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Abstract

In order to determine the manner in which
temporal patterns are represented in recurrent
neural networks, networks trained on a vari-
ety of sequence recognition tasks are exam-
ined. Analysis of the state space of unit ac-
tivations allows a direct view of the means em-
ployed by the network to solve a given prob-
lem, and yields insight both into the class of
solutions these networks can produce and how
these will generalize to sequences outside the
training set. This intuitive approach helps in
assessing the potential of recurrent networks
for a variety of modelling problems.

Some Problems of Representation

This paper investigates the way temporal patterns
are represented by recurrent networks. Small se-
quence discrimination tasks were devised with the
specific intention of requiring the network to base
its discrimination on the temporal structure of the
input sequences. The resulting solutions were then
analyzed using elementary tools from dynamic sys-
tems theory. Our primary interest was to establish
the relationship between the temporal characteris-
tics of the training set and the representations de-
veloped by the network.

The relationship between a representation and
its counterpart in the physical world may be com-
pletely arbitrary, as between an instance of the
written or spoken word ‘penguin’ and any particu-
lar bird of that sort, or there may be a more direct
relationship, e.g as between a tonotopic map and
the frequencies it represents. Many of the issues
involved in distinctions among representational sys-
tems have been discussed by van Gelder and Port
(1993, van Gelder, 1992). If the relationship be-
tween a symbolic representation and its semantic
properties is completely arbitrary, questions about
the difficulty of symbol grounding arise.
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Questions of symbol grounding and semantic ar-
bitrariness are not often addressed in developing
computational systems with representational prop-
erties. It has been more usual to determine by fiat
the nature of the representational primitives and
to attempt to create meaningful relations between
these units. An alternative is to induce the repre-
sentational system from the properties of the input
to the system. This is now quite common in the
connectionist world, where one determines an ar-
chitecture, a training algorithm, an input set, and
possibly an output set and the network is then left
to devise a suitable representation. In this manner,
one is assured that whatever the final representa-
tion, its relationship to the properties of the input
which are relevant to the task at hand will be non-
arbitrary.

Distributed representations, as found in connec-
tionist networks, possess many well known desir-
able properties (Hinton et al., 1986). One signifi-
cant drawback, however, is that these representa-
tions are hard to interpret. A network may have
solved a task, and we can test the solution and its
generality, but we may still have only a vague no-
tion of how this has been achieved. In some cases,
analytical mathematical techniques are available.
For example, we can determine how a perceptron
has partitioned the input space, and we can pre-
dict that where no such linear decomposition of the
task exists, the network will never be able to solve
it (Minsky & Papert, 1969). Another way to peek
into the dark world of distributed representations
is the use of cluster analysis to examine the sim-
ilarities between the representations developed for
vectors in the training set (Elman, 1990).

This paper will present an alternative technique
for studying representation — a technique that is
particularly useful for examining the nature of so-
lutions arrived at by a recurrent network in a series
of simple sequence discrimination problems. Re-
current networks preserve some history of previous
states through their recurrent links, and, accord-
ingly, they have been widely used in the processing
of temporal patterns. Since we are then dealing
with the temporal evolution of a system, it is nat-
ural to consider the network as an instance of a
dynamic system, so that the tools of Dynamic Sys-
tems Theory may be employed.
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Figure 1: Network architecture. The input layer
consists of a small number of linear nodes. These
are fully connected to the sigmoid nodes at the re-
current layer, where all nodes are interconnected,
including self-recurrent connections. Training val-
ues are provided for only one of the recurrent nodes
— on (activation = 1) signifies recognition of a tar-
get pattern, otherwise the node remains off (acti-
vation = 0).

Connectionist Networks as Dynamic
Systems

The simplest way to regard a network as a dy-
namic system is to regard the training variables
(weights, biases) as ﬁ.xe%l constants, and to consider
only the variation in unit activations over time for
the trained network. In fact, as the training sets
used herein contained a small set of possible input
vectors, we may look at the system behavior under
constant vector input, determine all attractors and
basins of attraction for this input, and repeat for
all possible inputs. For most (but not all) cases,
the phase portrait for each input vector will then
simply be a single point attractor and its associated
basin of attraction! In this simplest case, the net-
work is functioning as a content addressable mem-
ory (Kohonen, 1987).

With more than three nodes in the recurrent
layer, the state space of the network is of too high a
dimension to be directly represented. Trajectories
and attractors may however be plotted in a lower
dimensional space using the technique of Princi-
pal Component Analysis, which identifies a smaller
number of orthogonal axes in state space, along
which variance is maximized. All phase portraits
presented in this paper are schematic views of the
first two principal components. We found analysis
of these two alone to be sufficient to understand the
nature of the solutions obtained by the networks.

General procedure

For the following simulations, the network archi-
tecture of Figure 1 was used. The simple linear
input nodes pass each component of an input vec-
tor to all the nodes at the recurrent layer. The
state space of the network can be regarded as an n-
dimensional space with one axis for each recurrent

!An excellent and intuitive introduction to those
concepts from dynamic systems theory used here is
Abraham & Shaw (1983).
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Input Symbolic Teacher
vectors | representation | wvalues
000 0 0
000 0 0
100 A 0
100 A 0
010 B 0
010 B 0
001 C 1
001 C 1
Table 1: Coding of the exemplary sequence

00AABBCC. The single output node is trained
to remain off until the final sequence element ap-
pears.

node. In the simulations reported here we used 7
recurrent nodes. There were typically 2 or 3 in-
put nodes. Input vectors were simple 2- or 3- com-
ponent mutually orthogonal vectors. All tasks in-
volved a training set divided into target and dis-
tractor sequences. A sequence consisted of a num-
ber of elements (A, B, C or 0), each of which could
be presented for one or more time steps. A typical
sequence is shown in Table 1.

The Real-Time Recurrent Learning algorithm,
using the method of teacher forcing, from Williams
and Zipser (1989) was used to train the network.
Prescribed values were only given for one of the re-
current nodes. This node was trained to stay off
(activation = 0) until the final element of a se-
quence was presented and then to come on (acti-
vation = 1) if the sequence was a target sequence,
and otherwise to remain off.

Simple Sequence Identification

From previous work (Anderson et al., 1991; Cum-
mins et al., 1993), we knew both that a network of
the above type could solve a simple sequence identi-
fication task, and what the qualitative dynamics of
the resulting system are like. In those simulations,
networks learned to discriminate sequences such as
0ABC from ones such as 0BAC, 0BCA etc. Se-
quences were preceded by one or more sero vectors
in order to restart the network from the same region
of state space each time. If we trained a network
by presenting each element in the sequence for more
than one time step (i.e. presenting 00AABBCC
rather than simply 0ABC), we found that the so-
lution obtained generali to changes in presen-
tation rate almost without limit, and the network
could still successfully discriminate between target
and distractor sequences. Figure 2 illustrates how
this was achieved. The training protocol adopted
means that recognition of a target sequence (output
node Np = 1) corresponds to passage of the system
trajectory through the hyperplane Ny = 1. This
region appears in the principal components projec-
tion as a bounded recognition region. As the se-
quence is presented, the trajectory approaches the
associated attractor for sequence clement in
turn. The attractors have been fixed in a manner
such that only the target sequence will induce a tra-
jectory through this region. Furthermore, we found
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Figure 2: Training set and resultant dynamic sys-
tem for a simple sequence identification task. Only
the target trajectory passes through the recognition
region (the hyperplane Np = 1).

that varying the rate of presentation of the sequence
(presenting each sequence element for a greater or
lesser number of time frames) did not qualitatively
alter the trajectories, with the result that the net-
work still correctly discriminated between targets
and distractors.

Although the rate-oblivious character of the net-
work mlgit be useful for some applications (Port,
1990), it is not yet a particularly good model of
human temporal pattern processing. Humans ex-
hibit some, but not unbounded, tolerance to rate
variation and are very sensitive to rhythmic quali-
ties, such as durational ratios, in temporal patterns
(Sorkin et al., 1982; Sorkin, 1987). In order to as-
sess the suitability of recurrent networks as models
of human temporal pattern processing, the present
study investigates what sort of temporal and rhyth-
mic differentiation the network is capable of. In all
the following simulations, both target and distrac-
tor sequences are variants of 0AB or 0ABC that
differ only in the temporal structure of their indi-
vidual components.

Dual Attractors

The first example presents us with a cautionary
note. The network does not always arrive at a so-
lution which accords with the investigator’s under-
standing of the problem. One might hope to learn
from the training set shown in Figure 3 whether the
network can learn to tell sequences in which each el-
ement is presented for the same length of time from
those with varying element duration. However, an
alternative solution is to do a simple parity check
on the sequence preceding the final element (C),

without differentiating between A, B or 0 (zero).
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Training set

Targets Distractors
00ABC 00ABBC
00AABBCC 00AABC
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Figure 3: Training set and induced dynamics for a
system which develops dual attractors for a single
input vector to implement a parity checker. i
first zero vector input brings the system to the
group of attractors on the right hand side.

Target patterns have an even number of timesteps
prior to the final element, distractors have an odd
number. The network arrived at a rather bisarre
solution which in fact implements a parity checker.
Each input vector has an attractor consisting of
a pair of points between which the system oscil-
lates with constant input. The attractors for A, B
and O are grouped closely together. On the first
timestep, the system moves to the group (A,B,Og
on the right hand side. It then jumps b

forth, irrespective of whether A, B, or 0 is pre-
gented. The route of approach followed on presen-
tation of C differs according to whether the system
is in a state near the right or left group of attractors.
If a sequence of even length was presented, the se-
quence is a target and the system is in a state near
the left hand group. The approach to C is then
directly towards the left hand C attractor, which
lies in the recognition region for this system. If
the sequence was a distractor and the trajectory
is therefore coming from the right hand bunch of
attractors, the approach to the C attractor is in-
direct, leading through the left attractor group. In
this case, a single C input vector is not sufficient
to bring the network into a state close to the recog-
nition region. In this rather odd way, the network
has solved the problem set. Note that it used parity
checking rather than counting to do so.

Inducing a Periodic Attractor

Can a recurrent network of this kind count? The
training set of Figure 4 was devised so as to pre-
clude a rate-oblivious type of solution and to re-
quire the network to count the number of As pre-



Tr&ining set;

Targets Distractors
00AAB 00AB
00AAAB 00AAAAB

Figure 4: Training set and resultant dynamic sys-
tem used to induce a periodic attractor.

ceding the first B. Patterns with 2 or 3 As are tar-
gets, while those with 1 or 4 are distractors. The
dynamic system arrived at by training has a peri-
odic attractor for A, and two point attractors for B,
such that the separatrix for the basins of attraction
for the two B attractors divides the periodic attrac-
tor into approximately two halves. In this manner,
after presentation of one or four As, the system is
in the basin of attraction of one B attractor, and
either two or three As leaves it in the other. From
this solution, we can immediately see how this sys-
tem will react to longer sequences of A followed by
B. Patterns with 2 or 3 As go to By, with 4 or 5 to
By, 6 or 7 to By, etc. The network has learned to
impose a rhythmic pulse of two beats on a steady
state input (AAAA...) and to categorize strings
of As according to whether they end on an even or
odd number of pulses.

Because of the discrete nature of the simulations
where AT = 1, the trajectories are not continuous,
but instead they step around the periodic attractor
as illustrated. In fact, running the network with a
smaller AT shows that the A attractor in the con-
tinuous case is in fact a point located at the center
of the periodic attractor of the discrete simulation,
and the solution no longer works. The solution is
thus critically dependent on the discrete mode of
processing.

A More Complex Periodic Solution

Given the behavior observed in the previous net-
work, we sought to induce more complex dynamics
in the same vein. Figure 5 shows a training set
which cannot be solved by a simple pulse recog-
nizer as above. Targets have 1, 3 or 6 As, while
distractors have 2, 4 or 5. Nonetheless, the solu-
tion obtained is qualitatively similar to the previous
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Figure 5: Training set and resultant dynamic sys
tem used to induce a complex periodic attractor.

one. Again, the element to be ‘counted’ develops &
periodic attractor, while the final element developt
two point attractors, one associated with targets
and one with distractors, with a separatrix divid-
ing the periodic attractor depending on phase an-
gle. This time however the cycle is traversed along
the path of the five-pointed star, as illustrated. Ii
the previous solution imposed a 2-beat pulse on a
constant input and distinguished between even and
odd pulses, this network imposes a 5/4 rhythm on
continuous input and discriminates between beats
1 and 3 on the one hand, and beats 2, 4 and 5 on
the other.

The training set used to induce this system is
very small, and if the periodic nature of the so-
lution is to successfully generalize to significantly
longer sequences of A, the sixth step around the
periodic attractor must coincide exactly with that
of the first. In fact, in testing this with contin-
uous input of A we obtained the phase shifting
trajectory shown in Figure 6 A, which will even-
tually generalise ‘incorrectly’ for longer patterns.
We then subjected the network to further training
with isolated vectors having a much larger number
of As, giving as teacher values the categorisation
which would result if the sixth step coincided ex-
actly with the first. After very little training, the
trajectory shown in Figure 6 B was obtained. In
effect, we had succeeded in fine tuning the phase
of the 5/4 attractor so that the network recognised
sequences based on their number of As modulo 5.

Discussion

One objection to connectionist style modelling is
the black box nature of the representational sys-
tems which result. The above analysis of several
trained networks has shown one manner with which



Figure 6: Fine Tuning of a Periodic Attractor. A:
Trajectory on continuous presentation of A before
tuning. B: Trajectory after tuning

to gain insight into how a network has solved a
problem, and which ‘tools’ can be employed by the
network in attempting to satisfy the constraints im-
posed by a training set of sequential patterns. The
networks studied shared a common architecture,
training algorithm and training regime, so that in-
ferences drawn about their capacities and procliv-
ities cannot, without further investigation, be ex-
tended to other cases. From the above results, we
saw that the network solves this kind of sequence
identification task by the location of point and pe-
riodic attractors and the shaping of their respective
basins of attraction.

From what we observed, there does not seem to
be any straightforward way for these networks to
count. They can however learn to perform mod-
ulo arithmetic, based on many kinds of underlying
rhythmic structure in the training set. The sorts
of systems we observed give indications as to where
these networks might be usefully employed in cogni-
tive modelling: sequence discrimination, where in-
sensitivity to rate of presentation is a desired prop-
erty, can be easily accomplished. An unexpected
finding is that the networks have the ability to un-
earth periodic regularities in their input set and to
interpret steady state input in terms of the learned
periodicity. This suggests possible application in
models of rhythm perception and, perhaps, pro-
duction. The phase tuning carried out in the final
example illustrates how knowledge of the desired
dynamics can be applied in the exact determina-
tion of the resulting dynamic system.

Any network which solves a temporal pattern
recognition problem can be usefully regarded as a
dynamic system. In some cases, knowledge of the
dynamics of the desired final system may be avail-
able, and recent techniques developed by Cohen
(Cohen, 1992) provide analytical methods for the
construction of a set of dynamic equations which
allow the location of both point and periodic at-
tractors with precision. In our approach, however,
the desired dynamics is not derived analytically,
but is induced by the temporal properties of the
training set. This seems desirable from a cogni-
tive modelling point of view, if we regard neural
systems as complex dynamic systems which have
evolved by induction from the information in and
constraints of the environment. Knowledge of how
the temporal properties of the environmental stim-
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ulus are related to the resulting dynamic system
appears necessary in order to construct actual mod-
els of temporal processors e.g. for music or speech
recognition. By inducing a representational system
directly from the properties of the environmental
stimulus, we are assured of a non-arbitrary rela-
tionship between that representational system and
the physical world.

Analysing cognitive models as dynamic systems
requires us to adopt a new vocab . One prob-
lem which remains is to decide how the notion of
representation may be used in talking about dy-
namic systems (van Gelder, 1992). In the above
analyses, it is easy to believe that one is looking
at the representations these systems have devel-
oped, but it is hard to put one’s finger on some one
thing which might qualify as a representation. Van
Gelder and Port (1993) have suggested that the dis-
crete trajectory segments might qualify as the ‘sym-
boloids’ from which compositional representations
might be developed. However, as argued by Free-
man (Freeman & Skarda, 1990), it may be that the
standard vocabulary of representational systems in
unsuited to the interpretation of cognition as dy-
namic process rather than symbolic content.
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