
Lawrence Berkeley National Laboratory
Recent Work

Title
APPLICATION OF ANALYTICITY PROPERTIES TO THE NUMERICAL SOLUTION OF THE BETHE-
SALPETER EQUATION

Permalink
https://escholarship.org/uc/item/0qq098jh

Author
Haymaker, Richard W.

Publication Date
1967-07-28

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0qq098jh
https://escholarship.org
http://www.cdlib.org/


11111 

11111111111 

111111 

111111 

1111111.ltll. 

UCRL-17700 

University of California 

Ernest O. lawrence 
laboratory Radiation 

APPLICATION OF ANAL YTICITY PROPER TIES TO THE NUMERICAL 
SOLUTION OF THE BETHE-SALPETER EQUATION 

, " 
,)t.\ 

Richard W. Haymaker 

July 28, 1967 

TWO-WEEK LOAN COpy 

This is a Ubrar~ Circulatin9 Copy 
which may be borrowed for two weeks. 
For a personal retention copy. call 
Tech. Info. Division. Ext. 5545 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



,. 

Submitted to Physical Review 

UNIVERSITY OF CALIFORNIA 

. Lawrence Radiation Laboratory 
Berkeley, California 

AEC Contract No. W -7405-eng-48 

UCRL-17700 
Preprint 

APPLICATION OF ANALYTICITY PROPERTIES TO THE NUMERICAL 
SOLUTION OF THE BETHE-SALPETER EQUATION 

Richard W. Haymaker 

J ul y 28, 1967 



.. 

<. 

-iii-

APPLICATION OF ANALYTICITY IROPERTIES TO THE NUMERICAL 

SOLlJrION OF TIIE BETIIE-SALPErER EQUATION*" 

Richard W. Raymakert 

lawrence Radiation ,Laboratory 
University of California 

Berkeley, california 

July 28, 1967 

ABSTRACT 

UCRL-17700 

A new method of calculating phase shifts from the Bethe-Salpeter 

e~uations is presented. The differential e~uations is solved belmr 

threshold by using a variational. method, and then the scattering amplitude 

is continued to the physical-scattering region using Bad~ approximants. 

The singularity structure of the Bethe-Salpeter partial-wave amplitude 

in its off-shell variables was studied to find the nearby singularities 

that could most strongly affect the continuation . 
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I. INTRODUCTION 

The recent calculations of phase shifts for the Bethe-Salpeter 

eQuationl in the ladder approximation have demonstrated the practical use 

of the eQuation for the study of two-body scattering amplitudes. Schwartz 

and Zemach2 used the Schwinger variational principle based on the integral 

eQl~tion which yielded a rapidly convergent seQuence of approximations to 

the phase shifts. A mesh-point solution has also been achieved which in 

addition was applicable to the three-particle inelastic region. 3 As 

more difficult problems of higher dimensionality are attempted (e.g., 

the three-body problem), the disadvantages of both methods become 

apparent. The Schwinger method becomes increasingly difficult to set 

up, and the mesh-point method may reQuire prohibitively large matrices. 

A comparison of the bound-state calculation of Schwartz
4 

with 

the calculation of phase shifts by Schwartz and Zemach
2 

shows that less 

sophisticated methods suffice to solve the former problem. The reason 

is that the boundary conditions on the wave function can be easily 

imposed, and thus the differential eQuation can be used. In this paper 

we present a method of computing phase shifts by calculating the 

scattering amplitude below elastic threshold and continuing it to the 

scattering region. By calculating below threshold we avoid the problems 

of solving a singular integral eQuation for the phase shift. 3,5,6 The 

homogeneous matrix eQuations that arise in the Rayleigh-Ritz bound-state 

4 
calculation can be applied directly to the calculation of the scattering 

amplitude merely by introducing an inhomogeneous term. A variational 
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principle exists for the amplitude in this region, and we get accuracy 

comparable to the Rayleigh-Ritz calculation. Unfortunately the method 

breaks down in the scattering region and so a numerical analytic continua-

tion procedure is employed to get the phase shifts. 

We propose this method as a means of getting the low-energy 

behavior of the phase shift as a byproduct of a bound-state calculation. 

Although scattering lengths and effective ranges can generally be calculated 

with this method, the extrapolation is not necessarily stable enough to 

get good values for phase shifts at higher energies. We present the 

analytic continuation of two different functions that are equal at the 

extrapolated point where the phase shift is desired. The first is an off-

mass-shell continuation which is the Bethe-Salpeter analog of the method 

Schlessinger and Schwartz 7 used for the Schrodinger equation. The second 

is a continuation of the on-mass-shell amplitude that was reported 

8 
earlier in a letter. The latter method was more successful, but both 

are included in this paper for the sake of comparison. 

In Sec. II the singularity structure of the partial-wave T matrix 

is studied clDse to elastic threshold in order to determine how close 

singularities come to the extrapolated points. The convergence of our 

method of analytic continuation is expected to be slow close to branch 

points. In Sec. III we discuss the motivation for calculating below 

threshold and describe the numerical procedure. Finally in Sec. IV the 

methods of continuation and results are presented. 

• 
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II. SINGULARITIES OF THE PARTIAL-WAVE AMPLITUDE 

A. Integral Equation for T£ • 

Consider the Bethe-Sa1peter equation for the scattering of two 

particles of mass m with four-momenta kl , k2 -> kl, k2. In the center­

of-mass system the integral equation for the scattering amplitude 1s 

(2A.) B (l)(k' k' k k ) rc j!, , . 0' , 0 

co 

+ I dPO B,/1) (k', kO' p, PO) 

-co 

(2.1 ) 

where 

and 

(2.2 ) 

In the ladder approximation, the interaction kernel for single-particle 

exchange of mass fJ. and the Green's function are respectively 

+ k ,2 _ (k _ k,)2 + fJ.2 ") o 0 

2kk' 
) 
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2 2 
-ill +m .)2 1. ... 2 

- ~€ - L.f()J 

2 -1 
Po ] (2.4) 

The on-mass-shell value of T is related to the phase shift through 

the formula 

where q 

Our primary interest is to find the singularity structure of 

T£ in the variable q close to elastic threshold. 9 There are two 

different continuations that are of interest for the numerical work that 

follows which govern the emphasis of this section. The first is a con tin-

uation in q from the bound-state region to the scattering region holding 

k equal to k' and at the point where the phase shift is desired. The 

second is again a continuationin q but with k and k' constrainted 

to the mass shell, i.e. q == k == k'. For both cases we have kO == kO == O. 

In practice We must find the singularities for a much larger domain of 

these variables, since they are found by iterating the equation. 

A large class of singularities are generated by Eq. (2.1) through 

pinches of the contours by singularities in the integrand. Their 

positions are functions of the momentum variables and masses but are 

independent of ~. By iterating the equation N times we get in 

operator form 

.' 
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... 
T 

2 N+l N+l 
f.. B + f.. B G B + ••• 1\ (B G) T • (2.6) 

We will assume that T contains the singularities of all Born terms 

whether or not the Born series converges, i.e. that the singularities 

in the last term of Eq. (2.6) do not cancel the singularities of the 

first N Born terms. The nth Born term is given in terms of the 

(n - l)th Born term through the formula 

co 

~ dp 

There are of course also bound-state poles on the physical sheet of the 

ill plane for sufficiently attractive potentials. Their positions in ill 

will be independent of the momentum variables k, k', kO' kO and can 

only be found numerically. 

In Fart B below we find all the singularities of the second 

Born term. In Fart C we discuss the propagation of these singularities 

in successive Born terms through Eq. (2.7). Many singularities that we 

.,," 

find are present in the full Feynman diagrams (not partial-wave-analysed) 

but are usually presented in the literature in terms of Lorentz-invariant .. 
variables. The transformation to our variables appropriate to the Bethe-

Salpeter equation is 
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k 2 = (k
1

2 - k2
2 )2/(16n2 ), 

0 

k,2 
0 = (ki2 - k2

2 )2/(16n
2

), 

k2 2 1 2 2 2 2 2/ 2 w +- (kl + k2 ) + (kl - kl ) (16n), 2 

and 

k ,2 2 1 
(ki

2 
+ k22) + (ki

2 
- k22

)2/(16n
2

) • (2.8 ) = w + -2 

B. Singularities of the Second Born Term. 

Let us consider £ = 0 for the sake of clarity with no loss of 

generality. The second Born term is 

00 
S 

B (2) (k' k I k k) i 
t '0" 0 = ~ J' (..2.) 1 dPO log S S 

4 S5 6 
-00 . -00 

The integrand is singular on the surfaces S. 
J. 

0, where 

2 2 2 
S2 (k + p) (ko - PO) + I.l. 

S3 (k ' - p)2 (kO - po)2 2 
= + I.l. 

2 
- (kO - PO)2 

2 
S4 = (k'+ p) + I.l. 

2 2 2 
S5 = P - (PO - w) +m 

2 2 2 
S6 = P - (PO + w) + m 

log 

(2.10 ) 

w 
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The lower limit of the p integration was extended to -00 since 

the integrand is even in p. 

These surfaces can trap the hypercontour and cause singularities 

in the external variables .10 8ince the integral is two-dimensional, one, 

two, or three of these surfaces can participate in trapping the hyper-

contour. It is clear that Formula (2.9) can be written as the sum of 

four terms each containing 81 or 82' and 8
3 

or B4 • Thus the inter-

action of Bl and B2, or and B4 can produce no singularities. 

In that which follows we consider only the integral containing B
l

, 8
3

, 

B
5

, and B6 . It should be kept in mind that there are singularities 

due to three other integrals that can be found by appropriate replacements 

of k ~ -k and k' ~ -k' in the final results. 

The conditions for a hyperpinch to OCC1IT in which m surfaces 

10 
participate are: 

dB. dB. 
== 1 8. 0, 

1 
0, 1 

° (2 .lla) m 
dP 2)PO 

== 
1 

dB. dB. dB. dB. 
2 s. 0, 8. ° 

1 ,J J 1 i ;.. j (2.11b) m dp dPO dP dp:" , T 1 J 

° 
m 3 s. 0, B. 0, Bk 0, i .; j ... k i= i (2.11c) 

1 J 
r 

The surfaces B. 
== ° are hyperbolas in the real p, Po plane 

1 

as shown in Fig. lao The Feynman prescription of giving all internal 

masses a small negative imaginary part is used to remove all singularities 
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from the integration path and thus define the integrals. If we hold p 

fixed and real and look in the complex plane, the upper and lower 

branches of the hyperbolas in Fig. la lie respectively in the lower-

and upper-half complex PO plane in Fig, lb. Since the contour must 

be trapped at each stage of integration to produce a singularity in the 

integral it is clear that we need consider only those solutions in which 

an upper branch of a hyperbola pinches with a lower branch, for only 

these branches pinch in the Po integration. 

We will examine in turn the solutions to Eqs. (2.11a,b,c) in 

W"hich one, two, and three surfaces participate. 

1. One Surface 

First consider singularities generated by a single surface through 

Eq. (2.1la). These equations can be solved immediately and give 

singularities at 
2 

m = 0 and 
2 

1..1. = O. But since we are holding the 

masses fixed and finite, these solutions are not of interest. 

2. Two Surfaces. 

Next consider the interaction of two singular surfaces in 

producing siilgularities, Eq. (2.l1b). For and S6 ' these equations 

give the elastic threshold branch point at 

2 
(l) 

2 
m , 

and the well-known second-sheet branch point at 

2 
(l) o . 

(2 .12a) 

(2 .12b) 
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These singularities occur in the box diagram and are shown in Fig. 2c. 

These solutions have a nice pictorial interpretation in terms 

of Fig. lao The positions of the hyperbolas and 86 are functions 

of the external variable ill. When a lower branch is tangent to an 

upper branch we get the hyperpinch at 
2 

ill 
2 

m • When a lower (upper) 

branch is tangent to a lower (upper) branch we get the solution ill = 0 

but the hypercontour is not pinched. However, if we start at this 

solution and take ill on a path that encircles the branch point at 

ill = m once and return to ill = 0 , we will find that the PO contour 

is pinched. 

Because of the special importance of the normal threshold to our 

anaIytic continuation, it is shown in the Appendix without relying on the 

Born series, that this pinch produces a two-sheeted "square-root type" 

branch point in the partial-wave amplitude. 

The surfaces 81 and 8
3 

generate the surfaces 

o (2 .13a) 

and 

o . (2 .13b) 

The same considerations apply to the solution (2 .13b) that "rere discussed 

above for Eq. (2.12b). Remembering that the masses have a small negative 

imaginary part, -iE, we can see this yet in another way. The solution 

(2 .13a) gives a singularity for real values of all the variables only 
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when E approaches 0, whereas the second solution, (2.13b), exists 

for real values of the variables for nonzero E. However, we know 

that the integral is nonsingular for real values of these variables, the 

-iE, being introduced solely for that purpose. 

The singularities due to Sl and S S' and 4' 2 

S4 follow immediately and are given in Table I. 

and 

Finally the last type of two-surface pinch is for example between 

Sl and S5 producing the surfaces 

(2.1lJa) 

and 

222 
k - (kO - ill) + (m - !l) == O. (2.14b) 

Again we can discard the second solution. All the singularities of 

this type are summarized in Table I. It should be mentioned that these 

solutions are precisely the individual-particle normal thresholds given 

for the full Feynman graph in Fig. 2d expressed in the variables (2.8). 

3. Three Surfaces 

Finally there is the case in which three surfaces participate in 

trapping the contour. The simplest case is the combination Sl' S5' and 

S6' giving 

and 

222 
(k + q) - kO +!l 0, (2.15 ) 
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222 
where Cl = ill - m. These solutions are just the "triangle singularity" 

corresponding to the contracted graph Fig. 2b in terms of the variables 

(2.8). 

The sheet structure of this singularity in relation to t he normal 

thresholds is not simple. But the work has been done for us to straighten 

out this structurell and we need only interpret the results in terms of 

our variables. This has been done and is shown in Fig. 3. This surface 

is tangent to the lower-order surfaces and If 

we pass along the surface T 6 from the solid portion, passing the 1,5, 
point of tangency, the singularity goes onto the second sheet of the 

normal thresholds and TI ,6 ' shmm in Fig. 3b. 

The last and most complicated case is the three-surface pinch 

generated by the surfaces 8
1

, 8
3

, and 8
5 

2 2 
+ 4 m [k'(kO - ill) - k(kO - ill)] = o. (2.16 ) 

Only this surface and the corresponding ones shown in Table I do not 

reduce to conic forms in the left-leg variables kO' k'. The key to 

picturing the surface T 1,3,5 is to look at its asymptotes in the 

k' k' 0' plane. This curve is asymptotic to the lines 
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r 

IV 

k' o 

(k' _ k',)2 
o 0 

= ill + 

-12-

= 

r and 
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k' = 

k 
,2 
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(2.17a) 

r , 

(2.17c) 

The important thing to note is that for the right-leg variables 

on the mass shell (Le. k = Ch kO = 0), these asymptotes are complex. 

One can also show that the surface does not intersect the real k' k' , 0 

plane under these conditions. This situation persists for k f q for 

those values of k and q of interest for the continuations we do. 

The singularities of the second Born term are displayed in yet 

another way in Fig. 4. These are the relevant complex planes for the two 

numerical continuations. For both cases we have set 

Fig. 4a shows the singularities in q for fixed k 

= k' o O. 

k " and Fig. 4b 

shows the analytic structure in the variable q = k = k'. 

term 

D. Iteration of Singularities in the Born Series. 

With our knowledge of 

B(2)(k' k' k, kO' ill) 
t ' 0' 

all the singularities of the second Born 

in the left-leg variables k', kO' we 

could in principle find all the singularities of the third Born term 

using Eq. (2.7) and continue the process to find all singularities of 

the full partial-wave amplitude. To carry this out we must find the 
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at each stage, 

since they are integrated over in the next stage. For unrestricted 

values of k, kO' and ~ the problem is ~uite difficult. In particular 

we know that all the singular surfaces of a Feynman N-rung ladder diagram 

with at least one rung contracted will not depend on cose and thus will 

be present in the partial-wave amplitude.
12 

The singularity stru~ture 

of even this class of diagrams is poorly understood for general masses. 

Most singularities of B (2) 
.e are hyperbolic surfaces in the 

integration variables p, PO (See Table I). This is a great simplifica-

tion in that the complexity of the surfaces does not increase upon 

iteration. There are surfacesthough that are not hyperbolic [E~s. (12) 

and (13) of Table I]. However, for kO = 0 and k = q, they do not 

intersect the real k' k' ) ° plane and thus are not potent in producing 

pinches in higher Born terms for the hypercontour in the real p) Po 

plane. As mentioned earlier this situation persists for k f ~ for 

the regions of interest. 

Restricting ourselves to just the hyperbolic surfaces we can list 

a large class of singularities for B.e(N)(k', kQ, k, kO' ill) that depend 

on q (or ill). We list below those singularities that we believe are 

closest to the extrapolated region. We also include some singularities 

that are "far away" but arise in a simple 'manner. 

(i) Normal thresholds in 

= 

2 ill 

2 
(2m + a Jl) 

- im 

(2.l8a) 
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(ii) Normal thresholds for each leg: 

2 2 2 
k - (kO ± ill) + [m + (0 + l)~] = 0 

222 k' - (kO ~ m) + [m + (0 + l)~] 

(iii) Triangle-type singularities: 

2 2 2 
(k ± q) - kO + [(0 + 1) ~] 

= o . 

o 

(iv) Singularities on the imaginary q axis: 

q = - i 0 ~/2, (0 ~ 1) , 

where 0 = 0,1,' • " (N - 2). 

UCRL-17700 

(2.18c) 

(2 .18e ) 

(2.18f) 

(2.18g) 

The iteration appears to generate many more surfaces. A large 

class can be ruled out using the symmetry of B.e (N) (k " kO' k, kO' ill) 

under k ~ k 1 and ko ~ kO ' There are many more triangle-type 

singularities, but just as the ones mentioned[Eqs. (2.18e,f)] are on the 

second sheet of the lowest threshold (see Fig. 5a), many of the others 

are on the second sheets of higher normal threshold. Figure 5 displays 

these singularities for the continuations of interest. 

.. 
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III. SOLUTION OF THE BETHE-SALPEI'ER DIFFERENTIAL EQUATION 

Our calculation of phase shifts is done in two stages. First the 

partial-wave amplitude is calculated at a set of energies below elastic 

threshold, using a variational method based on the differential equation. 

The amplitude is then continued to the scattering region, using the 

knowledge of its analytic structure dealt with in the previous sections. 

This section is devoted to the motivation for calculating below threshold 

and an outline of the methods used to calculate the lnput munbers for 

the continuation. We restrict ourselves to equal-mass scattering. 

A. Wick Rotation and Asymptotic Behavior 

The differential equation was solved for energy below threshold, 

because only there is it simple to impose the boundary conditions on the 

wave function at infinity in coordinate space. The wave function is 

exponentially damped in this region, and this is crucial for the applica-

tlon of our variational method. 

The asymptotic behavlor of the wave function can be found from 

the integral equation 

1'k, E(X) ~ 1'kO(X) + Jd4
X' GE(X - x') V(x') o/k, E(X' ), 

where 

v(x) 

ik·x 
e , 

(3.3 ) 

(3.4) 
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and Kl is the modified Bessel function. We have gone to the center-of­

mass system and introduced the variable E = 2w for convenience. As 

long as the integral converges, we see that the large x behavior is 

governed by the free-wave term and the Green's function. The free-wave 

term can be easily subtracted out, leaving the Green's function as our 

main concern. 

It is well known that the Wic~3 rotation can be performed on 

the Bethe-Salpeter equation for E below threshold. This has the 

practical advantage of allowing the use of expansions in four-dimensional 

spherical harmonics in the subsequent work. Henceforth we will work with 

the rotated forms of the equations, where now all relative momentum 

vectors. and coordinate vectors are Euclidean: 

k -irc/2 
o e , 

irc/2 xo e • (3.5 ) 

Turning now to the integral representation of the Green's function 

in x space, Eq. (3.3), and holding 
? 2 

w- < m , the Wick rotation can be 

carried out without passing any singularities. In the rotated form, the 

14 exponential components of the Green's function for large x are 

1 
? 2 "2 

exp [ i ( w- - m) I ~I] + exp [ wi x 41 - m R] , (3.6) 

1 

where R 
2 2 "2 

(I~I + x4 ) This clearly shows that for 2 2 
w < m on the 
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physical sheet, the Green's function is exponentially damped in all 

directions of the Euclidean four-space (r, x4)' whereas for 
2 2 (l) > m , .... 

the second term is a growing exponential in x4 • This reflects the 

fact that poles of G(l)(PJPO) have moved into the first and third 

quadrants in Eq. (3.3) and have moved past the rotated PO contour on 

the imaginary axis. 

The scattered part of the wave functions is also damped for 

2 < 2 (l) m as long as the integral in Eq. (3.1) converges. For the 

off-mass-shell case in which (l) and k are independent, the integral 

does indeed converge for the full region of (l) stated. However, by 

going to the mass shell E2 == 4(k
2 + m

2
), below threshold the free-wave 

term in Eq. (3.1) becomes a real exponential. This exponential 

competes with the damped exponential under the integral giving only a 

finite region of (l) where the scattered part of the wave function is 

exponentially damped. This effect signals the onset of the second Born 

contribution to the left-hand cut and will be discussed again below. 

B. The Differential Equation 

We can obtain the differential equation from the integral 

equation, Eq. (3.1) (where now all relative vectors are Euclidean), by 

operating on the equation with the differential operator with the 

property 

giving the wave-function equation in the center-of-mass system: 
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where 

YJ (d ) [-0 -
2 2 2 if d 2 

:= (E /4) + m] - (dx."") v x4 
and 4 

0 r d d 
:= dx dx . 

v-=l 
v v 

The last term comes from the free-wave term in Eq. (3.1) and is zero 

for k on the mass shell. 
v 

The scattered part of the wave function is 

The differential equation for Xk,E(x) is 

c. Variational Principle 

A Kahn-type variational principle15 based on the differential 

Eq. (3.12) that gives a stationary expression for T is 

(3.9) 
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This expression is stationary with respect to first-order variations of 

~,E(X) about its true solution, and thus a first-order error in the 

wave function will give a second-order error in T : 

== o , o . 

The last term of the variational principle is just the first Born term. 

This is considerably simpler to apply in practice than the Schwinger 

2 
variational principle used by Schwartz and Zemach. 

This variational principle is an exact statement and holds for 

arbitrary k, k', and E. However, it may be that the integrals 

ostensibly diverge and have a meaning only through analytic continuation. 

Also when introducing a set of expansion functions for X that are 

capable of representing the true wave function, it may well be that 

the matrix elements in such a basis will diverge. This happens for 

certain values of E, k, and k' and severely limits the applicability 

of this variational principle in practice. The off-mass-shell and on-

mass-shell cases will be considered separately. 

1. Off-Mass-Shell 

For this case E is independent of k and k'. Fix k and 

k' to represent true scattering states: k == (k,O), k' == (k',O), 
\M.' .Y' 

Ikl Ik'i. For E2 < (2m)2, X(x) is a decaying exponential for 
\OW .... 

large x which may be represented well by a set of trial functions 

with a decaying exponential behavior, and all the integrals in Eq. (3.13) 
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converge. For if > (2m)2, however, X(x) contains a growing exponential 

component in x4' and it defies ones imagination to find a simple set of 

trial functions with the growing exponential that will yield convergent 

integrals. The derivative term in Eq. (3.13) is the troublesome one; 

all other terms have a potential present which is a decaying exponential 

in all directions. A possible method of circumventing this difficulty 

is to introduce an integral representati,on of the wave function: 

An examination of the integral equation for X(x) shows that ~(x) 

contains a decaying exponential in the elastic-scattering region. 

Using the property (3.7), we see that the derivative term is a convergent 

integral. But now we have integrals to evaluate of the same difficulty 

2 
as th:se of the Schwinger method. 

2. On-Mass-Shell 

The ~~ditional constraints 

limit further the applicability of Eq. (3.13). The free-wave 

which is oscillatory for the above case becomes a real exponential below 

threshold, and for Im(k) > ~ the integrals again diverge. Also at 

this point our estimate of the asymptotic behavior of X(x) is no 

longer valid as discussed above. So finally the domain of applicability 

4 (m2
. in E is 

2 2 
~ ) < (2m). This is the region between the elastic 

threshold and the second Born contribution to the left-hand cut. (The 

first Born term was included explicitly.) These considerations might 
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suggest that the full amplitude has a singularity at ~ = 4(m2 _ ~2). 

Although the variational principle for the full amplitude breaks down 

at this point) only the partial-wave amplitude in fact has this 

singularity. 

D. Numerical Method 

To solve the Bethe-Salpeter equation we first introduce a 

linear parameterization of the wave function Xk)E(X): 

,,--
2_ 
t=O 
n=t 
j=n 

where _.) t, 
>rn t are four-dimensional spherical harmonics on the four-m 
ii 

sphere) and 
A 

is the unit four-vector in the Euclidean The x space. 

four-dimensional spherical harmonics can be expressed in terms of the 

usual three-dimensional spherical harmonics Ytm and Gegenbauer 

polynomials 

q (A) 
'-:t£tm x 
(,I 

C ex 
(3 

16 

where cos e = X4/R) r 
? 2 1.. 

length R = (Irl- + X
4 

)2. 

:rr(n + t + l)! 

1 
o T2 

t~L I 
J 

t+l( ) . t( ) Cocos e Sln e ) n-v 

is the three-space unit vector) and. R is the 

The functions ~.(R) are radial functions 
J 

depending only on R and were chosen to be 

~. (R) 
J 

j -oR R e 
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* We can expand ~f(X) in the same set of functions, but now with 

expansion parameters a~, ",. These functions have been used before 
J:J ,n ,J 

by sChwartz 4 and have been applied directly to our problem. The free-

wave term has the following expansion in these angular functions: 

()() .e 
* o 

'Irk (x) >-~ 
m=-.e 

CLV (A.) (:-j /' (Q) 
'1 n.em x ~in.em ' (, J 

where k is the unit four-vector of length Ikl in the direction k, 

and J is the ordinary Bessel function. 

Substituting these expansions in the variational principle, 

Eq.(3.13), and invoking the stationary condition 

o[T] 
o a~f '" "" ,n ,J 

we get linear equations for 

where 

C),,,,. 

r7~1£ ' n ' j', f,nj a £nj 
£=0 . 

n=£ 
j=n 

an ' 
J:J, n, J 

o , (3.20 ) 

! ilt 'n 'J' I f, n J' I , , , 
= f 4 J * (A) * () '" ::1 A d x .·~'.e10 x cpJ" R ($(ov) - Vex)} uKeo(x)CP.(R). 

. I J , 0 
(3.22 ) 
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The ordinary angular momentum £ is conserved} and thus we have 
~ £ 
??~ I n I j '} .enj == Mn I j I, nj 0 ££ I • Equations (3.21) are inhomogeneous 

equations, the corresponding homogeneous equations are precisely those 

used by Schwartz for the bound-state calculation in reference 4, in 

which the details for calculating these matrix elements can be found. 

The inhomogeneous term is 

== 
o 

(2rr r- .nC)/i A J 4 
1 }.'n.eo(k) d x * Vex) cp.(R). 

J 

Defining a partial-wave amplitude 

co 
~ .. --. 

2._ (2£ + 1) t£( I;;,: I, k~, I~, kO' q) P.e(cos e), 

where cose == k'k'/( Ikl Ik' I), we obtain finally 
\11'\ y~, \fI\ ""' ... 

== 

where 

and 

!.~ a~nj V.enj + B.e(k ' } kO' k, kO) , 
n==£ 
j==n 

== 
8rrE 

k 

(3.24) 
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The integral for the vector term (3.23) was obtained numerically by 

using a Laguerre integration formula.
16 

The standard recursion relations 

for the Bessel function can be used for recur sing down on the index n, 

and thus not all matrix elements need be calculated from the integral. 

We chose a sequence of trial functions, letting n = £, £ + 1, ••. J N, 

and j = n, n + 1, ••• , N and increased N to see convergence of our 

results. The matix elements ,Mil 01 0 connect nl 
n ,J ,nJ 

only to nand 

(n : 2) and thus the matrix is block-diagonalized into states with 

n = £, £ + 2, ••• , and n = ,e + 1, ,e + 3, In addition 

is zero for the second set if k4 is zero. is also zero, only 

the first set enters in the T matrix, Eq. The parameter a 

was varied and chosen to be the value that gives the fastest convergence. 
"-

Table II gives some samples of convergence of t,e = t£ - B,e for 

S waves. Near threshold the convergence gets bad. For the on-shell 

case, the convergence also deteriorates near E = 0, the onset of the 

second Born contribution to the left-hand cut. In the neighborhood of 

a bound state-that manifests itself as a pole in t,e' the convergence 

is also slower, presumably because the pole position itself moves for 

successive approximations. Except for these special regions the 

convergence was good. 

.. 
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IV. ANALYTIC CONTINUATION TO THE SCATTERING REl8ION 

The second step in calculating phase shifts is to continue the 

scattering amplitude to the physical region which is described in this 

section. We first outline the general method of continuation and then 

discuss separately the off-mass-shell and on-mass-shell continuations. 

The latter method was more successful, probably because the function 

was smoother, i.e. there were fewer nearby singularities. Also the on-

shell amplitude satisfies a simple unitarity constraint, and this was 

used advantageously in the continuation. 

A. Method of Analytic Continuation 

We chose to do the continuation using a ratio of polynomials 

for fitting functions. This is the form of a Fade approximant,17 

though we do not determine the coefficients of the polynomials in the 

canonical way. We find empirically that our fitting functions have 

properties very similar to Fade approximants. 

A Fade approximant is a rational approximation to a function 

defined in terms of a truncated power series. Consider 

M-l i 
J L b. Z 

~ 

f(z) L i i=O (4.1 ) = a. Z = N-l ~ i=O 
1 + L i c. Z 

i=l 1. 

where M+N J + 2. The coefficients {b. } 
~ 

and are 

determined by demanding that the power-series expansion of the ratio 

of polynomials coincides with the power-series expansion on the left 
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for the first J + 1 terms. This yields linear equations for (bi } 

and (c
i

} as can be seen from the equivalent procedure of multiplying 

the denominator through and comparing powers of z • 

We will be interested in sequences of increasing N for M = N. 

The theory of convergence of such sequences is incomplete in that they 

appear to converge in much larger demains than can be proven rigorously. 

Roughly they are found to converge outside the circle of convergence of 

the power series, the domain being determined by the positions of 

nonpolar singularities. 

For our applications we know the function at a set of points 

rather than a power series. We still use the Bad~ form but determine 

the coefficients by constraining the two forms to be equal at the input 

points. The equations to determine (b i } and (c.} are 
1. 

C 
N-l ) 1 + L c. Z 1. 
i=l 1. s 

f(z ) 
s = 

M-l 

L 
i=O 

i b. Z 
1. S 

, (4.2 ) 

where s 1, 2, ···,M + N - 1. We will assume that this sequence 

of approximations converges in a circle that contains the fitting points 

and excludes all nonpolar singularities. For true Bad6 approximants 

this is a conjectured convergence domain. It is possible to find such 

circles that include the extrapolated points for both continuations 

discussed below. 

Knowing the function at a set of pOints, Eqs. (4.2) provide the 

simplest method of computing the coefficients. However, if the function 

is given at K points there are a large number of ways to choose k of 
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them for k < K and thus there is no well-defined sequence for judging 

the convergence of the approximations. 

A more elegant method
18 

is to map the fitting region into the 

region -1 <: z .:;; + 1 and write the polynomials in the quotient ln 

terms of Legendre polynomials 

f(z) = 

P. (z) : 
]. 

M-l 
L b; P.(z) 
i=O ]. ]. 

~f 
1+ L c1P.(z) 

'i=l ]. 

(4.3) 

The coefficients are determined by multiplying through by the denominator 

and integrating over the fitting region, which gives 

N-l M-l 
MjO + 

il; 
M .. c' r N .. b' , 
Jl 1 i=O Jl 1 

where 

+1 

M .. E dz P. (z) f (z) P. (z ) 
Jl ,J 1 

and 

+1 

N .. L P.(z) P.(z) 
25ij 

Jl J 1 2j + 1 

The recursion relation 

i(2j + 1) Mij (2i - 1) (j + 1) M. 1 . 1 
l- ,J+ 

- (2j + l)(i - 1) M. 2 . + (2i - l)j M. 1 . ] l-,J 1,- ,J--

(4. 4a) 

(4.4b) 

(4. 4c) 

(4.5 ) 
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enables one to calculate all matrix elements in terms of the matrix 

elements of the first row and last column. 

Equations (4.4) are very similar in form to the equations for 

true Fade approximants. The coefficients of true Fade approximants 

are obtained by comparing powers of z, and Eqs. (4.4) are obtained 

by comparing coefficients of Legendre polynomials. Of course any set 

of orthogonal polynomials can be used that are appropriate for the 

particular problem. 

One further remark to be made is that the numerator and denominator 

functions need not be polynomials but can be any sequence of functions 

with linear parameters. For example it might be desirable to put in 

known branch points with an appropriate choice of functions. In 

addition the sequence of functions in the numerator need not be the same 

as in the denominator. 

B. Off-Mass-Shell Continuation 

Referring to Fig. 5a, we have as input for the continuation a 

set of values of t£(k, 0, k, 0, q) for a set of values of q on the 

positive imaginary axis, for k fixed in the elastic-scattering region. 

Our object is to continue t£ in q to the point q = k. This function 

is meromorphic in the q plane in a convex region that contains the 

calculated points on the imaginary axis and the points of interest on 

the real axis. We set 

N-l r a.(-iq)j 
j==O J 

N-l . 
1 + '[1 bj (_iq)J 

J= 

(4.6 ) 

.• 
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Since t£ is real on the imaginary ~ axis, the coefficients fa. } 
J. 

and fbi} are real. We chose e~ual powers of ~ in numerator and 

denominator,because t£ goes to B£ as ~ approaches 00. (The 

Born term B£ is independent of ~.) Finally we set ~ = k to get 

the phase shift from the expression 

where 

A = 
tan Df, 

k 
and 

8:rcE 
k 

B 

1 
A + i B 

, 

1 ( uni tari ty ) • (4.8 ) 

The accuracy in the calculated value of B serves as a check on the 

continuation. 

The continuation was first done determining the coefficients by 

point-wise fitting, E~. (4.2). For a moderately strong attractive 

potential with a deeply bound state (A = 3, ~ = m = I), the results of 

the continuation were uncertain from 5% to 20% over the elastic region. 

A great many attempts were made to improve this. These included: 

determining the coefficients by more sophisticated methods) varying the 

distribution of input points, trying to improve the accuracy of input 

numbers, putting known singularities in the fitting functions, generating 

a power series for t£ in ~ and then forming true Pad~ approximants, 

and continuing in the internal masses. No significant improvement was 
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was achieved. Schlessinger and Schwartz solved the Schrodinger 

equation very successfully using this method. 7 There are two principle 

differences between these two problems: (1) The Bethe-Salpeter 

amplitude has an infinite number of branch points on the real axis. 

These include the normal thresholds and a host of others due to our 

choice of off-mass-shell variables. The Schrodinger amplitude is of 

course regular on the real q axis. .(2) The Bethe-Salpeter equation 

is two-dimensional in I~I and x4' compared to the one-dimensional 

Schrodinger radial equation. This fact limits the accuracy which is 

practical to achieve using the Kohn method. Since simplicity was a 

desirable element in this calculation, we felt that it would be self­

defeating to attempt a more sophisticated solution of the equation. 

Table III gives a sample of the convergence of the phase shift and 

"unitarity coefficient" for the off-mass-shell continuation. 

It may appear wasteful of computer time in that the function 

must be calculated at many points to get the phase shift at one point. 

However, it should be noticed in Eq. (3.21) that k appears only in the 

inhomogeneous term, and after calculating and inverting the matrix M 

which depends on E, we can apply its inverse to vectors V with 

different values of k, which uses a small fraction of the computer 

time. The continuation time itself is very small. 

C. On-Mass-Shell Continuation 

Because of the dubious success of the off-mass-shell continuation, 

a search was made for a smoother function with fewer nearby singularities. 

The study of the singularity structure of amplitudes leads us to believe 

., 
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that the on-shell K matrix is the optimum function 

2 - 2ip t.e(CJ., 0, CJ., 0, q) 

It is well known that K.e(IF) is analytic in EF at threshold and has 

branch points only on the real EFaxis. 

The calculation proceeds as follows: We calculate t£,(q) 

(suppressing the first four arguments) as described in Sec. III, where 

(4.10 ) 

The first Born term B.e(q) is known exactly, and t.e(q) is calculated 

numerically. The amplitude t.e and thus K.e(IF) can be found for 

2 2 2 2 2 
4(m - ~ ) < E < 4m. It is a real analytic function of E with 

a branch point in this region at E2 

We can then expand the domain of analyticity further by removing the 

cut contribution to K.e(IF) for 
2 2 2 2 2 

4(m - ~ ) < E < 4m - ~ . Define 

K.e (IF) ::: K.e(IF) - K cut 
.e (EF) , (4.11 ) 

where 

14m2-~2 6K.e(E,2) 
K cut(EF) 1 dE,2 

.e rr 2 2 E,2 - EF 
4(m -~ ) 

(4.12 ) 

and 
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The function K£,(EF) 

2 2 _? 

is analytic on the real axis in the region 

4(m - ~ ) < ~ < (2m + 
2 

~) . This function was continued to the 

(4.13 ) 

scattering region using the Legendre fit, E~. (4.4), in the variable 

E2, and then the cut contribution was added back in. The 

phase shift was found from the formula 

4:n:E 
k tan 5 £, • (4.14) 

The results compared ~uite favorably with those of Schwartz 

and Zemach for moderately strong potentials.
2 

The relative errors in 

the phase shifts for various potentials are plotted in Fig. 6. In the 

region of EF between zero and four, the relative error of t p, is 

plotted. We see that on the average about two significant digits are 

lost in the extrapolation. The errors in both the input numbers and 

phase shifts increase for stronger potentials. A sample of convergence 

can be found in Ref. 8, Table I. 

D. Comparison 

A comparison of the results calculated in these two ways serves 

to point out that the continuation will be more successful when there 

are fewer nearby singularities to contend with. Fad~ approximants 

represent branch cuts by a line of poles. It is important to get a 

.. 
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good representation of the function for lower orders of fitting functions, 

because cancellations in the fitting procedure limit the practical number 

of fitting parameters for the accuracy of our input numbers. Also 

convergence or stability of the extrapolated numbers must be observed 

when the number of parameters is increased. 

We can estimate from considering Fig. 5a that possibly five 

poles are necessary to represent the nearby cuts of the off-shell 

amplitude. This means we have eleven parameters in our functions. On 

the other hand, the nearby cuts in the on-shell amplitude K£(EF) could 

probably be represented by two poles, one in the elastic region and one 

on the left-hand cut. Of course, the presence of bound states further 

increases the number of poles necessary to get a good representation. 

For stronger potentials the input numbers are less accurate, there are 

more nearby bound-state poles, and the discontinuities across the nearby 

cuts are larger. 
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APPENDIX: ELASTIC THRESHOLD BRANCH RUNT 

In this appendix we show that the elastic-threshold branch 

point of the partial-wave Bethe-Salpeter amplitude is two-sheeted in 

2 w for both legs off the mass-shell. It is well known that this is 

the case for the on-shell amplitude. It is implicit in the paper of 

Levine et al. 3 that the singly off-shell T matrix has this property. 

We will generalize this result to the doubly off-shell T matrix follow­

ing the methods_Qf Kowalski. lSi 

It can be shown that each term in the Born series is two-sheeted 

at threshold (except the first which is independent of w2
)) and if the 

Born series converges) then it follows that the partial-wave amplitude 

is also two-sheeted. We prefer to work with the integral e~uation for 

the sake of elegance) so as not to have to rely on the convergence of 

the Born series. It is of course possible to have anamolous thresholds 

coming through the normal threshold onto the physical sheet. This OCC1ITS 

as the external masses are increased and arises from pinches between 

the Green I s-function poles and the potential singularlties. However 

if we are not too far off-mass-shell) the only pinch that occurs is 

between the Green I s-function poles for small ~. It is this pinch that 

we are studying. 

Levine et al. 3 defined a new function f£ through the e~mtion 

== 
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The function f£ clearly has the property 

(A.2 ) 

Substituting this in the Bethe-Salpeter equation, ,we arrive at a 

formula for the on-shell T matrix 

(1 ) 
dPO B.e (q, 0, p, po) Gm(p, po) 

(A.3 ) 

where all arguments except q are suppressed for fully on-shell 

quantities. The integral equation for f.e is 

B (l)(k' k' q, 0) 
f .e(k', kO' 0, m) f, '0' 

q, ::: 

B (1) (q) 
£ 

where 

B~l) (k ',kO' p, PO). 

(A.5 ) 

The advantage of introducing the function f£ is that it does not 

have a threshold branch point, as we will show. The T matrix is 

'. 
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calculated through the formulae (A.3) and (A.l), the branch point coming 

from a pinch in the integral. 

Consider an integral of the form 

(A. 6) 

where H(p, PO' m) is even in p, which allows us to symmetrize the 

p integration, and the function H depends only on in the 

neighborhood of threshold. Integrals (A.3) and (A.4) are of this form. 

This follows from the fact that X£(k',kO,k,ko,m) = (_)£+lX£(-k',ko,k,ko,m), 

where X£ is T, f, M or B(l), The same relation holds for the right 

leg. The Green's function has four poles in the PO plane--two in the 

upper half and two in the lower half. The contour is on the real 

axis. Distort the contour into the upper-half plane as shown in Fig. 7a 

to r picking up the residues of the poles. The integral can be 
Po 

written 

(00 r 
I 

)-00 
dp 

Jr 
dPO 

r ) Po 1 1 

) H(p,m 2 2"2) H(P' -m-cl+ m
2 

)"2,m) l 
1 100 dp - (p + m ) ,m 

+ 1 l 16rcim 
(i + m

2 )fI 1 C 2 2)2- C 2 2)2 -0) m - p + m m + p + m 

The integral along rp experiences no pinches and is regular at 
o 

2 2 
m = m. The integrand of the p integral has singularities at 

p ~ ~ as shown in Fig. 7b. The pinching between these two poles 

I . 
I 
J 

(A.7) 
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gives the threshold branch point'at q = O. Passing the p contour to 

r (Fig. 7b) we arrive at 
p 

I r 
)r 

Po 

(' 

dp + f 
o ) 

rp 

m 
[H(q, OJ m)] • (A.8 ) dp + 

8 22 
:rr m q 

The first two integrals are regular in q2 at thresholdJ and the second 

integral is q times an even function of q J thus exhibiting the t"l{Q-

sheeted branch point. 

These considerations apply for Eq. (A.3) and the Born series of 

Sec. II. HmveverJ for the integral equation for f.e in (A.4) we have 

H{q, 0) m) = O. The function M has zeros just so as to cancel the 

poles that produce the pinches) . and thus f has no threshold branch 

point. 

The generalization to both legs off the mass-shell has been 

carried out by Kowalski19 for the Schrodinger equation and generalizes 

immediately to the Bethe-Salpeter equation. The generalized form of 

Eq. (A.I) is 

This reduces to Eq. (A.I) for the right leg on-mass-shell. For the left 

leg only on-mass-shell "lve obtain 
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(A.10) 

Note that f£ is not symmetric in its right and left legs. 

The arguments go through just as before: E~. (A.9) gives the 

off-shell T matrix in terms of the on-shell T and f} E~. (A.3) 

still gives the on-shell T in terms of f} but the integral equation 

for f is now 

+ 

too 
r I dp 

" 0 

B (1) (k' k' £ ) O} 

B (1) (~) 
£ 

(a> dPO M(k', kO' p, PO' ill ) Gill (p, PO) rip, PO' k, kO'ill) • 

.. -CD 

(A.ll) 
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TABLE I. Singular surfaces of the Bethe-Salpeter second Born term 

B£(2)(k'}k
O
}k}k

O
,m) classified. according to the number of singular 

surfaces} 

~ No. of 
jsurfaces 

2 

S. = OJ 
]. 

of the integral participating. 

Singular surfaces Partici­
pating in integrand 

I , 
! 

I 
I 
1 
! 
j 
I 
j 
l 

Singular Surface in Integral 

2 
0 Il 

2 m = 0 

(k _ k,)2 (k - k,)2 o 0 + 4112 = 0 

(k + k' )2 (k - k,)2 o 0 + 4112 = 0 

m2 = m2 

k2 
(kO 

_ m)2 + (Il + m)2 = 0 

k2 _ (k
O 

+ m)2 + (Il + m)2 = 0 

k'2_ (k' - m)2 + 
0 

(Il + m)2 0 

k'2- (k
O 

+ m)2 + (Il + m)2 = 0 
... -..... -.. - .... ~ ... -... . ...................................... .,,, ................... " ..... , ...... · ...... 2' .... ·~· .................... .. 

[(k-q)2_k02+1l2)[(k+q)2_k02+1l ) = 0 

[ (k' _q)2_k02+1l2)[ (k' +q)2_k02+1l2] = 0 

( 2 ( 2 2 2 [ k' - kO + m) + Il - m ) (k
O 

-+ (J)) 

_(k2_ (k
O 

-+ m)2+ 1l2 _ m2)(ko -+ m)]2 

-[ (k ,2_ (k
O 

-+ m)2+ 112 _ m2) k 

_(k2_ (k
O 

-+ m)2+ 1l2 _ m2) k,]2 

+ 4[k' (kO + m)-k(k6 :;.. m)]2 m2=O 

Eq. (i2) with k ~ - k 

(1 ) 

(2 ) 

(3 ) 

(4. ) 

(5 ) 

(6) 

(7) 

(8 ) 

(9) 

(:LO ) 

(11) 

(12 ) 

(13 ) 

" 

.... 
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TABLE II. Sample of convergence of the variational calculation of 

f.l = m := 1, .e = O. 
2 2 Off-shell k = 0.4m j 

On-shell k2 = (~/4) - m2 . For both cases, the convergence is better 

for weaker potentials and for repulsive potentials. The sign change is 

due to a bound state at 
2 

E """ 1. 

Off-shell t .e (k, 0, k, 0, qJ On-shell 
,.." 

t.e ('l" 0, 'l" 0, q) 

, . 

~= 3. 8603 ,2_ 8 6 ~= -0.870615 2 ~= 2.0 ~= 0.5 fNo. of E - 2. 1 5 E := 3.5 
~asis ,. 

unctions a := 0.35 a = 0.9 a = 2.2 a = 0.7 a := 1.3 a = 1.1 : 
I 
I 

2 -626.6 -815.29 372.939 .. 899.7 -2364.08 6403.1 I 
! 

4 -474.1 -733.28 608.182 -761. 9 -2148.71 6492.3 I 
1 , 

6 -470.7 -708.67 707.085 -752.9 -2034.14 6992.4 I 

9 _4L~4.3 -702.01 723. 856 -736.0 -2017·33 6995. 8 i 
i , 
I 

12 -444.1 -698.42 727.655 -732.5 -2009.96 7035.2 i 
16 -435.7 -697·53 727.968 -729.4 -2007. 84 7036.7 ! 
20 -434.9 -696.93 728.079 -728.2 -2007.11 7045.1 ; 

25 -431.4 -696.77 728.086 -727.5 -2006.77 7045.7 ; 

30 -430.9 -696.64 728.092 -727.1 -2006.66 7048.5 1 

36 -429.3 -696.60 728.095 -726.9 -2006.59 7048.7 
l 
~ 

I 
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TABLE III. Samples of the stability of the extrapolation for the off-

mass-shell continuation for m = ~ = 1. 

I 
I I Pad~ 
t Approximant , 
, 

2, 2 

3, 3 

4, 4 

5, 5 

6 , 6 

7, 7 

8, 8 

a 
S. z. 

: 
~ = 1, i2 

I j Unitarity 
f 
r 
J 
J 0.979 f 
\ 
! 0.978 , 
I 

I ·1.049 
, 
I 

! 1.107 

I 
I 1.079 I 
~ 1.026 I 
~ 

i 1.064 

1.0 

= 4.4 I ~= 1, i2 
°0/,-( i 

- . - . 
Unitarity 

i 
i 

J 

I i 0.526 I 1.091 
, I : 0.528 1.085 \ , 
i ! I 0.496 ! 0·972 

i t 
! 0.515 I 0.966 
! 

I ! 0.495 0.976 
J 

I ! , 
1 0.512 !. 0.970 I , , 

1 
\ 

0.506 
t 

0.971 ! 

1.0 

I 

I ~ = if 5.6 = 3, = 5.2 
! 

. °0/1L j Unitarityl 00/1L . 
I , , , 

I I 0.328 1.23 0.725 
! 

0.32'( 1.17 I 0.714 i 
l 

0.3341 1.09 i 0.699 , 
\ 

I 0.3336 1.09 ~ 0.692 
f , 

0.3344 1.10 0.703 

0.3347 1.21 0.694 

0.3345 1.08 0.699 

1.0 0.72906 

a. These values (C. Schwart~, private communication) were calculated 

using the method of Ref. 2. 

=1 
1 
I 
1 
t , 
r 

~ 
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FIGURE LEGENDS 

Fig. 1. (a) Some singQlar surfaces of the integrand for the Bethe-Salpeter 

second Born term B i (2) (k I, kO' k, kO,(l)) for (l)2 > m2
• S2' Sy 

and S4 were left out for the sake of clarity. (b) Singularities 

of (a) in the Po complex plane for fixed real p. 

Fig. 2. The box diagram and some pertinent contracted diagrams with 

singularities independent of case. The sheet structure of 

singularities for cases (c) and (d) are shown. 

Fig. 3. Some singularities of the Bethe-Salpeter second Born term 

B /2) (k'" kO" k, kO,(l)) as a function of the left-leg variables 

k' , The subscripts on T refer to the surfaces S. 
l 

that 

are responsible for it. The disappearance of a three-surface 

singularity T 
I" 5, 6 

on other sheets of two-surface sing111arities 

and Tl ,6 is shown. 

The surfaces given by Eqs. (3) and (4) of Table I were omitted 

for the sake of clarity. The singularities given by Eqs. (12) and 

(13) do not intersect the real 

right--leg variables k, kO . 

k' k' 
" 0 

plane for the chosen 

(b) kO plane for k' < q • 
"'" 

Fig. 4. Singularities of the Bethe-Salpeter second Born term i.n the q 

plane for kO k' o 
region. (b) k = k' = q. 

O. (a) k = k' fixed in the scattering 

Fig. 5. Important singularities of B,e(N)(k"kO,k,kO,(l)) in the qplane 

for kO = kO = 0, in the variables of Fig. 4. (a) The normal 

thresholds lie on the positive and negative real q axis. There 

are many more singularities than just normal thresholds on the 
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real axis, e.g. the surface of Fig. 4 and its offspring 

in higher Born terms for q sufficiently larger than k. There 

are also branch points at = - a i 1-L/2, a = 1,2,"', (N - 2)) 

and q - i m, which were omitted for the sake of clarity. 

(b) In the on-mass-shell variable q = k = k I, only normal 

thresholds are on the real axis. T. is the ith threshold. 
~ 

Fig. 6. Relative errors incl~red in the calculation of phase shifts using 

the on-mass-shell continuation. The variational calculation was 

done in the region 0 < E2 < 3.5 and the errors indicate the 

quality of the input numbers for the extrapolation. The extra-

polated region is for 
2 

E > 4. 

Fig. 1. Contour distortions for integrations generating the threshold 

branch point by pinching of Green1s function poles (nllirked x). 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
m1SS1on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behal f of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 






