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Abstract

Coherence Techniques at Extreme Ultraviolet Wavelengths
by

Chang 'Chang

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Scienceg
University. of California, Berkeley

Professor David Attwood, Chair

The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent
_years is mainly driven by, the d.esire of printing and bbserving ever smaller features,
‘as in lithography and microscopy. This attribute is complemented by the unique op-
portunity for element specific identification presentédvby the large number of atomic
resonances, essentially for all materials in this range of phbton en‘erg-ies.. Together,
~ these have driven the need for new shorf-wavélength radiation sources (e.g. third gen-
eration synchrotron radiation facilities), and novel optical components, that in turn
permit new research in areas that have not yet been fully explored. This dissertation
is directed towards advancing this new field by contributing to the characterization of
Spatial coherence properties df undulatér radiation and, for the first time, introducing
bFourier optinal elements to this short-wavelength spectral region.

The first experiment in this dissertation usés the Thompson-Wolf two-pinhole

method to characterize the spatial coherence properties of the undulator radiation

at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radia-:

tion is demonstrated with appropriate spatial filtering. The effects of small vertical
~ source size and beamline apertures are observed. The difference in the measured hor-
izontal and vertical coherence profile evokes further theoretical studies on coherence
propagation of an EUV undulator beamline. A numerical simulation based on the

Huygens-Fresnel principle is performed.

P



Accurate knowledge of the refractive index in this wavelength region is of fun-
damental impbrtance for the design of optical systems. However, due to the high
absorption, no previous direct measurement of the real part of the refractive index
has been performed at EUV wavelengths. To overcome these limitations, a novel
diffractive optical element based on Fourier optics techniques is invented, fabricated,
and demonstrated for the first time. The improved efficiency of the interferometer
employing this novel optical element ehables the first direct measurement of the re-
fractive index at EUV wavelengths. Both the real and imaginary parts of the complex

“refractive indices are measured directly, without recourse to Kramers-Kronig t:ans-
formations. Data for Al and Ni, in the vicinity of their L and M-edges, résPectively,
are presented as first exam»;)les of this technique. .

The first novel Fourier optical element used in the above EUV interferometer is also
discussed in detail. This diffractive optical element, when illuminat'ed. by a ﬁniform
plane wave, will produce two symmetric off-axis first order foci suitable for inter-
ferometric experiments. In addition to the symmetricalness, the flux throughput is
improved by ~10 times as compared with separate elemenﬁs pfoviding the same func-
tionality. The efficiency of this optical element is measured. Future work on computer
generated holograms is suggested and compared with the Fourier optical element. The
invention of this Fourier optical element opens a new era in the use of sophisticated op-

tical techniques at short wavelengths.




To the loving memory of my Father, -
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Chapter 1
Introductivon

1.1 : Motivation

Coherent radiation offers important opportunities for both science and- technol-
ogy. The well defined phase relationships characteristic of coherent radiation, allow
for diffraction-limited focusing (as in scanning microscopy), set angﬁlar' limits on
diffraction (as in protein crystallography), and enable the convenient recording of
interference patterns (as in interferometry and holography). While coherent radia-
tion has been readily available and widely utilized at visible wavelengths for many
years [1-7], it is just becoming available for wide use at Shorter wavelengths [8-11].
AThiS is of great interest as the shorter wavelengths, from the extreme ultraviolet
(EUV: 10-20 nm wavelength), soft x-fay (SXR: 1-10 nm), and x-ray (<1 nm) regions
of the spectrum, correspond to photon energies that are well matched to the primary
electronic resonances (K-shell, L-shell, etc.) of essentially all elements, thus provid-
ifig a powerful combination of techniques for the elemental and chemical analysis of
physical and biologicél materials at very high spatial resolution. Tunable, coherent
- radiation in these spectral regions is available primarily due to the advent of undulator
radiation at modern synchrotron facilities [12-18], where relativistic electron beams
of small cross-section transverse periodic magnet structures, radiating very bright,
powerful, and spatially coherent radiation at short wavelengths. The development

of optical elements follow as short wavelength radiation sources are made available.



Due to the large absorption at these short wavelengths, devising optical elements that
serve the specific needs of an application is of crucial importance. This dissertation is
directed towards advancing this new field by contributing to the characterization of
spatial coherence properties of undulator radiation and, for the first time, introducing

Fourier optical elements to this short-wavelength spectral region.

1.2 EUYV wavelength: opportunities and challenges

With proper optics, shorter wavelength results in -better fspaftial f;r.es"olution‘for
imaging systems. Lithographic tools (steppers) used by the semiconductor induétry
to print nanometer transistor patterns are constantly evolying toward shorter wave-
lengths in order to reduce the circuit dimension. High power EUV radiation produced
by xenon laser plasma sources and multi-layer reflective mirrors working”speciﬁcal'ly
at 92.5eV (A = 13.4 nm) provide the crucial optical flux throughpuf that makes EUV
Lithography the leading next generation lithographic technology for feature sizes of
45 nm -and smaller. In seeing smaller features, soft x-ray microscopes have been an
increasingly important tool in both biological [19,20] and magnetic material stud-
ies [21]. High resolution (outermost zone-width Ar = 25 nm) zoneplates fabricated
by electron-beam tools [22] deliver the required diffraction-limited wavefront for x-ray
microscopic imaging. The water-window at 500eV (2.4 nm) makes x-ray microscopes
especially attractive for biologist because. of its capability to see samples in vivo at a
higher spatial resolution as compared with:visible-light microscopes. _

The various atomic resonances are the element-specific.signatures of the particu-
lar materials, and the capability of probing atomic resonances at-wavelength allows
accurate element-sensitive analysis that is essential in rhaterial science:[23], environ-
mental science [24], and surface science [25]. Photoelectron specfroscopy and absorp-
tion spectroscopy are the two most commonly used experimental techniqties in this
respect [26]. Astronomers also exploit this element-specific property by employing
telescopes with narrow bandpass multilayer mirrors to detect specific emission lines
of atoms/ions [27].

Concomitantly, the challenges in EUV/ SXR research stem from exactly the same



properties that provide these enormous opportunities. The large amount of atomic
resondnces of essentially all materials at EUV/SXR, spectral region results in high
absorption, thus limiting experimehtal techniques. For example, the use of traditional
refractive lenses is prohibited due to the large absorption at these wavelengths. This
obstacle of high absorption has'been continuously attacked from both fronts: seeking
EUV/SXR radiation sources of higher power, and creating optical elements that can
more /eﬂ'ectively' harness the short wavelength radiation.

.Th'e advent of high power, high brightness, short wavelength radiation provided
by the third generation synchrotron radiation facilities, e.g. undulators ’and‘ wiggiers,
essentially gave birth to this'nev& field. Continuing efforts to develop a fO-ilrth— gener-
ation synchrotron radiation source, perhaps a free electron laser [28], is expected to
produce a higher power, higher brightness and highly coherent x-ray source.
~ The development of optical elements comprises the other front of the exertion
1n short wavelength optics. As mentioned above, refractive lens are ineffective at
‘:':EUV and x-ray wavelengths due to high absorption. A variety of opticai elements,
v-»e.g. Fresnel zone-plates, multi-layer mirrors, glancing incidence mirrors, capillary

optics [29], compound refractive lenses [30], photon sieves [31], and Fourier optical
‘elements [11], have been devised to satisfy the various wavefront shaping requirements
of short wavelength experiments. In this dissertation, the first Fourier optical element,
an XOR pattern which combines the functionalities of a grating and a zoneplate, is

demonstrated with applications in' EUV interferometry.

1.3 Coherence

An optimal degree of coherence is needed for a given application. For example, in-
terference experiments such as interferometry and holography usually require a higher
degree of coherence, while image formation experiments necessitate delicate control
of partial cbh’erence. Therefore, the ability. to measure and control the coherence
properties of an imaging system is of crucial importance for all optical experiments.

At shorter wavelengths, the importance of coherence on an imaging system has

long. been ignored, mainly because of the lack of sophisticated optical systems at these



wavelengths. Advances in both source and optical technology now permit the emer-
gence of more sophisticated short wavelength optical systems, e.g. EUV lithography,
x-ray microscopy, and EUV/SXR interferometry. Therefore, an increasing demand
for a better understanding of coherence at short wavelengths arises. The experimen-.
“tal studies of the optical coherence properties of EUV/SXR optical systems are -all
fairly recent. Indeed, demonstrations of the ability to accurately measure [9,32] and
control [33,34] the degree of coherence have only been published very recently. This
dissertation describes the first short-wavelength Thompson-Wolf two-pinhole charac-
terization of the spatial coherence properties of undulator radiation-and confirms the
anticipated coherence at these very short wavelengths. -Applications that exploit .thi,s
better understahding of short-wavelength coherence are described in the following

chapters.

1.4 Overview

-Chapter 2 starts with a spatial coherence characterization of the EUV undula-
tor radiation at the Advanced Light Source (ALS) in Berkeley, a third generation
synchrotron facility [35]. This first conditioning experiment uses the Thompson-Wolf
two-pinhole method to characterize the spatial coherence properties-of the undula-
tor radiation at Beamline 12 of the Advanced Light Source. The effects of elliptical
source size and beamline apertures are observed. The result of this spatial coherence
characterization determines the optirrial size of the spatial filter (i.e. pinhole) used
for EUV interferometry described in Chapter 5. This optimized pinhole provides just
enough spatial filtering without excessively sacrificing optical flux, so that it provides
the required spatial coherence necessary for the interferometric experiment and at the
same time allows an optimal amount of flux through it.

Chapter 3 describes the effect of aberrations on the spatial coherence properties
of an undulator beamline, which is recognized as a critically-illuminated system. The -
commonly used Zernike approximation [6], which states that aberrations have no
effect on the spatial coherence distribution at the image-plane of the condenser, is no

longer valid in the case of undulator radiation source due to the exceedingly small



vertical source size. Therefore, a numerical simulation based on the Huygens-Fresnel
pfinciple'is required to describe the spatial coherence properties of: this critically-
illuminated imaging system. The-simulated spatial coherence distribution is shown.
to be affected by the various aberrations, as observed in the experimental results
presented in Chapter 2.
‘Chapter 4 is devoted to the first novel Fourier optical element, the XOR pattern,
that optimizes the EUV interferometer described in Chapter 5 by providing impor-
tant new advances in the properties of optical flux throughput and symmetricalness:
This diffractive element, based on Fourier optical techniques, for use in EUV/ _S_XR
experiments, has been fabricated and demonstrated. This diffractive optiéal element,
when illuminated by a uniform plane wave, will produce two symmetric off-axis first
“order foci suitable for interferometric experiments. The efficiency of this optical ele- -
ment and its use in direct interferometric determination of optical constants are also
discussed. Its use opens a new era in the use of sophisticated optical techniques at -
‘short wavelengths.

~ Chapter 5 describes the first direct index of refraction measurement at EUV wave-
lengths with a novel interferometer. Accurate knowledge of the refractive index in
“this wavelength region is of fundamental importance for the design of optical systems.
- However, due to the high absorption, no previous direct measurement of the real part
of the refractive index has been performed at EUV wavelengths. To overcome these
limitations, a novel diffractive optical element, based on Fourier optics techniques, for
use in EUV /soft x-ray interferometric experiments is invented, fabricated and demon-
strated for the first time. The efficiency of the interferometer employing this novel
optical element impf;)ves by ~10 times, compared with a separate grating and zone-
plate setup, thus enabling the first direct measurement of the refractive index at EUV
wavelengths. Both the real and imaginary parts of the complex refractive indices are
measured directly by this technique without recourse to Kramers-Kronig tfansforma—'
tions [36]. Data for Al and Ni, in the vicinity of their L and M-edges, respectively,
are presented as first examples of this technique. Undulator radiation avé,ilable at
the third generation synchrotron facilities (in this case the Advanced Light Source)

provides the high brightness, high coherence short wavelength radiation necessary for



this interferometric experiment. ..

The contribution.of this dissertation to the field of short wavelength optics is again
two-fold: characterizing the spatial coherence properties of the new radiation sbur_ce
and, for the first time, introducing Fourier optical techniques to short. wavelength

optics.



Chapter 2
Spatial coherence char'vac_tferization
of undulator radiation |

The coherence properties of undulator radiation at extreme ultravio-
let (EUV) wavelengths are measured using the Thompson-Wolf two-
pinhole method. The effects of elliptical source size and beamline aper-
tures are observed. High spatial coherence EUV radiation is demon-
strated. Projection of these same capabilities to the x-ray region is
straightforward.

2.1 Introduction

Coherent radiation offers important opportunities for both JSCien(_:e and technol-
- ogy. The well defined phase relationships characteristic of coherent radiation, allow
folr'diffraction-limited focusing (as in scanning microscopy), set angular limits on
diffraction (as in protein crystallography), and enable the convenient recording of
interference patterns (as in interferomefry and holography). While coherent radia-
tion has been readily available and widely utilized at visible wavelengths for many
years [1,3-5,7], it is just becoming available for wide use at shorter wavelengths [8,9].
This is of great interest as the shorter wavelengths, from the EUV (10-20 nm wave-
length), soft x-ray (1-10 nm), and x-ray (<1 nm) regions of the spectrum, correspond
to photon energies that are well matched to the primary electronic resonances. (K-

shell, L-shell, etc.) of essentially all elements, thus providing a powerful combination



of techniques for the elemental and chemical analysis of physical and-biological ma-
terials at very high spatial resolution. Tunable, coherent radiation in these spectral
regions is available primarily due to the advent of undulator radiation at modern
synchrotron facilities [12-18], where relativistic electron beams of small cross-section
transverse periodic magnet structures, radiating very bright, powerful, and spatially
coherent radiation at short wavelengths. Recent progress with EUV lasers [37,38],
high laser harmonics [39,40], and free electron lasers [28] may soon add to these capa-
bilities. In this chapter, the classic two-pinhole diffraction technique [5], an extension
of Young’s ﬁwo—slit interference experiment {7], is utilized £o simply and accurately
characterize the degree of spatial coherence provided by undulator radiation. It is
shown that, with the aid of modest pinhole’spatiaﬂ filtering, undulator radiation can
provide tunable short wavelength radiation with a very high degree of spatial coher-
ence at presently available user facilities. Spatially coherent power of order 30 mW is
available in the EUV [35], and is expected to scale with wavelength to about 0.3 mW
in the hard x-ray region [8]. ' |

For rédiation with a high degree of coherence and a well-defined propagation direc-
tion, it is convenient to describe coherence properties in longitudinal and transverse
directions. For a source of diameter d, emission half-angle 6, and full spectral band-
width AX at wavelength ), relationships for full spatial coherence and longitudinal

coherence length, I, are given respectively by
d-0=2/2r o (2.1)
and
lLon = A2/20 (2.2)

where d, 8, and A\ are 1/5/e measures of Gaussian distributions. Based on measures
of the source size and theoretical predictions of the emission angle, it is estimated
that undulator radiation, as discussed in this chapter, emanating from an electron
beam of highly elliptical cross-section, will approach full spatial coherence Eq. (2.1)

in the vertical plane, while being coherent over only a fraction of the radiated beam



in the horizontal direction: Here ‘a detailed characterization of an'undulator beamline
optimized for operation in the EUV regime is presented. ’

Undulator béamline 12.0 at La,wrence Berkeley Na.tlonal Laboratory S Adva,nced
Light Source (ALS) was developed to support hlgh-accuracy wave-front mterferometry
of EUV optlcal systems [41,42]. With an electron beam of elliptical cross-section,
having a vertical size d, = 20, =. 32 um, and an emission half-angle 8 = 80 urad
(the central radiation cone containing a 1/N relative spectral bani?'flwidth where N
is the number of magnet periods of the undulator), the product d - 0 is just slightly
larger (20%) than A/27 at the 13.4nm wavelength used i in these expenments Thus
one expects to see strongly correlated fields, of high spatlal coherenee, ih tHe vertlcal.
plane. The horizontal beam size is considefably larger with dj, = 20h = 520 um, so
that with approximately the same emission half-angle it is expected to be spatially
coherent over only a fraction of the horizontal extent of the radlated beam.

The coherence characterization presented here is performed at: the focus of the

_condenser system used. to re-image the undulator source to the entrance of our ex-
perimehtal chamber. In the case of beamline 12, this condenser is a Kirkpatrick-Ba.ez
(KB) system [8]. Its focal plane serves as the entrance plane for va,rff)us experiments,
including EUV phase-shifting point diffraction interferometry [41-43]. The coher-

ence rheaSurement is based on an implementation, at a shorter wavelength, of the -
well known Thompson and Wolf two-pinhole experiment [5]. The Thompson and
Wolf experiment is essentially an extension of Young’s classic two-slit interference
eXperiment [7], where in this case fringe visibility is recorded as a function of pinhole
separatlon in order to determine the spatlal coherence propertles of the illuminat-
ing beam. Under the conditions that: (1) the plnholes are small enough such that
the field within each pinhole can be regarded as constant, (2) the bandwidth of the
illuminating beam is narrow enough that temporal coherence does not significantly
affect fringe visibility, and (3) the intensity at the two sampled points are equal, the
fringe visibility can be shown to be probortional to the magnitude of the complex
coherence factor, |12, [1,3]. Typical measured interference patterns are presented in
Fig. 2.3, which shows interference modulation of the Airy e‘nvelepe as a function of

pinhole separation distance. These patterns provide a direct measure of the spatial
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coherence of undulator radiation as transported by the beamline optical system. -

2.2 Mathemati'cal description

Figure 2.1: Young’s two-pinhole interferometer for spatial coherence measurement.

A schematlc plot of Young s experiment is shown in Flg 2 1 where Piyri,i1=1,2
are the pinhole posmons and their dlstance to the m1x1ng plane respectlvely The
mutual coherence fun‘c;tzon I'1a(7) Wthh represents the cross- correlatlon of the light

incident on pinholesv P, and P; is defined by
T2(7) = (u(P, ¢+ 7) u*(Py, 1)) (23)

The intensity 1(Q) at any point Q on the mixing plane is given by I(Q) = (|u(Q, t)|?).
Assuming that the light is narrowband and the pinholes are small enough such that
the .analytic signal within each pinhole can be regarded as-uniform, u(@,t) can be

represented by.the weighted sum of the properly delayed analytic signals at the pin-
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holes,
w@o=Ku(re- ) ika(m ), e

where K;, K, are purely imaginary numbers. The intensity of light at the mixing

plane can therefore be represented by

I(Q) = IM(Q) + I?(Q) + 2K K, mg {1‘12 (7"2 ; ”) } . (25)

where -1 (’)(Q) K2 (Ju(P, 1) |2), i = 1,2 is the contribution on @ from the ** |
| pmhole alone and K; = |K;|. To further demonstrate the rising of the fnnge pattern

a normalized vérsion of 1"12( ) is deﬁned to be

() = )

—. (_'2".6)‘
'[ru(o)rm(O)] /

‘:Equatlon (2. 5) can then wrltten as

»I(Q)— I0(Q) +I9(Q) + 2\/1<1> 10(@Q) éne{m (=—5) } @)

'vThe last step 1n v1suahz1ng the fringe pattern is the following: since the hght is
‘assumed to be narrowband with center frequency v (A = c/V), the complex degree of

coherence may bevre ~written in .the following form
lr) = ()] exp{ ~5{2n7r - ana(r)]) (28)
and Eq. (2.7) would become
I(Q = INQ)+IPQ) +
2/ TOQIO(@ | (22)

As can be seen from the above Eq. (2.9), in the vicinity of zero path length difference

Ty

To —T1 —012(

:“) (2.9)

cos [27r7

(i2 —7;) =~ 0, the macroscopic fringe visibility V is related to the microscopic complex

degree of coherence v;,(0) by

_2/IOQIPQ)

1(1)(Q)+I(2)(Q) ot 12(0)l - (2.10)
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Quasi-monochromatic conditions In some circumstances the bandwidth of the
light is so narrow that the effect of temporal coherence on the fringe visibility is neg-
ligible over the observable region. If ‘this quasi-monochromatic ‘condition is satisfied,
712(7) can be approximated by
V12(7) = 715(0) €727, - | " (2.11)
~—— :
st |
where g1, = 4;5(0) = |712(0)| €722 is the compler coherence factor.

Together with the parax1al approx1mat10n Eq. (2.9) can be further simplified to

1@ = 10@) + 19(@) + 2/ [0 @U@ luglos( L 5w+ 4) . (212)

. where z is the axis on @ that is parallel to the pinholes, $12 = @312(0) had we chosen,
the optical axis to pass through the center of the pinhole pairs, s is the pinhole
separation and z is the distance from the pinhole plane to the m1x1ng plane Note ,
that for th1s quas1—rnonochr0mat1c case, A is used instead of X. »
In thls experiment, the largest pmhole separation is s = 9um, which is smaller
than the pixel size (25 um) of the CCD. The two Airy patterns, IN(Q) and I®(Q),
are then bas1cally overlapped ie IW (Q) = 1?(Q) for all points Q on the mlxmg
- plane “The 1nten51ty pattern on the mlxmg plane (CCD) is therefore B

I(Q) = 2IM(Q) [1 + |12 cos <i—:— sz + Q?lg):l (2.13)

and the fringe visibility is V = |p,,| over the entire observable mixing plane.

2.3 Experiment

The experimental system is depicted in Fig. 2.2. The beamline [35] provides
an overall 60:1 demagnified image of the source in the focal plane of the KB sys-
tem. The undulator employed at this beamline has a magnet period"(/\u) of 8 em,
55 magnet periods (INV), and a non-dimensional magnetic field parameter K = 2.7.-
The electron beam energy is 1.9 GeV, with a corresponding relativistic Lorentz fac-

tor 'y. = 3720. The acceptance half-angle (NA) of undulator radiation for these
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Figure 2.2: The experiment setup shows the undulator, beamline optics, monochro-
mator grating and exit-slit, Kirkpatrick- Baez (KB) re-focusing optics (M4 and M6),
and the spatial coherence measuring end-station consisting of a two-pinhole mask and
an CCD electronic array detector. The two pinholes are shown here with a honzontal
‘separation; vertical separation tests are also employed.

experiments is set by the acceptance aperture of the beamline, which is a 1.6-mm
diameter circle -placed. 16.7 meters downstream -of the undulator exit. This accep-
tance NA of 48 urad is somewhat smaller than the central . radiation cone half-angle,
| Ocen = /1+ K2/2/ 2/vV'N = 80 urad [8,35]. The radiation within 8., has a natural
‘bandwidth of A/AX = N, corresponding to a longltudmal coherence length, [, of
0.37 um. The monochromator bandpass of this beamline can be narrowed to values
as large as A\/AX = 1100, by adjusting the size of its horizontal exit-slit. Except
where stated otherwise, all experiments reported in this chapter were performed with
the monochromator exit-slit set such as to pass the entire A/AX = 55 natural undu—
lator bandwidth. Accounting for the 48-urad acceptance NA, the spatially éoherent
power is expected to be about 12:mW, within a relative bandwidth of K)‘X = 55 at
A=13.4 nm [35]. Using the full 80-urad acceptance NA defined by 6., would yield
~ expected coherent power of 30 mW. This bandwidth is sufficient to assure that the
quasi-monochromatic condition required for this experiment is satisfied, i.e.- that the

temporal coherence does not significantly affect fringe visibility.

As‘sho'w'n'.'ih Fig. 2.2, the M2 spherical mirror images the undulator output verti-
cally to the monochromator exit-slit. The calculated FWHM of the vertical intensity
prbﬁle on the exit-slit is 17um, neglecting aberrations on M2 mirror. The KB system
is composed of two asymmetric, bendable reflective mirrors (M4 and M6). Mirror M6

directly demagnifies the undulator source in the horizontal direction by a factor of
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60, whereas M4 demagnifies the monochromator exit-slit in the vertical direction by
a factor of 7. 2 M2 and M4 together provide a total vertical demagnification of 60 in
the plane of the two-plnhole mask.

To implement these coherence tests, a patterned mask containing multiple 450-
nm-diameter-pinhole pairs, with separations ranging from 1 to 9-um, was placed in
the'vicinity of the KB system focus, i.e. at the demagnified image of the undulator
source. The 450-nm plnhole diameter is chosen to be significantly smaller than the
expected coherence W1dth while prov1d1ng reasonable throughput and appropriate
working distance for full Airy pattern recording at the charge-coupled-device (CCD)
electronic array detector. The mask, fabricated using electron-beam lithography and
reactive-ion etching, consists of a 360-nm-thick Ni absorbing layer evaporated on a
100-nm-thick Si3 Ny membrane. The mask features are etched completely through the
membrane prior to the Ni-eifaporéition, leaving the pinholes completely open in the
finished mask. Pinhole circularity and size are confirmed by observing the resultant
far field Airy patterns, as recorded on the CCD.

The pinhole array mask is mounted on an x-y-z stage, allowing desired pinhole
separations to be selected sequentially, and the coherence to be studied as a function
of focal position. A back-thinned, back-illuminated, EUV sensitive CCD camera is
placed 26 ¢cm downstream of the mask to record the resulting interference pattern.
The active area of the CCD is 25.4 mm x 25.4 mm, in a 1024 by 1024 pixel ar-
ray: Typical exposure times for a recorded pattern vary between 50 msec and 5 sec
depending on pinhole separation, storage ring current, and beamline apertures.

Because the divergence created by the pinhole diffraction is large relative to the
pinhole separation, the two diffraction patterns overlap to a high degree on the CCD.
In order to determine the magnitude of the complex coherence factor, |p;,], from the
fringe visibility, one must know the relative intensities of the illuminating beam at the
two pinholes or, alternatively, guarantee them to be equal. This can be challenging |
as the pinholes are near the KB focal plane, where the beam is small and may display
structure due to aberrations in the optics. Because it is impractical to independently
measure the intensity at each pinhole, we attempt to guarantee the equal intensity

condition by performing a large ensemble {greater than 50) of measurements for each
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pinhole separation, 1ntent10nally displacing the p1nhole pair relatlve to the incident
beam. Because beam -intensity non- umformlty can only degrade frlnge v1srb1hty, we
take the hlghest frmge visibility from the ensemble of measurements as- representmg
the coherence-limited fringe visibility. ERTE ‘

Figure 2.3 shows the recorded interference patterns for horlzontal plnhole separa-
tions of 3, 4, 6 and 9 pm. The measured magnitude of the frrnge V181b111ty decreases
with larger plnhole separation as expected. Figure 2. 4 shows several 1nterference pat-
terns obtained with vertically displaced plnhole pairs. Frlnge modulatlon is generally
better than that of horrzontally dlsplaced plnholes In order to Verlfy our ablhty
to control and measure the beamline coherence propert1es the’ measurement ‘Was re-
peated at a larger beamline acceptance NA. This NA can be controlled by way of the
acceptance aperture described above. The measured spatial coherence decreases in
both directions as expected when the 48 prad acceptance aperture is replaced by a
larger aperture allowing the entire 80 urad central radiation cone to pass.

The mterference pattern at the CCD is written here agaln from Eq. (2 13)

I(a:, y) = 21(1)(m,y) [1 + |u12|c0s<i vsm—l— ¢12)] y S (2.;14)

where T (z, y) is the Alry intensity envelope in the- recordmg plane due to plnhole
dlffractlon I is the axis on the recordlng plane that is parallel to the plnhole separa—
tion, 's is the ‘pinhole separatron Ais the wavelength and z is the: dlstance from the
pinholes to the recordmg plane. Note that the phase ¢12 descrlbes the frlnge shift
relative to the geometric center of the 1nterference pattern With equ1 phase illumi-
nation of the two plnholes and proper pinhole allgnment, .¢12__ 0. Because _frrnge
visibility is defined -as . o | R
Inaz — Iimin
Y= A A (2.15)
one finds that V = |u,,| as a constant over the entire interferogram for the cases
considered here. 7
To obtain the fringe visibility from the interference pattern, we perform a two-
dimensional Fourier transform of the interferogram and separate the zeroth order

and the two first-order peaks. As seen in Eq.(2.14), the Fourier transform of the
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Figure 2.3: Measured two-pinhole interference patterns for horizontal pinhole separations of 3,
4, 6 and 9-um, for a wavelength of 13.4nm and a beamline acceptance half-angle of 48urad. The
pinhole diffraction patterns overlap and produce an interference pattern within the Airy envelope.
The interference patterns are recorded on an EUV sensitive CCD camera, located 26 cm downstream
of the pinhole mask. Pinhole diameter range from 400 to 500 nm, but are equal in their respective
pairs. As shown in the lineouts, fringe visibility of the modulation decreases for larger separations.
Spectral resolution for these measurements is 55.
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Figure 2.4: Measured two-pinhole interference patterns for vertical pinhole separa-
tions of 1 and 6-um, at a wavelength of 13.4 nm, and an acceptance half-angle of
48urad.
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interferogram I(z,y) can be. represented as the. convolution. of the F

of the Airy envelope with three delta functlons The delta functlons a smg 'from the

1+ cos(-) term can be written as '.

"8

5‘f“fy)+'””' l‘“fx L —,iifl—z'fy)l"‘:

(2.16)

Furthermore, the Fourier transform of the Axry envelope becomes the autocorrelatlon
of the pinhole. The resultant pattern 1n the frequency domaln is therefore one zeroth
-order peak and two symmetnc ﬁrst-order peaks each properly scaled Ideally, the

fringe v1srb1hty is two times the relatlve strength of the ﬁrst order peak to the zeroth-

peak and mtegrate within the ﬁlters The frmge v1srb1l1___ ‘then determlned by

i

zeroth-order peak.

In Fig. 2.5 we show |p,,| as a function of pinhole separation for both horizontally
and vertically separated pinholes. One observes that the transverse coherence distance
in the vertical plane is greater than that in. the honzontal plane for this 48 — prad
acceptance NA. Following the conventlon in [3] a transverse coherence dlstance L,

for the measured coherence. proﬁles (Flg 2. 5) is obtamed by determlmng the width

of an equivalent top-hat functlon 1. e,
LEf'ﬂ(A)ldA e
- The measured transverse coherence d1stance in the horlzontal d1rect10n Lc h, ‘is found
to be approximately 6.3 um and the measured transverse coherence dlstance in the
vertical direction, L,, is found to be approxrmately 7 4 um Thls is due to the fact
that the vertical source dimension is sub- resolutlon 1n size at this acceptance angle,
while the horizontal size is not. -After_propagat_mg from -thelundulatorr exit (source),
. the FWHM of the spatial coherence proﬁle, as calculated by the -Van Cittert-Zernike
theorem, is 0.3 mm(H) x 5.2 mm(V) at the beamline acceptance aperture. Therefore,
the spatial coherence profile at the KB focal plane (image plane) is expected to

be asymmetrlc with vertical coherence better than horizontal coherence. As w1ll
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Figure 2.5: The measured coherence factor |ut,,| as function of pinhole separation
distance for-(a); horizontally and (b), vertically separated pinholes. For these mea-
surements, a 48urad half-angle acceptance aperture is used. The measured spatial
coherence distance decreases with larger pinhole separations as expected. Larger
uncertamty in the vertical 3um separation may be due to a smaller number of inter-
- ferograms collected in- thls case. - The data points- are fitted to a Gaussian curve in
each case.

" be shown in Chapter 3, simple analysis of a critical illumination system like the
one considered here would suggest the coherence to be symmetric when the NA is
symmetric. - More detailed .analysis reveals, however, that the small vertical source
size causes the vertical coherence width at the entrance pupil to be large relative to
the pupil size. In this.case we violate the assumptions typically used for predicting
coherence in a critical illumination. This causes a preferential increase of coherence

in the vertical direction.

The effect of radiation directly transmitted through the mask membrane, a source
of noise in these measurements, can be seen in Fig. 2.3(d). This effect becomes
more significant as the pinhole separation increases because the limited beam size
(see Fig. 2.6) results in a reduced illumination intensity at each pinhole, whereas the
directly transmitted radiation remains fixed. This directly transmitted light adds a
background noise to the interference pattern, thus reducing fringe visibility locally in
the affected region. Therefore, when applying the Fourier transform method to the

cases of large pinhole separations, we avoid the region containing directly transmitted
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light. This Fourier transform method has the advantage of evaluating the fringe
visibility as an integrated, rather ﬁhan localized, property of the full interferogram.
The intensity and coherence distribution in the KB focal plane is calculated by way
of computer simulaﬁion for an aberration-free beamline. The simulation shows that
the coherence profile is wider than the calculated intensity profile for rthe aberration-
free beam in the vertical direction, which means that without aberrations the beam
would be essentially fully coherent in the vertical directioh. Horizont;allyi, the coher-
ence proﬁle is d_ominatgd by the acceptance NA. As described above, this asymmetry
is expected based on the geometry of the system. | |
Figure 2.6 displays both FWHM intensity contours and |p;,| = O.5,isometric§ for
both the aberration-free simulatioﬁ case, and the actual meaSurg::d‘results, In bb-t-h.
cases the vertical coherence is seen to be larger than the beam vertical FWHM,; indi-
ca;ting' neaﬂy complete coherence in the vertical direction. Also both simulation and
experiment show the horizontal coherence to be smaller than the verticai coherence
and significantly smaller than the beam. This is a result of the extended source in
the horizontal direction and the beamline geometry. The results differ, however, in
that the measured coherence and beam-size are larger than those predicted for the
aberration-free simulation.. The beam-size increase is attributed to aberrations in
the KB. By comparing the two intensity profiles we surmise the aberration limited
point-spread function of the KB to be about 4 pum in diameter. We assume these

aberrations to also play a role in the increased coherence observed experimentally.
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Figure 2.6: The beamline is designed to image the undulator output to the KB focus
with a demagnification of 60 and an acceptance half-angle of 48 urad. The undulator
output in this calculation is assumed to be a monochromatic (A = 13.4nm), spatially
incoherent Gaussian-shaped source with (o5, 0y) = (260um, 16um) [8], corresponding
to source plane values of 612um X 38um FWHM. The solid line shows the FWHM of
the measured KB focal intensity distribution. The dash-dot line is the FWHM of this
~ calculated KB focal intensity distribution assuming an aberration—-frée beamline. The
_intensity distribution FWHM values are increased by aberrations from ideal values of
10.5um(H) x 2.4um(V), to experimental values of 11um(H) % 5um(V). The dashed
line represents the calculated focal plane spatial coherence isometric (|p,,] = 0.5) for
experimental values of wavelength, acceptance NA, and demagnification, as calculated
* using the van Cittert-Zernike theorem [1,3]. The asymmetric coherence isometric is
due to the asymmetry of the source intensity dlstrlbutlon
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2.3.1 Effect of monochromator exit-_'slivt.

|} 1
;,_i-;:,»o-;.};i»;;.;-.:ii;-ii-;.i-;aio:o- T 200 '30'0]5} 0
Ve EX|t SI|t Slze [nm]

"Flgure 2 7 The vertrcal openrng of monochromator S exit- sht has s1gn1ﬁcant effect_ R

- o .’_-,'_v,on the vertical coherence but not on the horizontal coherence. A smallér exit-slit.size e
S “decreases the vertlcal phase space of the ‘transmitted radlatlon thus 1ncreasrng the S
L lyertical. coherence Hor1zontal coherence Is relatlvely unaffected ThlS is. done W1th a oo

-;'larger beamhne acceptance NA i

The natural bandw1dth of undulator radlatlon W1th1n the central radlatlon cone

,:.Hcen, is: set by the number of magnet palrs N [8] whrch 1s 55 in these experrments . L

' ;The monochromator is, desrgned to transmlt a bandpass varlable frorn X / A)\ = 55 to - |

.-1100 The larger value 1s useful in experlments requ1r1ng a longer coherence length‘

o ,(to 7.4 ,u,m at 13 4nm Wavelength) These values of spectral bandpass correspond tov

| ex1t slit wrdths of 320/J,m ‘and 16um, respectlvely Exrt slit-size greater than 320,u,m

- does not further affect the monochromator bandpass All data presented to th1s po1nt

correspond to ¢ a 400um exit- sht s1ze (/\/ AN = 55). Use of a smaller monochromator |
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exit-slit narrows the transmitted spectrum, but also has the effect of decreasing the
transmitted beafﬁ’s'tran‘SVerse phase-space, ard thus incréasing the spatial coherence
length in' the vertical plane To study the effect of the monochromator exit-slit size,
we have repeated the experiment with exit-slit size as a: parameter Flgure 2.7 shows
the measured horlzontal and vertical coherence as a function of monochromator exit-
slit size. :For a vertical prnhole separation of 6 um, the fnnge v151b1hty varies from
0.38 to 0 94 as the exit-slit size changes from 400 pum to 50 um. For the horizontally
oriented 4 -pm separatron pinholes, the frmge v181b111ty varles from 0.47 to 0. 60 as the
exit-slit size changes from 400 pm to 20 um. As one expects the exit-slit also acts as
a spatlal_ﬁlter, having a significant effect on spatial _coherence_ in the’ vertical plane,

" and minimal effect in the horizontal plane.

 2.3.2 Wave-front null test

The two-pinhole experiment presented here can also be used to measure the de-
'parture from sphericity of the pinhole-diffracted wave. Figure 2.8 is derived from the
measured interference pattern obtained with 450 — pm diameter pinholes horizon-
tally placed 9 um,apart, To deterrnine the underiying wave-front quality of the two
nearly spherical waves used to produce the interference. patteru the interferegram is
analyzed using conventional Founer—transform wave-front reconstructlon technlques
routinely applied to carrier-frequency interferograms [44]. The resulting wave-front is
then compared to what one would expect from two perfeetly spherical waves in our
recording geometry. The r-ms departure from a sphere is tal'{en'to represent the un-
derlying pinhole-diffracted wave-front quality. For example, at a numerical aperture
of 0.025 (a typical input numerical aperture for ;teeting. EUV optics), the wave;front'
quality from these 450 — pm pinholes is eeen to he A/330, exceeding c'urrent require-

ments for such tests [41,45,46].
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o [# of waves]

-4

—
o

Figure 2.8: Departure of pinhole generated wave-front from sphericity, expressed as
an rms number of waves at A\ = 13.4nm. For example, the data indicates that with
450-nm-pinhole filtered radiation a wave-front departure from a sphericity of A/1000
is obtained across a wave-front of about 0.016 NA (equal to 13 picometer rms at this
wavelength and NA). '

2.4 Conclusion

The coherence propertiés of spatially filtered undulator radiation have been mea-
sured. A very high degree of spatial coherence is demonstrated, as expected on the
basis of a simple model. The effect of an asymmetric source size on the resultant co-
herence properties is observed, and is consistent with aperturing within the beamline
optical system used to transport radiation to the experimental chamber. Based on
these observations and well understood scaling of undulator radiation, it is evident
that high average power, spatially coherent radiation is available at modern storage

rings with the use of appropriate pinhole spatial filtering techniques. The ability
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of synchrotron facilities to provide high spatial coherence at hard x-ray region has

recently been confirmed as expected [32,47].
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Chapter 3

Analysis of the illumination
coherence properties of systems
where the Van Cittert-Zernike

theorem does not apply

Modern synchrotron beamlines often take the form of critical illumi-
nation systems, where an incoherent source of limited spatial extent is
re-imaged to some experimental plane of interest. Unique constraints
of these sources and beamlines, however, may preclude the use of the
simple Van Cittert-Zernike theorem for calculating the object-image co-
herence relationship. Here, a rigorous analysis of the object-image co-
herence relationship valid for synchrotron beamlines is performed. The
-analysis shows beamline aberrations to have an effect on the coherence
properties. Effects of various low-order aberrations on the coherence
are explicitly studied.

3.1 Introduction

High brightness and high coherent power undulators available at third generatibn
synchrotron radiation facilities, through spatial and spectral filtering, enable a va-

riety of experiments that require a high degree of coherence at short wavelengths.
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Undulator r'a,di"eiti’on-,»“-»a?: its exit-plane, is regarded as an incoherent source because
the electrons in the storage ring have uncorrelated motion :and_‘thus are essentially
independent radiators. Beamline optics are routihély used to re—imége this“spatially
confined incoherent source to an experimental plane of interest. Such a configuration
is readily r’ecognizéa as a crifical illuminatioh system [1], Where. the béamline acts as-
the condenser.

Undulator radiation has an intrinsic divergence angle, known as the central ra-
diation  cone angle f..,, characterized by the electron’s forward-emitting radiation:
The beamline acceptance angle, i.e. object-side NA of the condenser, is usuall?y. set
comparable but slightly smaller than 6..,. This acceptance angle sets t-heieffective
coherence patch size on the source as seen by the condenser system. -For the Van
Cittert-Zernike theorem to correctly predict the spatial coherence distribution at the
‘image plane of the condenser, the dimension of the source needs to be much greater

. than this effective coherence patch size, i.e.

eff
dsource > Aoy, = o b | (3.1)
eff

+ where dspurce 1S the source dimension, d7; is the effective coherence patch size at the

coh
source, X is the wavelength, and @,ccep is the beamline acceptance angle. However, t;he
 distinct characteristics of third generation undulator radiatibn, i.e. the small vertical
 source dirension and the constraint on the size of beamline acceptance angle, give
rise to a condénser system whose spatial coherence properties cannot be simplified
by the commonly used Zernike approximation [1,3,6]. For the A = 13.4nm exper-
iments described here, the Gaussian undulator source has a vertical dimension (20).

of dsource = 32 um, and the beamline acceptance angle is Opccepr = 48 prad, slightly
eff

- thus equals to

smaller than the central radiation cone angle of 80 urad. The d
45 um, for which Eq.(3.1) is clearly not satisfied and the Zernike approximation is
not applicable. |

Here, based on the Huygens-Fresnel principle, the analysis and numerical evalu-
ation of the spatial coherence properties of a representative undulator beamline are
presented and the results are compared with actual measurements éonducted at the

ALS undulator beamline 12.
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3.2 Rigorous mutual coherence propagation for un-

dulator beamlines

3.2.1 Undulator radiation as an incoherent source

The undulator radiation at its exit-plane is assumed to be an incoherent source
here. In practice, this assumption is valid as long as the coherence width at the source
is smaller than the diffraction-limited resolution of the condenser. Alternatively, this
could be stated as requiring the intrinsic.divergence of the source to be larger than the
acceptance angle of the condenser. For the undulator source, the positions and motion
of the electrons in the undulator are uncorrelated. All point radiators originating from
uncorrelated electrons can be treated as independent, and the size of an elemental
point radiator can be determined from the central radiation cone divergence [8]. The
intrinsic divergence of the EUV undulator discussed here is 8.., = 80 yrad, which ié
larger than the beamline acceptance angle 0y, of 48 urad. Therefore, it is evident

that the incoherent source approximation holds here.

3.2.2 Zernike approximation for a condenser system

The Zernike approximation, first described by F. Zernike in 1938 [6], states that
the condenser lens pupil, when illuminated by a large incoherent source, can be re-
garded as a secondary incoherent source whose intensity,distribqtion is given by the
modulus square of the pupil function. This approximation, discussed again by Born
& Wolf [1] (sec.10.5.2) and Goodman [3] (sec.7.2.2), is commonly used for condensers
operating at visible wavelengths.

Starting with an incoherent source placed at the object plane of the condenser, the

Van Cittert-Zernike theorem [1,3,6] can be used to propagate this incoherent source-
to the condenser lens pupil and the resultant mutual intensity at the condenser lens
is given by a Fourier transform of the source intensity distribution. The condition
under which the Zernike approximation is valid requires that the incoherent source

subtends a sufficiently large angle at the condenser lens, such that the coherence
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width at the condenser lens is small relative to the pupil diameter. Satisfying this
condition, the condenser lens pupil can be regarded as a secondary source with a very
small coherence area and the generalized Van Cittert-Zernike theorem [3] can then
be used to propagate the mutual intensity from 'the.c_ondens_er lens pupil to the image
plane of the condenser. The resultant coherence distribution at the image plane of
the condenser is thus determined solely by the modulus square of the pupil function
and aberrations in fhe condenser lens do not affect the coherence distribution af the
image plane.[3]. Note that in this case, the resultant intensity distribution at the
image plane of the condenser is determined by the coherence function at 'the_iens
pupil. |

However, when the dimension of the incoherent source shrinks to the point where
the coherence width at the condenser lens is comparable to the pupil diamefer,'the
Zernike approximation fails and the generalized Van Cittert-Zernike theorem can
‘no longer be used to ‘propaga,fe the mutual intensity function from the exit of the
condenser lens to the image-plane. Under this small-source condition, a rigorous
mutual coherence propagation based on the Huygens-Ffesnel principle ié required [3].
As will be shown later in this chapter, the condenser pupil aberrations in this case

begin to affect the .coherence properties at the condenser image-plane.

3.2.3 Undulator beamline as a condenser: an example

Undulator Beamline 12 of the ALS can be viewed as an incoherent source with a
Gaussian intensity distribution, (o¢,0y) = (260pm, 16pm). The beamline essentially
acts as a condenser lens with a de-magnification of 60 and an object-side NA of
48 urad. The distance z; from the exit-plane of the undulator to the pupil is 16.7m

and the pupil radius a is 0.8 mm. The wavelength used here is A = 13.4nm.

Using the Van Cittert-Zernike theorem to propagate radiation from the incoherent
source to the lens pupil, the mutual intensity at the pupil is given by a Fourier
transform of the Gaussian intensity distribution of the incoherent undulator source

(see Appendix A). The resultant coherence distribution at the pupil is then Gaussian
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distributed with rms radii -

)\251 )\'21
271'05 2moy,

(U Uc) = ( —) %(014mm, 2,'23 mm).

Comparing the vertical size of this coherence patch with the {pupil diameter (2a =
1.6 mm), the Zernike approximation is found not to be applicable here and therefore.
the géneralized Van: Cittert-Zernike theorem cantiot be used to propagate the mu-
tual coherence from the'condenser pupil to the image-plane. HoWever, should this
invalidity be ignoi‘ed' and the Zernike approximation used for the calculation of the
spatial coherence distribution at the conidenser image-plane, the erroneous resultanﬁ’
coherence distribution would be an Airy pattefn with a first null radius s, of 2.84 ,um

Specifically, the modulus of the complex coherence factor would be-

'(27ra\/(A,ul ) |
[ _.(Av)?

where a is the pupil radius, ) is the wavelength, 2, is the distance from the condenser

|/~L12| =

lens to the image-plane, (Au, Av) is the coordinate difference at the image plane,
‘and the first null radius'is s, = 0.610\z3/a. As. expected, this over-simplification
results in discrepén_cy with the experimentally measured coherence profile [9], which-
determined the size of the coherence patch to be 4.4 ym and 6.8 um in the horizontal
and vertical direction, respectively. |

As demonstrated, the generalized :Van Cittert-Zernike theorem does not apply
here. A rigorous analysis on mutual coherence propagation using the Huygens-Fresnel

principle and subsequent numerical evaluations are presented in this chapter.
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Figure 3.1: Coordinate systém
3.3 Object-image coherence relation

Using the Huygens-Fresnel principle [3], the object-image coherence relation, un-

“der quasi-monochromatic and paraxial approximations, can be expressed as

400 ' o
itany iz a) = [ [ [ [ 3ut€0,m0 ), 005 6,10 Ky v 2, ) sz
(3.2)
‘where J; and J, are the mutual intensities at the image and _dbject plane, respectively.
The amplitude spread function K is deﬁn‘ed by

v N2z ,
+00 » . 9 ’ .
' . oT 22 z2 _
X // P(z,y) exp{—j)\—zz [(u + ;1—5):5 + (v _+ z—ln)y] }dmdy

where P(z,y) is the complex pupil function described in detail in Appendix.B. The

(3.3)

éoo'rdina;te system used throughout this chapter is depicted in Fig. 3.1. Notice that
the shb_scri‘pt' i for (u;,v;) and (&,n;) is dropped in Eq.(3.3) for ease of notation.
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Also notice that the integral above can be regarded as a Fourier transform of the
condenser lens pupil evaluated at spatial frequency [;\—i—z (u; + ME;), Xi; (v; + M ni)],
where M = 2,/ and i = 1,2. ' |

If an incoherent source is placed at the object plane, then J, can be written as

Jo = w1,(¢,m) 6(AE, An) (3.4)

where I,(€,7) is ‘the source intensity distribution, k = M/n, and 8(-,-) is a 2-
dimensional Dirac delta function. |

In this case, Eq.(3.2) simplifies to

400
Ji(u1, v1; uz, v2) =ﬂ// L(&, MK (u1, vi3 €, nK ™ (uz, v5 €, m)dédn  (3.5)

The mutual intensity function J; at the image plane can now be determined by the
integration of the source intensity distribution I; and the two off-centered [by (u1, v;)
- and (ug, v7), respectively] amplitude spread functions of the pupil P.

In order to simplify the notation in Eq.(3.5), we define
+o00 l
! .I - 27r ! !
G, V) = P(z,y) exp —iv [u z+v y] dzdy (3.6)
J: 2 .

Note that G(u',v") is essentially the point-spread function (up to a scaling constant)

of the pupil P(z,y). Eq.(3.5) can now be written as

A ST R SR
nexp{],\—zz(u1+'u1 ~ ui — vj }

1,22 -
Azgz2y

Ji(ula.vl;UZavZ) =

+00 :
% [[ 1.(em) G (s + M, vy + Mn)G¥uz + Me,va + M) déan,
—00 .

(3.7)
The mutual intensity can be obtained by numerically evaluating the above double
integral. Equation (3.7), and its equivalent Eq.(3.5), are based on the Huygens-Fresnel

principle and are valid regardless of the Zernike approximation. Note here that the
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mutual intensity is a function of the four individual coordinates; (uy, v, uz,vs); not
their differences. | |

The numerical value of G(u/,v') can be determined By-evallua,ting the integral in
Eq.(3.6). As will be shown in Section 3.4, this integral can be expressed as weighed
sﬁr_nmations of ‘various Bessel functions for the specific aberrations involved. Defo-
clis/ distortion, astigmatism, ahd coma are the low order aberfations whose effects on

the epatial coherence distributions at the condenser image plane are studied here.

3.3.1 ‘Zernike appr0x1mat10n

Before using Eq (3.7), or equlvalently Eq (3 5) 1t is 1nterest1ng to examine the
Zermke approx1mat10n and the condltlons under Wthh 1t 1s vahd The Zernlke ap-v
prox1mat10n [6] states that the coherence dlstnbutlon at the 1mage plane of a con-
denser that re- images the source can be determmed solely by the modulus square of

“the pupil functlon thus independent of the pupll aberratlons Examlmng Eq (3 5)
~ [the equlvalent of Eq (3.7)], which is valid in general for all 1ncoherent sources, one
_finds that Eq.(3.5) reduces to the commonly known Zernike approximation when
the size of the incoherent source is large enough such tljl:a.:t}_“js (&,7m) can be effe:c:_ti\}ely
" regarded as a constant €. To demonstrate this, substitute the amplitude spread func;_'
tion K(u, v; &,7) in Eq. (3.5) with Eq.(3.3), and integrate first d{dn ‘Withtfé(f, n) : C

This yields o
' mexp{ - (uf +v1—u2—v2)}

4
o A4z2222

+00 +oo v
X //P(xlyyl)dxldyl //P*(x2,y2)d$2dy2
/ /dﬁdn eXp{ [(u1+ §) 1+ (v1 +— n)y ]}eXb {j f—;[(uﬂf—jf) Ta+ (v2+—z—f—n) 112]}-

Note that the last integral in the above equation evaluates to

27 N ' [y ~%y T —
QXP{—JA—Q[U1$1 + v -v’UIQIL'Q - v2y2]} X 5( 1)\21_ 2, 1)\Z1 2). (38)

Jz‘(upvl;_uz;}fz) =
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Further integrate over dz»dy, to yield:

' exp {]% (uf + o] — uj —'02)}

2
)\22

// dxrdyllp(fﬂhyl)

Ji(uh V1; U2, Uz):

exp{ [»(u1 — u)z1+ (01 — )y ]}
| 69)

where ' = k C.

Eq.(3.9) indeed shows that in the case where I, is large enough; the image-plane
mutual intensity J; depends only on the modulus square of the pupil function (thus
1ndependent of the aberratlons in the pupll) and its magnitude, |J,| is a function of
(Au, Av) only. Also shown in Eq.(3. 9) the image-plane rnutual intensity is essentlally
a Tourier transform of the modulus square of the pupil. Note that Eq. (3 9) is 1dent1cal
to (7.2-17) in Ref. [3], which was obtained by explicitly assummg a Dlrac 6- functlon'

coherence dlstrlbutlon at the condenser lens plane.

Validity of the Zernike approximation In arriving at Eq.(3.9), the assumption
was made that the incoherent source was of infinite extent with uniform intensity
distribution €. However, as mentioned in Section 3.2, this:assumption can be relaxed
to that the size of the incoherent source be large enough such that the coherence patch
at the entrance of the condenser lens is sufficiently smaller than the lens pupil. Under
this relaxed condition, the generalized” Van ‘Cittert-Zernike theorem is applicable_a‘p
exit of the the condenser lens and Eq.(3.9) still holds with some modification on .
In this case, the £’ in Eq.(3.9) is actually a function of (7,7) = (“$¥2, uiw) given
by
&2 21

e A w_ ,
k' (T, 0) = kl( Zzu, 221) | | (3.10)

Note that when the incoherent source is of infinite extent with uniform intensity
distribution €, the resultant ' indeed reduces to ' = »C. In practice, the incoherent
source cannot be infinitely large, and using the simpler form of Eq.(3.9) where &' is

a constant requires caution. In fact, the geometric image of the source needs to
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be sufficiently larger than the object of interest, in order for the intensity of the
illuniination on the object to be regarded as uniform and Eq.(3.9) to strictly apply.

Mathematically; this condition can seen from Eq.(3.10) as

I%uob]’ < lgsrcl. (3 11)

<< IﬁSTC’

. l 21
© 1= Vobj
Z9 I

where (Uobjs vol;j) arrd_(fs.,c, nsrc) deoote the maxirhum dimension of the object {mdé;
illumination and that}o_f‘ the incoherene source, respec’gi{rely. Therefore, when apply-
ing Eq.(3.9) to describe the mutual intensity incident on an object, the additional
requirement -on the.relative size of the object under illumination and the-geometric
1mage of the source must be satisfied. |
Although valid in a wide array of situations, the 31mple Fourler transform re-’
' latlonshlp, Eq. (3. 9) estabhshed by the Zernlke approx1mat10n breaks down as the
" dimension of the 1ncoherent source shrinks and the coherence area at the pup11 plane
increases. As descrlbed above thls small-source condition is the norm for the verti-
cal dimension with undulator radiation. Therefore, one cannot resort to the Zernike
: approxrmatlon here and numencal evaluation based on Eq. (3.7) in Sec.3.3 is needed

" for examlnlng the mutual 1nten51ty dlstrlbutlon at the condenser i image- plane

3.4 Point spread functions for aberrated pupils

To proceed on the numerical evaluation using Eq;(3.7), it is evident that the
~ expressions for the PSF (i.e. G) corresponding to various low-order aberrations are
needed. In this section, PSFs for defocus/distortion, astigmatism, and coma, are

presented.

3.4.1 Distortion & Defocus

The displacement theorem, as presented in Ref. [1] in terms of intensity, states
that for any two arbitrary aberration functions whose difference is given by Hp® +

Kpsin@ + Lpcos® + N, where H, K, L, and N are constants of order ), their
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respective intensity -distributlons near focus are identical apart from a displacement
described by the transformation given later in Eq.(3.20). Resembling the derivation.
of the displacement theorem in Ref. [1], the same theorem in terms of field, i.e. PSF,
for the two arbitrary aberration functions differing by Hp? + Kpsin8+ Lpcos 8 + N,
will also be established in Eq.(3.23). Notice that the allowed dlfference between the
two aberration functions, Hp? + Kpsin@ + Lpcosf + N, is essentially distortion
and defocus. Therefore, by setting one of the pupil functions to zero, the PSFs of
d1stort10n and defocus can be obtained from an un-aberrated PSF Wthh in turn can

be asymptotlcally approx1mated by a series of Bessel functions.

The displacemeht theorem

When distortion and defocus are the only difference between two pupll funct1ons
thelr respectlve PSFs are related 51mply by translation perpendlcular and’ parallel to
the optlcal axis. This is called the dlsplacement theorem. The ﬁeld dlstrlbumon due
to an arbitrary aberration functlon ® can be expressed as

U(P) = —iaz—;l i(z2/a) 4/ /27r exp{i[k@ —vpcos(f — @) _ %(pz]”}pdpd() (3.12)
2 0
where a is the radius of the exit-pupil, A is a scaling factor indicating the sffellgth'of

the beam, p is the normalized (with respect to a) radial coordinate at the eﬁtit4pupil

plane, and
21 a\2 :
_2n(a (31
¢=5(3)- (313)
V= 2n (i)\/u2 + v? (3.14)
_ A Z9 ) ‘
¢ = arctan—:—;- . (3.15)

For ease of notation we define

F(Gov,8:0,0) = k® — wpcos(8 — §) ~ 5CF (3:16)

Assuming a second aberration function ®' which differs from ® only by distortion

and defocus, i.e.

& =&+ Hp* + Kpsin0+ Lpcos@+ N (3.17)
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where H is the ﬁiaghitude of the defocus, K and L are the % and y distortion mag-
nitudes, respectively, then we have
f(¢,v,¢;p,0) = k' — 5(2kH +¢)p?* — pcos@(vcosd + kL) — psin@(vsing + kK) — kN

= kd' — l(zch +{)p* — kN —

ycos¢+kL o u‘slin¢+kK)

V2 + )2 V()2 +()?

p\/(ucosgb—i— kL) (z/s1n¢+kK (

,—k<I>—1/pcos(0 - ¢') — ;C — kN

where
¢ =(+2kH ‘
vV =/(v cos¢+kL) +‘('}/sin:¢ +'kK)'~"4 V' cos¢' =vcosg+kL
y ., vsing+kK ' oy ) ;o
o _arétan—ucosqb-i-kL v slnqﬁ =vsing + kK
and now
: r_ 2 AV N2 .
V=S (SRR (3.18)
,UI
¢’:arctan-&;. : (3.19) -

The corresponding cartesian coordinate relationships are as follows,

zf:z+2(%)2H_ o =u+(2)L o =+ (2K (3.20)

Na a

Solving for U'(P’) we find,

y | o _ S v
U'(P) = - 1a’d ’(’2/“)24// exp{ k@—ypcos(e ¢) (2]}pdpd0

X 22 z2
_ (3.21)
ia”A 2A 2
=12 eilz2/2)%¢ / / exp{ «,v, qS, P, 0)+kN] }pdpda | (3.22)
2

= U(P)eikNeilz2/a¢'=) (3.23)
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Eq.(3.23) is the displacement theorem expressed in terms of.field. Note that U’(P’)
and U(P) are only different by a constant phase term, e*("*#'~2), and that in Born &

Wolf [1], the dlspla.cement theorem is expressed in terms of intensity, i.e. |[U'(P")|2 =
(PP |

- PSF for distortion and v_(_ile.focps
Using the displacerhent theorem, the PSFs of distortion and defocus can now be

obtained from the unaberrated PSF, ie. @ = 0 [I]. With ® = 0, Eq.(3.17) now

becomes,
®' = Hp> + Kpsin® + Lpcos§ + N, (3;24)

which is purely distortion and defocus. Rewriting Eq.(3.21) in terms of the cartesian

coordinate (z,y) of the eXit-pupil we have

U'(P') = _1“ 4 eilz2/a)*¢’ // exp{ 2 [xu +yv' + < ( ) '(z? +y2)]}dxdyv
. P(m’y)
(3.25)
, Usmg the result of Eq.(3.23), Wlth U(P) of Eq (3 12) being substituted in, note

that now ® = 0 for unaberrated case,

27
U'(P’) = _ﬁgzﬁ i(z2/a)?¢ / / exp{—z[z/pcos(ﬁ P) + Cp ] }pdpd() x ek

2

(3.2_6)

za,A 240 Lo ilep2 ik N
- 1ed gilz2/al2C o o / Lvp)e 3% pdp  x & (3.27)
2 0

Equating Eq.(3.25) and Eq.(3.27), it is found that

V ) 2A : I. W, U 2
U'(Pl) — .__ia’_zz._ez(n/a)?( x // k2 exp{—i)\—:’2 [wu/+yvl+ z)\r_(Z)2 '(:E +y )] }dxdy
2
P(z,y)

1
_ ia’A ZA cil2/a)?¢ o 27r/ JO(Vp)e.—i%C”zpdp % N
A 73 0

(3.28)
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As shown in Eq.(3.7), the effect of the aberration of interest is examined at 2’ = 0
in this case, i.e.,

Pl | (3.29)

One sees from Eq.(3.29), the Fourier transform. of a defocused and/or distorted pupil

can be numerlcally evaluated by calculating the integral, .

Atuwg ﬂ“ﬁp—fwa/_§3Q2&+U +@MyM“()_(am)

The procedure in the software used for numerically evalliat‘iﬁg the.PSF of the aber—

rated pupil is outlined in the flow diagram Fig. 3.2, basically utilizing the-following

equality:
(%iiéﬁf%ﬁ u',v') / / ik’ exp{ [mu +yv] }dxdyf i |
Fle) (3.31)
= [6%/4\/% S0 (25 4+ 1) Joay(c/4) S V)} |
5=0 ,
where

& = Hp? + Kpsinf + Lpcos§ + N

. 2
U:v'—(z—2)K ' yzl(g)\/uz-i-vz
Z2

a
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Silmmary,,on distortion & defocus

Expressing distortion and defocus in terms of the Zernike circle pol'ynomials"[48]‘,’
ie.

!

distort (ul7 vl) = Adistort pCOSQ + Adefocus (2/)2 - 1) (332)

defocus

and comparing with Eq. (3.24), one finds

H = 2Adefocus y- N = 7Adéfoc_us :
i (3.33)
L = Agistors 3  K=0 g 3.3
ie.,.
<I>7 = (2Aqefocus)P2 -+ (Adisto‘”)pcose + (_—Adefocus) (334)

and the corresponding PSF (up to a scaling constant) is as-described in Eq.(3.31),

and
2= —2(%’:)2 (2Adefo;us)
u : u' —’-. (Eag) <Adisfm) o (= 2;(?_)22.

Z9 v
v=1 szz —(-l—)\/u2+v2
A 29
Note that here
1=1,2 (3.35)
v = v; + M77 .

as in Eq.(3.7).
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& = Hp* + Kpsinf + Lpcosf + N

//"e’“’ exp{—ié[xu’ﬁ-‘yv'} }dxdy =|2r [e”’“ﬂ/?&(i)f(?‘s +1) Js+%((/4) stt(y)]e‘w

P(z,y)

2 =0
d' = U; +M€ .

=32
U=1u —<;)L > or /g :
2 Vz—(—)\/u?;i—v?

v‘:v'—'(f)K A Nzp

Figure 3.2: Procedure for the calculation of defocus/distortion PSF.
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3.4.2 Astigmatism

Next we consider the lower-order aberration of astigmatism, defined as
(I)astig = Aastig P2 cos 26 ' (336)

where Ay is the aberration magnitude, usually of the order of wavelength A.
In this case, the PSF (up to a scaling constant) produced by the aberrated pupil

can be written as
| T | ,ik®asti . 2m ! ’ 7.: : -
Gostig(u', V') = [.[ €*%estis exp —ZXZ- [xu + yv ] dedy @ (3.37)
v o L (!
P(z,y) ' o

Following the derivation in Ref. [49], the above integral involving the aberrated pupil
can be expressed in terms of a series of Bessel functions. Note that the signs of the

imaginary parts in the equation are inverted to conform with the notation used here..

Gastig (ul, 'U,) = 277r |:J1 (V) - Zﬁ Cos 2¢J3 (V)

132
T 2.9

{ Ji(v) — —Jg(ll) + Js(u) + cos 4¢J5(1/)}
Qiﬁ; { 3 cos 2¢_,(—Js(V) - —,Js(V) + —1—J7(V)) — cos 6¢J7(y)}

+ 23’3 4|{3(;J1(V) - ?z] ( )+ J,S(l/) - T@J’](V) + ——Jg(y))

+ 4cos 4¢( (V) - —J7(1/) + Jg(l/)) + cos 8¢Jg(1/)}:|

(3.38)
where
2
B = kAa,stig = TAastig (339)
9 ,
s @) T = o
¢ = arctan % =¢ (3.41)
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Note that here we have dropped the primes for ' and ¢’ for ease of notation, and

that with respect to the image-plane mutual intensity expression in Eq.(3.7),

u = u; + Me. | o . _
{0 i=1,2 (3.42)
v =wv; + Mn
Theréfore,
. 2m . 2 R
V== (22) \/(uz + M{) (vi + Mn) (3.43)-
.qﬁ = arctan —MJ\/IZ | - (3:44')1

where a is the condenser exit-pupil radius.

3.4.3 Coma

Finally, we consider another lower-order aberration, namely coma. Coma is de-

v -ijﬁned as’
B coma = Acoma (3p3 - 2p) cos (3.45)

~ where Acomq is the aberration magnitude.

" The resultant PSF (up to a scaling constant) is

o ¢
G ome (U v) = // ik@coma exp{—z)‘—7r [xu + v ] }d:cdy (3.46)

, P(z,y)

The above integral can be expressed as a series of Bessel functions as follows,

' Gwma(u v o 27 [Jl(zx) B cos ¢ Ju(v)
- 252'{4J1( V=554 Jg,(z/)—2—%J7(1/)—cos2¢<-§—J3(y)+§J7(u))}
B 3'{3COS¢< ( ) ﬁjzi(y) + 790J6( ) %Jg + %Jlo(ll))

— cos 3¢( Ja(v) — %Js(u) — %Jlo(u)) }]
- ' (3.47)
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where

2 - o

ﬂ = kAcoma = TAcoma (348)

! 2_7T _‘_1_ n2 N2 V:
V= <z2)_‘/(u)~ +(v)? =v (3.49)
/

¢’ = arctan 1’_, =¢ (3.50)

u B

- Again here we have dropped the primes for ¢/ and ¢’ for ease of notation and that

again with respect to the image-plane mutual intensity expression in Eq.(3.7),

i=1,2 (3.51)
v =v; + Mn ' ' S
Therefore, |
2w [ a N2 2 |
V= T<z—2)\/(U2+M§) + (’U,"I’MT])Y . . (352)
. v, + Mn '
¢ = arctan et Me (3.53)

3.5 Numerical evaluation _results

Using the object-image coherence relation derived in Sec. 3.3, i.e. Eq.(3.7), the
mutual intensity at the image plane of the condenser can now be determined numer-
ically by incorporating the appropriate PSFs [i.e. G(u',v")] given in Sec. 3.4. To test
the validity of the numerical evaluation, a large (1.6ﬂmm x 1.6 mm) uniform intensity
incoherent source is used to illuminate the condenser. Unlike the undulator sdurce;
this large square incoherent source can be shown to satisfy the Zernike approximation.
The resultant intensity and coherence distributions with various pupil aberratiohs are
shown in Fig. 3.3. As expected by the Zernike approximation, the various aberrations
have negligible effect on the spatial coherence distributioh_s, which are all essentially
Airy patterns with first null radius of 2.8 ym. The iﬁtensity distributions are all rela-
tively uniform, again as expected by the Zernike approximation. In the case of coma,

the intensity distribution is shifted as the center of mass of the modulus square of the

coma PSF is off-centered.
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Coherence: defocus = 0.5 %

u [pm) Au [um)

Intensity: astigmatism = 0.5 & Coherence: astigmatism = 0.5 A

Av [um]

0
ufum) Aufum)

Intensity: coma = 0.5 Coherence: coma = 0.5 .

v [um)

Av [um]

2 4 6 8 10

u[ﬂm] Auﬁnm]
Figure 3.3: Simulation results for a large (1.6 mm x 1.6 mm) uniform source. Intensity
(left column) and coherence (right column) distributions resulting from the various
pupil aberrations (a defocus, b astigmatism, ¢ coma). The coherence distributions
are all essentially Airy patterns as predicted by the Zernike approximation.
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Next, an actual undulator source having a size that does not satisfy the Zernike
approximation is studied. The intensity distribution of this incoherent undulator
source is Gaussian with (o, 0,) = (260um, 164m), given by the undulator beam size
at the exit-plane. First, an aberration-free condenser is assumed in order to see the
effect of smaller source size. Figure 3.4 shows the failure of Zernike approximation
for small sources, as the coherence distribution deviates significantly from an Airy

pattern.

Intensity: aberration-free

v [um]
AV [um]

2 4 6

L 4 6 8 10 -10 -8 -6 -4 =

-0 8 6 -4 -2

0 0
u [um] Au [um)

Figure 3.4: Simulation results: Intensity and coherence distribution at the condenser
image-plane resulting from the un-aberrated condenser pupil and the Gaussian-shaped
incoherent source of (05, 0y) = (260um, 16um).

It has been shown above that the size of the incoherent source has affected the
coherence distribution at the image plane and the apodized pupil function is not the
sole determining factor. Next, the effect of pupil aberrations on the spatial coherence
distribution is investigated. Several low order aberrations will be assumed in the
condenser to demonstrate this effect. The PSFs needed by Eq.(3.7) are again given in
Sec. 3.4. Figure 3.5 shows that in the case of smaller source size, the effect of condenser
aberrations on spatial coherence cannot be ignored. With 0.5 waves of defocus in the
condenser, the intensity and coherence distributions at the condenser-image plane is
shown in Fig. 3.5(a). Figures 3.5(b) and (c) show the distributions under 0.5 waves
of astigmatism and coma, respectively. For the cases of defocus and astigmatism, the

high vertical coherence shown in Fig. 3.5(a) and (b) can be explained by the small
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vertical source size. However, in general the two dimensional coherence distributions
cannot be treated separately in terms of vertical and horizontal directions. As demon-
strated in the case of coma, shown in Fig. 3.5(c), the two dimensional structure of
coma dominates the spatial coherence distribution in the condenser image-plane and
the coherence distribution cannot be explained simply by the vertical and horizontal
source size. It is shown that numerical spatial coherence propagation based on the
Huygens-Fresnel principle is required to correctly predict the coherence distribution
at the condenser image-plane.

Note again that the coherence distribution is not simply a function of the differ-
ence of the coordinates, instead, it is a function of the four individual coordinates, i.e.
(u1,v1, u2,v,). Therefore, when showing the coherence distribution, one of the coor-
dinates is fixed at the origin, i.e. (uj,v;) = (0,0), and the coherence distribution is
obtained as the correlation factor |u,,| between various points (us, v9) and the origin
(0,0).

Note that for a condenser system illuminated by a point source (i.e. a coherent
source), the resultant intensity and coherence distributions at the image plane of
the condenser can also be obtained with this numerical evaluation by employing a
Dirac-d-function as the source. The results for 0.5 waves of defocus, astigmatism and
coma, respectively, are shown in Fig. 3.6. The intensity distribution indeed shows the
modulus square of the PSF of the respective lens pupil and the resultant coherence

distribution is 1 at all positions since it is coherently illuminated.
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Figure 3.5: Simulation results that show the effect of aberrations for the Gaussian-
shaped incoherent source: Intensity (left column) and coherence (right column) distri-
bution at resulting from the various aberrations (a defocus, b astigmatism, ¢ coma).
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Intensity: defocus = 0.5 & Coherence: defocus = 0.5 A
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Intensity: astigmatism = 0.5 & Coherence: astigmatism = 0.5 A
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Figure 3.6: Simulation results using a point source (coherent source): Intensity (left
column) and coherence (right column) distributions resulting from the various pupil
aberrations (a defocus, b astigmatism, ¢ coma). The coherence distribution is a
constant 1, which shows that the field is fully coherent as expected.
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3.6 Conclusion

The results obtained in this chapter are valid for any condenser systems that
re-image the incoherent source to its conjugate plane, regardless of the Zernike ap-
proximation. We have demonstrated that for a condenser system employing an EUV
undulator as the radiation source, the commonly used Zernike approximation is vio-
lated and numerical spatial coherence propagation based on Huygens-Fresnel principle
is required. In fact, for any condenser system that re-images an incoherent source,
the spatial coherence distribution at the image plane, in general, depends both on the
complex pupil function, and on the intensity distribution of the incoherent source.
Using the Zernike approximation requires caution and the validity of Zernike approxi-
mation has to be verified before application. Also shown is that pupil aberrations pose
significant effect on the spatial coherence distributions at the condenser image-plane

when Zernike approximation fails.
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Chapter 4

Diffractive optical elements based
on Fourier optical techniques:

A new class of short wavelength

optical elements

A diffractive optical element, based on Fourier optical techniques, for
use in extreme ultraviolet/soft x-ray experiments, has been fabricated
and demonstrated. This diffractive optical element, when illuminated
by a uniform plane wave, will produce two symmetric off-axis first or-
der foci suitable for interferometric experiments. The efficiency of this
optical element, and its use in an EUV interferometer, are presented.
Its use opens a new era in the use of sophisticated optical techniques
at short wavelengths.

4.1 Introduction

Coherent extreme ultraviolet (EUV) and soft x-ray (SXR) radiation [35] facil-
itates phase-sensitive techniques that provide new opportunities in various fields,
e.g. biological imaging, material characterization, and nanotechnology. However,
challenges are presented in that very limited optical elements are available at these

wavelengths. Most experiments either utilize low efficiency diffractive optics such



92

as Fresnel zoneplates, or glancing incidence reflection mirrors and normal incidence
multi-layer mirrors which result in restrictive off-axis optical systems and limited
spectral region, respectively. No appropriate materials exist for lenses and prisms
due to high absorption. Therefore, devising novel optical elements that can effec-
tively and efficiently achieve wavefront shaping is of crucial importance for researches
conducted at EUV/SXR wavelengths. Here, Fourier optical techniques are introduced
to accomplish the desired wavefront manipulation.

In our first example of these new techniques, we have designed and fabricated,
based on Fourier optical techniques, a diffractive optical element which combines the
functions of a grating and a zone-plate through a bit-wise XOR operation [11]. USing
this compound diffractive optical element allows the efficiency and the contrast of
the interferometer to be greatly increased. The application of this optical element in
an EUV interferometer to directly determine the index of refraction at EUV wave-
lengths will be presented in Chapter 5. Similar activities are underway at soft x-ray

wavelengths.

4.2 XOR pattern

This XOR. diffractive optical element is obtained by combining a 50% duty-cycle
binary intensity grating and a 50% duty-cycle intensity zoneplate. The binary grating
and zoneplate are first pixelized, with each pixel being either 1 or 0 for transmission
and absorption, respectively. As shown in Fig. 4.1, the two pixelized patterns are
then overlapped and compared pixel by pixel to produce the resulting XOR pattern,
i.e. at each pixel position, if the pixel values of the grating and zoneplate are the
same (both 0’s or both 1’s), the value of the corresponding pixel on the XOR pattern
is 0. Otherwise, the value of the corresponding pixel on the XOR pattern is 1.

For a 50% duty-cycle grating of period d, the transmitted intensity function is

G, ) = % [1 + sgn (cos ux)] (4.1)

where v = 27 /d.
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Similarly, for a 50% duty-cycle zoneplate of diameter D and outermost zone-width
Ar, the transmitted intensity function is [2]

1
ZP(z,y) = 5 1+ sgn (cosyr?) (4.2)

where r = /22 4+ y? and

B m
1= Ar(D — Ar)

Expand these two patterns in their Fourier series,

2 sin(mx/2) _; '
Glog)= 3 TN s (4.3
and
2. sin(nw/2) _; 2 .

Note that by comparing the Fourier series of a zoneplate to a lens, one finds that the

zoneplate functions as multiple lenses with n** order focal length f, given b
g g ¥

=

The XOR pattern of the combined grating and the zoneplate is obtained by

XOR(z,y) = G(z,y) + ZP(z,y) — 2G(z,y) ZP(z,y)
i sin(mm/2) o imrT i sin(nm/2) o gy r?

mm nm
m=—oo n=—oo
1 2. sin(mn/2) _; 1 = sin(nw/2) _in~yp?
_ 9|2 SUIRY &) —pwE | |~ SIn\narf 2} —jnAr
[2 i _Z mm ¢ 2 4 Z nmw ¢
m=—oo n=—00
n#0
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This combined diffractive element, when illuminated by a uniform wavefront, has the
interesting property that it produces two symmetric off-axis focal spots, (m,n) =
(+1,1), at the back focal plane of the zoneplate. Note that both the grating and the
zoneplate have to be of 50% duty-cycle for the on-axis focal spot to disappear, i.e.
m # 0 and n # 0 in the summation. The separation of these two beam spots z;
can be determined by multiplying the two exponentials in Eq.(4.5), completing the
square for z-terms, thus resulting in

- 2A7‘(D — Ar) N 2ArD
- d T4

iy (4.6)

Note that this separation is independent of wavelength A\. Thus as the wavelength
is varied for spectral determinations of § and S, the focal length (distance from the
XOR pattern to the sample mask) varies, but the lateral separation of the two beam
spots remains fixed. The invariance of the spot separation over wavelength allows the
EUYV interferometer to operate at different wavelengths without the need of changing
the image-plane sample mask. This is a desirable property for EUV interferometers
since the scale of the sample mask for EUV applications requires it to be micro/nano-

fabricated, thus immutable after being made.
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Grating

bit-wise XOR
operation

\/

Figure 4.1: Bitwise XOR operation: The binary grating and zoneplate are first pix-
elized, with each pixel being either 1 or 0 for transmission and absorption, respectively.
The two pixelized patterns are then overlapped and compared pixel by pixel to pro-
duce the resulting XOR pattern, i.e. at each pixel position, if the pixel values of the
grating and zoneplate are the same (both 0’s or both 1’s), the value of the corre-
sponding pixel on the XOR pattern is 0. Otherwise, the value of the corresponding
pixel on the XOR pattern is 1.



4.2.1 Simulation of the XOR pattern

A computer simulation has been performed to see if these patterns produce the
expected results. An XOR pattern of a grating (period d = 16pum) and a zoneplate
(outermost zone-width Ar = 0.2um, diameter D = 400um) is produced, as shown
in Fig. 4.2(a). This pattern is then Fresnel-propagated to the first order focal plane
of the zoneplate and the resulting intensity distribution is shown in Fig. 4.2(b). As
expected, only off-axis spots exist in this focal plane and the on-axis zeroth order

focus is completely eliminated.

() d=16 um, Ar=0.2 um, D=400 um (b) _ A=1650m

-

~40

[um]

20 !

gos
éo.e—
40 3
T 04 3 (‘
£ ! i
Zo2 B
60&‘ i ] i% rl i
%60 40 20 0 20 40 60 Gt Sy
[um] fum)

Figure 4.2: Computer simulation of the XOR pattern: The parameters used in this
simulation are set equal to the actual fabricated element. The pattern in (a) is
obtained by taking the ”exclusive or (XOR)” of the binary grating and zone-plate.
4096 x 4096 pixels are used to generated this pattern. This pattern is then Fresnel-
propagated in computer by one focal length and the resulting intensity distribution
is shown in (b). A horizontal cross-section through the focal spots is also shown. The
two symmetric off-axis first order foci is clearly visible in this simulation. The other

two outer spots are caused by the third orders (m = %3) of the grating, with 9 times
lower intensity.
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4.3 Efficiency of the XOR pattern

The XOR pattern, as expressed in Eq. 4.5, gives the efficiencies of the individual
orders. First of all, we need to determine the overall transparent area of this XOR
pattern. Since we know that the percent of transparent area on the grating and the
zoneplate is 1/2, we find that the overall transparent area of the XOR pattern to be
1/2+1/2—2(1/2)(1/2) = 1/2 from Eq. 4.5.

Next, we calculate the efficiency of individual orders from their relative strength.

From Eq. 4.5, we have, for m,n # 0,

22(1/mm)*(1/n7)? 1 4 |
(1/2)2+ 202D * 2~ m2nir if m, n are both odd,
T = 2l i
0 if m or n is even.
Where Zl(:o:o (2k41-1)2 = %2 is used in the calculation.

Another way to look at this is that we can think of this XOR pattern as a binary
amplitude zoneplate, multiplied by a m-phase-shift grating which does not have any
absorption. Therefore, the overall absorption of this XOR pattern is the same as that
of a binary amplitude zoneplate, i.e. 1/2 and the efficiency of its individual orders is
given by multiplying the corresponding orders of the binary amplitude zoneplate and
the m-phase-shift grating. The efficiency 7,, of a 50% duty-cycle w-phase-shift grating
is

4
=— florm=21,48, 5,
Dm = § M (4.8)

0 for m is even.

And the efficiency 7, of a binary amplitude zoneplate is

55 [of f=1,48 ===,
=<« BT (4.9)

0 for n is even.
By comparing Eq. 4.7 with Eq. 4.8 and Eq. 4.9, we indeed see that the efficiency of the
individual orders of the XOR pattern, 7,, , is given by 7, X7y, , i.e. the multiplication

of the corresponding orders of the phase grating and amplitude zoneplate.
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4.4 Visible light experiment

A first XOR pattern, designed for proof-of-principle testing at visible wavelengths,
is fabricated using e-beam lithography [22] in order to directly observe the intensity
distribution at the back focal plane. The grating used in this visible version has
a period of 5um ,the zoneplate diameter is 5mm and the outermost zone-width is
2pum. A screen is put at its back plane, which is 15.8mm away from this visible XOR
pattern. A collimated He-Ne laser beam (A = 633nm) is then used to illuminate
this visible version XOR pattern and the resulting intensity distribution at the back
focal plane is shown in Fig. 4.3(a). As expected, the two symmetric off-axis foci are
directly observable and there is no on-axis focus presented. The separation between
these two off-axis spots are measured to be 4mm, which agrees with the designed
value. As a comparison, an “OR” pattern made from the same grating and zoneplate
is also fabricated and shown in Fig. 4.4. The effect of combining the grating and
zoneplate through an bit-wise OR operation is equivalent to that of placing them
in tandem. Therefore, this OR pattern demonstrates the back focal plane intensity
distribution of a traditional separate grating and zoneplate setup. Fig. 4.3(b) shows
the resulting intensity distribution at the back focal plane of this OR pattern. Three
foci are clearly observed, with the strongest focus on-axis and two weaker symmetric
off-axis foci. The separation between the on-axis and the off-axis spots are measured

to be 2mm, which again agrees with the designed value.
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(a) XOR

4 mm 2mm l 2 mm

Figure 4.3: A visible light experiment is performed in order to directly verify the
intensity distribution at the back focal plane of the XOR pattern. For comparison,
an OR pattern obtained by taking the bit-wise OR of a grating and a zoneplate is
also fabricated. The effect of this OR pattern is equivalent to that of a grating and
a zoneplate placed in tandem, which is the conventional setup for interferometric
experiments. Part (a) shows that the intensity distribution at the back focal plane
of the XOR pattern consists of only two symmetric off-axis foci, as predicted by the
theory. As a comparison, the focal plane intensity distribution of the OR pattern is
shown in (b), which has three foci, with one strongest on-axis focus and two weaker
off-axis symmetric foci. The grating used by the XOR and OR patterns in this visible
experiment has a period of 5 um and the diameter and the outermost zone-width of
the zoneplate is D = 5mm and 2 um, respectively. A He-Ne laser (A = 633 nm) is
used for illuminating the XOR and OR patterns.
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Figure 4.4: A microscope image of the OR pattern used in the experiment with visible
light. The grating period is 5 um. The zoneplate diameter is 5 mm and the outermost
zone-width is 2 um.
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4.5 First use in EUV interferometry

The XOR pattern employed in our first application to EUV interferometry is
fabricated using the same e-beam lithography tool and an SEM image of the actual
pattern is shown in Fig. 4.5. The period d of the grating used here is 16um (8um
pitch) and the zoneplate has a diameter D = 400um and a outermost zone-width
Ar = 0.2pm. Undulator beamline 12 at the Advanced Light Source provides the
EUYV radiation for this measurement. [35] The wavelength at which this measurement
was performed is A = 16.53 nm (75 eV) and the monochromator at the beamline is

set at A/AX = 1100.

This interferometer utilizes the strongest non-zeroth order, i.e. (m,n) = (+1,1),
which has a theoretical efficiency of 4/7% x 1/7% = 4/7* ~ 4.1% as given by Eq. 4.7.
Experimentally, the efficiency of this XOR pattern is measured by recording the total
counts on the CCD while scanning a knife-like beam-stop transversely across the back
focal plane. Starting with the beam-stop placed at the back focal plane such that
the entire beam is blocked, as the beam-stop slowly moves aside, the total counts on
the CCD increases, allowing fractions of light to pass. The result of this efficiency
measurement is shown in Fig. 4.7. The two abrupt steps at the center is caused by
the two symmetric off-axis first order foci, (m,n) = (£1,1), being released one at
a time by the scanning beam-stop. However, when determining the efficiency of the
(m,n) = (%1, 1) order, the effect of straight through light needs to be removed. Since
the position of the transversely scanning beam-stop is directly proportional to the
fraction of the straight through light that passes it, the effect of straight through
light can be determined by the constant slope of the two straight sections. After
removing the effect of the straight through light by least-square fitting the slope of
the two straight sections, the individual strength of the (m,n) = (%1,1) order is
shown to be around 4.0%, which agrees with the theoretical value. Note that the
definition of diffraction efficiency for this element is the sum of the flux in the two
desired orders divided by the total incident flux on the pattern. We measured the
diffracted flux to the two desired orders and the total flux through the XOR pattern.
The latter is assumed to be half of the total flux incident on the XOR pattern, as
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Figure 4.5: The center part of the XOR pattern is shown. This diffractive optical
element is obtained by taking the bit-wise XOR of a binary amplitude grating and a
binary amplitude zoneplate. The functionality of this XOR pattern is equivalent to
that of a binary phase grating overlapping a binary amplitude zoneplate, as discussed
in the text. The grating used here has a 16um period (8um line-space) and the
zoneplate has a 400um diameter and a 0.2pm outermost zone-width.
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edge of the XOR pattern is shown here. The outmost zone width

Figure 4.6: The

is seen to be 0.2um and the alternation of opaque and transparent zones over the

grating half-

period is also shown.
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half the pattern is transparent. Therefore, the diffraction efficiency is obtained by
dividing the diffracted flux in the two orders by twice the total flux through the XOR
pattern.

Comparing with the separate binary grating and zoneplate setup, in which the
+1st orders of the grating are being focused by the first order of the zone-plate with
a overall efficiency of 1/7* ~ 1.0%, this XOR pattern provides a 4 times improvement
in theory. In practice, the required exposure time actually reduces about 10 times due
to the fact that the substrates on which these optical elements are fabricated have
finite absorption and only one substrate is needed in this case. As will be described
in Chapter 5, this improvement in efficiency enables the first direct measurement
of refractive index at EUV wavelengths, where the two symmetric first order foci
are used as two arms of an interferometer and a direct phase measurement for the

dispersive part of the index of refraction is performed [10].
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Figure 4.7: The efficiency of this XOR pattern is measured by scanning a knife-like
beam-stop across the focal plane. Starting with the beam-stop placed at the back
focal plane such that the entire beam is blocked, as the beam-stop slowly moves
aside, the total counts on the CCD increases, allowing fractions of light to pass. The
constant slope of the two straight sections results from the effect of zeroth order
(straight through) light. The two abrupt steps at the center is caused by the two
symmetric off-axis first order foci being released one at a time by the beam-stop.
Their strength is shown to be around 4.0%, which agrees with the theoretical value.

4.6 Comparison to the computer generated holo-

gram CGH

A computer generated hologram (CGH) having similar functions can also be con-
structed. The relationship between CGH and XOR is clarified by showing that even
though they are both applications of Fourier optics, with similar functionality, they
are of fundamentally different concepts. Specifically, CGH uses the traditional analog

concept, while the XOR has an interesting digital aspect.
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The design concept of CGH is depicted in Fig. 4.8(a). Tn a computer simula-
tion, the obJect wave (in red) Wthh consists of two converging spherlcal wavefronts
is encoded by a reference plane wave (in blue) to form an 1nterference pattern (holo—‘
gram) as shown in Fig. 4.8(b). This CGH, when 1llum1nated by the reference plane
wave, w1ll produce two converging spherlcal wavefronts Wthh can be used for mter-
ferometnc experiments. Note that these two spherical wavefronts are 1dent1ca1 and
'symmetrlcally distributed with respect to the optical axis.

~ To nano- fabrlcate this CGH, it is necessary to bmarlze the smooth” areal in-
terference pattern (Fig. 4.8(b)) into 0’s and 1’s. This binarized parttern, shown in
Fig 4.8(c), will then be used to produced the CAD file that“nano febricates'the
holographlc optlcal element. To see the effect of blnarlzatlon on the re-constructed
Wavefront this binarized holographlc optical element is Fresnel-propagated to the
plane where the object wave converges to two points and the 1ntens1ty dlstrlbutlon
" is shown in Fig. 4.8(d). No significant higher order effects are observed It is also
interesting to compare Fig. 4.2 with Fig. 4.8(c,d) and note that the two different
diffractive elements prodnce similar intensity distributions at the back focal piane,'

The CGH can be optimized for optical flux throughput, while the XOR pattern
is not speciﬁcally designed for maximum efficiency. However, it is very difficult for
the CAD program of an electron-beam column to generated a CGH data file due
to the large memory requirement imposed by the large amount of very small and
irregularly-shaped structures particularly at the outer edge of the CGH. In addition,
the finer details required by the CGH also make it more difficult to nano-fabricate.
The XOR pattern provides a more practical solution in that it requires much less
computer memory and relatively less stringency in nano-fabrication. For the XOR
pattern,wthe digital data files of the grating and the zoneplate are already accurately
calculated and taking the bit-wise XOR. operation of the two data files is trivial in

computers.
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4.7 Conclusion

For the first time a novel diffractive optical element based on Fburier'optics tech-
niques has been demonstrated. It is shown, both in thedry and in experiment, that
by combining two diffractive elements, a grating and a zoneplate, through a bit-wise
XOR operation, the resultant optical element produced a new functionality, two sym-
metric off-axis foci with a higher efficiency. The two symmetric off-axis foci at the
back focal plane are used in an EUV experiment to difectly measure both the real and
imaginary parts of the refractive lndex Specn‘ically, it is shown that interferometric
experiments that require better contrast and higher coherent power benefit from this
XOR design, due to the symmetricalness of the intensity distribution at the back focal
plane and the improved overall efficiency, respectively. Although useful at all wave-
lengths, this pattern has particular value at the short wavelengths of interest here.
This group of optical elements shown in this paper brings sophisticated Fourier opti-
cal techniques to open new experimental frontiers in an area rich with opportunities

on nanometer scales and with element-specific identifications and applications.
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Chapter 5

Direct index of ref‘r'ac.t ion
measurements at EUV Wavelengths

w1th a novel 1nterferometer

The first direct measurement of the dispersive part of the refractlve‘
index is performed at EUV wavelengths, where absorption is higher as
compared with hard x-ray and visible wavelengths. A novel diffrac- -
tive optical element, the XOR pattern, which combines the functions

~of a grating and a zoneplate, is used for the interferometer. Both the
real and imaginary parts of the complex refractive indices are measured
directly by this technique without recourse to Kramers-Kronig trans-
formations. Data for Al and Ni, in the vicinity of their L and M-edges, . .
respectlvely, are presented as ﬁrst examples of this techmque

51 “Introduction

" Refractive indices, n{w) = 1 — §(w) + i8(w), in the extreme ultraviolet (EUV)
wavelenigth region ‘are complex, highly absorptive and have strong wavelength (pho-
ton energy) dependernce [8]. The absorptive part 3(w) of the refractive index at EUV
~wavelengths is well-tabulated by photo-absorption measurements. However, the real
(dispersive) part of the refractive index é(w) at EUV ‘wavelengths is less accurately

known. Interferometry, which can provide independent measurements of 4 and S, is
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difficult in the EUV/Soft X-Ray(SXR) regions due to high absorption by the many
atomic resonances and the lack of high optical quality beam-splitters. Joyeux et.
al. [50] have had some success using an interferometer based on a bi-mirror reflective
splitter, but were limited by the trade-off between throughput and spectral resolu-
tion. Bonse and Hart [51] have been successful at significantly hlgher photon ener-
gies, where 3/6 < 1, using crystal diffraction techniques. Presently in the EUV/ SXR;: '
region, knowledge of ¢ is determined either indirectly from a Kramers-Kronig trans- |
formation [36] of the imaginary (absorptlve) part, B(w) [52-58], or by least- -square
fitting Fresnel coefficients obtained from reflectance measurements 56, 59-62]: Nei-
ther of these methods provide an independent measurement of &(w). The 6 (w) values
obtained from the Kramers- -Kronig relationship depend entirely on the f(w) values..
Because the Kramers-Kronig relationship requires a wide range of spectrum of 5(w)
for one to obtain each point of §(w) on thé spectrum, errors in S(w), especiﬁlly nedr
absorption edges, affect the accuracy of the resultant é(w) values. The accuracy of
d(w) values determined from reflectance experiments are sensitive to surface rough-
ness, chemistryvahd contamination, and to the fa_c't'that the accuracy of this fitting

depends strongly on /6, working well only for energies with B/6 < 1 [56].

Here, an amplitude-division transmlssmn 1nterferometer which can be used to
measure both the dlsperswe and the absorptlve parts of the refractlve index 1ndepen-
dently by determining the phase-shift and the visibility of interferograms, is presented

with optimization prdvided by the XOR pattern discussed in Chapter 4. Bega,use the
| determination of é directly from the phase-shift is indépendent of 3, this. interfer-
ometer can measure 0 across the absorption edges without being affected by sharp
spectral variations of the # value. In addition, the sample is probed in transmission
at normal incidence in th.is interferometer, thus, it is less sensitive to errors associated
with surface roughness, chemistry and contamination, as compared With reflectance
measurements, assuming that the thickness of the sample is much greater than that

of the surface layer.
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5.2 Interferometry

5.2.1 Principle

Interferometry can be used to extract phase information from an intensity detec-
tor. The amplitude-division transmission interferometer employed here utilizes the
Fraunhofer diffraction, which states that the field distribution in the far-field can be
obtained from a Fourier transform of the aperture field distribution. The underlying
principle of operation of thls interferometer is discussed here.

Let U,(z,y) denote the field d1str1but10n in the aperture, the resultant far field
field distribution Uj(u,v) is given by [2]

: e]k:z:ej2 (u?+2?

Ui (u, v)————————/ U, my) JAz(”“+y”)d:vdy  (51)
R -

00

As shown in Appendix C the 1nverse Fourler transform of the far field 1nten51ty

distribution, |U; (u,v)|?, is equal to the auto correlatlon of U (x y)
//‘Ul'(-u,v)( et gydy = // U, (7, y')U_;(x' - az_,.y' —y)dz'dy . (5.2)

For an intensity detector placed at a dlstance z away from the aperture, the
detected intensity dlstrlbutlon |U1!2 can be rec_orded_ and then inverse Fourier trans-
formed to obtain the auto-correlation of the field disﬁtributiovn in the aperture. If the

field distribution in the aperture is arranged in such a way that it can be written as
Uo(z,9) = 6(z,9) +S(z,9), (5.3)

then its auto-correlation consists of' four ﬁarts__.’ ‘The field quantities, S(z,y) and
S*(—z, —y), are present in the auto-correlation of U, together with the auto-correlation
of §(z,y) and that of S(z,y). For the interferometer used here, S(z,y) is of limited
spatial extent and is spatially separated'in the inverse Fourier transform domain from
the other three components. Therefore, the field distribution S(z, ) can be extracted
and both the amplitude and phase distributior'.l"vof S(z,y) can be obtained.
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5.2.2 The interferometer

~ The 1nterferometer used for the measurements presented here is shown concep-
tually in Fig. 5 1. The size of the pmhole 5,um is chosen to be smaller than the
coherence area of the beam [9] guaranteemg spatlally coherent 1llum1nat10n of the
1nterferometer In concept the pmhole dlffracted beam then propagates through a
blnary transmlssmn gratmg, which serves as a beam-sphtter followed by a zoneplate
lens used_ to focus the beams to the sample plane. Asv actually used, the grating
and zoneplate are combined for improved' eﬂiciency into a single diffractive element‘
Thls combmed optical element prov1des two s1de by—mde focal spots of equal inten-
31ty, thus 1deal for use in 1nterferometr1c experlments The propertles of the XOR
pattern related to the operatlon of themterferometer are summarized in Sec.5.2. 3 A
comprehenswe study of this XOR pattern is presented in Chapter 4, A

The sample mask, cons1st1ng of side- by-31de Wmdow palrs is placed at the back
focal plane of the zoneplate The window pairs con51st of two Sum X 5um cross-
sectioned openings. Reference ‘window pairs are free of test material, while other
pairs have one window coated with test mate_riai. .In taking data, one first aligns a
reference window pair to the two side-by-side first order focal beam spots and records
- a reference interferogram. One then moves the sample mask to illuminate a window
pair in which one side contains test material, and records the test interferogram.
By introducing the test material into one arm of the interferometer, the fringes of
the interferogram shift due to the refractive properties of the.material, essentially a
path integration of §{w). ~Additionally, the visibil.ityxof the interferogram is reduced
due to absorption. The interferograms are recorded on a back-thinned EUV-sensitive
CCD camera. The complex index of refraction is determined by comparing these two
interferograms for fringe-shift and visibility change, which are directly related to &

and 3, respectively.

5.2.3 Novel diffr‘active optical element

The XOR pattern described in Chapter 4 is employed here by the interferometer

for improved efficiency, which is essential at these highly absorptive wavelengths. The
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use of two sequential diffractive elements (the grating-and zoneplate), each of which
has a theoretlcal efﬁc1ency to first order of 1/72, limits the overall efficiency of the
1nterferometer ThlS efﬁc1ency can be 81gn1ﬁcantly improved by consohdatmg the
functlonahty of the grating and the zoneplate into a single diffractive optlcal element.
ThlS is done by comblnmg the blnary grating and zoneplate through a bit-wise XOR
operatlon Spec1ﬁcally, the XOR pattern is obtalned by first plxehzmg the blnary:
gratlng and zoneplate Each pixel is elther loro0 for transmission and absorptlon
'respectlvely The two plxehzed patterns are then overlapped and compared plxel by
plxel to produce the resultmg “XOR” pattern i.e. at each prxel p051t10n if the plxel
values of the gratlng and zoneplate are the same (both s or both 1’ s), the value
of the correspondlng plxel on the “XOR” pattern is 0. Otherwise, the value of the
corresponding pixel on the “XOR?” pattern is 1. '
The two optlcal elements used in this XOR pattern, a 50% duty-cycle binary
amphtude gratlng of perlod d, and a 50% duty cycle binary amplitude zoneplate of

diameter D and outermost zone-w1dth Ar, can be represented by

and _

ZP(z,y) = [1+sgn(cos K%)J,

respectively [2]. Expanding these two patterns in their respective Fourier ‘series
and noting that the XOR pattern of the grating and zoneplate can- be expressed-
as XOR(x y) = G(x y) + ZP(z,y) — 2G(z,y) ZP(z,y), we have ’

ad 2 2m7rm il 2 ﬂf_ziy_) ‘
XOR(z,y) = = — 2[ 3 —sm(:nn;r/ ) 0% } [ 3y —————Sm(;;?:/-) e 'Ar(D-ar)
A O a0

(5.4)

Examining the first order terms in both the grating and zoneplate, i.e. (m, n)'»z
(£1,1), its efficiency is given by the square of its coefficient [2(1/7)(1/7)]* = 4/7%,

which is a fector of 4 increase in optical throughput as compared with a separate
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grating and zoneplate setup. Since the membranes on which "‘thes'e-opti’calelements
are fabricate’d have finite absorption, there is an additional gain of efficiency due to
the fact that only one membrane is required. | , : _

This combined diffractive element, when 1llum1nated by a uniform wavefront, has
the interesting property that it produces two symmetric off-axis focal spots, (m, n) =
(£1,1), at the back focal plane of the zoneplate. This can be seen by multiplying the -
two exponentlals in Eq.(5.4) and completlng the square for x- terms The separatlon |
of these two beam spots is determlned by o -

ATD 2ArD

T, & 2sin” (/\/d) g

(5.5)
Note that this separation is 1ndependent of wavelength A. Thus as the wavelength
is varied for spectral determ1nat1ons of 6 and S, the focal length (dlstance from the
XOR pattern to the sample mask) varies, but the lateral separat1on of the two beamv

spots remains ﬁxed T herefore the index of refract1on as a function of wavelength

can be obtained simply by translating the same sample mask along the optical axis.
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5.2.4 Analysis method

A Fourier transform method [9, 44] is used to extract both the phase-shift and
visibility from the mterferograms The extracted values are averaged over the full

area of the mterference pattern.

Phase shift

The phase shift, A¢, is simply the difference between the two independently re-

constructed phase maps from the interferograms. The value of & is determined by

Ag= -2§t6 (5.6)
where A is the Wavelength and tis the thlckness of the sample.

The Fourier transform method used here to determine the phase Shlft Ad) has the
advantage that the phase 1nformat10n conta,med in the spatral frequency modulated
fringes is isolated into the first order peaks in the Fourier (1 e. spatial frequency)
domain. Filtering of the first order peak in the Fourler domain removes the effect
of all stray lights that does not have an identical spatial frequency as that of the
fringes. Figure 5.2 shows the analysis process of the Fourier transform method. The
interferograms are first Fourier transformed into the Fourier domain, where the first
order peaks positioned at the spatial frequency of the fringes are separated from all
other spatial frequency components. A Gaussian filter in the Fourier domain is used
to extract the first order peak. The extracted first order peak is then inverse Fourier
transformed to propagate back to the CCD plane, where the field distribution caused
from one of the windows is. now obtained. The phase information, wrapped between
+7, can now be retrieved from the field distribution. The phase shift between the
two interferograms, A¢, is determined simply by subtracting the two wrapped phase
distributions. Note that the linear phase terms caused by the off-centered first order
peaks are identical in the two wrapped phase distributions, and cancel each other
after subtraction. The resultant phase map is only valid over the region where the

fringes exist on the CCD and the phase shift number A¢ is quoted as the average

over this valid region.
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Visibility

The illumination on the interferometer provided by the pinhole is essentially coher-
ent. The visibility on the CCD is therefore solely determined by the relative intensity
of the two focal spots after the window-pair. The relative optical intensity of the two
beams, after propagating through the sample mask, is related to observed visibility
of the interferogram by

y= e

14«

(5.7)

where « is the relative intensity after propagating through the sample. From the

relative intensity «, the value of 5 is obtained by

= exp{—‘%ﬁt}. (5.8)

Fourier transform method is again used to extract the visibility from the interfer-
ograms. The separation between the two foci is z; = 10 um, which is smaller than
the pixel size of the CCD (25 um). Therefore, the far-field diffraction patterns from
the two foci effectively overlap on the CCD. Additionally, as shown in the analysis
of the XOR pattern, the two first order foci are identical. Their far-field diffraction
patterns after propagating through the sample mask onto the CCD are again identical
apart from their relative intensity. Under these circumstances, the visibility observed
on the CCD is directly determined by the relative intensity of the two foci after the
sample mask, i.e. a. Specifically, the observed intensity on the CCD is give by

I(u,v) = L(u,v) [(1+a)+ 2\/&_cos(—2/\—7; xsu>] (5.9)
where A is the wavelength, z is the distance from the sample mask to the CCD, and
I,(u,v) is the diffraction pattern of one of the first order foci had the other focus
were blocked. Figure 5.3 shows the coordinate system used in Eq.(5.9). After Fourier
transform, terms inside the [-] gives
=, )+ 8~ 3
The Fourier transform of I(u,v) is given by the convolution of Eq.(5.10) and the

(14 0)8(fur £) + va [5(fu + 1] (5.10)

Fourier transform of I,(u,v). Therefore, the visibility is obtained in the Fourier
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domain by two times the ratio of the integration under the first-order peak to that
under the zeroth-order peak. This analysis method has been used in Chapter 2, where
a = 1 and visibility is solely determined by the magnitude of the complex coherence
factor |p,5]. The visibility obtained by this Fourier method is an average over the

entire area where fringes exist.
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Figure 5.3: Fourier method for determining visibility.

5.3 Experimental setup

This experiment is performed at undulator beamline 12.0 of the Advanced Light
Source, a third generation synchrotron radiation facility [35]. Undulator radiation
provides the required EUV photon flux and, with pinhole spatial filtering, the spatial

coherence required for the interferometric experiments. The beamline monochroma-
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tor provides a spectral resolution A/A)X = 1100. As described above, a single XOR
diffractive element combining a grating (d = 16 um) and zoneplate (D = 400 um,
Ar = 0.2 um) is used for optimum efficiency. This new diffractive element is fab-
ricated using electron beam patterning and nanofabrication techniques [22]. The
separation of the two beam spots at the back focal plane is z, = 10 um.

The sample mask is also fabricated by electron beam lithography on a 100nm
thick silicon nitride membrane. The thickness of the Si3/Ny, membrane is relatively
uniform over the 10 um separation of the two beam spots. The sample is prepared
with the test material being evaporated onto the nitride membrane. The thickness of
the test material is measured both by a profilometer and a spectral reflectivity system
to an accuracy +1nm.

The overall distance from the pinhole to the CCD detector is 420 mm and the
distance between the pinhole and the XOR pattern is 110 mm. The separation be-
tween the XOR pattern and the sample mask is determined by the first order focal
length, which is a function of wavelength A. For instance, at 72.5 eV, the wavelength
is A = 17.1nm and the first order focal length is 4.7mm. Therefore, the distance
from the sample mask to the CCD detector is around 300 mm over the spectral range
considered. Given the dimension of the window-pairs, 15 um x 5 um, Fraunhofer

approximation can be used for the light propagation from the sample mask to the
CCD.

5.4 Experimental results

5.4.1 Aluminum across its L-edge

Measured ¢ and [ values for aluminum 67.0 £0.1nm thick are shown in Fig. 5.4 in
blue. The results obtained with this interferometer resolve the fine aluminum L-edge
structure, i.e. the L3 edge at 72.7 eV and the L, edge at 73.1 eV, in both ¢ and 5.
Moreover, it is also evident that the shapes of the § and 8 curves, though determined
independently, are closely related. The sharpest increase in 8 occurs at 72.7 eV which

coincides exactly with the dip of the § curve at the L3 edge. Furthermore, the sharp
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increase of B at 73.1 eV also coincides exactly with the dip of the § curve at the
Ly edge. For comparison, the best available data for aluminum refractive indices is
shown in red [63], where the § value is obtained by Kramers-Kronig transformations

of § values over a wide spectrum. The two data sets agree fairly well both in § and

3.

5.4.2 Nickel across its M-edge

Measured ¢ and g values for nickel of thickness 20.6£0.1nm are shown in Figs. 5.5.
The Nickel M5 edge at 66.2 eV is clearly resolved and the ¢ and f values at this edge
are seen to be closely correlated. The error-bars for the nickel data are slightly larger
than that of the aluminum data, mainly because of the lower photon flux available
in our experiment at the nickel M-edge. Thus, longer exposure times were required
resulting in greater noise due to vibration. Improved accuracy at the absorption
edge will require increased system stability or increased optical throughput. The best

available refractive index values of nickel [64] are shown in red for comparison.

5.5 Conclusion

The first direct measurement of the dispersive part of the index of refraction
at EUV wavelengths is performed using interferometry. A new diffractive optical
element based on Fourier optical techniques is employed in the interferometer for
improved efficiency. This interferometer directly measures ¢ values at wavelengths
where it is desired. No compilation of 5 values over a wide spectral range is needed.
As a first example, ¢ and B values of aluminum and nickel are obtained by this
interferometer at wavelengths close to their atomic resonances, i.e. Al L-edge and
Ni M-edge. Extensions of these studies to additional materials (Si, Mo,...), and to
shorter wavelengths (1 to 5 nm) in the soft x-ray spectral region can be performed

with the same interferometer.
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Figure 5.4: The experimental results are shown in blue. It is evident that the alu-
minum L-edge is resolved both in § and S where the position of the L, and L3 edges
are 73.1 eV and 72.7 eV, respectively. Note that the values of § and § are obtained
directly (independently) from phase shift and visibility change, respectively. The §
and [ values from Ref. [63] (in red) is derived from Kramers-Kronig transformation

of a compilation of absorption and reflectance data. The two data sets agree fairly
well both in § and £.
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Nickel
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Figure 5.5: Nickel: The experimental results are shown in blue. The M; edge at
66.2 eV is clearly resolved and the § and S values at this edge are seen to be closely
correlated. The typical exposure time (~ 200 sec) for the nickel interferograms is
approximately 10 times longer than that of aluminum due to lower beamline flux at
low energy. The stages in the experimental setup drift over longer exposure time,
thus causing larger error bars in the nickel data. For comparison, current standard
nickel refractive indices are shown in red.



84

Chapter 6
Conclusion

The higher spatial resolution provided by employing shorter wavelengths corrobo-
rates the importance of advancing optical techniques at EUV wavelengths. As a result
of this incessant desire of seeing and printing smaller features, new developments in
short wavelength optics are continuously emerging. Optical coherence techniques,
based on Fourier and statistical optics, constitute a new and pioneering aspect in the
progression of EUV optics. In this dissertation, experiments that confirm and charac-
terize the spatial coherence properties of EUV undulator radiation are presented. In
addition, the first Fourier optical element, the XOR, pattern, is described and utilized

in the first direct measurement of refractive indices in this wavelength region.

Understanding the spatial coherence properties of a radiation source is essential
to the design and implementation of concomitant optical systems. Unlike visible
light optics, the spatial coherence properties of the relatively new EUV radiation
sources are not well understood. Therefore, the first experiment in this disserta-
tion was aimed at characterizing the spatial coherence properties of EUV undulator
radiation using the Thompson-Wolf two-pinhole method. The result of these experi-
ments demonstrate that, with appropriate spatial filtering, high spatial coherence at
EUV wavelengths region is achievable with undulator radiation at third generation
(small electron beam phase space) synchrotron facilities. New opportunities are thus
presented for experiments that require high spatial coherence, e.g. high resolution

interferometry [41,42, 65], holography [66,67], coherent scattering [68,69], and fo-
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cused microbeam analysis [70], etc. In addition, this experimental characterization
unicovers an' interesting characteristic of the undulator radiation, i.e. the difference
in the measured horizontal and vertical coherence proﬁle; These studies ’h’avg verified:
that thé Zernike approximation, which is most staridard in visible light optics, is not'

| applicable here. This is a consequence of the exceedingly small vertical source size of
the undulator. The effect of this small vertical source size on the resultant numerical -
coherence distribution at the image plane of the condenser evokes further theoretical |
‘studies that are described in Chapter 3. For the EUV: undulator that acts as a con=
denser which re-images the incoherent source to its conjugate plane, rigOI_‘ous sp_dtial
coherence propagation based on the Huygens-Fresnel principle is necessary and used |
in Chapter 3 in order to obtain the correct mutual intensity distribution.

As statistical optics is utilized in Chapter 2 and 3, Chapter 4 and 5 exploit‘Fourier
optical techniques. A novel diffractive optical element based on Fourier optics, the
XOR pattern, is demonstrated for the first time. This XOR pattern substantially
improves the flux throughput. and therefore resolves the high absorption problems at
-these wavelengths. Another interesting property of this XOR pattern is its generation
of two symmetrical, off-axis, foci. This symmetricalness, together with the improved
optical throughput, makes the XOR pattern an ideal candidate for interferometry at
EUV wavelengths. Previously, the high absorption and the lack of high-quality beam-
splitters in the EUV wavelength region precluded attempts at direct at-wavelength
interferometric measurements of refractive indices. With this new XOR pattern, the
first direct. measurement at EUV wavelengths of the dispersive part (4) of the refrac-
tive index is performed for aluminum around its L edge, and nickel around its M edge.
The measured values are in good agreement, but more detailed and more accurate
than current standards, which are obtained indirectly from Kramers-Kronig transfor-
mations of the absorption data. The use of this new XOR pattern brings sophisticated
Fourier optical techniques to shorter wavelengths. Furthermore, the demonstrated ca-
pability in the highly absorptive EUV wavelength region opens up new opportunities
on nanometer scale applications and element-specific identifications.

This dissertation on coherence techniques has accomplished its goal in advanc-

ing two frontiers of short wavelength optics: coherence characterization of radiation
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sources and the introduction of novel optical elements. A thorough-understand-
ing of the spatial coherence properties.of the .undul_ator radiation has been achieved.
through both experimental and theoretical studies. The invention of a novel XOR.
pattern demonstrated the first application of the Fourier optical techniques in short
wavelength optics. This invention also enabled the first direct measurement of the dis-
persive part of refractive indices at EU,eravelehgths. Optical coherence te_(;hnique_S
introduced in this dissertation have advanced the field of short wavelength optics and
will continue to play an essential role in the development of short wavelength optics.

B T
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Appendix' A

Free space coherence propagation
of an incoherent source with
(Gaussian-shaped intensity

distribution

A.1 Fourier transform of a Gaussian distribution
function

A Gaussian distribution with parameter ¢ is given by

g(t) = - 127r eXP(—;TQQ).. | (A.1)

Note that this distribution function is normalized, i.e.

/ " dt =1 | (A2

The Fourier transform of this normalized Gaussian function is given by

—o0 OV2T '

400 e -
6 = [ = etnte i (A3)



88

Further evaluate this integral to get

G(f) :.0\}% /+oo exp{ 212 [t2 + jdno ft]}

= /+°° Xp{ 1 [(t+]27r0 f) ] 271'202f2}dt (A )
/ A4
_ exp(a%;: ) /_oo exp{ 212[(t+]27r02f) ]} (t+i2ma®f)

= exp (—27rzazf2)

127r eXp(‘%) < G(f) =exp(-2n 02f2) (A5)

g(t) = d

Notice that because g(t) is an even function, its Fourier tranform G(f) is a real-valued

function.

A.2 Coherence distribution after propagating from
the undulator exit-plane

A.2.1 - Van Cittert-Zernike Theorem

" The Van Cittert-Zernike theorem governs the coherence propagation of an inco-

herent source.

ne‘f’p +°° _ . '
J(zla Y1, Ta, y2 )\2)2 // §, ])‘z (fA +nAy) dfdn (A6)
where
A2 s
R=" ad y= (44— ot o) (A7)

Note that here (Az, Ay) is defined as
(Az, Ay) = (71 — =, Y1 — Y2) (A.8)

which is different from that in Goodman [3], where (Az, Ay) is defined as (xo—z1, Y2 —
y1). Therefore, the sign of the exponential term in Eq.(A.6) changes accordingly.
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Notice that J(z;, y1; 2, y2) is in general a function of the four coordinates (21, 91; T2, Ya),
but its modulus of |J(z1, y1; Z2,y2)| is a function of the coordinate difference (Az, Ay)

only, i.e.
CJ(Az,Ay) = |'J!'(a:1,y1;:n2,y2)|

1 pptoo o - (A.9)
_ R ~53% (saz-ny) o
oo J[ - 1iemei acan

The Van Cittert-Zernike theorem can be expressed in the normalized form as

follows, using'the complex coherence factor u,

J($1zy1;$2,y2) '
J(z1, 91521, 1)

¢ [[2° 16, n)e (ﬁA”"Ay)d&dn |
fI+°° n)dédn

(1, Y1522, Y2) = _
(A.10)

Note again that the w(zy, y1; T2, 2) is in general a functioh of the four coordinates
(21,915 T2, ¥2), .and its modulus |p(x1,91; T2, y2)| is a function of the coordinate dif-

ference (Az, Ay) only, i.e.

p(Az, Ay) = Iu(xl,yl;ﬁz,yz)l o
[ J-I+oo e -j& (EAz+nAy) d{dn
f _,[+°° (&, m)dédn

(A.11)

A.2.2 TIncoherent source with‘Gaussian inte‘hsit’y distribution

An incoherent source, whose intensity distribution is Gaussian with (o¢, 0,), can

be expressed as

Is(f,n);éexp{ (2€2+202)} o A1)

3

Given this Gaussian intensity source, its coherence distribution after propagating

a distance z can be determined by Eq.(A.10). First, the integral in the numerator is
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evaluated to be

[ conf- (52 + ) Yot (eamnes) gy

A 207 202

2 2
= Co¢V2rm exp{—2ﬂ2a§(%) } X anv27rexp{—27r2a,2’(-§—éy-) } (A.13)

) (Az)? (Agy?
= C2no¢oy eXp{— [2(/\z/20§7r)2 * 2()\—2/2071”)2j| }

Note.that Eq.(A.5) is used with (f, f;) being given by

()= (22 o

to arrive at the above result. Also note that the result of this double-integral 1s
real-valued.

Secondly, Eq.(A.2) is used to obtain the denuminator as
// C exp{ —— + —) }dfdn = C2noeoy. | (A15)

Therefore, the resultant complex cohefencé factor p after propagating a Gaussian-

shaped incoherent source by a distance z is

u(z1,y1; T2, Y2) :re_jl/) exp{— [ (Az)” + (By)* ] } (A.16)

2(\z/20¢m)?  2(Az[20,7)2
and its modulus |y is given by

(Am Ay) - Iﬂ(xl;y1,$2>y2)|

:vexp{_'[((ms)2 N (Ay)? ]} (A.17)

2(\z/20em)?  2(Az/20,7)?

To conclude, given an incoherent source of Gaussian intensity distribution (o, o),
the modulus of the complex coherence factor at a distance z away from the incoherent
source is again Gaussian in coordinate difference (Az, Ay) with

(05,05) = ( Az Az ) (A..18)

2o’ 2moy,
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Appendix B |
Pupil function of a thin len:S'.- I

Under the paraxial approximation, the amplitude transmittance function of a thin

lens, t;(z,y), can be written as,

ti(z,y) = P(z,y) exp [—j:\?f-(ﬁ + yz)] o (B.1)

'

- where the complez pupil function, P(x,y), accounts for the finite aperture of the thin
" lens and the exponential term represents the refractive function of é't’h'iﬁ"lé)"ns of focal
. length f. The phase of P accommodates lens aberrations, and |P| may vary within
' the apéfture to account for apodizations. Also note that P = 0 outside the lens
aperture. 7 | '

The complex pupil function, P(z,y), can be written explicifly as

P(z,y) = [P(z,1)| etp{jk®(z,v) |  (B2)

where k = 27 /X and ®(z,y) is the aberration function.
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Appendix C

| Holographic interferometry —
Retrieving phase information from

an intén__sity detector

C.1 Mathematical preliminaries
Theorem C.1 COnvolution_ theorem states that the convolution of two func-

tions in time domain is equivalent to the multiplication of their respective Fourier

transforms in the Fourier (frequency) domain.

Proof
Given two Fourier transform pairs g(t) < G(f) and h(t) < H(f), i.e.

6= " g(t) ey (€1)

and similarly for h(t) < H(f), their convolution in time domain is defined by

gRh(t) = /_+oog(T)h(t ~T)dT. (C.2)
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Fourier transform to get

ool = [ ([ stomte=nar)ertia

+o0 * ) +o00 ]
: :/ dTg(T-)e‘Jz’-’fT/ d(t— T)h(t’—’ T)e",zﬂf(?TT;)»"
~GDH() o

Theorem C.2 Auto-correlation theorem can be proved. from the convolu-

tion. theorem.. - .-

Proof
Let H(f) = G*(f), then
+00 )
G f)e’z"”df o

-0

+00 °
< G f)e—JZWftdf)

—00

(st-0)"

VThevre:fqre,

el =66 () <
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C.2 Holographic interferometry

C.2.1 Far-field coherent field p‘ro'pagafion
In the far-field, i.e. under the Fraunhofer approximation, which requifes that

k(22 + ) mas - . (©3)

z > 5

where k = 27 /2, the field distribution Ui{(u, v) at a distance z away from the aperture

can be obtained by Fourier transforming the aperture field distribution U,(z, y), i.e.,:
jkz 52 (u +v?) coe
Ui(u,v) = =22 / / U, (2, y)e @) drdy (C4)

Note that the coordinate system is defined in Fig.z‘ii’)_..‘_’).w

Therefore, if the far-field field distribution is given, the field distribution in the
aperture can be obtained. However, a_.regular dete:ct.or can only record the intensity
distribution, ﬁot the field distribution. Using the intensity distribution recorded in
the far-field, an inverse Fourier transform gives the auto-correlation of the aperture
field distribution. As will be described next, holographic interferometry utilizes this
property to retrieve field distribution in the aperture from an intensity detector placed

in the far-field. _

C.2.2 From intensity distribution to auto-correlation
Given the intensity distribution in the far-field recorded on a detector, i.e. U, )%,

re-write as follows,

lUl(u,'u |2 = U, (u, v)Uj(u, v)

)\222 [// U :II ,Y )e J,\z (£’ ut+y’ v)d:(; dy] [/ U (xll,y J,\z (x’lu+y”v)dx"dy"

*
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Perform the inverse Fourler transform of [Ul(u v)| *denoted as AUO (z,v),

' .AUo(x y) //lUI u, U ‘ . ’ S
1 400 “+o0 +00 | k3 .
=157 // [// ces dx'dy'} {// .. dx"dy”} oI = (wutyv) g, Ao
d:l? d IU d Ild IIU* 1" l (CS)
/\2 5 y'U,(a' y) z"dy" Uy (2", y") -

X // dudv exp{—j% [u(—x +z — ") + p(—y +y' - y")] }

3

e’ Xz (“‘“’”)dudv

—zt+z —z" —y+y' -y’
6( Az ) Az )

Noting that d(az) = (5 (z), Eq.(C.5) evaluates to
AUD($7 y) — // dxldleo(xl, yl) // d.’l:”dy”U:(l'”,y”)a(—x + xl _ ﬁL'", —y 4 yl . yll)

':/ U, (', y")Us(a" — 2,y — y)dz'dy’

—00

(C.6)
Therefore, it is shown that the inverse Fourier transform of the far-field intensity

distribution, |U,|?, is equal to the auto-correlation of the aperture field distribution,

o0 . +o0 . :
v 2 L. :
//lUl (u, v)l R qudy = / U,(z',y" U — z,y' —y)de'dy’ .  (C.7)

Note that the Fourier transform of U1 (x, v)l2 is Ay, (—z, —y).

C.2.3 Aperture geometry

To achieve field retrieval, the aperture geometry has to be arranged such that

U,(z,y) = 6(z,y) + S(z,9), (C.8)
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where S(z,y) is the field quantity of interest. The term S(z,y) therefore exists in
the resultant auto-correlation of U,(z,y). In practice, S(z,y) has to be sufficiently
separated spatially from the §(z, y) function in order for the auto-correlation to isolate

the field quantity of interest, S(z, y).
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Appendix D
Phase grating

A phase grating is an optical element whose “grating” functionality modulates
the phase of the incident field. As a comparison, an amplitude grating modulates the

amplitude of the incident field. -

‘D.1 m-phase-shift grating |

A m-phase-shift grating is the most commonly used: phase grating, defined by

II(z) = exp{ij(x)} (D.1)
where
G(z) = % + % S»gm[sinvg%g£ + sini‘(.s _2d/ 2)] (D.2)

The period of this phase grating is denoted by d-and s is the length of the grating
tooth. Note that 0 < s < d. Figure D.1(a) shows the arﬁplitude and phase of the
transmission function of this 7w-phase-shift grating. The phase change imposed by this
. m-phase-shift grating is alternating between 7 and 0, with the span of 7-shift being s.
For cdmparison, Fig. D.1(b) shows the transmission function of an amplitude grating

with identical period d and tooth length s.
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Figure D.1: (a)m-phase-shift grating. (b)Binary amplitude grating

D.1.1 Fourier series expansion
Since this m-phase-shift grating is a periodic structure, its Fourier series expansion

can be written as
II(z) = exp{]ﬂG a:)} Z a, ef¥mnioe (D.3)
where the fundamental frequency f, is given by |
fo= % (D.4)

and the Fourier coeflicients a, is obtained by
1 —j2rnfox
(z) e 74" dg
d .

ap = E,. |
14 N
=7 / eXp{ij(x)} e~ I2mmfoT gy
O .
= (_i/ eI”™ e—J21rnfox d:D 4 E /8 1- e—]27rnfoz dz
Case n =0 For n =0, the zeroth order coefficient ag is given by

ap =1 —‘2(—3)
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Case n # 0 For all other n # 0 terms, the n-th order coefficient a, can be obtained

by

m-—-sA r=d
-1

Cem -1 L1
0 d j2nnf,

Qo = —— e—j27mfo:1:.
" d j2mnf,

—j2nnfox

_ -t [1 - e—mn(s/d)]
jmn -

Fourier coefficients To conclude, the Fourier coeflicients of a 7-phase-shift grating

is given by

ag = 1-29 _ ’

-1 , ‘ (D.5)
an = +[1 - e‘ﬂ"’“’] for n=41,+2:43,---. RS

jrn
.. where

s .

9= — D.6

> 09

is the duty-cycle of the grating. Note that when the dugy-cyqle 9 equals to 0.5, even |
- orders (n = 0,42, ---) disappear.

D.2 Efficiency of w-phase-shift'grating

The relative streng‘th: of the diffraction orders from a m-phase-shift grating is pro-
portional to the modulus square of its Fourier coefficients. As will be shown latef‘by‘
the Parseval’s theorem,‘ the summation of the modulus square of the Fourier coeffi-
cients over all the diffracted orders of a 7-phase-shift grating equals to 1. Considering
that the 7-phase-shift grating here does not have any absorption, the diffraction effi-

ciency is simply the modulus square of the Fourier coeflicients.

Theorem D.1 Parseval’s theorem for a periodic. function: Given the Fourier coef-
ficients ¢, of a periodic function f(t) with period T, the Parseval’s theorem states

that
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n=-—od

%/T']'f(t)]?dt: > lcn‘|>2

Proof

‘The Fourier series decomposition of the periodic function f (t) can:be written as

+oo
f(t) — Z Cn ej27rnt/T

n=-oo

Note that
’ 'fl’°° +oo .
e =33 cue emnmmur

n=—oom=—oo

and integrate both _sidesl of the above equation over one period T’

| 00 +0o0
AIf(t)let: Z Z cmC;Lej2ﬂ(m—n)t/Tdt

m—=—00 nN=—00
Témn

O

Applying the Parseval’s theorem to Eq.(D.3), i.e. the transmission function of the

periodic w-phase-shift grating, one finds

ifne@fa= Y =1 @

n=—00
Therefore, the diffraction efficiency of each diffracted order from the w-phase-shift
grating is simply the modulus square of its Fourier coefficient, |a,|2.

Using the following identity,

the diffraction efficiency of a %r-phase—shift grating is

\ : |1—219|2 for n =20, :
M = |Qn 12 (DS)
= oo 4sin_mnd. for  no=c1,42 43, :

m2n2
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D.2.1 Efficiency of a 50% duty-cycle m-phase-shift grating

For a 50% duty-cycle m-phase-shift grating, i.e. ¥ = s/d = 0.5, its diffraction

efficiency is given by

4 v
9 = for n=41,43,45,---. SR
= lanf? = { 70 = 09
0 otherwise

This 50% duty-cycle w-phase-shift grating has only odd diffraction orders. This is a -

desirable property in many applications since there is no strong zeroth order present

in its far-field diffraction pattern.

14
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