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ABSTRACT

UCRL-17700

A new method of calculating phase shifts from the Bethe—Salpeﬁer

equations is presented. The differential equations is solved below

threshold by using a variational method, and then the scattering amplitude

is continued to the physical-scattering region using Padé approximants.

The singularity structure of the Bethe-Salpeter partial-wave amplitude

in its off-shell variables was studied to find the nearby singularities

that could most strongly affect the continuation.
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I. INTRODUCTION

The recent calculations of phase shifts for the Bethe-Salpeter
equationl in the ladder approximation have demonstfated the practical use
of the equation for the study of two-body scattering amplitudes. Schwartz
and Zemach2 used the Schwinger variational principle based on the integrél
equation which yielded a rapidly convergent sequence of approximations to
the phase shifts. A mesh-point solution has also been achieved which in
addition was applicable to the three-particle inelastic region.5 As
more difficult problems of higher dimensionality are attempted (e.g.,
the three-body problem), the disadvantages of both methods become
apparent. The Schwinger method becomes increasingly difficult to set
up, and the mesh-point method may require prohibitively large matrices.

A comparison of the bound-state calculation of Schwartzu with
the calculation of phase shifts by Schwartz and Zemachg shows that less
sophisticated methods suffice to solve the former problem. The reason
is that the boundary conditions on the wave function can be easily
imposed, and thus the differential equation can be used. In this paper
we present armethod of computing phase shifts by calculating the
scattering amplitude below elastic threshold and continuing it to the
scattering region. By calculating below threshold we avold the problems

3,5,6 The

of solving a singular integral equation for the phase shift.
homogeneous matrix equations that arise in the Rayleigh-Ritz bound-state

L
calculation can be applied directly to the calculation of the scattering

amplitudé merely by introducing an inhomogeneous term. A variational
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principle exists for the amplitude in this region, and we get accuracy
comparable to the Rayleigh-Ritz calculation. Unfortunately the method
breaks down in the scattering region and so a numerical analytic continua-
tion procedure is employed to get the phase shifts.

We propose this method as a means of getting the low-energy
behavior of the phase shift as a byproduct of a bound-state calculation.
Although scattering lengths and effective ranges can generally be calculated
with this method, the extrapolation is not necessarily stable enough to
get good values for phase shifts at higher energies. We present the
analytic continuation of two different functlons that are equal at the
extrapolated point where the phase shift i1s desired. The first is an off-
mass-shell continuation which is the Bethe-Salpeter analog of the method

T

Schlessinger and Schwartz ' used for the Schrddinger equation. The second
is a continuation of the on-mass-shell amplitude that was reported
earlier in a letter.8 The latter method was mare successful, but both
are included in this paper for the sake of comparison.

In Sec. IT the singularity structure of the partial-wave T matrix
is studied close to elastic threshold in order to determine how close
singularities come to the extrapolated points. The convergence of our
method of analytic continuation is expected to be slow close to branch
points. In Sec. ITI we discuss the motivation for calculating below
threshold and describe the numerical procedure. Finally in Sec. IV the o

methods of continuvation and results are presented.
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II. OSINGULARITIES OF THE PARTIAL-WAVE AMPLITUDE

A. Integral Equation for Tz .

Consider the Bethe-Salpeter equation for the scattering of two

k - k!, k!'. In the center-

particles of mass m with four-momenta kl’ o 1 %

of -mass system the integral equation for the scattering amplitude is

2N 1
Ty (g0 = () 3,00 k)
00 o8}
2y | (1)
+ (=) Ai dp f dp. B k', k!
p § | o g ( p) Q;P;PO)
0] e’
X G(D(P;Po) TZ(plpoik)ko)(b)J (2'1)
where
2 1 2
w = - 'E (kl + kg) »
f - k- nle,
and
k, = (kl - ke)o/E . (2.2)

In the ladder approximation, the interaction kernel for single-particle
exchange of mass u and the Green's function are respectively
2 2 12 2 -
/k bk -(ko-ko)+u>
” 2

(1)
B (k;k':k;k) = -Q
y/ 0 12N A

~

(2.3)
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and
- 2 2 2 .2 2 2,71
¢ (ppy) = 1il(p” - py” - +m -de) - la” pyTl . (2.%)
Vv
The on-mass-~shell value of T 1s related to the phase shift through

the formula

2,2 Py
1,(2,0,0,00) = - @ qwe ¢ sns,, (2.5)
2 2.3
where g = (o - m")%.

OQur primary interest is to find the singularity structure of

T in the variable g close to elastic threshold.9

£

different continuations that are of interest for the numerical work that

There are two

follows which govern the emphasis of this séction. The first is avcontin-
vation in g from the bound-state region to the scattering region holding
k equal to k' and at the point where the phase shift is desired. The
second is again a continuationin g but with % and %' constrainted
to the mass shell, i.e. g = k = k'. For both cases we have ko = ké = 0.
In practice we must find the singularities for a much larger domain of
these variables, since they are found by iterating the equation.

A large class of singularities are generated by Eq. (2.1) through

@

pinches of the contours by singularities in the integrand. Their
positions are functions of the momentum variables and masses but are w

independent of A . By iterating the equation N times we get in

operator form
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N+1

T = AB+ANBGB+ - AHB o)

. (2.6)

We will assume that T contains the singularities of all Born terms
whether or not the Born series converges, i.e. that the singularities
in the last term of Eq. (2.6) do not cancel the singularities of the
first N Born terms. The nth Born term is given in terms of the

(n - 1)th Born term through the formula

(o] (o8]
() s 1 _ [ () frr v
BJ& (k;koyk)koﬂb) = dp J dPO B,@ (k :kOJP;PO) G(D(P;PO)
~®

X Bgn'l)(p, Doy K Koy @) (2.7)

There are of course also bound-state poles on the physical sheet of the
w plane for gufficiently attractive potentials., Their positions in

k' and can

will be independent of the momentum variables k, k', kO’ o

only be found numerically.

In Part B below we find all the singularities of the second
Born term. In Part C we discuss the propagation of these singularities
in successive Born terms through Eq. (2.7). Many singularities that we
find are present in the full Feynman diagrams (not partial-wave-analysed)
but are usuvally presented in the literature in terms of Lorentz-invariant
variables., The transformation to our variables appropriate to the Bethe-

Salpeter equation is
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2 2 2,2 2
e 2 2.2 2 "
v - e et .
L) (7 - x17)/(167),
2 2 1 2 2 2 2,2 2
K =a>+—2-(kl+k2)+(kl-kl)/(léw),
and
2 2 1 2 2 2 2,2 2
1 - ol t 1 1 - 1 8
A - B R o) I G S WACCT (2.8)
B. Singularities of the Second Born Tern.
Let us consider £ = O for the sake of clarity with no loss of
generality. The second Born term is
00 00
. - S S
) (k1 kx ) - 1 ap ap, log (z2) m= log (==
e T (2.9)
The integrand is singular on the surfaces Si = 0, where
2 2 2
Sl = (k - p) - (ko - po) + W
2 2 2
82 - (k' + p) - (kO - po) + IJ'
e (ke o) - (k- b )2 . 2
= 1 2 v 2 2 .
s, = (k'+p) (k) - py)~ + w0
-2 2 2
85 = p = (pO - ) +m
2
¢ = P - (py+ of +u° . (2.10)
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The lower limit of the p integration was extended to =~-oo since
the integrand is even in p .

These surfaces can trap the hypercontour and cause singularities
in the external variables.lo Since the integral is two-dimensicnal, one,
two, or three of these surfaces can participate in trapping the hyper-
contour. It is clear that Formula (2.9) can be written as the sum of
four terms each containing Sl or Sg, and 85 or Sh . Thus the inter-

action of B3, and 82, or 8

1 and SM can produce no singularities.

3

In that which follows we consider only the integral containing S S

1 vF
85, and S6 . It should be kept in mind that there are singularities

due to three other integrals that can be found by appropriate replacements
of k-~ -k and k' - -k' in the final results.

The conditions for a hyperpinch to occur in which wm surfaces

1
participate are:

asi asi
m=1 5; = 0 3 C 0, 555 = 0 ; (2.11a)
05, 0S8 ds, 98,
m=2 S,=0 8, =0 -<= 4 - 2,445 (2.11b)
1”7 %57 9p  Op, dp Op, " T
m=3 8, = 0 Sj =0, 8, =0, 1#J#k+1. (2.11c)

The surfaces Si = 0 are hyperbolas in the real p, Pq plane
as shown in PFig. la., The Feynman prescription of giving all internal

masses a small negative imaginary part is used to remove all singularities
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from the integration path and thus define the integrals, If we hold p
fixed and real and loock in the P complex plane, the upper and lower
branches of the hyperbdlas in Fig. la 1lie respectively in the lower- v
and upper-half complex Py plane in Fig, 1b. Since the contour must
be trapped at each stage of integration to produce a singularity in the
integral it is clear that we need consider only those solutions in which
an upper branch of a hyperbola pinches with a lower branch, for only
these branches pinch in the Py integration.
We will examine in turn the solutions to Egs. (E.lla,b,c) in
which one, two, and three surfaces participate.

1l. One Surface

First consider singularities generated by a single surface through
Eq. (2.11a). These equations can be solved immediately and give
singularities at m2 =0 and p2 = 0. But since we are holding the
masses fixed and finite, these solutions are not of interest.

2. Two Surfaces.

Next consider the interaction of two singular surfaces in

producing singularities, Eq. (2.11b). For S. and S¢ » these equations

5
give the elastic threshold branch point at

Y

w = m, (2.12a)

w = 0. (2.12v)
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These singularities occur in the box diagram and are shown in Fig. 2c.

These solutions have a nice pictorial interpretation in terms

of Fig. la. The positions of the hyperbolas S and S6 are functions

5
of the external variable w . When a lower branch is tangent to an
2 2
upper branch we get the hyperpinch at @ = m . When a lower (upper)

branch is tangent to a lower (upper) branch we get the solution w = O
but the hypercontour is not pinched. However, if we start at this
solution and take w on a path that encircles the branch point at
w=m once and return to ®w = 0, we will find that the Py contour
is pinched.

Because of the special importance of the normal threshold to our
analytic continuation, it is shown in the Appendix without relying on the
Born series, that this pinch produces a two-sheeted "square-root type"
branch point in the partial-wave amplitude.

The surfaces Sl and S5 generate the surfaces

(k - k')2 - (ko ~ ké)e + upe = 0 (2.13a)

and
(k - %) )2

- (ko - k! = 0. (2.13b)

0
The same considerations apply to the solution (2.13b) that were discussed
above for Eq. (2.12b). Remembering that the masses have a small negative
imaginary part, -ie, we can see this yet in another way. The solution

(2.13a) gives a singularity for real values of all the variables only
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when € approaches 0, whereas the second solution, (2.13b), exists

for real values of the variables for nonzero € . However, we know

that the integral is nonsingular for real values of these variables, the v
-i€, being introduced solely for that purpose.

, and S and

The singularities due to S, and Sh’ Sé and S o

1 )

Sh follow immediately and are given in Table TI.
Finally the last type of two-surface pinch is for example between

S1 and S5 producing the surfaces

il
(@]

k2 - (ko - w)2 + (m + |J,)2 (2.14a)

and

k2 - (ko - w)2 + (m - u)g

1]
(@]

(2.14p)

Again we can discard the second solution. All the singularities of

this type are summarized in Table I. It should be mentioned that these
solutions are precisely the individuval-particle normal thresholds given
for the full Feynman graph in Fig. 24 expressed in the variables (2.8).

3, Three Surfaces

Finally there is the case in which three surfaces participate in
trapping the contour. The simplest case is the combination Sl’ S5, and

86, giving

4

g =
1]
(@]

(k—q) -ko
and

(x + q)2 -k o+

Il
(@]
)

(2.15)
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where q? = w2 - m?. These solutions are just the "triangle singularity"
corresponding to the contracted graﬁh Fig. 2b in terms of the variables
(2.8).

The sheet structure of this singularity in relation to the normal
thresholds is not simple. But the work has been done for us to straighten
out this structurell and we need only interpret the results in terms of
our variables. This has been done and is shown in Fig. 3. This surface

is tangent to the lower-order surfaces and Tl 6 ° It
2

T1,5,6 Tys

we pass along the surface 6 from the solid portion, passing the

T
1,5,
point of tangency, the singularity goes onto the second sheet of the
normal thresgholds T and T , shown in Fig. 3b.

1,5 1,6

The last and most complicated case is the three-surface pinch

d .
17 85, an 85

generated by the surfaces S
-2 2 2 2 2 2 2 2 2
[(k'—(kc')ww)Jru—m)(kO—m)-(k-(ko—a))+u—m)(k(’)—w)]
- [(k'g— (k4- w)2 + u2- mg)k - (32— (ko ~ w)2 + ug— m?)kv]g

+ mg[k'(ko - ) - (K} - ©)1® = 0. (2.16)

Only this surface and the corresponding ones shown in Table I do not

reduce to conic forms in the left-leg variables ké,

is to look at its asymptotes in the

k', The key to

picturing the surface T

1,3,5

ké, k' plane. This curve is asymptotic to the lines
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A4 v
(ké - 1«:5))2 = (k' -k')e s (2.17a)
where
) (k.- w)
Ia% a4
k6=w+-—_05——1‘ and k'=§-r, (2.17p)
with -

1«:2-(ko-'cu)2+(m+u)2 %.!
2 2 J . (2.17c)
k™ - (ko - w) /o

e

The important thing to note is that for the right-leg variables
on the mass shell (i.e. Xk = g, Ky = 0), these asymptotes are complex.
One can also show that the surface does not intersect the real k', ké
plane under these conditions. This situation persists for k # q for
those values of k and q of interest for the continuations we do.

The singularities of the second Born term are displayed in yet

another way in Fig. 4. These are the relevant complex planes for the two

numerical continuations. For both cases we have set ko = ké = 0,
Fig. Ya shows the singularities in q for fixed k = k', and Fig. Lb
shows the analytic structure in the varisble g = k = k',

D. TIteration of Singularities in the Born Series.

With our knowledge of all the singularities of the second Born

term ng)(k', k!

&y % kg w) in the left-leg variables k', ké, we

could in principle find all the singularities of the third Born term
using Eq. (2.7) and continue the process to find all singularities of

the full partial-wave amplitude. To carry this out we must find the
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singularities for unrestricted values of k' and ké at each stage,
since they are integrated over in the next stage. For unrestricted

values of k, k and gq the problem is quite difficult. In particular

O)
we know that all the singular surfaces of a Feynman N~rung ladder diagram
with at least one rung contracted will not depend on cos® and thus will
be présent in the partial-wave amplitude.12 The singularity structure
of even this class of diagrams is poorly understood for general masses,
Most singularities of Bz(g) are hyperbolic surfaces in the
integration variables ©p, Py (Ssee Table I). This is a great simplifica-
tion in that the complexity of the surfaces does not increase upon
iteration. There are surfacesthough that are not hyperbolic [Egs. (12)

and (13) of Table I]. However, for k. =0 and k = g, they do not

0
intersect the real k', ké plane and thus are not potent in producing
pinches in higher Born terms for the hypercontour in the real p, Py
plane. As mentioned earlier this situation persists for k f g for
the regions of interest.

Restricting ourselves to Just the hyperbolic surfaces we can list

a large class of singularities for Bz(N)(k', k)

&k kg ®) that depend

on q (or w). We list below those singularities that we believe are
closest to the extrapolated region. We alsgo include some singularities
that are "far away" but arise in a simple manner.

(i) Normal thresholds in o

1l

b oo (em + o u)g (2.18a)

- im . (2.18p)

Ne
1]
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(i1) Normal thresholds for each leg:

K - (ko tw)2 + [m+ (o + 1) u]2 = 0 (2.18¢c)
k'ev- €38 0 +m+ (0+1)l2 = 0. (2.184)
(iii) Triangle-type singularities:
(xtq)f -k + [(o+1)ul® = o (2.18¢)
( t o) -k 4 [0+ = 0. (2.18¢)
(iv) Singularities on the'imaginary q axis:
g = -i0 pPl, (6x1), (2.18g)

where ¢ = 0,1,°+°,(N - 2).

The iféfation appears to generate many more surfaces. A large
class can be ruled out using the symmetry of Bz(N)(k', ki, k, ks w)
under k <= k' and ko = ké . There are many more triangle-type
singularities, but just as the ones mentioned[Egs. (2.18e,f)lare on the
second sheet of the lowest threshold (see Fig. 5a), many of the others

are on the second sheets of higher normal threshold. Figure 5 displays

these singularities for the continuations of interest.
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IIT. SOLUTION OF THE BETHE-~-SALPETER DIFFERENTTAL EQUATION

Our calculation of phase shifts is done iﬁ two stages. First the
partial-wave amplitude is.calculated at a set of energies below elastic
threshold, using a variational method based on the differential equation.
The amplitude is then continued to the scattering region, using the
knowledge of 1ts analytic structure dealt with in the previous sections.
This section is devoted to the motivation for calculating below threshold
and an outline of the methods used to calculate the input numbers for
the continuation. We restrict ourselves to equal-mass scattering.

A, Wick Rotation and Asymptotic Behavior

The differential equation was solved for energy below threshold,
because only there is it simple to impose the boundary conditions on the
wave function at infinity in coordinate space. The wave function is
exponentially damped in this region, and this is crucial for the applica-
tion of our variational method.

The asymptotic behavior of the wave function can be found from

the integral“éqﬁation

b g0 = 006+ [ate ol - ) V) ), (3.1)
where
6 o) = e (5.2)
| . dhp ipe (x-x")
GE(X -x') = -1 z—"-ﬁ e GajP;PO) s (3.3)

o,

M K, (plx]) , (3.1)

v(x)
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and K1 is the modified Bessel function. We have gone to the center-of-
mass system and introduced the variable E = 2w for convenience. As
long as the integral converges, we see that the large x behavior is
governed by the free-wave term and the Green's function. The free-wave
term can be easily subtracted out, leaving the Green's function as our
main concern.

It is well known that the Wicle

rotation can be performed on
the Bethe-Salpeter equation for E ©below threshold. This has the
practical advantége of allowing the use of expansions in four-dimensional
spherical harmonics in the subsequent work. Henceforth we will work with

the rotated forms of the equations, where now all relative momentum

vectors. and coordinate vectors are Euclidean:

k

(}E} kl|. ); X

(ff Xu)

kl‘_ ko e-lT[/2 ) X)+ = XO eiﬁ/e . (5-5)

i

Turning now to the integral representation of the Green's function

o .
in x space, Eq. (3.3), and holding o < m2, the Wick rotation can be
carried out without passing any singularities. In the rotated form, the

exponential components of the Green's function for large x arel

1

2 232
Gplx) ~ expli(e” - m") |z|] + explofx,| - mR], (3.6)
¥ |
where R = (|£J2 + xuz) . This clearly shows that for & < m® on the
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physical sheet, the Green's function is exponentially damped in all
directions of the Euclidean four-space (E’ Xh)’ whereas for & > mg,
the second term is a growing exponential in X), This reflects the
fact that poles of Gajp,po) have moved into the first and third-
quadrants in Eq. (5.5) and have moved past the rotated PO contour on
the imaginary axis.

The scattered part of the wave functions is also damped for
a? < m2 as long as the integral in Eq. (3.1) converges. For the
off-mass-shell case in which & and k are independent, the integral
does indeed converge for the full region of w stated. However, by
going to the mass shell E2 = 4(1{2 + m2), below threshold the free-wave
term wko(x) in Eq. (3.1) becomes a real exponential., This exponential
competes with the damped exponentlal under the integral giving only a
finite region of w where the scattered part.of the wave function is
exponentially damped. This effect signals the onset of the second Born

contribution to the left-hand cut and will be discussed again below.

B. The Differential Equation

We can obtain the differential equation from the integral
equation, Eq. (3.1) (where now all relative vectors are Euclidean), by
operating on the equation with the differential operator with the
property

BO,) eyl - x) = 8x - x'), .7)

giving the wave-function equation in the center-of-mass system:
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D (3,0 () = Ve )+ B x ) (5.8)
where
@) = [-0- (@M +n) -f<&? (5.9)
and )+
0 - }_‘ g (5.10)
v v

y=1

The last term comes from the free-wave term in Eq. (3.1) and is zero

for kv on the mass shell.

The scattered part of the wave function is
X () = w () - %00 | (3.11)
k, B k,E k

The differential equation for Xk E(x) is
D @, 5x) = VX G) + v G | (3.12)

C. Variational Principle

15

A Xohn-type variational principle based on the differential

Eq. (3.12) that gives a stationary expression for T is

20, % B = a0 (D) - Ve )

e [ated, omeonle « [at kT eovion, 460

fd x wk, (x) v(x)¥, Olx) . (3.13)

Q
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This expression is stationary with respect to first-order variations of
X E(x) about its true solution, and thus a first-order error in the
o4

wave function will give a second-order error in T :

= 0, —== = 0. (3.14)

The last term of the variational principle is just the first Born term.
This is considerably simpler to apply in practice than the Schwinger
variational principle used by Schwartz and Zemach.2

This variational principle is an exact statement and holds for
arbitrary k, k', and E. However, it may be that the integrals
ostensibly diverge and have a meaning only through analytic continuation,
Also when introducing a set of expansion functions for X +that are
capable of representing the true wave function, it may well be that
the matrix elements ih such a basis will diverge. This happens for
certain values of B, k, and k' and severely limits the applicability
of this variational principle in practice. The off-mass-shell and on-
mass-shell cases will be considered separately.

l. Off-Mass~-Shell

For this case E 1s independent of k and k'. Fix k and
k' to represent true scattering states: k = (k,0), k' = (k',0),
v L
2 2 . . .
,iﬂ = |k'|. For E < (2m)°, X(x) is a decaying exponential for
large x which may be represented well by a set of trial functions

with a decaying exponential behavior, and all the integrals in Eq. (3.13)
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converge., For E2 > (Qm)g, however, X(x) contains a growing exponential
component in X) and it defies ones imagination to find a simple set of
trial functions with the growing exponential that will yield convergent
integrals. The derivative term in Eq. (3.13) is the troublesome one;

all other terms have a potential present which is a decaying exponential
in all directions. A possible method of circumventing this difficulty

is to introduce an integral representation of the wave function:

X g0 = [ahr gl - x o) - (3.15)

An exsmination of the integral equation for X(x) shows that ¢(x)
contains a decaying exponential in the elastic-scattering region.

Using the property (3.7), we see that the derivative term is a convergent
integral., But now we have integrals to evaluate of the same difficulty
as ttose. of the Schwinger method.2

2. On-Mass~Shell

The additional constraints E = h(]};_]g + me) = (]’ ¢ 4 m2)
limit further the applicability of Eq. (3.13). The free-wave q;ko(x)
which is oscillatory for the above case becomes & real exponential below
threshold, and for Im(k) > p the integrals again diverge. Also at
this point our estimate of the asymptotic behavior of X(x) is no
longer valid as discussed above. So finally the domain of applicability
in E is h(mg_- p?) < (2m)2. This is the region between.the elastic
threshold and the second Born contribution to the left~hand cut. (The

first Born term was included explicitly.) These considerations might
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suggest that the full amplitude has a singularity at B - M(m2 - pe)

Although the variational principle for the full amplitude breaks down
at this point, only the partial-wave amplitude in fact has this
singularity.

D. Numerical Method

To solve the Bethe-Salpeter equation we first introduce a

linear parameterization of the wave function X, E(x):
Pl
?” a N ¢
X‘k)E(X) = o af/,n,j ‘jh % O(X)CPJ-(R) 2 (5'1 )
‘t:O (},
n=4
J=n
where ;}LJ are four-dimensional spherical harmonics on the four-

Jn dm

sphere, and ¥ is the unit four-vector in the Euclidean space. The
four-dimensional spherical harmonics can be expressed in terms of the

usual three-dimensional spherical harmonics 'th and Gegenbauer

polynomials CBa 216
F ) 1%

. P24+ -
L?}hgm(ﬁ) = th(/r\) 2 (n -+ l)@l - 'ﬁ). E & C%—*—l(cos 0 )Sil’lf'(@ )’

. : ' n-4

7 3 a(n + 4 + 1)! |

(3.17)

where cos 8 = XM/R, £ is the three-space unit vector, and R is the

o L
length R = (|r|™ + XM?)a. The functions @j(R) are radial functions

depending only on R and were chosen to be

o.(R) = RSB, (3.18)
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We can expand Xk,(x) in the same set of functions, but now with

expansion parameters ak, n', 5t These functions have been used before
s b

by Schwartzu and have been applied directly to our problem. The free-

wave term has the following expansion in these angulaf functions:

[

0 2 Y‘“ in T (1xlR) z }ﬁ« 9 9 &
ACIENCO IR i f/ ®) Yopal®
n=0 £=0 m=-£ U

(3.19)

where k 1is the unit four-vector of length lkl in the direction k,
and J 1s the ordinary Bessel function.
Substituting these expansions in the variational principle,

Eq.(3.13), and invoking the stationary condition

dIT
'y [ ] = 0, (5'20)
B',n',,j‘
we get linear equations for az 1, ]
y //'e:n J,an ﬂn,j = Vglnvjr ’ (3-21)
£=0
n=4
J=n

{ m'j', 4,mn, ] [d X? vzro(x) <P (R){‘,B(B ) - V(x)]} ‘/’ZO(X)CP (R).
cf
(3.22)



UCRL-17700
~2% .
The ordinary angular momentum £ 1is conserved, and thus we have

3wy — £

/@Q'n’j',ﬂnj = Mh'j',nj 632, . Equatlons(B.Ql) are inhomogeneous

equations, the corresponding homogeneous equations are precisely those
used by Schwartz for the bound-state calculation in reference k4, in
which the details for calculating these matrix elements can be found.

The inhomogeneous term is

. J_ - (|xlr)
2 .nd,, o L n+1 X
Vznj = (2n)” 1 gfhﬂo(k) d x ——TEE;—“—' V(x) ¢j(R)- (3.23)
Defining a partial-wave amplitude
[>4]
Y .
T(x',k,E) = . (22 + 1) t'e(llﬁ:l: kOJ l}i‘l: kO’ Q) Pﬂ(cos 8),
£=0
(3.2L4)
where cosé = &-kf/(lﬁl I&',), we obtain finally
= - * 1 t Z NE
n=£
- J=n
where
o
8.2 k2+k'2-(k-k')2+u‘
B,(k', k', k, k.) = Z> o 0 0
£ L A ¢! kk' £ o kk!
(3.26)
and
8x8 04
t,(k 0, k, 0, k) = —EE- e * sing, . (3.27)
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The integral for the vector term (3.23) was obtained numerically by
using a Laguerre integration formula.l6 The standard recursion relations
for the Bessel function can be used for recursing down on the index n ,
and thus not all matrix elements need be calculated from the integral.

We chose a sequence of trial functions, letting n =4, £+ 1, *-°, N,
and J=n, n+ 1, *+*, N and increased N to see convergence of our
results., The matix elements ‘M

n',j'nj

(n * 2) and thus the matrix is block-diagonalized into states with

connect n' only to n and

n=24 4£&£+2, +++, and n= £+ 1L, £+ 3, +«- ., In addition Vﬁnj

is zero for the second set if kh is zero. If kL is also zero, only

the first set enters in the T matrix, Eq. (3.25).. The parameter o

was varied and chosen to be the value that gives the fastest convergence.,
Table II gives some samples of convergence of EE = tg - B’6 for

S waves. Near threshold the convergence gets bad. TFor the on-~shell

case, the convergence also deteriorates near E = O, the onset of the

second Born contributioh to the left-hand cut. In the neighborhood of

a bound state that manifests itself as a pole in €y the convergence

is also slower, presumably because the pole position itself moves for

successive approximations. Except for these special regions the

convergence was gOOd.
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IV. ANALYTIC CONTINUATION TO THE SCATTERING REGION

The second step in calculating phase shifts is to continue the
scattering amplitude to the physical region which is described in this
section. We first outline the general method of continuation and then
discuss separately the off-mass-shell and on-mass-shell continuations.
The latter method was more successful, probably because the function
was smoother, i.e., there were fewer nearby singularities. Also the on-
shell amplitude satisfies a simple unitarity constraint, and this was

used advantageously in the continuation.

A. Method of Analytic Continuation

We chose to do the continuation using a ratio of polynomials
for fitting functions. This is the form of a Padé approximant,17
though we do not determine the coefficlents of the polynomials in the
canonical way. We find empirically that our fitting functions have
properties very similar to Padé approximants.

A Padé approximant is a rational approximation to a function

defined in terms of a truncated power series. Consider

M-1 .
b. zl
J i i=o T
f(z) = Z a; 2 = N1 ) (k.1)
i=0 i
1+ Zj c, %
; i
i=1
where M+ N = J + 2. The coefficients {bi} and fci} are

determined by demanding that the power-series expansion of the ratio

of polynomials coincides with the power-series expansion on the left
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for the first J + 1 terms. This yields linear equations for {bi]
and {ci} as can be seen from the equivalent procedure of multiplying >
the denominator through and comparing powers of 2 .

We will be interested ih sequences of increasing N for M = N.
The theory of convergence of such sequences is incomplete in that they
appear to converge in much larger demains than can be proven rigorously.
Roughly they are found to converge outside the circle of convergenée of
the deer series, the domain peing determined by the positions of
nonpolar singularities.

For our applications we know the function at a set of points
rather than a power series. We still use the Padé form but determine
the coefficients by constraining the two forms to be equal at the input

points. The equations to determine (bi} and {ci} are

N-1 N M-1 5
1+ 2: c; 2 f(zs) = b, oz, (4.2)
i=1 i=0
where s = 1, 2,***,M+ N - 1. We will assume that this sequence

of approximations converges in a circle that contains the fitting points
and excludes all nonpolar singularities. For true Pad€ approximants
this is a conjectured convergence domain. It is possible to find such
circles that include the extrapolated points for both continuations o
discussed below.
Knowing the function at a set of points, Egs. (4.2) provide the
simplest method of computing the coefficients., However, if the function

is given at K points there are a large number of ways to choose k of
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them for k < K and thus there is no well-defined sequence for judging
the convergence of the approximations.

A more elegant method18 is to map the fitting region into the
region -1 z £+ 1 and write the poclynomials in the quotient in
terms of Legendre polynomials Pi(z)

M-1
5: 'b P (z
£(z) =0 . (4.3)

l »
1+ ’P(z

The coefficients are determined by multiplying through by the denominator

and integrating over the fitting region, which gives

N-1 N%%
M., + z& M., c! = " ON.., b!, : (4.ha)
Jo iz Ji i Py Ji i
where
+1
Mji = j dz Pj(z) f(z) Pi(z) (4.hb)
-1
and
+1
- _ 2%l
n, - f P () B (s) = 2L (4. ke )
-1
The recursion relation
(o _ .
i(23 + 1) Mij (21 - 1) (3 + 1) M, 1, 541

(h.5)

- (23 + 1)1 - 1) M, o+ (edo- 1) M.

i-2,3 i-1,3-~1
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enables one to calculate all matrix elements in terms of the matrix
elements of the first row and last column.

Equations (4.k) are very similar in form to the equations for
true Padé.approximants. The coefficients of true Padé approximants
are obtained by comparing powers of 2z , and Egs. (4.4) are obtained
by comparing ccefficients of Legendre polynomials. Of course any set
of orthogonal polynomials can be used that are appropriate for the
particular problem.

One further remark to be made is that the numerator and denominator
functions need not be polynomials but can be any sequence of functions
with linear parameters. For example it might be desirable to put in
known branch points with an appropriate choice of functions. In
addition the sequence of functions in the numerator need not be the same

as in the denominator.

B, O0ff-Mass-Shell Continuation

Referring to Fig. 5a, we have as input for the continuation a
set of values of tﬂ(k, 0, k, 0, q) for a set of values of q on the
positive imaginary axis, for k fixed in the elastic-scattering region.
Qur object is to continue tﬂ in q to the point g = k. This function
is meromorphic in the q plane in a convex region that contains the
calculated points on the imaginary axisband the points of interest on

the real axis. We set

N-1 .

v aj(-iq)‘]

N

t,(k 0, k 0, q) = —F— - (4.6)
1+ b. (-1

'Zl s (-1iq)
J_
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Since tﬂ is real on the imaginary q axis, the coefficients {ai}
and {bi} are real. We chose equal powers of q in numerator and
denominator because tg goes to Bz as q approaches . (The

Born term Bz is independent of g.) Finally we set q = k to get

the phase shift from the expression

. 8um 1
tﬂ(kJ 0, k, 0, k) = K A+1iB . (4.7)
where
tan 82
A = —4—— and B = 1 (unitarity). (4.8)

The accuracy in the calculated value of B serves as a check on the
continuation.

The continuation was first done determining the coefficients by
point-wise fitting, Eq. (4.2). For a moderately strong attractive
potential with a deeply bound state (A =3, w=m = 1), the results of
the continuation were uncertain from 5% to 20% over the elastic region.
A great many attempts were made to improve this. These included:
determining the coefficients by more sophisticated methods, varying the
distribution of input points, trying to improve the accuracy of input
numbers, putting known singularities in the fitting functions, generating
a power series for t, in q and then forming true Padé approximants,

£

and continuing in the internal masses. No significant improvement was
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was achieved. Schlessinger and Schwartz solved the Schrodinger
equation very successfully using this method.7 There are two principle
differences between these two problems: (1) The Bethe-Salpeter
amplitude has an infinite number of branch points on the real axis.
These include the normal thresholds and a host of others due to our
choice of off-mass-shell variables. The Schr&dinger amplitude is of
course regular on the real ¢ axis. -(2) The Bethe-Salpeter equation
is two-dimensional in !EJ and X) cdmpared to the one~dimensional
Schrodinger radial equation. This fact limits the accuracy which is
practical to achieve using the Kohn method. Since simplicity was a
desirable element in this calculation, we felt that it would be self-
defeating to attempt a more sophisticated solution of the equation.
Table TIIT gives a sample of the convergence of the phase shift and
"unitarity coefficient" for the off-mass-shell continuation.

It may appear wasteful of computer time in that the function
must be calculated at many points to get the phase shift at one point.
However, it should be noticed in Eq. (3.21) that k appears only in the
inhomogeneous-term, and after calculating and inverting the matrix M
which depends on E , we can apply its inverse to vectors V with
different values of k , which uses & small fraction of the computer

time. The continuation time itself is very small.

C. On-Mass=Shell Continuation

Because of the dubious success of the off-mass-shell continuation,
a search was made for a smoother function with fewer nearby singularities.

The study of the singularity structure of amplitudes leads us to believe

¥
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that the on-shell K matrix is the optimum function

o tﬂ(% 0, @ O, Q.)
K,(E7) = ‘ (k.9)
2 - 2ip t,(q, 0, ¢ 0, q)

Tt is well known that KE(EE) is analytic in F at threshold and has
branch points only on the real E? axis,
The calculation proceeds as Tollows: We calculate tf(q)

(suppressing the first four arguments) as described in Sec. III, where
ty(a) = Byla) + %, (a) . , (4.10)

The first Born term Bz(q) is known exactly, and %g(Q) is calculated
numerically. The amplitude %, and thus Kz(EE) can be found for
) 2 2 2 2 . . . 2 R
(m™ - &) <E <Um™. It is a real analytic function of E  with
2 .
a branch point in this region at E = bt - u? coming from Bz(q).

We can then expand the domain of analyticity further by removing the

cut contribution to Kz(Eg) for M(m2 - p?) < < bn” - p?. Define

R = x,(F) -k, (F), (k.11)
where
)-l-mg-p.g AKX 2
(E'7)
cut E2 _ 1 a 2 Tk L,
E = i h(mg-ug) ’ E'g B Ee e

and
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AKz(EE) = 51—1- [KIZ(E2 + ie) - Klz(E2 - ie)l . (4.13)

The fuhction %&(EQ) is analytic on the real axis in the region
)-L(m2 - p?) <EF < (em + u)z. This function was continued to the
scattering region using the Legendre fit, Eq. (4.4), in the variable
E°, and then the cut comtribution chut(Ez) was added back in.. The
phase shift was found from thg formula
Kﬂ(f) = %E tan 5, . (4.14)

The results compared guite favorably with those of Schwartz
and Zemach for moderately strong potentials.2 The relative errors in
the phase shifts for various potentials are plotted in Fig. 6. 1In the

region of E2 between zero and four, the relative error of t is

£
plotted. We see that on the average about two significant digits are
lost in the extrapolation. The errors in both the input numbers and

prhase shifts increase for stronger potentials. A sample of convergence

can be found in Ref. 8, Table I.

D. Comparison

A comparison of the results calculated in these two ways serves
to point out that the continuation will be more successful when there
are fewer nearby singularities to contend with. Pad€ approximants

represent branch cuts by a line of poles. It is important to get a
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good representation of the function for lower orders of fitting functions,
because cancellstions in the fitting procedure limit the practical number
of fitting parameters for the accuracy of our input numbers. Also
convergence or stability of the extrapolated numbers must be observed
when the number of parameters is increased.

We can estimate from considering F'ig. 5a that possibly five
poles are necessary to represent the nearby cuts of the off-shell
amplitude. This means we havg eleven parameters in our functions. On
the other hand, the nearby cuts in the on-shell amplitude %&(Eg) could
probably be represented by two poles, one in the elastic region and one
on the left-hand cut. Of course, the presence of bound states further
increases the number of poles necessary to get a good representation.
For stronger potentials the input numbers are less éccurate, there are
more nearby bound-state poles, and the discontinuities across the nearby

cuts are larger.
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APPENDIX: ELASTIC THRESHOLD BRANCH POINT

In this‘appendix we show that the elastic-threshold branch
point of the partial-wave Bethe-Salpeter amplitude is two-sheeted in
w? for both legs off the mass-shell. It is well known that this is
the case for the on-shell amplitude. It 1is implicit in the paper of
Levine et al.5' that the singly off-shell T matrix has this property.
We will generalize this result to the doubly off-shell T matrix follow-
ing the methods of Kowalski,l9
It can be shown that each term in the Born series is two-sheeted
at threshold (except the first which is independent of a?), and if the
Born series converges, then it follows that the partial-wave amplitude
is also two-sheeted. We prefer to work with the integral equation for
the sake of elegance, so as not to have to rely on the convergence of
the Born series, It is of course possible to have anamolous thresholds
coming through the normal threshold onto the physical sheet. This occurs
as the external masses are increased and arises from pinches between
the Green's-function poles and the potential singularities. However
if we are not too far off-mass-shell, the only pinch that occurs is
between the Green's-function poles for small q . It is this pinch that
we are studying.

Levine et al.5 defined a new function fg through the equation

Tﬁ(k',’ k('): @ O, 03) = fz(k': k('); @ O, ‘D) T'g((b 0, o 0O CD) . (A'l)
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The function fz clearly has the property
f,(e, 0, 4 0y @) = 1. . (a.2)

Substituting this in the Bethe-Salpeter equation, we arrive at a

formula fbr the on-shell T matrix

T,(a) = Bﬂ(l)(q) {l + | . ap } dp,, Bz(l)(q, 0, », py) G, (P Py)
> (a.3)

-1
X fz(P; PO: 4 O, (L)) P)

where all arguments except q are suppressed for fully on-shell

gquantities. The integral equation for fg is

1 '
Bg( )(k') kOJ g 0)

f (x', k' g 0, w) =
AR v ’ T
5,1 (a)
(A.4)
o0 QO
+ § dp J dp, M(kl, &, P, By @) G, (PBy) £,(ps Py @ O, @),
0 -00 '

where

v

Bél)(k’;ké) 4, O) Bgl)(P) PO:QJO)
13)2(:Ly (a)

1
- B(% )(k':k('):P;PO)-

(a.5)

M(ko': k'syp, PO)CD)

The advantage of introducing the function fg is that it does not

have a threshold branch point, as we will show. The T matrix is
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calculated through the formulae (A.3) and (A.1), the branch point coming
from a pinch in the integral.

Consider an integral of the form

I = dp dp, H(p, py @) G (P 2y), (a.6)

-0 -00

where H(p, Py w) is even in p , which allows us to symmetrize the
p integration, and the function H depends only on q? in the

neighborhood of threshold. Integrals (A.3) and (A.4) are of this form.

(- )E+l

This follows from the fact that X (k' k! k,ko,w) = X ( k' ki, kK, ko,w),

O)

where X is T, £, M or B( ). The same relation holds for the right

£
leg. The Green's function has four poles in the Py plane-~-two in the
upper half and two in the lower half. The Py contour is on the real
axis. Distort the contour into the upper-half plane as shown in Fig. Ta
to Pp picking up the residues of the poles. The integral can be

0
written

-0 N 1)
v 2.2 2 2.2

. [ dp ) H(p, - (04 o) ,w) A(p, - (o7+ n°)", ) i\

- = - /

10mim ) o % 2 2 % !

- (p +m ) ® - (p+m) o+ (p+ m z

The integral along FP experiences no pinches and is regular at
0

2
a? m . The integrand of the p integral has singularities at

il

jo) T q as shown in Fig. Tb. The pinching between these two poles
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gives the threshold branch point ‘at qg = 0. Passing the p contour to

Fp (Fig. Tb) we arrive at

0 [’ ' o '
1 - | @ | @ i ap ¢ e (@ 0, @)] . (a.8)
’ o> D ° Jp 87" @ q
1%%6) B

The first two integrals are regular in q2 ‘at threshold, and the second

integral is gq 'times an éven function of g , thus exhibiting the two-
sheeted branch point;

These considerations apply for Eq. (A.3) and the Born series of
Sec. II. However, for the integral equation for f, in (A.4) we have
H(g, 0, w) = O. The.function M has zeros Jjust so as to cancel the
poles that produce the pinches, and thus f has no threshold branch
point.

The generalization to both legs off the mass~shell has been

19

carried out by Kowalski™” for the Schrddinger equation and generalizes
immediately to the Bethe-Salpeter equation. The generalized form of

Eq. (A.1) is
T,Z(k"’ ké: k, kO,I(D) = fz(k'J kC')" a, O, 0-)) TZ(Q) fﬁ(k) kO’ a O, (D)
+ £,(k',k 5,k k ,0) B (l)( ) - £,(k",k',q,0 w) B (l)(k-k 0). (A.9)
2 2 X 2 a) - y) ) OJQ} ) y) ) O:Q.) . .

)O}

This reduces to Eq. (A.1) for the right leg on-mass-shell. For the left

leg only on-mass-shell we obtain
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3,V 1, o 0)

(g, 0, kX, k., ©) = .
£ 0 Bz(l) (@)

. (A.10)

Note that fz is not symmetric in its right and left legs.
The arguments go through just as before: Eq. (A.9) gives the
off-shell T matrix in terms of the on-shell T and f , Eq. (A.3)

still gives the on-shell T in terms of I, but the integral equation

for f 1is now

1
B, (1, 1y, ¥ k)

0
f.(k', k'Y k, k., ) =
A A o 1
5, (a)
{bo Q0
{ —
+ ; dp dPO M(k Jkojp}po)w) Gw(P)PO) f(p;poyk)koyw) . (A'll>

“0 A0
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TABLE I. Singular surfaces of the Bethe-Salpeter second Born term

(2)(k' k! k,ko,w) classified. according to the number of singular

By o’
surfaces, Si = 0, of the integral participating.
No. of | Singuiar surfaces Partici- Singular Surface in Integral
surfaces pating in integrand
1 S, S., S,, Sy o= 0 | L)
. l) 2) ,3) )+
2
2 ' 2 2
-~ ! - - i _—
2 5, 53, 5, 5), | (k - k") (ko kO) + byt =0 (3)
12 12 2 _ |
5, S5 S, 33 (k + x')° - (ko - ko) + by = 0 fo(k)
2 _ 2 -
'., 55 S6 . W= = m ‘ (5)
: 2 2 2
% 5, 35, 8, 55 k- (ko -0 + (p+m) = 0 (6)
| 2 _ 2 2 .
; 5, 8¢ 52 S6 f Kk (ko + )X 4+ (g+m) = 0 (7)
{ i
t H 12 ro 2 2 —
| s5 55, 5), 35 ; k (kO w)* + (p + m) 0 (8)
: . 12 1 2 2 _ .
‘ S5 Sgr 8, | S6 : WWNM”LEEMM.kaM+ @)+ (9 +m)< = 0 (9)
(3 8, 85 8¢ S, S6 ?[(k~q)2-k S 1[ (krq )P -k, 24f1 = 0 (10)
: TTRY k22 220 2] = 0 |
? 85 85 56’ 8), 55 S¢ (k )= -k'"“+uc ] (k'+q) -k | ] =0 ; (11)
A ! z
: ' S CHN , :
! // }, 5,8 ( 2 ?[(k‘e- (k' 1 w)2+ ug- me)(k I w) :
i BKS M\S ! 0 0 5
; 6/ ST 3 ;
§ * -(ke- (k T )2+ e me)(ké 1 w)l?
: QB (k) 1 )P+ - n°) x §
? . 2 :
(02 (xy TP e n®) KIP
* + k' (kg 7 0)-k(k) 7 )12 mP=0!  (12)
i
i /185 |, /S ’{
; slsh<\ ,> s 5253<\ 5\> Eq. (12) with k -» - k C(13)
| {
! 1
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TABLE ITI. Sample of convergence of the variational calculation of

% ,(k,0,k,0,q) for A =3 p=m=1, 4£=0, Off-shell i = o.umg;

£
2 E2 2 .
On-shell X~ = (E°/4) - m~. For both cases, the convergence is better

for weaker potentials and for repulsive potentials. The gign change is

2
due to a bound state at E = 1.

orf-shell T ,(k,0,%,0,q) - On-shell %,(q,0,4,0,q)

%o..of i 3,860% E2= 2,8165 E2= -0.870615 E2= 3.5 E2= 2.0 H= 0.5}
?iﬁiiioms a = 0.35 a = 0.9 o =2.2 a=0.7 a=1.3 o =1.11
§ 2 -626.6 -815.29 372.939 -899.7 -2364.08 6&05.13
% L b7k -73%.28 | 608,182 ~761.9 -2148,.71 6&92.5%
% 6 -L70.7 -708.67 707.085 -752.9 -203k.1h 6992.&5
b9 -Lhk,3 -702,01 72%.856 ~736.0 ~2017.33 6995.8§
§ 12 bk, 698,42 727.655 -7%32.5 ~2009.96 7055.2%
; 16 -435,7 ~-697.53 727,968 -729.4  -2007.84 7056.73
: 20 ~h3h 9 ~-696,93 728,079 -728.2  -2007.11 70&5.15

05 -4z L -696.77 728.086 ~727.5 ~2006.77  TO45.7 .

30 -430.9 -696.64 728.092 -727.1  -2006.66 70&8.5%
f 36 -429.3 -696.60 728,095 ~726.9 -2006,59  TOLB.7

-
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TABLE IIT. Samples of the stability of the extrapolation for the off-

mass-shéll continuation for m =y = 1. '
A =1, B o= bh =1, B = 5.6 A= 3, B = 5.2
Approximant ! Unitarity | 8,/= | Unitarity| 8,/x Unitarity | 8,/x
; —
| 2, 2 0.979 5 0.526 1.001 | 0,328 g 1.23 'i 0.725 §
3, 3 0.978 é 0.528 1.085 0.327 5 1.17 0.71k4 g
b, k4 -1.049 o.h96 0.972 ! 0.3341 g 1.09 % 0.699 |
5, 5 1.107 vo.515 | 0.966 % 0.333%6 é 1.09 % 0.6
6, 6 1.079 | 0.495 0.976 § 0.334L é 1.10 ; 0.703
T 7 é 1.026 0.512 . 0.970 é 0.3347 % 1.21 g 0.69k4
8, 8 9 1.064 | 0.506 0.971 0.3345 1.08 0.699
§ s. z.% % 1.0 o.h9865§ 1.0 i 0.34613 % 1.0 g 0.72906
i ! i o { i
%a. These values (C. Schwartz, private communication) were calculated
?using the method of Ref. 2. i
N
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FIGURE LEGENDS
Fig. 1. (a) Some singular surfaces of the integrand for the Bethe-Salpeter
second Born term Bé(g)(k',ké,k,ko,w) for o > . S
and 8) were left out for the sake of clarity. (b) Singularities

2! 85’

of (a) in the p, complex plane for fixed real p .

Fig. 2. The box diagram and some pertinent contracted diagrams with
singularities independent of cos®. The sheet structure of
singularities for cases (c¢) and (d) are shown.

Fig. 3. Some singularities of the Bethe-Salpeter second Born term

Bz(g)(k',kc’), k.,ko,a)) as a function of the left-leg variables

k', k The subscripts cn T refer to the surfaces Si that

! .
0
are responsible for it, The disappearance of a three-surface

singularity T on other sheets of two-surface singularities

115)6

T and T is shown. For the case drawn, e <o- < (m + u)g.
1,5 1,6

The surfaces given by Egs. (3) and (h) of Table I were omitﬁed
for the sake of clarity. The singularities given by Egs. (12) and

(13) do not intersect the real k', k) plane for the chosen

(b) &/

right-leg variables Xk, k 0

o plane for k' <a .

Fig. 4. Singularities of the Bethe-Salpeter second Born term in the a

plane for ko = ké = 0. (a) k = k' fixed in the scattering

region. (b) k = k' = q.

(N)(

Fig. 5. Important singularities of Bg k',ké,k,ko,w) in the g plane

for k= kj =0, in the variables of Fig. 4. (a) The normal
thresholds lie on the positive and negative real ¢ axis. There

are many more singularities than just normal thresholds on the
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real axis, e.g; the surface Ti’3’5 .of Fig. 4 and its offspring
in higher Born terms for q sufficiently larger than k ., There
are also branch points at .q = -0ipk, o=1,2,+, (N-2),
and ¢q¢ = - 1im, which were omitted for the sake of clarity.
(b) In the on-mass-shell variable q = k = k', only normal
thresholds are on the real axis. T, 1is the ith threshold.
Relative errors incurred in the calculatioﬁ-of phase shifts using
the on-mass-shell continuation. The variational calculation was
done in the region 0 < E2 < 3.5 and the errors indicate the
quality of the input numbers for the extrapolation. The extra-
polatedvregion is for E2 >k,

Contour distortions for integrations generating the threshold

branch point by pinching of Green's function poles (marked x).
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








