisms and physiological consequences of mitochondrial localization have been a topic of much

interest in recent years[118, 136], no quantitative framework for this phenomenon has yet been

developed.

In this work we focus on glucose-mediated regulation of mitochondrial transport, de-

veloping quantitative models to examine the consequences of this phenomenon for metabolism

under spatially varying glucose conditions. Our approach relies on a reaction-diffusion for-

malism, which describes the behavior of species subject to both consumption and diffusion.

Reaction-diffusion systems have been applied to describe the spatial organization of a broad

array of cellular processes[96], ranging from protein oscillations in E. coli[80], to coordination of
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Figure 2.1. Schematic diagram of our simplified model for glucose-mediated mitochondrial
transport regulation.
(a) Myelinated axonal region, with glucose entry localized at the nodes of Ranvier. Mitochondria
accumulate at nodes due to the higher glucose concentration (b) Unmyelinated axonal region,
subject to a linear glucose gradient. Glucose permeability is uniform throughout, with mitochon-
drial accumulation occuring at the region of high external glucose (c) Key steps of the metabolic
pathway linking glucose availability and mitochondrial halting. (d) Mitochondrial transport
states and rates of transition between them (W± represents retrograde and anterograde motion, S
represents the stationary state).

mitotic signalling[29], to pattern formation in developing embryos[18, 65]. The response of ac-

tively moving particles to spatially heterogeneous, diffusive regulators has also been extensively

investigated in the context of chemotaxis[208]. In contrast to most chemotactic cells, however,

mitochondria have no currently known mechanism for directly sensing glucose gradients. Instead,

they are expected to accumulate in response to local glucose concentration only. Our goal is to

delineate the regimes in which such a crude form of chemotaxis can lead to substantial spatial

organization and enhancement of metabolism.

Specifically, we model the modulation of mitochondrial density with glucose concen-

tration in a tubular axonal region, focusing on two forms of spatial heterogeneity. In one case,

we consider an axonal domain between two localized regions of glucose entry, representing the

internodal region between nodes of Ranvier in myelinated neurons (Fig. 2.1a). The second case

focuses on an unmyelinated cellular region with continuous glucose permeability, embedded in
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an external glucose gradient (Fig. 2.1b). In both cases, we show that mitochondrial accumulation

and enhanced metabolic flux is expected to occur over a limited range of glucose concentrations,

which overlaps with physiological brain glucose levels. Our simplified quantitative model allows

identification of a handful of key parameters that govern the extent to which glucose-mediated

mitochondrial halting can modulate metabolism. We establish the region of parameter space

where this mechanism has a substantial effect, and highlight its potential importance in neuronal

metabolic flexibility and ability to respond to spatially varying glucose.

2.3 Results

2.3.1 Minimal model for mitochondrial and glucose dynamics

We begin by formulating a quantitative model to describe the spatial localization of

mitochondria that halt in a glucose-dependent manner, in the presence of localized sources of

glucose. This situation arises in myelinated neurons, which have glucose transporters enriched

at the nodes of Ranvier, leading to highly localized sources of glucose spaced hundreds of

micrometers apart within the cell[171].

Neuronal glucose transporters are known to be bidirectional[192], allowing glucose

concentration within the cell to equilibrate with external glucose. For simplicity, we assume rapid

transport of glucose through these transporters, so that the internal concentration of glucose at

the nodes where transporters are present is assumed to be fixed. The cellular region between two

glucose sources is modeled as a one-dimensional interval of length L with glucose concentration

fixed to a value c0 at the interval boundaries (Fig.2.1a). Glucose diffuses throughout this interval

with diffusivity D, while being metabolized by hexokinase enzyme in the first step of mammalian

glucose utilization (Fig. 2.1c) [224].

The concentration of glucose is thus governed by the reaction-diffusion equation,

dG
dt

= D
∂ 2G
∂x2 − k(x)G(x) (2.1)
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where k(x) describes the spatial distribution of the hexokinase enzyme as well as the rate of

consumption. In the case of spatially uniform, linear consumption [k(x) = k, a constant] this

equation can be solved directly, yielding a distribution of glucose that falls exponentially from

each source boundary, with a decay length λ =
√

D/k [93].

Hexokinase 1 (HK1), the predominant form of hexokinase expressed in neurons, is known

to localize preferentially to mitochondria[84], which in mammalian axons can form individual

organelles approximately 1µm in length[51]. We carry out numerical simulations of Eq. 2.1

where consumption is limited to locations of individual discrete mitochondria, represented

by short intervals of length ∆. Specifically, we define the mitochondria density as M(x) =

n(x)/(πr2∆), where n(x) is the number of mitochondria overlapping position x, and r is the

axon radius. The phosphorylation of glucose by mitochondrial hexokinase is assumed to follow

Michaelis-Menten kinetics, described by

k(x) =
kgM(x)

G(x)+KM
, (2.2)

where KM is the saturation constant and kg is the turnover rate of glucose (per unit time per

mitochondrion). The turnover rate kg incorporates both the catalytic rate of hexokinase and

the number of hexokinase enzymes per mitochondrion. This expression reduces to the case of

constant linear consumption when glucose concentration is low (G� KM) and mitochondria are

uniformly distributed throughout the region.

In general, glucose consumption depends on the location of mitochondria within the

domain. Mitochondrial distribution in neurons is known to be mediated through regulation

of their motor-driven motility[28, 153]. Individual mitochondria switch between processively

moving and paused states, modulated by the interplay between kinesin and dynein motors and

the adaptor proteins that link these motors to the mitochondria[181]. In our model, we simulate

mitochondria as stochastically switching between a processive walking state that moves in either

direction with velocity v and a stationary state. The rate of initiating a walk (kw) is assumed to be
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constant, while the halting rate (ks(x)) can be spatially heterogeneous. For simplicity, we assume

the mitochondria are equally likely to move in the positive (+) or negative (-) direction each time

they initiate a processive walk (Fig. 2.1b).

It has recently been demonstrated that the key motor adaptor protein (Milton) is sensitive

to glucose levels, halting mitochondrial motility when it is modified through O-GlcNAcylation

by the OGT enzyme[153]. Our model employs a highly simplified description of mitochondrial

dynamics, which assumes that all pauses are associated with such an O-GlcNAcylation event.

Recovery from the pause at the constant rate kw corresponds to removal of the modification

through the activity of the complementary enzyme O-GlcNAcase (OGA). Although there is evi-

dence indicating long-term glucose deprivation can reduce OGA expression[240], for simplicity

we assume in our model that OGA activity is independent of glucose levels. In vivo axonal

mitochondria have been observed to undergo short-lived sporadic pausing while continuing to

move processively in their previous anterograde or retrograde direction[170, 216]. Such pauses

are subsumed into an effective processive velocity v in our model. Other sources of pausing,

such as Ca2+-regulated motor disengagement, PINK1/Parkin-mediated detachment of motors,

and anchoring to the microtubules by syntaphilin [181], are not considered here in order to focus

specifically on the effect of glucose-dependent mitochondrial spatial organization.

Upon entry into the cell, the first rate-limiting step of glucose metabolism is its conversion

into glucose-6-phosphate by hexokinase. Further downstream metabolic pathways split, with

much of the flux going to glycolysis while a small fraction is funneled into the pentose phosphate

pathway and the hexosamine biosynthetic pathway (HBP). The HBP produces UDP-GlcNAc,

the sugar substrate for O-GlcNAcylation (Fig. 2.1c)[75]. In our model, we assume that the rate

of UDP-GlcNAc production equals the rate of glucose conversion by hexokinase, scaled by the

fraction of G6P that is channeled into the hexosamine biosynthetic pathway. This assumption is

valid if, at each point of pathway branching, the Michaelis-Menten saturation constants for the

two branches are similar. This in fact appears to be the case for both the branching of the pentose

phosphate pathway and glycolysis from the hexosamine biosynthetic pathway which is the focus
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Figure 2.2. Glucose and mitochondrial distributions from simulations compared with numerical
calculations.
(a) Glucose distribution and position of individual mitochondria (b) Normalized itochondrial
distribution, M(x)/M, obtained from simulating discrete mitochondrial motion (histogram
compiled from 100 independent simulations), compared to numerical calculation of steady state
continuous mitochondrial disribution (black curve). Results shown are for parameter values:
λ̂ = 0.08, ĉ0 = 1, k̂s = 100.
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of this work (see Appendix A.2). Consequently, saturation of the initial glucose conversion

step will imply saturation of the entire hexosamine biosynthetic pathway. We therefore model

the kinetics of Milton modification using the same Michaelis-Menten form as for hexokinase

activity, with the pathway flux leading to Milton modification subsumed within a rate constant

for mitochondrial stopping (ks).

We note that the subcellular organization of the intermediates in the conversion from

glucose into O-GlcNAcylated Milton is largely unknown. In our model, we make the extreme

case assumption that all intermediates are localized to mitochondria, with only the initial glucose

substrate capable of diffusing through the cytoplasm. We note that cytoplasmic diffusion of

any of the pathway intermediates would attenuate the effect on mitochondrial localization. Our

simplified model thus gives an upper limit on the extent to which mitochondria can localize at

high glucose regions through the Milton modification mechanism. Following these simplified

assumptions, we treat the kinetics of mitochondrial halting as dependent only on the local glucose

concentration, according to the functional form

ks(x) =
ksG(x)

G(x)+KM
, (2.3)

where KM is the Michaelis-Menten constant of hexokinase.

We proceed to evolve the simulation forward in time, with glucose consumption localized

to regions within±∆/2 of each discrete mitochondrial position (details in Materials and Methods).

A snapshot of one simulation run is shown in Fig. 2.2a, highlighting the accumulation of

stationary mitochondria in the high glucose regions near the ends of the domain.

We are interested primarily in investigating the steady-state distribution of mitochondria

and glucose in this system, averaged over all possible mitochondrial trajectories. We thus

proceed to coarse-grain our model by treating the distribution of mitochondria as a continuous

field M(x) =W+(x)+W−(x)+S(x), where W+(x) is the distribution of mitochondria walking

in the positive direction, W−(x) is the distribution of those walking in the negative direction,
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Table 2.1. Physiological parameter values estimated from published data for Chapter 2

cytoplasmic glucose diffusivity D 140µm2/s
glucose turnover per mitochondrion kg 1.3×105s−1

axon radius r 0.4µm
internodal distance L 250µm
mitochondrial density M 0.3µm−3

hexokinase Michaelis-Menten constant KM 0.03mM
brain glucose levels c0 0.7−1.3mM
ratio of stopped to moving mitochondria at high glucose ks/kw 19
glucose permeability P 20nm/s
glucose transporter (GLUT3) Michaelis-Menten constant KMP 3mM

Source: see Appendix A.1 for details of parameter estimates.

and S(x) is the distribution of stationary mitochondria. We can then write down the coupled

differential equations governing the behavior of the mitochondrial distributions as:

dW+

dt
=−v

∂W+

∂x
− ks(x)W++

kwS
2

dW−
dt

= v
∂W−
∂x
− ks(x)W−+

kwS
2

dS
dt

= ks(x)[W++W−]− kwS.

(2.4)

The glucose distribution evolves according to Eq. 2.1 with consumption rate k(x) given by

Eq. 2.2. The boundary conditions at the ends of the domain are assumed to be reflective for the

mitochondrial distributions, and to have a fixed glucose concentration c0. The stationary state for

this system can be calculated numerically (see Materials and Methods). The formulation with a

continuous mitochondrial density faithfully represents the behavior of simulations with discrete

mitochondria, as illustrated in Fig. 2.2b.

The steady-state spatial distribution of mitochondria and glucose in the continuous system

depend on six parameters: ks/kw,KM,c0,D,L,kgM where M is the average mitochondrial density

in the axon (number of mitochondria per unit volume) . Estimates of physiologically relevant

values are provided in Table 2.1. Dimensional analysis indicates that three of these parameters

can be used to define units of time, length, and glucose concentration, leaving three dimensionless
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Figure 2.3. Effect of external glucose concentration on intracellular glucose and mitochondrial
distributions.
(a) Normalized mitochondrial distribution (M(x)/M), for different values of edge concentration
ĉ0. The curve with ĉ0 = 56 illustrates the accumulation cutoff A = 0.2. (b) Glucose distribution
normalized by edge concentration (G(x)/c0). The black dashed line in both panels indicates the
analytical solution for the low glucose limit (Materials and Methods, Eq. 2.13). Source data
provided in “Figure 3 - source data”.

groups. We choose to use the following three dimensionless parameters, each of which has an

intuitive physical meaning:

λ̂ =

√
DKM

kgML2 , ĉ0 =
c0

KM
, k̂s =

ks

kw
(2.5)

Here λ̂ is the length-scale of glucose decay relative to the domain length, ĉ0 is the

boundary glucose concentration relative to the saturation constant KM, and k̂s is the ratio of

stopped to walking mitochondria at high glucose levels. We proceed to explore the steady-state

distribution of mitochondria and glucose as a function of these three parameters.
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Figure 2.4. Effect of model parameters on mitochondrial accumulation at regions of localized
glucose entry.
(a) Accumulation metric as a function of boundary glucose levels and mitochondrial stopping
rate. (b) Fraction of mitochondria in the stopped state. Black dashed line indicates parameters
corresponding to 95% stopped mitochondria. (c) Accumulation metric as a function of glucose
levels ĉ0 and decay length λ̂ . (d) Phase diagram for mitochondrial accumulation, showing
upper and lower concentration cutoffs for accumulation above the cutoff of Acut = 0.2. Dashed
black line shows limit of high stopping rate k̂s. Dotted black line indicates estimate of λ̂ for
physiological parameters, and corresponding upper concentration cutoff. Source data provided
in “Figure 4 - source data 1-3”.
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2.3.2 Mitochondrial localization requires limited range of external
glucose

In order for mitochondria to preferentially accumulate at the source of glucose via a

glucose-dependent stopping mechanism, three criteria must be met. First, the glucose concentra-

tion needs to be higher at the source than in the bulk of the cell, as occurs when the decay length

due to consumption is much smaller than the size of the domain (λ̂ � 1). Second, if glucose

levels become too high (ĉ0� 1) then both glucose consumption rates and stopping rates of the

mitochondria become saturated, leading to a flattening of glucose and mitochondrial distributions

(Fig. 2.3). There is thus an upper limit on the possible external glucose concentrations that will

yield mitochondrial localization at the edges of the domain. Finally, the mitochondria must

spend a substantial amount of time in the stationary state, since walking mitochondria will

be broadly distributed throughout the domain. Because the stopping rate is itself dependent

on the glucose concentration, this criterion implies that very low concentrations will also not

allow mitochondrial localization. Fig. 2.3 shows the distribution of glucose and mitochondria at

different values of the external glucose ĉ0, illustrating that accumulation of mitochondria at the

edges requires intermediate glucose levels.

To characterize the distribution of mitochondria along the interval, we introduce an

accumulation metric A, defined by

A = 6σ
2/L2−0.5

where σ2 is the variance in the mitochondrial distribution. This metric scales from A = 0 for

a uniform distribution to A = 1 for two narrow peaks at the domain edges. Mitochondrial

distributions with several different values of the accumulation metric are shown in Fig. 2.3a. We

use a cutoff of A = 0.2 to define distributions where the mitochondria are localized at the glucose

source.

We explore the dependence of the mitochondrial accumulation on the three dimensionless
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parameters defining the behavior of the system: the stopping rate constant k̂s, the glucose decay

length λ̂ , and the external concentration ĉ0. Because only the stopped mitochondria localize

near the glucose sources, increasing the fraction of mitochondria in the stopped state (increased

k̂s) inevitably raises the overall accumulation (Fig. 2.4a). The fraction of mitochondria in the

stopped state will depend on both k̂s and the overall levels of glucose, as dictated by ĉ0 (Fig. 2.4b).

Experimental measurements indicate that at high glucose concentrations, approximately 95% of

mitochondria are in the stationary state[153]. We are thus interested primarily in the parameter

regime of high stopping rates: k̂s & 10. The limited range of concentrations that lead to

mitochondrial accumulation at the edges of the domain can be seen in Fig. 2.4a.

For a high stopping rate (k̂s = 10), we then calculate the mitochondrial accumulation as a

function of the remaining two parameters: λ̂ , ĉ0. Here, again, we note that only intermediate

glucose concentrations result in accumulation, with the range of concentrations becoming

narrower as the decay length λ̂ becomes comparable to the domain size (Fig. 2.4c). We can

establish the concentration range within which substantial accumulation is expected, by setting a

cutoff A = 0.2 on the accumulation metric and calculating the resulting phase diagram (Fig. 2.4d).

Below the lower concentration cutoff, insufficient mitochondria are in the stationary state and so

no localization is seen. This lower cutoff disappears in the limit of infinite k̂s. At intermediate

concentrations, mitochondria are localized near the domain edges. Above the upper concentration

cutoff, no localization is observed due to saturation of the Michaelis-Menten kinetics.

Using empirically derived approximations for the rate of glucose consumption by mi-

tochondria and the diffusivity of glucose in cytoplasm (see Table 2.1), we estimate the decay

length parameter as λ̂ ≈ 0.03. The mitochondria are then expected to localize near the glu-

cose source only if ĉ0 < 66. Because the saturation concentration for hexokinase is quite low

(KM ≈ 0.03mM)[224], we would expect mitochondrial accumulation for glucose concentrations

below about 2 mM. We note that physiological brain glucose levels have been measured at

0.7−1.3mM, depending on the brain region[132], implying that glucose-dependent halting of

mitochondrial transport would be expected to result in localization of mitochondria at nodes of
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Figure 2.5. Mitochondrial stopping increases overall metabolic flux.
Total glucose consumption per mitochondrion, averaged over the full interval, is shown for
different edge glucose concentrations (c0) as a function of the mitochondrial stopping rate k̂s.
The limit of small k̂s corresponds to uniform mitochondria distribution. Parameters for the model
are taken from Table I. Source data is provided in “Fig. 5 - source data”. .

Ranvier.

2.3.3 Glucose-dependent halting can increase metabolic flux under
physiological conditions

Localizing mitochondria to the glucose entry points is expected to increase the flux of

glucose entering the cell, thereby potentially enhancing the overall metabolic rate. We calculate

the overall effect of transport-based regulation on the net metabolic flux within the simplified

model with localized glucose entry. Fig. 2.5 shows the effect of increasing mitochondrial

stopping rates (k̂s) on the total rate of glucose consumption in the interval between nodes of

glucose influx. At low k̂s values, mitochondria are distributed uniformly throughout the interval.

At high k̂s values and at sufficiently low glucose concentrations, the mitochondria cluster in the

regions of glucose entry, increasing the overall consumption rate by up to 40% at physiologically

relevant glucose levels (c0 = 1mM). We note that in hypoglycemic conditions, glucose levels

can drop to 0.1mM [191], further increasing the magnitude of this effect.
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In the case of limited glucose transport into the cell, intracellular glucose levels could

be significantly below the concentrations outside the cell. Measurements of intracellular glu-

cose in a variety of cultured mammalian cell types indicate internal concentrations within the

range of 0.07− 1mM, up to an order of magnitude lower than glucose concentrations in the

medium[85]. However, neuronal cells are known to express a particularly efficient glucose

transporter (GLUT3)[193], and these transporters have been shown to be highly concentrated

near the nodes of Ranvier[121, 169]. We therefore assume that glucose import into the nodes is

not rate limiting for myelinated neurons in physiological conditions. Introducing a finite rate

of glucose transport would effectively decrease the intracellular glucose concentration at the

nodes c0, increasing the enhancement in metabolic flux due to mitochondrial localization. In

subsequent sections, we explore the role of limited glucose import in unmyelinated axons with

spatially uniform glucose permeability.

2.3.4 Model for spatial organization in a glucose gradient

Extracellular brain glucose levels exhibit substantial regional variation, particularly under

hypoglycemic conditions where more than ten-fold differences in local glucose concentrations

have been reported[149]. Because individual neurons can traverse multiple different brain

regions[131], a single axon can be subjected to heterogeneous glucose levels along its length.

This raises the possibility that glucose-dependent mitochondrial localization can play a role in

neuronal metabolic flexibility even in the case where glucose entry into the cell is not localized

to distinct nodes. We thus extend our model to quantify the distribution of mitochondria in an

axon with limited but spatially uniform glucose permeability that is subjected to a gradient of

external glucose. This situation is relevant, for instance, to unmyelinated neurons in infant brains,

as well as to in vitro experiments with neurons cultured in a glucose gradient[153].

In this model, the extracellular environment provides a continuous source of glucose

whose influx is limited by the permeability of the cell membrane. Intracellular glucose dynamics

are then defined by the reaction-diffusion equation
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Figure 2.6. Mitochondrial and glucose organization in a region with uniform glucose permeabil-
ity, subjected to a gradient of external glucose.
(a) Internal glucose levels for the steady state solution with Gext/KM = 17 (Gext = 0.5 mM) and
varying ratios of entry to consumption rate γ . Black dashed line shows external glucose levels.
(b) Corresponding normalized distribution of internal glucose. (c) Corresponding normalized
mitochondrial distribution. Shaded box indicates distal region used for calculating mitochondrial
enrichment and metabolic enhancement in panels d-e. (d) Mitochondrial enrichment in the
distal 10% of the interval at highest external glucose, compared to a uniform distribution. White
dot marks estimated parameter values for neuronal cell culture experiments (Gext = 2.5mM).
(e) Enhancement in metabolic flux in the distal region at high glucose, compared to a uniform
mitochondrial distribution. (f) Enhancement in metabolic flux over full interval. White line in (d-
f) shows estimated parameter range for physiological glycemic levels 0.5mM < Gext < 1.5mM.
Parameter values k̂s = 19, ∆Ĝext = 2 used throughout. Source data is provided in “Fig. 6 - source
data 1-3”.
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Figure 2.7. High stopping rate limit for model with uniform glucose permeability.
For the high ks limit, we show (a) mitochondrial enrichment in the distal region and (b) metabolic
enhancement in the distal region. In this limit, mitochondrial accumulation occurs for arbitrarily
low values of γ as nearly all mitochondria are in the stopped state even at very low internal
glucose concentrations. However, metabolic enhancement still occurs only within a narrow range
of γ values.

dG
dt

= D
∂ 2G
∂x2 − k(x)G+P(x)(Gext(x)−G) , (2.6)

where the first term corresponds to diffusive glucose spread, the second to a spatially varying

metabolism of glucose, and the third to the entry of glucose into the cell. Here, Gext is the

external glucose concentration, and P(x) is the membrane permeability to glucose, which we

assume to depend in a Michaelis-Menten fashion on the difference between external and internal

glucose concentration:

P(x) =
(2/r)PKMP

KMP + |Gext(x)−G(x)|
, (2.7)

where P is the spatially uniform permeability constant in units of length per time. This functional

form incorporates two known features of glucose transporters: (1) they are bidirectional, so

that the overall flux through the transporter at low glucose levels should scale linearly with the

difference between external and internal glucose[27]; (2) neuronal glucose transporters saturate

at high glucose levels (GLUT3 KMP ≈ 3mM[123], with an even higher saturation constant for

GLUT4 [143]). When the difference in glucose levels is low, the overall flux of glucose entering
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the cell reduces to P(Gext(x)−G(x)). Mitochondria dynamics are defined as before (Eq. 2.4),

and we again assume Michaelis-Menten kinetics for glucose metabolism by hexokinase localized

to mitochondria (Eq. 2.2).

We note that the dynamics in Eq. 2.6 are governed by three time-scales: the rate of

glucose transport down the length of the axon, rate of glucose consumption, and rate of glucose

entry. The first of these rates becomes negligibly small in the limit L�
√

D(G+KM)/(kgM).

Because internal glucose levels can never exceed the external concentrations, in the range where

Gext < 10mM, the rate of diffusive transport should become negligible for L� 150µm. In the

limit where intracellular glucose is much less than Km, this criterion reduces to λ̂ � 1, indicating

that glucose diffuses over a very small fraction of the interval before being consumed. The

interval length L in this model represents an axonal length which can range over many orders of

magnitude. We focus on axon lengths above several hundred microns, allowing us to neglect the

diffusive transport of intracellular glucose (see Appendix A.3).

The steady-state glucose profile can then be determined entirely by the local concentration

of mitochondria and external glucose. For a given mitochondrial density M(x) and external

glucose profile Gext(x), the corresponding intracellular glucose concentration can be found

directly by solving the quadratic steady-state version of Eq.2.6 without the diffusive term.

However, the steady-state mitochondrial distribution cannot be solved locally, because the

limited number of mitochondria within the axon couples the mitochondrial density at different

positions. We thus employ an iterative approach to numerically compute the steady-state

solution for both glucose and mitochondrial density under a linear external glucose gradient

Gext = Gmin +(Gmax−Gmin)
x
L (see Materials and Methods).

For parameter combinations where intracellular glucose concentrations are above KM

but well below Gext, the entry and consumption processes for glucose are both saturated. There

is then a steep transition between two different regimes. In one regime, glucose entry exceeds

consumption and internal glucose levels approach the external concentrations. In the other,

consumption dominates and glucose levels drop below saturating concentrations. The key dimen-
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sionless parameter governing this transition can be defined as the ratio of entry to consumption

rates:

γ =
2PKMPGext

kgMr(KMP +Gext)
. (2.8)

This ratio can be modulated in the cell either by recruiting varying amounts of glucose transporters

(adjusting P) or changing the total amount of active hexokinase (adjusting kgM).

The remaining dimensionless parameters determining the behavior of this simplified

model are the external glucose concentration relative to the hexokinase saturation constant

(Ĝext = Gext/KM), the relative magnitude of the glucose gradient, ∆Ĝext = (Gmax−Gmin)/Gext,

the ratio of stopped to walking mitochondria k̂s = ks/kw, and the saturation constant for glucose

transporters KMP/KM ≈ 96. The last parameter is expected to remain approximately constant in

neuronal cells. The average external glucose concentration and glucose gradient are expected to

vary substantially depending on the glycemic environment to which the neuron is exposed. We

note that ∆Ĝext has a maximum possible value since the minimal glucose concentration cannot

drop below 0. We proceed to analyze the limiting case where the glucose gradient is as steep as

possible for any given value of average external glucose (∆Ĝext = 2).

2.3.5 Mitochondrial arrest enables metabolic enhancement under
glucose gradient

We quantify the amount of mitochondrial accumulation at the high glucose side of the

domain by calculating the total mitochondrial density within the distal 10% of the interval

compared to a uniform distribution, in analogy to experimental measurements[153]. Substantial

enrichment in the high glucose region occurs when glucose entry into the cell cannot keep

up with consumption (γ � 1) and the intracellular glucose levels drop below the hexokinase

saturation concentration KM, as can be seen in the glucose and mitochondrial distributions plotted

in Fig. 2.6a-c. The interplay between external glucose levels and the entry / consumption rates
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is illustrated in Fig. 2.6d. For external glucose concentrations well above KM there is a sharp

transition to mitochondrial enrichment at γ < 1. At the lowest levels of intracellular glucose,

accumulation is again reduced because a very small fraction of mitochondria are found in the

stopped state. In the limit of high ks, mitochondrial accumulation would occur for arbitrarily low

values of γ (Fig. 2.6S1). We note that because glucose entry and turnover are much faster than

diffusive spread for biologically relevant parameter regimes, the model results do not depend on

the cell length L (Appendix A.3).

Experimental measurements of mitochondrial enrichment in cultured neurons subjected to

a gradient of 0 to 5mM glucose have indicated an approximately 20% enrichment in mitchondrial

counts at the axonal region exposed to high glucose. We note that using published estimates of

typical glucose permeability and mitochondrial glucose turnover for mammalian cells (Table 2.1)

yields a ratio of entrance and consumption rates of γ ≈ 1.9 for this experimental system. Because

this ratio is above 1, we would not expect to see substantial mitochondrial enrichment. To result

in the experimentally observed enrichment at high glucose, the ratio γ would need to be reduced

by approximately a factor of 2, implying the existence of additional regulatory mechanisms.

Modulation of γ could be achieved by either decreasing the number of glucose transporters

in the cell (reducing P) or upregulating total hexokinase levels (increasing kg). Neurons are

believed to regulate both the density of glucose transporters and hexokinase activity in response

to external glucose concentrations and varying metabolic demand[56, 168, 46]. In particular,

adaptation to glycemic levels well above physiological values, as well as possibly reduced

synaptic activity in a cultured environment, may result in downregulation of glucose transporters,

lowering the value of γ . The discrepancy between model prediction and observed mitochondrial

accumulation highlights the existence of additional regulatory pathways not included in the

current model whose role could be explored in further studies that directly quantify glucose entry

and consumption rates in cultured neurons.

Physiological brain glucose levels have been measured at 0.7mM - 1.3mM[132], with

hypoglycemic levels dipping as low as 0.1mM and hyperglycemic levels rising up to 4mM[191].
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Axons that stretch across different brain regions with varying glucose levels can thus be subject

to a glucose gradient with Gext on the order of 1mM (white line on Fig. 2.6d). We note that

the physiological range overlaps substantially with the region of high mitochondrial accumula-

tion, indicating that glucose-dependent halting can modulate mitochondrial distribution under

physiologically relevant glycemic levels.

By accumulating mitochondria at the cellular region subjected to higher external glucose,

the metabolic flux in that region can be substantially enhanced. In Fig. 2.6e we plot the

enhancement in glucose consumption rates (compared to the case with uniformly distributed

mitochondria) within the 10% of cellular length subjected to the highest glucose concentrations.

Metabolic enhancement occurs within a narrow band of the γ parameter. The drop-off in

enhancement at low values of the internal glucose concentration (low γ) is due to the coupling

between glucose levels and mitochondrial localization. Specifically, mitochondrial accumulation

at the region subject to high glucose concentration increases the local rate of consumption in

that region, driving down local internal glucose levels. Consequently, the difference in internal

glucose concentrations between the two ends of the cell is decreased when internal levels fall

substantially below KM (Fig. 2.6b), reducing the enhancement of metabolic flux. Although

mitochondrial accumulation decreases metabolic flux in the low glucose region, the total rate of

glucose consumption integrated throughout the cell is enhanced by up to approximately 14%

when γ ≈ 1 (Fig. 2.6f).

It is interesting to note that the typical physiological range of external glucose levels spans

the narrow band of parameter space where metabolic enhancement is expected (white lines on

Fig. 2.6e,f). These results implicate glucose-dependent mitochondrial stopping as a quantitatively

plausible mechanism of metabolic flexibility, increasing metabolism in regions with high nutrient

availability for axonal projections that span between hypoglycemic and euglycemic regions. The

magnitude of this effect can be tightly controlled by the cell through modulating overall rates

of glucose entry and consumption. Thus, by coupling mitochondrial transport to local glucose

levels, whole-cell changes in hexokinase or glucose transporter recruitment can be harnessed to
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tune the cell’s response to spatially heterogeneous glucose concentrations.

2.4 Discussion

The minimal model described here provides a quantitative framework to explore the

interdependence of glucose levels and mitochondrial motility and their combined effect on

neuronal metabolic flux. Glucose-mediated halting of mitochondrial transport is shown to be a

plausible regulatory mechanism for enhancing metabolism in cases with spatially heterogeneous

glucose availability in the neuron.

We have quantitatively delineated the regions in parameter space where such a mechanism

can have a substantial effect on mitochondrial localization and metabolic flux. Specifically,

mitochondrial positioning requires both sufficient spatial variation in intracellular glucose and

sufficiently low absolute glucose levels compared to the saturation constant of the hexokinase

enzyme. In the case of tightly localized glucose entry (as at the nodes of Ranvier), intracellular

spatial heterogeneity requires a small value of the dimensionless length scale for glucose decay

(λ̂ =
√

DKM/kgM̄L2� 1). For physiologically estimated values, mitochondrial localization

to the nodes is expected to occur for glucose levels below approximately 2mM, comparable

to physiological brain glucose concentrations[132, 85]. In the case where glucose can enter

homogeneously throughout the cell surface (as with unmyelinated axons), heterogeneity can arise

from an external glucose gradient. We show that metabolic enhancement through mitochondrial

positioning occurs in a narrow range of the key parameter γ = (2PKMPGext)/(kgM(KMP+Gext)),

which describes the ratio of glucose entry to glucose metabolism, and that this narrow range

intersects with physiological estimates.

The model developed here is intentionally highly simplified, encompassing a minimal

set of parameters necessary to describe glucose-dependent mitochondrial localization. Other

regulatory pathways that determine mitochondrial positioning are not included in this basal

model. In particular, we do not consider here calcium-based transport regulation, which is known
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to localize mitochondria to regions of synaptic activity[234, 216, 118, 119]. Upregulating OGT

signaling in cultured cells has been shown to decrease the fraction of motile mitochondria by a

factor of three, while reducing endogenous OGT nearly doubles the motile fraction, indicating

that a substantial number of stationary mitochondria are stopped as a result of OGT activity[153].

Our model assumes the extreme case where all stopping events are triggered in a glucose-

dependent manner, thereby isolating the effect of glucose heterogeneity. Stopping mechanisms

dependent on neuronal firing activity could alter mitochondrial distribution in concert with

glucose-dependent halting, increasing the density of mitochondria at presynaptic boutons or near

areas of localized calcium influx as at the nodes of Ranvier[234]. We note that mitochondria

have previously been shown to accumulate at spinal nodes of Ranvier in response to neuronal

firing activity[49, 234]. The mechanism described here provides an additional driving force for

mitochondrial localization near the nodes even in quiescent neurons.

Additional metabolic feedback loops, not included in our model, may result in a more

complex dependence of mitochondrial stopping on glucose concentration. In particular, both

the pentose phosphate pathway and glycolysis generate intermediates that feed back into

UDP-GlcNAc production by the hexosamine biosynthetic pathway[98, 188]. Furthermore,

several of the enzymes involved in the metabolic pathways linking glucose levels to Milton

O-GlcNacylation may be regulated in a glucose-dependent manner. For example, the activity of

the fructose-6-phosphate metabolizing enzyme GFAT is believed to be regulated by intermediates

in the hexosamine pathway[202] and O-GlcNAc transferase (OGT) itself is directly regulated by

UDP-GlcNAc levels[74]. Other enzymes, such as the de-GlcNAcylating enzyme OGA exhibit

long term regulation of expression in response to altered glucose levels[240]. These regulatory

mechanisms provide additional potential routes of metabolic control through mitochondrial

positioning.

Several key parameters that regulate mitochondrial localization in response to glucose

heterogeneity can be dynamically regulated in neurons. Specifically, the rate of glucose con-

sumption (kgM) can be tuned by modulating the concentration or activity of hexokinase within

28



mitochondria or by altering total mitochondrial size and number. This parameter controls both

the glucose decay length λ̂ in the case of localized glucose influx and the ratio of glucose entry

to consumption γ in the case of spatially distributed entry. We note that our model assumes

hexokinase to be localized exclusively to mitochondria. The predominant form of hexokinase

in the brain (HK1) is known to bind reversibly to the mitochondrial membrane, with exchange

between a mitochondria-bound and a cytoplasmic state believed to contribute to the regulation of

its activity[62]. Release of hexokinase into the cytoplasm would result in more spatially uniform

glucose consumption, negating the metabolic enhancement achieved through mitochondrial

localization.

An additional parameter known to be under regulatory control is the rate of glucose

entry into the neuron (P). The glucose transporters GLUT3[193, 46, 220] and GLUT4[8] have

been shown to be recruited to the plasma membrane in response to neuronal firing activity.

Interestingly, transporter densities are themselves spatially heterogeneous, concentrating near

regions of synaptic activity[8, 6]. The model described in this work quantifies the extent to

which a locally increased glucose influx can enhance total metabolic flux, given the ability of

mitochondria to accumulate at regions of high intracellular glucose.

A number of possible feedback pathways linking glucose distribution and mitochondrial

positioning are not included in our basic model. For instance, hexokinase release from mito-

chondria into the cytoplasm (potentially altering kg) is known to be triggered at least in part by

glucose-6-phosphate, the first byproduct in glucose metabolism[36]. Chronic hypoglycemia has

been linked to an upregulation in GLUT3 in rat neurons [206], which would in turn lead to an

increased glucose uptake (P). The fraction of glucose funneled into the hexosamine biosynthetic

pathway (incorporated within ks) can also be modified through feedback inhibition of GFAT by

the downstream metabolic product UDP-GlcNAc[110]. Such feedback loops imply that several

of our model parameters (P, kg, ks) are themselves glucose-dependent and may become spatially

non-uniform in response to heterogeneous glucose. Incorporating these effects into a spatially

resolved model of metabolism would require quantifying the dynamics of both the feedback
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pathways and mitochondrial positioning, and forms a promising avenue for future study.

Control of glucose entry and consumption underlies cellular metabolic flexiblity, and

defects in the associated regulatory pathways can have grave consequences for neuronal health.

Misregulation of hexokinase has been highlighted as a contributor to several neurological

disorders, ranging from depression [167] to schizophrenia [185]. Neuronal glucose transporter

deficiency has been linked to autism spectrum disorders[236] and Alzheimer’s disease[116].

Furthermore, defects in mitochondrial transport, with the consequent depletion of mitochondria

in distal axonal regions, contribute to peripheral neuropathy disorders[11].

Glucose-dependent mitochondrial localization provides an additional layer of control,

beyond conventionally studied regulatory mechanisms, which allows the cell to respond to

spatial heterogeneity in glucose concentration. Our analysis paves the way for quantitative

understanding of how flexible regulation of metabolism can be achieved by controlling the spatial

distribution of glucose entry and consumption.

2.5 Materials and Methods

2.5.1 Discrete mitochondria simulations

We simulate the internodal space of the axon, between localized nodes of glucose entry, as

a one-dimensional domain for a reaction diffusion system with motile reaction sinks. The glucose

concentration field is discretized over 100 equidistant points along the domain. Its dynamics are

governed by the reaction diffusion equation (Eq. 2.1), evolved forward over time-steps of δ t

using the forward Euler method. Because forward Euler methods have stringent conditions for

stability and convergence, we use a time-step that is much smaller than both the glucose decay

time-scale and the time-scale associated with diffusion over our spatially discretized grid (see

below).

The number of mitochondria in the domain is calculated according to N = MLπr2 ≈ 38,

where the mitochondrial density M, internodal distance L, and axonal radius r are estimated from
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published data (Table 2.1; Appendix A.1). The mitochondria are treated as discrete intervals

of length ∆ = 1µm, with the position of each mitochondrial center updated at each timestep.

Over each time step, every motile mitochondrion moves a distance of ±vδ t, (with transport

velocity v = 1µm/s) and switches to a stationary state with probability 1− exp(−ksδ t), where

ks(x) is a function of the center position of that mitochondrion (Eq. 2.3). Mitochondria that

reach within a distance of ∆/2 from the ends of the domain are reflected, reversing their velocity

while remaining motile. Analogously, every stationary mitochondrion switches to a motile state

on each time-step with probability 1− exp(−kwδ t). Processive walks are initiated with equal

probability in either direction.

At any given time, the spatial density of mitochondria is calculated from the location of

mitochondrial centers at positions x1, . . .xN , according to M(x) = n(x)/(πr2∆), where

n(x) =
N

∑
i=1

[θ(x− xi +∆/2)−θ(x− xi−∆/2)] ,

is the number of mitochondria overlapping spatial position x and θ is the Heaviside step function.

We integrate the simulation forward in time-steps of δ t = 0.2∆x2

D , where ∆x is the

spatial discretization. This time-scale is much smaller than the relevant decay time for glucose

consumption
[

τg =
(

kgM
KM

)−1
]

. Using these small time-steps allows for stability and robust

convergence with the forward Euler method. The simulation proceeds for 107 steps. Simulations

are repeated 100 times to obtain the histogram shown in Fig. 2.2. Convergence to steady-state is

established by comparing to calculations with the continuum model described in the subsequent

sections.

2.5.2 Mitochondrial distribution for spatially varying stopping rate

For an arbitrary spatial distribution of stopping rates ks(x) the corresponding steady-state

mitochondrial distribution can be calculated directly by solving the equations for mitochondrial
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transport (Eq. 2.4):

S =
ks(x)(W−+W+)

kw

v
dW+

dx
=

1
2

ks(x)(W−−W+)

v
dW−
dx

=
1
2

ks(x)(W−−W+).

(2.9)

Because our model assumes symmetry between anterograde and retrograde mitochondrial

transport, as well as equal glucose concentrations at either boundary of the domain, we take

W− = W+, implying that the population of walking mitochondria must be spatially constant.

Consequently, the population of stopped mitochondria is proportional to the stopping rate

(S =Cks(x)/kw). The constant C can be calculated from the normalization condition,

∫ L

0
M(x)dx =

∫ L

0
[W−(x)+W+(x)+S(x)]dx = ML. (2.10)

The overall steady-state distribution of mitochondria is then given by,

M(x) =W−(x)+W+(x)+S(x) =
M

1+ 1
L
∫ L

0
ks(x)

kw
dx

[
ks(x)

kw
+1
]

(2.11)

.

Because the stopping rate is an explicit function of glucose concentrations[
ks(x) =

ksG(x)
KM+G(x)

]
, this approach allows us to find the steady-state mitochondrial distribution

for any fixed distribution of glucose.

2.5.3 Numerical solution for steady-state distributions with localized
glucose entry

We solve for steady-state glucose and mitochondrial distributions using a numerical

method that evolves the glucose concentration forward in time while explicitly setting the

mitochondrial concentration to its steady-state value at each step.
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The glucose distribution is initialized according to the steady-state solution for uniform

consumption (Eq. 2.13). Mitochondrial density M(x) is calculated from the glucose distribution

according to Eq. 2.11 and Eq. 2.3. The glucose distribution G(x), in turn, evolves according to

the mitochondrial distribution as given by Eq. 2.1 and Eq. 2.2 . The glucose profile is integrated

forward with a timestep δ t = 10−5L2/D. The distributions are assumed to be converged once

the root mean squared rate of glucose change drops below the minimal cutoff: 10−6kgM. Results

of the continuous mitochondrial distribution model are shown to match the discrete mitochondria

simulations (Fig. 2.2b). All subsequent analysis is done in the continuum limit.

2.5.4 Analytical solution for low glucose limit

We validate our numerical calculations by comparing to the analytically tractable solution

in the limit of low glucose and nearly uniform mitochondrial distribution. In the limit of spatially

uniform, linear consumption, the steady-state reaction-diffusion equation for glucose can be

expressed as

0 = D
∂ 2G
∂x2 − kG(x), (2.12)

where k = kgM/KM is the constant consumption rate.

Assuming fixed glucose concentrations (c0) at the boundaries of the domain, the steady-

state glucose distribution is then given by

G(x) =
c0 cosh( x

λ
)

cosh( L
2λ
)
, (2.13)

with λ =
√

D
k defining the glucose decay length-scale. This quantity is a measure of how far

glucose diffusively penetrates into the domain before being consumed by hexokinase. It is scaled

by the size of the domain to give the dimensionless decay length scale λ̂ =
√

DKM
kgML2 used as a

key parameter in our model with localized glucose entry:
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2.5.5 Steady-state distribution with uniform permeability in the slow
diffusion limit

For the model with spatially uniform glucose permeability, we solve directly for the

steady state distributions of glucose and mitochondria in the limit of slow diffusivity. When

diffusion along the domain is slow compared to the timescales of glucose consumption and

glucose import, the steady-state equation for glucose concentration is given by a simplified form

of Eq. 2.6:

−k(x)G(x)+P(x)(Gext(x)−G(x)) = 0. (2.14)

Substituting k(x) = kgM(x)G(x)
G(x)+KM

and P(x) = (2/r)PKMP
KMP+|Gext(x)−G(x)| , we get a quadratic equation in G(x);

[
1− 2PKMP

rkgM

]
G(x)2 +

[
2PKMPGext

rkgM
− 2PKMPKM

rkgM
−Gext−KMP

]
G(x)+

[
2PKMPKMGext

rkgM

]
= 0

(2.15)

For a given mitochondrial profile, this quadratic equation is solved to find G(x) = G(M(x)). The

mitochondrial distribution, M(x) is then updated according to Eq. 2.11 and Eq. 2.3. We thus

arrive at an iterative solution for G(x) and M(x).
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Chapter 3

Optimizing mitochondrial maintenance in
extended neuronal projections

3.1 Abstract

Neurons rely on localized mitochondria to fulfill spatially heterogeneous metabolic

demands. Mitochondrial aging occurs on timescales shorter than the neuronal lifespan, necessi-

tating transport of fresh material from the soma. Maintaining an optimal distribution of healthy

mitochondria requires an interplay between a stationary pool localized to sites of high metabolic

demand and a motile pool capable of delivering new material. Interchange between these pools

can occur via transient fusion / fission events or by halting and restarting entire mitochondria.

Our quantitative model of neuronal mitostasis identifies key parameters that govern steady-state

mitochondrial health at discrete locations. Very infrequent exchange between stationary and

motile pools optimizes this system. Exchange via transient fusion allows for robust mainte-

nance, which can be further improved by selective recycling through mitophagy. These results

provide a framework for quantifying how perturbations in organelle transport and interactions

affect mitochondrial homeostasis in neurons, a key aspect underlying many neurodegenerative

disorders.
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3.2 Introduction

Mammalian neurons, with their complex and elongated architecture, pose a unique

challenge for the delivery and maintenance of cellular components. Their relatively small cell

body (soma) contains the nucleus and is responsible for synthesizing all the mRNA transcripts

and a large portion of the proteins delivered to distal regions [64, 104]. For some proteins,

local translation at distal outposts has been shown to play an important role in maintaining

homeostasis [91, 87, 79]. However, this approach still requires the long-range delivery of mRNA

from the nucleus [34, 174, 203]. Neurons thus rely on packaging components into vesicular

organelles or RNA-protein granules, which are actively transported by molecular motors moving

along microtubule tracks to the most distant regions of the cell. Such long-distance transport

is critical for neuronal growth and repair [238, 17, 128], synapse formation and function

[61, 114, 67], and synaptic plasticity [44, 235]. Furthermore, transport is required to maintain

steady-state homeostasis of protein and mRNA levels. While neurons can have a lifespan of

decades, the turnover of active mRNA is thought to happen on timescales of hours [19], and

proteins are degraded over the course of a few days [43]. Efficient, perpetual delivery through

transport from the cell body is thus required to replenish degraded components and maintain

neuronal function.

A particular challenge for cellular homeostasis is supplying the spatially heterogeneous

metabolic needs of neuronal projections. These projections, which stretch up to several hundred

microns for dendrites and over a meter for axons, contain localized structures with elevated

metabolic demand. For example, distal axonal structures such as presynaptic terminals and

growth cones are known to have especially high ATP needs [73, 165]. In myelinated axons, the

nodes of Ranvier can be separated by hundreds of microns [81] and contain high concentrations of

ion pumps that are thought to correspond to locally elevated metabolic demand [31]. Postsynaptic

dendritic spines also have high metabolic needs to support both ion pumping and local translation

needed for proteostasis and plasticity [166, 72].
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Reliable ATP production at sites of high metabolic demand is believed to rely on the

localization of nearby mitochondria. These organelles serve as ATP-generating powerhouses and

also help maintain Ca+2 homeostasis in the cytoplasm. Locally stationed mitochondria are a key

source of fuel to power activity-dependent protein synthesis in dendritic compartments [166].

Mitochondria are also known to accumulate in presynaptic terminals [186] and in juxtaparanodal

regions next to nodes of Ranvier in myelinated axons [234, 147]. Mitochondria are manufactured

primarily in the soma [40] and delivered throughout neuronal projections via motor-driven

transport [135, 181]. Delivery of mitochondria to specific regions relies on localized signals

that trigger halting and switching into a stationary state. Several mechanisms for stopping

motile mitochondria have been identified [181], including Ca+2-dependent immobilization [216],

glucose-dependent arrest [153], and syntaphillin-based anchoring [89]. Interestingly, 60-90%

of axonal mitochondria are observed to be stationary, while the remainder are roughly equally

split between an anterograde and retrograde motile population [181].

Mitochondria are one of many neuronal components whose delivery relies on local stop

signals rather than a global addressing system. Dense core vesicles carrying neuropeptides [226]

and RNA-protein particles [44] are distributed by sporadic capture at sequential synaptic sites as

they circulate through the dendrites. Such delivery systems have been described by a “sushi belt

model”, where local sites trigger removal of components from an effective constantly moving

conveyor belt [44, 223]. Quantitative analysis of the sushi belt model indicates that these systems

face severe trade-offs between speed and accuracy, so that frequent halting interferes with the

ability of transported components to reach the most distal regions [223]. The efficiency of

a sushi-belt delivery system for steady-state replenishment of degrading components has not

previously been addressed, and forms a key aspect of the current work.

The placement of stationary mitochondria at distal regions raises a challenging problem

of “mitostasis” (mitochondrial homeostasis) [135]. Mitochondria are known to age over time,

decreasing their membrane potential and ATP production efficiency [141], possibly as a result

of damage caused by reactive oxygen species [10]. Defects in mitochondrial transport and
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quality control are associated with a variety of neurological diseases, including Alzheimer’s,

Huntington’s, and Parkinson’s disease [187, 82]. Individual mitochondrial proteins have typical

half-lives in the range of 2-14 days [43, 214]. Because most mitochondrial proteins are encoded

in the nucleus, this implies that a distally stationed mitochondrion will experience significant

degradation of its protein complement over the days to weeks time-scale. While local translation

may replenish some of this protein content, not all mRNAs are found outside the soma [25], and

the protein synthesis capacity of the axon is only a small fraction of that in the cell body [104].

Maintenance of a healthy population of mitochondria thus requires the continual delivery of new

mitochondrial material to distal outposts. While some of this delivery could be accomplished

by vesicular transport followed by local import, most nuclear-derived mitochondrial content is

believed to be transported by a motile population of mitochondria themselves [135, 181].

Two main qualitative models have been proposed for the replenishment of aging neuronal

mitochondria through long-range transport [135]. One, termed the ‘Changing-of-the-Guard’

(CoG) model, relies on individual mitochondria switching between the stationary and the motile

pools. This enables newly synthesized mitochondria moving anterograde from the cell soma to

halt at regions of high metabolic demand, while stationary mitochondria begin moving again to

reach other regions or return to the soma for recycling. An alternative approach is the ‘Space

Station’ (SS) model, in which a pool of mitochondria remains permanently stationed at distal

sites. In this model, new protein components are delivered by passing motile mitochondria that

undergo transient fusion and fission events with the stationary organelles.

Fusion and fission dynamics enable the exchange of membrane and matrix contents

between distinct mitochondria [222, 215, 23]. In certain cell types, fusion allows the formation of

extended mitochondrial networks that have been hypothesized to contribute to the efficient mixing

of components that determine mitochondrial health [78, 213]. In neuronal axons, extensive

fusion into a mitochondrial network is not observed but transient kiss-and-run events, consisting

of a rapid fusion and fission cycle between two passing mitochondria, can nevertheless allow for

component exchange [115, 184].
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Neuronal mitostasis is also facilitated by a recycling pathway termed “mitophagy” [231].

In this pathway, unhealthy mitochondria with low membrane potential are marked by an accumu-

lation of protein kinase PINK1 which recruits ubiquitin ligase Parkin, leading to ubiquitination

of the mitochondrial surface [181, 231]. Autophagosomes (originating primarily at distal cell

tips) move in the retrograde direction, engulf tagged damaged mitochondria, and carry them

back to the cell body for recycling [120, 135].

Past theoretical studies of mitochondrial maintenance have focused on systems with

extensive mitochondrial fusion and asymmetric fission [138, 150]. When mitochondrial health is

determined by discrete factors in low copy numbers, fission events can stochastically result in

particularly unhealthy daughter mitochondria that can then be targeted for degradation through

mitophagy. The combination of discrete health units and selective autophagy has been shown to

be sufficient for maintaining a healthy mitochondrial population [138, 150]. Recent studies have

also begun to explore the role of spatial distribution, with randomly directed active transport

and proximity-dependent fusion [150]. However, no quantitative model has yet attempted to

address mitochondrial maintenance in the uniquely extended geometry of neuronal projections.

This cellular system relies on long-range mitochondrial transport and faces the challenge of

positioning mitochondria at specific distal regions of high metabolic demand.

In this work, we develop quantitative models for the coupling between mitochondrial

transport and mitochondrial homeostasis in neuronal projections. We treat mitochondrial health

as a continuously decaying parameter along the axon and assume that the generation of some of

the critical mitochondrial material essential for health is limited to the cell body. Our models

encompass both the ‘Space Shuttle’ and the ‘Changing-of-the-Guard’ qualitative mechanisms for

mitochondrial exchange. In contrast to past work [150], we focus not only on total mitochondrial

health, but also on the distribution of healthy mitochondria among localized distal regions of

high metabolic demand. The balance between mitochondrial transport and localization, in the

face of decaying mitochondrial health, serves as a bridge between spatially-resolved models of

neuronal distribution [223, 226] and global models of mitochondrial maintenance [138, 150].
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Figure 3.1. Schematic of quantitative models for mitochondrial maintenance in long neuronal
projections.
(a) Mitochondria are produced at the soma at rate kp, move processively with velocity v, and
can stop at one of n discrete sites with high metabolic demand. Mitochondrial health degrades
continuously with rate kd . Gray box represents the modeled linear domain of length L. (b) Two
models for mitochondrial exchange at demand sites. In the CoG model, stationary mitochondria
re-enter the motile population with rate kw while passing motile mitochondria stop with prob-
ability ps. Stopping and restarting rates are independent of mitochondrial health; on average,
however, restarting mitochondria will be less healthy than when they first stopped at the site,
due to degradation in the stationary state. In the SS model, transient fusion events occur with
probability p f each time a motile mitochondrion passes a permanently stationary one[1].

40



We leverage both analytically tractable mean-field methods and discrete stochastic simu-

lations to explore the equivalence between the SS and CoG mechanisms, delineate the parameter

values that maximize mitochondrial health, and establish the existence of an optimum health

threshold for mitophagy. This modeling effort fills a gap in our existing understanding of how

neurons accomodate the trade-offs inherent in maintaining mitochondrial homeostasis while

positioning mitochondria in regions far distant from the primary site of protein and organelle

biogenesis.

3.3 Model Development

Two inherent constraints pose a challenge for maintaining distal mitochondrial outposts

in a linearly extended region such as mammalian axons. First, mitochondrial health is assumed

to be dependent on components (eg: proteins) that degrade rapidly compared to the cell lifespan

and must be manufactured primarily in the cell soma at one end of the domain. The limitation

of long-range transport from the soma can, in part, be bypassed by local protein translation, a

phenomenon whose role has been increasingly appreciated in recent years [91, 87, 79]. Local

protein synthesis can both maintain distal levels of fast-degrading proteins and allow for rapid

response to changing local conditions[79, 60]. It should be noted, however, that local translation

shifts the burden of transport and maintenance to mRNA, which tends to have even shorter life-

times than many proteins[229, 180, 204]. We briefly explore the contribution of local translation

to our model in a subsequent section, but focus primarily on mitochondrial health components

that must be transported from the cell body.

A second key assumption is the existence of discrete “demand sites” interspersed through-

out the domain, which have a particularly high need for a healthy population of localized

mitochondria. For simplicity, we treat the demand sites as very narrow slices of the domain

and focus on mitochondrial health specifically within those slices – an extreme form of spatial

heterogeneity in metabolic demand. In the opposite extreme of wholly homogeneous metabolic
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demand, the optimum maintenance strategy becomes simple: all mitochondria should move back

and forth through the cell as rapidly as possible (within the limits of other constraints such as

energetic requirements of transport) in order to ensure frequent replenishment of proteins at the

cell soma.

In a system with discrete demand sites, optimizing metabolism requires the establishment

of a population of stationary mitochondria specifically at those sites. However, this stationary

population must be continuously replenished by a flux of either new proteins or entirely new

mitochondria. We develop two quantitative models for mitochondrial replenishment (the SS and

CoG model, illustrated in Fig. 3.1), in keeping with recent qualitative proposals for mitochondrial

maintenance mechanisms [135].

In both cases, we assume that there are n discrete point-like demand sites at positions xi,

placed at equal separations over a linear domain of length L (Fig. 3.1a). This long linear domain

mimics the extended axonal regions imaged in cell cultures [153] and serves as a simplification

that enables us to focus on the interplay of dynamic processes for determining mitochondrial

homeostasis. The effect of more complicated branched geometries observed in vivo is explored

briefly in Supporting Information.

We treat individual mitochondrial health as a continuous quantity that is set to 1 when

the mitochondrion leaves the cell body and decays exponentially with constant rate kd as it

travels down the axon. This health can be thought of as proportional to the copy number of an

unspecified critical mitochondrial protein that is manufactured in the soma and is turned over

during the lifetime of the mitochondrion. Other studies have also focused on the membrane

potential and the accumulation of mutations in mitochondrial DNA as markers for mitochondrial

health [138, 150]. With an appropriate change of units, the mitochondrial health in our model

can equivalently represent any of these quantities, requiring only that they change in a continuous

manner, with a single well-defined decay rate. Although a variety of factors may contribute to

mitochondrial aging [94], we include only one decay rate for a single limiting health factor in

our simplified model. More complicated systems that incorporate multiple decaying components
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or different decay rates for the more metabolically active stationary mitochondria versus motile

mitochondria are left for future expansions of the basic model. For clarity of exposition, we will

assume that health corresponds to protein content in the remainder of the discussion.

The metabolic health at each demand site (Hi) is given by the total protein content for all

mitochondria stationed at the site. Since each site is assumed to be very narrow (on the order of

a few microns in an axonal length of mm to cm), the motile mitochondria spend negligible time

at these sites and can be neglected from our calculations of demand site health. We consider two

utility functions for overall metabolic health. The first is 〈H〉 = 1
n ∑

n
i=1 Hi, the average health

over all demand sites. The second is the health level at the most distal demand region (Hn),

which serves as the lowest value across all the sites. Optimizing 〈H〉 requires maximizing the

sum total metabolic rate in many regions of interest. Such an optimum could correspond to an

uneven distribution of mitochondrial health between individual regions, with the distal demand

sites being poorly supplied, while the proximal sites maintain a high health level. By contrast,

optimizing Hn ensures that each individual region exhibits, to the greatest extent possible, a

high level of mitochondrial health. Increasing the total number of mitochondria in the domain

(M) will predictably raise both metrics. At the same time, requiring a fixed total number of

mitochondria to service a greater number of demand sites should decrease the average health

at each site. Consequently, we normalize the demand-site health levels by the total number of

mitochondria per site:

Ĥi = Hi/(M/n),
〈

Ĥ
〉
=

1
n

n

∑
i=1

Ĥi (3.1)

An individual mitochondrion can either be motile (moving with velocity±v) or stationary

(at one of the demand sites). For simplicity, we neglect transient pausing of motile mitochondria

and treat them as having a constant effective velocity outside of the demand regions. In keeping

with experimental observations of axonal mitochondria [218], a motile mitochondrion is assumed

to move processively in the anterograde or retrograde direction, with no switching of directional-
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ity in the bulk of the domain. This assumption is relaxed in the Changing-of-the-Guard model,

where stationary mitochondria can restart in either the anterograde or retrograde direction. The

fate of mitochondria when they reach the terminus of an axon may involve some combination of

local degradation [7] and recirculation towards the soma [126, 133, 24]. Given that the retrograde

and anterograge flux of mitochondria are similar in axons [153, 160, 133], we assume that most

of the organelles return to the cell body for recycling. Modeled mitochondria that reach the end

of the domain (length L) are thus assumed to instantaneously switch to retrograde motion. A

retrograde mitochondrion that returns to the soma at x = 0 is removed from the domain. To

maintain a steady-state total mitochondrial number, anterograde mitochondria with full health

are produced at the somal end with rate kp.

The difference between the two models lies in the ability of individual mitochondria to

switch between stationary and motile pools or to exchange protein content with other mitochon-

dria, as described below.

3.3.1 Changing-of-the-Guard (CoG) model

One mechanism for maintaining a healthy population of localized mitochondria is by

allowing occasional interchange between the pool of motile mitochondria and those stationed

at demand regions. In the absence of fusion and protein exchange, motile mitochondria are

generally younger and healthier than stationary ones, and the latter must be removed and recycled

sufficiently quickly to maintain overall mitochondrial health at the regions of interest.

The simplest version of this model assumes that the rate of restarting stationary mito-

chondria is independent of their health or demand site position along the axon. An expanded

version that incorporates mitophagy to selectively remove unhealthy mitochondria is considered

in a subsequent section. Here, we assume each moving mitochondrion has a constant probability

ps for switching to the stationary state each time it passes a demand region. A stationary mito-

chondrion restarts motility with fixed rate constant kw. Upon re-entering the motile state, it is

equally likely to move in either the anterograde or retrograde direction. Stochastic agent-based
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Figure 3.2. Comparison of mean-field and discrete stochastic models.
(a) Snapshot of stochastic simulation of the CoG model, with M = 100. (b) Steady-state solution
for mitochondrial health in the CoG model (Eq. 3.2). Solid curves show linear density of
mitochondrial health in anterograde (blue) and retrograde (magenta) mitochondria, normalized
by total number of mitochondria in the domain. Yellow circles show total health at each of the
discrete demand sites (dashed black lines), normalized by the total number of mitochondria
per region. Shaded regions show corresponding quantities from discrete stochastic simulations
(mean ± standard deviation) with M = 1500 mitochondria in the domain. Parameters used in
(a) and (b): n = 5, ps = 0.4, fs = 0.5,kdL/v = 0.6. Corresponding results for the SS model are
provided in Supporting Information (S4 Fig).

45



simulations of this model are illustrated in Fig. 3.2a and Supporting Video S1.

A mean-field description of this model tracks the behavior of H±(x, t) (the linear density

of mitochondrial health moving in the anterograde (H+) and retrograde (H−) directions) and Hi

(the total health of stationary mitochondria at demand site i). These quantitites evolve according

to the following set of equations:

dH±

dt
=∓v

∂H±

∂x
− kdH± (3.2a)

dHi

dt
= vps

[
H+(x−i )+H−(x+i )

]
− (kd + kw)Hi (3.2b)

vH±(x±i ) = vH±(x∓i )(1− ps)+
1
2

kwHi (3.2c)

H+(L) = H−(L) (3.2d)

vH+(0) = kp. (3.2e)

Equation 3.2a describes transport and decay of health (or protein content) in motile mitochondria.

The distributions H±(x, t) are continuous on each interval (xi,xi+1), with discontinuities at

the demand sites. Equation 3.2b encompasses switching between the stationary and motile

populations, with H±(x−i ),H
±(x+i ) referring to the limit of the distribution approaching the ith

site from the negative and from the positive side, respectively. Equation 3.2c gives the boundary

condition at each demand site, where the flux of outgoing proteins from one side of the site

must equal the flux of incoming proteins that pass without stopping from the other side, as well

as the flux of stopped proteins that re-enter the motile state in that direction. Equation 3.2d

describes switching of anterograde to retrograde motile mitochondria at the distal end of the

domain. Finally, Eq. 3.2e gives the production rate of healthy mitochondria at the proximal end

of the domain, assuming a health level of 1 for each newly-made mitochondrion.

The distribution of mitochondria themselves obeys the same set of equations (Eq. 3.2)

with the kd terms removed. We define ρ as the steady-state density of all motile mitochondria

and S as the steady-state number of stationary mitochondria at each demand site. At steady state,
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ρ is constant throughout the domain and S is the same in all demand sites, with

ρ = 2kp/v, S = vρ ps/kw. (3.3)

The total number of mitochondria in the domain is given by M = ρL+ nS. We use the total

mitochondria M as a control parameter in our models, allowing kp to vary as needed in order to

maintain a given value of M. This approach represents a system where the total mitochondrial

content in the domain is limited, so that increasing the number of stationary mitochondria comes

at the expense of having a smaller motile population. The steady-state fraction of mitochondria

in the stationary pool is defined as fs and can be expressed as

fs =
nS
M

=
nvps

Lkw +nvps
. (3.4)

The quantity fs encompasses the trade-off between health replenishment by motile mitochondria

and metabolic servicing of localized sites by stationary mitochondria, making it a convenient

control parameter to explore this balance throughout the rest of our study.

At steady state, Eq. 3.2 can be solved analytically to give the distribution of mitochondrial

health throughout the domain and at each demand site (Fig. 3.2b; see Materials and Methods for

details). The mean-field model accurately describes the steady-state distributions when averaged

over many realizations of stochastic trajectories for discrete mitochondria (Fig. 3.2b).

In each of the regions between demand sites, the steady-state anterograde protein density

drops exponentially as e−xkd/v with distance from the soma. The reverse relationship holds for

retrograde-moving protein density, which decreases exponentially towards the soma. It should

be noted that the overall mitochondrial health decreases with increasing distance from the soma –

a fundamental consequence of long-range transport and continual protein turnover. Interestingly,

a modest correlation between mitochondrial aging and distance from the nucleus has been

experimentally observed in hippocampal neurites [52]. Furthermore, some measurements
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indicate that retrograde moving mitochondria have lower health than anterograde ones[178] as

also seen in Fig. 3.2.

3.3.2 Space Station (SS) model

An alternate approach to mitochondrial homeostasis relies on maintaning a pool of

permanently stationed mitochondria in each demand region, whose contents can be replenished

by transient fusion and fission with the motile population. Such transient ‘kiss-and-run’ events

have been observed to allow for exchange of mitochondrial membrane and matrix proteins in

H9c2 and INS-1 cells [115].

In our quantitative Space Station model, permanently stationary mitochondria are placed

at the high demand sites, with S = fsM/n mitochondria per site. We assume the mitochondria

maintain their discrete identities following a transient fusion/fission event, and that the protein

content of the two mitochondria is fully equilibrated in each such event. Every time a motile

mitochondrion passes a demand site, it has the opportunity to fuse with each of the stationary

mitochondria present at that site, in sequence. Each transient fusion/fission event is successful

with probability p f , and the choice to fuse with each stationary mitochondrion is independent

of health levels or prior fusion events. Following an instantaneous fusion/fission cycle, the

health levels of the mitochondria are equilibrated, so that a protein in a motile mitochondrion has

probability p f /2 of switching to a stationary one each time there is a passage event. The rate at

which a stationary protein re-enters a motile state in this model is given by p f /2 times the flux

of motile mitochondria passing the stationary organelle containing that protein. At steady state,

this gives an effective restarting rate of

k̂w =
p f

2
vρ =

p f vM(1− fs)

2L
, (3.5)

where ρ is the linear density of motile mitochondria and fs is the fraction of mitochondria in the

permanent stationary state.

48



The mean-field equations for the SS model are derived in the Methods section. For the

case with only one mitochondrion per site (S = 1), they are mathematically equivalent to the

CoG model, with the variable replacements ps→ p f /2 and kw→ k̂w.

Stochastic simulations of the SS model with discrete mitochondria are illustrated in

Supporting Video S2, and the resulting steady-state mitochondrial health matches well to the

mean-field model (S4 Fig).

3.3.3 Model comparison

In order to compare the efficiency of mitochondrial maintenance via the CoG and SS

models, we must first consider the different control parameters involved. Parameter definitions

for both models are summarized in the Methods section. The parameters kd (protein decay

rate), M (total mitochondria), N (number of demand sites), v (motile mitochondria speed), and L

(domain length) play the same role in both models. The CoG model is further parameterized

by kw (restarting rate for a stationary mitochondrion) and ps (stopping probability for motile

mitochondrion at each demand site). The SS model, on the other hand, has the parameters

S (fixed number of stationary mitochondria per site) and p f (probability of fusion with each

stationary mitochondrion). These last two parameters define two key features of the maintenance

mechanism: the steady-state fraction of mitochondria in the stationary pool ( fs), and the probabil-

ity that a protein within a motile mitochondria will transition into a stationary state while passing

each demand site (p̂s). If these two control parameters are fixed, then for the CoG model we

have ps = p̂s and fs given by Eq. 3.4. For the SS model, we set fs = nS/M directly. Because a

motile mitochondrion has the opportunity to fuse sequentially with multiple stationary organelles

at each demand site, the overall probability that a protein will transition to a stationary state at

that site is given by

p̂s = 1− (1− p f /2)S, (3.6)
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Figure 3.3. Comparison of mitochondrial maintenance models for matched parameter values.
(a) Steady-state normalized mitochondrial health averaged over all demand regions is computed
with the CoG model (solid lines) and the SS model (dashed lines) as a function of the fraction of
stopped mitochondria ( fs) for three different values of the effective protein stopping probability
p̂s. (b) Corresponding plots of the normalized health in the most distal demand site, for both
models. All values are computed with M = 1500, k̂d = 0.06, and n = 30.

allowing a corresponding p f value to be set for each effective stopping probability p̂s.

When there is just one mitochondrion stationed in each demand site (S = 1), the two

mean-field models become mathematically identical for fixed values of fs and p̂s. In general, the

two models give very similar results so long as the stopping probability at each demand site is

small ( p̂s . 0.5), as shown in Fig. 3.3. In this limit, p f ≈ 2p̂s/S and k̂w ≈ kw (from Eq. 3.4–3.5).

For large values of p̂s, the SS model is seen to yield slightly lower mitochondrial health than

the CoG model (Fig. 3.3). It should be noted that for a fixed value of fs, the SS model can only

reach a limited maximum value of the effective stopping probability p̂s. In fact, even if fusion

events occur with each stationary mitochondrion (p f = 1), a motile mitochondrial component

always has a non-zero chance of continuing in its motile carrier rather than being left behind at

the demand site. In the remainder of this work, we focus primarily on low values of p̂s, a regime

where the two models give essentially equivalent mean-field results.

To reduce the number of relevant model parameters, we can apply dimensional analysis,

non-dimensionalizing all length units by the domain length L, and time units by L/v (the time

for a motile mitochondrion to traverse the domain). The remaining dimensionless parameters are
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the non-dimensionalized decay rate k̂d = kdL/v, the number of mitochondria in the domain M,

the number of demand sites n, the fraction of mitochondria in the stationary population fs, and

the effective protein stopping probability at each demand site p̂s.

In the CoG model, the total number of mitochondria is directly proportional to the

production rate kp, which sets the boundary condition at the proximal edge of the domain

(Eq. 3.2e). Consequently, the normalized health values
〈

Ĥ
〉

and Ĥn (which are scaled by the

number of mitochondria per site) are independent of the total number of mitochondria in the

system. The same relationship is seen for the SS model (S5 Fig). The chosen normalization

embodies the assumption that the total amount of mitochondrial material in the cell is limited by

other constraints, and that we are interested in modeling the overall mitochondrial health for a

particular fixed number of total mitochondria.

In both maintenance models, mitochondrial proteins are removed from the system via two

mechanisms: they undergo decay (with rate k̂d) or they are recycled in the soma when a motile

mitochondrion returns to its starting point. The total protein content in the system therefore

depends on the time-scale for a given protein to return to the soma, and hence on the number

of stops made by a given protein in the domain. The average total number of stops during a

protein’s back and forth journey through the cell is given by Ns = 2p̂sn. As shown in Figure 3.4,

it is this parameter rather than the specific number of regions n and stopping probability ps that

primarily determines the mitochondrial health at each demand site.

For the maintenance models proposed here, there are thus three primary parameters of

relevance: the steady-state fraction of stationary mitochondria fs, the number of stops expected

for an individual protein while moving along the domain Ns, and the dimensionless protein decay

rate k̂d . The fraction fs embodies the trade-off between mitochondrial transport and localization

at distal sites. The number of stops Ns quantifies how often proteins exchange between the

mobile and stationary populations. The dimensionless decay rate k̂d indicates how much health

decay is expected for a mitochondrion that moves without stopping down an entire axon. Its

value depends on the protein lifetime (a few days for mitochondrial proteins [214, 43]), the
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Figure 3.4. Mitochondrial health as a function of key dimensionless parameters.
Solid curves show normalized average health over all demand sites; dashed curves show normal-
ized health at the most distal site. The number of demand sites is set to n = 30 (blue) or n = 100
(magenta). For each fraction of stationary mitochondria the fusion probability is adjusted to give
a fixed number of stopping events for an individual protein traversing the domain: (a) Ns = 2
and (b) Ns = 20. All values shown are for the SS model, with M = 1600 and k̂d = 0.06. Results
for different values of M are provided in Supporting Information S5 Fig.

average speed of motile mitochondria (∼ 0.5µm/s [218]), and the length of the axon itself.

Axon lengths can vary widely, from hundreds of microns up to the meter-long axons in the

human sciatic nerve [135]. Because mitochondrial maintenance is particularly challenging when

mitochondria must be stationed far away from the cell nucleus, we focus here on long axons

in the range of 1−10 cm. This range corresponds approximately to the average axon lengths

measured in callossal neurons in monkey and human brains [26]. Estimating kd ≈ (4days)−1

and v≈ 0.5µm/s, this gives dimensionless decay rates of k̂d ≈ 0.06−0.6.

In Supporting Information, we include an expansion of the SS model to a branched tree

geometry, rather than linear. Comparing steady-state mitochondrial health for matched values of

k̂d , fs, and Ns, gives relatively similar results for the branched and linear geometries (S2 Fig),

despite the exponentially greater volume, and hence much lower overall mitochondrial density, in

the branched structure. This result further highlights the importance of the three main parameters

identified here in determining mitochondrial health.
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Figure 3.5. Optimizing mitochondrial health through variation of transport parameters.
(a-b) Average health across all demand regions as a function of fraction of stopped mitochondria
( fs) and number of stopping events (Ns), for two dimensionless decay rates (k̂d). (c-d) Mitochon-
drial health at the most distal demand site, for two different decay rates. (e-f) Values of the fs
and Ns parameters that correspond to maximum average health (blue curves) or last region health
(yellow curves). Optimal parameters are plotted as a function of the decay rate. Results shown
were computed for the CoG model.

3.4 Results

3.4.1 Optimizing mitochondrial maintenance

We consider the average health of the system as a function of the mitochondrial transport

parameters fs and Ns (Fig. 3.5). An optimal value of the average health is observed at inter-

mediate values of both the stopped fraction and the number of stopping events. When too few

mitochondria are in the stationary state (low fs), then the total health at the demand regions is

low simply because there are very few mitochondria present in those narrow regions. On the

other hand, if too many mitochondria are stationary (high fs), the pool of motile mitochondria
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available for replenishing decayed proteins at the demand sites becomes very sparse and the

health of the system diminishes. The optimum with respect to fs relies on the assumption that

the total mitochondrial content in the domain is limited, embodying a trade-off between the

stationary and motile populations.

Higher decay rates k̂d require a higher fraction of mitochondria to be motile in order

to maintain optimal health. It should be noted that experimental quantification of neuronal

mitochondria indicates that roughly 60−90% of mitochondria are in a stationary state [181], in

keeping with the optimal values observed for cm-long axons (Fig. 3.5b,d).

For a fixed fraction of stopped mitochondria, low values of Ns (the number of stops

made by a protein during its journey along the axon) correspond to a system with very rare

interchange between the stationary and motile populations. Values that are too low result in little

opportunity for healthy proteins newly synthesized in the soma to be delivered to the demand

sites. By contrast, high values of Ns represent a system with very frequent interchange between

the two populations. Overly frequent stopping events increase the probability that a protein in a

healthy proximal demand site will be picked up by a retrograde motile mitochondrion and carried

back into the soma for recycling. In Supporting Information S3 Fig, we show that forbidding

retrograde fusion events in the Space Station model removes this optimum and allows higher

health levels at high values of Ns.

Similar behavior with respect to fs and Ns is seen for the normalized health of the last

region (Fig. 3.5c-d). The optimum stopped mitochondria fraction and number of stopping events

are both shifted to slightly lower values in this case, making it more likely that a protein can

successfully reach the most distal region without protracted stops along the way.

Figure 3.5e shows the optimal value for the stationary fraction fs over a range of dimen-

sionless decay rates k̂d . The optimum fraction of mitochondria in the stationary pool is high

for very long-lived proteins. In the limit of no decay (k̂d → 0), all mitochondria can be kept

permanently at the demand sites to maximize the health of the system. In the opposite limit of

rapidly decaying proteins, the optimum stationary fraction for the average health approaches
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fs ≈ 50%, indicating that mitochondria should be split evenly between motile and stationary

pools. For the health of the most distal region, the optimal stationary fraction is slightly lower to

allow for more motile mitochondria capable of reaching the end of the domain without extensive

decay of their protein content.

In Figure 3.5f, we see that when the decay rate is relatively low (k̂d ≤ 1), with many

proteins surviving a back and forth journey down the axon, optimum mitochondrial maintenance

is achieved in the range Ns = 2−4 stopping events. This optimal Ns value is not sensitive to

specific values of the decay rate, number of demand sites, or total mitochondrial content. It relies

only on the assumption of relatively slow protein decay, and the premise that protein exchange is

blind to the current health or position of the mitochondria. We note that physiologically relevant

values of the dimensionless protein decay rate are expected to fall in the regime k̂d ≤ 1. A similar

range for the optimal number of stopping events Ns is obtained when considering the health of

the most distal demand region only.

Interestingly, the optimum values of fs and Ns remain largely unchanged in a model

with branched tree-like geometries (see Supporting Information and S2 Fig). Our model thus

robustly predicts that the transition of mitochondrial components from motile to stationary

organelles at demand sites is expected to be rare (with only 2− 4 stopping events during the

entire journey along the axon), regardless of the specific model, the parameters chosen, or the

relative contribution of different sites to the health of the system.

3.4.2 Effect of Local Translation

While distal protein synthesis plays a role in maintaining and modulating local protein

levels in neuronal projections [54], it is unclear to what extent the proteins determining mitochon-

drial health rely on this mechanism. Approximately 30% of neuronal mRNA transcripts have

been identified outside the cell body [25]. For some transcripts that do exhibit local translation,

severed axons have been observed to have only 5% total protein synthesis capacity relative to the

soma [104]. Although we focus on the long-range delivery of protein components to maintain
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Figure 3.6. Mitochondrial health in the presence of local translation.
(a) Average health across all demand regions as a function of fraction of stopped mitochondria
( fs) and number of stopping events (Ns), for high decay rate (k̂d) and local translation level
α = 10%. Markers show the optimal parameter values with (red asterisk) and without (blue
circle) local translation. (b) Corresponding mitochondrial health at the most distal demand site.
(c) Enhancement of health levels at each demand site in the presence (Hi,t) versus absence (Hi)
of local translation, for one set of transport parameters, ( fs = 0.5,Ns = 0.4), two decay rates k̂d ,
and three different local translation levels (α).

mitochondrial health, in this section we explore the effect of low levels (5−30%) of local protein

synthesis that may contribute to mitostasis in neurons.

In our simple model for mitochondrial maintenance, we incorporate a term corresponding

to local translation and insertion of proteins specifically into the stationary mitochondria. The

total rate of protein incorporation at a demand site is assumed to be proportional to the number

of stationary mitochondria at that site, replacing Eq. 3.2b with

dHi

dt
= vps

[
H+(x−i )+H−(x+i )

]
− (kd + kw)Hi +

r fsM
n

, (3.7)

where the stationary mitochondria at steady state are expressed in terms of fs via Eq. 3.4.

The total flux of proteins delivered into the axon from the soma varies with the fraction of

mitochondria in the motile population. For a given total number of mitochondria M, the maximum

soma-derived flux is given by kp,max =Mv/(2L). We assume the rate, per mitochondrion, of distal

protein manufacture throughout the axon to be equation to a fraction α of this somal production,
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setting r = αkp,max/M. The rate at which new proteins are incorporated into mitochondria

stationed at each demand site is then given by rS.

Figure 3.6(a,b) shows the effect of a modest level of local translation with α = 10%,

for high degradation rate k̂d = 0.6. The primary difference compared to the model without

local translation (Fig. 3.5) is the increased health at high values of fs (large fraction of stopped

mitochondria) and at low values of Ns (less frequent exchange between the motile and stationary

populations). The optimum value for the fraction of stopped mitochondria is only slightly

increased, to fs ≈ 0.6. Notably, the optimum number of stopping events (Ns ≈ 2−4) remains

robust to the introduction of low levels of local translation, indicating that infrequent exchanges

between stationary and motile populations remain optimal for mitochondrial maintenance.

In Figure 3.6(c), we plot the enhancement due to local translation at each of the demand

sites (Hi,t/Hi), for a fixed set of transport parameters close to the optimum value. Unsurprisingly,

the effect of local translation is greatest when the dimensionless decay rate is highest, allowing

fewer proteins to survive transport to the distal tip of the domain. The biggest effect of local

translation is observed on mitochondrial health at the most distal sites. Local translation rates

that reach 30% of maximum somal production (per mitochondrion) are sufficient to double the

mitochondrial health in the last demand site for high k̂d (corresponding to a protein decay time

of 4 days and a centimeter-long axon). At these high local translation levels, the optimum in the

fs parameter disappears (S9 Fig), as it becomes advantageous to keep all mitochondria stationed

at the demand sites and forgo transport from the soma entirely. However, modest levels of distal

translation, similar to those measured for some transcripts in axon severing experiments[104],

have a more limited effect on overall health and do little to shift the optimal transport parameters.

In order to focus primarily on the interplay between transport and mitostasis, we therefore

exclude local translation from our model in all subsequent results.
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3.4.3 Variability of mitochondrial health

Our calculations thus far quantify the mean-field steady-state levels of mitochondrial

health in high-demand axonal regions. However, the instantaneous health at each site is in-

herently variable due to the stochasticity of mitochondrial dynamics. This variability arises

from fluctuations in both the number of mitochondria and the health per mitochondrion in each

region. A robust cellular distribution system may require high levels of mitochondrial health

to be maintained over long time periods, rather than tolerating highly fluctuating health levels.

At the same time, variability in the distribution of mitochondria may allow for a more rapid

response to changing energy demand at the expense of decreased precision in mitochondrial posi-

tioning [223]. In neuronal dendrites, mitochondrial content in localized regions has been shown

to fluctuate around a well-defined steady-state level [166], indicating that robust maintenance of

healthy mitochondria in those regions (low fluctuations compared to average quantities) may be

advantageous to the cell.

To understand the effect of stochasticity in our model, we turn to agent-based simulations.

These simulations give the same average steady-state mitochondrial health as the mean-field

calculations discussed previously (Fig. 3.2). We define the total health variability of our system

(σH) as the standard deviation in mitochondrial health per region 〈H〉, calculated over many

iterations of the system after it has reached steady state. Although they exhibit the same

average health levels for comparable parameter values, the normalized variability [σH/〈H〉] is

very different for the two maintenance models (Fig. 3.7). Specifically, the CoG model has an

additional source of variance due to fluctuating numbers of mitochondria per region, whereas the

space-station model has a fixed number of mitochondria at each demand site. In the CoG model,

replenishment of protein content occurs in whole-mitochondrion chunks, with transient periods

of missing mitochondria in the region until a new one arrives to take its place. This discreteness

in protein turnover becomes more pronounced when there are fewer mitochondria per region,

as seen in Fig. 3.7. For the SS model, variability arises from how often motile mitochondria
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exchange their protein contents with stationary ones, and becomes particularly high when the

number of motile mitochondria is small (high fs). Because the protein levels are a continuous

quantity, the SS model allows for more extensive equilibration across the many mitochondria in

the system, and thus exhibits lower fluctuations than the CoG model. This difference between the

models becomes even more pronounced at lower decay rates (S6 Fig), when most mitochondria

in the SS system have similarly high protein levels but the fluctuations in mitochondria number

for the CoG model are still present. It should be noted that while the SS model in our simulations

fills up demand sites with stationary mitochondria uniformly (same S for all sites), we have also

considered an alternate approach where the permanently stationed mitochondria are initially

distributed onto demand sites at random. This random initial distribution does not significantly

affect the variability in mitochondrial health at the demand sites (S6b Fig).

Overall, the SS model maintains more stable health levels in individual demand sites by

allowing for equilibration in protein content rather than removal of discrete mitochondria. This

maintenance system is thus expected to be more robust during periods of consistent metabolic

demand in specific regions. By contrast, the CoG maintenance mechanism gives rise to higher

variability that could allow for more rapid redistribution of healthy mitochondria in systems with

time-varying demand site positions.

The difference in variability between the two models is a metric which could serve to

distinguish the contribution of each to mitostasis in neurons. Experimental data in embryonic

fibroblasts indicates that knock-down of the genes responsible for mitochondrial fusion increases

heterogeneity in the mitochondria protein age[52]. Similar experiments in neurons would help

establish the role of occasional fusion events in maintaining mitochondrial health.

3.4.4 Effect of Mitophagy

In addition to utilizing motor-driven transport and transient fusion events to maintain

a healthy mitochondrial population, neuronal cells make use of mitophagy – a quality control

pathway for selectively recycling damaged or depleted mitochondria. Mitochondria with low
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Figure 3.7. Variability of mitochondrial health in different maintenance models.
Plotted is the standard deviation in health per region (σH) divided by its average value (〈H〉),
across 1000 iterations of stochastic simulations. Results are shown for 300 (blue), 500 (magenta),
and 1500 (yellow) average mitochondria in the domain. Solid lines correspond to simulations of
the CoG model and dashed lines to the SS model. All simulations used parameters k̂d = 0.6,n =
10,Ns = 2. Corresponding plots are provided in Supporting Information to show the effect of
lower decay rates (S6a Fig) and of random stationary mitochondria distribution in the SS model
(S6b Fig).
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membrane potential are recognized by the PINK1/Parkin signaling pathway, which triggers

ubiquitination and arrest of mitochondrial transport [181, 217, 214]. The marked mitochondria

are then targeted for encapsulation by autophagosomes, which transport them back to the soma

for recycling while fusing with proximally located fully acidified lysosomes en route [120, 7].

In essence, this pathway allows for the selective removal of damaged mitochondria from the

population and directed transport back to the cell body for rapid recycling of the mitochondrial

building blocks.

We introduce mitophagy into our model by allowing mitochondria to enter an “engulfed”

state whenever their health drops below a threshold level (φ ). This simplified approach neglects

any delays in autophagosome arrival or recognition of the damaged mitochondria, assuming

that all engulfment events occur immediately when the threshold is reached. Although a variety

of other quality control mechanisms, such as asymmetric fission [205] and health-dependent

halting of mitochondrial transport [237], may contribute to mitochondrial homeostasis, we focus

here on a single simplified sensing process representing mitophagy.

While in the engulfed state, the mitochondria move exclusively in the retrograde direc-

tion [24, 133], without pauses or reversals, and are unable to stop or engage in fusion at the

demand sites. For the Space Station model, if a permanently stationary mitochondrion becomes

engulfed and departs for the soma, it leaves behind a gap at the demand site that is filled by

stopping the next motile mitochondrion passing that site. A more complex response involving a

stopping probability upon passing each open site would correspond to an interpolation between

the SS and the CoG models. Because mitophagy is triggered by low health in an individual

discrete mitochondrion, our mitophagy model cannot be easily described by mean-field analytical

calculations. Instead, we employ stochastic simulations to explore the effect of mitophagy on

steady-state mitochondrial maintenance. Simulations are carried out for a domain with M = 300

mitochondria, n = 10 regions, and fs ≈ 0.53, giving a average of 15 mitochondria per site. This

number is within the range that has been observed in paranodal regions [135].
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Limiting mitochondrial production rates

In its simplest form, the mitophagy model increases mitochondrial turnover without

changing any other parameters. By providing an additional pathway for mitochondria to return

to the soma, without altering the production rate kp, mitophagy will decrease the total number

of mitochondria in the domain (Fig. 3.8a). This model represents the limiting case where

the number of mitochondria in an axon is limited by the rate at which they can be produced

from the somal population and injected into the proximal axon, regardless of how much total

mitochondrial material is available. We consider the effect of mitophagy on the overall health of

axonal mitochondria in this regime, comparing both the SS and CoG model. We start with the

case of no mitophagy (φ = 0), considering a vertical slice of the plots in Fig. 3.5 corresponding to

a fraction of mitochondria in the stationary state: fs(φ = 0) = 0.53. We proceed to increase the

protein threshold φ , corresponding to more frequent mitophagy events, while holding constant

all other parameters (including production rate kp, number of stops Ns, restarting rate kw in the

CoG model, and maximum number of mitochondria that can be stationed at each site, S, for the

SS model). The effect of increasing mitophagy on mitochondrial health can be considered by

defining the health in each demand site, normalized by the total mitochondrial content per site in

the absence of mitophagy (M(0)). Specifically, we define the health of the ith demand site as

Ĥ(0)
i = Hi/[M(0)/n], (3.8)

and the average health across all sites as
〈

Ĥ(0)
〉

. Unlike our previous normalization (Eq. 3.1),

this quantity no longer corresponds to the health per mitochondrion, because the advent of

mitophagy would decrease the total number of mitochondria in the domain. Instead, we use

this health metric to understand how the total amount of mitochondrial protein changes at each

demand site when new mitochondrial production is not upregulated to keep up with the enhanced

turnover due to mitophagy. The alternate case, where total mitochondrial content is kept constant,
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Figure 3.8. Effect of mitophagy, at fixed production rate kp.
(a) The total number of mitochondria in the domain (yellow) and the number of stationary
mitochondria (blue) are plotted as a function of the mitophagy threshold, for both the CoG model
(solid lines) and the SS model (dashed lines). Mitochondria quantities are normalized by the
steady-state number of mitochondria in the absence of mitophagy. (b) Mitochondrial health for
the CoG model, averaged over all demand sites, plotted as a function of mitophagy threshold
and number of stopping events Ns. (c) Health at most distal demand site, for the CoG model.
(d-e) Analogous plots of average health and distal site health for the SS model. All plots assume
mitochondrial production rate does not change with increased mitophagy, and correspond to
fraction of mitochondria stopped fs(φ = 0) = 0.53 in the absence of mitophagy.

is considered in the subsequent section.

A seen in Fig. 3.8b,c, the introduction of mitophagy in the CoG model decreases the

mitochondrial health at the demand sites. This is a result of a decrease in the average number

of mitochondria stationed at each site (Fig. 3.8a), as mitophagy causes more mitochondria

to leave the domain without increasing the production rate kp. By contrast, in the SS model

modest levels of mitophagy will actually increase the average mitochondrial health at the demand

sites (Fig. 3.8d). For this maintenance system, the number of stationary mitochondria does

not change significantly for φ . 0.2 (see Fig. 3.8a). However, these low levels of mitophagy

remove some of the most unhealthy motile mitochondria from the population capable of fusing,

thereby increasing the average health of all the remaining mitochondria in the domain. Notably,
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a mitophagy threshold of φ ≈ 0.2 optimizes both the average health of stationary mitochondria

and the health of the most distal site in the SS model (Fig. 3.8d-e).

The difference between the CoG and SS model in the presence of mitophagy reflects, in

part, the different variability of stationary mitochondria. In the SS model, the mitochondria are

more homogeneous in terms of their protein content (Fig. 3.7). Because mitophagy removes

individual organelles whose health drops below a particular threshold, the homogenization

arising from fusion events makes it less likely that a stationary mitochondrion will drop below

threshold and become engulfed. As a result, low levels of mitophagy have a much smaller

effect on both the number of stationary mitochondria and the total number of mitochondria

(engulfed, stationary, and motile) in the SS model. For this model, only those mitochondria

moving retrograde and already near the somal region become engulfed at low φ values. These

depleted mitochondria are prevented from fusing with stationary mitochondria in the proximal

demand regions, thereby increasing the overall health of the system without substantial change

to total mitochondrial number.

Limiting mitochondrial content

One of the presumed benefits of the mitophagy pathway is its ability to more rapidly

return damaged mitochondria to the soma, permitting their components to be recycled for future

use [135]. We therefore consider again the regime where the system is limited not directly by

the production rate, but by the total amount of available mitochondrial components. In this

case, mitophagy causes an increase in the production rate kp, as the mitochondria on average

return to the soma more quickly for recycling. We implement this model by rescaling all protein

levels by the total number of mitochondria (including engulfed, stationary, and motile) in the

domain. Health levels are normalized by the actual number of total mitochondria at steady

state [Ĥi = Hi/(M/n)], thereby removing the effect of decreased mitochondrial population in

the presence of autophagy. This approach is equivalent to explicitly fixing the total amount of

mitochondrial content available, as demonstrated in Supporting Information (S7 Fig).
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Figure 3.9. Effect of mitophagy when total mitochondrial number is limited.
(a) Fraction of mitochondria in the stationary state as a function of increasing mitophagy
threshold, for the CoG model (solid line) and the SS model (dashed line), with parameters
set such that fs = 0.53 at φ = 0. (b) Mitochondrial health, normalized by the total number
of mitochondria per site, averaged over all demand sites, for the CoG model. (c) Normalized
mitochondrial health at most distal demand site, for the CoG model. (d-e) Analogous plots
of normalized average health and distal site health for the SS model. Normalizing by total
mitochondrial number is equivalent to a system where the total mitochondrial content is held
fixed with the onset of mitophagy (S7 Fig).
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In this regime, both the SS and CoG maintenance models allow an increase in mitochon-

drial health with intermediate levels of mitophagy (Fig. 3.9b-e). The normalized health of the

most distal region (Ĥn) is increased by about 90% for the SS model and 40% for the CoG model,

when compared to the case of zero mitophagy (evaluated at the optimum value of Ns for each

φ value). As before, the optimal mitophagy threshold is in the range φ ≈ 0.1− 0.2 for both

models. The average health of stationary mitochondria improves by 80% for the SS model and

20% for the CoG model at these optimal mitophagy thresholds. While higher mitophagy levels

can improve average regional health still further, they do so at the expense of a severe drop in

the health of the most distal region, as very few mitochondria are able to reach that region when

mitophagy occurs too early in the domain.

Even when normalizing by total mitochondrial content, the SS model has a significant

advantage over the CoG model. Namely, because the restarting rate kw is fixed for each row

in the plots of Fig. 3.9, the fraction of mitochondria in the stationary state drops substantially

in the CoG model as mitophagy is introduced (Fig. 3.9a). This reflects the fact that stationary

mitochondria are preferentially engulfed in this model, so that even if we normalize by the total

mitochondrial content, a smaller fraction of mitochondria remain at the demand sites. In the SS

model, by contrast, equalization of mitochondrial health by transient fusion events implies that

stationary mitochondria are no more likely than motile ones to become engulfed, and the fraction

of mitochondria in the stationary state remains constant or even increases slightly for a broad

range of φ values.

It is reasonable to suppose that a cell employing the CoG strategy might have compen-

satory mechanisms to adjust the fraction of the mitochondrial pool that is stationed at demand

sites in the presence of mitophagy (perhaps by increasing stopping probability ps or decreasing

the restarting rate kw). In order to assess the relative advantage of the two models, we therefore

consider the maximal mitochondrial health each of them can achieve at a given mitophagy level,

if allowed to freely adjust the other model parameters. We assume the total mitochondrial pool

remains fixed and therefore again normalize the results by M/n as in Fig. 3.9.
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As the mitophagy threshold is raised (with freely adjustable transport parameters), the

increase in average health over all the demand regions can be substantial — up to 4-fold for

the CoG model and 5-fold for the SS model (Fig. 3.10a). However, the parameters that give

such high average health result in most of the protein content being concentrated in the first few

demand sites, with the health of the most distal site dropping to zero. This regime corresponds to

rapid turnover of motile mitochondria that undergo mitophagy before they ever reach the distal

regions. Notably, experimental observations have indicated that mitochondrial densities are

indeed somewhat lower at distal sites [122, 142]. Given the necessity of supplying the metabolic

needs of all individual demand sites, we next consider the parameters necessary to maximize

mitochondrial health in the most distal site, rather than averaging over the entire domain.

If we optimize over the health of the most distal site (Fig. 3.10b), we see as before that

this distal health increases by about 90% in the SS model and about 40% in the CoG model,

compared to the case of no mitophagy. These values represent the maximal distal site health that

can be achieved by each model if the parameters fs and Ns are allowed to vary freely, within

the constraint of constant φ , k̂d,M,n. At the optimal mitophagy threshold (φ ≈ 0.2), the average

regional health is also increased, in both models, by up to a factor of two. However, the CoG

model allows for greater average health at still-higher mitophagy levels, indicative of its tendency

to distribute mitochondria unevenly throughout the domain when mitophagy is present, so that

proximal sites gain many healthy mitochondria while distal health are left under-supplied.

We conclude that introducing mitophagy to selectively recycle unhealthy mitochondria

can substantially improve mitochondrial health throughout high-demand regions of the domain.

This improvement is maximized by allowing mitochondria to become engulfed when their health

level drops below approximately 20% of its initial value. It should be noted that this optimal

value of φ is specific to the decay rate (k̂d ≈ 0.6) used in these simulations. This dimensionless

decay rate corresponds to a domain length of about 10 cm and protein lifetime of about 4 days, so

that there is a substantial amount of protein decay by the time a mitochondrion traverses the entire

domain. Lower values of k̂d move the optimal φ to higher values, rising to an optimum value of
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Figure 3.10. Optimal performance of mitochondrial maintenance models in presence of mi-
tophagy.
(a) For each mitophagy threshold φ , the parameters fs,Ns are optimized to give the maximum
normalized average health: 〈H〉. The resulting normalized average health (blue) and normalized
last region health (yellow) are plotted for the CoG model (solid) and SS model (dashed). (b)
Analogous plots, with parameters adjusted to maximize the normalized last region health Ĥn for
each mitophagy threshold. All health levels are normalized by total mitochondrial content per
region (M/n), corresponding to a system where the total amount of mitochondrial material is
limited. Error bars show standard error of the mean from 10 replicates. Fixed parameters are
k̂d = 0.6,M = 300,n = 10. A corresponding plot of optimized health for low decay rate k̂d is
provided in Supporting Information S8 Fig.

φ = 0.6 for k̂d = 0.06, corresponding to a shorter 1 cm axon (S8 Fig). This shift reflects the fact

that less degradation occurs during the journey of a mitochondrion along the axon, making it

feasible to trigger mitophagy at higher health thresholds while still allowing mitochondria to

reach the last demand site. An interesting consequence of this model is that longer neuronal

projections require mitophagy to be delayed to more extensive decay levels in order to permit at

least partially functional mitochondria to reach the most distant demand sites.

3.5 Discussion

The models described above constitute a quantitative framework for mitochondrial

maintenance in extended cellular regions such as neuronal axons. Neurons face unique challenges

in mitochondrial homeostasis, both because of the need to transport material from the cell

body through long cellular projections and because of their spatially heterogeneous metabolic
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needs. Balancing these constraints requires positioning stationary mitochondria in specific

regions of high metabolic demand, while also retaining a population of motile mitochondria to

transport the components needed for mitochondrial health. Our work differs from prior studies

of mitochondrial maintenance [138, 150] by taking into account these spatial constraints unique

to neurons. At the same time, we diverge from prior models of transport and spatial distribution

for neuronal components [223] by incorporating continuous degradation and focusing on the

steady-state health at specific localized sites.

Our results highlight similarities and differences between two main models of mitostasis:

the ‘Changing of the Guard’ and the ‘Space Shuttle’ model. In the absence of selective recycling

processes, the two models are shown to be equivalent in their average steady-state behavior.

Analysis of the mean-field model for both mechanisms shows that in extended projections,

with many demand sites and large numbers of mitochondria, the efficiency of the maintenance

mechanism depends primarily on three dimensionless parameters. These parameters are (1)

k̂d = kdL/v, which sets the extent of health decay while a mitochondrion crosses the domain,

(2) fs = nS/M, the fraction of mitochondria in the stationary pool, and (3) Ns = 2p̂sn, the

typical number of stopping events for a mitochondrial component during its round-trip journey

through the projection. Optimal mitochondrial health in high-demand sites is achieved at

intermediate values of both fs and Ns. The optimal fraction of stationary mitochondria lies

in the 50−80% range, depending on the precise value of the dimensionless decay rate. This

range is compatible with experimental observations which imply that 60− 90% of axonal

mitochondria are stationary [181]. For mature cortical axons, the observed stationary fraction has

been observed to be relatively high at 95% [109], possibly hinting at an even slower effective

degradation rate of mitochondrial cargo.

Furthermore, our model makes the prediction that, for a broad physiologically relevant

range of decay rates, very few stopping events (Ns ≈ 2−4) are required for optimal maintenance.

This result is robust to the introduction of low levels of local translation (Fig 3.6) or expansion

of the model to a branched tree-like morphology (S1 Fig). The low optimal value of Ns implies
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that both switching of mitochondria between motile and stationary states and transient fusion

events of axonal mitochondria should be very rare – happening only a few times during the entire

journey of a mitochondrion down the axon. Due to the inherent difficulty of experimentally

tracking motile mitochondria over long time periods, this result is consistent with the fact that

stationary mitochondria appear to be nearly permanent and interchange between stationary and

motile pools is rarely observed [50, 194, 218].

Differences between the CoG and the SS models become evident when considering

the variability of mitochondrial health at demand sites over time and between different cells.

Transient fusion and fission events in the SS model allow extensive equilibration of health levels

between individual mitochondria, resulting in much lower variance in the health of entire regions.

On the one hand, such decreased variance implies a more robust maintenance system, which

avoids large fluctuations in metabolic health at a high-demand site as individual mitochondria

enter or leave the stationary pool at that site. On the other hand, greater fluctuations in the CoG

model may imply an enhanced responsiveness to changing conditions (eg: changing spatial

distribution of metabolic demand). A close relationship between fluctuation magnitudes and

response to external driving is a key feature of physical systems dominated by thermal fluctu-

ations [99]. Analogous fluctuation-response relationships have also been proposed to underly

biological systems [106, 177], such as gene networks, where a greater degree of responsiveness

to external signals goes hand in hand with higher fluctuations at steady-state [225, 21]. Although

detailed exploration of temporal response by mitochondrial maintenance systems lies outside

the scope of this paper, the behavior of these models in the presence of time-varying metabolic

demand serves as a potentially fruitful area for future work.

A biologically relevant consequence of the different fluctuation magnitudes for the two

maintenance models is their differing response to the incorporation of selective mitophagy

of damaged mitochondria. In a system where mitochondrial production remains constant,

introducing low levels of autophagy causes a substantial drop in the number of stationary

mitochondria at each demand site in the CoG model. For the SS model, by contrast, equilibration
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of mitochondrial health implies that the number of both stationary and total mitochondria remains

relatively unchanged at low mitophagy thresholds. As a result, moderate autophagy levels

improve the overall mitochondrial health at demand sites in the SS model while monotonically

decreasing health in the CoG case.

Because mitophagy allows mitochondria to be recycled more rapidly, we also consider

the steady-state health normalized by total number of mitochondria in the domain. This approach

is equivalent to adjusting the mitochondrial production rate in such a way that the total number of

mitochondria remains fixed even in the presence of autophagy. In this case, an optimal autophagy

threshold is observed for both models, although the SS model still allows for the greatest (nearly

2-fold) increase in the mitochondrial health at the most distal demand site. Overall, the extensive

mixing of mitochondrial contents permitted by transient fusion and fission events allows for

improved health of localized mitochondria in the presence of recycling via selective mitophagy.

The optimal mitophagy threshold depends on the domain length and protein decay rate, with an

optimal value of φ ≈ 0.2 for both models in the case of 10 cm axons and 4-day mitochondrial

protein decay times.

The models described in this work are, of necessity, highly simplified. The model design

aimed to highlight key challenges of mitochondrial maintenance in long neuronal projections

and some of the fundamental strategies that can be utilized by the cell to meet those challenges.

In reality, neuronal mitostasis may include a variety of complicating factors, many of which

remain poorly understood. For example, our model incorporates the simplest possible sensing

and response mechanism for mitochondrial health — dropping below a critical health level

prevents further exchange events and forces a return to the soma for recycling. Other contributing

mechanisms may include asymmetric fission that concentrates health factors in one of the

resulting organelles [205, 150], local recycling [7] and formation of new mitochondria, or a

sensing mechanism that regulates the ability of mitochondria to stop as a function of total

ATP production by other mitochondria in the region [230, 216]. Furthermore, a sensing

mechanism that would prohibit fusion of retrograde mitochondria while allowing frequent fusion
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of anterograde ones would also increase overall health levels in the domain, though having

little effect on the health of the most distal site (S3 Fig). Although such mechanisms would

allow for more efficient mitochondrial maintenance, we focus here on the simplified case of

purely somal mitochondria production and no additional sensing that would differentiate the

behavior of stationary or motile organelles. Additionally, we employ the simplifying assumption

of a constant decay rate kd for both stationary and motile mitochondria. More complicated

models where the decay in mitochondrial health depends on local metabolic activity could be

incorporated within the framework of this model in future work.

In addition to the two transport and exchange mechanisms described here, local protein

translation may also contribute to mitochondrial maintenance in distal regions [91, 87, 79].

However, the extent to which mitochondria are able to produce their full complement of proteins

by local synthesis is largely unknown. General measurements of local translation indicate

that only about a third of transcripts are found outside the cell soma, and that for individual

transcripts the protein synthesis capacity of the axon may be only a small fraction of somal

production [25, 104]. We incorporate a small contribution from local translation in our model,

and find that the primary outcomes – the optimal fraction of stopped mitochondria and the

small optimal number of stopping events – remain unchanged (Fig. 3.6). More extensive local

synthesis could drive the system to place all mitochondria in the stationary population (S9 Fig).

However, it should be noted that even a small set of mitochondrial proteins that rely on somal

translation would necessitate the transport and exchange mechanisms described here. To focus

on the interplay between transport and maintenance, we primarily explore system dynamics in

the absence of local translation. Our assumption that key components of mitochondrial health

require long-range transport from the soma is partly substantiated by evidence that mitochondrial

aging increases with distance from the soma [52], implying an important role for long-range

transport.

For the most part, we consider the simplest possible system geometry, with a single linear

projection rather than more complicated branched axonal structures. We find that our results with
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this simplification can also be applied to symmetric branched geometries, further underscoring

the importance of the effective transport and exchange parameters defined here. Our models

also assume the metabolic demand in a neuron is concentrated at discrete high-demand regions.

While this is an over-simplification of the complex distribution of neuronal metabolism, it serves

as a limiting case for spatial heterogeneity that requires the formation of both stationary and

motile pools of mitochondria.

Studies in non-neural globular animal cells show that mitochondrial maintenance relies

largely on fusion and fission to maintain the health of the overall population of mitochondria [222].

In neuronal axons, fusion events are thought to be relatively rare, and it seems likely that

mitostasis actually involves a hybrid of the ‘Changing-of-the-Guard’ and the ‘Space-Shuttle’

mechanisms. Our separate exploration of the two models highlights the similarity of both in

maintaining the average mitochondrial health. However, we have also shown that the differing

fluctuations dictated by the two models can alter their response to rising levels of mitophagy,

implying that the introduction of occasional localized fission and fusion events can prove

beneficial. Experimental studies that explore the effect of knocking down fusion proteins on the

overall age of mitochondrial proteins, such as have already been carried out for non-neuronal cell

types[52], would help disentangle the contribution of the SS and CoG mechanisms to mitostasis

in neurons.

The interplay of transport and localization is a general principle for maintaining home-

ostasis under the constraints of highly extended geometries and spatially heterogeneous demands

that characterize neuronal cells. Our analysis outlines the key parameters that can be tuned to

optimize steady-state distributions, with a specific focus on maintaining mitochondrial health

in neurons. A key consequence of the models is that optimal mitochondrial health can be

maintained with a large fraction of stationary mitochondria and with very rare interchange

between the stationary and motile population. This prediction may account for the difficulty of

catching such exchanges in live cell imaging experiments, and the general tendency of stationary

mitochondria to remain stationary over long periods of observation [50, 109, 194]. With the
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advent of new experimental techniques that allow for long-term tracking of individual mito-

chondria [218], it would be valuable to quantify the frequency of these rare transitions. Our

results also predict a benefit to mitochondrial exchange via transient fusion events, motivating

future experimental determination of whether such fusions contribute to maintenance of localized

axonal mitochondria. Given the importance of mitochondrial maintenance for neuronal health,

developing a quantitative framework that delineates the factors governing mitostasis serves as a

critical step towards better understanding of the role of metabolism in neurodegenerative diseases.

3.6 Methods

Source code for all simulations and analytic calculations is available at: https://github.

com/lenafabr/mitofusion.

3.6.1 Table of Parameters

3.6.2 Steady-state mean-field solution for CoG model

We find the steady-state solution for the mean-field version of the Changing-of-the-Guard

model, which treats mitochondrial density and mitochondrial health as continuous fields on

a linear segment from x = 0 to x = L. We define the density of anterograde and retrograde

motile mitochondria as ρ±(x), while the number of stationary mitochondria in each point-like

high-demand region i is given by Si. These distributions obey the following set of dynamic
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equations:

dρ±

dt
=∓v

∂ρ±

∂x
(3.9a)

dSi

dt
= vps(ρ

+(x−i )+ρ
−(x+i ))− kwSi (3.9b)

vρ
±(x±i ) = vρ

±(x∓i )(1− ps)+
1
2

kwSi (3.9c)

ρ
+(L) = ρ

−(L) (3.9d)

vρ
+(0) = kp (3.9e)

Equation 3.9a describes the evolution of the mitochondrial density in each interval between

consecutive demand sites. Equation 3.9b governs the number of stopped mitochondria at each

discrete demand site, with the first term corresponding to the incoming flux of mitochondria

stopping at that site, and the second term corresponding to the restarting of stationary mitochon-

dria. The remaining equations provide the boundary conditions for each interval of the domain

between demand sites. Equation 3.9c enforces conservation of organelles, so that the flux of

anterograde mitochondria leaving the site is equal to the combination of those organelles which

pass by without stopping and those which restart from a stopped state. Eq. 3.9d - 3.9e set the

boundary conditions at the distal end (anterograde mitochondria turn around to move in the

retrograde direction) and the proximal end of the domain (mitochondrial production).

At steady state, Eq. 3.9a implies that the linear density of mitochondria is constant within

each region between demand sites. Setting Eq. 3.9b to zero yields the steady-state relation,

Si =
vps(ρ

+(x−i )+ρ−(x+i ))
kw

. (3.10)

Plugging in to the boundary conditions Eq. 3.9c-3.9e then implies that the motile mitochondrial

densities are equal and constant everywhere in the domain: ρ+ = ρ−. We define ρ = ρ++ρ−

as the constant steady-state density of all motile mitochondria. From the boundary condition at
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the proximal end, we can relate this density (as well as the stopped mitochondria at each site) to

the rate of mitochondrial production.

ρ = 2kp/v, S = vpsρ/kw

The linear density of mitochondrial health (ie: the sum of health levels for all mitochon-

dria that happen to be present at a given position in the domain) can be described by very similar

equations, with additional terms for decay at rate kd . Equation 3.2 describes the evolution of

this field over time.

Setting Eq. 3.2b- 3.2c to zero at steady-state yields the relations

vH+(x+i ) = vH+(x−i )(1− ps)+
kwvps

[
H+(x−i )+H−(x+i )

]
2(kd + kw)

. (3.11)

Furthermore, Eq. 3.2a implies that the steady-state distribution of motile mitochondrial health

exhibits an exponential decay across each interval between consecutive demand sites i−1 and i.

This gives the set of conditions:

H+
(
x−i
)
= e−xkd/vH+

(
x+i−1

)
, H−

(
x+i−1

)
= exkd/vH−

(
x−i
)
, (3.12)

Together, Eq. 3.11, 3.12, and 3.2c - 3.2e constitute a set of linear equations for the

health levels in stationary mitochondria at the demand sites [Hi] and the motile health densities

on either edge of the demand sites [H±(x±i )]. This system of equations is then solved using

standard matrix methods.

3.6.3 Steady-state mean field solution for SS model

A key feature of the Space Shuttle model is that a fixed number of permanently immobile

mitochondria (S) are stationed at each discrete demand site. These mitochondria are assumed to
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have a well defined order, but to be positioned arbitrarily close together within the point-like site.

We define Hi, j (with 1≤ i≤ n and 1≤ j ≤ S) as the health of the jth stationary mitochondrion at

the ith demand site. An anterograde moving mitochondrion encounters each of the stationary

ones in order as it passes the demand site. The quantity H+
i, j−1 describes the linear health density

of all anterograde mitochondria just after they pass the ( j−1)th stationary organelle at the ith site,

and are approaching the jth stationary organelle. Similarly, retrograde mitochondria encounter

the stationary organelles in reverse order and their health density is given by H−i, j+1 as they

approach the jth stationary organelle from the distal side. Each time a moving mitochondrion

passes a stationary one, there is a probability p f that they will fuse. When such a fusion event

occurs, the health levels of the two mitochondria are averaged together and both are left with a

health equal to that average. It should be noted that H± and H±i, j are densities and have units of

health level per unit length, while the quantities Hi, j have units of health level.

Motile anterograde mitochondria are produced at the proximal end with rate kp. They

then move forward and back throughout the domain, never stopping and instantaneously reversing

their direction from anterograde to retrograde once they reach the distal end. The density of

motile mitochondria is not affected by the fusion behavior, and evolves according to Equations

3.9a, 3.9d, 3.9e. At steady state, this density must be a constant value ρ = (M−nS)/L, equally

split between anterograde and retrograde organelles.

The set of mean-field equations describing the mitochondrial health in the SS model is,

for 1≤ j ≤ S,

dH±

dt
=∓v

∂H±

∂x
− kdH± (3.13a)

dHi, j

dt
=

vp f

2

[
H+

i, j−1 +H−i, j+1

]
−
[vρ p f

2
+ kd

]
Hi, j (3.13b)

H±i, j = H±i, j∓1

(
1−

p f

2

)
+

p f ρ

4
Hi, j (3.13c)

H+(L) = H−(L) (3.13d)

vH+(0) = kp. (3.13e)
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Equation 3.13b describes the time evolution of the health of each stationary mitochon-

drion. The first term corresponds to the flux of incoming mitochondrial health multiplied by

the probability of fusion (p f ) and the probability (1/2) that a given protein will stay with the

stationary mitochondria after the fusion-and-fission cycle is complete. The second term gives the

rate at which health markers leave the stationary mitochondrion through being transferred to the

motile partner during a fission and fusion cycle, and through decay. The edge values at each site

are defined by H+
i,0 = H+(x−i ), H+

i,S = H+(x+i ), H−i,1 = H−(x−i ), and H−i,S+1 = H−(x+i ), where x−i

refers to the limit approaching site i from the proximal side and x+i is the limit approaching from

the distal side. Equation 3.13c sets the flux of motile health leaving a stationary mitochondrion

equal to the flux of health approaching that mitochondrion from the opposite side and going

straight through without transfer, plus the flux of health carried out of the stationary mitochondria

as a result of fusion events. Overall, Eq. 3.13 provides a closed set of equations that can be

solved at steady state.

In the case where there is one stationary mitochondrion at each demand site (S = 1), the

equations above become equivalent the the dynamic equations for the CoG model (Eq. 3.2), with

the restarting rate kw replaced by an effective rate at which proteins in a stationary mitochondrion

leave the organelle via fusion and fission (k̂w = vρ p f /2). The stopping rate ps is replaced by an

effective rate of a protein ending up in a stationary mitochondrion each time there is a passage

event ( p̂s = p f /2). In the case where there are multiple mitochondria per site, the total stationary

health at each site is given by Hi = ∑
S
j=1 Hi, j. Solving together Equations 3.13b- 3.13c then

yields

dHi

dt
= v
[

1−
(

1−
p f

2

)S
][

H+(x−i )+H−(x+i )
]
−
[vρ p f

2
+ kd

]
Hi, j

+
p f

2

S

∑
k=1

[
1−
(

1−
p f

2

)S−k
](

Hi,k +Hi,S−k+1
)
.

(3.14)

For small values of p f , the last term can be neglected, and the SS model becomes equivalent to
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the CoG model (Eq. 3.2b), with the effective stopping rate given by p̂s = 1−
(
1− p f /2

)S, and

the effective restarting rate given by Eq. 3.5. Intuitively, the effective stopping rate is simply

obtained by finding one minus the probability that a protein is not left behind in any of the S

independent fusion events, each of which occurs with probability p f while passing the multiple

mitochondria stationed at a site.

3.6.4 Discrete stochastic simulations

Discrete stochastic simulations for both the CoG and the SS model were carried out by

tracking the positions and health levels of individual point-like mitochondria on a finite linear

interval representing a neuronal axon. All length units were normalized by the domain length

and all time units by the mitochondrial velocity, such that L = 1 and v = 1 in the simulations.

High-demand sites where mitochondria could stop (in the CoG model) or fuse (in the SS model)

were represented as point sites equispaced in the domain. Simulations were propagated forward

for 105 time-steps of duration ∆t = 10−3. Each simulation was carried out as 100 independent

iterations and the average results are reported.

At each time-step, a new mitochondrion was generated at position 0 with probability

1− exp(−kp∆t). For the CoG model, each mitochondrion was labeled as being in the antero-

grade, retrograde, or stationary state. At each time-step, a motile mitochondrion took a step

of ±v∆t, depending on whether it was in the anterograde or retrogtrade step. An anterograde

mitochondrion that reached the domain end (at L) was flipped to a retrograde state. A retrograde

mitochondrion that reached 0 was removed from the simulation. A stationary mitochondrion

restarted with probability 1− exp(−kw∆t), with its new directionality equally likely to be set

to antegrograde or retrograde. Whenever a motile mitochondrion crossed the demand site, it

had probability ps of switching to a stationary state. Each mitochondrion had a continuous

health variable associated with it, set to 1 when the mitochondrion was formed and multiplied by

exp(−kd∆t) during each simulation time-step.

The SS model was simulated in a similar manner. A fixed number of permanently
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stationary mitochondria were evenly distributed among the demand sites at the beginning of

the simulation. Each time a motile mitochondrion crossed over the demand site, it attempted to

fuse with each stationary mitochondrion at that site, in sequence, with probability p f . Whenever

a fusion successfully occurred, the health levels of both fusing mitochondria were set to the

average of their two health levels. The motile mitochondrion would then proceed to attempt the

next fusion or move further down the domain. Fission and fusion events were assumed to be

instantaneous.

Mitophagy in the stochastic simulations was implemented by setting a cutoff level φ for

the health of an individual mitochondrion. Whenever a mitochondrion’s health dropped below

that cutoff, it was labeled as “engulfed”. An engulfed mitochondrion moved in the retrograde

direction (−v∆t) on each time-step and was not subject to fusion, fission, or stopping events.

Once it reached the proximal end of the domain (position 0) it was removed from the simulation.

The total number of mitochondria in the domain (M) included these engulfed particles. However,

their health levels were not included in any calculations of health at the demand sites. Simulations

with mitophagy (Fig. 3.8, 3.9, 3.10) were carried out with M = 300.

For S7 Fig, additional stochastic simulations were carried out for a variant of the CoG

model with explicitly fixed total number of mitochondria in the domain. Specifically, M mito-

chondria were initially placed uniformly at random in the domain in a motile state. Each time

a retrograde mitochondrion reached x = 0, it switched immediately into an anterograde mito-

chondrion with health level reset to 1. No new mitochondria were produced, and the system was

allowed to run for 105 time-steps to reach steady-state. The number of mitochondria therefore

stayed fixed throughout, regardless of the presence of mitophagy.

3.6.5 Optimizing performance in the presence of mitophagy

For each of the plots showing the effect of mitophagy in Fig. 3.8, 3.9, the effective

stopping rate was set to give a particular value of Ns. Simulations were carried out with n = 10

demand sites, and M = 300 average total mitochondria in the domain.
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For the data shown in Fig. 3.8, 3.9, the fraction of stopped mitochondria was set to

fs(φ = 0) = 0.53 in the absence of mitophagy. In the SS model, a number fsM0 of permanently

stationary mitochondria were placed evenly distributed among all the demand sites. In the CoG

model, the restarting rate kw was set according to Eq. 3.4, for each value of Ns. The production

rate was then set according to Eq. 3.3, to give the desired number of motile mitochondria in the

domain at steady-state. The value of kp was not changed as the mitophagy cutoff increased, so

that higher mitophagy in Fig. 3.8 corresponds to fewer total mitochondria in the domain.

In Fig. 3.9, the value of kp was also kept constant, but the resulting health levels were

normalized by the total actual number of mitochondria in the domain. Because properly normal-

ized health levels are not sensitive to the absolute number of mitochondria, this procedure was

equivalent to explicitly fixing the total number of mitochondria. A direct comparison for the

CoG model with explicitly fixed M is provided in Supporting Information (S7 Fig).

Optimization of normalized health over all parameters (Fig. 3.10) was carried out by

running simulations with 100 independent iterations each for a 10×10 grid of Ns and fs values,

for each mitophagy cutoff φ . The normalized average health and normalized last region health

was computed for each set of parameter values, and the maximum of each for a given φ was

found. The parameters that led to this maximum were then used to run another set of 10

identical simulations of 100 iterations each, to compute the standard deviation in the resulting

normalized health. Error bars in Fig. 3.10 correspond to the standard error of the mean from

these independent replicates.
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Table 3.1. Physiological parameter values estimated from published data for Chapter 3

Input Parameters
Symbol Description Value used
L Length of axonal domain 1 - 10 cm
kd Decay rate of mitochondrial protein (4days)−1

M total number of mitochondria in the axonal do-
main

Variable (depend-
ing on length of
domain)

n Demand sites in axonal domain Variable
kp Production rate of mitochondria at the soma Variable
v Speed of mitochondria in an axon 0.5 µm/s
kw Rate of re-entry of stationary mitochondria to

motile pool
Variable

ps Stopping probability of motile mitochondria at
demand sites

Variable

p f Probability of transient fusion between a motile
and stationary mitochondria

Variable

φ Health threshold for mitophagy Variable
α local translation fraction 5−30%

Effective Derived Parameters
Symbol Description Formula
ρ Steady-state density of motile mitochondria 2kp/v
S Steady-state number of stationary mitochondria

at each demand site
vρ ps/kw

fs Fraction of mitochondria in the stationary pool nS
M

k̂w Effective restarting rate in Space Station model p f
2 v

p̂s Effective probability of protein stopping at a
demand site in Space Station model

1− (1− p f /2)S

k̂d Non-dimensionalized decay rate kdL/v
Ns Number of stopping events during a protein’s

back and forth journey in the domain
2 p̂sn

r rate of local translation per mitochondrion; only
stationary mitochondria import local proteins

αv/(2L)
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Chapter 4

Dendritic architecture determines mito-
chondrial distribution patterns in vivo

4.1 Abstract

Mitochondria are critical for neuronal function and must be reliably distributed through

complex neuronal architectures. By quantifying in vivo mitochondrial transport and localization

patterns in the dendrites of Drosophila visual system neurons, we show that mitochondria

make up a dynamic system at steady-state, with significant transport of individual mitochondria

within a stable global pattern. Mitochondrial motility patterns are unaffected by visual input,

suggesting that neuronal activity does not directly regulate mitochondrial localization in vivo.

Instead, we present a mathematical model in which four simple scaling rules enable the robust

self-organization of the mitochondrial population. Experimental measurements of dendrite

morphology validate key model predictions: to maintain equitable distribution of mitochondria

across asymmetrically branched subtrees, dendritic branch points obey a parent-daughter power

law that preserves cross-sectional area, and thicker trunks support proportionally bushier subtrees.

Altogether, we propose that “housekeeping” requirements, including the need to maintain steady-

state mitochondrial distributions, impose constraints on neuronal architecture.
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4.2 Introduction

Neurons are energetically demanding cells with complex morphologies. Mitochondria

produce most of the ATP in neurons, and all parts of the neuron need ATP. In addition, some sub-

cellular structures (e.g. synapse) are more energetically demanding than others, so mitochondria

must be distributed throughout neurons in specific patterns in order to meet energetic demands.

Mitochondria are also highly dynamic: they grow and degrade, divide and fuse, and move

through the cell. Thus, in order to maintain stable mitochondrial distribution patterns over time,

neurons must somehow coordinate mitochondrial dynamics over large, elaborately branched

axonal and dendritic arbors. Mitochondrial motility, in particular, has been extensively studied

in neurons[196, 68, 170]. Mitochondrial motility in neurons is bidirectional: mitochondria can

move away from the soma and into axonal and dendritic processes, or out of the processes

back towards the soma. For an individual mitochondrion, the mechanics governing motility are

relatively clear [14]. In brief, the motor proteins kinesin and dynein transport mitochondria along

microtubules[158]. Adaptor proteins link mitochondria to motor proteins[137], and anchoring

proteins oppose mitochondrial movement [97]. Whether a particular mitochondrion moves,

and in which direction, depends on the number and orientation of microtubule tracks, as well

as the relative amount of force generated by populations of motor proteins versus anchoring

interactions [2]. It is unclear, however, how neurons regulate these molecular scale interactions

across space and time in order to maintain large-scale mitochondrial distribution patterns. In

some cases, neurons may control mitochondrial localization patterns by regulating the spatial

distribution of signals that trigger motility arrest (by modifying motor-adaptor proteins or ac-

tivating anchoring interactions), resulting in mitochondrial enrichment within regions where

mitochondria are most likely to stop. Along these lines, one attractive hypothesis in the field

is that neuronal activity contributes to mitochondrial localization patterns by regulating motor

engagement[118]. Specifically, kinesin and dynein are known to bind to mitochondria via the

Miro/Milton adaptor complex[209]; Miro is a mitochondrial outer membrane protein[59], and
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Milton is an adaptor protein[196]. Several lines of evidence from cultured cells have shown

that high levels of calcium induce a conformational change in Miro that results in motor dis-

engagement and motility arrest[216, 119, 176]. Synaptic activity drives local calcium influx in

neurons, and calcium-dependent arrest of mitochondrial movement could enrich mitochondria in

subcellular regions with high synaptic densities and energetic demands[119]. However, there is

no evidence that physiological calcium signals arrest mitochondrial movement in vivo. On the

contrary, a small number of studies suggest that calcium signals have no effect on mitochondrial

movement in neurons in vivo [50, 194, 190]. Similarly, high glucose levels have been shown

to trigger mitochondrial halting in cell culture, through the O-GlcNacylation of the Milton

adaptor [153]. However, the role and extent of such glucose-mediated localization in vivo

remains unclear. In addition to regulating mitochondrial localization patterns by controlling

the balance between movement and arrest, neurons could control the flux of mitochondria in

subcellular compartments. In this scenario, mitochondria would be enriched in regions where

more microtubule tracks allow for higher rates of mitochondrial delivery. EM studies have

shown that microtubule numbers are proportional to the thickness of neuronal processes in

various cell types[92], so the shape of a neuron is likely to play a role in mitochondrial transport

patterns. The relationship between transport rates and scaling across branch points in tree-like

structures — i.e. the relative thickness of parent and daughter branches, as well as the relative

sizes of sister subtrees that sprout from each branch point — has been studied in various contexts,

from botanical trees[48, 105] to the vascular system [139]. In neurons, theoretical work has

defined various scaling rules to optimize wiring economy [30, 37, 221], electrical signaling

[164, 32], and, to a lesser extent, transport [112]. However, there is no comprehensive theory or

experimental evidence that defines the relationship between neuronal architecture, mitochondrial

transport, and large-scale mitochondrial distribution patterns.

To interrogate the relationship between neuronal architecture and dynamic mitochondrial

localization patterns, it is important to conduct experiments in vivo, such that neurons retain

their physiological morphologies. To that end, neurons in the Drosophila visual system called
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horizontal system (HS) neurons were used as a model system in this work. There are three

HS neurons per optic lobe of the fly (six in total), all of which are functionally equivalent

[179]. HS neurons detect global optic flow patterns by dendritic integration of local motion

input signals [15]. HS dendrites are highly branched and amenable to in vivo imaging [219].

In this work, we combined experimental measurements of in vivo mitochondrial transport,

mitochondrial localization patterns, and the architecture of HS dendrites with mathematical

modeling to determine how dendritic branching patterns contribute to steady-state mitochondrial

localization patterns. We found that although mitochondria in HS dendrites are highly motile,

large-scale mitochondrial distribution patterns are conserved across HS cells, with mitochondria

consistently enriched in distal dendrites, relative to primary dendrites, and equitably distributed

across asymmetrically branched arbors. Our experimental measurements are consistent with

a mathematical model in which simple dendritic scaling rules enable robust self-organization

of steady-state mitochondrial localization patterns in HS dendrites. Consistent with previously

published work [50, 194, 190], our experimental observations also indicate that physiological

neuronal activity does not affect mitochondrial motility. Altogether, this work demonstrates that

dendritic architecture, not neuronal activity, determines mitochondrial localization patterns in

vivo in Drosophila HS dendrites.

4.3 Results

4.3.1 Experimental measurements of mitochondrial localization patterns
and motility

In order to understand how neurons reliably distribute mitochondria throughout complex

architectures, members of the Barnhart group at Columbia University used publicly available

serial section transmission electron microscopy (ssTEM) images of an entire fly brain (“Female

Adult Fly Brain,” or FAFB) to measure mitochondrial localization patterns in HS neurons.

Dendrites, but not axons, often contained large, branched mitochondria that spanned multiple
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dendritic branches (Figure 4.1A). On average, the total mitochondrial density in HS neurons

is 20 % (mitochondrial density = 0.19 +/- 0.04 STE), but there was significant variation in the

total mitochondrial density across the six HS neurons in the FAFB dataset. Whereas the total

mitochondrial density in four of the cells was 12%, the density in the other two cells was 33%.

Despite this variation in overall mitochondria density, it was found that mitochondrial localization

patterns were conserved across all six HS neurons in the FAFB dataset. In dendrites but not

axons, mitochondrial densities increased with distance from the soma, such that mitochondrial

densities were approximately three times higher in the distal-most dendrites compared to the

primary dendrite (Figure 4.1 C). At each branch point within a dendritic arbor, a parent branch

splits into two daughter branches, and the entire arbor can be decomposed into successive pairs

of sister subtrees. (Figure 4.1D). Whereas in some cases the dendritic arbor splits in a symmetric

fashion (Figure 4.1D), it was found that sister subtrees are often asymmetric: one subtree is, on

average, 2.5 times longer than the other (Figure 4.1E; fold difference in total sister subtree length

= 2.5x +/- 0.4. STE). Despite this asymmetry in sister subtree size, mitochondria are equitably

distributed across branch points such that sister subtrees have equivalent mitochondrial densities

(Figure 4.1D-E). Altogether, these results show that mitochondria in HS dendrites follow a

specific distribution pattern, with equitable distribution across sister subtrees and mitochondrial

enrichment in distal dendrites.

We hypothesized that the observed localization patterns emerge from a dynamic steady-

state in which individual mitochondria are continually reorganizing within a stable, global pattern.

To test this hypothesis by measuring mitochondrial motility patterns, the Barnhart group used

the GAL4/UAS binary system to drive expression of GFP-tagged mitochondria (mitoGFP) and a

cytosolic volume marker (tdTomato) in HS neurons. Then, in vivo confocal microscopy was used

to image HS dendrites in living, head-fixed Drosophila. Measurements of mitochondrial motility

in primary and distal dendritic branches indicate that mitochondria moving in the anterograde

direction in distal dendrites were significantly slower and less persistent than in the primary

dendrite (Figure 4.2B). Measurements further indicated that there was balanced anterograde
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Figure 4.1. Mitochondrial localization patterns in HS dendrites Figure courtesy of Barnhart Lab,
Columbia University.
A: TEM images of mitochondria (cyan) in different compartments of an HS neuron (yellow);
scale bars are 1 µm. Dashed boxes indicate the regions enlarged in the inset images (inset scale
bars are 200 nm). B: Skeleton of an HS neuron traced through ssTEM images. C: Average
mitochondrial densities plotted versus distance from the soma in the dendrite (green) and axon
(magenta). N = 6 neurons; shaded regions indicate the standard error of the mean. For each
cell, mitochondrial densities are normalized to the density in the primary dendrite near the soma.
D: Mitochondrial densities in sister subtree pairs. Error bars are bootstrap 95% confidence
intervals. E: Sister subtree asymmetries in subtree length and mitochondrial density (asymmetry
= ((ST 1−ST 2)2/(ST 1+ST 2)2)1/2, averaged over all sister subtree pairs per cell); p < 0.01
(T-test).
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and retrograde transport through the primary dendrite, suggesting that the total amount of

mitochondria in the HS arbor remains constant over time. The measurements of mitochondrial

density and motility can be leveraged to estimate the fraction of dendritic mitochondrial volume

that is motile versus stationary. The mitochondrial mass exchange rate was measured to be 1

µm3 every minute for the primary dendrite (Figure 4.2 D). Based on this rate of mitochondrial

volume exchange (J ∼ 1µm3/min), the typical speed of motile mitochondria (v∼ 0.4µm/s), the

mitochondrial volume density in primary dendrites (cprimary ∼ 10%), and its cross-sectional area

(Ad ∼ 30µm2) in the primary dendrite, we estimated that the fraction of motile mitochondria

in this proximal region is fm = 2J/(vcAd)∼ 3%. Mitochondrial density is higher in the distal

dendrites (cdistal ∼ 30%), and we therefore estimate an even lower motile fraction for the distal

portions of the dendritic arbor (∼ 1%). Thus, the majority of the mitochondrial population is

stationary at any given moment. However, we also estimate that the total volume of mitochondria

in the dendritic arbor exchanges through the primary dendrite many times over the lifetime of the

neuron. Based on the mitochondrial density in the whole dendrite (c∼ 20%), the total volume

of the dendritic tree (Vd ∼ 2000µm3 [37]), and the rate of mitochondrial volume exchange

(J ∼ 1µm3/min), we estimate a mitochondrial volume exchange rate normalized to the total

mitochondrial volume in the dendrite: Jnorm = J/(cVd) ∼ 15%/hr. At this rate, the entire

mitochondrial volume in an HS arbor reorganizes in less than ten hours, or more than one

hundred times over the course of a fly’s lifetime. Altogether, these results are consistent with the

idea that the mitochondria in HS dendrites make up a dynamic system at steady-state.

How do HS dendrites maintain steady-state mitochondrial distribution patterns, given

rapid reorganization of mitochondrial mass? HS neurons are part of global motion detection

circuits in Drosophila, and they are selectively activated by specific patterns of global motion

[179, 94]. Previous work from the Barnhart group found that global motion stimuli drive calcium

increases in the distal dendrites of HS neurons [15]. Calcium arrests mitochondrial motility in

cultured neurons ([216]). If stimulus-evoked calcium signals are stronger in the distal dendrites

than in the primary dendrite, then calcium-dependent arrest of mitochondrial transport could
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Figure 4.2. Mitochondrial transport in HS dendrites. Figure courtesy of Barnhart Lab, Columbia
University.
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direction of anterograde versus retrograde transport. B: Average speed of mitochondria moving
through primary or distal mitochondria in the anterograde (green) or retrograde (magenta)
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T-test, p < 0.001). E: Asymmetry in daughter branch cross-sectional areas (r2) plotted versus
asymmetry in mitochondrial linear flux rates; asymmetry = (D1−D2)/(D1+D2), N = 25
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increase the density of mitochondria in the distal dendrites, relative to the primary dendrite.

Experimental measurements did indicate that stimulus-evoked calcium signals correlate with

mitochondrial density, with larger calcium response amplitudes and mitochondrial densities

in the distal dendrites compared to the primary dendrites. However, it was found that visual

stimulus-evoked calcium signals are not sufficient to arrest mitochondrial motility in HS distal

dendrites (Supplemental Figure C.1). The stimulus did not affect mitochondrial speeds (Sup-

plemental Figure C.1C), nor mitochondrial transport rates (Supplemental Figure C.1D). Thus,

physiologically-relevant calcium signals do not affect mitochondrial motility in HS dendrites in

vivo.

4.3.2 Simple scaling rules recapitulate experimental measurements of
mitochondrial localization patterns

We next hypothesized that dendritic architecture, rather than neuronal activity, determines

steady-state mitochondrial localization patterns in HS cells. To test this idea, we developed

a quantitative model of mitochondrial transport and localization patterns in HS dendrites. In

developing this model, we assumed the mitochondrial distribution to be governed by the mor-

phology of the dendritic arbor (relating branch widths with subtree structures) as well as the

local relationship between dendrite width and mitochondrial transport rates. Specifically, we

defined four simple scaling relationships governing mitochondrial localization patterns:

1. Splitting of mitochondria at branch points When mitochondria move in the anterograde di-

rection across branch points (i.e. from a parent branch into one of two daughter branches),

more mitochondria move into the thicker daughter branch. We assume that the prob-

ability of a mitochondrion moving into a given daughter branch is proportional to the

cross-sectional area of the branch, according to p1/p2 = r2
1/r2

2, where p1 and p2 are the

probabilities that a mitochondrion moves from the parent into daughter 1 or 2, and r1 and r2

are the radii of the two daughters. Since thicker branches have thicker microtubule bundles,

more mitochondria can enter a thicker vs thinner branch. This assumption is supported by
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experimental measurements (Figure 4.2) indicating that mitochondrial downstream fluxes

split proportional to the cross-sectional area of daughter branches at each junction.

2. Power law scaling of parent and daughter branch widths Consistent with several previous

studies, we assume that parent and daughter radii scale according to the power law

rα
0 = rα

1 + rα
2 , where r0 is the radius of the parent branch. The exponent α determines

the extent to which the total dendritic cross-sectional area increases or decreases in the

daughter branches, relative to the parent: area is conserved if α = 2, decreases if α < 2,

and increases if α > 2. Although experimental evidence for any particular form of

power law scaling in neurons is sparse, optimal values for α have been derived based on

theoretical arguments for preservation of graded electrical signals across dendritic branch

points (α = 3/2, often called ”Rall’s Law” after the neuroscientist Wilfrid Rall), action

potential propagation in axons (α = 3, often called “Murray’s Law” and first derived for

the vasculature system), or efficient intracellular transport (α = 2, often called “Da Vinci

scaling” after Da Vinci’s rule for trees). Recent work in larval Drosophila sensory neurons

indicates that Da Vinci scaling, along with a correction for minimal radius at the distal

tips, is consistent with observed arbor morphologies [112].

3. Scaling of mitochondrial transport with dendrite radius Our in vivo measurements of

mitochondrial transport show that mitochondria are significantly more likely to arrest

motility in thin distal dendrites than in the thick primary dendrite. Based on this, we

assume that the rate of mitochondrial arrest, ks, scales with dendrite radius according to

ks ∼ 1/rβ . This relationship incorporates a width-dependence for the population-averaged

speed of mitochondrial transport in different dendritic branches.

4. Scaling of sister subtree size with trunk thickness Finally, we assume that larger subtrees

are supported by proportionally thicker trunks, with trunk radii scaling with either total

subtree length, volume, or some other measure of subtree size. This scaling, along with
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proportional mitochondrial transport at branch points, should ensure that larger subtrees

receive a proportionally larger supply of mitochondria.

To determine how these scaling rules contribute to steady-state mitochondrial localization

patterns, we developed a mathematical model of mitochondrial transport in dendritic trees. In

this model, each dendrite is a binary tree, with each junction node connecting a parent edge to

two daughter edges. We assume that each edge ei is a cylinder with fixed radius ri along its entire

length `i. In our model, the connectivity and length of each edge in a tree are known attributes,

either extracted from skeletons of real HS neurons in the FAFB dataset, or from synthetic trees

with varying branching patterns. Radii of each branch are set according to various rules for

parent-daughter and sister subtree scaling (rules 2. and 4., Fig. 4.3).

Within this dendritic structure, we assume that discrete mitochondrial units undergo

active transport, which includes processive motion in the anterograde and retrograde directions,

as well as arrest and restarting. The ratio of arrest and restarting rates (ks/kw) determines the

local fraction of stationary mitochondria in each dendritic branch. We assume the restarting rate

is constant throughout the arbor, but allow the arrest rate to vary in dendrites of different width

(scaling rule 3., Fig. 4.3). Finally, in all model versions, the anterograde mitochondrial linear

flux entering a junction node is split in proportion to the cross-sectional area of the daughter

branches, so that wider daughter branches receive proportionally more mitochondria (rule 1.,

Fig 4.3).
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Figure 4.3. A mean field model for mitochondrial distributions recapitulates experimental
measurements when dendrites obey specific scaling rules.
A: Scaling rules included in the model. 1. Mitochondrial arrest rate increases as branch thickness
decreases, ks ∼ 1/rβ 2. Mitochondria split equitably across branch points 3. There is a scaling
relationship of the form rα

0 = rα
1 + rα

2 between the parent (r0) and daughter (r1,r2) widths
parametrized by the exponent α . 4. Sister subtrees scale such that thicker trunks support
proportionally larger subtrees. Subtree size can be subtree volume, length, or bushiness, where
bushiness is length/depth. B: In the model, dendrites are binary trees in which each junction
node connects a parent edge to two daughter edges (center panel). Each edge is a cylinder
with fixed radius (r) along its entire length (l). The connectivity and length of each edge are
extracted from real HS dendrite skeletons (left panel); radii are set according to various forms of
parent-daughter and sister subtree scaling rules. Within this dendritic structure, mitochondria can
move persistently in either the anterograde (v+) or retrograde (v−) direction, as well as arresting
and initiating motility (right panel). For simplicity, we assume a constant motility initiation rate
(kw) and constant velocities v+ and v−. C-F: Model results. Dendrite topologies (edge length and
connectivity for each dendritic branch) were extracted from HS skeletons traced through ssTEM
images (circles, N = 6 dendrites, Michael Reiser, unpublished results) or previously published HS
dendrite reconstructions (triangles, N = 20 dendrites, [38]). Mitochondrial density asymmetry
across sister subtrees (C,D) and distal mitochondrial enrichment (E, F) were calculated for
β = 0 (C,E) or β = 2(D,F), α = 2 (cyan), 3/2 (red), or 3 (purple), and sister subtree scaling
with subtree trunks splitting according to r1 = r2 (eq.), r2 ∼ L, or r2 ∼ L/D. The mitochondrial
density asymmetry is the root-mean squared asymmetry across sister subtrees ST1 and ST2,
where asymmetry = (ST1-ST2)/(ST1+ST2). Distal enrichment is mitochondrial density in the
distal-most dendritic branches, defined as branches with path distance from the root node ≥ 75%
of the maximum path distance, divided by the mitochondrial density in the primary dendrite.
Box plots show the median, interquartile range, and 1.5x the interquartile range.
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We implemented several versions of this model, using different forms of parent-daughter,

sister subtree, and transport scaling rules (rules 2., 3., 4.), through analytical solutions of mean-

field equations for mitochondrial density and stochastic simulations. For all model versions,

we calculated mitochondrial densities as a function of distance from the soma and across sister

subtrees to determine which scaling rules recapitulate our experimental measurements (i.e. distal

enrichment and equitable distribution of mitochondria across sister subtrees). In the first, simplest

iteration of our model, we incorporated two of the four scaling relationships described above:

equitable splitting of mitochondria at branch points (rule 1), and power law scaling of parent and

daughter radii (rule 2.), with α = 3/2 (Rall’s law), α = 2 (Da Vinci scaling), or α = 3 (Murray’s

law). The mitochondrial arrest rates and transport speeds are assumed to be independent of

dendrite thickness (β = 0 in Rule 3.), so that the fraction of stationary versus motile mitochondria

is constant throughout the arbor. Because the linear flux of mitochondria at each junction splits in

proportion to the daughter branch cross-section, the steady-state volume density of mitochondria

in two sister branches is equal. When α = 2, the total cross-sectional area is conserved at each

junction, giving rise to constant mitochondrial volume densities throughout the arbor, regardless

of the tree topology and regardless of the choice of sister subtree trunk radii (Rule 4). Thus,

Da Vinci parent-daughter scaling results in equitable distribution of mitochondria across sister

subtrees, but not distal enrichment in this minimal version of our model. In contrast, when the

narrowing of daughter branches is governed by Rall’s Law (α = 3/2), the reduction in total

cross-sectional area at each branch point results in distal enrichment of mitochondria. For this

model, the relative volume density of mitochondria in sister subtrees depends on the choice of

splitting rule for the sister trunk radii at each junction (Rule 4). In Appendix Section C.0.1, we

show that for an arbor obeying Rall’s Law it is impossible to establish equitable mitochondrial

distributions between asymmetric sister subtrees with any single functional form for the sister

trunk radii as a function of the subtree morphology. In particular, subtrees with more splitting

junctions tend to accumulate higher mitochondrial densities due to the reduction of dendritic

cross-sectional area below each junction in a tree with α = 3/2.
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For the case of Murray scaling (α = 3), the cross-sectional area increases below each

junction point, so that mitochondrial volume densities are lower in more distal regions of the

arbor. Altogether, when mitochondrial transport parameters are spatially uniform, our model

recapitulates either distal enrichment of mitochondria (for Rall-scaled dendrites), or equitable

distribution of mitochondrial across sister subtrees (for Da Vinci-scaled dendrites), but not both.

In the first version of our model, we assumed spatially uniform mitochondrial transport

parameters. However, our experimental measurements indicate that in thin distal dendrites,

average mitochondrial speeds are lower and arrest rates are higher than in the thick primary

dendrite, and we reasoned that scaling of mitochondrial transport with dendrite radius could

result in increased mitochondrial densities in thin distal dendrites. We therefore updated our

initial model such that mitochondrial transport rates scale with dendrite radii. Specifically, we

begin by assuming that mitochondrial arrest rates are inversely proportional to dendrite cross-

sectional area, ks ∼ 1/r2 (β = 2 in scaling rule 3), while mitochondrial motility initiation rates

and speeds are still spatially uniform. Different assumptions about the scaling of mitochondrial

transport with branch thickness (e.g. scaling of mitochondrial speed with dendrite radius, such

that mitochondria move more slowly in thin dendrites) give the same results when the fraction

of motile mitochondria is very small fraction (see Appendix), as we observed experimentally.

We consider a version of this model with equitable splitting of mitochondria at branch points

(rule 1), and Da Vinci scaling of parent and daughter branch width (α = 2 in rule 2). This

model predicts that motile mitochondria densities will be constant throughout the tree, while

stationary mitochondria densities will be higher in distal dendrites. If we assume that daughter

branch radii are split equally (r1 = r2) at each junction, then asymmetric topologies of sister

subtrees lead to asymmetry in the mitochondrial distribution, with more-branched subtrees

acquiring a higher mitochondrial density. Next, we investigated whether an alternate relationship

between the trunk widths of sister subtrees could restore equitable distribution of mitochondria

across subtree pairs. According to our analytical calculations (see Appendix Section C.0.2),

when ks ∼ 1/r2, the ratio of stationary mitochondrial densities in a pair of sister subtrees is
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given by c(s)1 /c(s)2 = (L1/V1)
(L2/V2)

, where c(s) is the density of stationary mitochondria and L and V

are subtree length and volume. Equitable distribution of mitochondria therefore depends on

a specific morphological relationship between sister subtrees: the total subtree volume must

be proportional to its length, such that L1/V1 = L2/V2. For an arbor that follows the Da Vinci

scaling law, the preservation of cross-sectional area across branch points implies that the total

volume of a tree can be expressed as V = r2
0D, where r0 is the radius of the tree trunk and D

describes the effective depth of the tree. For a tree where all terminal dendritic branch tips are

the same distance d from the trunk, the effective tree depth is D = d; for trees with distal tips at

varying distances from the trunk, the effective depth we define D can be computed recursively

(see Appendix Section C.0.2). In a tree with Da Vinci parent-daughter scaling, all subtrees will

exhibit a volume proportional to their total branch length if and only if the sister subtree trunk

areas scale according to the following relation: r2
1/r2

2 =
(L1/D1)
(L2/D2)

. The ratio of total length over

depth (L/D) can be thought of as the “bushiness” of a tree. In trees with no branch points, L = D

and thus L/D = 1. In trees with many branch points (i.e. bushier trees), L� D and L/D� 1.

Trees that follow different sister subtree scaling rules (e.g. with radii splitting proportional

to subtree length) do not exhibit equitable distribution of mitochondria across sister subtrees.

Altogether, we show that this model (with dendritic trees obeying Da Vinci parent-daughter

scaling, inverse scaling of mitochondrial arrest and dendrite thickness, and sister subtree trunk

areas proportional to tree bushiness) successfully recapitulate the key features of experimentally

observed mitochondrial distributions: equitable densities between sister subtrees and increased

density in distal branches.

4.3.3 HS dendrites follow simple dendritic scaling rules

Our model results indicate that realistic mitochondrial localization patterns can be

achieved in two scenarios. If HS dendrites follow Da Vinci parent-daughter scaling, realis-

tic mitochondrial distributions can be achieved if motility arrest rates are inversely proportional

to dendrite thickness (measured as the cross sectional area r2) and sister subtree trunk areas
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Figure 6: HS dendrites obey dendritic scaling rules. A-B: MCFO image of three HS dendrites 
(A) and extracted skeletons and radii (B). C: Box plots showing sister subtree asymmetries in 
trunk thickness (r 2 ), length (L), depth (D), bushiness (B), and volume (V). Black lines, boxes, and 
whiskers indicate the median, interquartile range, and 1.5 times the interquartile range, 
respectively, and each gray dot indicates the average value for a single cell (N = 10 HS den-
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B

Figure 4.4. Drosophila HS dendrites follow proposed morphological scaling rules.
A-B: MCFO image of three HS dendrites (A) and extracted skeletons and radii (B). C: Box plots
showing sister subtree asymmetries in trunk thickness (r2), length (L), depth (D), bushiness (B),
and volume (V ). Black lines, boxes, and whiskers indicate the median, interquartile range, and
1.5 times the interquartile range, respectively, and each gray dot indicates the average value
for a single cell (N = 10 HS dendrites). D-F: HS dendrites follow parent-daughter scaling
rα

0 = rα
1 + rα

2 , α = 2.2 (D), and sister subtree scaling with subtree volume proportional to subtree
length (E) and trunk thickness (r2) proportional to subtree bushiness (F). N = 649 branch points
from 10 dendrites.
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are proportional to the bushiness b = L/D of the subtree. Alternatively, if HS dendrites follow

Rall’s law parent-daughter scaling, no single rule for sister trunk widths as a function of subtree

morphology will yield equitable splitting of mitochondria across all sister subtrees (see Appendix

Section C.0.1). Instead, bushier subtrees with more junctions will tend to accumulate higher

mitochondrial densities, due to the decrease in total daughter cross-sectional area at each junction.

To determine whether HS dendrites exhibit power law parent-daughter scaling with α = 2 (Da

Vinci scaling) or 3/2 (Rall’s law), we measured HS dendritic architecture. We used stochastic

multicolor FlpOut labeling to label individual HS dendrites, which we then imaged by confocal

microscopy. Next, we segmented and skeletonized each dendrite before measuring parent and

daughter branch radii and the length, volume, and bushiness of the subtrees sprouting from each

branch point. We found, first, that HS dendrites are asymmetrically branched, with significant

asymmetry in daughter branch thickness and subtree length, volume, and bushiness. Second, we

fit our measurements of parent and daughter radii to the power law rα
0 = rα

1 +rα
2 for α = 2 or 3/2.

We found that α = 2 gave a reasonably good fit (R2 = 0.86) with a minor improvement for best

fit parameter α = 2.2 (R2 = 0.87), indicating that HS dendrites exhibit Da Vinci parent-daughter

scaling. Next, our model predicts that Da Vinci-scaled dendrites can only achieve equitable

distribution of mitochondria if sister subtrees have volumes proportional to their length.. To

test this prediction, we compared the asymmetry in subtree lengths (L1−L2)/(L1 +L2) with

the asymmetry in volumes (V1−V2)/(V1 +V2) for sister subtree pairs emerging from the same

branch point. We found that length asymmetry is equal to volume asymmetry for a population

of 649 subtree pairs extracted from 10 HS dendritic arbors (R2 = 0.94), indicating that longer

sister subtrees have proportionally larger volumes, as predicted. Thus, HS dendrites obey two

separate morphological rules: Da Vinci power law scaling of parent and daughter branches

(r2
0 = r2

1 + r2
2), and sister subtree splitting with volume proportional to length (L1/V1 = L2/V2).

According to our model, for dendrites that follow these two rules ,daughter branch cross-sectional

areas must be proportional to subtree bushiness: r2
1/r2

2 = (L1/D1)
(L2/D2)

. To test this prediction, we

compared asymmetry in branch cross-sectional area (r2
1− r2

2)/(r
2
1 + r2

2) to asymmetry in subtree
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A B C

Figure 4.5. Equitable mitochondrial distributions are robust to changes in transport scaling.
A: Dendrite diameters plotted versus mitochondrial arrest rate ks. The dashed line indicates the
best fit, with ks ∼ 1/r1.3. B-C: Model results showing average distal mitochondrial enrichment
(B) and mitochondrial density asymmetry across sister subtrees (C) calculated as a function of α

(parent-daughter scaling) and β (transport scaling). HS dendrite topologies were extracted from
MCFO images (N = 10 cells) and dendrite radii were set according to sister subtree scaling rule
r2 ∼ L/D, as well as power law parent-daughter scaling with the indicated range of values for α .

bushiness (L1/D1)−(L2/D2)
(L1/D1)+(L2/D2)

. We found that area and bushiness asymmetry are also correlated

(R2 = 0.70), indicating that thicker trunks support proportionally bushier subtrees, as predicted.

These experimental results, along with our model, strongly suggest that dendrite morphology

plays a key role in determining steady-state mitochondrial localization patterns in neurons in

vivo.

4.3.4 Robust self-organization of equitably distributed mitochondria for
a range of transport parameters

In our model, we assume that mitochondrial arrest rates are inversely proportional to the

cross-sectional area of each dendritic branch (ks ∼ 1/r2). Inverse scaling of mitochondrial arrest

and dendrite thickness results in increased mitochondrial densities in thin distal dendrites, as

well as the length-volume constraint on sister subtrees. To measure the relationship between

mitochondrial arrest rates and dendrite thickness directly, we used our in vivo imaging setup

to image mitochondria moving through dendritic branches with a range of radii. We measured

the fraction of mitochondria that stopped or paused as a function of dendrite radius and found

that mitochondrial arrest is indeed more frequent in thinner branches, as expected. However,
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arrest rate scaled with dendrite radius according to ks ∼ 1/r1.3, indicating that mitochondrial

arrest rates have a weaker dependence on branch radius than we originally assumed (β = 1.3

in rule 3). To determine how this scaling affects equitable distribution of mitochondria in our

model, we computed mitochondrial densities across sister subtrees for mitochondrial arrest

rates that obey power law scaling with dendrite radius (ks ∼ 1/rβ ) for a range of exponents

(β = 0 to 3) as well as a range of α = 1.4−3. In Figure 4.5 we use r2 ∼ L/D. We found that

when parent and daughter radii follow Da Vinci scaling (α = 2) and sister subtree trunks split

according to subtree bushiness, perfectly equitable distribution of mitochondria occurs for β = 0

(spatially uniform mitochondrial arrest rates) and β = 2 (arrest rates inversely proportional to

dendrite cross-sectional area). Intermediate values for β , including β = 1.3, result in very small

asymmetries across sister subtrees, comparable to what we measured experimentally. In contrast,

other parent-daughter scaling rules (i.e. Rall’s law or Murray’s law) failed to yield equitable

mitochondrial distributions for any choice of non-zero β . Other sister subtree scaling rules (e.g.

trunks splitting according the subtree length, rather than bushiness, Supplemental Figure C.5)

only yielded equitable mitochondrial distributions when β = 0. Thus, equitable mitochondrial

distributions are robust to changes in β specifically when dendrites follow the morphological

scaling rules we measured for HS dendrites.

In contrast, we found that distal enrichment of mitochondria does depend on β . Higher

values of β correspond to increased sensitivity of arrest rates to the narrowing of distal dendritic

branches. Hence, higher β implies increased distal enrichment of mitochondria (Figure 4.5B).

In our model, values for α and β in the range of our experimental measurements result in

both realistic distal enrichment (∼ 10 fold enrichment) and equitable mitochondrial densities in

dendrites that obey r2 ∼ L/D sister subtree scaling.

The predicted distal enrichment is reduced when we deviate from the Da Vinci scaling law

and implement a ‘minimum radius’ rm, such that the relationship between parent and daughter
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branch widths is expressed according to:

r2
0 + r2

m = r2
1 + r2

2 (4.1)

.

This modification was previously introduced to describe Drosophila ClassIV dendritic

arbors [112]. We fit a value of r2
m ∼ 0.2µm2 to our measured branch width data, and calculate

expected results (Supplemental Figure C.5). Including a minimum radius brings the predicted

mitochondrial enrichment closer to the experimental prediction of 3-fold distal enrichment.

4.4 Discussion

4.4.1 Summary of main results

Mitochondria form a dynamic, interconnected network, organized across neuronal archi-

tecture in order to meet energetic demands that fluctuate over spatial and temporal scales. Here,

we provide in vivo evidence for mitochondrial localization over time in neurons, which simulta-

neously maintain dynamic transport, and specific localization patterns. From previous studies

using cultured neurons, neuronal activity has long been thought to play a role in regulating mito-

chondrial localization patterns [216, 119]. Neuronal stimulation evokes global calcium transients

which is thought to arrest mitochondria through detachment of mitochondria from microtubules

[216, 119]. However, our results demonstrate that stimulus-induced calcium signals do not affect

mitochondrial motility in Drosophila HS dendrites in vivo. Instead, our results suggest that

dendritic architecture, not neuronal activity, determines steady-state mitochondrial localization

patterns. By combining mathematical modeling with experimental measurements, we define

scaling rules that link dendritic architecture and mitochondrial transport rates to steady-state

mitochondrial localization patterns. We find that we can recapitulate our experimental findings by

modeling mitochondrial localization with four simple scaling relationships. First, mitochondrial

transport scales with branch radius. Second, mitochondria split according to cross-sectional area
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at branch points. Third, sister subtrees length and volumes scale proportionally. Finally, parent

and daughter branches follow power scaling laws. Our work demonstrates that mitochondria

form a dynamic and reorganizing network in which simple dendritic scaling laws enable robust

self-organization of steady-state mitochondrial localization patterns.

4.4.2 Molecular and physical mechanisms underlying motility arrest in
distal dendrites

Mitochondrial arrest rates are inversely proportional to dendrite branch radius in HS

cells (Figure 4.5A), and this scaling is critical for distal enrichment of mitochondria in our

model (Figure 4.5). What is the mechanism underlying inverse scaling of motility arrest and

branch thickness? The simplest possibility is that non-specific viscous friction between motile

mitochondria and the cell boundary opposes mitochondrial movement in thin distal dendrites,

similar to those observed in axons [227]. If mitochondrial arrest is determined by the friction of

the dendrite membrane opposing mitochondrial transport, then we would expect to see larger

mitochondria subject to higher friction and thus, higher mitochondrial arrest. As previously

reported in cultured Drosophila neurons, there is an inverse relationship between mitochondrial

size and mitochondrial velocity [140]. Larger mitochondria are expected to experience greater

opposition to motion due to increased friction between the mitochondria and membrane [140].

However, cultured neurons do not form morphologically complex neurite branching structures or

distinct axons and dendrites. When we assess the relationship between mitochondrial velocity and

mitochondrial size in HS dendrites, we do not see any significant differences in vivo. Therefore,

viscous friction alone is not likely to explain in vivo HS mitochondrial arrest rates, since there is

not a significant relationship between the size and the arrest rate of mitochondria. Alternatively,

anchoring interactions mediated by specific protein tethers may promote mitochondrial arrest in

thin distal dendrites. Previous studies have identified a role for the microtubule tether syntaphilin

in arresting mitochondria [89, 211]. Syntaphilin is a mammalian, neuron-specific protein which

docks mitochondria to microtubules. However, since syntaphilin is axon-specific [86] and
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not conserved in Drosophila, it cannot explain our results of scaling mitochondrial arrest with

dendrite diameter. Even with extensive studies into mitochondrial transport machinery [77], there

are no studies which have identified any specific protein anchors of mitochondria in dendrites.

Another possibility is that actin-based anchoring, potentially mediated by myosin V may result

in higher arrest rates in thin dendrites. There are several contexts where actin based anchoring

has been shown to oppose microtubule based transport [151, 90, 117]. Other organelles have

also been studied, including lysosomes which tether near actin patches at dendritic spines via

myosin Va [16]. This competition between actin based anchoring and microtubule transport could

become more pronounced with dendrite narrowing in the distal dendrites due to the localization

of actin and microtubules. While microtubules fill the dendrite shaft and number scales with

branch radius squared [92], actin localizes around the branch perimeter and should scale with

branch radius [107]. Within the literature, there is reported enrichment of actin in multiple cell

types, including in the dendritic spines of lobula plate tangential cells (LPTCs) [107] and terminal

dendrites in da neurons [144]. Thus, in thicker dendrites, microtubule based transport could

be favored, while in thinner dendrites, actin might compete with transport, and lead to higher

mitochondrial arrest rates. Finally, although we measure a correlation between dendrite radius

and mitochondrial arrest rates, reduced dendrite radii in distal dendrites may not cause increased

arrest. Instead, arrest rates may depend upon spatial differences in microtubule orientation (more

mixed orientation distally) [200, 90], fusion rates (higher distally), and spatial patterning of

either anchoring proteins (increased concentration in thin dendrites) or adaptor proteins (reduced

concentration in thin dendrites). For example, rates of fission and fusion depend upon the size of

the mitochondrion and the contact rates [22]. Although we did not find any siginificant difference

in the length of motile mitochondria in the primary or distal dendrites, we do know the overall

density of mitochondria increases in thinner distal dendrites which should increase their contact

rates and therefore lead to greater fusion in distal dendrites. Further studies to assess the spatial

dynamics of microtubules, fission and fusion rates, and adapator proteins will elucidate their role

in determination of mitochondrial arrest localization.
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4.4.3 Functional consequences of specific localization patterns

Mitochondria in HS dendrites are enriched in distal dendrites (Figure 4.1C) and localize

equitably across sister subtrees (Figure 4.1 1D). What are the functional implications of this

specific localization pattern? The equitable distribution of mitochondria across sister subtrees

can be rationalized given the function of HS neurons. HS neurons detect front-to-back global

optic flow patterns by selectively sampling and pooling local motion inputs from their upstream

elementary motion detectors [15]. Since HS cell function relies on integrating synaptic inputs

across its entire dendritic arbor, summing individual dendritic branches with approximately equal

weight [15], the energy demands in HS dendritic branches are also expected to be equitably

distributed. Given mitochondria produce the majority of the ATP needed for the neuron [71],

we expect sister subtrees to have equitable mitochondrial distributions in order to meet those

equivalent energetic demands. Furthermore, we expect synapse density to increase with distance

from the soma. Even though we did not measure synapse density, and there have been efforts to

do so in the past [175], we expect from previous studies that most of the synaptic connections in

HS are expected to occur in the distal regions of the cell [124]. In addition to their role in energy

homeostasis, mitochondria are also known to buffer calcium which may be important at sites with

high fluctuations including synapses [39]. Although we consistently measured relatively higher

mitochondrial densities in the distal than proximal dendrites across all HS neurons, we also

found variation in the absolute amount of mitochondrial volume. This varied absolute volume

of mitochondria across HS cells may indicate that that mitochondrial densities may not be as

tightly linked to energy homeostasis as we had predicted. Alternatively, the distal enrichment of

mitochondria may be linked to the dynamics of mitochondrial fission and fusion. The splitting

and mixing of mitochondria through fission and fusion may provide a path for maintaining

homogeneous mitochondrial health throughout the entire mitochondrial network [22]. In the

distal dendrites, there is higher density of mitochondria where more fusion of mitochondria could

lead to higher mixing rates than in the primary dendrites. Quantifications of fission and fusion
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rates are limited [22, 173], but there is evidence of morphological differences in mitochondria

across compartment which may be due to differential fission and fusion rates. Through our

sparse 3D reconstructions throughout the arbor, we have found evidence of large, branching

mitochondria throughout the distal dendrites, which is supported by previous reports in other

systems [161, 57]. Distal enrichment of mitochondria due to higher rates of fusion in the distal

dendrites could support mitochondrial health in regions far from the soma.

4.4.4 General applicability of scaling laws

We find that all HS reconstructed neurons have distal enrichment of mitochondria (Figure

4.1) and equitable distribution across sister subtrees (Figure 4.1). However, there are cell to cell

differences in the relative scales of mitochondrial volume and neuronal volume across HS cells.

How generalized are our proposed scaling rules across diverse neuronal morphologies? Power

law scaling relationships are expected to be conserved across neuronal cell types. Power-law

scaling relationships are found throughout the natural world and have been used to describe

relationships at bifurcations ranging from rivers and trees [129] to vasculature [139]. The

power-law is rα
1 + rα

2 = rα
0 , where r0 is the diameter of the parent branch, and r1 and r2 are

the diameters of the respective daughter branches, and α is an exponent. Power law scaling

is scale-invariant [58], indicating that a change in the relative size of the parent branch should

relatively scale with the change in size of the daughter branches. This scale transformation

should preserve the functional relationship between parent and daughter branches across cell

types. Our model for dendritic scaling uses parent and daughter diameters scaling with α = 2

(Da Vinci’s law) in order to maintain proper mitochondrial localization patterns. Da Vinci’s

law (α = 2), originally derived from a tree’s branching system, suggests a conservation of

cross-sectional area across branch points[48]. Da Vinci used this pattern to explain how trees

can withstand wind and load stress on their branches. This scaling has also been assessed in

other tree-like structures, such as a river course feeding into a mainstream [105] and neuronal

dendrites [112, 100]. Although experimental support for Da Vinci scaling remains comparably
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scarce, it points to an important transport constraint, as the cross-sectional area of a branch

is invariantly linked to microtubule density, and thus motor-driven transport [221, 112]. Our

original estimation of α = 2 is consistent with experimental evidence that distal dendritic tips

contribute to the major energetic demands of the neuron [50], and thus dendrites need to be

optimized for transport mechanisms as mitochondria are trafficked far from the site of biogenesis

in the soma. Other theoretical derivations include Rall’s law (α = 3/2), which models neuronal

processes as cables with electrical conductivity. Assuming that impedance remains uniform

across branch points, Rall’s law minimizes the dissipation of electrical signal and action potential

delays by decreasing the size of the daughter branches relative to the parent branches [164] .

While this scaling was originally derived using cat motoneurons, there has been little further

experimental evidence of neurons following Rall’s law, likely since the neuron must balance

other constraints, such as transport and wiring costs [32]. Murray’s law (α = 3) minimizes

the energetic loss arising from the frictional dissipation of pumping fluid through a vessel and

the burden of fluid size on the system [139, 103]. This has been experimentally verified in the

mammalian cardiovascular system [103, 198] throughout all stages of development, suggesting

that fluid mechanics govern the morphogenesis of blood vessel formation. Interestingly, a

value of α = 3, which minimizes the cost functions, has also been experimentally observed in

myelinated neuronal axons such as to minimize the combined cost of signal propagation delays

and axonal volume [32]. Regardless of the exponent of branch diameter thinning, the wealth

of morphological data available due to connectome efforts will allow us to test how generally

applicable our model holds in morphologically and functionally diverse neurons.

4.4.5 Extent to which we think neuronal activity could affect motility
and localization in other neuronal cell types

In HS dendrites, mitochondrial transport is unaffected by visually evoked physiological

stimulus (Figure C.1). This lack of mitochondrial arrest with induced calcium transients con-

trasts with previous in vitro results [118, 216, 176] but is supported by more recent in vivo studies
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[50, 190, 194]. Given our model and evidence from similar LPTCs being structurally hard-wired

[183] meaning unaffected by neuronal activity, then we would not expect the mitochondrial

network to reorganize with changes in neuronal activity. If neuronal activity does not impact

mitochondrial localization in HS dendrites, then does it have other effects on mitochondria?

Rather than affect mitochondrial localization, neuronal activity may alter mitochondrial function,

cristae structure, total mitochondrial volume or rates of other mitochondrial dynamics. ATP

production is thought to be regulated through a variety of mechanisms from calcium homeostasis

[199] to cristae morphology [152]. The function of mitochondria, such as the rate of ATP

production, is affected by neural activity which drive both ATP consumption and ATP synthesis

via oxidative phosphorylation [165, 127]. The structure of the inner folds of the mitochondrial

membrane are also thought to contribute to the capacity to produce ATP: lamellar, straight cristae

are more closely associated with high energy dissipation capacity. Since ATP synthase requires

curvature of the inner mitochondrial membrane to dimerize [33], then lamellar mitochondria may

produce less ATP than more open mitochondria. Thus, mitochondria with various degrees of

folding of inner cristae may have variations in energy production [157]. We found that although

the localization of mitochondria and normalized mitochondrial densities were consistent across

HS neurons, the overall volumes of mitochondria varied from cell to cell. This fluctuation

in volume could indicate differences in the efficiency of mitochondrial ATP production and

therefore total volume needed to achieve required energy production or a lower level of regulation

in mitochondrial volumes in HS cells. Further work to characterize the relationship between

mitochondrial morphology and ATP production would allow us to incorporate the energy produc-

tion of mitochondria across the neuron into our model for predicting mitochondrial localization

patterns based on energetic demands.

Alternatively, the localization of mitochondria in cell types with activity-dependent

plasticity may be altered in parallel with changes to the neuron [9]. The main structural changes

include changes to neuronal branching [63], and volume [172], or functional plasticity altering

synaptic components [195, 148]. In our model, these alterations in neuronal structure could
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therefore induce alterations in mitochondrial localization and transport patterns.

4.4.6 Model as framework for understanding localization - adding in
additional layers of complexity

Our model formulates a quantitative model for understanding mitochondrial localiza-

tion in neurons using assumptions of mitochondrial transport and neuronal architecture in one

cell type (Figure 4.3). In order to build this model we have made several assumptions of

mitochondrial dynamics. With further quantification of dynamic properties of mitochondria,

this initial framework can have more elements added to more precisely predict mitochondrial

distribution patterns across diverse neuronal morphologies. Our first assumption is all mito-

chondrial mass originates and terminates within the soma. This would mean that biogenesis

and degradation are exclusive to the soma, however, degradation of mitochondria can occur

outside of the soma [4]. Mitochondria are degraded and regenerated by a variety of mechanisms

[5]. First, misfolded or damaged proteins can get degraded by mitochondrial proteases [42].

Second, mitochondria-derived vesicles (MDVs) bud off from the mitochondria containing dam-

aged components which then fuse with peroxisomes, lysosomes or undergo exocytosis [197].

Third, depolarized mitochondria are targeted with phospho-ubiquitin to trigger the formation of

autophagosome membranes that completely engulf the mitochondria [135]. It has been shown

that this macroautophagic process is active at synaptic points [101]. Lastly, mitochondria can

also be degraded transcellularly as they shed from their neuron through the formation of large

protrusions and are subsequently incorporated into surrounding glial cells where they fuse with

lysosomes [41]. In Drosophila, there are more glial cells near the edges of the neuropils [55],

meaning that for HS dendrites, glial cells are predominantly found near the dorsal subtrees,

closer to the border of the lobula plate. Since our model assumes biogenesis and degradation

occur within the soma, further work to characterize these local mechanisms of mitochondrial

clearance could account for the variation in total mitochondrial volume across HS cells (Figure

1). Next, our model does not account for the dynamics of mitochondrial fission and fusion which
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alter mitochondrial volumes throughout the cell [232]. Although the machinery of mitochondrial

fission, relying on proteins Drp1 and Fis1, and fusion, relying on MFN1 and OPA1, are well

described [95], the mechanisms regulating their dynamics at the cellular level are not well

understood [22]. Previous studies have characterized the cyclical dynamics of mitochondrial

fission and fusion [23, 215] and how these dynamics are affected by mitochondrial size and

motility in rates of fission and fusion [23]. Further studies will seek to build onto this model by

incorporating models of mitochondrial fission and fusion dynamics. Our next assumption is mi-

tochondria have equitable energy production and health. Our model accounts for the localization

of mitochondria across the entire network, but does not distinguish mitochondria based on the

state of mitochondrial health or energy production. Whether anterograde moving mitochondria

are healthier than retrograde mitochondria remains a contested issue. Bidirectional transport is

crucial as disruptions in retrograde movement have been shown to lead to an accumulation of

damaged mitochondria in the periphery of axons [125, 45]

4.5 Methods

4.5.1 Image segmentation and tree morphology extraction

Tree morphologies were extracted using custom MATLAB [130] code available at

https://github.com/lenafabr/networktools.

To obtain the skeletons for the dendritic trees from MCFO images, we processed the

images in Ilastik using a trained pixel classifier to generate probability maps. We subsequently

used thresholding, morphological operations, and connected component analysis to generate

a binary mask in python. We cleaned-up and skeletonized these masks in Fiji/ImageJ using

the plug-in function “Skeletonize (2D/3D)”. Skeleton data was translated into a set of nodes

(including junction nodes, parent node, and distal tips) with three-dimensional coordinates, and

curved edge paths connecting the nodes. Once the initial network structure was extracted, manual

clean-up was carried out with a custom Matlab GUI, involving the removal of short spurious
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branches (‘shrubs’) from the network. A degree of subsequent manual editing was performed

for each cell, such that shorter branches with a discernable thickness were reintroduced into the

network object and those without an identifiable thickness were removed.

We used Fiji with its built-in line tool function to measure parent and daughter diameters

and Matlab to measure total subtree length, volume, depth, and bushiness following each branch.

The widths of network branches were also adjusted with the aid of the Matlab GUI. The interface

allows the user to add and adjust width measurements across a given edge. For longer edges, one

measurement point close to the branching point and the other closer to the end of the edge are

chosen.

For the calculation of predicted mitochondrial densities (Figures 4.3, 4.5), the extracted

tree topology and branch lengths were used as input for imposing putative branch radii according

to various scaling laws, as described below.

4.5.2 Synthetic tree construction

Synthetic binary trees were constructed in Python 3.7.6 using the NetworkX library [69].

First, the skeleton of a binary tree was created, starting with a single junction consisting of a

parent branch and two daughter branches of unit length. Moving downstream along the tree,

each daughter branch either terminated as a distal tip (with probability 1
3 ), increased in length by

an additional unit (probability 1
3 ), or branched into two more daughter branches (probability 1

3 ).

This process was repeated up to a preset maximum path distance from the arbor parent node to

the distal tips. The resulting random-topology binary tree structures were used as the ensemble

of synthetic arbors in Figures 4.3, 4.5, C.3 and C.4.

In addition, 20 arbor structures for Drosophila HSN neurons were obtained from previ-

ously published data [37].
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4.5.3 Computing imposed radii

Skeletons with well-defined branch lengths and connectivity were obtained either from

images of Drosophila HSN neurons, from published data [37], or from synthetically constructed

trees. For each skeleton, the widths of the branches (ri) were calculated, starting with r0 = 1

at the parent trunk (in dimensionless units). At each junction node, the daughter branch radii

were defined by a combination of scaling rule 1. for parent and daughter radii: rα
1 + rα

2 = rα
0

and rule 4. for sister subtree radii r2
1/r2

2 = µ12. Da Vinci arbors have α = 2, Rall’s Law arbors

have α = 3/2, and Murray’s Law arbors have α = 3.

The daughter branch splitting rules included equal splitting (µ12 = 1), splitting in pro-

portion to total subtree length (µ12 = ∑i∈ST 1 `i/∑i∈ST 2 `i), and splitting in proportion to subtree

bushiness (total branch length over depth), defined in Appendix Section C.0.2.

To estimate the effect of measurement error in branch width (Supplemental Figure C.4),

we added a Gaussian noise term with standard deviation equal to 30% of the computed radius

to all branch widths ri. Supplemental Figure C.4 shows that such measurement noise is more

apparent when comparing the splitting of individual sister trunk radii as opposed to the length

and volume proportionality of sister subtrees (which include summation over many subtree

branches).

4.5.4 Mean-field model for mitochondrial distribution

Our minimal mean-field model allows the calculation of steady-state mitochondrial

densities along each branch of a dendritic arbor with prescribed topology, branch lengths, and

branch radii. We assume punctate mitochondria are produced at the soma (parent node of the

arbor), and undergo processive bidirectional motion with pause free velocity vi (where i is

the branch index), pausing rate ks,i , and constant restarting rate kw. The linear densities of

anterograde, retrograde, and stationary mitochondria in each branch are given by ρ
+
i ,ρ−i ,ρs

i ,
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respectively. At steady-state, these densities obey the transport equations:

dρ
±
i

dt
=∓vi

dρ
±
i

dx
− ks,iρ

±
i +

kw

2
ρ

s
i = 0 (4.2a)

dρs
i

dt
= ks,i(ρ

+
i +ρ

−
i )− kwρ

s
i = 0 (4.2b)

The steady-state solutions have densities that are constant along each individual branch,

with the relationship between different branch densities determined by boundary conditions

at the junctions. Distal tips are treated as reflecting boundaries (yielding ρ
+
i = ρ

−
i ). At the

branch junctions, the boundary conditions are set by the conservation of incoming and outgoing

mitochondrial flux, together with the assumption that anterograde mitochondria split in proportion

to the cross sectional area of the daughter branches:

viρ
±
i = v jρ

±
j + vkρ

±
k ,

v jρ
+
j

vkρ
+
k

=
r2

j

r2
k

(4.3a)

where i is the parent branch, and j, k the two daughter branches at the junction. Finally,

we set the boundary condition at the soma by fixing the motile mitochondria linear density in the

parent trunk to a constant, ρ0. The steady-state linear densities of mitochondria in each branch

are then found by solving this set of linear equations. The density of stationary mitochondria is

given by:

ρ
s
i =

ks,i

kw
ρ

w
i (4.4a)

where ρw
i = ρ

+
i +ρ

−
i is the motile mitochondrial density.
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4.5.5 Volume densities and equitability metric

Volume density on each branch is computed as ci = ρi/r2
i . The average volume density

in a subtree is given by: 〈
c(s)
〉

ST
=

∑i∈ST ρ
(s)
i `i

∑i∈ST r2
i `i

(4.5)

Where the summation is carried out over all branches i of the subtree, with corresponding

length `i and radius ri.

We define a single metric ζ for the deviation from equitability of mitochondrial distribu-

tion throughout the entire tree. Specifically, this metric gives the root-mean-squared asymmetry

of mitochondrial densities in sister subtrees, averaged over all junctions in the arbor. We focus

on the regime where most mitochondria are in the stationary state, and hence compute the

asymmetry metric based specifically on distributions of stationary mitochondria:

ζ =

√√√√ 1
Nb

∑
b

(
〈cs〉b,1−〈cs〉b,2
〈cs〉b,1 + 〈cs〉b,2

)2

. (4.6)

Here, the index b enumerates the junctions, Nb is the total number of junctions in the tree,

and subscripts 1 and 2 refer to the two daughter subtrees emanating from a junction.

4.5.6 Agent-based simulations of mitochondrial transport

Stochastic simulations of mitochondrial transport in a network were carried out using

custom code written in Fortran 90. An initial tree structure is initialized to contain information on

the junction connectivity, as well as lengths and radii of individual branches. The tree skeletons

were generated using the NetworkX library as described in section 4.5.2. A typical example

is presented in Figure C.3. The widths of these synthetic trees were calculated by imposing

either Da-Vinci scaling law with r2 ∼ L/D, or rall’s splitting law with L ∼ V scaling applied.

For demonstrating the simulated results showing the difference in equitability of mitochondrial

distribution in trees following Da-Vinci vs Rall’s scaling, N = 10 synthetic trees were used. The
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edge lengths for the synthetic tree were fixed to `0 = 10µm, consistent with average edge length

measurements observed in HS dendrites. While these synthetic trees were shorter in extent

compared to real HS neurons due to computational limitations (going a maximum of D/`0 = 4

levels down), the synthetic trees incorporated a range of heterogeneity in branching structure.

The tree is then populated by a fixed number (N = 1000) of punctate of mitochondria,

distributed uniformly throughout. The position of each mitochondrion is tracked in terms of the

branch on which it is located and its position along the branch. Each mitochondrion is associated

with a transport state (anterograde, retrograde, or stationary).

On every timestep, an anterograde mitochondrion steps distance v∆t downstream along

the branch, and a retrograde mitochondrion steps distance v∆t upstream. The velocity of an

individual mitochondrion was assumed to be v= 0.4µm/s. One time step corresponds to ∆t = 2.5

s, so that the stepping distance v∆t = 1µm. A motile mitochondrion switches to a stationary

state with probability Pstop, whereas a stationary mitochondrion becomes motile with probability

Pstart , according to the corresponding rates:

Pstop = 1− eks,i∆t (4.7a)

Pstart = 1− ekw∆t (4.7b)

When becoming motile, the mitochondrion is equally likely to enter the enter the an-

terograde or retrograde state. The rate of switching from motile to stationary state was fixed

according to observations of mitochondrial motility in HS dendrites, which yielded the dimen-

sionless ratio ks/kw = 35 in the primary dendrite. The rate ks for a primary dendrite was set equal

to 0.15/s and the rate kw was set equal to 2×10−3/s, so that on an average a mitochondrion had

a probability Pstop = 0.31 of stopping in a primary dendrite at each timestep. The stopping to

walking rate was tuned as a function of branch radii according to the rule ks ∼ 1/r2.

At each junction, an anterograde mitochondrion chooses which daughter branch to enter

with probability proportional to the cross-sectional area of the branch: p1/p2 = r2
1/r2

2. When
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an anterograde mitochondrion reaches the distal tip, it reverses and becomes retrograde. When

an retrograde mitochondrion reaches the soma, it becomes anterograde again. The simulations

were run for Nsteps = 108 to ensure convergence in observed mitochondrial distributions, as

monitored by the time-shifted edge concentration autocorrelation function calculated for each

edge: Ccedge(τ) =
1
t ∑

t
0(cedge(t)−< cedge >t)(cedge(t + τ)−< cedge >t)

Where cedge(t) is the density at the edge at time t, < cedge >t is the time-averaged density at that

edge. The convergence time τ is when Ccedge(τ)→ 0.
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Appendix A

Appendix for Chapter 2

A.1 Estimating physiological parameter values

In this appendix we describe our approach to estimating the parameter values summarized

in Table 2.1 from published experimental data.

A.1.1 Glucose diffusivity (D)

glucose is a small molecule of comparable molecular weight to ATP, which has a diffusion

coefficient of 140µm2/s [134, 210]

A.1.2 Glucose consumption rate per mitochondrion (kg)

The oxidative capacity of muscle mitochondria has been measured at 5.8 mL of O2

per min per mL mitochondria[72, 182]. We assume 6 glucose molecules are consumed per

molecule of oxygen, and a volume of 0.3µm3 for globular mitochondria[162]. The corresponding

glucose turnover rate of a mitochondrion is then calculated as 1.3×105 glucose per second per

mitochondrion.

A.1.3 Axon radius (r)

The thickness of mammalian brain axons varies widely from 0.1µm to 10µm[156].

Statistical measurements in the human brain show that most axon diameters fall below 1µm, with

a long-tailed distribution of substantially thicker axons[113]. We take as our estimate a median
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diameter of 0.8µm, which is consistent with measurements in human brain regions[113], in the

rat corpus collosum[13], guinea pig retinal neurons[155], and in a number of other mammalian

tracts[156].

A.1.4 Internodal distance (L)

Typical internodal lengths vary widely from 200µm to 1500µm [83, 35]. We use a value

of L = 250µm as measured in the axons of rat anterior medullary velum[81].

A.1.5 Mitochondrial density (M)

Measurements of mitochondrial concentration in human spinal muscular nerves give a

linear density of about 15 mitochondria per 100µm of axon[228]. Similar densities are observed

in Fig. 1, 2 of Ref. [153]. Assuming an axonal radius of r ≈ 0.4µm gives a corresponding

density of 0.3µm−3. EM measurements in rat brain neurons indicate that mitochondria occupy

approximately 8% of the neuronal cytoplasmic volume[163]. Assuming a mitochondrial volume

of 0.3µm3[162] would give the same density estimate of 0.3 mitochondria per µm3.

A.1.6 Hexokinase Michaelis-Menten constant (KM)

The Michaelis-Menten constant for glucose phosphorylation by the neuronal isoform of

hexokinase (HKI) has been measured as Km = 0.03mM[224].

A.1.7 Ratio of stopped to moving mitochondria (ks/kw)

In Ref. [153], mammalian neurons grown under high (30mM) glucose conditions were

found to have mitochondria that spent approximately 5% of their time in motion. This fraction

should correspond to kw/(ks + kw)≈ 0.05 under our simplified model for mitochondrial motility.

A.1.8 Membrane permeability to glucose (P,KMP)

The neuronal glucose transporter GLUT3 in rat cerebellar granule neurons has been

measured to have a turnover rate of kglut3 = 853s−1 and a Michaelis-Menten constant of
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KM,glut3 = 3mM [123]. In the same study, the density of GLUT3 channels was measured

as 18pmol / mg cell membrane. We assume the cell membrane has a density of order 1g/cm3 and

forms a sheet of thickness 4nm. This allows us to calculate the area density of GLUT3 channels

in cerebellar neurons as approximately a = 43 transporters/µm2.

In the case where the difference in external and internal glucose concentration (∆G) is

below KM,glut3, we can approximate the net flux into the cell as,

flux = kglut3a
∆G

KM,glut3
= P∆G, (A.1)

allowing an estimate of the permeability P =
kglut3a

KM,glut3
≈ 0.02µm/s

A.2 Effective Michaelis-Menten kinetics for glycosylation of
Milton

We assume individual steps in glucose metabolism follow classic Michaelis-Menten

kinetics, with the rate of product formation given by dP/dt = viS/(KMi +S). We further assume

that all pathways considered here are operating in steady-state, with a stationary concentration

of all intermediates. When several Michaelis-Menten reactions are connected in series (eg: A

→ B→ C), steady state requires that the dependence of final product formation C on the initial

reactant A is given by,

dC
dt

=
vABA

KAB +A
(A.2)

where vAB,KAB are the maximum rate and saturation constant for the initial A→ B reaction.

If two pathways branch from a single intermediate, as occurs when the hexosamine

biosynthetic pathway splits off first from the pentose phosphate pathway and then from glycolysis,

then we have an additional reaction B→ D that alters the rate of C formation. We make the

key assumption that the saturation constants in the first step of both branching pathways are
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Figure A.1. Schematic of early pathway branches in glucose metabolism, showing the branching
of the pentose phosphate pathway and glycolysis from the hexosamine biosynthetic pathway that
leads to UDP-GlcNAc formation.
Saturation concentrations are labeled for each of the initial branching reactions. Note that in
both cases, the splitting branches have comparable values of KM.
(a) [47]; (b) [88]; (c) [110]; (d) [207]

comparable (KBC ≈ KBD). Steady state then requires

vABA
KAB +A

=
(vBC + vBD)B

KBC +B
dC
dt

=

(
vBC

vBC + vBD

)
vABA

KAB +A

(A.3)

Thus, if the saturation concentrations of the splitting reactions are similar, then the

formation of the final product occurs at a rate proportional to the initial substrate consumption,

with the same saturation constant. As illustrated in the pathway schematic (Appendix 2 Fig.A.1),

the branching of both the pentose phosphate pathway and glycolysis from the pathway leading to

UDP-GlcNAc formation involves similar values of the Michaelis-Menten constant. We therefore

assume that the rate of Milton glycosylation by OGT (dC/dt) is proportional to the rate of initial

glucose consumption by hexokinase (|dA/dt|). This assumption justifies our use of the same

KM for both glucose consumption and mitochondrial stopping. The fraction of metabolic flux

funneled into Milton glycosylation is subsumed into the effective rate constant ks.
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A.3 Effect of domain length L in uniform permeability
model

Dimensional analysis of Eq. 2.6 indicates that the diffusive term for glucose dynamics

will be negligible compared to the consumption and entry terms in the limit

L�
√

D(G+KM)/(kgM). We assume that external glucose concentrations are well below

10mM, indicating that the diffusive term is irrelevant for L� 150µm. If diffusion is neglected,

the only length units in the model are found within external glucose and mitochondrial concen-

trations, both of which are fixed parameters independent of axonal length. We therefore expect

in this limit that the model results will not depend on the interval length L.

To verify the accuracy of this limit, we plot glucose and mitochondrial distributions for

the full model (including diffusion) for interval lengths of L = 100µm, 1mm 1 cm (Appendix 3,

Fig. A.2a,b). All other parameters are from our physiological estimates in Table(2.1). We note

that for lengths well above 100µm, the distributions are independent of L and are nearly identical

to those expected for the model with diffusion excluded. We also plot mitochondrial accumulation

and metabolic enhancement in the distal 10% of the interval obtained from solutions of the full

model with diffusive transport, which match well to the plots in the main text (Fig.2.6) that

neglect diffusive transport. We can thus assume that glucose entry and turnover are much faster

than diffusive spread for biologically relevant parameter regimes.
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Figure A.2. Long cell length limit can be approximated by a simplified model without diffusive
transport.
(a-b) Steady-state intracellular glucose and mitochondrial distributions from numerical solutions
of Eq. 2.6 using different values of interval length L. Black dashed line shows solution of the
simplified model with the diffusive term removed.(c) Mitochondrial enrichment in the distal
10% of the interval subject to highest external glucose, as compared to a uniform distribution.
White line indicates physiological brain glucose levels, while white dot indicates glucose levels
in cultured neurons [153]. (d) Enhancement in metabolic flux in the distal 10% of the interval,
compared to uniform mitochondrial distribution. Plots (c) and (d) are obtained from solutions of
the full model with diffusive transport and are indistinguishable from Fig. 2.6d-e for an interval
length of 1000µm.
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Appendix B

Appendix for Chapter 3

B.1 Generalization to Branched Axons

Figure B.1. Cartoon demonstrating demand sites in a branched tree and corresponding health
parameters.
(a) Symmetric tree network used for branched axon calculations. Each segment branches into
g = 2 identical downstream segments. The soma is at position x = 0 and distal tips at position

x = L. (b) Zoomed-in schematic of a demand site at a branching junction. Demand site is
located at position xi, with S = 5 stationary mitochondria shown (blue). The health of the jth

mitochondrion is given by Hi, j, and the motile health leaving and entering on each side of the
region is labeled. In our simplified model, the demand site is assumed to be infinitely narrow,
and x±i refers to the positions in the domain immediately after and before the demand site.

Throughout this work we focus on the interplay between mitochondrial transport, inter-

change, and aging, assuming a linear geometry to minimize the geometric complexity. However,

in vivo axons have a tree-like branched structure, with mitochondrial localization observed at the

branching points[135]. In this section we present a generalization of the ‘Space Station’ model
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for a simple symmetric tree structure with stationary mitochondria localized at the branching

points.

We assume that each branching junction splits into g = 2 identical downstream branches

of equal length. The “demand sites” are placed immediately upstream of each branch point, with

an equal number of mitochondria (S) situated at each site. The model geometry is sketched in

Fig B.1. The symmetry of the system allows us to define a coordinate system 0≤ x≤ L, with 0

corresponding to the soma and L to the distal tips. The motile mitochondria health distribution

H±i (x) gives the health density at position x in any one of the corresponding branches. As before,

we define Hi, j to be the health of the jth mitochondrion at demand site (junction) i. The quantity

H+
i, j gives the anterograde-moving health density in the infinitesimally small space between

mitochondrion j and j+1 at site i; similarly, H−i, j gives the retrograde-moving health density

between mitochondrion j−1 and j. With these definitions, the branched system obeys Equations

3.13 after replacing the general mitochondrial density ρ with a branch-dependent density ρi,

defined by

ρ1 =
M−nS

L
, ρi+1 = ρi/g. (B.1a)

Here ρ1 is the motile mitochondria density in the initial branch arising from the soma,

and this density splits evenly at each junction point to give the downstream density ρi between

junction i−1 and i.

In addition to Eq. 3.13,the boundary conditions that complete the branched system are:

H+(x−i ) = H+
i,0, H+(x+i ) = H+

i,S/g (B.2a)

H−(x−i ) = H−i,1, H−(x+i ) = H−i,S+1/g (B.2b)

Eq. B.2a indicates that the anterograde health density leaving each junction (H+
i,S) splits into g
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equal branches. Similarly, Eq. B.2b defines the retrograde density entering the junction (H−i,S+1)

as the sum of retrograde densities from g branches.

The branched model with a tree of depth m has a total of n = 2m− 1 demand sites,

with each motile mitochondrion passing m of those sites on its way down the axon. When

comparing to the linear model, we compare systems with the same total number of mitochondria

M servicing the same number of demand sites n, and with the same distance L from soma to

distal tip. It should be noted that the average linear density of motile mitochondria is lower in

the branched model because the same total number M is spread out over a larger total branch

length [Ltot = (2(m+1)−1)L/(m+1)]. The primary model parameters (decay rate k̂d , fraction of

stopped mitochondria fs, and average number of stopping events for each protein Ns) are defined

to be conceptually analogous to the linear model. As before, we have k̂d = kdL/v and fs = nS/M.

Because each mitochondrion traverses only one branch at each level of the tree, the number of

stopping events is given by Ns = 2p̂sm.

The steady-state mitochondrial health at the demand sites in a tree of depth 4-level and

8-level tree are plotted in Fig B.2. The overall value of both average and distal mitochondrial

health is somewhat decreased, presumably as a result of the lower density of motile mitochondria

servicing the more distal branches. Interestingly, increasing the depth of the branching tree

(while keeping a constant length L) only slightly lowers mitochondrial health, despite the fact that

the distal density of motile mitochondria decreases exponentially. This result further confirms the

observation that the primary relevant parameters are fraction of mitochondria stopped ( fs) and

number of stopping events Ns rather than the absolute number of demand sites or density of motile

mitochondria. Furthermore, we note that the optimal values of fs and Ns are largely unchanged

in the branched system when compared to the linear geometry (Fig. 3.5). We therefore conclude

that our main results, which rely on a linear axonal geometry, are more generally applicable.

A number of questions remain regarding mitochondrial maintenance in a branching

geometry. Namely, the potential effect of redistributing stationary mitochondria at different

depths along the tree, the consequences of asymmetric tree geometries, the effect of bidirectional
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motion into multiple branches, and the role of autophagy in tree-like structures, may further

elucidate the optimal strategies for mitostasis in realistic axonal geometries. These more in-depth

explorations serve as a promising jumping-off point for future expansion of the model described

in this manuscript.
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Figure B.2. Mitochondrial health for expanded model in a symmetric branched tree geometry.
(a) Average mitochondrial health as a function of fs and Ns for a tree of depth m = 4, with

n = 15 demand sites at the branch junctions. (b) Corresponding plot for the health of each distal
demand site (furthest from the soma). (c-d) Corresponding plots for a tree of depth m = 8, with

255 demand sites.
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B.2 Contribution of retrograde fusion events

Both the SS and CoG models allow health components to transition from a motile

to a stationary state in an unbiased fashion. This means mitochonria moving in both the

anterograde and retrograde directions are able to stop at demand sites (CoG model) or fuse with

stationary mitochondria (SS) model with equivalent stopping or fusion probabilities. Because

retrograde-moving mitochondria tend to have lower health levels compared to anterograde-

moving mitochondria, removing fusion events between retrograde-moving mitochondria and

stationed mitochondria is expected to result in higher health levels at demand sites. Such a

modification would be equivalent to mitophagy that is triggered not by mitochondrial health

levels but rather by the arrival of mitochondria at the distal terminus.

The ‘Space Station’ model equations can be modified as follows to reflect a potential

regulatory mechanism that completely prohibits fusion of retrograde-moving mitochondria:

dH±

dt
=∓v

∂H±

∂x
− kdH± (B.3a)

dHi, j

dt
=

vp f

2

[
H+

i, j−1

]
−
[vρ p f

4
+ kd

]
Hi, j (B.3b)

H+
i, j = H+

i, j−1

(
1−

p f

2

)
+

ρ p f

4
Hi, j, H−(xi, j) = H−i, j+1 (B.3c)

H+(L) = H−(L) (B.3d)

vH+(0) = kp. (B.3e)

In Eq. B.3b, the quantity ρ/2 gives the density of anterograde-moving mitochondria, replacing

ρ in the original ‘Space Station’ equation (Eq. 3.13b).

The steady-state mitochondrial health in the absence of retrograde fusion is plotted in

Fig B.3. We see that removing fusion with retrograde mitochondria means that there is no longer

an optimum in the number of interaction events between motile and stationary mitochondria.

129



The disadvantage to high Ns in the original model arose from the fusion of unhealthy retrograde

mitochondria picking up proteins from stationary organelles and carrying them prematurely back

to the soma for recycling. This disadvantage is no longer present if retrograde mitochondria are

incapable of fusion.

Removal of retrograde fusion also results in a 50% increase in average health at demand

sites (Fig B.3a), again by preventing fusion of the less healthy retrograde mitochondria with

stationary organelles at the proximal sites. Interestingly, the maximum health at the most distal

site remains largely unchanged (Fig B.3b).

These results indicate that any cellular mechanism capable of biasing exchange events

between the motile and stationary population so that retrograde mitochondria were less likely to

fuse or stop could be beneficial for enhancing mitochondrial health in the domain.

Figure B.3. Mitochondrial health without retrograde fusion; plots analogous to Fig. 3.5.
(a) Average health across all demand regions as a function of fraction of stopped mitochondria

( fs) and number of stopping events (Ns), for high decay rate (k̂d = 0.6). (b) Corresponding
mitochondrial health at the most distal demand site.
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Appendix C

Appendix for Chapter 4

Supplemental Methods S1: Mean-field models for mitochon-
drial distributions in a dendritic tree

C.0.1 Comparing average subtree densities in models with uniform
transport

We first consider models where the mitochondrial transport parameters are spatially

uniform (constant velocity v and stopping rate ks throughout the arbor). Steady state linear

densities of motile mitochondria (ρw
i ) and stationary mitochondria (ρs

i ) were computed as

described in Methods.

Volume densities in arbors obeying Da Vinci parent-daughter scaling

We consider the case of a tree obeying Da Vinci scaling (α = 2) between the parent

branch width (r0) and daughter branch widths (r1,r2), which are related according to r2
0 = r2

1 +r2
2.

We can solve for the linear densities in the daughter branch as follows:

ρi = ρ0

(
r2

i

r2
1 + r2

2

)
= ρ0

r2
i

r2
0
, for i = 1,2, (C.1)
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where the relationship holds for both the motile and stationary mitochondria densities. The total

volume density of mitochondria in a daughter branch i is then

ci =
ρw

i +ρs
i

r2
i

=
ρw

0 +ρs
0

r2
0

= c0 (C.2)

Thus, for the simplest model with uniform mitochondrial transport and conservation of

cross-sectional area at each junction (Da Vinci rule), the volume density of mitochondria must

be constant throughout the whole tree.

Volume densities in arbors obeying Rall’s Law parent-daughter scaling

Alternately, we can compute the mitochondrial volume density in arbors that obey the

Rall’s Law relationship between parent and daughter branches (Rule 3, rα
0 = rα

1 + rα
s , with

α = 3/2). The assumptions of uniform mitochondrial transport (Rule 1 with β = 0) and

mitochondria splitting in proportion to daughter branch area (Rule 2) are still maintained. Here

we show that such a model leads to increased mitochonrial densities with distance from the soma,

and unequal average densities in asymmetric sister subtrees. The relationships below apply to

both motile and stationary mitochondrial densities.

We begin by focusing on a single junction with a parent trunk of radius r0 and linear

mitochondrial density ρ0, and daughter trunk radii r1,r2 and linear densities ρ1,ρ2. A single

parameter µ0 = rα
1 /rα

0 describes how the dendritic width is split between sister branches (Rule

4), within the constraints of Rall’s law. The fraction of mitochondria that enter the first daughter

branch is ρ1/ρ0 = r2
1/(r

2
1 + r2

2).

The ratio of mitochondrial volume density between the daughter branches and the parent

can be written as

c1

c0
=

c2

c0
=

r2
0

r2
1 + r2

2
=

1

µ
2/α

0 +(1−µ0)2/α
(C.3)
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For α < 2, this ratio is always above unity (c1/c0 > 1), except in the edge cases of µ0 = 0

or µ0 = 1, which would correspond to one daughter branch disappearing. Thus, the volume

density of mitochondria in the daughter branches of a Rall’s Law tree is always higher than in the

parent branch. This is a direct consequence of the reduced cross-sectional area in the daughter

branches.

We next consider whether it is possible to choose values of the sister trunk splitting µi at

each junction i in such a way as to ensure equitable mitochondrial distribution in the two sister

subtrees. We begin by defining two parameters for a subtree initiating from trunk 0. First, the

total volume of the subtree is expressed as V0 = η0r2
0. For a symmetric Da Vinci tree, where total

cross-sectional area is conserved at each junction, the parameter η0 represents the depth of the

tree (distance from soma to distal tips). For a symmetric Rall’s Law tree, however, the value of

η0 is less than the depth, due to the narrowing of total cross-sectional area below each junction.

Second, we define a parameter z0 relating the average volume density of mitochondria within

the subtree, relative to the density within the trunk: 〈c〉0 = z0ρ0/r2
0. For a Da Vinci tree, under

the assumption of uniform mitochondrial transport, z = 1 for all junctions regardless of the tree

morphology. For a Rall’s law tree with at least one junction, the increase in density from parent

to daughter branches implies that z0 > 1.

For two sister subtrees, the volume densities in the trunk must be the same (ρ1/ρ2 = r2
1/r2

2,

from Rule 1, and therefore c1/c2 = 1). Consequently, the subtrees will have equal average

mitochondrial densities if and only if z1 = z2. If we want to establish a universal rule for splitting

sister trunks (ie: definining µi values at each junction) that depends only on the morphology of

the downstream subtree, then the only way to ensure equitable mitochondrial densities throughout

a sister subtrees in the arbor would be for all values of zi to be set to a single constant zi = z∗. For

a Rall’s Law arbor, we would need to pick a value z∗ > 1 when setting such a rule. In this case,

any subtree consisting of a single long branch (no downstream junctions) would automatically

have zi = 1 and would have a lower mitochondrial density than its sister. Furthermore, we show

below that if z∗ is set close to 1, then the required splitting of branch widths results in most of
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the tree disappearing and one very long sequence of daughter branches receiving most of the

cross-sectional area (Supplemental Figure C.2F). Such an extreme rebalancing of branch widths

is clearly not representative of tree structure observed in vivo and corresponds to an edge case

where the arbor is reduced primarily to a single tube rather than a tree. On the other hand, if we

set z∗ substantially higher than 1, then for many of the junction points it becomes impossible to

solve for any value of µ that would enable equal mitochondrial densities in the sister subtrees.

The two parameters describing the volume and average mitochondrial density in a subtree,

can be expressed recursively:

η0 = `0 +η1µ
2/α

0 +η2(1−µ0)
2/α , (C.4a)

z0 =

`0 +
z1µ

2/α

0 +z2(1−µ0)
2/α

µ
2/α

0 +(1−µ0)2/α

`0 +η1µ
2/α

0 +η2(1−µ0)2/α
, (C.4b)

where η0,z0 are the values for a tree with parent trunk 0 and η1,2,z1,2 are values for the daughter

subtrees with trunks 1 and 2.

In Supplemental Figure C.2F we consider an example arbor morphology, where the

junction connectivities and branch lengths are extracted from a Drosophila HS arbor skeleton.

Starting from the distal branches of the tree, we recursively solve, where possible, for the value

of µi at each junction that would set zi = z∗ for the parent trunk leading to that junction. Where

a solution is impossible (always due to the maximum value of zi being below z∗), we pick the

splitting that maximizes zi. Red circles in the figure show junctions where a solution was not

found that could enable the two sister subtrees to have equal mitochondrial densities. We see

that choosing a high value of z∗ makes it impossible to enforce equitable mitochondrial densities

in many pairs of sister subtrees, in contrast to experimental observations. On the other hand,

choosing z∗ ≈ 1 leads to an unrealistic collapse of the arbor to a single primary path in order to

maintain equitable mitochondrial distribution.

Overall, these calculations imply that a Rall’s tree morphology, together with uniform
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mitochondrial transport kinetics, leads to increased mitochondrial densities in distal branches

but cannot allow for a realistic splitting of branch widths that establishes equal mitochondrial

densities between sister subtrees.

C.0.2 Subtree densities in a Da-Vinci tree with ks ∼ 1/r2

Rather than assuming spatially constant mitochondrial motility, an alternative model

can be constructed where mitochondria are more likely to halt on narrower branches, while

the restarting rate kw and pause-free velocities v remain constant. One simple model for width-

dependent stopping would be to set the rate inversely proportional to the cross-sectional area

of each branch: ks,i = k∗s/r2
i , corresponding to β = 2 in scaling Rule 3. We then consider the

distribution of stopped mitochondria in different dendritic branches. With ks ∼ 1/r2, the linear

density of stationary mitochondria in branch i is given by

ρ
(s)
i =

k∗s
kw

ρ
(w)
i /r2

i (C.5)

Where ρ
(w)
i = ρ+,i+ρ−,i is the motile linear density of mitochondria. At a junction with daughter

branches 1,2, this motile linear density splits according to ρ
(w)
1

ρ
(w)
2

=
r2

1
r2

2
.

Comparing average densities in sister subtrees

In a tree with Da Vinci scaling, the volume density of motile mitochondria is spatially

constant, so that all branches have c(w)i = c(w)trunk = ρ
(w)
trunk/r2

trunk. We can then calculate the average

volume density of the stationary population in a subtree with total volume VST and total branch

length LST:

〈
c(s)
〉

ST
=

∑i∈ST ρ
(s)
i `i

∑i∈ST r2
i `i

=

k∗s
kw

c(w)trunk ∑i `i

VST
∼ LST

VST
, (C.6)

where the summations are over all branches in the subtree.
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Therefore, the ratio between the average stopped mitochondrial densities in sister subtrees

becomes:

〈
c(s)
〉

1〈
c(s)
〉

2

=
L1/V1

L2/V2

(C.7)

Keeping in mind that 〈c〉=
〈

c(w)
〉
+
〈

c(s)
〉

and that c(w) is the same for all branches in

a Da Vinci tree, we see that equitable distribution of mitochondria between sister subtrees can be

achieved only if the volume of each sister subtree is proportional to its total length:

L1

V1
=

L2

V2
. (C.8)

Notably, increased stopping of mitochondria in narrower branches implies that more

distal sections of the dendritic tree will tend to have higher mitochondrial densities. We therefore

predict that the combination of Da Vinci scaling of branch widths (r2
0 = r2

1 + r2
2) together the

the proportionality of subtree length and total volume (Eq. C.8) will give rise to mitochondrial

densities that both increase with distance from the soma and are equal between sister subtrees, as

observed for experimental data.

Sister branch radii splitting for L∼V relationship

For a Da Vinci arbor, the proportional relationship between sister subtree length and

volume (Eq. C.8) can be achieved via a particular morphological rule governing the relative trunk

widths of sister substrees emerging from the same junction (Rule 4).

We begin by defining the depth of a tree (D) via a recursive approach. For a subtree

consisting of a single branch of length `1, the depth is simply defined as that branch length

(D1 = `1). Next, we consider a tree with trunk of index 0, splitting at a downstream junction

between subtree trunks 1 and 2. We define the depth of the tree according to the following
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formula:

D0 = `0 +
L1 +L2

L1/D1 +L2/D2
, (C.9)

where D1,D2 are the depths and L1,L2 are the total branch lengths of the subtrees starting with

branch 1 and 2, respectively. Conceptually, this expression averages the inverse depths of the

two subtrees, weighted by their respective lengths, and adds on the length of the parent trunk.

We note that in the case where the two subtrees have the same depth (D1 = D2) then the overall

depth of the tree becomes D0 = `0 +D1. Thus, in an arbor where all distal tips are the same

distance from the parent node, the depth of the tree will simply be equal to that distance.

We now consider the specific case of a Da Vinci arbor that additionally obeys the criterion

in Eq. C.8, where the volume of a sister subtree is proportional to its total length. As before, we

express the volume of the arbor in terms of the prefactor η0 according to V = η0r2
0. We then

show by induction that under these assumptions the prefactor is equal to the depth: D0 = η0.

First, we use the length-volume proportionality to express the volume of each subtree in terms of

the parent volume and the subtree lengths according to:

V0 = `0r2
0 +V1 +V2,

Vi =
Li

L1 +L2
(V1 +V2) =

Li

L1 +L2

(
V0− `0r2

0
)
= ηir2

i , i = 1,2
(C.10)

Next, we can apply the Da Vinci law relating parent and daugher branch widths:

r2
0 = r2

1 + r2
2 =

L1/η1 +L2/η2

L1 +L2

(
V0− `0r2

0
)
,

V0 =

(
`0 +

L1 +L2

L1/η1 +L2/η2

)
r2

0 = η0r2
0

(C.11)

Thus, we see that if the two subtrees have depths D1 = η1 and D2 = η2, then the overall

tree will also have D0 = η0, where depth is defined according to Eq. C.9. Since single branches

have ηi = Di by definition, this argument implies that all trees obeying Da Vinci scaling and
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length-volume proportionality, have volume given by V0 = D0r2
0.

Finally, we note that, for a Da Vinci tree, the proportionally of length and volume can

now be translated directly into a relationship between sister subtree trunk widths:

L1/V1

L2/V2
=

L1/(D1r2
1)

L2/(D2r2
2)

= 1,

r2
1

r2
2

=
L1/D1

L2/D2
=

b1

b2
(C.12)

where we define the ‘bushiness’ of a subtree (bi) as its total length divided by its depth: bi = Li/Di.

Trees with high bushiness are broader, in the sense of having a greater total length of branches at

a given depth, arising from more frequent junctions (Figure 4b).

Overall, we have shown that in an arbor obeying the Da Vinci rule (α = 2), where

mitochondrial stopping is inversely proportional to branch area (β = 2), equal densities of

mitochondria between sister subtrees will be obtained if the sister trunk areas are split in

proportion to the subtree bushiness (Eq. C.12).

C.0.3 Average subtree densities for general transport behavior in Da
Vinci arbors

We next consider a generalization of the mitochondrial distribution model to the case

where both the stopping rate ks,i and the pause-free velocity vi can vary depending on the branch

width. At steady state, the conservation of incoming and outgoing flux into a branch junction

gives a relationship between the motile mitochondria density ρ
(w)
0 in the parent trunk 0 and the

daughter branches 1,2. We maintain the assumption that the splitting of mitochondrial flux into

each daughter branch is proportional to the cross-sectional area. Specifically, this gives the two
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conditions:

voρ
(w)
o = v1ρ

(w)
1 + v2ρ

(w)
2 (C.13a)

v1ρ
(w)
1

v2ρ
(w)
2

=
r2

1
r2

2
. (C.13b)

The density of stationary mitochondria in each branch is given by ρ
(s)
i =

ks,i
kw

ρ
(w)
i .

Assuming a Da Vinci relationship between parent and daughter branch widths, we can

solve for the volume density of mitochondria in daughter branches as follows:

v0ρ
(w)
0 = v1ρ

(w)
1

(
1+

r2
2

r2
1

)
=

v1ρ
(w)
1 r2

0

r2
1

c(w)1 = ρ1/r2
1 = c(w)0

v0

v1
.

(C.14)

Consequently, throughout the entire arbor, the motile volume density in each branch can be

written in terms of the local velocity and the density in the parent trunk of the full tree: c(w)i =

c(w)trunk
vtrunk

vi
. The total volume density on a branch, including motile and stationary mitochondria,

can be expressed in terms of the average velocity (with pauses included), given by vi =
kw

kw+ks,i
vi.

Specifically:

ci = c(w)i + c(s)i =

(
ks,i + kw

kw

)
c(w)trunk

vtrunk

vi
= c(w)trunkvtrunk/vi (C.15)

The average volume density of mitochondria in a subtree is then given by

〈c〉ST =
∑i∈ST c(w)i r2

i `i

∑i∈ST r2
i `i

=
1

VST
∑

i∈ST

r2
i `ic

(w)
trunkvtrunk

vi
= c(w)trunkvtrunk

〈
1
v

〉
V
, (C.16)

where the final term denotes the volume-weighted average of the inverse velocity over the subtree:〈1
v

〉
V =

(
∑i∈ST r2

i `i(1/vi)
)
/VST.

We consider the case where the average velocity (including pauses) along a branch scales
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Figure C.1. Stimulus-evoked calcium signals do not affect mitochondrial motility in HS den-
drites. Figure courtesy of Barnhart Lab, Columbia University.
A: HS dendrites, labeled with mitoDsRed (magenta) and GCaMP6f (green), imaged while a
visual stimulus drove calcium signals in distal HS dendrites. B: Calcium responses to the motion
stimulus (GCaMP6f, left) and mitochondria (mitoDsRed, right) in an HS dendritic branch.
Yellow arrows indicate a moving mitochondrion. C-D: Mitochondrial speeds (C) and linear flux
rates (D) when the visual stimulus was OFF versus ON. Dots indicate instantaneous speeds or
average linear fluxes for individual flies.

as a power law of the branch width: vi ∼ rγ

i . Under this assumption, the ratio of sister subtree

densities is given by

〈c〉1
〈c〉2

=

〈1
v

〉
V1〈1

v

〉
V2

=
V2

V1

∑i∈ST1 r2−γ

i `i

∑i∈ST2 r2−γ

i `i
. (C.17)

In the case that γ = 2, this relationship reduces to 〈c〉1 /〈c〉2 = (L1/V1)/(L2/V2), and

equal densities of mitochondria between sister subtrees are again achieved when the subtree

volume is proportional to its total length. A particular case that leads to γ = 2 is where restarting

rates are low (ks,i� kw throughout most of the tree), pause-free velocities are constant, and the

stopping rate scales inversely with cross-sectional area (ks,i ∼ 1/r2
i ). This is the simplified case

considered in the main text.

C.0.4 Supplemental Figures
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Figure C.2. Model mitochondrial distributions in synthetic dendritic trees.
A: Representative examples of synthetic trees with random (four left images) or symmetric
(right) topologies. B-E: Model results. Mitochondrial density asymmetry across sister subtrees
(B,C) and distal mitochondrial enrichment (D,E) were calculated for β = 0 (B,D) or β = 2 (C,E),
α = 2 (cyan), 3/2 (red), or 3 (purple), and sister subtree scaling with subtree trunks splitting
according to r1 = r2 (eq.), r2 ∼ L, or r2 ∼ L/D. N = 19 synthetic arbors (circles) and 1 symmetric
arbor (stars). F: HS dendrites with radii that obey Rall’s parent-daughter scaling (α = 3/2);
β = 0. The parameter z* determines the ratio of sister subtree trunk thickness (r1 and r2) at each
branch point (see Appendix). Red circles indicate branch points for which there is no solution
for equal sister subtree densities. For high values of z* (left), there are many junctions with no
solution. As z* approaches 1 (right), there are fewer junctions with no solution. However, arbor
morphologies become unrealistic, with many thin dendrites branching from a single thick branch.
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Figure C.3. Numerical simulations of mitochondrial distributions.
A: Simulated mitochondrial densities in a small synthetic arbor scaled according to Da Vinci’s
rule (α = 2), sister subtree splitting with L ∼ V , and transport scaling with β = 2. Total
mitochondrial densities in the two largest subtrees (〈cST 1〉 and 〈cST 2〉) are indicated on the plot.
B: Analytical calculations of mitochondrial densities for the same arbor as in A. Note that
whereas mitochondria are equitably distributed across ST1 and ST2 in the analytical solution,
stochastic effects result in asymmetry in the simulated results. C-D: Mitochondrial densities
were simulated for 10 synthetic arbors, and mitochondrial density asymmetry (C) and distal
enrichment (D) were measured for two parent-daughter scaling rules: Rall’s law (α = 3/2)
and Da Vinci’s rule (α = 2). Sister subtrees split with L∼V , and transport scaled with β = 2.
Box plots indicate the mean and interquartile range for simulation results; dashed lines indicate
average values for numerical solutions for the same arbors.
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R2 = 0.27 R2 = 0.43 
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Figure S6: HS dendrites do not obey sister subtree scaling with r2 ~ subtree length or 
depth. A-B: Measurements of HS dendrites sister subtree asymmetries (N = 649 branch points 
from 10 HS dendrites).  Trunk thickness (r2) asymmetry is more weakly correlated with length 
(A) or depth (B) asymmetry than with bushiness asymmetry (Figure 6F). C-F: Sister subtree 
correlations in a synthetic tree. Branch radii were set according to parent-daughter scaling with 
_ = 2 and sister subtree scaling with L~V, plus a gaussian noise term (see Methods). The noise 
has a small e!ect on measurements of L~V scaling (C), and a larger e!ect on r2~L/D scaling (D). 
Subtree length (E) and depth (F) asymmetries show weaker correlations with r2 asymmetry, as 
in the experimental results (A-B).

A B

C D

E F

Figure C.4. HS dendrites do not obey sister subtree scaling with r2 ∼ subtree length or depth
A-B: Measurements of HS dendrites sister subtree asymmetries (N = 649 branch points from 10
HS dendrites). Trunk thickness (r2) asymmetry is more weakly correlated with length (A) or
depth (B) asymmetry than with bushiness asymmetry (Figure 4.4). C-F: Sister subtreecorrela-
tions in a synthetic tree. Branch radii were set according to parent-daughter scaling with α = 2
and sister subtree scaling with L∼V , plus a gaussian noise term (see Methods). The noise has a
small effect on measurements of L∼V scaling (C), and a larger effect on r2 ∼ L/D scaling (D).
Subtree length (E) and depth (F) asymmetries show weaker correlations with r2 asymmetry, as
in the experimental results (A-B).
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Figure S7: Model mitochondrial distributions in dendrites 
that obey dif erent scaling rules. A-D: Average mitochondri-
al distal enrichment (A,C) and density asymmetry (B,D) calcu-
lated as a function of � (parent-daughter scaling) and � (trans-
port scaling) for dendrites that obey sister subtree scaling with 
r1=r2(equitable splitting; A-B) or r2~L (C-D). Green dashed lines 
indicate 95% conf dence intervals for experimental measure-
ments of � and �. E-F: Average distal enrichment (E) and densi-
ty asymmetry (F) calculated as a function of �, for r2~L/D and 
parent-daughter scaling with (red) or without (blue) a mini-
mum radius (rm): r0

2+rm
2=r1

2+r2
2. Including the minimum radius 

leads to less distal enrichment (E) and greater density asym-
metry (F). 

Figure C.5. Model mitochondrial distributions in dendrites that obey different scaling rules.
A-D: Average mitochondrial distal enrichment (A,C) and density asymmetry (B,D) calcu- lated
as a function of α (parent-daughter scaling) and β (transport scaling) for dendrites that obey
sister subtree scaling with r1 = r2 (equitable splitting; A-B) or r2 ∼ L (C-D). Green dashed lines
indicate 95% confidence intervals for experimental measurements of α and β . E-F: Average
distal enrichment (E) and density asymmetry (F) calculated as a function of β , for r2 ∼ L/D
and parent-daughter scaling with (red) or without (blue) a minimum radius (rm). Including the
minimum radius leads to less distal enrichment (E) and greater density asymmetry (F).
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Manfredi. Mitochondrial dynamics and bioenergetic dysfunction is associated with
synaptic alterations in mutant sod1 motor neurons. Journal of Neuroscience, 32(1):229–
242, 2012.

[123] Fran Maher, Theresa M Davies-Hill, and Ian A Simpson. Substrate specificity and kinetic
parameters of glut3 in rat cerebellar granule neurons. Biochem J, 315(Pt 3):827, 1996.

[124] M.S. Maisak, J. Haag, G. Ammer, E. Serbe, M. Meier, A. Leonhardt, T. Schilling, A. Bahl,
G.M. Rubin, A. Nern, B.J. Dickson, D.F. Reiff, E. Hopp, and A. Borst. A directional
tuning map of drosophila elementary motion detectors. Nature, 500:212–216, 2013.

[125] A. Mandal, H.T.C. Wong, K. Pinter, N. Mosqueda, A. Beirl, R.M. Lomash, S. Won, K.S.
Kindt, and C.M. Drerup. Retrograde mitochondrial transport is essential for organelle
distribution and health in zebrafish neurons. Journal of Neuroscience, 41:1371–1392,
2021.

[126] Amrita Mandal, Hiu-Tung C Wong, Katherine Pinter, Natalie Mosqueda, Alisha Beirl,
Richa Madan Lomash, Sehoon Won, Katie S Kindt, and Catherine M Drerup. Retrograde

155



mitochondrial transport is essential for organelle distribution and health in zebrafish
neurons. Journal of Neuroscience, 2020.

[127] K. Mann, S. Deny, S. Ganguli, and T.R. Clandinin. Coupling of activity, metabolism and
behaviour across the drosophila brain. Nature, 593:244–248, 2021.

[128] Fernando M Mar, Anabel R Simões, Sérgio Leite, Marlene M Morgado, Telma E Santos,
Inês S Rodrigo, Carla A Teixeira, Thomas Misgeld, and Mónica M Sousa. Cns axons
globally increase axonal transport after peripheral conditioning. Journal of Neuroscience,
34(17):5965–5970, 2014.

[129] P.A. Marquet, R.A. Quinones, S. Abades, F. Labra, M. Tognelli, M. Arim, and M. Ri-
vadeneira. Scaling and power-laws in ecological systems. J Exp Biol, 208:1749–1769,
2005.

[130] MATLAB. version 9.5 (R2018b). The MathWorks Inc., Natick, Massachusetts, 2018.

[131] Wakoto Matsuda, Takahiro Furuta, Kouichi C Nakamura, Hiroyuki Hioki, Fumino Fu-
jiyama, Ryohachi Arai, and Takeshi Kaneko. Single nigrostriatal dopaminergic neurons
form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci,
29(2):444–453, 2009.

[132] Ewan C McNay, Richard C McCarty, and Paul E Gold. Fluctuations in brain glucose
concentration during behavioral testing: dissociations between brain areas and between
brain and blood. Neurobiol Learn Mem, 75(3):325–337, 2001.

[133] Kyle E Miller and Michael P Sheetz. Axonal mitochondrial transport and potential are
correlated. Journal of cell science, 117(13):2791–2804, 2004.

[134] Sergej L Mironov. Adp regulates movements of mitochondria in neurons. Biophys J,
92(8):2944–2952, 2007.

[135] Thomas Misgeld and Thomas L Schwarz. Mitostasis in neurons: maintaining mitochondria
in an extended cellular architecture. Neuron, 96(3):651–666, 2017.

[136] Prashant Mishra and David C Chan. Metabolic regulation of mitochondrial dynamics. J
Cell Biol, pages jcb–201511036, 2016.

[137] Albert Misko, Sirui Jiang, Iga Wegorzewska, Jeffrey Milbrandt, and Robert H Baloh.
Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the
miro/milton complex. Journal of Neuroscience, 30(12):4232–4240, 2010.

[138] Pradeep K Mouli, Gilad Twig, and Orian S Shirihai. Frequency and selectivity of
mitochondrial fusion are key to its quality maintenance function. Biophysical journal,
96(9):3509–3518, 2009.

[139] Cecil D Murray. The physiological principle of minimum work: I. the vascular system
and the cost of blood volume. Proceedings of the national academy of sciences of the
united states of america, 12(3):207, 1926.

156



[140] Babu Reddy Janakaloti Narayanareddy, Suvi Vartiainen, Neema Hariri, Diane K O’Dowd,
and Steven P Gross. A biophysical analysis of mitochondrial movement: differences
between transport in neuronal cell bodies versus processes. Traffic, 15(7):762–771, 2014.

[141] David G Nicholls. Mitochondrial membrane potential and aging. Aging cell, 3(1):35–40,
2004.

[142] Robert F Niescier, Sang Kyu Kwak, Se Hun Joo, Karen T Chang, and Kyung-Tai Min.
Dynamics of mitochondrial transport in axons. Frontiers in cellular neuroscience, 10:123,
2016.

[143] H Nishimura, FV Pallardo, GA Seidner, S Vannucci, IA Simpson, and MJ Birnbaum.
Kinetics of glut1 and glut4 glucose transporters expressed in xenopus oocytes. J Biol
Chem, 268(12):8514–8520, 1993.

[144] V. Nithianandam and C.T. Chien. Actin blobs prefigure dendrite branching sites. J Cell
Biol, 217:3731–3746, 2018.

[145] Jodi Nunnari and Anu Suomalainen. Mitochondria: in sickness and in health. Cell,
148(6):1145–1159, 2012.

[146] Jeremy D O’Connell, Alice Zhao, Andrew D Ellington, and Edward M Marcotte. Dynamic
reorganization of metabolic enzymes into intracellular bodies. Annu Rev Cell Dev Bi,
28:89–111, 2012.

[147] Nobuhiko Ohno, Grahame J Kidd, Don Mahad, Sumiko Kiryu-Seo, Amir Avishai, Hitoshi
Komuro, and Bruce D Trapp. Myelination and axonal electrical activity modulate the
distribution and motility of mitochondria at cns nodes of ranvier. J Neurosci, 31(20):7249–
7258, 2011.

[148] M. Packard, D. Mathew, and V. Budnik. Wnts and tgf beta in synaptogenesis: Old friends
signalling at new places. Nature Reviews Neuroscience, 4:113–120, 2003.
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