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RESEARCH Open Access

Assessment of myocardial injury after
reperfused infarction by T1ρ cardiovascular
magnetic resonance
Rutger H. Stoffers1,2†, Marie Madden1†, Mohammed Shahid1, Francisco Contijoch2, Joseph Solomon1,
James J. Pilla1, Joseph H. Gorman2, Robert C. Gorman III2 and Walter R.T. Witschey1*

Abstract

Background: The evolution of T1ρ and of other endogenous contrast methods (T2, T1) in the first month after
reperfused myocardial infarction (MI) is uncertain. We conducted a study of reperfused MI in pigs to serially monitor
T1ρ, T2 and T1 relaxation, scar size and transmurality at 1 and 4 weeks post-MI.

Methods: Ten Yorkshire swine underwent 90 min of occlusion of the circumflex artery and reperfusion. T1ρ, T2 and
native T1 maps and late gadolinium enhanced (LGE) cardiovascular magnetic resonance (CMR) data were collected
at 1 week (n = 10) and 4 weeks (n = 5). Semi-automatic FWHM (full width half maximum) thresholding was used to
assess scar size and transmurality and compared to histology. Relaxation times and contrast-to-noise ratio were
compared in healthy and remote myocardium at 1 and 4 weeks. Linear regression and Bland-Altman was
performed to compare infarct size and transmurality.

Results: Relaxation time differences between infarcted and remote myocardial tissue were ΔT1 (infarct-remote) =
421.3 ± 108.8 (1 week) and 480.0 ± 33.2 ms (4 week), ΔT1ρ = 68.1 ± 11.6 and 74.3 ± 14.2, and ΔT2 = 51.0 ± 10.1 and
59.2 ± 11.4 ms. Contrast-to-noise ratio was CNRT1 = 7.0 ± 3.5 (1 week) and 6.9 ± 2.4 (4 week), CNRT1ρ = 12.0 ± 6.2 and
12.3 ± 3.2, and CNRT2 = 8.0 ± 3.6 and 10.3 ± 5.8. Infarct size was not significantly different for T1ρ, T1 and T2
compared to LGE (p = 0.14) and significantly decreased from 1 to 4 weeks (p < 0.01). Individual infarct size changes
were ΔT1ρ = −3.8%, ΔT1 = −3.5% and ΔLGE = −2.8% from 1 – 4 weeks, but there was no observed change in infarct
size for T2 or histologically.

Conclusions: T1ρ was highly correlated with alterations left ventricle (LV) pathology at 1 and 4 weeks post-MI and
therefore it may be a useful method endogenous contrast imaging of infarction.

Background
Ischemic heart disease is an enormous health and eco-
nomic burden and the most common cause of death
throughout the world [1]. A devastating manifestation
is acute myocardial infarction (MI) which results in
myocardial loss and precipitates a cascade of events in-
cluding myocardial scarring, adverse left ventricular
(LV) remodeling, heart failure and death. While late
gadolinium enhanced (LGE) cardiovascular magnetic
resonance (CMR) can detect myocardial fibrosis, there

is significant interest in non-gadolinium contrast or en-
dogenous contrast methods to spatially map infarcted
tissue, detect recent ischemic injury and edema, or as-
sess injury in patients with insufficient renal function
who cannot receive contrast agents [2–5].
T1ρ (“T-one-rho”) CMR has recently emerged as an

endogenous contrast method for quantitative imaging of
myocardial injury [6–13]. T1ρ is called the longitudinal
relaxation time in the rotating frame and it uses con-
tinuous low amplitude radiofrequency pulses to suppress
low frequency background contributions to relaxation
that obscure image contrast between infarct and normal
myocardial tissue. Unlike conventional relaxation times
(T1 and T2), the nuclear magnetization is locked along
the radiofrequency field and does not undergo normal
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T2 or T1 relaxation. In comparison to T2, T1ρ was re-
ported in ex vivo studies to have superior dynamic range
between infarcted and remote myocardium, permitting
better detectability of fibrosis. However, there is limited
information about the evolution of T1ρ after reperfused
MI and comparison with other endogenous contrast
methods T1 and T2 and LGE.
We conducted a serial study of reperfused infarction

in pigs to monitor T1ρ at 1 and 4 weeks post-MI. The
objectives were to compare T1ρ relaxation time
changes in ischemic tissue with native T1, T2 and LGE
and associate each with infarct size and transmurality.
Finally, imaging results were correlated with fibrosis
using histological data.

Methods
Animal care
Yorkshire swine (n = 10) were procured for this study.
During all procedures, sedation was induced with intra-
muscular ketamine, endotracheal intubation was per-
formed, and the animal was maintained with a mixture
of isoflurane 1-2% and oxygen with a ventilator tidal
volume of 20 mL/kg (Drager anesthesia monitor, North
American, Dragor, Telford, PA). Anesthesia and animal
temperature was closely monitored for the duration of
surgical and imaging procedures to maintain a constant
physiologic state. Arterial access was obtained at the
carotid artery for measurement of intraventricular pres-
sure (Millar Instruments, Houston TX). Venous access
was obtained at the internal jugular veins for adminis-
tration of medication. After each procedure, the animal
was weaned from anesthesia and transported to the re-
covery room. Upon completion of the terminal CMR
study, the animal was returned to the operating room
for euthanasia and tissue harvest.

Experimental protocol
Ten pigs underwent 90 min of coronary artery occlusion
and were randomized into two groups: group I, a 1-week
post-MI terminal study (n = 5) and II, a 4-week terminal
study (n = 5). Furthermore, five animals (group II; n = 5)
underwent a baseline CMR immediately prior to coronary
artery occlusion. The experimental model was chosen to

emulate human post-percutaneous coronary intervention
ischemia injury. All the animals of the 4 week group
underwent both 1 and 4 week CMR. Figure 1 depicts an
overview of the experimental protocol.
A prophylactic antiarrhythmic regimen of 150 mg ami-

odarone, 1 mg/kg lidocaine and 1 g magnesium sulfate
was administered intravenously. A left thoracotomy was
performed and the pericardium was opened. One or
more coronary snares were positioned at the branches of
the circumflex artery to induce an infarction of approxi-
mately 20% LV size. The dimensions of the infarction
were determined by visible color changes at the epicar-
dium. The exact position of the ligation sutures were
decided upon after gross inspection of arterial anatomy,
unique to the animal. Ischemia was confirmed by visible
color changes in the ischemic region and ST segment el-
evations on ECG. After 90 min of ischemia, the coronary
snare was removed, an inter-costal nerve block was per-
formed with bupivacaine at the surgical site, and the
chest was closed in muscle layers.

Cardiovascular magnetic resonance protocol
CMR studies were performed on a 1.5 T whole-body sys-
tem (Avanto; Siemens Healthcare, Erlangen, Germany)
with 40 mT/m gradient and 12 channel RF receiver arrays.
Intraventricular pressure was interfaced to physiological
monitoring software and filtered to facilitate dual respira-
tory and cardiac gating (LabView, National Instruments,
Inc., Austin Texas). All 2D images were acquired in the
short-axis during breath-holding and 3D with dual cardiac
and respiratory gating. Breath-holding was performed by
temporarily disabling the animal ventilator.
2D T1ρ single-shot balanced steady-state free precession

(bSSFP) sequences were performed using a spin echo, spin
lock (SL) T1ρ pulse cluster (90x – SLy - 180y – SL-y - 90-x)
[8, 14, 15]. T1ρ images were acquired with different TSL
times using the following parameters: TSL = 2, 10, 18,
26, 34, 42, 50 ms, B1 = 500 Hz, spatial resolution =
1.4 × 1.4 mm2, slice thickness = 6 mm, flip angle = 70°,
TE = 1.45 ms, TR = 2.9 ms, NSeg = 55, bandwidth =
900 Hz/pixel, linear k-space phase encoding ordering,
parallel imaging with acceleration factor = 2, 34 refer-
ence k-space lines obtained in a separate heartbeat, and

Fig. 1 Experimental design. N = 10 animals underwent ischemia reperfusion and all animals had a 1 week CMR. Histology was performed in five
animals immediately after 1 week CMR and 4 week CMR was performed in the other five animals
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four heartbeats for T1 relaxation between shots. The
T1ρ amplitude was set at the highest available within
scanner specific absorption rate limits (B1 = 500 Hz).
2D T2 maps were obtained using a single-shot T2 pre-

pared (90x – 180y – 90-x) bSSFP sequence and 8 images
were acquired with different contrast times TE = 2, 10,
18, 26, 34, 42, 50 ms using the same readout as with the
T1ρ images.
2D T1 maps were obtained with a modified Look-

Locker sequence, utilizing a single-shot acquisition with
eight inversion times (two inversion pulses: five images
obtained after inversion 1, 10 T1 recovery beats, and
three images obtained after inversion two) [16]. Other
parameters were: spatial resolution = 1.4 × 1.4 mm2, slice
thickness = 6 mm, flip angle = 35°, TE = 1.2, TR = 2.4 ms,
NSeg = 57, bandwidth = 1080 Hz/pixel, linear k-space en-
coding, parallel imaging acceleration factor = 2, 34 refer-
ence k-space lines obtained in a separate heartbeat.
Retrospective, short axis, multi-slice cine CMR was

performed with a temporal resolution = 40 ms, flip angle
= 70°, bandwidth = 940 Hz/pixel, spatial resolution = 1.1 ×
1.1 mm2, slice thickness = 6 mm.
The animals received a 0.1 mmol/kg intravenous injec-

tion of gadolinium contrast for LGE imaging (MultiHance;
Bracco Diagnostics, Inc; Princeton, NJ). Imaging was per-
formed 10 minutes after injection of contrast agent using
an inversion time (TI) scout sequence to determine the in-
version time to null myocardial tissue signal. LGE CMR
was obtained using a 3D multishot phase-sensitive inver-
sion recovery (PSIR) bSSFP sequence at spatial resolution
= 1.2 × 1.2 mm2, flip angle = 50°, TE = 1.6 ms, TR = 3.2 ms.
slice thickness = 2 mm, and parallel imaging acceleration
factor = 2 [17].

Histology
After ex vivo CMR, the heart was flash-frozen using
liquid nitrogen in a 4.5 L cryogenic container (Fisher
Scientific, Waltham, MA). The heart was sectioned into
uniformly thick short axis slices using a commercial-
grade prosciutto slicer (330 M; Berkel) obtaining slices
of uniform thickness of approximately 2 mm to be
matched to CMR studies. Slices were submerged in a
PBS solution with 0.1 M triphenyl tetrazolium chloride
(TTC) and incubated at 50 ° C for 15 min [18]. Slices
were removed from TTC solution and mounted on
glass slides with aqueous mounting media (Aquatex;
EMD Millipore). TTC stained viable tissue deep red,
distinguishing scar tissue and viable myocardium. Slides
were imaged at 800 dpi resolution using an optical
scanner (Perfection V700; Epson). Tissue sections from
remote and infarct regions were selected for further
histological analysis and fixed in 10% neutral buffered
formalin. Tissue samples were stained with Masson’s
trichrome. Collagen was stained blue whereas keratin,

muscle fibers, and cytoplasm were stained red and
nuclei dark red.

Image analysis
Cine CMR image series were used to calculate indexed
LV mass (Mass), wall thickness (WT), end-diastolic
volume (EDV), end-systolic volume (ESV), ejection
fraction (EF) and cardiac output (CO). Epi- and endo-
cardial contours were drawn manually at ED and ES
(excluding papillary muscles) using standard techniques
(Qmass 7.5, Medis, Leiden, The Netherlands) [19, 20].
For all images, scar size was assessed using full width at

half maximum (FWHM) thresholding in a mid-LV slice
with visible enhancement on LGE (QMass) [20]. FWHM
thresholds were determined by drawing two regions-of-
interest (ROIs): one in an area of non-enhancement and
normal wall motion and a second around the hyperintense
myocardium and used to define the maximum signal for
FWHM threshold. ROIs were not adjusted to include
hypointense regions of hemorrhage. Residual blood pool
or pericardial regions of high brightness were manually re-
moved from the ROI. Scar size was reported as the ratio
(%) of the infarct ROI volumes and remote myocardium
volume.
Scar transmurality was computed as the ratio of hyper-

intense (infarct) to non-enhanced myocardium (%) in a
mid-ventricular short axis slice. The myocardium was
divided into six circumferential wedges and transmural-
ity was reported for anterolateral and posterolateral
segments in which infarction was observed (two of six
segments). Scar transmurality <5% in a segment was
excluded as noise.
Motion correction was used to align T1ρ and T2

images using optical flow estimation of the image
deformations [8]. T1 and T2 mapping was performed
using a 3-parameter model

S ¼ Ae
−TSL
T1ρ þ B;

where A and B are additional free parameters, and TSL
the contrast evolution time (spin lock time) (MatLab,
Natick, MA). Infarct T1ρ, T2 and native T1 (T1 in the
absence of gadolinium contrast agent) were calculated
from the thesholded region-of-interest (ROI) and remote
or baseline myocardium from a normal region (QMass).
Contrast-to-noise ratio (CNR) was calculated for T1ρ,

T2 and native T1:

CNR ¼ ΔTX
σ TXremð Þ ;

where ΔTX=TXinf–TXrem and TXinf (TXrem) was the
mean relaxation time in the infarcted (remote) tissue
and σ(TXrem) was the standard deviation of the relax-
ation times observed in remote myocardium [21].
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Statistics
Descriptive statistics were reported as mean ± standard
deviation (SD). Comparison of statistical means was per-
formed using 2-way analysis of variance. Correlations
were assessed with Pearson’s r. Bland-Altman testing was
performed to test for mean bias and variation between im-
aging methods [22]. Pairwise infarct size changes of CMR
measurements were assessed with 1-way analysis of vari-
ance. Histological infarct size changes were assessed with
Student’s t-test.

Results
Changes in hemodynamics and wall thickness
All pigs (s = 10) survived the 90 min ischemia and reperfu-
sion study to their terminal CMR at 1 or 4 weeks. At
4 weeks post-MI, there was a 13.4 ± 5.4% reduction in EF
compared to baseline and associated with a 22.7 ± 8.0 mL
increase in ESV and a 24.2 ± 14.1 mL increase in EDV.
End diastolic wall thickness decreased by 4.0% after
4 weeks (p < 0.05) and ΔWT and ΔLVEDV between
baseline and 4 weeks were correlated (r = 0.90, p < 0.05).
Additional details are reported in Table 1.

T1ρ, T2 and T1 mapping
Hyperintense regions were observed at the lateral wall
on all T1ρ, T2, and T1 maps and in LGE images at 1
and 4 weeks, consistent with ischemic injury to the cir-
cumflex coronary circulation (Fig. 2; full LV coverage
shown in Additional file 1: Figure S1).
As illustrated in Fig. 3, infarct T1ρ and T2 relaxation

times were significantly increased at 1 and 4 weeks in in-
farcted myocardium in comparison to healthy myocar-
dium prior to infarction with T1ρ = 50.9 ± 5.5 (baseline),
125.2 ± 12.1 (1 week) and 124.3 ± 15.6 ms (4 week) and
T2 = 40.5 ± 7.3 (baseline), 92.1 ± 1.4 (1 week) and 99.6
± 12.6 ms (4 week). T1 data was not acquired at base-
line. T1ρ, T2, or T1 times were not significantly differ-
ent from 1 to 4 weeks in the infarcted regions. In
addition, there was no difference between remote myo-
cardium at 1 or 4 weeks and healthy myocardium at
baseline. ΔT1 (infarct-remote) = 421.3 ± 108.8 (1 week)

and 480.0 ± 33.2 ms (4 week), ΔT1ρ = 68.1 ± 11.6 and
74.3 ± 14.2 ms, and ΔT2 = 51.0 ± 10.1 and 59.2 ±
11.4 ms. CNRT1ρ = 12.0 ± 6.2 (1 week) and 12.3 ± 3.2
(4 week), CNRT2 = 8.0 ± 3.6 and 10.3 ± 5.8 and CNRT1 =
7.0 ± 3.5 and 6.9 ± 2.4.

Infarct size
Infarct size was not significantly different for T1ρ, T1
and T2 compared to LGE (ss = 0.14) and, among animals
who underwent both 1 and 4 week CMR, significantly
decreased from 1 to 4 weeks (s < 0.01). Individual infarct
size changes were ΔT1ρ = −3.8%, ΔT1 = −3.5% and
ΔLGE = −2.8% from 1 to 4 weeks (Table 2). No change
in infarct size was observed for T2.
There was excellent correlation of infarct size between

T1ρ and LGE (r = 0.98, p < 0.001), good correlation for
T1 and LGE (r = 0.79, p < 0.01) and poor correlation for
T2 and LGE (r = 0.26, p = 0.44) (Fig. 4). Infarct size mean
bias between T1ρ and LGE = 0.3, T2 and LGE = −0.4 and
T1 and LGE = 2.3.
Infarct size at histology was 8.9 ± 2.3% at 1 week and

10.1 ± 4.1% at 4 weeks. There was no significant differ-
ence in infarct size at 1 or 4 weeks or as compared to
any CMR measurement (p < 0.41; Fig. 5).

Infarct transmurality
Infarct transmurality was not significantly different for
T1ρ, T1 and T2 compared to LGE (s = 0.7) and was un-
changed from 1 to 4 weeks (p = 0.15).
There was good correlation of infarct transmurality

between T1ρ and LGE (r = 0.94; p < 0.001), T1 and LGE
(r = 0.86; p < 0.001) and moderate correspondence be-
tween T2 and LGE (r = 0.86; p = 0.02) (Fig. 6).

Discussion
This study investigated for the first time endogenous
contrast T1ρ, T1 and T2 mapping at 1 and 4 weeks after
ischemia and reperfusion and their relationship with in-
farct size as determined by LGE and histology. The main
findings were that (1) T1ρ values had higher relaxation
time-dependent change than T2 and contrast-to-noise
ratio compared to T1 and T2 in the infarcted myocar-
dium; (2) there was a decrease in infarct size from 1 to
4 weeks on T1ρ, T1 and LGE CMR; and (3) T1ρ infarct
size was better correlated with LGE than T1 or T2 and
that T2 in particular was poorly correlated. Improved in-
farct contrast-to-noise ratio on T1ρ may explain the bet-
ter correlation with LGE and histological infarct size and
transmurality than T1 and T2.

Endogenous contrast in infarcted myocardium
T1ρ is increased in acute and chronic myocardial infarc-
tion [6, 7, 11, 13], but little is known about the evolution
of T1ρ post-infarction and its relationship with scar size.

Table 1 Hemodynamics at baseline and post-infarction, mean
± standard deviation

Baseline (n = 5) 1 Week (n = 10) 4 Week (s = 5)

LVEDV, mL 70.3 ± 8.7 85.2 ± 13.7 94.5 ± 11.9*

LVESV, mL 29.5 ± 6.8 45.5 ± 12.9 52.2 ± 10.3**

LVEF, % 58.4 ± 5.7 48.5 ± 6.8 45.0 ± 5.9*

CO, mL/min 4.4 ± 0.6 4.1 ± 0.6 4.1 ± 0.6

LV mass, g 57.7 ± 8.1 66.6 ± 8.6 65.1 ± 9.9

WTa, mm 5.0 ± 0.4 5.1 ± 0.6 4.8 ± 0.5*
aWT reported for mid-LV slice with visible scar on LGE
*p < 0.05; **p < 0.01 (paired t-test, 4 week different from 1 week)
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T1ρ progressively increased in non-reperfused MI in
mice at 1, 3 and 7 days post-infarction, but remained
constant from 7 – 20 days [13]. We did not examine the
earliest times post-infarction (<24 h), however, we found
significant T1ρ, T2 and native T1 changes at 1 week post-
MI and confirmed histologically that these changes corre-
sponded to early scar formation and extensive collagen
deposition. This suggests that endogenous contrast
changes at 1 week may be in part associated with forma-
tion of collagen, increased water mobility in collagen, and
not necessarily increased myocardial water content in
edema.
Furthermore, while T2 and native T1 are believed to

be biomarkers for myocardial edema in the area-at-risk
after acute MI [2, 23], recent studies have more closely
examined this paradigm, suggesting that (at least) T2
has complex temporal behavior early post-infarction.

Fernandez-Jimenez, et al. and Carrick, et al. reported
two waves of edema with histological quantification of
myocardial water content and associated it with bimodal
T2 evolution at <24 h and at 1 week in pigs [24, 25]. Kim,
et al. also reported in canines that T2 was not sensitive to
the area-at-risk at 3–5 days week post-infaction [26].
While we did not directly measure area-at-risk using an
approach such as injected microspheres, there was no evi-
dence that any endogenous contrast was associated with
at-risk myocardium at 1 week (was not larger than LGE
infarct size). Furthermore, 90 min of ischemia-reperfusion
in this animal model would generate significant myocar-
dial salvage (between 5–15% salvage) [27], which was not
observed by inspection of differences between endogenous
contrast and LGE infarct size.
T2 had reduced correlation with LGE as compared to

T1ρ and T1, which may be partly explained by differences

Fig. 2 T1R, T2, T1 and LGE at 1 and 4 weeks in the same animal. The arrows in the LGE images indicate the hyperintense infarct region. Full LV
coverage is shown in Additional file 1: Figure S1

Fig. 3 Relaxation times and contrast-to-noise ratio at 1 and 4 weeks after ischemia and reperfusion. a Relaxation times for T1ρ and T2 in
healthy remote myocardium and infarcted myocardium and b Native T1 relaxation times in healthy remote myocardium and infarcted
myocardium. c contrast-to-noise ratio of T1ρ, T2 and T1. * indicates p < 0.05 and ** indicates s < 0.01
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Table 2 Infarct size and transmurality, mean ± standard deviation

T1ρ LGE T2 T1 Ex vivo

1 Week

Infarct Size, % 12.4 ± 2.7 11.8 ± 2.6 9.9 ± 2.8 14.0 ± 5.3 8.8 ± 2.3

Transmurality, % 50.3 ± 16.8 42.6 ± 19.9 31.1 ± 15.2 48.6 ± 26.6 N/A

4 Week

Infarct Size, % 8.6 ± 2.3* 9.0 ± 2.9* 9.8 ± 2.5 10.5 ± 2.3* 10.1 ± 4.0

Transmuralitya, % 32.8 ± 18.8 45.5 ± 17,8 47.8 ± 15.5 33.1 ± 22.6 N/A
aTransmurality reported for infero- and anterolateral myocardial segments (two segments of six total) for segments with transmurality > 5%
*p < 0.05 (paired t-test, 4 week different from 1 week). Transmurality not reported ex vivo.

Fig. 4 Infarct size correlation and Bland-Altman graphs for T1ρ, T2 and T1 in comparison to LGE. There was excellent correlation between T1ρ
and LGE scar size, good correlation between T1 and LGE, and poor correlation between T2 and LGE.
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in the way post-infarction hemorrhage affects endogenous
contrast. Degradation of hemoglobin byproducts in the
hemorrhage in T2 and T2* CMR studies in patients and
animals contribute to increased magnetic susceptibility-
induced dephasing on CMR [21, 28]. Accurate infarct size
measurement should manually correct for hemorrhage,
which is not labeled properly by semi-automatic thresh-
olding. In the case of T1ρ CMR, the spin locking pulse
may mitigate the effects of magnetic susceptibility-
induced dephasing of the transverse CMR signal. Thus
T1ρ may more accurately reflect total infarct size on
semi-automated thresholding. Manual correction may
introduce bias and inadvertently label remote or sal-
vaged myocardium, so we did not manually correct
semi-automated thresholding.
Another reason for the poor T2 agreement with LGE

is that different methods of preparation may give dif-
ferent T2, e.g. preparations with adiabatic refocusing
pulses instead of a non-selective Hahn spin echo [29].
The frequency and amplitude modulation of the adia-
batic refocusing pulse, refocusing pulse spacing, and
the peak amplitude of the adiabatic pulse may improve
T2 results by partly suppressing hemorrhage-induced
signal dephasing in a similar fashion to T1ρ [30, 31].
In addition, T1ρ is higher than T2 in almost all situa-
tions in which it has been measured in human tissues,
including the myocardium [9, 11, 13]. This is attrib-
uted to the T1ρ dispersion, which is the variation in
T1ρ with the preparatory pulse amplitude B1. As the
amplitude B1 approaches zero, T1ρ approaches T2

(with the additional assumption that there is a refocus-
ing pulse between the SL pulses). In our comparison of
T1ρ, T2 and T1, we used identical readout sequences
to eliminate a major cause of measurement variation.
In addition, we matched the time between adjacent T2
or T1ρ preparations (4 heartbeats) and discarded the
first scan because of variations in T1 recovery between
preparations.

Scar size and scar transmurality
Infarct size is expected to decrease from sub-acute to
chronic post-infarction times [32]. T1ρ, T1 and LGE
showed a decrease in infarct size from 1 –s 4 weeks, but
a similar change was not observed histologically. This is
likely explained by the small number of animals and the
absence of histological data from the same animal at 1
and 4 weeks. The use of serial imaging of the same ani-
mal and measurement of infarct at the same mid-
ventricular position in vivo, likely permitted this detec-
tion by in vivo mapping. Yorkshire swine have well-
characterized coronary artery anatomy of a similar size
and distribution to adult humans. While there is consid-
erable variability in the size, orientation and vascular
bed associated with the branches of the circumflex ar-
tery in pigs, the overall infarction size was prospectively
determined by direct inspection of the circumflex and
branch coronary artery distribution at the time of sur-
gery. Therefore the pig infarction model produced re-
producible infarct size and spatial distribution and
localized to the inferior posterolateral wall.

Fig. 5 In vivo CMR and histology from two pigs at 1 and 4 weeks post-infarction. TTC staining shows an infarct with a hemorrhage core at the
anteroseptal myocardium at 1 week post-MI. In the fibrotic regions, there was intermixed granulation tissue, dense fibrosis and myocardium and
mature scar at 4 weeks. There was no difference in infarct size at 1 or 4 weeks compared to histology. 1. Hemorrhage core and intermixed granulation
tissue; 2. Infarcted myocardium; dense fibrosis; 3. Remote myocardium.
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We found that T1ρ and T1 infarct transmurality was
correlated with LGE CMR at 1 and 4 week post-MI.
However, differences in T1ρ infarct transmurality might
be explained by the varying acquisition times in the car-
diac cycle. Although infarct size is not influenced by car-
diac cycle, scar transmurality (derived from LGE CMR)
has shown to vary between end-diastolic and end-
systolic assessment [33]. LGE MR images were derived
during end-diastole, however T1ρ images were derived
during end-systole, which is a plausible explanation for
the differences in scar transmurality.

Conclusion
T1ρ CMR is increased in myocardial infarction com-
pared to T2 and has improved contrast-to-noise ratio
compared to T1 and T2. Infarct size and transmurality

on T1ρ and native T1 endogenous contrast was corre-
lated with LGE CMR and thus may be useful as en-
dogenous contrast CMR methods in ischemic patients
who cannot receive contrast agents.

Additional file

Additional file 1: Figure S1. Supplementary figure 1. (TIF 2430 kb)
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