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BACKGROUND: Subphenotypes have been identified in patients with sepsis and ARDS and are
associated with different outcomes and responses to therapies.

RESEARCH QUESTION: Can unique subphenotypes be identified among critically ill patients
with COVID-19?

STUDY DESIGN AND METHODS: Using data from a multicenter cohort study that enrolled
critically ill patients with COVID-19 from 67 hospitals across the United States, we randomly
divided centers into discovery and replication cohorts. We used latent class analysis inde-
pendently in each cohort to identify subphenotypes based on clinical and laboratory vari-
ables. We then analyzed the associations of subphenotypes with 28-day mortality.

RESULTS: Latent class analysis identified four subphenotypes (SP) with consistent characteristics
across the discovery (45 centers; n¼ 2,188) and replication (22 centers; n¼ 1,112) cohorts. SP1 was
characterized by shock, acidemia, and multiorgan dysfunction, including acute kidney injury treated
with renal replacement therapy. SP2 was characterized by high C-reactive protein, early need for
mechanical ventilation, and the highest rate of ARDS. SP3 showed the highest burden of chronic
diseases, whereas SP4 demonstrated limited chronic disease burden and mild physiologic abnor-
malities. Twenty-eight-day mortality in the discovery cohort ranged from 20.6% (SP4) to
52.9% (SP1). Mortality across subphenotypes remained different after adjustment for demographics,
comorbidities, organ dysfunction and illness severity, regional and hospital factors. Compared with
SP4, the relative risks were as follows: SP1, 1.67 (95% CI, 1.36-2.03); SP2, 1.39 (95% CI, 1.17-1.65);
and SP3, 1.39 (95% CI, 1.15-1.67). Findings were similar in the replication cohort.

INTERPRETATION: We identified four subphenotypes of COVID-19 critical illness with
distinct patterns of clinical and laboratory characteristics, comorbidity burden, and mortality.

CHEST 2021; 160(3):929-943
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Take-home Points

Study Question: Can unique subphenotypes be
identified among critically ill patients with COVID-
19?
Results: Based on clinical and laboratory character-
istics assessed within 24 h of ICU admission, we
identified four clinically distinct subphenotypes of
COVID-19, with significant differences in mortality
at 28 days, as well as clinical outcomes, including
ARDS, acute kidney injury, and thrombotic events, at
14 days.
Interpretation: To the best of our knowledge, this is
the first study to comprehensively investigate the
existence of distinct subphenotypes of COVID-19 in
a large, geographically and demographically diverse
population of critically ill patients and to replicate the
results in a second independent population.
COVID-19, caused by the novel coronavirus SARS-
CoV-2, results in a broad spectrum of disease

manifestations, ranging from mild self-limited illness to

life-threatening organ dysfunction.1 The presence of

biologically distinct subgroups, or subphenotypes, has

been hypothesized in critically ill patients with COVID-

19 based on reports of differences in lung compliance,

thrombotic complications, and inflammatory
response.2-7 However, to date, empiric evidence
930 Original Research
identifying and characterizing COVID-19 clinical
subphenotypes is limited.

In other heterogeneous syndromes, such as sepsis,
ARDS, and acute kidney injury (AKI), latent class
analysis has been used to identify distinct subphenotypes
based on clinical and biochemical characteristics.7-12

These subphenotypes have been associated not only with
clinical outcomes, but also with response to trial
therapies such as high positive end-expiratory pressure
for ARDS and vasopressin for AKI in retrospective
analyses of clinical trials data.9,10 Furthermore, the
subphenotype-defining characteristics in these studies
yielded important insights into the heterogeneity of
disease pathophysiologic features. Identifying
subphenotypes in critically ill patients with COVID-19
may have a similar ability to elucidate pathophysiologic
features, to predict outcomes, and to guide treatment
selection.

We hypothesized that latent, currently uncharacterized,
clinically and physiologically distinct subphenotypes
exist within critically ill patients with COVID-19 and
that they are associated with differences in the risk of
important clinical outcomes. We therefore aimed to
identify and replicate COVID-19 subphenotypes based
on clinical and laboratory variables in a large,
multicenter cohort of ICU patients. We then examined
the associations of subphenotypes with 28-day mortality
and other clinically relevant outcomes.
Methods
Patient Population
We used data from patients enrolled in the Study of the Treatment and
Outcomes in Critically Ill Patients with COVID-19 (STOP-COVID), a
multicenter cohort study conducted at 67 geographically diverse
hospitals across the United States (e-Table 1).13 We included
consecutive adults ($ 18 years of age) with laboratory-confirmed
SARS-CoV-2 infection admitted to participating ICUs between
March 4 and April 13, 2020. Patients were followed up until the first
incidence of the following: hospital discharge, death, or May 11,
2020 (the date on which the database for the current analysis was
locked). Details of data collection for STOP-COVID are described
elsewhere and are summarized e-Table 2.13 Clinical outcomes were
recorded daily up to 14 days (defined in e-Table 2). Survival was
tracked for a minimum of 28 days after ICU admission or until
hospital discharge, whichever occurred first.

Statistical Analysis

Subphenotypes were identified using latent class analysis. Latent class
analysis is a group of statistical methods that can be used to identify
unobserved (latent) subphenotypes within a heterogeneous
population by clustering on observed characteristics, such as
laboratory variables.11 We randomly split enrolling centers into
discovery and replication cohorts targeting a 2:1 overall patient ratio
between the cohorts (e-Fig 1). We used 25 acute clinical and
laboratory variables, selected a priori, as endogenous, class-defining
variables (e-Table 3). Outcomes such as mortality were not used to
define classes. We used ICU day 1 values for all class-defining
variables included in the models.

Latent class analysis models containing between one and five classes
were created sequentially in the discovery cohort. Selection of the
most appropriate latent class model was determined using Akaike and
Bayesian information criteria, the Vuong-Lo-Mendell-Rubin likelihood
ratio test, probability of class assignment (class separation), entropy,
class prevalence (favoring models with classes > 10% of the sample
population), and clinical interpretability.14,15 After model selection in
the discovery cohort, we repeated the same steps independently in the
replication cohort. Further detailed description of the latent class
methodology is contained in e-Appendix 1.

After class assignment, we examined the distributions of class-defining
variables, baseline demographics, and clinical characteristics across the
candidate subphenotypes using heatmaps. Heatmaps were created
using Microsoft Excel for Mac version 16.38 (Microsoft). Baseline
characteristics across the two cohorts and across subphenotypes were
compared using descriptive statistics.

Survival analysis was performed using Kaplan-Meier estimation
and restricted mean survival time.16 Poisson regression was used
to compare individual 28-day mortality across subphenotypes.17
[ 1 6 0 # 3 CHES T S E P T EM B E R 2 0 2 1 ]



The interaction between subphenotype and the effect of steroids
and anti-IL-6 therapies on mortality was also assessed. Models
were adjusted for demographic features and comorbidities
previously associated with mortality in COVID-19, US region,
and hospital ICU bed capacity. Differences in the incidence of
ARDS, thrombotic events, AKI, secondary infection, and new-
onset congestive heart failure within 14 days after ICU admission
were assessed using Cox proportional hazards regression,
adjusted for reported risk factors for each outcome.18-22 To
account for the competing risk of death, we computed cause-
chestjournal.org
specific Cox proportional hazards and treated death as a
censoring event.23

All statistical analyses were performed using Stata/IC version 15.1
software (StataCorp LP), unless otherwise specified. Additional
details of the statistical methods used in this work can be
found in e-Appendix 1 and e-Figure 1. All findings are
reported in concordance with the Strengthening the
Reporting of Observational Studies in Epidemiology guidelines
(e-Table 4).
Results

Discovery and Replication Cohorts

Of the 67 centers in STOP-COVID, 45 centers (2,188
patients) were selected randomly for inclusion in the
discovery cohort and 22 centers (1,112 patients) were
included in the replication cohort. Table 1 compares
patient demographics, clinical characteristics, US region,
and missing data between the two cohorts. The
replication cohort included a higher percentage of
patients of Hispanic or Latino ethnicity, altered mental
status on ICU day 1, and vasopressor use on ICU day 1
and also was characterized by slightly lower lymphocyte
percentage, lower C-reactive protein levels, and higher
D-dimer and ferritin values on ICU day 1. e-Table 5
shows a comparison of patient characteristics with and
without missing values for several of these key variables
missing in > 40% of patients. Standardized mean
differences were all < 0.2, most were < 0.1, and a few of
the observed differences seemed to be clinically
meaningful. More than 70% of patients in the replication
cohort were treated at centers in the Northeast United
States, compared with approximately 50% in the
discovery cohort, which had greater representation from
the South, Midwest, and West regions.

Identification of COVID-19 Critical Illness
Subphenotypes

In the discovery cohort, model fit statistics showed
improving fit with increasing number of classes
(Table 2). However, the five-class model showed a
substantial increase in class assignment uncertainty
(7.2%-11.1% across classes vs 0.7%-2.3% for the four-
class model) and contained a relatively small class
comprising 7.4% of patients. The four-class model
included class proportions of between 11.2% and 39.7%,
with high mean class probabilities (0.85-0.91 across four
classes) (e-Fig 2). Investigator review of the four-class
model suggested that differences in characteristics by
class were clinically interpretable (see later). We then
repeated model derivation steps in the replication
cohort. The four-class model again showed improved
model fit and reduced class uncertainty compared with
models with fewer classes (Table 2), good representation
across classes (13.0%-32.4%), and evident clinical
interpretability (see later); a five-class model did not
converge. We therefore maintained four-class models
for each cohort, with classes labeled as COVID-19
subphenotypes 1 through 4 (SP1, SP2, SP3, and SP4).

Characteristics Distinguishing COVID-19
Subphenotypes

Patterns of class-defining variables and baseline
characteristics across the four subphenotypes are shown
in Figure 1 (see e-Tables 6 and 7 for nonstandardized
numeric data). Patterns across subphenotypes were
similar between the discovery and replication cohorts.
For example, lactate, ferritin, and D-dimer levels were all
highest in SP1, with progressively lower median values
across SP2, SP3, and SP4. Across subphenotypes, the
time from hospital admission to ICU admission was
similar, although SP2 and SP4 had approximately 1 day
more of symptoms before hospital admission.

SP1 was the least common subphenotype and was
characterized by acidemia, elevated lactate, and the
highest frequency of vasopressor use on ICU day 1.
Acute organ dysfunction was more common in SP1 than
in other SPs, including receipt of invasive mechanical
ventilation, creatinine and transaminase elevation, and
altered mental status. In addition, SP1 patients showed
the highest elevations in D-dimer, ferritin, and
procalcitonin.

SP2 patients showed the highest rates of acute
respiratory failure requiring invasive mechanical
ventilation on ICU day 1, even compared with SP1
patients (85%-90% across discovery and replication
cohorts for SP2 vs 75%-83% in SP1). SP2 patients
showed the highest C-reactive protein values, high
maximum temperature, and highest WBC counts on
ICU day 1.

SP3 patients were characterized by the highest chronic
disease burden, with the highest rates of diabetes
931
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TABLE 1 ] Comparison of Baseline Variables in the Discovery and Replication Cohorts

Variable Discovery Cohort Replication Cohort Missing P Value

Baseline characteristics

Age, y 63 (52-71) 62 (52-71) 0 (0) .607

Male sex 1,418 (64.8) 702 (63$1) 0 (0) .342

Race ... ... 0 (0) < .001

White 755 (34.5) 466 (41.9) ... ...

Black 783 (35.8) 260 (23.4) ... ...

Other 161 (7.4) 94 (8.5) ... ...

Unknown 489 (22.3) 292 (26.3) ... ...

Latino ethnicity 360 (16.5) 318 (28.6) 0 (0) < .001

BMI, kg/m2 30 (26-36) 30 (27-36) 384 (11.6) .927

Diabetes 913 (41.7) 445 (40.0) 0 (0) .346

Hypertension 1,363 (62.3) 673 (60.5) 0 (0) .322

Kidney function (eGFRa), mL/min/1.73 m2 ... ... 0 (0) .867

$ 90 684 (31.3) 365 (32.8) ... ...

60-< 90 789 (36.1) 388 (34.9) ... ...

30-< 60 454 (20.7) 229 (20.6) ... ...

15-< 30 104 (4.8) 56 (5.0) ... ...

< 15 or RRT 157 (7.2) 74 (6.7) ... ...

Coronary artery disease 309 (14.1) 148 (13.3) 0 (0) .523

Congestive heart failure 227 (10.4) 101 (9.1) 0 (0) .241

Atrial fibrillation or flutter 164 (7.5) 72 (6.5) 0 (0) .282

COPD 175 (8.0) 103 (9.3) 0 (0) .216

Asthma 238 (10.9) 109 (9.8) 0 (0) .341

Chronic liver disease 74 (3.4) 38 (3.4) 0 (0) .958

HIV/AIDS 31 (1.4) 17 (1.5) 0 (0) .800

Active malignancy 102 (4.7) 60 (5.4) 0 (0) .356

Solid organ transplantation 69 (3.2) 37 (3.3) 0 (0) .789

Bone marrow transplantation 4 (0.2) 4 (0.4) 0 (0) .329

Blood type A 433 (19.8) 250 (22.5) 0 (0) .071

Smoking status ... ... 0 (0) .419

Never smoker 1,245 (5.9) 610 (54.9) ... ...

Current or former 648 (29.6) 336 (30.2) ... ...

Unknown 295 (13.5) 166 (14.9) ... ...

Preadmission ACEI or ARB 729 (33.3) 394 (35.4) 0 (0) .226

Preadmission anticoagulation 225 (10.3) 98 (8.8) 0 (0) .179

Preadmission immunosuppressive medication 236 (10.8) 106 (9.5) 5 (0.2) .255

Clinical and laboratory data ... ... ... ...

Coinfection on ICU day 1 513 (23.5) 213 (19.2) 2 (0.1) .005

Altered mental status on ICU day 1 437 (20.0) 320 (28.8) 1 (< 0.1) < .001

Tmax ICU day 1, �F 100.5 (99.1-102.0) 100.4 (99.0-101.9) 3 (0.1) .058

HRmax ICU day 1 105 (91-120) 103 (90-119) 3 (0.1) .165

SBPmin ICU day 1, mm Hg 96 (85-111) 97 (86-110) 4 (0.1) .156

RRmax ICU day 1 32 (26-38) 30 (25-36) 0 (0) < .001

Respiratory support and oxygenation on ICU
day 1

... ... 0 (0) .624

Neither HFNC, NIPPV, nor MVb 266 (12.2) 155 (13.9) ... ...

(Continued)
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TABLE 1 ] (Continued)

Variable Discovery Cohort Replication Cohort Missing P Value

BPV, CPAP, HFNC, or NRBc 494 (22.6) 226 (20.3) ... ...

Vent P to F ratio

> 300 347 (15.9) 175 (15.7) ... ...

> 200-# 300 187 (8.5) 104 (9.4) ... ...

> 100-# 200 486 (22.2) 242 (21.8) ... ...

# 100 397 (18.1) 203 (18.3) ... ...

ECMO 11 (0.5) 7 (0.6) ... ...

No. of vasoactive infusions on ICU day 1 1 (0-1) 1 (0-1) 1,069 (33.4) .024

24-h UOP on ICU day 1, mL/d 700 (300-1,168) 722 (324-1,300) 1,537 (46.6) .145

WBC count, K/mm3 8.1 (5.9-11.3) 8.4 (6.0-11.8) 188 (5.7) .129

Lymphocyte, % 10.1 (6.3-15.4) 9.5 (5.4-14.7) 613 (18.6) .005

Hemoglobin, g/dL 12.6 (11.1-14.1) 12.6 (11.0-13.9) 193 (5.9) .205

Platelet count, K/mm3 210 (160-269) 215 (166-274) 204 (6.2) .249

Creatinine, mg/dL 1.10 (0.80-1.69) 1.04 (0.80-1.70) 157 (4.8) .608

Albumin, g/dL 3.2 (2.8-3.6) 3.2 (2.8-3.5) 638 (19.3) .607

AST, U/L 54 (36-85) 55 (36-85) 631 (19.1) .733

ALT, U/L 35 (23-58) 37 (23-61) 609 (18.5) .190

Total bilirubin, mg/dL 0.6 (0.4-0.8) 0.6 (0.4-0.8) 615 (18.6) .102

Lactate, mM 1.5 (1.1-2.3) 1.5 (1.1-2.2) 1,246 (37.8) .742

CRP, mg/L 162 (97-243) 144 (76-232) 1,316 (39.9) < .001

Arterial pH 7.37 (7.30-7.43) 7.37 (7.30-7.43) 1,036 (31.4) .897

D-dimer, ng/mL 1,209 (660-2,815) 1,600 (822-3,935) 1,646 (49.9) < .001

Ferritin, ng/mL 1,015 (488-1,979) 1,077 (550-2,261) 1,451 (44.0) .024

Procalcitonin, ng/mL 0.38 (0.15-1.22) 0.40 (0.14-1.72) 1,319 (40.0) .381

CK, U/L 210 (98-565) 210 (97-505) 1,795 (54.4) .546

Center and region data

Total centers 45 22 ... ...

Total patients 2,188 (66.3) 1,112 (33.7) ... ...

US regiond ... ... ... ...

Northeast 1,088 (49.7) 807 (72.6) ... ...

South 249 (11.4) 90 (8.1) ... ...

Midwest 618 (28.2) 155 (13.9) ... ...

West 233 (10.6) 60 (5.4) ... ...

Data are presented as No. (%) or median (interquartile range), unless otherwise indicated. The discovery and replication cohorts were constructed by
randomly choosing centers from all available STOP-COVID sites with a target patient split of approximately 2:1 between discovery and replication. Dif-
ferences between cohorts were compared using the Kruskal-Wallis test and the c 2 test, as appropriate. ACEI ¼ angiotensin converting enzyme inhibitor;
ALT ¼ alanine aminotransferase; ARB ¼ angiotensin receptor blocker; AST ¼ aspartate aminotransferase; BPV ¼ bilevel pressure ventilation; CK ¼
creatine kinase; CRP ¼ C-reactive protein; ECMO ¼ extracorporeal membrane oxygenation; eGFR ¼ estimated glomerular filtration rate; HFNC ¼ high-
flow nasal cannula; HRmax ¼ maximum heart rate; MV ¼ mechanical ventilation; NIPPV ¼ noninvasive positive pressure ventilation; NRB ¼ nonrebreather
mask; P to F ¼ partial pressure of arterial oxygenation to fraction of inspired oxygenation; RRmax ¼ maximum respiratory rate; RRT ¼ renal replacement
therapy; SBPmax ¼ maximum systolic BP; STOP-COVID ¼ Study of Treatment and Outcomes in Critically Ill Patients with COVID-19; Tmax ¼ maximum
temperature; UOP ¼ urine output.
aVia the Chronic Kidney Disease Epidemiology Collaboration equation.
bIncludes patients who received supplemental oxygen by nasal cannula administration.
cNinety-two percent of patients in this category (n ¼ 662 of 720) were receiving respiratory support via HFNC or nonrebreather mask on ICU day 1. The
remaining 8% (n ¼ 58 of 720) were receiving BPV or CPAP.
dRegions comprise the following US states (only states that contributed to the STOP-COVID database are listed): (1) Northeast: Connecticut, Washington,
DC, Massachusetts, Maryland, New Jersey, New York, and Pennsylvania; (2) South: Alabama, Florida, Louisiana, North Caroline, Tennessee, Texas, and
Virginia; (3) Midwest: Illinois, Indiana, Kentucky, Michigan, Minnesota, Missouri, Ohio, Oklahoma, and Wisconsin; and (4) West: Arizona, California,
Colorado, Nevada, Oregon, and Washington.

chestjournal.org 933
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mellitus, hypertension, coronary artery disease,
congestive heart failure, COPD, and solid organ
transplantation, as well as the lowest admission
hemoglobin concentration. Coinfections present on the
day of ICU admission were as common as in SP1. Shock,
acidemia, and acute organ dysfunction markers, such as
elevated transaminases, were less common among SP3
patients than SP1 or SP2 patients.

SP4 patients showed relatively preserved indexes of
organ function and demonstrated the lowest rates (38%-
51%) of invasive mechanical ventilation on ICU day 1,
although > 30% of SP4 patients in both cohorts required
high-flow nasal canula or noninvasive positive pressure
ventilation. SP4 patients received less vasopressor use
and demonstrated normal or minimally elevated liver
transaminases, lactate, and creatinine levels. SP4 patients
showed the highest median BMI, but otherwise a
relatively low chronic disease burden, especially
compared with SP1 and SP3 patients.

Subphenotype distribution varied by region. Northeast
centers showed the highest percentage of SP2 patients,
centers in the South showed the highest percentage of
SP3 patients, and centers in the Midwest and West
showed the highest percentage of SP4 patients (e-Fig 3).
Characteristics of patients across the subphenotypes in
the discovery cohort were similar when the classes were
defined using only data from those receiving mechanical
ventilation on ICU day 1 (e-Fig 4). Compared with the
subphenotypes derived using latent class modelling, a
limited variable model containing fewer, commonly
available laboratory and vital sign data did not predict
class assignment reliably (e-Table 8).
Association of COVID-19 Subphenotypes With 28-
Day Mortality

Overall, 28-day mortality was 32.7% in the discovery
cohort and 38.9% in the replication cohort. In both
cohorts, mortality was highest in SP1 patients, lowest in
SP4 patients, and intermediate in SP2 and SP3 patients
(P < .001, global log-rank test in both cohorts) (Fig 2).
Compared with SP4 patients, patients in the SP1, SP2,
and SP3 groups showed a significantly higher risk of
mortality after adjustment for demographics,
comorbidities, organ dysfunction and illness severity, and
regional and hospital factors (Table 3). Similarly,
restricted mean survival times all were significantly
shorter in SP1, SP2, and SP3 groups compared with the
SP4 group (e-Table 9). Additional pairwise comparisons
using adjusted models are shown in e-Table 10.
934 Original Research
Association of COVID-19 Subphenotypes With 14-
Day Clinical Outcomes

Although the unadjusted rates of invasive mechanical
ventilation and ARDS were highest in the SP1 and SP2
groups in both cohorts (Table 4), only the SP2 group
showed an increased ARDS incidence after adjustment
(discovery: adjusted hazard ratio, 1.63 [95% CI, 1.49-
1.78]; replication: adjusted hazard ratio, 1.53 [95% CI,
1.35-1.75]) (e-Table 11).18 SP1 and SP2 were associated
significantly with a higher risk of thrombosis, even after
adjustment for known VTE risk factors (e-Table 11).20

The rates of AKI and AKI requiring renal replacement
therapy were higher in SP1, SP2, and SP3 compared
with SP4 (Table 4, e-Table 11). Secondary infections
occurring after ICU admission were common across all
subphenotypes, but only patients with SP2 experienced
secondary infections at a significantly higher rate than
those with SP4, after adjustment for age, coinfection
status at ICU admission, and immunosuppression (e-
Table 11). Key distinguishing characteristics of each
subphenotype, overall prevalence, and mortality risk are
shown in Figure 3.

Interaction Between COVID-19 Subphenotypes
With Antiinflammatory and Antimicrobial Therapies

Corticosteroid use varied significantly across
subphenotypes in both the discovery and replication
cohorts (e-Table 12), with the greatest use in SP1 and
SP2 patients compared with SP3 and SP4 patients.
Steroid use was associated with significantly increased
mortality risk in SP2, SP3, and SP4 groups in the
discovery cohort, but not in the replication cohorts (e-
Table 13). Anti-IL-6 therapy was used less frequently
than corticosteroids across all subpheontypes (e-
Table 12). Receipt of anti-IL-6 therapy was not
associated mortality within any subphenotype in both
the discovery and replication cohorts (e-Table 13).
Antimicrobial therapy was used commonly across all
subphenotypes on ICU day 1 and was not associated
with mortality risk within any subphenotype in either
the discovery or replication cohorts (e-Table 13).
Discussion
In our study of more than 3,000 critically ill patients
with COVID-19, we identified four clinical
subphenotypes with distinct physiologic and laboratory
characteristics, unique clustering across demographic
and baseline patient characteristics, and clinically
meaningful differences in mortality and acute organ
dysfunction. Our findings lend empiric support to the
[ 1 6 0 # 3 CHES T S E P T EM B E R 2 0 2 1 ]



TABLE 2 ] Fit Statistics for Latent Class Models From One to Five Classes in the Discovery and Replication Cohorts

No. of Classes
Log-Likelihood

(Model) df AICa BICa N1 N2 N3 N4 N5 Entropyb
Class

Uncertaintyc P Valued

Discovery
cohort

One –16,694.32 52 33,492.64 33,788.56 2,188 (100) ... ... ... ... —e —e —e

Two –14,457.54 105 29,125.09 29,722.62 868 (39.7) 1,320 (60.3) ... ... ... 0.791 3.2-4.8 < .001

Three –13,702.23 158 27,720.47 28,619.61 682 (31.2) 553 (25.3) 953 (43.6) ... ... 0.773 4.8-7.8 < .001

Four –13,185.91 211 26,793.83 27,994.57 244 (11.2) 600 (27.4) 475 (21.7) 869 (39.7) ... 0.771 0.7-2.3 < .001

Five –12,806.37 264 26,140.73 27,643.09 393 (18.0) 162 (7.4) 452 (20.7) 512 (23.4) 669 (30.6) 0.765 7.2-11.0 < .001

Replication
cohort

One –8,338.35 52 16,780.71 17,041.43 1,112 (100) ... ... ... ... —e —e —e

Two –7,129.74 105 14,469.47 14,995.93 664 (59.7) 448 (40.3) ... ... ... 0.801 1.7-2.5 < .001

Three –6,692.71 158 13,701.43 14,493.63 431 (38.8) 327 (29.4) 354 (31.8) ... ... 0.790 4.0-7.4 < .001

Four –6,369.49 211 13,160.98 14,218.92 145 (13.0) 360 (32.4) 251 (22.6) 356 (32.0) ... 0.791 0.7-2.3 < .001

Five Model does not converge

Data are presented as No. (%) or percentage, unless otherwise indicated. AIC ¼ Akaike information criterion; BIC ¼ Bayesian information criterion; df ¼ degrees of freedom; N ¼ number.
aCriteria for model selection that estimate the relative distance of the fitted likelihood model to the unknown, true likelihood function that generated the data, while including a penalty for higher numbers of model
parameters. Hence, a lower AIC and BIC suggest improved model fit, but may not yield a simpler (more parsimonious) model.
bMeasure of class separation. Values range from 0-1, with larger values indicating a greater degree of class separation.
cPercentage of patients within each class with a marginal probability of belonging to their assigned class, defined as a probability of 0.45-0.55. After model fitting, probability of being assigned to each class was
calculated for each patient, with the highest probability determining patient class assignment.
dVuong-Lo-Mendell-Rubin likelihood ratio test assesses whether the number of classes provides improved model fit compared with a model using one fewer class. The test is applicable only when comparing models
with two or more classes.
eFor a model containing a single class, there is no class uncertainty and entropy cannot be defined. The P value corresponds to the comparison of models to model 1 (single class model) as the reference. Therefore, it
was not appropriate to list a P value here.
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Figure 1 – Heatmap displaying the standardized mean values for each variable across COVID-19 subphenotypes in the discovery and replication
cohorts. The heatmap is divided into two sections: latent class-defining variables (top) and baseline characteristics that were not used to define class
membership (bottom). Within each section, variables are ordered by standardized mean values, lowest to highest, among patients in the discovery
cohort assigned to subphenotype 1 (SP1). The same order of variables is maintained in the replication cohort to facilitate comparison across cohorts.
Within each cohort, variables were standardized by scaling to a mean ¼ 0 and an SD ¼ 1 and are represented graphically using a continuous color
scale. A variable with value þ 1 represents a mean value for that subphenotype, which is 1 SD more than the mean value for the entire cohort
population. ACEI ¼ angiotensin converting enzyme inhibitor; ALT ¼ alanine aminotransferase; ARB ¼ angiotensin receptor blocker; AST ¼ aspartate
aminotransferase; CRP ¼ C-reactive protein.
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Figure 2 – A, B, Graphs showing the cu-
mulative incidence of mortality in the dis-
covery (A) and replication (B) cohorts
stratified by subphenotype. No patients
were censored before mortality determina-
tion at 28 days. Patients discharged alive
before 28 days were assumed to be alive at
day 28. Numbers of at-risk individuals are
displayed in the corresponding table, and
95% CIs are shown for each survival curve.
SP1, SP2, SP3, SP4 ¼ subphenotype 1,
subphenotype 2, subphenotype 3,
subphenotype 4.
hypothesized and clinically observed heterogeneity of
COVID-19 critical illness. These subphenotypes were
identified using standard clinical and laboratory data
chestjournal.org
obtained during the first day of ICU admission and may
provide a useful framework for understanding COVID-
19 critical illness pathophysiologic features and
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TABLE 3 ] Unadjusted and adjusted mortality analysis, stratified by subphenotype, in the Discovery and
Replication cohorts

Mortality

Discovery Replication

Unadjusted Adjusted Unadjusted Adjusted

SP1 2$57 (2$15-3$06) 1.67 (1.36-2.04) 2$49 (1$96-3$16) 1.67 (1.28-2.17)

SP2 2$01 (1$71-2$37) 1.39 (1.17-1.65) 2$00 (1$60-2$50) 1.37 (1.09-1.73)

SP3 1$61 (1$35-1$94) 1.39 (1.15-1.67) 1$86 (1$46-2$36) 1.49 (1.16-1.91)

SP4 1 (ref) 1 (ref) 1 (ref) 1 (ref)

Data are shown as relative risk (95% CI). Associations of SP1, SP2, and SP3 with mortality are compared with the reference of SP4. Models adjusted for age,
sex, race and ethnicity, hypertension, diabetes, COPD, end-stage kidney disease, active malignancy, chronic liver disease, illness severity, and organ
dysfunction on ICU day 1 (respiratory support and oxygenation, platelet count, altered mental status, and creatinine), hospital ICU bed capacity, and US
region. BMI, vasopressor support, and liver transaminases were missing in a nontrivial number of patients (11.6%-33.4%) (Table 1). Models also adjusting
for these variables in patients with nonmissing data showed minimal change in relative risks compared with those reported above. SP1, SP2, SP3, SP4 ¼
subphenotype 1, subphenotype 2, subphenotype 3, subphenotype 4.
prognosis. In addition, these findings may help to
identify patient subgroups most likely to benefit from
emerging therapeutics.

In our study, we reliably assigned patients with COVID-
19 to one of four subphenotypes based on readily
available clinical and physiologic characteristics. Our
findings have several similarities with a previous study
that used clustering techniques to identify four
subgroups in a broad population of hospitalized patients
with sepsis based on demographic characteristics,
clinical signs, and laboratory variables.8 In that study,
patients with sepsis were classified into one of four
subgroups: a first subgroup characterized by shock (d
phenotype), a second subgroup characterized by high
C-reactive protein and pulmonary dysfunction (g), a
third subgroup characterized by chronic illness and a
high prevalence of kidney dysfunction (b), and a fourth
subgroup characterized by relatively limited physiologic
derangements (a). This pattern has several similarities to
the COVID-19 subphenotypes we identified (SP1, SP2,
SP3, and SP4, respectively) (Fig 3). This is not
unexpected, given that most critically ill patients with
COVID-19 meet criteria for sepsis.

Notably, however, the COVID-19 subphenotypes were
characterized by a more defined relationship between
chronic and acute conditions. SP1 patients, who had
severe acute physiologic changes, also were typified by
the high burden of comorbidities and elevated initial
serum creatinine seen in SP3 patients; in
contradistinction, the d sepsis subphenotype was defined
more by shock, with notably fewer comorbidities and
lower creatinine levels than the b phenotype. In
addition, the d sepsis phenotype showed the highest
PaO2, whereas patients with COVID-19 demonstrating
938 Original Research
the SP1 phenotype included a high proportion with
hypoxemia and respiratory failure, second only to the
SP2 group in severity. These differences, as well as a
substantially higher mortality in our cohort, could be
explained by our inclusion of only patients admitted to
the ICU, although some dissimilarities are likely because
of the uniformity of pulmonary sepsis source in the
present cohorts as well as the unique characteristics of
the novel SARS-CoV-2 virus, which may differ even
from other respiratory viral illnesses.24

Like prior latent class analyses in critical care, we

focused heavily on acute clinical and laboratory variables

to define subgroups.10,25 As noted (see Methods), we

considered demographics and chronic medical

conditions to be exogenous, non-class-defining

variables, rather than features of acute COVID-19
illness. However, we found that these characteristics
occurring before acute illness showed remarkably
consistent patterns of association with subphenotypes
across the discovery and replication cohorts.
Comorbidities were more prevalent in SP1 and SP3
groups compared with SP2 and SP4 groups. Black race
prevalence showed overlap with these comorbidities,
with higher representation in SP1 and SP3 groups. This
finding is consistent with other large US cohort studies
of COVID-19 and with observed health disparities
within the United States.26 Not surprisingly, SP3 was
seen most commonly in the South, the US region with
the largest Black population.27 In contrast, Hispanic
patients were more likely to belong to SP2 and SP4
groups across both discovery and replication cohorts,
which is somewhat surprising, given that Hispanic
populations are known to carry an increased burden of
[ 1 6 0 # 3 CHES T S E P T EM B E R 2 0 2 1 ]



TABLE 4 ] Clinical Outcomes, Stratified by Subphenotype, in the Discovery and Replication Cohorts

Variable

Subphenotype

P ValueSP1 SP2 SP3 SP4

Discovery cohort

Patients 244 (11.2) 600 (27.4) 475 (21.7) 869 (39.7) ...

Mortality

Mortality at 28 d 129 (52.9) 249 (41.5) 158 (33.3) 179 (20.6) < .001

Clinical outcomes

Mechanical ventilation 181 (85.0) 572 (95.7) 295 (74.5) 635 (73.5) < .001

Time from hospital admission to invasive
mechanical ventilation (d)

8 (3-12) 5 (1-9) 6 (2-10) 4 (1-8) < .001

ARDS 165 (67.6) 542 (90.5) 323 (68.1) 609 (70.1) < .001

AKI

AKI 152 (71.4) 374 (62.5) 216 (54.5) 356 (41.2) < .001

Stage 3 64 (30.0) 158 (26.4) 76 (19.2) 121 (14.0) < .001

Thrombosis 28 (11.5) 81 (13.5) 31 (6.5) 66 (7.6) < .001

New-onset CHF 13 (5.3) 32 (5.3) 6 (1.3) 20 (2.3) < .001

Secondary Infection 75 (30.7) 208 (34.7) 138 (29.1) 244 (28.1) .053

Replication cohort

Patients 145 (13.0) 360 (32$4) 251 (22$6) 356 (32$0) ...

Mortality

Mortality at 28 d 82 (56.6) 164 (45$6) 106 (42$2) 81 (22$8) < .001

Clinical outcomes

Mechanical ventilation 124 (92.5) 338 (94$2) 176 (81$9) 253 (71$5) < .001

Time from hospital admission to invasive
mechanical ventilation

8 (3-12) 5 (1-9) 5.5 (2-10) 4 (1-7) < .001

ARDS 113 (77.9) 309 (85.8) 177 (71.1) 241 (68.3) < .001

AKI

No AKI 101 (75.4) 214 (59.6) 136 (63.3) 126 (35.6) < .001

Stage 3 RRT 42 (31.3) 87 (24.2) 60 (27.9) 29 (8.2) < .001

Thrombosis 17 (11.7) 61 (16.9) 30 (12.0) 34 (9.6) .026

New-onset CHF 10 (6.9) 17 (4.7) 10 (4.0) 7 (2.0) < .001

Secondary infection 49 (33.8) 121 (33.6) 78 (31.3) 94 (26.6) .183

Data are presented as No. (%) or median (interquartile range), unless otherwise indicated. Within each cohort, differences across subphenotypes were
compared using the c 2 test. AKI ¼ acute kidney injury; CHF ¼ congestive heart failure; RRT ¼ renal replacement therapy; SP1, SP2, SP3, SP4 ¼ sub-
phenotype 1, subphenotype 2, subphenotype 3, subphenotype 4.
chronic medical diseases compared with non-Hispanic
White patients.28

Beyond providing a construct for understanding
COVID-19 heterogeneity and outcome risk, the clinical
subphenotypes we identified may be the result of distinct
underlying disease mechanisms and may help to inform
treatment decisions. Prior studies of ARDS, AKI, and
sepsis identified both simple and complex molecular
signatures that defined patient subgroups while
elucidating associated pathophysiologic
processes.9,10,29,30 These studies also suggested that such
molecular subphenotypes may affect response to
chestjournal.org
therapies, identifying potential beneficial effects in
certain subgroups even when overall trial results were
negative.31,32 We did not have biospecimens to test
molecular markers in patients in the STOP-COVID
population, but small cohort studies already have
suggested the presence of molecular endotypes within
the population with COVID-19. For example, Sinha
et al33 applied previously defined biomarker-based
ARDS subphenotypes to 39 patients with COVID-19,
distinguishing patients between hypoinflammatory and
hyperinflammatory subgroups. In addition, Mathew
et al34 identified immunophenotypes based on
939
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Figure 3 – Diagram showing summary of class-defining variables, baseline characteristics, and clinical outcomes for each subphenotype of COVID-
19. Overall cumulative 28-day mortality and the class prevalence, across both cohorts, are shown as percentages. AKI ¼ acute kidney injury; CRP ¼
C-reactive protein. SP1, SP2, SP3, SP4 ¼ subphenotype 1, subphenotype 2, subphenotype 3, subphenotype 4.
lymphocyte activation that were linked to clinical
outcomes in 125 patients hospitalized with COVID-19.
Informed by such deep molecular phenotyping analyses,
further studies in large cohorts with COVID-19 could
determine whether the clinical subphenotypes we
identified are associated with distinct molecular
characteristics, potentially identifying patients for
targeted treatments. Dexamethasone, for example,
improves survival in patients hospitalized with COVID-
19, but seems to exert significant effect differences across
levels of respiratory support.35 In our secondary analysis,
we did not find an association of steroid treatment with
improved survival, and in several subphenotypes, steroid
treatment was associated with an increased mortality
risk, findings that we believe are likely the result of
confounding by indication in the early pandemic
experience. Neither IL-6 receptor antagonists nor early
antimicrobial therapy were associated with a significant
effect across subphenotypes in either the discovery or
replication cohorts. We hypothesize that clinical and
molecular subphenotypes characterized by immune
activation may help to target more precisely patients
who are responsive to suppression of inflammation,
while avoiding the risks of immune suppression and
excess viral replication that could lead to harm in other
patient subgroups.
940 Original Research
Our study has several notable strengths. First, latent
class models were generated independently in two
patient populations totaling 3,300 patients at 67 centers
across the United States. The subphenotype similarities
between discovery and replication cohorts, two
randomly selected sets of STOP-COVID centers, lend
external validity to our findings. Further strengthening
the validity of the identified classes, we found consistent
subphenotype associations with demographics, medical
comorbidities, and clinical outcomes, although these
were not used to define classes. Furthermore, the
similarities in the timing of disease onset relative to
hospital and ICU admission across subphenotypes,
provide evidence that subphenotypes describe truly
separate classes, rather than the same disease at different
time points. Ascertainment of similar subphenotypes
when analysis is limited to patients receiving mechanical
ventilated on ICU day 1 also supports this conclusion. In
addition, our study population was diverse, both
geographically and demographically, which increases the
generalizability of our findings and suggests that our
subphenotype classifications may be applicable to other
cohorts with COVID-19. Our study’s large sample size
may have enhanced our ability to detect more clinically
distinguishable subphenotypes than in studies of ARDS
and AKI and the same number of classes as a study
of > 20,000 sepsis patients.8-10
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Our study has several important limitations. First, the
STOP-COVID study from which our data were drawn
was an observational study; although data were collected
manually and systematically, they were limited by what
was available in the medical record. Substantial
missingness of some laboratory variables could have
impacted our findings, despite the use of full-
information maximum likelihood and good balance of
characteristics between those with and without missing
values. Despite the challenges of creating a parsimonious
model to assign patients to four unique classes, further
study to develop class-assigning models with fewer,
reliably available variables is important to facilitate
application. Alternative clustering methods, such as
consensus k-means clustering, also could be used to
validate our findings further.

An additional limitation was lack of data on circulating
novel molecular markers, such as soluble tumor necrosis
factor receptor 1, IL-6, and IL-8, which have been
described as important class-defining variables in other
critical illness latent class models.9,10 As noted, follow-
up studies in cohorts with biospecimens will be key to
associating clinical with molecular subphenotypes. The
true incidence of some clinical outcomes, such as ARDS,
may differ from the reported incidence because of
misclassification. For example, we were unable to
phenotype ARDS using direct chest radiography review
and expert consensus. Similarly, our data lacked detailed
information of respiratory physiologic features, such as
respiratory system compliance, or quantitative
radiographic information, including extent of lung
consolidation. The absence of detailed biomarker and
physiologic variables, as well as substantial missingness
chestjournal.org
of variables such as ferritin and D-dimer, likely
contributed to the inability to predict class assignment
using fewer, more commonly available clinical variables.
However, our findings regarding subphenotype
association with such outcomes were consistent with the
associations we observed for outcomes less likely to have
been misclassified, including AKI and mortality.

It is also possible that therapies were applied
differentially across subphenotypes and represent a
source of residual confounding in mortality and other
outcomes analyses. Secondary analyses of emerging
COVID-19 clinical trials may be particularly useful to
address this limitation. Our study also is limited to
patients admitted to the ICU, themselves a subset of
patients infected with SARS-CoV-2. Finally, our study
lacks data on the association of subphenotypes with
clinically relevant long-term outcomes like functional
status, quality of life, and complications occurring after
discharge.
Interpretation
Overall, our results provide empirical evidence that
COVID-19 critical illness is characterized by distinct
clinical subphenotypes. These findings pave the way for
future studies using molecular data aimed at further
clarifying whether these subphenotypes reflect
differences in underlying pathophysiologic processes. In
addition, differences in therapy responses could be
tested across subphenotypes to target COVID-19
treatments more effectively, both in retrospective
analyses of emerging clinical trials and in stratified
designs for future trials of novel COVID-19 therapies.
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