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Abstract 

Coherence Techniques at Extreme Ultraviolet Wavelengths 

by 

Chang Chang 

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Professor David Attwood, Chair 

The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent 

. years is mainly driven by, the desire of printing and observing ever smaller features, 

as in lithography and microscopy. This attribute is complemented by the unique op­

portunity for element specific identification presented. by the large number of atomic 

resonances, essentially for all materials .in this range of photon energies. Together, 

these have driven the need for new short-wavelength radiation sources (e.g. third gen­

eration synchrotron radiation facilities), and novel optical components, that in turn 

permit new research in areas that have not yet been fully explored. This dissertation 

is directed towards advancing this new field by contributing to the characterization of 

spatial coherence properties of undulator radiation and, for the first time, introducing 

Fourier optical elements to this short-wavelength spectral region. 

The first experiment in this dissertation uses the Thompson-Wolf two-pinhole 

method to characterize the spatial coherence properties of the undulator radiation 

at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radia­

tion is demonstrated with appropriate spatial filtering. The effects of small vertical 

source size and beamline apertures are observed. The difference in the measured hor­

izontal and vertical coherence profile evokes further theoretical studies on coherence 

propagation of an EUV undulator beamline. A numerical simulation based on the 

Huygens-Fresnel principle is performed. 
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Accurate knowledge of the refractive index in this wavelength region is of fun­

damental importance for the design of optical systems. However, due to the high 

absorption, no previous direct measurement of the real part of the refractive index 

has been performed at EUV wavelengths. To overcome these limitations, a novel 

diffractive optical element based on Fourier optics techniques is invented, fabricated, 

and demonstrated for the first time. The improved efficiency of the interferometer 

employing this novel optical element enables the first direct measurement of the re­

fractive index at EUV wavelengths. Both the real and imaginary parts of the complex 

refractive indices are measured directly, without recourse to Kramers-Kronig trans­

formations. Data for Al and Ni, in the vicinity of their L and M-edges, respectively, 

are presented as first examples of this technique. 

The first novel Fourier optical element used in the above EUV interferometer is also 

discussed in detail. This diffractive optical element, when illuminated by a uniform 

plane wave, will produce two symmetric off-axis first order foci suitable for inter­

ferometric experiments. In addition to the symmetricalness, the flux throughput is 

improved by,....., 10 times as compared with separate elements providing the same func­

tionality. The efficiency of this optical element is measured. Future work on computer 

generated holograms is suggested and compared with the Fourier optical element. The 

invention of this Fourier optical element opens a new era in the use of sophisticated op­

tical techniques at short wavelengths. 
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Chapter 1 

Introduction 

1.1 · Motivation 

Coherent radiation offers important opportunities for both science and technol­

ogy. The well defined phase relationships characteristic of coherent radiation, allow 

for diffraction-limited focusing (as in scanning microscopy), set angular limits on 

diffraction (as in protein crystallography), and enable the convenient recording of 

interference patterns (as in interferometry and holography). While coherent radia" 

tion has been readily available and widely utilized at visible wavelengths for many' 

years [1-7), it is just becoming available for wide use at shorter wavelengths [8-11]. 

This is of great interest as the shorter wavelengths, from the extreme ultraviolet 

(EUV: 10-20 nm wavelength), soft x-ray (SXR: 1-10 mn), and x-ray ( <1 nm) regions 

of the spectrum, correspond to photon energies that are well matched to the primary 

electronic resonances (K-shell, L-shell, etc.) of essentially all elements, thus provid­

ing a powerful combination of techniques for the elemental and chemical analysis of 

physical and biological materials at very high spatial resolution. Thnable, coherent 

radiation in these spectral regions is available primarily due to the advent of undulator 

radiation at modern synchrotron facilities [12-18], where relativistic electron beams 

of small cross-section transverse periodic magnet structures, radiating very bright, 

powerful, and spatially coherent radiation at short wavelengths. The development 

of optical elements follow as short wavelength radiation sources are made available. 
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Due to the large absorption at these short wavelengths, devising optical elements that 

serve the specific needs of an application is of crucial importance. This dissertation is 

directed towards advancing this new field by contributing to the characterization of 

spatial coherence properties of undulator radiation and, for the first time, introducing 

Fourier optical elements to this short-wavelength spectral region. 

1.2 EUV wavelength: opportunities and challenges 

With proper optics, shorter wavelength results in better· spatial resolution for 

imaging systems. Lithographic tools (steppers) used by the semiconductor industry 

to print nanometer transistor patterns are constantly evolving toward shorter wave­

lengths in order to reduce the circuit dimension. High powerEUV ra?iatio_n produced 

by xenon laser plasma sources and multi-layer reflective mirrors working specifically 

at 92.5 eV (..\ = 13.4 nm) provide the cruGial optical flux throughput that makes EUV 

Lithography the leading next generation lithographic technology for feature sizes of 

45 nm and smaller. In seeing smaller features, soft x-ray microscopes have been an 

increasingly important tool in both biological [l9, 20) and ma,giletic material stud­

ies [21). High resolution (outermost zone-width l:!.r =25 nm,) zoneplates fabricated 

by electron-beam tools [22] deliver the required diffraction-limited wavefront for x-ray 

microscopic imaging. The water,window at 500eV (2.4 nm) makes x-ray microscopes 

especially attractive for biologist because of its capability to see samples in vivo at a 

higher spatial resolution as compared with visible-light microscopes. 

The various atomic resonances are th~ ~lement-specific signatures of the particu­

lar materials, and the capability of probing atomic resonances at,-wavelength allows 

accurate element-sensitive analysis that is essential in materi;;tl science [23], environ­

mental science [24], and surface science [25). Photoelectron spectroscopy and absorp­

tion spectroscopy are the two most commonly used experimental techniques in this 

respect [26). Astronomers also exploit this element-specific property by employing 

telescopes with narrow bandpass multilayer mirrors to detect specific emission lines 

of atoms/ions [27]. 

Concomitantly, the challenges in EUV /SXR research stem from exactly the same 
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properties that provide these enormous opportunities. The large amount of atomic 

resonances of essentially all materials at EUV /SXR speCtral region results in high 

absorption, thus limiting experimental techniques. For example, the use of traditional 

refractive lenses is prohibited due to the large absorption at these wavelengths. This 

obstacle of high absorption has been continuously attacked from both fronts: seeking 

EUV /SXR radiation sources of higher power, and creating optical elements that can 

more effectively harness the short wavelength radiation. 

The advent of high power, high brightness, short wavelength radiation provided 

by the third generation synchrotron radiation facilities, e.g. undulators and wigglers, 

essentially gave birth to this 'new field. Continuing efforts to develop a fourth gener­

ation synchrotron radiation source, perhaps a free electron laser [28], is expected to 

produce a higher power, higher brightness and highly coherent x-ray source. 

The development of optical elements comprises the other front of the exertion 

. )n short wavelength optics. As mentioned above, refractive lens are ineffective at 

EUV and x-ray wavelengths due to high absorption. A variety of optical elements, 

e.g. Fresnel zone-plates, multi-layer mirrors, glancing incidence mirrors, capillary 

optics [29], compound refractive lenses [30], photon sieves [31], and Fourier optical 

:elements [11], have been devised to satisfy the various wavefront shaping requirements 

of short wavelength experiments. In this dissertation, the first Fourier optical element, 

an XOR pattern which combines the functionalities of a grating and a zoneplate, is 

demonstrated with applications iil EUV interferometry. 

1.3 Coherence 

An optimal degree of coherence is needed for a given application. For example, in­

terference experiments such as interferometry and holography usually require a higher 

degree of coherence, while image formation experiments necessitate delicate control 

of partial coherence. Therefore, the ability to measure and control the coherence 

properties of an imaging system is of crucial importance for all optical experiments. 

At shorter wavelengths, the importance of coherence on an imaging system has 

long been ignored, mainly because of the lack of sophisticated optical systems at these 
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wavelengths. Advances in both source and optical technology now permit the emer­

gence of more sophisticated short wavelength optical systems, e.g. EUV lithography, 

x-ray microscopy, and EUV /SXR interferometry. Therefore, an increasing demand 

for a better understanding of coherence at short wavelengths arises. The experimen­

tal studies of the optical coherence properties of EUV /SXR optical systems are all 

fairly recent. Indeed, demonstrations of the ability to accurately measure (9, 32] and 

control (33, 34] the degree of coherence have only been published very recently. This 

dissertation describes the first short-wavelength Thompson-Wolf two., pinhole charac­

terization of the spatial coherence properties of undulator radiation. and confirms the 

anticipated coherence at these very short wavelengths. Applications that exploit this 

better understanding of short-wavelength coherence are described in the following 

chapters. 

1.4 Overview 

Chapter 2 starts with a spatial coherence characterization of the EUV undula.;. 

tor radiation at the Advanced Light Source (ALS) in Berkeley, a third generation 

synchrotron facility (35]. This first conditioning experiment uses the Thompson-Wolf 

two-pinhole method to characterize the spatial coherence properties of the undula­

tor radiation at Beamline 12 of the Advanced Light Source. The effects of elliptical 

source size and beamline apertures are observed. The result of this spatial cohere,nce 

characterization determines the optimal size of the spatial filter (i.e. pinhole) used 

for EUV interferometry described in Chapter 5. This optimized pinhole provides just 

enough spatial filtering without excessively sacrificing optical flux, so that it provides 

the required spatial coherence necessary for the interferometric experiment and at the 

same time allows an optimal amount of flux through it. 

Chapter 3 describes the effect of aberrations on the spatial coherence properties 

of an undulator beamline, which is recognized as a critically-illuminated system. The 

commonly used Zernike approximation (6], which states that aberrations have no 

effect on the spatial coherence distribution at the image-plane of the condenser, is no 

longer valid in the case of undulator radiation source due to the exceedingly small 



5 

vertical source size. Therefore, a numerical simulation based on the Huygens-Fresnel 
' prinCiple is required to describe the spatial coherence properties of this critically-

illuminated imaging system. The·simulated spatial coherence distribution is shown 

to be affected by the various aberrations, as observed in the experimental results 

presented in Chapter 2. 

Chapter 4 is devoted to the first novel Fourier optical element, the XOR pattern, 

that optimizes the EUV interferometer described in Chapter 5 by providing impor­

tant new advances in the properties of optical flux throughput and symmetricalness:· 

This diffractive element, based on Fourier optical techniques, for use in EUV /SXR 

experiments, has been fabricated and demonstrated. This diffractive optical element, 

when illuminated by a uniform plane wave, will produce two symmetric off-axis first 

order foci suitable for interferometric experiments. The efficiency of this optical ele­

ment and its use in direct interferometric determination of optical constants are also 

discussed. Its use opens a new era in the use of sophisticated optical techniques at 

··short wavelengths. 

Chapter 5 describes the first direct index of refractio~ measurement at EUV wave­

lengths with a novel interferometer. Accurate knowledge of the refractive index in 

this wavelength region is of fundamental importance for the design of optical systems. 

However, due to the high absorption, no previous direct measurement of the real part 

of the refractive index has been performed at EUV wavelengths. To overcome these 

limitations, a novel diffractive optical element, based on Fourier optics techniques, for 

use in EUV /soft x-ray interferometric experiments is invented, fabricated and demon­

strated for the first time. The efficiency of the interferometer employing this novel 

optical element improves by "'10 times, compared with a separate grating and zone­

plate setup, thus enabling the first direct measurement of the refractive index at EUV 

wavelengths. Both the real and imaginary parts of the complex refractive indices are 

measured directly by this technique without recourse to Kramers-Kronig transforma­

tions [36]. Data for Al and Ni, in the vicinity of their L and M-edges, respectively, 

are presented as first examples of this technique. Undulator radiation available at 

the third generation synchrotron facilities (in this cru:;e the Advanced Light Source) 

provides the high brightness, high coherence short wavelength radiation necessary for 
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this interferometric experiment .. 

The contribution of this dissertation· to the field of short wavelength optics is again 

two-fold: characterizing the spatial coherence properties of the new radiation source 

and, for the first time, introducing Fourier optical t:echniques t0 short wavelength 

optics. 
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Chapter 2 

Spatial coherence characterization -

of undulator radiation 

The coherence properties of undulator radiation at extreme ultravio­
let (EUV) wavelengths are measured using the Thompson-Wolf two­
pinhole method. The effects of elliptical source size and beamline aper­
tures are observed. High spatial coherence EUV radiation is demon­
strated. Projection of these same capabilities to the x.:.ray region is 
straightforward. 

2.1 Introduction 

Coherent radiation offers important opportunities for both 'science and technol­

ogy. The well defined phase relationships characteristic of coherent radiation, allow 

for diffraction-limited focusing (as in scanning microscopy), set angular limits on 

diffraction (as in protein crystallography), and enable the convenient recording of 

interference patterns (as in interferometry and holography). While coherent radia­

tion has been readily available and widely utilized at visible wavelengths for many 

years [1, 3-5, 7], it is just becoming available for wide use at shorter wavelengths [8, 9]. 

This is of great interest as the shorter wavelengths, from the EUV (10-20 nm wave­

length), soft x-ray (1-10 nm), and x-ray ( <1 nm) regions of the spectrum, correspond 

to photon energies that are well matched to the primary electronic resonances (K­

shell, L-shell, etc.) of essentially all elements, thus providing a powerful combination 
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of techniques for the elemental and chemical analysis of physical and-biological ma­

terials at very high spatial resolution. Tunable, coherent radiation in these spectral 

regions is available primarily due to the advent of undulator radiation at modern 

synchrotron facilities [12-18], where relativistic electron beams of small cross-section 

transverse periodic magnet structures, radiating very bright, powerful, and spatially 

coherent radiation at short wavelengths. Recent progress with EUV lasers [37, 38], 

high laser harmonics [39, 40], and free electron lasers [28] may soon add to these capa­

bilities. In this chapter, the classic two-pinhole diffraction technique [5], an extension 

of Young's two-slit interference experiment [7], is utilized to siinply and accurately 

characterize the degree of spatial coherence provided by undulator radiation. It is 

shown that, with the aid of modest pinhole spatial filtering, undulator radiation can 

provide tunable short wavelength radiation with a very high degree of spatial coher­

ence at presently available user facilities. Spatially coherent power of order 30 mW is 

available in the EUV [35], and is expected to scale with wavelength to about 0.3 mW 

in the hard x-ray region [8]. 

For radiation with a high degree of coherence and a well-defined propagation direc­

tion, it is convenient to describe coherence properties in longitudinal and transverse 

directions. For a source of diameter d, emission half-angle 0, and full spectral band­

width ~,\ at wavelength .\, relationships for full spatial coherence and longitudinal 

coherence length, leah, are given respectively by 

d. 0 = -X/27r (2.1) 

and 

(2.2) 

where d, 0, and~,\ are 1/Je measures of Gaussian distributions. Based on measures 

of the source size and theoretical predictions of the emission angle, it is estimated 

that undulator radiation, as discussed in this chapter, emanating from an electron 

beam of highly elliptical cross-section, will approach full spatial coherence Eq. (2.1) 

in the vertical plane, while being coherent over only a fraction of the radiated beam 
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in the hci'rizontal direction, Here a detailed characterization of an undulator bearnline 

optimized for operation in the EUV regime is presented. 

Undulator beamline 12.0 at Lawrence B~rkeley National Lapo:ra~ory's Advanced 

Light Source (ALS) was developed to support high-accuracy wave-front interferometry 

of EUV optical systems (41, 42]. With an electron beam of elliptical cross-section, 

having a vertical size dv = 2av = 32 J-tm, and an emission half-angle () = 80 J-trad 

(the central radiation cone containing a 1/N relative spectral banuwidth, where N 

is the number of magnet periods of the undulator), the product d : (} is just slightly 

larger (20%) than >./2n at the 13.4nm wavelength used in these e:X'per~_ments. Thus 

one expects to see strongly correlated fields, of high spatial coherense; ih tHe vertical -

plane. The horizontal beam size is considerably larger with dh = 2ah = 520 J-tm, so 

that with approximately the same emission half-angle it is expecte(i to be spatially 
_;· .-

coherent over only a fraction of the horizontal extent of the radiated beam. 

The coherence characterization presented here is performed at .•the focus of the 

condenser system used to re-image the undulator source to the €mtrahce of our ex­

perimental chamber. _In the case of beamline 12, this condenser is a Kirkpatrick-Baez 

(KB) system (8]. Its focal plane serves as the entrance plane for vari'~bus experiments, 

including EUV phase-shifting point diffraction interferometry [ 41 -S43]. The coher­

ence measurement is based on an implementation, at a shorter wavelength, of the 

well known Thompson and Wolf two-pinhole experiment (5]. The Th01rtpson and 

Wolf experiment is essentially an extension of Young's classic two-slit interference 

experiment (7], where in this case fringe visibility is recorded as·~ functi-on of pinhole 

separation in order to determine the spatial coherence properties 6f the illuminat­

ing beam. Under the conditions that: (1) the pinholes are small enough such that 

the field within each pinhole can be regarded as constant, (2) the bandwidth of the 

illuminating beam is narrow enough that temporal coherence does not significantly 

affect fringe visibility, and (3) the intensity at the two sampled points are equal, the 

fringe visibility can be shown to be proportional to the magnitude of the complex 

coherence factor, IJ-td, (1, 3]. Typical measured interference patterns are presented in 

Fig. 2.3, which shows interference modulation of the Airy envelope as a function of 

pinhole separation distance. These patterns provide a direct- measure of the spatial 



10 

coherence of undulator radiation as transported by the beamline opticalsystem. 

2.2 Mathematical description 

s 

Figure}.1: Young's two-pinhole interferometer for spatial coherence measurement. 

A schematic plot of Young's experiment is shown in Fig. 2.1 where Pi, ri, i = 1, 2 
. . 

are the pinhole positions and their distance to the mixing plane, respectively. The 
., 

mutual coherence function r 12 ( T) which· represents the cross-correlation of the light 

incident on pinholes P1 and P2 is defined by 

(2.3) 

Theintensity I(Q) at any point Q on the mixing plane is given by I(Q) = (iu{Q, t)i 2
). 

Assuming that the light is narrowband and the pinholes are small enough such that 

the .analytic signal within each pinhole can be regarded as uniform, u(Q, t) can be 

represented by the weighted sum of the properly delayed analytic signals at the pin-
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holes, 

(2.4) 

where K 1 , K 2 are purely imaginary numbers. The intensity ()f light at the mixing 

plane can therefore be represented by 

I(Q) = J(1)(Q) + J(2)(Q) + 2K1K2 ~e { r 12 ( r 2 
:, r 1)}, (2.5) 

where J(i)(Q) ,; 1Kil2
( lu(Pi, t) 12 

), i = 1, 2 is the contribution on Q from the itli 

pinhole alon~ and Ki = IKil· To further demonstrate the rising of the fringe pattern, 

a normalized version of r 12 ( i) is defined to be . 

(2.6) 

Equation (2.5) can then written as 

The last step in visualizing the fringe pattern is the following: since the light is 

assumed to be narrowband with center frequency v ("X= cjv), the complex degree of 

coherence may be re-written in .the following form 

(2.8) 

and Eq. (2.7) would become 

I(Q) = J(l)(Q) + J(2)(Q) + 

2J J(l) ( Q)JC2) ( Q) 11'12 ( r, : rl) I c+"JJ r, : rl - "I/' : rl) l (2.9) 

As can be seen from the above Eq. (2.9), in the vicinity of zero path length difference 

(r2 - ti) ~ 0, the macroscopic fringe visibility Vis related to the microscopic complex 

degree of coherence ')'12 (0) by 

2y'J(1) ( Q)J(2)( Q) 
v = J(1)(Q) + J(2)(Q) 1112(0)1. (2.10) 
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Quasi-monochromatic conditions In some circumstances the bandwidth of tpe 

light is so narrow that, the effect of temporal coherence on the fringe visibility is neg­

ligible over the observable region. I(this quasi-monochromatic condition is satisfied, 

1 12 ( r) can be ,approximated by 

f12(r) rv T12(0) e-j21rVT~ ' 

~ 
l-h2 

where J..L12 - r 12 (0) = lr12 (0) I eia12 (o) is the complex coherence factor. 

' (2.11) 

Together with the paraxial approximation, Eq. (2.9) can be further simplified to 

(2.12) 

w:here xis the axis on Q that is parallel to the pinholes, ¢12. = a 12 (0) had we chosen 

the optical axis to pass through the center of the pinhole pairs, s is the pinhole 

separation and z is the distance from the pinhole plane to the mixing plane. Note 
. . 

that for this quasi-monochromatic case, A is used instead of "X. 
In this experiment, the largest pinhole separation is s = 9ttm, which is smaller 

than the pixel size (25 ttm) of the CCD. The two Airy patterns, J(l)(Q) and J(2)(Q), 

are then basically overlapped, i.e. J(i) ( Q) = J(2) ( Q) for. all points Q on the mixing 

plane. The i~te~sity pattern on the mixing plane (CCD) is therefore 

I(Q) ~ 2J(')(Q) [1+ IPdcosG:Sx+<t>,,)] (2.13) 

and the fringe visibility is V = IJ..Ld over the entire observable mixing plane. 

2.3 Experiment 

The experimental system is depicted m Fig. 2.2. The beamline [35] provides 

an overall 60:1 demagnified image of the source in the focal plane· of the KB sys­

tem. The undulator employed at this beamline has a magnet period (Au) of 8 em, 

55 magnet periods (N), and a non-dimensional magnetic field parameter ·K = 2.7.· 

The electron beam energy is 1.9 GeV, with a corresponding relativistic Lorentz fac­

tor "Y = 3720. The acceptance half-angle (NA) of undulator radiation for these 
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Figure 2.2: The experiment setup shows the undulator, beamline optics, monochro­
mator grating and exit-slit, Kirkpatrick-Baez (KB) re-focusing optics (M4 and M6), 
and the spatial coherence measuring end-station consisting of a two-pinhole niask and­
art CCD electronic array detector. The two pinholes are shown here with a horizontal 
separation; vertical separation tests are also employed. 

experiments is set by the acceptance aperture of the beamline, which is a 1.6-mm 

diameter circle placed 16.7 meters downstream of the undulator exit. This accep­

tance N A of 48 J.Lrad is somewhat smaller than the central radiation cone half-angle, 

Been = J1 + K 2 /2/"(VN = 80 J.Lrad [8, 35]. The radiation within Been has a natural 

bandwidth of )..j 1:1).. = N, corresponding to a longitudinal coherence length, lcoh' of 

0.37 J.Lm. The monochro·mator bandpass of this beamline can be narrowed to values 

as large as )../ /:1).. = 1100, by adjusting the size of its horizontal exit-.slit. Except 

where stated otherwise, all experiments reported in this chapter were performedwith 

the monochromator exit-slit set such as to pass the entire )..j /:1).. = 55 natural undu­

lator bandwidth. Accounting for the 48-J.Lrad acceptance NA, the spatially coherent 

power .is expected to be about 12 m W, within a relative bandwidth of ;>.. = 55 at 

>..-13.4 nm [35]. Using the full 80-J.Lrad acceptance NA defined by Been would yield 

expected coherent power of 30 mW. This bandwidth is sufficient to assure that the 

quasi-monochromatic condition- required for this experiment is satisfied, i.e.· that the 

temporal coherence does not significantly affect fringe visibility. 

As shown ih Fig. 2.2, the M2 spherical mirror images the undulator output verti­

cally to the monochromator exit-slit~ The calculated FWHM of the vertical intensity 

profile on the exit-slit is 17 J.Lm, neglecting aberrations on M2 mirror. The KB system 

is composed of two asymmetric, bendable reflective mirrors (M4 and M6). Mirror M6 

directly demagnifies the undulator source in the horizontal direction by a factor of 
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60, whereas M4 demagnifies the monochromator exit-slit in the vertical direction by 

a factor of 7.2. M2 and M4 together provide a total vertical demagnification of 60 in 

the plane of the two-pinhole mask. 

To implement these coherence tests, a patterned mask containing multiple 450-

nm-diameter-pinhole pairs, with separations ranging from 1 to 9-J.Lm, was placed in 

the vicinity of the KB system focus, i.e. at the demagnified image of the undulator 

source. The 450-nm pinhole diameter is chosen to be significantly smaller than the 

expected coherence width, while providing reasonable throughput and appropriate 

working distance for full Airy pattern recording at the charge-coupled-device (CCD) 

electronic array detector. The mask, fabricated using electron-beam lithography and 

reactive-ion etching, consists of a 360-nm-thick Ni absorbing layer evaporated on a 

100-nm-thick Si3N4 membrane. The mask features are etched completely through the 

membrane prior to the Ni evaporation, leaving the pinholes completely open in the 

finished mask. Pinhole circularity and size are confirmed by observing the resultant 

far field Airy patterns, as recorded on the CCD~ 

The pinhole array mask is mounted on an x-y-z stage,· allowing desired pinhole 

separations to be selected sequentially, and the coherence to be studied as a function 

of focal position. A back-thinned, back-illuminated, EUV sensitive CCD camera is 

placed 26 em downstream of the mask to record the resulting interference pattern. 

The active area of the CCD is 25.4 mm x 25.4 mm, in a 1024 by 1024 pixel ar­

ray: TypicaV·exposure times for a recorded pattern vary between 50 msec and 5 sec 

depending on pinhole separation, storage ring current, and beamline apertures. 

Because the divergence created by the pinhole diffraction is large relative to the 

pinhole separation, the two diffraction patterns overlap to a high degree on the CCD. 

In order to determine the magnitude of the complex coherence factor, I1L12 I, from the 

fringe visibility, one must know the relative intensities of the illuminating beam at the 

two pinholes or, alternatively, guarantee them to be equal. This can be challenging 

as the pinholes are near the KB focal plane, where the beam is small and may display 

structure due to aberrations in the optics. Because it is impractical to independently 

measure the intensity at each pinhole, we attempt to guarantee the equal intensity 

condition by performing a large ensemble (greater than 50) of measurements for each 
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pinhole separation, intentionally displacing the pinhole_pair relative to the incident 
. . . 

beam. Because beahl~intensity no"n-uniformity can only degrade fringe visibility; We 

take the highest fringe vl.sibility from the ense~15le. of -m~asur~tnents as :fept~senting 
the coherence-limited fringe visibility. 

Figure 2.3shows the recorded interference patterns fo~ horizontal pinho,!e separa­

tions of 3, 4, 6 and 9 J.Lm. The measured magnitude of the. fringe visibility decreases 

with larger pinhole separation as expected. Figure 2.4 sh9ws.several interfer~nce pat­

te;ns obtained with vertically displaced pinhole,pairs. Ftin'ge modulation is gener~lly 
better than that of horizontally displaced pinholes. In . order to. verify .our ability 

. . 

to control and measure the beamline coherence properties; the measurement-was re-

peated at a larger beamline acceptance NA. This NA can be controlled by way of the 

acceptance aperture described above. The measured spatial coherence decreases in 

both directions as expected when the 48 J.Lrad acceptance aperture is replaced by a 

larger aperture allowing the entire 80 J.Lrad central radiation cone to pass. 

The interference pattern at the CCD is written here agai11 from Eq. (2.13) 

J(x, y) = 2J(1)(x, y) [1 + IJLdeos(~: sx +if>12)], ·. (2-.14) 

whereJ(1)(x,y) is the Airy intensity envelope''in theTecording plane dueto.pinhole 

diffraction, x is the axis on the recording plane that is parallel to th¢ pin4ole separa-
. . 

tion, sis th~pinhole separation, .A is the wavelength, and z is the distan~e-from the 

pinholes to the recording plane. Not~ that the phase ¢h2 describes the fridge shift .. . . . ~ .. 

relative to the geometric center of the interference pattern. With equi-phase illumi-

nation of the two pinholes and proper pinhole alignment, ¢>12 = 0 .. B~cause fringe 

visibility is defined as 

V 
= Imax - lmin 
- ' 

Imax + Imin 
(2.15) 

one finds that V = IJL12 I as a constant over the entire interferogram for the cases 

considered here. 

To obtain the fringe visibility from the interference pattern, we perform a two­

dimensional Fourier transform of the interferogram and separate the zeroth order 

and the two first-order peaks. As seen in Eq.(2.14), the Fourier transform of the 



16 

Figure 2.3: Measured two:-pinhole interference patterns for horizontal pinhole separations of 3, 
4, 6 and 9-J-Lm, for a wavelength of 13.4 nm and a beamline acceptance half-angle of 48J-Lrad. The 
pinhole diffraction patterns overlap and produce an interference pattern within the Airy envelope. 
The interference patterns are recorded on an EUV sensitive CCD camera, located 26 em downstream 
of the pinhole mask. Pinhole diameter range from 400 to 500 nm, but are equal in their respective 
pairs. As shown in the lineouts, fringe visibility of the modulation decreases for larger separations. 
Spectral resolution for these measurements is 55. 

I -
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Figure 2.4: Measured two-pinhole interference patterns for vertical pinhole separa­
tions of 1 and 6-p,m, at a wavelength of 13.4 nm, and an acceptance half-angle of 
48p,rad. 
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interferogram I ( x, y) can be~,repr~$ented as the, g~:mv9lut_~P!l· of t,he -fq:q;rier -tran~form 

of the Airy envelope with tl1i.¢ft d~ita f~hcti~hs:_ -T~e <leit~:f.1in2tiqH~-~,h~;is~n~_fro~ the 
1 +cos(·) term can be writteli. ~ - --.. , ,· . :_ - - . ___ , - - ·:~~--~;~-- -. 

ou., f.)+ 1t1l~<}. t:z' J.) +ou. -,:;.);>],: t. ··· ·· (2.16) 

Furthermore, the Fourier tra~~fw:rri of th~ Airy env~lope bec~inef? the_ ~utoco~relation 
of the pinhole. The resultant'I)att~rn i~, the fre~uen~y-dom~in i~th~tefar~ode zeroth 

- . - ..... : •• ·: ·;;~-" .:_:~. •• .• . • • • . ' • ~ • . "~:: ,;' • _. • ...__ l 

-order peak and two symmetric_first..:order .. peaks, eac;h.propedy._scM~d . .'Jdeally, the 

fringe visibility is two times _the~elative str~ngth of ~-he·-:fltsti6riler.~eak::t6.the zeroth-
• • ; • ' . -~ :. ·.' J • • 

order peak. In practice, we f1pply properly_ qispl~ce4:top-:-h~t filters te#.~ered at each 
· ··-Hr· ·· .. · . .'· ;- :.·-~ .,_ r •• • .... , 1 .. :,.-- •• _· • •• •• •• : ~;-::~-: ~ -~~-:."' • _,: •• •. • •• 

peak and integrate within the- filters; _ Th:e _fri_9-ge- visib~lity?:~is; then detennined by 

two times the ratio of the i~tegratio·n_,.un~e-~ 't~e: first-orq~r · p~~k to _th~t;:'under the 
• '• . .'-' • ' • ._.J, . • • • ··~ ··: ... :_, . • . • 

zeroth-order peak. 

In Fig. 2.5 we show IJ.t12 l as a function of pinhole separation for both horizontally 

and vertically separated pinholes. One observes that the transverse coherence distance 

in the vertical plane is _greater_-than that· in the horizont~L-plane! foi.-:tl;tis 48 :- jJ,rad 

acceptance NA. Following the c~nventfon iii: [3L ·:a transverse coherence distance Lc 

for the measured coherence, prpfiles (Fig. 2.5) is' 6bta1ned··~b~-.d.et~rm1-ning:-the width 
. . . . ....... 

of an equivalent top-hat function, Le., 
-~ .. : . 

, . .·oo. · . ,· .... ~ 

,- Lc,, __ J IM~~-;(4\x)l}-£~ .. _, (2.17) 
. :-00 

; ·":~ . 

· The measured transverse coherence di!)tan~e -in the hor~zo11tal direction; Lc1n, is found 

to be approximately 6.3 J-Lffi and the mea.:;ured.\iansverse ~oh~r(mce distance in the 
•r' ', o :' • ' I ' 

vertical direction, Lc,v, is found to be appro:rimately ?A J-Lm. This is dj}e to the fact 

that the vertical source dime~sion ts sub-resolution -i~_ size at this aGcepta~ce angle, 

while the horizontal size is not. After propagating fro~ the undulat~r exit (source), 

the FWHM of the spatial coherence pr~file, as calculated by the Van Cittert-Zernike 

theorem, is 0.3 mm(H) x 5.2 mm(V) at the beamline acceptance aperture. Therefore, 

the spatial coherence profile at the KB focal plane (image plane) is expected to 

be asymmetric with vertical coherence better than horizontal coherence. As wjll 
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Figure 2.5: The measured coherence factor IJ.£12 1 as function of pinhole separation 
distance for {a); horizontally and {b), vertically separated pinholes. For these mea­
surements, a 48~-trad half-angle acceptance aperture is used. The measured spatial 
coherence distance decreases with larger pinhole separations as expected. Larger 
uhcertainty in the vertical 3~-tm separation may be due to a smaller number of inter­
ferograms collected in this case. The data points are fitted to a Gaussian curve in 
each case. 

be shown in Chapter 3, simple analysis of a critical illumination system like the 

one considered here would suggest the coherence to be symmetric when the NA is 

symmetric. More detailed analysis reveals, however, that the small vertical source 

size causes the vertical coherence width at the entrance pupil to be large relative to 

the pupil size. In this .case· we violate the assumptions typically used for predicting 

coherence in a critical illumination. This causes a preferential increase of coherence 

in the vertical direction. 

The effect of radiation directly transmitted through the mask membrane, a source 

of noise in these measurements, can be seen in Fig. 2.3{d). This effect becomes 

more significant as the pinhole separation increases because the limited beam size 

{see Fig. 2.6) results in a reduced illumination intensity at each pinhole, whereas the 

directly transmitted radiation remains fixed. This directly transmitted light adds a 

background noise to the interference pattern, thus reducing fringe visibility locally in 

the affected region. Therefore, when applying the Fourier transform method to the 

cases of large pinhole separations, we avoid the region containing directly transmitted 
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light. This Fourier transform method has the advantage of evaluating the fringe 

visibility as an integrated, rather than localized, property of the full interferograin. 

The intensity and coherence dist:ribution in the KB focal plane is calculated by way 

of computer simulation for p,n aberration-free beamline. The simulation shows that 

the coherence profile is wider than the calculated intensity profile for the :aberration­

free beam in the vertical direction, which means that without aberrations the beam 

would be essentially fully coherent in the vertical direction. Horizontally, the coher­

ence profile is dominated by the acceptance NA. As described above, this asymmetry 

is expected based on the geometry of the system. 

Figure 2.6 displays both FWHM intensity contours and JJ.t12 J = 0.5 isometrics for 

both the aberrationAree simulation case, and the actual measured, results~ In both 

cases the vertical coherence is seen to be larger than the beam vertical FWHM, indi­

cating nearly ~omplete ,coherence in the vertical direction. Also both simulation and 

experiment show the horizontal coherence to be smaller than the vertical coherence 

and significantly smaller than the beam. This is a result of the extended source in 

the horizontal direction and the beamline geometry. The results differ, however, in 

that the measured coherence and beam-size are larger than those predicted for the 

aberration-free simulation. The beam-size increase is attributed to aberrations in 

the KB. By comparing the two intensity profiles we surmise the aberration limited 

point-spread function of the KB to be about 4 p,m in diameter. We assume these 

aberrations to also play a role in the increased coherence observed experimentally. 
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Figure 2.6: The beamline is designed to image the undulator output to the KB focus 
with a demagnification of60 and an acceptance half-angle of 48 J.trad. The undulator 
output in this calculation is assumed to be a monochromatic (X= 13.4nm), spatially 
incoherent Gaussian-shaped source with (O"x, O"y) = (260j.tm, 16J.tm) [8], corresponding 
to source plane values of 612J.tm x 38J.tm FWHM. The solid line shows the FWHM of 
the measured KB focal intensity distribution. The dash-dot line is the FWHM of this 
calculated KB focal intensity distribution assuming an aberration"free beamline. The 
intensity distribution FWHM values are increased by aberrations from ideal values of 
10.5J.tm(H) x 2.4J.tm(V), to experimental values of llJ.tm(H) x 5J.tm(V). The dashed 
line represents the calculated focal plane spatial coherence isometric (IJLd = 0.5) for 
experimental values of wavelength, acceptance NA, and demagnification, as calculated 
using the van Cittert-Zernike theorem [1, 3]. The asymmetric coherence isometric is 
due to the asymmetry of the source intensity distribution. 
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2.3.1 Effect of monochromator exit-slit 
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exit-slit narrows the transmitted spectrum, but also has the effect of decreasing the 

transmitted beai:ri'strimsverse phase-Space, and thuS increasing the spatiarcoherence 

length in' the vertical plane. To study the effect of the inohochromator exit-slit size, 

we have repeated the experiment with exit-slit size as a'parameter. Figure 2.7 shows 

the measured horizontal and vertical coherence as a function of monochromator exit­

slit size. For a vertical pinhole separation of 6 JJm, the fringe visibility varies from 

0.38 to o:94 as the exit-slit size changes from 400 JJm to 50 Jl/ni. For the horizontally 

oriented 4-JJm separation pinholes, thefririge v!sibility varies from 0.47to 0.:60 as the 

exit-slit size changes from 4oo 11m to 20 pm. As one expects, the exit-slit also act~ as 

a spatial· filter, having. a- significant effect on spatial cohei~nce in the· vertical phme, 

· and minimal effect in the horizontal plane. 

2.3.2 Wave-front null test 

The two-pinhole experiment presented here can also be used to measure the de­

. parture from sphericity of the pinhole-diffracted wave. Figure 2.8 is derived from the 

measured interference pattern obtained with 450 - JJm diameter pinholes horizon-. 
tally placed 9 JJm apart. To determine the underlying wave-::front quality of the two 

nearly spherical waves used to produce the interference pattern, the intetferogram is 

analyzed using conventional Fourier-transform wave~front ~reconstruCtion techniques 

routinely applied to carrier-frequency interferograms [44]. The resulting wave-front is 

then compared to what one would expect from two perfectly spherical waves in our 

recording geometry. The rms departure from a sphere is taken to represent the un­

derlying pinhole-diffracted wave-front quality. For example, at a numerical aperture 

of 0.025 (a typical input numerical aperture for testing EUV optics), the W<).Ve-front 

quality from these 450 - JJm pinholes is seen to be .A/330, exceeding current require­

ments for such tests [41,45, 46]. 
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Figure 2.8: Departure of pinhole generated wave-front from sphericity, expressed as 
an rms number of waves at .A = 13.4nm. For example, the data indicates that with 
450-nm-pinhole filtered radiation a wave-front departure from a sphericity of .A/1000 
is obtained across a wave-front of about 0.016 NA (equal to 13 picometer rms at this 
wavelength and NA). 

2.4 Conclusion 

The coherence properties of spatially filtered undulator radiation have been mea­

sured. A very high degree of spatial coherence is demonstrated, as expected on the 

basis of a simple model. The effect of an asymmetric source size on the resultant co­

herence properties is observed, and is consistent with aperturing within the beamline 

optical system used to transport radiation to the experimental chamber. Based on 

these observations and well understood scaling of undulator radiation, it is evident 

that high average power, spatially coherent radiation is available at modern storage 

rings with the use of appropriate pinhole spatial filtering techniques. The ability 

.. 
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of synchrotron facilities to provide high spatial coherence at hard x-ray region has 

recently been confirmed as expected [ 32, 4 7]. 
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Chapter 3 

Analysis of the illumination 

coherence properties of systems 

where the Van Cittert-Zernike 

theorem does not apply 

Modern synchrotron beamlines often take the form. of critical illumi­
nation systems, where an incoherent source of limited spatial extent is 
re-imaged to some experimental plane of interest. Unique constraints 
of these sources and beamlines, however, may preclude the use of the 
simple Van Cittert-Zernike theorem for calculating the object-image co­
herence relationship. Here, a rigorous analysis of the object-image co­
herence relationship valid for synchrotron beamlines is performed. The 
·analysis shows beamline aberrations to have an effect on the coherence 
properties. Effects of various low-order aberrations on the coherence 
are explicitly studied. 

3.1 Introduction 

High brightness and high coherent power undulators available at third generation 

synchrotron radiation facilities, through spatial and spectral filtering, enable a va­

riety of experiments that require a high degree of coherence at short wavelengths. 
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Undulator radiation,·· it its exit-plane, is regarded as an incoherent source because 

the electrons in the storage ring have uncorrelated motion and thus are essentially 

independent radiators. Beamline optics are routinely used to re-image this spatially 

confined incoherent source to an experimental plane of interest. Such a configuration 

is readily recognized as a critical illumination system [1], where the beamline acts as 

the condenser. 

Undulator radiation has an intrinsic divergence angle, known as the central ra­

diation cone angle ()cen, characterized by the electron's forward-emitting radiation: 

The beamline acceptance angle, i.e. object-side NA of the condenser, is usually set 

comparable but slightly smaller than ()cen· This acceptance angle sets the effective 

coherence patch size on the source as seen by the condenser system. For the Van 

Cittett-Zernike theorem to correctly predict the spatial coherence distribution at the 

image plane ofthe condenser, the dimension of ·the source needs to be much greater 

thari this effective coherence patch size, i.e. 

eff 1 A 
dsource >> dcoh ~ -

2 
-
8
--

7[ accept 
(3.1) 

.·· where dsource is the source dimension, d:t~ is the effective coherence patch size at the 

source, Xis the wavelength, and8accept isthe beamline acceptance angle. However, the 

distinct characteristics of third generation undulator radiation, i.e. the small vertical 

source dimension and the constraint on the size of beamline acceptance angle, give 

rise to a condenser system whose spatial coherence properties cannot be simplified 

by the commonly used Zernike approximation [1, 3, 6]. For the A = 13.4 nm exper­

iments described here, the Gaussian undulator source has a vertical dimension (2o} 

of dsource = 32 J.Lm, and the beamline acceptance angle is ()accept = 48 J.Lrad, slightly 

smaller than the central radiation cone angle of 80 J.Lrad. The d:t~ thus equals to 

45pm, for which Eq.(3.1) is clearly not satisfied and the Zernike approximation is 

not applicable. 

Here, based on the Huygens-Fresnel principle, the analysis and numerical evalu­

ation of the spatial coherence properties of a representative undulator beamline are 

presented and the results are compared with actual measurements conducted at the 

ALS undulator beamline 12. 
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3.2 Rigorous mutual coherence propagation forun­

dulator bearnlines 

3.2~1 Undulator radiation as an incoherent source· · 

The undulator radiation at its exit-plane is assumed to be an incoherent source 

here. In practice, this assumption is valid as long as the coherence width at the source 

is smaller than the diffraction-limited resolution of the condenser. Alternatively, this 

could be stated as requiring the intrinsic,divergence of the.source to be larger than the 

acceptance angle of the condenser. For the undulator source, the positions and motion 

of the electrons in the undulator are uncorrelated. All point radiators originating from· 

uncorrelated electrons can be treated as independent, and the size of an elemental 

point radiator can be determined from the central radiation cone divergence [8]. The 

intrinsic divergence of the EUV undulator discussed here is Been = 80 J-trad, w;hich is 

larger than the beamline acceptance angle Baccept of 48 J-trad. Therefore, it is evident 

that the incoherent source approximation holds here. 

3.2.2 Zernike approximation for a condenser system 

The Zernike approximation, first described by F. Zernike in 1938 [6), states that 

the condenser lens pupil, when illuminated by a large incoherent source, can be re­

garded as a secondary incoherent source whose intensitydistrib4tion is given by the 

modulus square of the pupil function. T~is approximation, discussed again by Born 

& Wolf [1] (sec.10.5.2) and Goodman [3) (sec.7.2.2), is commonly used for condensers 

operating at visible wavelengths. 

Starting with an incoherent source placed at the object plane of the condenser, the 

Van Cittert-Zernike theorem [1, 3, 6) can be used to propagate this incoherent source 

to the condenser lens pupil and the resultant mutual intensity at the condenser lens 

is given by a Fourier transform of the source intensity distribution. The condition 

under which the Zernike approximation is valid requires that the incoherent source 

subtends a sufficiently large angle at the condenser lens, such that the coherence 
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width at the condenser lens is small relative to the pupil diameter. Satisfying this 

condition, the condenser lens pupil can be regarded as a secondary source with a very 

small coherence area and the generalized Van Cittert-Zernike theorem [3] can then 

be used to propagate the mutual intensity from the condenser lens pupil to the image 

plane of the condenser. The resultant. coherence distribution at the image plane of 

the condenser is thus determined solely by the modulus square of the pupil function 

and aberrations in the condenser lens do not affect the coherence distribution at the 

image plane [3]. Note that in this case, the resultant intensity distribution at the 

image plane of the condenser is determin~d by the coherence function at the lens 

pupil. 

However, when· the dimension of the incoherent source shrinks to the point where 

the coherence width at the condenser lens is comparable to the pupil diameter, the 

Zernike approximation fails and the generalized Van Cittert-Zernike theorem can 

no longer be used to propagate the mutual intensity function from the exit of the 

condenser lens to the image-plane. Under this small-source condition, a rigorous 

mutual coherence propagation based on the Huygens-Fresnel principle is required [3]. 

As will be shown later in this chapter, the condenser pupil aberrations in this case 

begin to affect the coherence properties at the condenser image-plane. 

3.2.3 Undulator beamline as a condenser: an example 

Undulator Beamline 12 of the ALS can be viewed as an incoherent source with a 

Gaussian intensity distribution, (o-~, o-7J) = (260J.Lm, 16J.Lm). The beamline essentially 

acts as a condenser lens with a de-magnification of 60 and an object-side NA of 

48 J.Lrad. The distance z1 from the exit-plane of the undulator to the pupil is 16.7 m 

and the pupil radius a is 0.8 mm. The wavelength used here is ,\ = 13.4 nm. 

Using the Van Cittert-Zernike theorem to propagate radiation from the incoherent 

source to the lens pupil, the mutual intensity at the pupil is given by a Fourier 

transform of the Gaussian intensity distribution of the incoherent undulator source 

(see Appendix A). The resultant coherence distribution at the pupil is then Gaussian 
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distributed with rms radii 

c ·c ' · · AZ!' .Az1 . · ) 
(o-x, o-Y) (--, --) ~ (0.14 mm, 2.23 mm . 
. . ' 27ro-{ 21ro-1J . 

Comparing the vertical size of this coherence patch with the pupil diameter (2a = 

1.6 mm), the Zernike approximationis found not to be applicable here and therefore­

the generalized Van· Cittert-Zernike theorem cannot be used to propagate the mu­

tual coherence ftom the' condenser pupil to the image-plane. However, should this 

invalidity be ignored and the Zernike approximation used for the calculation of the 

spatial coherence distribution at the co:dd~nser image-plane, the erroneous resultant 

coherence distribution would be an Airy pattern with a first null radius s0 of 2.84 J-Lrn. 

Specifically, the modulus of the complex coherence factor would be 

J1 (~:~J(~u)2 + (~v)2) 
lf-Lt21 = 2 ¥z;J(~u)2 + .(~v)2 

where a is the pupil radius, .A is the wavelength, z2 is. the distance from the condenser 

lens to the image-plane, (~u, ~v) is the coordinate difference at the image plane, 

and the first null radius is s0 - 0.610.Az2/a. As. expected, this over-simplification 

results in discrepancy with the experimentally measured coherence profile [9], whi.ch 

determined the size of the coherence patch to be 4.4 J-Lm and 6.8 J-Lm in the horizontal 

and vertical direction, respectively. 

As demonstrated,: the generalized • Van Cittert-Zernike theorem does not apply 

here. A rigorous analysis on mutual coherence propagation using the Huygens-Fresnel 

principle and subsequent numerical evaluations are presented in this chapter. 
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u 

Using the Huygens-Fresnel ,principle [3], the object-:-image coherence relation, un­

der quasi-monochromatic and paraxial approximations, can be expressed as 

+oo 

Ji(ub v1; u2, v2) = /!!! Jo(6, '1]1; 6, 7J2)K(u1, v1; 6, 7J1)K*(u2, v2; 6, 1J2)d6d1J1d6d1J2 
-00 

(3.2) 

where Ji and J0 are the mutual intensities at the image and object plane, respectively. 

The amplitude spread function K is defined by 

· exp {j .>.:
2 

(u2 + v2
)} exp {j "':

1 
(e + 772

)} 

K(u,v;e,1J) = _x2 
Z2Z1 . 

x ]] P(x,y) exp{ -j :: [ ( u + ;: €)x + (v + ;:1/)Yl}dxdy 
-00 

(3.3) 

where P(x, y) is the complex pupil function described in detail in Appendix B. The 

coordinate system used throughout this chapter is depicted in Fig. 3.1. Notice that 

the subscript i for (ui, vi) and (ei, 1Ji) is dropped in Eq.(3.3) for ease of notation. 
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Also notice that the integral above can be regarded as a Fourier transform of the 

condenser lens pupil evaluated at spatial frequency [ .x;
2 

( ui + M f.i) , .x;
2 

(vi + M 1Ji)] , 

where M = z2 / ZI and i = 1, 2. 

If an incoherent source is placed at the object plane, then J 0 can be written as 

where Is(f., 17) is 'the source intensity distribution, K, 

dimensional Dirac delta function. 

In this case, Eq.(3.2) simplifies to 

+oo 

(3.4) 

,\2 j1r, and 6(·,·) is a 2-

Ji(ui, vi; u2, v2) = K, I I Is( f., 1J)K(ui, vi; f,, 17)K*(u2, v2; f,, 1J)df.d1J (3.5) 
-00 

The mutual intensity function Ji at the image pla.ne can now be determined by the 

integration of the source intensity distribution Is and the two off-centered [by ( ui, vi) 

and (u2 , v2), respectively] amplitude spread functions of the pupil P. 

In order to simplify the notation in Eq.(3.5), we define 

+oo 

G(u', v')- !I P(x, y) exp{ -j ~: [u'x + v'y]}dxdy (3.6) 
-00 

Note that G(u', v') is essentially the point-spread function (up to a scaling constant) 

of the pupil P(x, y). Eq.(3.5) can now be written as 

+oo xI I ls(f., 17) G(ui + Mf,, VI+ M1J)G*(u2 + Mf, v2 + M1J)df.d1J, 
-00 

(3.7) 

The mutual intensity can be obtained by numerically evaluating the above double 

integral. Equation (3.7), and its equivalent Eq.(3.5), are based on the Huygens-Fresnel 

principle and are valid regardless of the Zernike approximation. Note here that the 
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mutual intensity is a function of the four individual coordinates,· ( u1 , :v1, u2, v2) j not 

their differences. 

The numerical value of G(u', v') can be determined by evaluating the integral in 

Eq.(3.6). As will be shown in Section 3.4, this integral can be expressed as weighed 

summations ofvarious Bessel functions for the specific .aberrations involved. Defo­

cus/distortion, astigmatism, and coma are the low order aberrations whose effects on 

the spatial coherence distributions at the condenser image plane are studied here. 

3.3.1 Zernike approximation 

Before using Eq.(3.7), or equivalently Eq.(3.5), it is interesting to examine the 
' . ' 

Zernike approximation and the conditions under which it is valid. The Zernike ap.,. 
. . . ; . ' . : ' ·' :~ 

proximation [6] states that the coherence distribution at the imag;e plane of a con-
; 

denser that re-images the source can be determined solely by the modulus square of 

the pupil function, .thus independent of the pupil aberrations. Examining Eq.(iS) 
I, 1' • ' • 

[the equivalent of Eq.(3.7)], which is valid in general for all incoherent sources, one 

finds that Eq.(3.5) reduces to the commonly known,Zerni~e approximation when 
. . . . . . . :<.~·. . ' . 

the size of the incoherent source is large enough such thatis ( ~, TJ) can be effectively 
. . . . . . ; 

regarded as a constant <C. To demonstrate this, substitute the amplitude spread func.­

tion K(u, v; ~;TJ) in Eq. (3.5) with Eq.(3.3), and integrate first d~dTJ withJs(~, TJ) ·' <C. 

This yields 

· . "'exp { j A:
2 

( u~ + vi .,..- u~ - vi)} 
Ji(ur, vr; u2,v2) = <C . . A4 2 2 

. . .· . -~~ 

+oo +oo 

x JJ P(xr,Yr)dxrdYr JJ P*(x2,Y2)dx2dY2 
-oo -00 

Note that the last integral in the above equation evaluates to 

(3.8) 
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Further integrate over dx2dy2 to yield, 

+oo 
X// dxldYI,P(xhYi)rexp{~j~: [(ul- u2)x1 +(vl- v2)Y1]} 

c-OO 

(3.9) 

where K
1 = K <C. 

Eq.(3.9) indeed shows that in the case wherels is large enough, th~ image-plane 

mutual intensity Ji depends only on the modulus square of the pupil function (thus 

independent of the aberrations in the pupil) and its magnitude, IJd, is a function of 
' . . 

(~u, L\v) only. Also shown in Eq.(3.9), the image-plane mutual intensity is essentially 

a Fourier transform of the modulus square of the pupil. Note that· Eq.(3.9) is identical 

to (7.2-17) in Ref. [3], which w~s obtained by explicitly assuminga Dinic-8-function 

coherence distribution at the condenser lens plane. 

Validity of the Zernike approximation In arriving at Eq.(3.9), the assumption 

was made that the incoherent source· was of infinite extent with uniform intensity 

distribution <C. However, as mentioned in Section 3.2, this assumption canbe relaxed 

to that the size of the incoherent source be large enough such that the coherence patch 

at the entrance of the condenser lens is sufficiently smaller than the lens pupil. Under 

this relaxed condition, the generalized Van ·Cittert-Zernike theorem is applicable at 

exit of the the condenser lens and Eq.(3.9) still holds with some modification on K
1

• 

In this case, the K
1 in Eq.(3.9) is actually a function of(u,v) = (u 1 ~u2 , v1 ~v2 ), given 

by 

'(- _) 1 ( z1_ z1_) 
K u,v = K, s --u, --v 

, Z2 Z2 
. (3.10) 

Note that when the incoherent source is of infinite extent with uniform intensity 

distribution <C, the resultant K,
1 indeed reduces to K,

1 = K,(C. In practice, the incoherent 

source cannot be infinitely large, and using the simpler form of Eq.(3.9) where K,
1 is 

a constant requires caution. In fact, the geometric image of the source needs to 
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be· sufficiently larger than the object of interest, in order for the intensity of the 

illumination on the object to be regarded as uniform and Eq.(3.9) to strictly apply. 

Mathematically; this condition can seen from Eq.(3.10) as 

, ·{ I:: Uobjl ~ ~~srcl. 
I Zl I . 

.. · Z
2 

Vobj << l77srcl 
(3.11) 

where (uobj, Vobj) and (~src, 17src) denote the maximum dimension ofthe object uncle~ 

illumimition and that ()f the incoherent, source, respectively. Therefore, when apply­

ing Eq.(3.9) to describe the mutual intensity incident on an object, the additional 

requirement on the relative size of the object under illumination and th~-geometric 

image of the source must be satisfied. 

A.lthough valid in a wide array of situations, the simple Fourier transform re­

lationship, Eq.(3.9), established by the Zernike approxi~ation, breaks down as the 

dimensio~ of the incohe~ent source shrinks and the coherence area at the pupil plan~ 

increases. As described above, this small-source condition is the norm for the verti­

cal dimension with undulator radiation. Therefore, one cannot resort to the Zernike 

approximation here and n~merical evaluation based on Eq.(3.7) in Sec.3.3 is needed 
. . :' ; . ' . 

for examining the mutual inten~ity distribution. at the condenser image-plane. 

3.4 Point spread functions for aberrated pupils 

To proceed on the numerical evaluation, using Eq.(3.7), it is evident that the 

expressions for the PSF (i.e. G) corresponding to various low-order aberrations are 

needed. In this section, PSFs for defocus/distortion, astigmatism, and coma, are 

presented. 

3.4.1 Distortion & Defocus 

The displacement theorem, as presented in Ref. [1] in terms of intensity, states 

that for any two arbitrary aberration functions whose difference is given by H p2 + 
K psin (} + Lpcos (} + N, where H, K, L, and N are constants of order A, their 
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respective intensity distributions near focus are identical apart from a displacement 

des~ribed by the transformation given later in Eq.(3.20). Resembling. the derivation, 

of the displacement theorem in Ref. [1], the same theorem in terms pf field, i.e. PSF, 

for the two arbitrary aberration functions differing by H p2 + K p sin(}+ Lp cosO+ N, 

will also be established in Eq.(3.23). Notice that the allowed difference between the 

two aberration functions, H p2 + Kpsin (} + Lpcos (} + N, is essentially distortion 

and defocus. Therefore, by setting one of the pupil functions to zero, the PSFs of 

distortion and defocus can be obtained from an un-aberrated PSF, which in turn can 

be asymptotically approximated by a seri~s of Bessel functions. 

The displacement theorem 
. . ~ . 

When distortion and defocus are the only difference between two pupil functions, 

their respective PSFs are related simply by translation perpendicular and parallel to 

the optical axis. This is called the displacement theorem. The field distribtition due 

to an arbitrary aberration function <P can be expressed as 

U(P) = _j_a
2

~ ei(z2 fa)
2

(, 1112
7r exp{i(k<P- vpcos(O- ¢)- !(p2] }pdpd(} (3.12) 

A z2 o o 2 

where a is the radius of the exit-pupil, A is a scaling factor indicating the strength· of 

the beam, pis the normalized (with respect to a) radial coordinate at the e;cit-pupil 

plane, and 

( = 21f (!!._)2 z 
A Z2 

v= 21f(!!_)Ju2+v2 
A Z2 

v 
¢=arctan-. 

u 

For ease of notation we define 

1 
f((, v, ¢; p, 0) = k<P- vpcos(O- ¢)- 2(p2 

(3.14) 

(3.15) 

(3:16) 

Assuming a second aberration function <P' which differs from <P only by distortion 

and defocus, i.e. 

<P' = <P + H p2 + K p sin(} + Lp cos(} + N (3.17) 
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where H is the magnitude of the defocus, K and L are the :x and y distortion mag-

nitudes, respectively, then we have ' 1., 

. 1 ·. ' ' ' ' · .. · ' . .. ' 
f((, v, ¢; p, B)= kiP'~ "2(2kH + ()p2

- pcos B(v cos¢+ kL) - psin B(v sin¢+ kK) - kN 

I 1 ( . ) 2 = kiP - "2 2kH + ( p - kN -

· . . ·.( vcos¢+kL · vsin</>+kK) 
pJ(vcos¢+ kL)2+(vsm¢+ kK) 2 cos B. 1 . . . +sin B-.-;~~=~ 

. ' ' ,y (·)2 + (·)2 v (·)2 + (·)2 

_:_ kiP' - v' p cos( B --C ¢') - !(' p2 
- kN . 2 

where 

(' = ( + 2kH 

v' = ..j(v cos¢+ kL)2 + (v sin¢+ kK)2 v' cos¢' . v cos¢+ kL 
, . v sin ¢ + kK 

¢ = arctan .+. kL 
lJ cos'+'+ 

· v' sin ¢' = v sin ¢ + k K 

and now 

v' = 
27f(~) .../(u')2+ (v') 2 .. 
A Z2 . . 

v' 
¢' = arctan - . 

. u' 

The corresponding cartesian coordinate relationships are as follows, 

(
Z2)2 z' = z + 2 -;;:. H v' = v + (~)K 

Solving for U'(P') we find, 

(3.18) 

(3.19) . 

(3.20) 

U' (P') = - ± a~A e'(.,/•)'(' [ [' exr{; [ k<!>' - v' p cos( B - ¢l) - ~(' 1]} pdpdB 

(3.21) 

i a
2 
A . 2 , t [2

1[ { [ • J } = --:\ zi et(z
2

/a) ( Jo Jo exp i f((, v, ¢; p, B)+ kN pdpd() 

= U(P)eikN ei(z2/a)2(('-() 

(3.22) 

(3.23) 



38 

Eq.(3.23) is the displacement theorem expressed in terms offield. Note that U'(P') 

and U(P) are only different by a constant phase term, eik(N+z'~z,), and thatin Born & 

Wolf [1), the displacement theorem is expressed in terms of intensity, i.e. IU'(P')I2 = 
IU(P)I2

. 

PSF for distortion and defoc~s 

Using the displacement theorem, the PSFs of distortion and defocus can now be 

obtained from the unaberrated PSF, i.e. <I> = 0 [1). With <I> _: 0, Eq.(3.17) now 

becomes, 

<I>'= Hp2 + Kpsin (} + Lpcos (} + N, (3.24) 

which is purely distortion and defocus. Rewriting Eq.(3.21) in terms of the cartesian 

coordinate (x, y) of the exit-pupil, we have 

(3.25) 

Using the result of Eq.(3.23), with U(P) of Eq.(3.12) being substituted in, note 

that now <I> = 0 for unaberrated case, 

i a2 A 11 12
7T { [ 1 ] } U'(P') = -~ z~ ei(zzfa)Z(' x 

0 0 

exp -i vpcos((}- cf>) + 2,(p2 pdpd(} x eikN 

X 

Equating Eq.(3.25) and Eq.(3.27), it is found that 

(3.26) 

(3.27) 

'( ~) ia
2
A ·( j)2rt !! ·k<I>' { 21r [ , 1 1r(a)2 '( 2 2)]} U P = ·-- -
2 

e1 zz a ., x et exp -i- xu + yv + - - z x + y dxdy 
A z2 AZ2 A z2 

P(x,y) 

X 

(3.28) 
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As shown in Eq.(3.7), the effect of the aberration of interest is eJi:amined at z' = 0 

in this case, i.e., 

U'(u', v', z' = 0) =-±a:: x // eiH' exp{-i ;: [xu'+ yv'] }dxdy 

. P(x,y) 

i a2 A [11 
. 1 2 ]· . · · = ---2 X 27r la(vp)e-t2(P pdp etkN 

A z2 o 

(3.29) 

One sees from Eq.(3.29), the Fourier transform of a defocused and/or distorted pupil 

can be numerically evaluated by calculating the integral, 

t la(vp)e-i~(P2 
pdp= e-i(/4 ~ f(ir(2s + 1) Js+~((/4) 12s+;(v) 

lo v~ s=O 
(3.30) 

The procedure in the software used for numerically. evaluating the PSF of the aber­

rated pupil is outlined in the flow diagram Fig. 3.2, basically utilizing the following 

equality: 

Gtistort ( u'' v') = !" r eik<I>' exp {-i 
2

7r [xu' + yv'] } dxdy 
defocus } AZ2 · 

P(x,y) 

= 2" [e -i(/4 ff t, (i)' ( 2s + I) J,+!( (/ 4) 12,+;; (v) l eikN 

(3.31) 

where 

<I>'= Hp2 + KpsinO + Lpcos() + N 

. (Z2)2 z = -2 -;; H 

1 (Z2) u=u- -;; L 

1 (Z2) v=v- -;; K 
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Summary on distortion & defocus 

Expressing distortion and defocus in terms of the Zernike circle polynomials [48], 

i.e. 

<I>~istort ( tt', v') = Adistort P cos(} + Adefocus ( 2p2 
- 1) 

defocus ' 

and comparing with Eq. (3.24), one finds 

i.e.,. 

{ 
H . 2Adefocus 

L- Adtstart 

<I>' = ( 2Adefocus) P
2 + ( Adistort) P COS(} + (-Adefocus) 

(3.32) 

(3.33) 

(3.34) 

and the corresponding PSF (up to a scaling· constant) is as described in Eq:(3.31), 

and 

z = -2 ( ~ r (2Adefocus) 

U . u' -. ( ~ ) ( Adistort) 

v = v' 

Note that here 

as in Eq.(3.7). 

i = 1,2 (3.35) 
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<I>'= Hp2 + KpsinB + LpcosB + N 

j J e""' ex+;: [xu'+ yv'l}dxdy = 2+-'/4 ff t, ( !)' ( 2s + 1) J_.1( (/ 4) J;,~ ( v) J e"N 
P(x,y) · 

.· 'Z
1 = 0 

v' =vi+ Mry 

~ 
z = ~2(~)

2

H 
t 

u = u' - ( ~) L -------e.-. 
·(Z2) v = v'- --; K 

27r (a) v =- - Vu2 +v2 
). .. Z2. . 

Figure 3.2: Procedure for the calculation of defocus/distortion PSF. 
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3.4.2 Astigmatism 

Next we consider the lower-order aberration of astigmatism, defined as 

<I> astig = Aastig p2 
COS 2(} (3.36) 

where Aastig is the aberration magnitude, usually of the order of wavelength .X. 

In this case, the PSF (up to a scaling constant) produced by the aberrated pupil 

can be written as 

Gastig(u',v') =If eik~astig~xp{-i;~[xu'+yv:]}dxdy (J.37) 
P(x,y) 

Following the derivation in Ref. [49], the above integral involving the aberrated pupil 

can be expressed in terms of a series of Bessel functions. Note that the signs of the 

imaginary parts in the equation are inverted to conform with the notation used here. 

where 

27r 
{3 = kAastig = ~ Aastig 

v' = 
2
; (~) J(u') 2 + (v')2 = v 

. v' 
¢' = arctan - ¢ 

u' 

(3.39) 

(3.40) 

(3.41) 
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Note that here we have dropped the primes for v' and ¢' for ease of notation, and 

that with respect to the image-plane mutual intensity expression in Eq.(3.7), 

i = 1, 2 (3.42) 

Therefore, 

(3.43) 

(3.44) 

where a is the condenser exit-pupil radius. 

3.4.3 Coma 

Finally, we consider another lower-order aberration, namely coma. Coma is de­

fined as 

<I> coma =Acoma ( 3l- 2p) COS() (3.45) 

where Acoma is the aberration magnitude. 

The :resultant PSF (up to a scaling constant) is 

Gcoma(u', v') =If eik'Pcoma exp{ -i ;: [xu' +yv'] }dxdy (3.46) 

P(x,y) 

The abo;re integral can be expressed as a series of Bessel functions as follows, 

. G=(u', v')N 
2
: [J1{v)- [3cos¢J4 (v) 

-_!!_{ ~J1 (v) _1:_J3(v)+~J5(v)- !!_J7(v) -cos 2¢(~J3(v) + ~J7(v))} 
2. 2! 4 20 4 20 5 5 

f3 3 
{ ( 1 44 9 6 3 ) 

- 22 • 3! 3 cos <P 15 J2(v)- 105 J4(v) + 70 J6(v)- 35 Js + 14 J10 (v) 

-cos 3¢C8
5 
J,(vJ- :0J,(vJ- :

8 
J10(v)) n 

(3.47) 



44 

where 

21f 
{3 = kAcoma = --:\Acoma 

v' = 
2

1f (!:_) · I ( u')2 + ( v') 2 v 
). z2 V . 

v' 
¢' = arctan - - ¢ 

u' 

(3.48) 

(3.49) 

(3.50) 

Again here we have dropped the primes for v' and ¢' for ease of notation and that 

again with respect to the image-plane mutualintensity expression in Eq.(3.7), 

i = 1,2 (3.51) 

Therefore, 

v = 
2
; (:) V (ui + Me)

2 
+(vi+ MTJ)

2 

Vi+ MTJ 
¢=arctan Me ui+ 

(3.53) 

3.5 Numerical evaluation results 

Using the object-image coherence relation derived in Sec. 3.3, i.e. Eq.(3.7), the 

mutual intensity at the image plane of the condenser can now be determined numer­

ically by incorporating the appropriate PSFs [i.e. G ( u', v')] given in Sec. 3.4. To test 

the validity of the numerical evaluation, a large (1.6 mm x 1.6 mm) uniform intensity 

incoherent source is used to illuminate the condenser. Unlike the undulator source, 

this large square incoherent source can be shown to satisfy the Zernike approximation. 

The resultant intensity and coherence distributions with various pupil aberrations are 

shown in Fig. 3.3. As expected by the Zernike approximation, the various aberrations 

have negligible effect on the spatial coherence distributions, which are all essentially 

Airy patterns with first null radius of 2.8 p,m. The intensity distributions are all rela­

tively uniform, again as expected by the Zernike approximation. In the case of coma, 

the intensity distribution is shifted as the center of inass of the modulus square of the 

coma PSF is off-centered. 
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Coherence: defocus"' 0.5 ). 

a - 10 

-6-4-2 0 10 
ll.u{Jtm] 

lntensity:astigmalism:::O.SA. Coherence: astigmatism:: 0.5 }. 

b -10 

-6 -2 0 
ll.U{JLm] 

Inten sity: coma ,. 0.5 ). Coherence: coma .. 0.5}.. 

c 

-6-4-2 0 10 -2 0 10 
u UUTJJ 6U(JLm) 

Figure 3.3: Simulation results for a large (1.6 mm x 1.6 mm) uniform source. Intensity 
(left column) and coherence (right column) distributions resulting from the various 
pupil aberrations (a defocus, b astigmatism, c coma). The coherence distributions 
are all essentially Airy patterns as predicted by the Zernike approximation. 
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Next, an actual undulator source having a size that does not satisfy the Zernike 

approximation is studied. The intensity distribution of this incoherent undulator 

source is Gaussian with (ax , ay) = (260f.Lm, l611m) , given by the undulator beam size 

at the exit-plane . First, an aberration-free condenser is assumed in order to see the 

effect of smaller source size. Figure 3.4 shows the failure of Zernike approximation 

for small sources , as the coherence distribution deviates significantly from an Airy 

pattern . 

Intensity: aberration-free 

-6 --4 -2 0 8 10 -S -6-4-2 0 8 10 

u[pm} llu ~1m) 

Figure 3.4: Simulation results: Intensity and coherence distribution at the condenser 
image-plane resulting from the un-aberrated condenser pupil and the Gaussian-shaped 
incoherent source of (ax , ay) = (260f-im, l6f.Lm). 

It has been shown above that the size of the incoherent source has affected the 

coherence distribution at the image plane and the apodized pupil function is not the 

sole determining factor. Next, the effect of pupil aberrations on the spatial coherence 

distribution is investigated. Several low order aberrations will be assumed in the 

condenser to demonstrate this effect. The PSFs needed by Eq.(3.7) are again given in 

Sec. 3.4. Figure 3.5 shows that in the case of smaller source size, the effect of condenser 

aberrations on spatial coherence cannot be ignored. With 0.5 waves of defocus in the 

condenser, the intensity and coherence distributions at the condenser-image plane is 

shown in Fig. 3.5(a) . Figures 3.5(b) and (c) show the distributions under 0.5 waves 

of astigmatism and coma, respectively. For the cases of defocus and astigmatism, the 

high vertical coherence shown in Fig. 3.5(a) and (b) can be explained by the small 
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vertical source size. However, in general the two dimensional coherence distributions 

cannot be treated separately in terms of vertical and horizontal directions. As demon­

strated in the case of coma, shown in Fig. 3.5(c) , the two dimensional structure of 

coma dominates the spatial coherence distribution in the condenser image-plane and 

the coherence distribution cannot be explained simply by the vertical and horizontal 

source size. It is shown that numerical spatial coherence propagation based on the 

Huygens-Fresnel principle is required to correctly predict the coherence distribution 

at the condenser image-plane. 

Note again that the coherence distribution is not simply a function of the differ­

ence of the coordinates, instead, it is a function of the four individual coordinates, i.e. 

(u1 , v1 , u2 , v2 ). Therefore, when showing the coherence distribution, one of the coor­

dinates is fixed at the origin, i.e. (u1, v1) = (0, 0), and the coherence distribution is 

obtained as the correlation factor IJ.Ld between various points ( u2 , v2 ) and the origin 

(0 , 0). 

Note that for a condenser system illuminated by a point source (i.e. a coherent 

source) , the resultant intensity and coherence distributions at the image plane of 

the condenser can also be obtained with this numerical evaluation by employing a 

Dirac-6-function as the source. The results for 0.5 waves of defocus , astigmatism and 

coma, respectively, are shown in Fig. 3.6. The intensity distribution indeed shows the 

modulus square of the PSF of the respective lens pupil and the resultant coherence 

distribution is 1 at all positions since it is coherently illuminated. 
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lnlenslty: delocus=O.Si. Coherence: defocus"' 0.5 i. 

b 

-10 -B -6 - 4 -2 0 10 
U(J.1m} 

Intensity: coma= 0.5 ). Coherence: coma= 0.5 A. 
c -1 0 

- 8 

- 6 

- 4 

- 2 

-8 -6 -4 -2 0 10 -2 0 10 
U(J.1m] llu[J.•mJ 

Figure 3.5: Simulation results that show the effect of aberrations for the Gaussian­
shaped incoherent source: Intensity (left column) and coherence (right column) distri­
bution at resulting from the various aberrations (a defocus, b astigmatism, c coma) . 
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Intensity: defocus,. 0.5 i.. Coherence: defocus • 0.5 A 

a 

-8 -8 -4 -2 0 10 - 10 -8 -6 -4 -2 0 10 
u~1m) .1U~Iffij 

Intensity: astigma1ism"' 0.5 l. Coherence: astigmatism • 0.5). 

Intensity: coma '" 0.5). Coherence: coma • 0.5). 

c 

-1 0 -8 -6 -4 -2 0 10 
6U~Im] 

Figure 3.6: Simulation results using a point source (coherent source): Intensity (left 
column) and coherence (right column) distributions resulting from the various pupil 
aberrations (a defocus , b astigmatism, c coma) . The coherence distribution 1s a 
constant 1, which shows that the field is fully coherent as expected. 
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3.6 Conclusion 

The results obtained in this chapter are valid for any condenser systems that 

re-image the incoherent source to its conjugate plane, regardless of the Zernike ap­

proximation. We have demonstrated that for a condenser system employing an EUV 

undulator as the radiation source, the commonly used Zernike approximation is vio­

lated and numerical spatial coherence propagation based on Huygens-Fresnel principle 

is required. In fact, for any condenser system that re-images an incoherent source, 

the spatial coherence distribution at the image plane, in general, depends both on the 

complex pupil function, and on the intensity distribution of the incoherent source. 

Using the Zernike approximation requires caution and the validity of Zernike approxi­

mation has to be verified before application. Also shown is that pupil aberrations pose 

significant effect on the spatial coherence distributions at the condenser image-plane 

when Zernike approximation fails. 



Chapter 4 

Diffractive optical elements based 

on Fourier optical techniques: 

A new class of short wavelength 

optical elements 

A diffractive optical element, based on Fourier optical techniques, for 
use in extreme ultraviolet/soft x-ray experiments, has been fabricated 
and demonstrated. This diffractive optical element, when illuminated 
by a uniform plane wave, will produce two symmetric off-axis first or­
der foci suitable for interferometric experiments. The efficiency of this 
optical element, and its use in an EUV interferometer, are presented. 
Its use opens a new era in the use of sophisticated optical techniques 
at short wavelengths . 

4.1 Introduction 
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Coherent extreme ultraviolet (EUV) and soft x-ray (SXR) radiation [35] facil­

itates phase-sensitive techniques that provide new opportunities in various fields, 

e.g. biological imaging, material characterization, and nanotechnology. However, 

challenges are presented in that very limited optical elements are available at these 

wavelengths. Most experiments either utilize low efficiency diffractive optics such 
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as Fresnel zoneplates, or glancing incidence reflection mirrors and normal incidence 

multi-layer mirrors which result in restrictive off-axis optical systems and limited 

spectral region, respectively. No appropriate materials exist for lenses and prisms 

due to high absorption. Therefore, devising novel optical elements that can effec­

tively and efficiently achieve wavefront shaping is of crucial importance for researches 

conducted at EUV /SXR wavelengths. Here, Fourier optical techniques are introduced 

to accomplish the desired wavefront manipulation. 

In our first example of these new techniques, we have designed and fabricated, 

based on Fourier optical techniques, a diffractive optical element which combines the 

functions of a grating and a zone-plate through a bit-wise XOR operation [11] . Using 

this compound diffract.ive optical element allows the efficiency and the contrast of 

the interferometer to be greatly increased. The application of this optical element in 

an EUV interferometer to directly determine the index of refraction at EUV wave­

lengths will be presented in Chapter 5. Similar activities are underway at soft x-ray 

wavelengths. 

4.2 XOR pattern 

This XOR diffractive optical element is obtained by combining a 50% duty-cycle 

binary intensity grating and a 50% duty-cycle intensity zoneplate. The binary grating 

and zoneplate are first pixelized, with each pixel being either 1 or 0 for transmission 

and absorption, respectively. As shown in Fig. 4.1, the two pixelized patterns are 

then overlapped and compared pixel by pixel to produce the resulting XOR pattern, 

i.e. at each pixel position, if the pixel values of the grating and zoneplate are the 

same (both O's or both 1's), the value of the corresponding pixel on the XOR pattern 

is 0. Otherwise, the value of the corresponding pixel on the XOR pattern is 1. 

For a 50% duty-cycle grating of period d, the transmitted intensity function is 

G(x,y) = ~[1 +sgn(cosvx) ] ( 4.1) 

where v = 2n /d. 
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Similarly, for a 50% duty-cycle zoneplate of diameter D and outermost zone-width 

6.r, the transmitted intensity function is [2] 

ZP(x, y) = ~ [1 + sgn (cos'Yr2)] 

where r = Jx2 + y2 and 

7r 
'Y = ---,-----~ 

6.r(D- 6.r) 

Expand these two patterns in their Fourier series, 

and 

G(x, y) = f sin(m7r/2) e-jmvx 
ffi'Jr 

m=-oo 

n=-oo 

(4.2) 

(4.3) 

(4.4) 

Note that by comparing the Fourier series of a zoneplate to a lens, one finds that the 

zoneplate functions as multiple lenses with nth order focal length fn given by 

- 'Jr 
fn=-. 

n>..'Y 

The XOR pattern of the combined grating and the zoneplate is obtained by 

XOR(x, y) = G(x, y) + ZP(x, y) - 2G(x, y)ZP(x, y) 

= f sin(m1rj2) e-jmvx + f sin(n1rj2) e-jn'Yr2 
m1r n1r 

m=- oo n=-oo 

_ 2 [~ + f sin(m7r/2) e-jmvx] [ ~ + f sin(n1r j 2) e-jn'Yr2] 
2 m1r 2 n1r 

m=-oo n=-oo 
m;i:O n;i:O 

~ ~ _ 2 [J:= sin::/2) e-jmvx] [J== sin~;/2) e-jwyr']· 
m;i:O n;i:O 

(4.5) 
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This combined diffractive element, when illuminated by a uniform wavefront, has the 

interesting property that it produces two symmetric off-axis focal spots, (m, n) = 

(±1, 1), at the back focal plane of the zoneplate. Note that both the grating and the 

zoneplate have to be of 50% duty-cycle for the on-axis focal spot to disappear, i.e. 

m #- 0 and n #- 0 in the summation. The separation of these two beam spots X 8 

can be determined by multiplying the two exponentials in Eq.(4.5) , completing the 

square for x-terms, thus resulting in 

_ 2.0.r ( D - llr) ,.___ 2.0.r D 
Xs- d "'"' --d- (4.6) 

Note that this separation is independent of wavelength A. . Thus as the wavelength 

is varied for spectral determinations of c5 and fJ, the focal length (distance from the 

XOR pattern to the sample mask) varies, but the lateral separation of the two beam 

spots remains fixed. The invariance of the spot separation over wavelength allows the 

EUV interferometer to operate at different wavelengths without the need of changing 

the image-plane sample mask. This is a desirable property for EUV interferometers 

since the scale of the sample mask for EUV applications requires it to be micro/nano­

fabricated, thus immutable after being made. 
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Figure 4.1 : Bitwise XOR operation: The binary grating and zoneplate are first pix­
elized, with each pixel being either 1 or 0 for transmission and absorption, respectively. 
The two pixelized patterns are then overlapped and compared pixel by pixel to pro­
duce the resulting XOR pattern, i.e. at each pixel position, if the pixel values of the 
grating and zoneplate are the same (both O's or both 1's) , the value of the corre­
sponding pixel on the XOR pattern is 0. Otherwise, the value of the corresponding 
pixel on the XOR pattern is 1. 



56 

4.2.1 Simulat ion of the XOR pattern 

A computer simulation has been performed to see if these patterns produce the 

expected results . An XOR pattern of a grating (period d = 16p,m) and a zoneplate 

(outermost zone-width 6r = 0.2p,m, diameter D = 400p,m) is produced, as shown 

in Fig. 4.2(a) . This pattern is then Fresnel-propagated to the first order focal plane 

of the zoneplate and the resulting intensity distribution is shown in Fig. 4.2(b). As 

expected , only off-axis spots exist in this focal plane and the on-axis zeroth order 

focus is completely eliminated. 

(a) d=16 J.!m, 6r=0.2 J.!m, D=400 J.lm (b) )..=16.5nm 
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Figure 4.2: Computer simulation of the XOR pattern: The parameters used in this 
simulation are set equal to t he actual fabricated element. T he pattern in (a) is 
obtained by taking t he "exclusive or (XOR)" of the binary grating and zone-plate. 
4096 x 4096 pixels are used to generated this pattern. This pattern is then Fresnel­
propagated in computer by one focal length and the resul t ing intensity distribut ion 
is shown in (b) . A horizontal cross-section through the focal spots is also shown. The 
two symmetric off-axis first order foci is clearly visible in this simulation. The other 
two outer spots are caused by the third orders ( m = ±3) of the grating, wit h 9 t imes 
lower intensity. 
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4.3 Efficiency of the XOR pattern 

The XOR pattern, as expressed in Eq. 4.5, gives the efficiencies of the individual 

orders. First of all, we need to determine the overall transparent area of this XOR 

pattern. Since we know that the percent of transparent area on the grating and the 

zoneplate is 1/2, we find that the overall transparent area of the XOR pattern to be 

1/2 + 1/2 - 2(1/2)(1/2) = 1/2 from Eq. 4.5 . 

Next, we calculate the efficiency of individual orders from their relative strength~ 

From Eq. 4.5, we have, for m, n =/:- 0, 

if m, n are both odd, 
(4.7) 

if .m or n is even. 

h "'()() 1 7f
2 

• d . h 1 1 . w ere ~k=O (2k+1) 2 = 8 1s use m t e ca cu atwn. 

Another way to look at this is that we can think of this XOR pattern as a binary 

amplitude zoneplate, multiplied by a 1r-phase-shift grating which does not have any 

absorption. Therefore, the overall absorption of this XOR pattern is the same as that 

of a binary amplitude zoneplate, i.e. 1/2 and the efficiency of its individual orders is 

given by multiplying the corresponding orders of the binary amplitude zoneplate and 

the 1r-phase-shift grating. The efficiency 'Tim of a 50% duty-cycle 1r-phase-shift grating 

is 

{ 
+, form= ±1,±3,···, 

71- ffi7r 
•tm-

0 for m is even. 
(4.8) 

And the efficiency 'Tin of a binary amplitude zoneplate is 

_ { n}1r2 'Tin-
0 

for n = ±1, ± 3, · · · , 
(4.9) 

for n is even. 

By comparing Eq. 4.7 with Eq. 4.8 and Eq. 4.9, we indeed see that the efficiency of the 

individual orders of the XOR pattern, TJm,n, is given by 'Tim XTJn,, i.e. the multiplication 

of the corresponding orders of the phase grating and amplitude zoneplate . 
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4.4 Visible light experiment 

A first XOR pattern, designed for proof-of-principle testing at visible wavelengths, 

is fabricated using e-beam lithography [22] in order to directly observe the intensity 

distribution at the back focal plane. The grating used in this visible version has 

a period of 5J1m ,the zoneplate diameter is 5mm and the outermost zone-width is 

2J1m. A screen is put at its back plane, which is 15.8mm away from this visible XOR 

pattern. A collimated He-Ne laser beam (>. = 633 nm) is then used to illuminate 

this visible version XOR pattern and the resulting intensity distribution at the back 

focal plane is shown in Fig. 4.3(a). As expected, the two symmetric off-axis foci- are 

directly observable and there is no on-axis focus presented. The separation between 

these two off-axis spots are measured to be 4mm, which agrees with the designed 

value. As a comparison, an "OR" pattern made from the same grating and zoneplate 

is also fabricated and shown in Fig. 4.4. The effect of combining the grating and 

zoneplate through an bit-wise OR operation is equivalent to that of placing them 

in tandem. Therefore, this OR pattern demonstrates the back focal plane intensity 

distribution of a traditional separate grating and zoneplate setup. Fig. 4.3(b) shows 

the resulting intensity distribution at the back focal plane of this OR pattern . Three 

foci are clearly observed, with the strongest focus on-axis and two weaker symmetric 

off-axis foci. The separation between the on-axis and the off-axis spots are measured 

to be 2mm, which again agrees with the designed value. 
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Figure 4.3: A visible light experiment is performed in order to directly verify the 
intensity distribution at the back focal plane of the XOR pattern. For comparison , 
an OR pattern obtained by taking the bit-wise OR of a grating and a zoneplate is 
also fabricated. The effect of this OR pattern is equivalent to that of a grating and 
a zoneplate placed in tandem, which is the conventional setup for interferometric 
experiments. Part (a) shows that the intensity distribution at the back focal plane 
of the XOR pattern consists of only two symmetric off-axis foci , as predicted by the 
theory. As a comparison, the focal plane intensity distribution of the OR pattern is 
shown in (b) , which has three foci , with one strongest on-axis focus and two weaker 
off-axis symmetric foci. The grating used by the XOR and OR patterns in this visible 
experiment has a period of 5 p,m and the diameter and the outermost zone-width of 
the zoneplate is D = 5 mm and 2 p,m, respectively. A He-Ne laser (.\ = 633 nm) is 
used for illuminating the XOR and OR patterns. 
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Figure 4.4: A microscope image of the OR pattern used in the experiment with visible 
light. The grating period is 5 J.Lm. The zoneplate diameter is 5 mm and the outermost 
zone-width is 2 J.Lm. 
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4.5 First use in EUV interferometry 

The XOR pattern employed in our first application to EUV interferometry is 

fabricated using the same e-beam lithography tool and an SEM image of the actual 

pattern is shown in Fig. 4.5. The period d of the grating used here is 16f.Lm (8f.Lm 

pitch) and the z~neplate has a diameter D = 400f.Lm and a outermost zone-width 

6.r = 0.2f.Lm. Undulator beamline 12 at the Advanced Light Source provides the 

EUV radiation for this measurement. [35] The wavelength at which this measurement 

was performed is >. = 16.53 nm (75 e V) and the monochromator at the beamline is 

set at >./ 6..\ = 1100. 

This interferometer utilizes the strongest non-zeroth order, i.e. (m, n) = (±1, 1), 

which has a theoretical efficiency of 4/1r2 
X 1/Jr2 = 4/1r4 

rv 4.1% as given by Eq. 4.7. 

Experimentally, the efficiency of this XOR pattern is measured by recording the total 

counts on the CCD while scanhing a knife-like beam-stop transversely across the back 

focal plane. Starting with the beam-stop placed at the back focal plane such that 

the entire beam is blocked, as the beam-stop slowly moves aside, the total counts on 

the CCD increases, allowing fractions of light to pass. The result of this efficiency 

measurement is shown in Fig. 4.7. The two abrupt steps at the center is caused by 

the two symmetric off-axis first order foci, (m, n) = (±1, 1), being released one at 

a time by the scanning beam-stop. However, when determining the efficiency of the 

(m, n) = (±1, 1) order, the effect of straight through light needs to be removed. Since 

the position of the transversely scanning beam-stop is directly proportional to the 

fraction of the straight through light that passes it, the effect of straight through 

light can be determined by the constant slope of the two straight sections. After · 

removing the effect of the straight through light by least-square fitting the slope of 

the two straight sections, the individual strength of the (m, n) = (±1, 1) order is 

shown to be around 4.0%, which agrees with the theoretical value. Note that the 

definition of diffraction efficiency for this element is the sum of the flux in the two 

desired orders divided by the total incident flux on the pattern. We measured the 

diffracted flux to the two desired orders and the total flux through the XOR pattern. 

The latter is assumed to be half of the total flux incident on the XOR pattern, as 
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Figure 4.5: The center part of the XOR pattern is shown. This diffractive optical 
element is obtained by taking the bit-wise XOR of a binary amplitude grating and a 
binary amplitude zoneplate. The functionality of this XOR pattern is equivalent to 
that of a binary phase grating overlapping a binary amplitude zoneplate, as discussed 
in the text. The grating used here has a l611m period (811m line-space) and the 
zoneplate has a 400{Lm diameter and a 0.2f.Lm outermost zone-width. 
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Figure 4.6: The edge of the XOR pattern is shown here. The outmost zone width 
is seen to be 0.2J.Lm and the alternation of opaque and transparent zones over the 
grating half-period is also shown. 
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half the pattern is transparent. Therefore, the diffraction efficiency is obtained by 

dividing the diffracted flux in the two orders by twice the total flux through the XOR 

pattern. 

Comparing with the separate binary grating and zoneplate setup, in which the 

±1st orders of the grating are being focused by the first order of the zone-plate with 

a overall efficiency of lj1r4 
rv 1.0%, this XOR pattern provides a 4 times improvement 

in theory. In practice, the required exposure time actually reduces about 10 times due 

to the fact that the substrates on which these optical elements are fabricated have 

finite absorption and only one substrate is needed in this case. As will be described 

in Chapter 5, this improvement in efficiency enables the first direct measurement 

of refractive index at EUV wavelengths, where the two symmetric first order foci 

are used as two arms of an interferometer and a direct phase measurement for the 

dispersive part of the index of refraction is performed [10]. 
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Figure 4. 7: The efficiency of this XOR pattern is measured by scanning a knife-like 
beam-stop across the focal plane. Starting with the beam-stop placed at the back 
focal plane such that the entire beam is blocked, as the beam-stop slowly moves 
aside , the total counts on the CCD increases, allowing fractions of light to pass. The 
constant slope of the two straight sections results from the effect of zeroth order 
(straight through) light. The two abrupt steps at the center is caused by the two 
symmetric off-axis first order foci being released one at a time by the beam-stop. 
Their strength is shown to be around 4.0%, which agrees with the theoretical value. 

4.6 Comparison to the computer generated holo­

gram CGH 

A computer generated hologram (CGH) having similar functions can also be con­

structed. The relationship between CGH and XOR is clarified by showing that even 

though they are both applications of Fourier optics, with similar functionality, they 

are offundamentally different concepts. Specifically, CGH uses the traditional analog 

concept, while the XOR has an interesting digital aspect. 
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A.= l6.5nm. 10 IJm separation 

.. 

A.=16 .5nm. 10 IJm separation 

Figure 4.8: In part (a), the object wave (in red) which consists of two converging 
spherical wavefronts interferes with a reference plane wave (in blue) and the resulting 
intensity interference pattern, which is usually referred to as Computer Generated 
Hologram, is shown in (b). This CG H is then binarized for nanofabrication by e-beam 
lithography. Part (c) shows its binarized form . When illuminated by a uniform plane 
wave, this optical element reconstructs the object wave (two converging spherical 
waves) as shown in (d). Note that the two spots are symmetrically off-axis. 
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The design concept of CGH is depicted in Fig. 4.8(a). In a computer simula­

tion, the object wave (in red) which consists of two converging sp~erical wavefronts 
. . . 

is encoded by a reference plane wave (in blue) to form an interference pattern (holo-

gram), as shown in Fig. 4.8(b). This CGH, when illuminated by the reference plane 

wave, will produce two converging spherical wavefronts which can be used f~r inter­

ferometric experiments. Note that these two spherical wavefronts are identical and 
i; 

symmetrically distributed w~th respect to the optical axis. 

To nano-fabricate this CGH, it is necessary to binarize the "smooth" areal in~ 

terference pattern (Fig. 4.8(b)) into O's and 1 's. This binarized patt~~n, showll in 

Fig. 4.8(c), will then be used to produced the CAD file that nano-fabricates the 

holographic optical element. To see the effect of binarization on the re-constructed 

wavefro~t, this binarized holographic optical element is Fresnel~propagated to the 

plane where the object wave converges to two points and the intensity distribution 

· is shown in Fig. 4.8(d). No significant higher order effects ~r·e ob~~rved. It is also 

interesting to compare Fig. 4.2 with Fig. 4.8(c,d) and note that the two different 

diffractive elements produce similar intensity distributions at the back focal plane. 

The CGH can be optimized for optical flux throughput, while the XOR pattern 

is not specifically designed for maximum efficiency. However, it is very difficult for 

the CAD program of an electron-beam column to generated a CGH data file due 

to the large memory requirement imposed by the large amount of very small and 

irregularly-shaped structures particularly at the outer edge of the CGH. In addition, 

the finer details required by the CGH also make it more difficult to nano-fabricate. 

The XOR pattern provides a more practical solution in that it requires much less 

computer memory and relatively less stringency in nano-fabrication. For the XOR 

pattern, the digital data files of the grating and the zoneplate are already accurately 

calculated and taking the bit-wise XOR operation of the two data files is trivial in 

computers. 
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4. 7 Conclusion 

For the first time a novel diffractive optical element based on Fourier optics tech­

niques has been demonstrated. It is shown, both in theory and in experiment, that 

by combining two diffractive elements, a grating and a zoneplate, through a bit-wise 

XOR operation, the resultant optical element produced a new functionality, two sym­

metric off-axis foci with a higher efficiency. The two symmetric off-axis foci at the 

back focal plane are used in an EUV experiment to directly measure both the real and 

imaginary parts of the refractive index. Specifically, it is shown that interferometric 
~;·~ 

experiments that require better contrast aiid higher coherent power benefit from -this 

XOR design, due to the symmetricalness of the intensity distribution at the back focal 

plane and the improved overall efficiency, respectively. Although useful at all wave­

lengths, this pattern has particular value at the short wavelengths of interest here. 

This group of optical elements shown in this paper brings sophisticated Fourier opti­

cal techniques to open new experimental frontiers in an area rich with opportunities 

on nanometer scales and with element-specific identifications and applications. 
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Direct index of refraction 
' 

measu.rements at EUV wavelengths 

with a novel interferometer 

The first direct measurement of the dispersive part of the refractive 
index is performed at EUV wavelengths, where absorption is higher as 
compared with hard x-ray and visible wavelengths. A novel diffrac~ 
tive optical element, the XOR pattern, which combines the functions 
of a grating and a zoneplate, is used for the interferometer. Both the 
real and imaginary parts of the complex refractive indices are measured 
directly by this technique without recourse to Kramers-Xronig trans­
formations. Data for Al and Ni, in the vicinity of their L and ,M-edges, 
respectively, are presented as first examples of this technique. · 

5.1 ·Introduction 

·Refractive indices, n(w) = 1 - 8(w) + if3(w), in the extreme ultraViolet (EUV) 

wavelength region are complex~ highly absorptive and have strong wavelength (pho­

ton energy) dependence [8]. The absorptive part f3(w) of the refractive index at EUV 

wavelengths is well-tabulated by photo-absorption measurements. However, the real 

(dispersive) part of the refractive index 8(w) at EUV 'wavelengths is less accurately 

known. Interferometry, which can provide independent measurements of 8 and (3, is 
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difficult in the EUV /Soft X-Ray(SXR) regions due to high absorption by the many 

atomic resonances and the lack of high optical quality beam-splitters. Joyeux et. 

al. [50] have had some success using an interferometer based on a hi-mirror reflective 

splitter, but were limited by the trade-off between throughput and spectral resolu­

tion. Bonse and Hart [51] have been successful at significantly higher photon ep.er­

gies, where /3/5 << 1, using crystal diffraction techniques. Presently in the:EUV /SXR' · 

region, knowledge of 5 is determined either indirectly from a Kramers-Kronig trans­

formation [36] of the imaginary (absorptive) part, f3(w) [52-58], or by least-squar~ 

fitting Fresnel coefficients obtained from reflectance measurements [56, 59-62r' Nei-· 

ther of these methods provide an independent measurement of 5 ( w). The 5 ( w) values 

obtained fr.i:mi,the Kramers-Kronig relationship dep~nd entirely on the f3(w) values .. 

Because the Kramers-Kronig relationship requires a wide range of spectrum of f3(w) 

for one to obtain each point of 5(w) on the spectrum, errors in f3(w), especia1ly near 

absorption edges, affect the accuracy of the resultant 5(w) values. The accuracy of 

5(w) values determined from reflectance experiments are sensitive to surface rough­

ness, chemistry arid contamination, and to the fact that the accuracy of thi~ fitting 

depends strongly on /3/5, working well only for energies with /3/5 << 1 [56]. 

Here, an amplitude-division transmission interferometer, which can be used to 

measure both the dispersive and the absorptive parts of the refractive index indepen­

dently by determining the phase-shift and the visibility of interferograms, is presented 

with optimization provided by the XOR pattern discussed in Chapter 4. Be<::ause the 

determination of 5 directly from the phase-shift is independent of f3, this interfer­

ometer can. measure 5 .across the absorption edges without being affected by sharp 

spectral variations of the f3 value. In addition, the sample is probed in transmission 

at normal incidence in this interferometer, thus, it is less sensitive to errors associated 

with surface roughness,. chemistry and contamination, as compared with reflectance 

measurements, assuming that the thickness of the sample is much greater than that 

of the surface layer. 
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5.2 Interferometry 

5.2.1 Principle 

Interferometry can be used to extract phas'e information from an intensity detec­

tor. The amplitude-division transmission interferometer employed here utilizes the 

Fraunhofer diffraction, which states that the field distribution in the far-field can be 

obtained from a Fourier transform of the aperture field distribution. The underlying 

principle of operation of this interferometer is discussed here. 

Let U 0 (x, y) denote the field distribution in the aperture, the resultant far-field 

field distribution U 1 ( u, v) is given by [2] 

(5.1) 

As shown in Appendix C, the inverse Fourier transform of the far-field intensity 

distribution, IU1 (u, v)l 2 , is equal to the auto:..correlation of Va(x, y), i.e., 

+oo +oo . 

Jjlvi(u,v)rei~:(xu+yv)dudv = jjva(x',y')V~(x'- x,y'- y)dx'dy'. (5.2j 
-00 -00 

For an intensity detector placed .at a distance z away from the aperture, the 

detected intensity distribution IU1 1
2 can be recorded and then inverse Fourier trans­

formed to obtain the auto-correlation of the field distribution in the aperture. If the 

field distribution in the aperture is arranged in such a way that it can be written as 

U 0 (x,y) = 8(x,y)+ S(x,y), · (5.3) 

then its auto-correlation consists of four parts. The ·field quantities, S(x, y) and 

S* ( -x, -y), are present in the auto-correlation ofU 0 , together with the auto~correlation 

of 6(x, y) and that of S(x, y). For the interferometer used here, S(x, y) is of limited 

spatial extent and is spatially separated· in the inverse Fourier transform domain from 

the other three components. Therefore, the field distribution S(x, y) can be extracted 

and both the amplitude and phase distribution of S(x, y) can be obtained. 
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Figure5.l:Experimenta1Setup: A 5/"m pinhole is place at thefocusofthe beamlines 
optics to provide spatially coherent. illumination for this interferometer. The grating· 

. serves as the beam ~plitter tvliich effectively crea:tes.orders of virtual sources out of 
th~ pinhole;. The zpneplate then images the pinhole, together with all the virtw~J 

·. sources ·cre<ited by the grating, to .the plane of the sample mask. This niask consists 
of.two 5J..LmX 5J..Lm windows allowing only the two symmetric orders (m;n) == (:±:1, 1) 
to pass .. The test mate:dalis then shuffled in and out over one of the windows and 
anback,thinned EUV.:sensitive CCD camera records the respeCtive interferograms · 
for comparison .. ·. The functions of the grating and zoneplate have been combined 
into asingl~ · diffractive element following· the use of Fourier optical techniques and 

· · · nanofabrication. . · 
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5.2.2 The interferometer 

The interferometer used for the measurements presented here is shown concep-
. . 

tually in Fig. 5.1. The size of the pi:nhole, 5J-Lm, is chosen to be smaller than the 
. -. : . . ' ···. ; ; 

coherence area of the beam [9], guaranteeing spatially coherent illumination of the 

interferometer. In concept, the pinhole-diffracted beam then propagates through a 

binary transmission grating, which serves as a beam~splitter, followed by a zoneplate 

lens used to focus the !:>earns to the sample plane. As actually used, the gratin~ 

and zoneplate are combined for improved efficiency into a single diffractive element. 

This combined optical element provides two _side-by-side focal spots of equal inten­

sity, thus ideal for use in. interferometric experiments. The properties of the XOR 

pattern related to the operation of the-interferometer are summarized in Sec.5.2.3. A 

comprehensive study of this XOR pattern is presented in Chapter 4. 

The sample mask, consisting of side-by-side window pairs, is placed at the back 

focal plane of the zoneplate. The window pairs consist of two 5J-Lm x 5J-Lm cross­

sectioned openings. Reference window pairs are free of test material, while other 

pairs have one window coated with test material. In taking data, one first aligns a 

reference window pair to the two side-by-side first order focal beam spots and records 

a reference interferogram. One then· moves the sample mask to illuminate a window 

pair in which one side contains test material, ~nd records the test interferogram. 

By introducing the test material into one arm of the interferometer, the fringes of 

the interferogram shift due to the refractive properties of the material, essentially a 

path integration of b(w). Additionally, the visibility of the interferogram is reduced 

due to absorption. The interferograms are recorded on a back-thinned EUV -sensitive 

CCD camera. The complex index of refraction is determined by comparing these two 

interferograms for fringe-shift and visibility change, which are directly related to <5 

and /3, respectively. 

5.2.3 Novel diffractive optical element 

The XOR pattern described in Chapter 4 is employed here by the interferometer 

forimproved efficiency, which is essential at these highly absorptive wavelengths. The 
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use of two sequential diffractive elements (the grating-and zoneplate), ~ach of which 

has a theoretical efficiency to first order of 1/ 1r2 , limits the overall efficiency of the 

interferometer. This efficiency can be significantly improved by consolidating the 

functionality of the grating and the zoneplate into a single diffractive optical element. 

This is done by combining the binary grating and zoneplate through a bit-wise XOR 
operation. Specifically, the XOR pattern is obtained by first pixelizing the binary 

grating and zoneplate. Each pixel is either 1 or 0 for transmission and absorpti~n', 
- - . 

respectively. The two pixelized patterns are then overlapped and compared pixel by' 

pixel to produce the resulting "XOR" pattern, i.e. at each pixel position, if the pixel 

val~es ~f the gratingand'zoneplate are the same (both O's or both 1's), the v~lue 
of the corresponding pixel on the "XOR" pattern is 0. Otherwise, the value of the 

corresponding pixel on the "XOR" pattern is 1. 

The two optical eiements used in this XOR pattern, a 50% duty-cycle binary 

amplitude grating of period d, and a 50% duty-cycle binary amplitude zoneplate of 

diameter D and outermost zone-width /:j.r, c~n be represented by 

G(x)-= ~ [ l+sgn( cos 
2:x)] 

and 

-1[ ( 7r(x2+y2))] ZP(x, y) = 2 1 + sgn cos f:j.r(D _ /:j.r) , 

respectively [2]. Expanding these two patterns in their respective Fourier series 

and noting that the XOR pattern of the grating and zoneplate can be expressed 

as XOR(x, y) = G(x, y) + ZP(x, y)- 2G(x, y)ZP(x, y), we have 

1 
[ 

00 
• ( /2) --2mnxl [ oo' · ( /2) · nn(x

2
+y

2
) ]' XOR(x, y) =- __,. 2 L sm m1r e-~-d- L sm n1r · e-z ~r(D-~r) ... 

2 m1r n1r m=-oo n=-oo 
m#O n#O 

(5.4) 

Examining the first order terms in both the grating and zoneplate, i.e. (m, n) = 

(±1, 1), its efficiency is given by the square of its coefficient [2(1/7r)(1/7r)]2 = 4/7r\ 

which is a factor of 4 increase in optical throughput as compared with a separate 
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grating and zoneplate setup. Since the membranes oh which 'these· optical elements 

are fabricated have finite absorption, there is an additional gain of efficiency due to 

the fact that only one membrane is required. 

This combined diffractive element, when illuminated bya uniform wavefront, has 

the interesting property that it produces two symmetric off-axis focal spots, ( m, n) = 

(±1, 1), at the back focal plane of the zoneplate. This can be seen by multiplyingthe 

two exponentials in Eq.(5.4) and completing the square for x-terms. The separation 

of these two beam spots is determined by 

~ . _ 1('/d)!:1rD ~ 2!:1rD 
x s 2 sm "' A . - d . (5.5) 

Note that this separation is independent of wavelength A. Thus as the wavelength 

is varied for spectral determinations of 6 and (3, the f~cal length ( di~tance from the 

XOR pattern to the sample mask) varies, but the lateral separ~tion of the two beam 

spots remains fixed .. Therefore, the index of ref~ action, as a fu~ction of wavelength 

can be obtained simply by translating the same ~ampl~ ,m~k ~long the optical axis. 
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5.2.4 Analysis method 

A Fourier transform method (9, 44] is used to extract both the phase-shift and 

visibility from the interferograms. The extracted· values are averaged over the full 

area of the interference pattern. 

Phase shift 

The phase shift, !:1¢, is simply the difference between the two independently re­

constructed phase maps from the interferograms. The value of 8 is determined by 

(5.6) 

where .A is the wavelength and t is the thickness of the sample. 

The Fourier transform method used here to determine the phase shift !:1¢ has the 

advantage that the phase information contained in the spatial-frequency modulated 
,.· 

fringes is isolated into the first order peaks in the Fourier (i.e. spatial frequency) 

domain. Filtering of the first order peak in the Fourier domain removes the effect 

of all stray lights that does not have an identical spatial frequency as·-that of the 

fringes. Figure 5.2 shows the analysis process of the Fourier transform method. The 

interferograms are first Fourier transformed into the Fourier domain, where the first 

order peaks positioned at the spatial frequency of the· fringes are separated from all 

other spatial frequency components. A Gaussian filter in the Fourier domain is used 

to extract the first order peak. The extracted first order peak is then inverse Fourier 

transformed to propagate back to the CCD plane, where the field distribution caused 

from one of the windows is now obtained. The phase information, wrapped between 

±?T, can now be retrieved from the field distribution. The phase shift between the 

two interferograms, !:1¢, is determined simply by subtracting the two wrapped phase 

distributions. Note that the linear phase terms caused by the off-centered first order 

peaks are identical in the two wrapped phase distributions, and cancel each other 

after subtraction. The resultant phase map is only valid over the region where the 

fringes exist on the CCD and the phase shift number !:1¢ is quoted as the average 

over this valid region. 
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Visibility 

The illumination on the interferometer provided by the pinhole is essentially coher­

ent . The visibility on the CCD is therefore solely determined by the relative intensity 

of the two focal spots after the window-pair. The relative optical intensity of the two 

beams, after propagating through the sample mask, is related to observed visibility 

of the interferogram by 

V= 2fo 
1+a 

(5.7) 

where a is the relative intensity after propagating through the sample. From the 

relative intensity a, the value of f3 is obtained by 

41f 
a= exp{ -Tf3t}. (5.8) 

Fourier transform method is again used to extract the visibility from the interfer­

ograms. The separation between the two foci is Xs = 10 J-Lm, which is smaller than 

the pixel size of the CCD ( 25 J-Lm). Therefore, the far- field diffraction patterns from 

the two foci effectively overlap on the CCD. Additionally, as shown in the analysis 

of the XOR pattern , the two first order foci are identical. Their far-field diffraction 

patterns after propagating through the sample mask onto the CCD are again identical 

apart from their relative intensity. Under these circumstances, the visibility observed 

on the CCD is directly determined by the relative intensity of the two foci after the 

sample mask, i.e. a. Specifically, the observed intensity on the CCD is give by 

I(u, v) = I0 (u, v) [ (1 + a)+ 2vacos(~: x8 u)] (5 .9) 

where A is the wavelength, z is the distance from the sample mask to the CCD, and 

10 ( u, v) is the diffraction pattern of one of the first order foci had the other focus 

were blocked. Figure 5.3 shows the coordinate system used in Eq. (5.9). After Fourier 

transform, terms inside the [·] gives 

(5.10) 

The Fourier transform of I(u, v) is given by the convolution of Eq.(5.10) and the 

Fourier transform of ! 0 ( u, v) . Therefore, the visibility is obtained in the Fourier 
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domain by two times the ratio of the integration under the first-order peak to that 

under the zeroth-order peak. This analysis method has been used in Chapter 2, where 

a = 1 and visibility is solely determined by the magnitude of the complex coherence 

factor IJLd. The visibility obtained by this Fourier method is an average over the 

entire area where fringes exist. 

1 

a 
1 

1 

k"E--x-z ------?>]/u 
Figure 5.3: Fourier method for determining visibility. 

5.3 Experimental setup 

This experiment is performed at undulator beamline 12.0 of the Advanced Light 

Source, a third generation synchrotron radiation facility [35] . Undulator radiation 

provides the required EUV photon flux and, with pinhole spatial filtering, the spatial 

coherence required for the interferometric experiments. The beamline monochroma-
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tor provides a spectral resolution )..j 6.).. = 1100. As described above, a single XOR 

diffractive element combining a grating (d = 16 J.Lm) and zoneplate (D = 400 J.Lm, 

6.r = 0.2 J.Lm) is used for optimum efficiency. This new diffractive element is fab­

ricated using electron beam patterning and nanofabrication techniques [22]. The 

separation of the two beam spots at the back focal plane is x 5 = 10 J.Lm. 

The sample mask is also fabricated by electron beam lithography on a 100 nm 

thick silicon nitride membrane. The thickness of the Si3 N4 membrane is relatively 

uniform over the 10 J.Lm separation of the two beam spots. The sample is prepared 

with the test material being evaporated onto the nitride membrane. The thickness of 

the test material is measured both by a profilometer and a spectral reflectivity system 

to an accuracy ±1 nm. 

The overall distance from the pinhole to the CCD detector is 420 mm and the 

distance between the pinhole and the XOR pattern is 110 mm. The separation be­

tween the XOR pattern and the sample mask is determined by the first order focal 

length, which is a function of wavelength A. For instance, at 72.5 e V, the wavelength 

is)..= 17.1nm and the first order focal length is 4.7mm. Therefore, the distance 

from the sample mask to the CCD detector is around 300 mm over the spectral range 

considered. Given the dimension of the window-pairs, 15 J.Lm x 5 J.Lm, Fraunhofer 

approximation can be used for the light propagation from the sample mask to the 

CCD. 

5.4 Experimental results 

5.4.1 Aluminum across its L-edge 

Measured o and j3 values for aluminum 67.0±0.1nm thick are shown in Fig. 5.4 in 

blue. The results obtained with this interferometer resolve the fine aluminum L-edge 

structure, i.e. the L3 edge at 72.7 eV and the L2 edge at 73 .1 eV, in both o and /3. 
Moreover , it is also evident that the shapes of the o and j3 curves, though determined 

independently, are closely related. The sharpest increase in j3 occurs at 72.7 e V which 

coincides exactly with the dip of the o curve at the L 3 edge. Furthermore, the sharp 
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increase of f3 at 73 .1 e V also coincides exactly with the dip of the o curve at the 

£ 2 edge. For comparison, the best available data for aluminum refractive indices is 

shown in red [63], where the o value is obtained by Kramers-Kronig transformations 

of f3 values over a wide spectrum. The two data sets agree fairly well both in o and 

[3 . 

5.4.2 Nickel across its M-edge 

Measured o and f3 values for nickel of thickness 20.6±0.1nm are shown in Figs. 5.5. 

The Nickel Ivh edge at 66 .2 e V is clearly resolved and the o and f3 values at this edge 

are seen to be closely correlated. The error-bars for the nickel data are slightly larger 

than that of the aluminum data, mainly because of the lower photon flux available 

in our experiment at the nickel M-edge. Thus, longer exposure times were required 

resulting in greater noise due to vibration. Improved accuracy at the absorption 

edge will require increased system stability or increased optical throughput. The best 

available refractive index values of nickel [64] are shown in red for comparison. 

5.5 Conclusion 

The first direct measurement of the dispersive part of the index of refraction 

at EUV wavelengths is performed using interferometry. A new diffractive optical 

element based on Fourier optical techniques is employed in the interferometer for 

improved efficiency. This interferometer directly measures o values at wavelengths 

where it is desired. No compilation of f3 values over a wide spectral range is needed . 

As a first example, o and f3 values of aluminum and nickel are obtained by this 

interferometer at wavelengths close to their atomic resonances , i.e. Al L-edge and 

Ni M-edge. Extensions of these studies to additional materials (Si, Mo, ... ), and to 

shorter wavelengths (1 to 5 nm) in the soft x-ray spectral region can be performed 

with the same interferometer. 
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Figure 5.4: The experimental resul ts are shown in blue. It is evident that the alu­
minum L-edge is resolved both in 6 and f3 where the position of the £ 2 and £ 3 edges 
are 73. 1 e V and 72 .7 e V, respectively. Note that t he values of 6 and (3 are obtained 
direct ly (independent ly) from phase shift and visibility change, respectively. The 6 
and (3 values from Ref. [63] (in red) is derived from Kramers-Kronig transformation 
of a compilation of absorpt ion and reflectance data. The two data sets agree fairly 
well both in 6 and (3. 



83 

Nickel 
0.06 ,......------,....-------,r-------r-------, 

I 

0.02 ~- --------L------ --

I I 

0 --~---------r--------

1 

-0.02 
I 

~- - -- ----------------1 I 
I 

-0.04 -- ~ --- -- - ---~--------

-0.06 ------ -- T- -- ---- -,--------- r--- - ----

60 65 70 75 80 
Pho on Energy [eV] 

M3=66.2 eV M2=68.0 eV 

I ----- ---, - I 
-~----- -- - - r --------0.14 

1 

0.12 

0.1 -- ----- ~ ---- - -- - - r- ---- ---
1 

I 

-- ----- - ~ ------- - - ~ --------
1 I 

0.0%0 65 70 75 80 
Photon Energy [eV] 

Figure 5.5: Nickel: The experimental results are shown in blue. The M3 edge at 
66 .2 e V is clearly resolved and the 5 and f3 values at this edge are seen to be closely 
correlated. The typical exposure time ("' 200 sec) for the nickel interferograms is 
approximately 10 times longer than that of aluminum due to lower beamline flux at 
low energy. The stages in the experimental setup drift over longer exposure time, 
thus causing larger error bars in the nickel data. For comparison, current standard 
nickel refractive indices are shown in red. 
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Chapter 6 

Conclusion 

The higher spatial resolution provided by employing shorter wavelengths corrobo­

rates the importance of advancing optical techniques at EUV wavelengths. As a result 

of this incessant desire of seeing and printing smaller features, new developments in 

short wavelength optics are continuously emerging. Optical coherence techniques , 

based on Fourier and statistical optics, constitute a new and pioneering aspect in the 

progression of EUV optics. In this dissertation, experiments that confirm and charac­

terize the spatial coherence properties of EUV undulator radiation are presented. In 

addition, the first Fourier optical element, the XOR pattern, is described and utilized 

in the first direct measurement of refractive indices in this wavelength region. 

Understanding the spatial coherence properties of a radiation source is essential 

to the design and implementation of concomitant optical systems. Unlike visible 

light optics, the spatial coherence properties of the relatively new EUV radiation 

sources are not well understood. Therefore, the first experiment in this disserta­

tion was aimed at characterizing the spatial coherence properties of EUV undulator 

radiation using the Thompson-Wolf two-pinhole method. The result of these experi­

ments demonstrate that, with appropriate spatial filtering, high spatial coherence at 

EUV wavelengths region is achievable with undulator radiation at third generation 

(small electron beam phase space) synchrotron facilities. New opportunities are thus 

presented for experiments that require high spatial coherence, e.g. high resolution 

interferometry [41, 42, 65], holography [66, 67], coherent scattering [68, 69], and fo-
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cused microbeam analysis [70], etc. In addition, this experimental characte~ization 

uncovers an interesting characteristic of the undulator radiation, i.e. the difference 

iri the measured horizdntal and vertical coherence profile, These studies have verified 

that the Zernike approximation, which is most standard in visible light optiCs; is not 

applicable here. This is a consequence of the exceedingly small vertical source size of 

the Undulator. The effect of this small vertical source size on the resultant numerical 

coherence distribution at the image plane of the condenser evokes further theoretical 

studies that are described in Chapter 3. For the EUV tmdlilator that acts as a con.: 

denser which re-images the incoherent source to its conjugate plane, rigorous spatial 

coherence propagation based on the Huygens-Fresnel principle is necessary and used 

in Chapter 3 in order to obtain the correct mutual intensity distribution. 

As statistical optics is utilized in Chapter 2 and 3, Chapter 4 and 5 exploit Fourier 

optical techniques. A novel diffractive optical element based on Fourier optics, the 

XOR pattern, is demonstrated for the first time. This XOR pattern substantially 

improves the flux throughput and therefore resolves the high absorption problems at 

these wavelengths. Another interesting property of this XOR pattern is its generation 

of two symmetrical, off-axis, foci. This symmetricalness, together with the improved 

optical throughput, makes the XOR pattern an ideal candidate for interferometry at 

EUV wavelengths. Previously, the high absorption and the lack of high-quality beam-'­

splitters in the EUV wavelength region precluded attempts at direct at-wavelength 

interferometric measurements of refractive indices. With this new XOR pattern, the 

first direct measurement at EUV wavelengths of the dispersive part ( o) of the refrac­

tive index is performed for aluminum around its L edge, and nickel around its M edge. 

The measured values are in good agreement, but more detailed and more accurate 

than current standards, which are obtained indirectly from Kramers-Kronig transfor­

mations of the absorption data. The use of this new XOR pattern brings sophisticated 

Fourier optical techniques to shorter wavelengths. Furthermore, the demonstrated ca­

pability in the highly absorptive EUV wavelength region opens up new opportunities 

on nanometer scale applications and element-specific identifications. 

This dissertation on coherence techniques has accomplished its goal in advanc­

ing two frontiers of short wavelength optics: coherence characterization of radiation 



86 

s0un;es and .the introduction of novel optical elements. A thorough understand­

ing of the spatial coherence properties of the .undulator radiation has been achieved 

through both experimental and theoretical studies. The invention of a novel XOR 

pattern demonstrated the first application of the Fourier optical techniques in short 

wavelength optics. This inventi()n also enabled the first direct meas,1,1rement of the dis­

persive part of 1:efractive indices at EUV wavelengths. Optica}coh~rence te<;:hniques 

introduced in this dissertation have advanced the field of short wavelength: optics and 

will continue to play an essential role in the development of short wavelength opti~s. 
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Appendix A 

Free space coherence propagation· 

of an incoherent source with 

Gaussian-shaped intensity 

·distribution 

A.l Fourier transform of a Gaussian distribution 

function 

A Gaussian distribution with parameter a is given by 

1 t 2 

g(t) =- exp(--). av'in 2a2 
(A.l) 

Note that this distribution function is normalized, i.e. 

r+oo 
}_

00 

g(t)dt=l (A.2) 

The Fourier transform of this normaJized Gaussian function is given by 

(A.3) 
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Further evaluate this integral to get 

(A.4) 

Notice that because g(t) is an even function, its Fouriertranform G(f) is a real-valued 

function. 

A.2 Coherence distribution after propagatingfrom 

the undulator exit-plane 

A.2.1 · Van Cittert-Zernike. Theorem 

The Van Cittert-Zernike theorem governs the coherence propagation of an inco­

herent source. 

(A.6) 

where 

and (A.7) 

Note that here (~x, ~y) is defined as 

(A.8) 

which is different from that in Goodman [3], where (D.x, D.y) is defined as (x2 -x1 , y2 -

y1)_. Therefore, the sign of the exponential term in Eq.(A.6) changes accordingly. 
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Notice that J(x1, Y1; x2, Y2) is in general a function of the four coordinates (x1., y1; x2, y2), 

but its modulus of [J(x1, y1; x2,·y2)1 is a function of the coordinate difference (~x, ~y) 

only, i.e. 

. J(~x, ~y) = fJ:(xt, Yt; X2, Y2)[ 

=(-\:)2 JI:oo Is(!;,, rJ)e-i~:({b.x+71b.v) df;,drJ 
(A.9) 

The Van Cittert-Zernike theorem can be expressed in the normalized form as 

follows, using the complex coherence factor p,, 

(A.lO) 

Note again that the p,(x1, y1; x2 , y2 ) is in general a function of the four coordinates 

(x1, y1; x 2 , Y2), and its modulus [p,(x1, y1; x2 , y2)1 is a function of the coordinate dif­

ference (~x, ~y) only, i.e. 

Jl-(~x,~y) = [JL(Xt,Yt;x2,Y2)1 

J t:oo Is(!;,, rJ)e -jJ:; ( {b.x+'f/b.y) df;,d'f} 

Ji~oo Is(!;,, rJ)df;,dT] 

(A.ll) 

A.2.2 Incoherent source with Gaussian intensity distribution 

An incoherent source, whose intensity distribution is Gaussian with (a{, a 71 ), can 

be expressed as 

I,(f..Tf) = Cexp{ -( 2:l + 2:~)} (A.12) 

Given this Gaussian intensity source, its coherence distribution after propagating 

a distance z can be determined by Eq.(A.lO). First, the integral in the numerator is 
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.evaluated to be 

!~ r+oq c exp{ :___ ( e2 + 7}22) }e-'.i~: (eLlx+1)Lly) d~d1] 
Loo 2ae 2a11 

= c",v'21Texp{-21r'"(( ~:)'} x ",v'21Texp{ -2"'"~e!)'} (A,l3) 

= C2""<"• exp {- [ 2{A~~;;;" )' + 2( A~~;:")'] } 
Note that Eq.(A.5) is used with (Je, f 11 ) being given by 

to arrive at the above result. Also note that the result of this double-integral is 

real-valued. 

Secondly, Eq.(A~2) is used to obtain the deimminator as 
- ~ - " . - --

Jl+oo e 7}2 
C exp{-(-2 + - 2 ) }d~d1J 1 C 21raea11 • -oo 2ae 2a11 

(A.15) 

Therefore, the resultant complex coherence factor J.L after propagating a Gaussian-

shaped incoherent source by a distance z is 

(A.l6) 

and its modulus IJ.LI is given by 

(A.l7) 

To conclude, given an incoherent source of Gaussian intensity distribution (ae,a11), 

the modulus of the complex coherence factor at a distance z away from the incoherent 

source is again Gaussian in coordinate difference (~x, ~y) with 

(A.18) 
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Appendix B 

Pupil function of a thin lens 

Under the paraxial approximation, the amplitude transmittance function of a thin 

lens, t 1(x, y), can be written as, 

(B.l) 

where the complex pupil function, P(x, y ), accounts for the finite aperture of the thin 

lens and the exponential term represents the refractive function of a thinlerts of focal 

length f. The phase of P accommodates lens aberrations, and IPI may vary within 
. . 

the aperture to account for apodizations. Also note that P = 0 outside the lens 

aperture. 

The complex pupil function, P(x, y), can be written explicitly as 

P(x, y) = JP(x, y) I exp{jk<I>(x, y)} (B.2) 

where k = 2n/A. and <I>(x,y) is the aberration function. 
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Appendix C 

Holographic interferometry 

Retrieving phase information from 

an intensity detector 

C.l Mathematical preliminaries 

Theorem C.l Convolution theorem states that the convolution of two func­

tions in time domain is equivalent to the multiplication of their respective Fourier 

transforms in the Fourier {frequency} domain. 

Proof 

Given two Fourier transform pairs g(t) {::} G(f) and h(t) {::} H(J), i.e. 

r+oo 
G(f) = j -oo g(t) e-j2nftdt (C.l) 

and similarly for h(t) {::} H(f), their convolution in time domain is defined by 

r+oo 
g&Jh(t)- 1-oo g(T)h(t- T)dT. (C.2) 



Fourier transform to get 

= G(f)H(f) o 

Theorem C.2 Auto-correlation theorem can be provedfrom the convoluc.· 

tion theorem. ;i' 

Proof 

Let H (f) = G* (f), then 

. ,,;,; 

Therefore, 

jG(f) j2 
= G(f)G*(f) <¢::::::;. g(t) ® g*( -t) 

= l:oo g(r)g*(-(t- r))dT 

= l:00

g(r)g*(r- t)dr 
0 
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C.2 Holographic interferometry 

C.2.1 Far-field coherent field p'ropagation 

In the far-field, i.e. under the Fraunhofer approximation, which requires that 

(C.3) 

where k = 21r />.., the field distribution U{(u, v) at a distance z away from the aperture 

can be obtained by Fourier transforming the aperture field distribution U 0 (x, y), i.e., 

Note that the coordinate system is d~fi_ned in Fig:' 5:3._ 

Therefore, if the far-field field distribution is given, the field distribution in the 

aperture can be obtained. However, a regular detector can only record the intensity 

distribution, not the field distribution. Using the intensity distribution recorded in 

the far-field, an inverse Fourier transform gives the auto-correlation of the aperture 

field distribution. As will be described next, holographic interferometry utilizes this 

property to retrieve field distribution in the aperture from an intensity detector placed 

in the far-field. 

C.2.2 From intensity. dh;tribution to auto-correlation 

Given the intensity distribution in the far-field recorded on a detector, i.e. IU 1 12 , 

re-write as follows, 

jui(u,v)j
2 

= UI(u,v)Ui(u,v) 

[ 

+oo l [ . +oo l * 
= >..;z

2 
J J Va(x', y')e-j~:(x'u+y'v)dx'dy' If V 0 (x", y")e-j~:(x"u+y"v)dx"dy" 
-oo -oo . 
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Perform the inverse Fourier transform of IU1(u, v)l 2
,'denoted as AuJx, y), 

+oo 

AuJx, y). I flul(u, v)r ej~:(xu+yv)dudv 
-00 

= A;z, ]J[JJ. · dx'dy'] [JJ... dx"dy"r di:<=+•"ldudv 
-00 -00 -00 

+oo +oo 

= ).2

1
z2 I I dx'dy'Ua(x', y') I I dx"dy"U~(x", y") 

(C.5) 

-00 . -00 

+oo -xI I dudvexp{ -j~: [u(-x + x'- x") + v(-y + y'- y")]} 
-oo 

6 ( -x+x' -x" -y+y' -y") 
)..z ' )..z 

Noting that b(ax) = 1 ~ 1 6(x), Eq.(C.5) evaluates to 

+oo +oo 

Auo(x, y) =If dx'dy'Ua(x', y') I I dx"dy"U~(x", y")5( -x + x'- x", -y + y'- y") 

-oo -00 

+oo =I I U 0 (x', y')U~(x'- x, y'- y)dx'dy' 

-oo 

(C.6) 

Therefore, it is shown that the inverse Fourier transform of the far-field intensity 

distribution, IU 1 1
2 , is equal to the auto-correlation of the aperture field distribution, 

i.e. 
+oo +oo I IIU1 (u, v)l

2 
ei~:Cxu+yv)d~dv =I I U 0 (x', y')U~(x'- x, y' ~ y)dx'dy'. (C.7) 

-00 -oo 

Note that the Fourier transform of IU1 (u,v)l 2 
is Auo(-x, -y). 

C.2.3 Aperture geometry 

To achieve field retrieval, the aperture geometry has to be arranged such that 

U 0 (x, y) = 6(x, y) + S(x, y), (C.8) 
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where ·S(x,y) is the .field quantity of interest. The term S(x,y) therefore exists in 

the resultant auto-correlation of V 0 (x, y). In practice, S(x, y) has to be sufficiently 

separated spatially from the 8(x,y) function in order for the auto-correlation to isolate 

the field quantity of interest, S(x, y). 



Appendix D 

Phase grating 

A phase grating is an optical element whose "grating" functionality modulates 

the phase of the incident field. As a comparison, an amplitude grating modulates the 

.· amplitude of the incident. field. 

D.l 1r-phase-shift grating 

A 1r-phase-shift grating is the most commonly used phase grating, defined by 

TI(x) = exp{j1rG(x)} (D.1) 

where 

1 1 [ 27rx ·(s- d/2)] · G ( x) = 2 + 2 sgn sind + sin 
2 

. (D.2) 

The period of this phase grating is denoted by d ,and s is the length of the grating 

tooth. Note that 0 ::; s ::; d. Figure D.1(a) shows the amplitude and phase of the 

transmission function of this 1r-phase-shift grating. The phase change imposed by this 

. 1r-phase-shift grating is alternating between 1r and 0, with the span of 1r-shift beings. 

For comparison, Fig. D.1(b) shows the transmission function of an amplitude grating 

with identical period d and tooth length s. 
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Figure D.l: (a)1r-phase-shift grating. (b)Binary amplitude grating. 

D .1.1 Fourier seri~13 ~xpansion 

Since this 1r-phase-shift grating is a periodic structure, its Fourier series expansion 

can be written as 

+oo 
IT(x) = exp{j7rG(x)} ·~ L an ei2nnfox (D.3) 

n=-oo 

where .the fundamental frequency fo is given by 

(D.4) 

and the Fourier coefficients an is obtained by 

Case n = 0 For 71, = 0, the zeroth order coefficient a0 is given by 
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Case n =/= 0 For all other n =/= 0 terms, the n-th order coefficient an can be obtained 

by 

ei'rr -1 . 
an = - e-J21rnfox 

d j27rnfo 

= ~ 1 [1 _::_ e-j27rn(s/d)] 
J7rn 

x=s 

x=O 

x=d 
1 -1 + _ . . e-j21rn/oX 

d ]27rnfo · 
X=S 

Fourier coefficients To conclude, the Fourier coefficients of a 1r-phase-shift grating 

is given by 

(D.5) 
for n .· ±1, ±2,±3, .... 

where 

(D.6) 

is the duty-cycle of the grating. Note that when the du~y-cyc}e 7'J equals to 0.5, even 

orders (n = 0, ±2, · · ·) disappear. 

D.2 Efficiency of 1r-phase-shift grating 

The relative strength of the diffraction orders from a 1r-phase-shift gra.tirig is pro­

portional to the modulus square of its Fourier coefficients. As will be shown later by 

the Parseval's theorem, the summation of the modulus square of the Fourier coeffi­

cients over all the diffracted orders of a 1r-phase-shift grating equals to 1. Considering 

that the 1r-phase-shift grating here does not have any absorption, the diffraction effi­

ciency is simply the modulus square of the Fourier coefficients. 

Theorem D.l Parseval's theorem for a periodic function: Given the Fourier coef­

ficients Cn of a periodic function f(t) with period T, the Parse.val's theorem states 

that 
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Proof 

The Fourier series decomposition of the periodic function j(t) can be written as 

Note that 

+oo 

j(t) = L Cn ej27rnt/T 

n=-oo 

+oo +oo 

J(t)f*(t) = I: I: 
n=-oom=-oo 

C c* ej21r(n-m)tjT 
n m 

and integrate both sides of the above equation over one period T 

D 

Applying the Parseval's theorem to Eq.(D.3), i.e. the transmission function of the 

periodic 1r-phase-shift grating, one finds 

(D.7) 

Therefore, the diffraction efficiency of each diffracted order from the 7r-:-phase:-shift 

grating is simply the modulus square of its Fourier coefficient, ian 12 . 

Using the following identity, 

the diffraction efficiency of a 1r-phase-shift grating is 

for n=O, 
(D.8) 

for n = ±1, ±2, ±3, · · · . 
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D.2.1 Efficiency of a 50% duty-cycle 1r-phase-shift grating 

For a 50% duty-cycle 1r-phase-shift grating, i.e. {) = s / d .:..._ 0.5, its diffraction 

efficiency is given by 

for n = ±1, ±3, ±5, · · ·. 
. - .(D.9). 

otherwise 

This 50% duty-cycle 1r-phase-shift grating has only odd diffraction orders. This is a ' 

desirable property in many applications since there is no strong zeroth order present 
_, 

in its far-field diffraction pattern. 
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