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Abstract 
How are experiences of events used to update knowledge of 
predictive relations in semantic memory? We examined the 
roles of anterior-lateral entorhinal cortex (alEC), important for 
encoding recently experienced temporal relations, and middle 
temporal gyrus (MTG), involved in familiar event concepts. 
Participants underwent fMRI during exposure to novel event 
sequences and a memory probe phase (Session 1) and the same 
process a week later (Session 2). Across distinct sequences, 
predictive relations among similar events could either be 
Consistent, or the roles of the events could swap (Inconsistent). 
We examined the effect of Consistency on the strength of 
relational memory content. Areas that integrate across diverse 
experiences should be aided in the Consistent condition. We 
found that alEC performed this integrative role in Session 1, 
and at Session 2, similar effects were also observed in MTG. 
We suggest that these areas both contribute to building 
relational knowledge from experience. 

Keywords: fMRI, semantic memory, learning, medial 
temporal lobe, temporal relations, event cognition 

Introduction 
The typical structure of relations among events is an 

important component of semantic memory (Carey, 2009; 
Gentner, 1983; Jones & Love, 2007; Markman & Gentner, 
1993; Markman & Stilwell, 2001; Miller & Johnson-Laird, 
1976; Pinker, 1989; Rehder & Ross, 2001)—for example, the 
causal structure captured in the concept throw or the 
sequential order of events at a restaurant. We likely use 
experiential observation of specific events to update this 
general knowledge. Yet exactly how encoding of experiences 
serves to update semantic memory of relations remains 
poorly understood.  

Complementary Learning Systems (CLS) theory 
(McClelland, McNaughton, & O’Reilly, 1995; Norman & 
O’Reilly, 2003) proposes that two distinct systems are 
involved in updating memory systems from experience. An 
episodic system rapidly encodes recent individual 
experiences while a semantic system gradually comes to 
represent stable properties aggregated across experiences  

Information integration is essential for building up 
semantic representations because it allows for their 
generality. For example, we are able to recognize the same 
event structure across restaurants that differ in taste, décor, 
and location, just as we can recognize that throwing may 

describe events with similar causal outcomes but involving 
any of a variety of entities. To build general knowledge of 
throwing and restaurants we must therefore aggregate this 
common structure across diverse situations.  

There is consensus that the episodic system depends on the 
hippocampus (HC) and likely the adjacent entorhinal cortex 
(EC). HC in particular is known to rapidly bind together 
elements (eg., time and place) within specific experiences 
(Eichenbaum, 2004; Eichenbaum & Cohen, 2001; Mishkin, 
1997; O’Reilly & Rudy, 2001; Ranganath, 2010; Sutherland 
& Rudy, 1989). The role of HC and EC is often time-limited, 
such that lesions here can spare information learned days or 
weeks ago, particularly when that information is non-
autobiographical or integrative (P. W. Frankland & 
Bontempi, 2005; Hodges & McCarthy, 1995; Lesburguères 
et al., 2011; Levy, Bayley, & Squire, 2004; Tse et al., 2007; 
Wang, Teixeira, Wheeler, & Frankland, 2009; Winocur, 
Moscovitch, & Bontempi, 2010).  

The process of integration across individual experiences is 
also thought to be supported by HC along with ventro-medial 
prefrontal cortex (vmPFC; Bunsey & Eichenbaum, 1996; 
Preston & Eichenbaum, 2013; Schlichting & Preston, 2015). 
In associative inference paradigms, often used to study 
integration, participants are taught two separately presented 
stimulus pairs that share a common item, e.g., A-B and B-C. 
The extent to which participants link A with C is reliant on 
an intact HC in rodents (Bunsey & Eichenbaum, 1996; Dusek 
& Eichenbaum, 1997) and is correlated with HC engagement 
during learning in humans (Barron et al., 2020; Kuhl, Shah, 
Dubrow, & Wagner, 2010; Schlichting & Preston, 2016; 
Shohamy & Wagner, 2008; Wimmer & Shohamy, 2012; 
Zeithamova, Dominick, & Preston, 2012; Zeithamova & 
Preston, 2010). Similar effects are reported in vmPFC, 
particularly at remote timepoints (Barron et al., 2020; Long, 
Lee, & Kuhl, 2016; van Kesteren et al., 2013; van Kesteren, 
Fernández, Norris, & Hermans, 2010; van Kesteren, 
Rijpkema, Ruiter, & Fernández, 2010).  

However, it is not clear if and how these integrated 
representations influence semantic memory areas, as studied 
with well-learned familiar concepts. Of particular relevance 
here, the middle temporal gyrus (MTG) and surrounding 
lateral temporal cortex are particularly involved in the 
relationally rich concepts of events, tools, and actions 
(Bedny, Caramazza, Grossman, Pascual-Leone, & Saxe, 
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2008; Bedny, Caramazza, Pascual-Leone, & Saxe, 2011; 
Bedny, Dravida, & Saxe, 2013; Bottini et al., 2020; Kable, 
Kan, Wilson, Thompson-Schill, & Chatterjee, 2005; Tarhan, 
Watson, & Buxbaum, 2016; Tranel, Kemmerer, Adolphs, 
Damasio, & Damasio, 2003) and encode temporal, thematic, 
causal, and syntactic relations (S. M. Frankland & Greene, 
2015, 2020; Hernandez, Fairhall, Lenci, Baroni, & 
Caramazza, 2014; Kalénine & Buxbaum, 2016; Kalénine et 
al., 2009; Leshinskaya, Bajaj, & Thompson-Schill, 2021; 
Leshinskaya, Wurm, & Caramazza, 2020; Wu, Waller, & 
Chatterjee, 2007; Wurm & Caramazza, 2019, 2021). Thus, 
relational aspects of conceptual knowledge are particularly 
reliant on MTG. However, how novel experience and 
memory integration processes might affect MTG is unclear.  

One possibility is that the encoding and integration of new 
experiences, as previously studied, are not a mechanism for 
updating semantic areas like MTG. Alternatively, these 
processes have been missed due to ROI pre-selection and 
methodological factors.  

For example, memory integration and learning studies 
often use stimuli that are difficult to interpret, such as abstract 
symbols or static images that are sequentially flashed on the 
screen, making it unclear if associations among them are 
meaningful or how they should be understood. Moreover, 
specializations among semantic areas likely mean that they 
are influenced by different aspects of learning. MTG is likely 
specialized for representing especially relationally complex 
information about events or actions. Indeed, our prior work 
has shown that novel, relational complex information 
designed to be semantically interpretable as about novel 
objects influenced memory representations in various parts of 
MTG (Leshinskaya & Thompson-Schill, 2019, 2020).  

Here, we used functional magnetic resonance imaging 
(fMRI) to understand how newly learned relations are 
encoded and integrated in HC, EC, and MTG across two 
timepoints a week apart. We used stimuli similar to our prior 
work: animations interpretable as being about temporal or 
causal relations among novel objects and events. Participants 
learned predictive relations among pairs of events (A&B) by 
watching longer sequences (Figure 1). We measured 
relational memory strength for each A-B pair by assessing the 
extent to which the multivoxel neural response during recall 
was more correlated between events A and B than unrelated 
pairs (Figure 2), a measure termed associative coding 
(Erickson & Desimone, 1999; Hindy, Ng, & Turk-Browne, 
2016; Leshinskaya & Thompson-Schill, 2020; Miyashita, 
1993; Sakai & Miyashita, 1991; Schapiro, Kustner, & Turk-
Browne, 2012).  There were six distinct sequences, each 
shown with a different participating object, creating distinct 
contexts. Across these sequence contexts, the events shown 
were partly overlapping, but the relations among them could 
vary (Inconsistent condition) or stay the same (Consistent 
condition). Areas that integrate across contexts should benefit 
in the Consistent condition, such that associative coding 
should be strengthened, relative to the Inconsistent condition. 
We measured these effects at two timepoints a week apart to 

understand how the roles of different areas change as a 
function of exposure and time. 

 

Methods 

Participants 
30 participants were recruited from the University of 
California, Davis community and provided written informed 
consent. Procedures were approved by the UC Davis 
Institutional Review Board. Twenty-four participants (18 
female, 6 male; mean age 24 years) were included in 
analyses: four were excluded for excessive head motion and 
two did not complete both sessions. All were neurologically 
healthy, right-handed, and eligible for fMRI.  

Stimuli & Procedure  
We taught participants pairs of predictive relations by 

presenting them within sequences of animated events that 
contained underlying regularities, which they were instructed 
to learn explicitly. In each sequence, an Event A strongly 
predicted an Event B, whereas Events C-F were 
unpredictable (Figure 1). During fMRI, a Learning phase 
presented this information by presenting the 150-event long 
sequences of the events A-F. The sequential appearance of 
events was governed by a transition matrix that specified the 
probability of any event appearing given the occurrence of 
any other (Figure 1A). Participants’ task was to identify the 
predictable event, called “the effect”, which they selected in 
a forced-choice question at the end of the run. The Learning 
phase was followed immediately by a Probe phase, used to 
measure memory representations (Figure 2A). Events no 
longer followed the predictive structure of the Learning 
phase; they instead appeared in counterbalanced order, such 
that each event followed every other an equal number of 
times (exactly 7), and also now appeared discontinuously: 
each event was replaced with a fixation cross for 1.7 s (Figure 
2A). This design allowed us to estimate the neural response 
to each event when shown outside its typical predictive 
context.  

Participants learned about six different sequences, with 
mostly overlapping events so that we could manipulate 
relational consistency among them (Figure 1B). The 
sequences were distinguished by a unique object present in 
all of that sequence’s events. The sequences differed in the 
ways the particular stimuli were assigned each Event A-F. 
Sequences 1-3 were Consistent in their relational structure, 
while Sequences 4-6 were Inconsistent (Figure 2B).  

In the Consistent sequences, each used a distinct object-
based event as Event A (e.g., tilting, color changing, and 
rippling). Event B was always the same event in each (e.g., 
bubbles), as were events C (e.g., leaves) and D; the other 
events varied. The relational structure among events was thus 
kept consistent in that events which served the predictable vs 
unpredictable role stayed the same.  

3281



In the Inconsistent sequences, Events A varied exactly as 
in the Consistent sequences (e.g., were again tilting, color 
changing, rippling). However, the stimuli serving the roles of  

 
Figure 1. A. Learning Phase, example of one sequence, with 
transition structure depicted below. Event A was followed by 
Event B 100% of the time while other transitions were less 
predictable. All events are animated; pink arrows indicate 
movement direction. B. Consistency Manipulation: 
Consistent sequences used similar events for Events B and C. 
Among Inconsistent sequences, Events B and C flipped. Each 
sequence was cued with a unique object.  

  
Events B were different in each, exchanging roles with 
Events C or D.  For example, in Sequence 4, Event B could 
be stars, while Events C and D were bubbles and leaves. In 
Sequence 5, Event B would be leaves while events C and D 
are stars and bubbles, etc. Each sequence was shown in a 
separate run with a Learning and Probe phase. Within 
conditions, sequences were shown consecutively in order but 
the order of the two conditions was counterbalanced across 
subjects. In either order, Sequence 1 was never ‘consistent’ 
with anything prior and was thus considered Inconsistent for 
most analyses.  

The entire procedure was repeated over two sessions, one 
week apart, to understand how associative coding changes 
across exposure and time in our regions of interest (HC, EC, 
and MTG). Thus, in Session 2, both learning and probe 

phases were repeated with identical materials, providing 
more exposure and a delay relative to Session 1. This means  

 

Figure 2. A. Probe phase example. Participants had to decide 
if they had seen each event in the prior sequence, but event 
order was randomized. B. Relational memory strength was 
measured as the difference between the correlation between 
Event A & B vs Event A & C (and A & D, not shown).  

 
all sequences had additional familiarity, but Inconsistent 
sequences continued to conflict with each other locally. 

Session 2 was also followed with additional forced-choice 
questions: participants selected between two snippets of 
event pairs drawn from one of the six sequences, comparing 
A-B vs A-C, A-B vs A-D. The correct choice depended on 
recalling which relations appeared with object. Here, 
Sequence 1 was grouped with the Consistent sequences since 
at this point, participants had been exposed to all of them.  

fMRI Acquisition  
MRI data were acquired using a Siemens Skyra 3T scanner 
at UC Davis using a 32-channel coil. Anatomical volumes 
were acquired with a T1- weighted MPRAGE sequence with 
1×1×1 mm voxel resolution, 256 mm field of view, time to 
repetition (TR) = 1.90 s, and time to echo (TE) = 3.06 ms. 
Functional data were acquired with a multiband echo-planar 
imaging (EPI) blood oxygen level-dependent (BOLD) 
sequence using 64 interleaved slices with a multiband 
acceleration factor of 2, 3×3×3mm in-plane voxel resolution, 
64×64 mm matrix size, TR  = 1250s, TE = 24 ms, and flip 
angle=76 ◦. Slices were aligned to -36 degrees from ACPC. 
Static fieldmap estimation were performed by collecting 4 
volumes in the reverse encoding direction as the main scans.  

Analyses 
Preprocessing was performed with the fMRIPrep package 

with standard defaults and freesurfer and AFNI packages. 
Functional data were registered to anatomical scans, slice-
time corrected and corrected for distortion using a field map. 
Functional data were smoothed with a 4 mm full-width half-
maximum gaussian kernel. Linear models were used to 
estimate coefficients on fMRI timeseries. Regressors of no-
interest included 6 motion and rotation realignment 

3282



parameters and their first order derivatives; voxels flagged as 
signal outliers during preprocessing were excluded. 
Regressors of interest were created for each type of event 
seen during the Learning phase and Probe phase separately. 
Learning phase data were binned by time in order to examine 
changes during this phase: trials of each event type were 
assigned to a bin based on their order of appearance, such that 
bin 1 for event C included the first three appearances of event 
C, bin 2 the next three, and so on, for a total of 5 bins per 
event. As events A and B were perfectly colinear during the 
Learning phase, they formed the same regressor.  

During learning, we computed a measure of ‘surprise’ as a 
contrast between the unpredictable events (C and D) minus 
the predictable pair AB, at each time bin. The slope of this 
measure across time bins were used as a measure of learning-
related changes in an areas.  

During the Probe phase, we measured relational memory 
strength using associative coding, a multivariate measure 
comparing voxelwise correlations among pairs of events. For 
each condition, the t-value of the coefficients from linear 
modeling was extracted in the voxels of a given ROI for each 
regressor. This vector of values was then correlated pairwise 
between specific pairs of conditions, here A & B, A & C, and 
A & D. The correlation between A & B minus the other two 
pairs indicated relational memory strength for A-B (stimuli 
used for events B, C and D were perfectly counterbalanced). 
Analyses were performed within each run, then averaged.  

ROI Definition 
HC was defined using automatic segmentations, then split 

using morphological criteria: the head was labeled as anterior 
(aHC) and the body and tail were labeled posterior (pHC). 
EC was hand-traced, with alEC and pmEC delineated using 
tracing criteria guided by previous validation studies (Maass, 
Berron, Libby, Ranganath, & Düzel, 2015). Our 
preregistration indicated that whole EC would also be 
considered but that the functional differences between these 
were important, with alEC more likely to be relevant here 
given past findings (Bellmund, Deuker, & Doeller, 2019); as 
this difference was very salient we continued with the split 
region. For MTG and other cortical areas, we used the 
Glasser atlas (Glasser et al., 2016) aligned to individual 
anatomical surfaces to create individual ROIs. Our pre-
registration indicated two anatomical areas for MTG, right 
TE1p and TE1m, but pilot data (not reported) indicated TE1p 
to be particularly important for the present analyses. We 
selected right-lateralized ROIs based on prior work 
(Leshinskaya & Thompson-Schill, 2020).  

Results 

Probe Phase Associative Coding 
During the Probe Phase, we measured the strength of 
associative coding in each ROI in each run by correlating the 
multivoxel response to Event A with that of Event B and 
testing whether it was stronger than the correlation between 
that of Event A and Event C or D (Figure 2B). We then tested 

whether associative coding varied between consistency 
conditions (Consistent vs Inconsistent) to understand the 
extent to which this area integrated relational information 

 
Figure 3. Associative coding (relational memory strength 
during the Probe phase) in alEC and MTG in Session 1 and 
Session 2 as a function of Consistency.  
 
across sequences and between sessions (1 vs 2) to understand 
how it varied as a function of exposure and time. We expect 
semantic memory areas to be more involved in Session 2.  

 
   Hippocampus    HC was split into anterior (aHC) and 
posterior (pHC) subregions. We saw no evidence of 
associative coding in either ROI in any condition, nor any 
effects of condition.  
   Anterior-Lateral Entorhinal Cortex   A Session by 
Consistency ANOVA in alEC showed a main effect of 
Consistency, F(23,1) = 8.999, MSE = 0.323, p = .006, with 
no effect of Session (Figure 3). Within Session 1, there was 
an effect of Consistency, M = 0.158, t(23) = 3.214, p = .004, 
such that Consistent sequences exhibited significant 
associative coding, M = 0.088, t(23) = 2.349,  p = .028, while 
Inconsistent sequences exhibited significant negative 
associative coding (i.e., differentiation), M = -0.071, t(23) = 
-3.306, p = .003. Within Session 2, there was no effect of 
Consistency. Consistent sequences did not show effects but 
there was significant differentiation in Inconsistent 
sequences, M = -0.059, t(23) = -2.463, p = .022. There were 
no interactions with Session, however.  

Middle Temporal Gyrus    In MTG, a Consistency by 
Session ANOVA showed a Consistency by Session 
interaction, F(23,1) = 6.589, MSE = 0.106, p = .017 (Figure 
3). In Session 1, there was no effect of Consistency and no 
evidence of associative coding in any condition. In Session 2, 
a Consistency effect emerged, t(23) = 2.99, p = .007. 
Associative coding was marginal in the Consistent 
sequences, M  = 0.055, t(23) = 1.970, p = 0.061, but not 
significant in the Inconsistent ones, M = -.044, p > . 13. 
Correspondingly, there was stronger associative coding in 
Session 2 than Session 1 within Consistent sequences, t(23) 
= -2.491, p = .020, but not within Inconsistent ones, p > .25.  

We tested whether MTG showed a reliably different 
pattern than alEC using an ROI by Session by Consistency 
ANOVA, which revealed a main effect of Consistency, 
F(23,1) = 7.388, MSE = .266, p = .012, an ROI by 
Consistency interaction, F(23,1) = 5.709, MSE = .083, p  = 
.026, and a 3-way interaction between ROI, Session, and 
Consistency F(23,1) = 6.59, MSE = .141, p = .017.  Within 
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Session 1, there was an ROI by Consistency interaction, 
F(23,1) = 14.39, MSE = .220, p < .001, while in Session 2 
there was a main effect of Consistency, F(23,1) = 7.439, MSE 
= 0.180, p = .012, and no interactions. This reveals that both 
ROIs were sensitive to Consistency in Session 2, but in 
Session 1, alEC was more sensitive than MTG. Follow-up t-
test showed that associative coding was stronger in alEC than 
MTG among Consistent objects in Session 1, t(23) = 2.488, 
p = .021, and that the Consistency effect in Session 1 was 
stronger in alEC than MTG,  t(23) = 3.794, p < 0.001. 
Overall, this indicates that MTG showed an effect of 
consistency primarily in Session 2, while alEC did so at both 
timepoints, and the 3-way interaction demonstrated that these 
patterns of effects were reliably different between the ROIs. 

A correlation analysis failed to find a relationship between 
MTG and alEC associative coding strength within or across 
sessions. 

Learning Phase 
Exploratory analyses investigated how these ROIs responded 
during the Learning phase, while participants were exposed 
to the predictive information, to understand how the regions’ 
responses during learning relates to their patterns of response 
during recall. We used “surprise” as an index of sensitivity to 
the predictive information, computed as the difference in 
response to unpredictable minus predictable events. We then 
measured how much the surprise index changed as a function 
of exposure, by computing the difference of surprise between 
first and last time point across the learning phase; this was 
used as proxy for learning rate. Change in surprise was then 
compared between Sessions and Consistency conditions. 

Hippocampus   In aHC, a Session by Consistency ANOVA 
over change in surprise showed no effects. However, within 
Session 1, there was significant change in surprise in 
Consistent sequences, M = -0.057, t(23) = -2.535, p = .019, 
and marginally in Inconsistent sequences, M = -0.040, t(23) 
= -2.01, p = .056, with no difference between them. Surprise 
was negative overall in aHC, meaning there was a stronger 
response to predictable than unpredictable events, and it 
became more negative during each learning phase. In Session 
2, there was no change in surprise or any differences, all p > 
.20. Thus, aHC showed reliable learning-related signatures in 
Session 1, but no effects of Session or Consistency. There 
were no effects in pHC.  
 

 
Figure 4. Effects during the Learning phase (change in 
surprise) in alEC and MTG as a function of Session and 
Consistency. 

 
Anterior-Lateral Entorhinal Cortex  A Session by 

Consistency ANOVA for change in surprise revealed a 
Consistency by Session interaction, F(23,1) = 12.100, MSE = 
0.154, p = .002 (Figure 4). In Session 1, Consistent sequences 
showed negative change in surprise, M =  -0.061, t(23) = -
3.01, p =.006, but Inconsistent sequences did not, M = 0.037, 
p > .10, leading to a significant difference, t(23) = -3.215, p 
= 0.004. In Session 2, there was no evidence of change in 
surprise in either condition, p > .10. Simple effects revealed 
that Consistent sequences showed more negative change in 
surprise in Session 1 than Session 2, t(23) = 2.256, p = .034, 
whereas Inconsistent sequences showed more change in 
surprise in Session 2 than in  Session 1, t(2 3) = 2.240, p = 
.035, explaining the interaction. Thus, change in surprise in 
alEC was sensitive to Consistency and Session, with stronger 
effects in Consistent sequences in Session 1 than in in Session 
2, but Inconsistent ones behaving in the opposite manner.  

We used a 3-way ROI by Session by Consistency ANOVA 
on change in surprise to determine if alEC was more sensitive 
to Consistency than aHC. This revealed a 3-way interaction,  
F(23,1) = 4.434, MSE = 0.049, p = .046 and a two-way 
interaction between Session and Consistency, F(23,1) = 
6.685, MSE = 0.112 p = .017. Simple effects revealed that 
across both ROIs, the effect of Consistency was overall larger 
(more negative) in Session 1 vs Session 2, t(23) = -2.586, p = 
.017. Moreover, the Consistency effect changed more 
between Session 1 and Session 2 in alEC than aHC, t(23) = -
2.106, p = .046. However, Consistency effects were not 
greater in alEC than aHC.  

Middle Temporal Gyrus  In MTG, a Session by 
Consistency ANOVA revealed a marginal main effect of 
Consistency, F(23,1) = 3.887, MSE = 0.197, p = .061 and no 
interactions (Figure 4). Within Session 1, Consistent 
sequences showed a marginal positive change in surprise, M 
= 0.112, t(23) = 1.945, p = .064, and a significant one in 
Inconsistent ones, M = 0.100, t(23) = 2.900, p = .008, but 
there was no difference between them, p > .70. Within 
Session 2, change in surprise was significantly positive 
within Consistent sequences, M = 0.174, t(23) = 3.847, p < 
.001, but not within Inconsistent ones, M = 0.013, p > .80, 
with a significant difference, t(23) = 2.511, p = .020.  

Comparing MTG and alEC with a 3-way ROI by Session 
by Consistency ANOVA showed a main effect of ROI, 
F(23,1) = 13.890, MSE = 0.559, p = .001, an interaction 
between ROI and Consistency, F(23,1) = 6.066, MSE = 
0.140, p = .022, and an interaction between Session and 
Consistency, F(23,1) = 8.642, MSE = 0.272, p = .007. Within 
Session 1, there was a main effect of ROI, F(23,1) = 7.82, 
MSE = .354, p = .01, reflecting that change in surprise was 
more positive in MTG than alEC, and a marginal ROI by 
Consistency interaction, F(23,1) = 3.73, MSE = 0.0829, p = 
.066, suggesting a stronger Consistency effect in alEC.  In 
Session 2, there was a main effect of ROI, F(23,1) = 10.08, 
MSE = 0.2138, p  = .004, and a main effect of Consistency, 
F(23, 1) = 6.00, MSE = 0.301, p = .022, indicating no 
difference between ROIs in the Consistency effect. Simple 

3284



effects indicated that Consistency had an overall stronger 
effect in Session 2 than Session 1, t(23) = -2.940, p = .007. In 
addition, Consistency effects were more positive in MTG 
than alEC overall, t(23) = -2.463, p = .022. Overall, this 
indicates that MTG showed positive change in surprise while 
alEC showed negative change, and that alEC may have had 
stronger Consistency effects than MTG in Session 1, but that 
the ROIs showed equal Consistency effects in Session 2. 

In summary, learning-related changes during sequence 
exposure revealed a role for aHC but not pHC during 
learning. alEC showed a dramatic effect of Consistency, 
particularly at Session 1, whereas MTG showed Consistency 
effects more reliably at Session 2. Thus, these latter findings 
largely mirrored the effects seen in the Probe phase.  

Correlations with Behavior 
Questions at the end of Session 2 asked participants to recall 
the predictive relations (A-B vs A-C) in each sequence. 
Because predictive relations were highly conflicting among 
the sequences, these questions were expected to be difficult. 
On Inconsistent sequences, participants were not above 
chance (50%), M = 46%, p > .35, but did weakly succeed on 
Consistent ones, M = 0.556, t(23) = 2.106, p = .046, with no 
significant difference between them. We capitalized on the 
variability in this behavior to look for correlations with neural 
signals. We found effects only in HC. Averaging across all 
sequences, accuracy correlated positively with associative 
coding in aHC Session 1, r = 0.467, t(22) = 2.476, p = .021 
and negatively with change in surprise (since this increased 
negatively during learning) in posterior HC in Session 2, r = 
-0.444, t(22) = -2.323, p = .029.  

Discussion 
Integration is an important step in building semantic memory 
from experience. We investigated the role of several neural 
areas previously implicated in episodic and semantic memory 
in the process of building new, integrated relational 
representations. We measured neural relational memory 
strength for predictively related event pairs as a function of 
session (time and exposure) and their consistency with pairs 
shown in other sequence contexts. Sensitivity to consistency 
indicated an influence of previously seen relations and thus 
integrative representations. 

In alEC, we saw positive relational memory signals of 
event pairs when they were consistent across contexts, but 
hampered (indeed, negative) ones when inconsistent. This 
effect was significant in Session 1, but not at Session 2, 
though it did not significantly decline. This suggests a role of 
alEC in rapidly integrating information across contexts and 
perhaps maintaining them, and positions alEC as a mediator 
between episodic and semantic memory.  

MTG performed a similar role as alEC but only in Session 
2, after a week delay and more exposure: here we saw strong 
effects of cross-sequence consistency and significant 
increases relative to Session 1. Thus, both alEC and MTG 
built integrative representations of experiences, but MTG did 
so subsequently to alEC. 

We conclude that alEC and MTG both serve to integrate 
experience. It is unclear whether representations in these 
areas emerge independently, or if MTG builds on the 
representations in alEC. Having failed to see correlations 
between effects these areas here, we await further research.  

HC did not show relational memory or integrated 
representations during recall, in contrast to some past work 
(Schapiro, Turk-Browne, Norman, & Botvinick, 2016; 
Tompary & Davachi, 2017). However, our paradigm created 
higher integration demand because individual event pairs 
were shown in separately presented contexts with 
distinguishing cues (the objects). If HC did not integrate 
across these contexts, it could not benefit from consistency, 
which could have led to weaker relational memory signals 
overall. A broader integrative role of alEC  (vs HC) is 
consistent with prior work suggesting that EC serves a 
particularly integrative function and that memory integration 
might arises from recurrence between EC and HC, which are 
bidirectionally connected (Koster et al., 2018; Kumaran & 
McClelland, 2012) 

However, in line with findings reviewed in the 
introduction, we did find learning-related changes in HC 
during exposure, and these learning signals (in pHC) and 
associative coding during recall (in aHC) predicted 
participants’ later ability to recall which predictive event 
pairs went with which context. Thus, HC plays a behaviorally 
relevant role, perhaps in binding relational information to its 
context. 

Overall, our work connects the literature on memory 
integration with that of semantic memory. While the former 
has highlighted the role of HC and vmPFC, it has been less 
clear how memory integration processes might serve to 
update representations in areas highlighted in semantic 
memory research, like MTG. We targeted MTG on the basis 
of its role in semantic memory of actions and events as well 
as our prior work showing novel predictive representations 
about a week after learning (Leshinskaya & Thompson-
Schill, 2020; Leshinskaya et al., 2020). If the integration of 
new experiences contributes to updating semantic 
representations, we predicted we should see such integrative 
signals here, at least after some delay. Our findings of 
integrated representations in MTG at Session 2 are consistent 
with this prediction. One caveat, however, is that while we 
have twice observed relational memory representations in 
right MTG, action and event concepts are often left-
lateralized, perhaps due to their links with linguistic labels. 
We hope to test in future studies how the nature of stimulus 
materials affects the sites of new memory about them. 

While we have begun to bridge learning and semantic 
memory, much more is required to empirically connect the 
outputs of new learning and sites for semantic memory. 
While we observed similar functional signatures in EC and 
MTG here, it remains unclear if these emerge independently 
or by an interactive process, a question we also hope to 
address in future work. 
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