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Summary. Polar regions are covered by extensive sea ice 
that is inhabited by a variety of plants and animals. The 
environments where the organisms live vary depending on 
the structure and age of the ice. Many terms have been 
used to describe the habitats and the organisms. We here 
characterize the habitats and communities and suggest 
some standard terms for them. We also suggest routine 
sampling methods and reporting units for measurements 
of biological and chemical variables. 

misinterpreted. In addition, experimental studies often 
report their findings in a variety of units that make it 
difficult to compare studies (Palmisano and Sullivan 
1985a; Hornet  et al. 1988). Our purpose is to characterize 
and define the organisms and their habitats and suggest 
standard terminology for them. We also suggest some 
standard sampling methods and reporting units for ex- 
perimental studies. 

Introduction 

Sea ice is a prominent feature of polar regions where it has 
profound effects on the plants and animals living in and 
near the marine environment. At maximum extent sea ice 
covers some 5% of the Northern Hemisphere and 8% of 
the Southern Hemisphere; it accounts for about 67% of 
the earth's permanent ice cover, but only 0.1% of its 
volume. Sea ice is a thin layer that responds quickly to 
changes in climate or oceanic heat transport (Maykut 
1985). However, sea ice thickness is highly variable due to 
the age of the ice and is on the average older and thicker in 
the Arctic than in the Antarctic (Table 1). 

In addition to polar regions, sea ice is found seasonally 
at lower latitudes, including the Baltic, Black, and Ok- 
hotsk seas, the Gulf of St. Lawrence, fjords on the west 
coast of Sweden and in Norway, and salt lakes in northern 
Japan such as Lake Saroma. In all of these areas, plants 
and animals live in association with sea ice, either in the 
ice itself, or closely connected to it in some way, often 
trophically. 

A number of terms have been used in the literature to 
describe both the organisms and their habitats. Many of 
the terms have been misused, inadequately defined, or 

* Authors are members of SCOR Working Group 86: Ecology of sea 
ice biota 

Correspondence to: R. Horner 

Geographical distribution 

The Arctic Ocean is a deep, permanently ice-covered basin 
surrounded by broad continental shelves and shallow 
marginal seas that are seasonally ice-covered (Fig. 1, 
Table 1). It is breached only through Bering Strait, the 
North Atlantic, and the Canadian Archipelago. Most of 
the water and ice exchange is in the North Atlantic with 
about 10%o of the ice drifting out of the Arctic Basin 
annually, mostly through Fram Strait. Local climate, land 
mass configuration, and current conditions affect the sea- 
sonal ice cover which may extend southward to 44-45~ 
(Japan) or only to ca 80~ (Spitsbergen). Depending on 
the season, 50 to 90% of the ice is multi-year ice and 
greater than 2 m thick. In contrast, Antarctica is a vast, 
frozen continent occupying most of the area south of 70~ 
and surrounded by a seasonally varying ring of ice that 
extends from about 55 to 70~ (Fig. 2, Table 1). More than 
90% of the Antarctic ice is first-year ice less than 2 m thick 
and melts in summer. For additional discussion, see 
Maykut (1985). 

As a result of these geographical variations, ice condi- 
tions in the two polar regions are quite different (Table i). 
This has a number of consequences for the organisms that 
inhabit the ice, such that both the nature of the habitats 
and the organisms that occupy them vary, although there 
may be similarities in form and colony shape, e.g., some 
colonial diatoms. 

At lower latitudes, sea ice is present only for short 
periods of a few weeks to a few months (Grontved 1950; 

556-1 
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Table 1. Comparison of Arctic and Antarctic sea ice properties 
(modified from Spindler 1990) 

Property Arctic Antarctic 

Maximum ice cover 14 X 10 6 k m  z 20 X 10 6 k m  2 

Minimum ice cover 7 x 10 6 k m  2 4 X 10 6 km 2 
Age of ice mainly multi-year mainly one year 
Ice thickness > 2 m < 2 m 
Ice salinity low high 
Ice type mainly columnar mainly frazil 
Space for organisms low high 
Melting process at air-ice interface at water-ice interface 
Platelet ice absent present 
Land fast ice over shallow water mainly over deep water 
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Fig. L Sea ice extent in the Northern Hemisphere with greater than 
1/8 concentration (from Maykut 1985 with permission) 
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Hfillfors and Niemi 1974; Dunbar and Acreman 1980; 
Hoshiai and Fukuchi 1981; Takahashi 1981; Larouche 
and Galbraith 1989; De S6ve and Dunbar 1990). This 
leads to additional habitat variability, and, in some cases, 
different species. 

Ice formation and structure 

The formation of sea ice has been described and figured in 
detail (Maykut 1985; Lange et al. 1989), and is only briefly 
reviewed here. Small ice crystals, ca 3-4 mm in diameter, 
calledfrazil ice, first form on the surface of seawater that is 
cooled below the freezing point. They may also form 
below the sea surface in supercooled water and rise to the 
surface. As freezing continues, the frazil crystals coagulate 
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Fig. 2. Sea ice extent in the Southern Hemisphere with greater than 
1/8 concentration (from Maykut 1985 with permission) 

to form a soupy mixture called grease ice (WMO 1970). 
When no wind or waves are present, the ice crystals 
quickly freeze together to form pancakes and then a solid 
sheet of ice up to 10 cm thick (Maykut 1985). 

Ice growth slows after a solid ice sheet forms or when 
wave action ceases; loose, frazil crystals no longer form, 
but long, columnar crystals grow on the underside of the 
ice producing congelation ice (Lange et al. 1989). In some 
areas frazil ice is found sandwiched between layers of 
congelation ice, probably a consequence of rafting that 
occurs when ice sheets collide and ride up onto other ice 
sheets. This adds to the thickness of the ice. 

As the ice forms, brine is trapped in long, narrow 
channels within the ice lattice. The amount of salt initially 
trapped depends on the growth rate of the ice and the 
seawater salinity (Maykut 1985). While the brine initially 
has the same relative concentration of ions as the seawater 
from which the ice forms, salts precipitate out of solution 
as the temperature decreases. The effects of natural tem- 
perature variations on ice composition and the sea ice 
composition literature have been summarized (Reeburgh 
and Springer-Young 1983). Some biologically active con- 
stituents, such as CaCO3"6H20,  apparently precipitate 
out at temperatures found in sea ice although their chem- 
ical behavior is not completely understood (W.S. 
Reeburgh, personal communication 1990). Further, 
Meese (1990) has shown that the chemistry of major ions 
in sea ice is associated with salinity, but nutrient concen- 
trations are independent of salinity and may reflect biolo- 
gical activity. Brine does not remain stationary within the 
ice, but migrates by brine channel migration, brine expul- 
sion, gravity drainage, and flushing. These mechanisms, 
but primarily gravity drainage, are responsible for the 
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salinity changes found in first-year ice. Older ice, e.g., 
multi-year, is less saline than newly-formed ice, primarily 
from flushing and drainage processes activated by higher 
summer temperatures. (For more detailed discussions of 
the ice environment, see Maykut 1985; Weeks and Ackley 
1986; Lange et al. 1989, and references therein.) 

Different growth processes result in different ice types. 
The proportions of granular and congelation ice have 
been discussed elsewhere (Gow et al. 1982; Lange et al. 
1989). In the Antarctic, most of the ice is granular ice of 
frazil origin, while in the Arctic, most of the ice is congela- 
tion ice of columnar texture (Spindler 1990). 

The main forms of ice that have been studied for ice 
organisms are fast ice and pack ice. Fast ice forms and 
remains fast along the coast. It may be attached to the 
shore, an ice wall, an ice front, or to grounded icebergs 
(WMO 1970) and is formed in situ from seawater or by 
freezing of pack ice to the shore. Pack ice is any area of sea 
ice, other than fast ice, no matter what form it takes 
(WMO 1970). Its concentration in a given area is a ratio 
expressed in tenths or oktas (eighths) and may be compact 
with no water visible (10/10) or, at the other extreme, very 
open with <3/10 ice. It may extend from a few meters to 
several hundred kilometers from the coast. Rigorous com- 
parisons of community differences between pack ice and 
fast ice have not been made, but it appears that pack ice 
communities are dominated by planktonic forms, while 
fast ice communities, at least over shallow water, are 
dominated by benthic forms, including benthic diatoms 
and larvae of benthic organisms (Carey 1985; Garrison 
and Buck 1989; Pike and Welch 1989). However, compari- 
son of species found in fast ice at Syowa Station and pack 
ice in the Weddell Sea suggest that the same species occur 
in both habitats (Garrison 1991; Garrison and Watanabe, 
in press). 

Sea ice community formation 

A number of mechanisms by which organisms are incor- 
porated into sea ice have been proposed (e.g., Ackley 1982; 
Garrison et al. 1983; Sullivan et al. 1985; Dieckmann et al. 
1986; Spindler and Dieckmann 1986; Ackley et al. 1987; 
Garrison et al. 1989; Shen and Ackermann 1990). Differ- 
ences in ice growth processes also may lead to differences 
in how organisms are incorporated into the ice and the 
amount of space in the ice that is available for coloni- 
zation. In the Antarctic, it has been suggested that frazil 
ice crystals rising through the water column harvest or 
scavenge cells, thus concentrating them in the ice (Ackley 
1982; Garrison et al. 1983). This also has been shown in 
laboratory experiments (Garrison et al. 1989). Another 
possible mechanism for concentrating cells is by wave 
fields that pump water through the ice and deposit or- 
ganisms (Ackley et al. 1987; Shen and Ackermann 1990). It 
is likely that small-scale circulation features, such as 
Lang-muir cells, collect organisms suspended in the water 
column and this may be the best mechanism for concen- 
trating cells in the ice (Garrison et al. 1989). Granular and 
annual ice may have more space available for organisms, 
thus Antarctic ice contains more organisms than the sur- 

rounding seawater or the columnar and multi-year ice 
commonly found in the Arctic (Spindler 1990; Spindler et 
al. 1990; Dieckmann et al. 1991). Further, granular ice 
contains about twice as much brine as columnar ice (J. 
Weissenberger, personal communication 1990). Other 
mechanisms are described below with the discussion of 
individual habitats. 

The organisms 

Sea ice biota are organisms, both plants and animals, at all 
trophic levels that live in, on, or associated with sea ice 
during all or part of their life cycles. They may be sepa- 
rated into autochthonous forms that are regularly found in 
the ice and spend most of their life cycles there, or alloeh- 
thonous forms that are found only temporarily associated 
with ice (Gulliksen and Lonne 1989). 

Many terms have been used to describe the sea ice 
biota (Table 2) (Horner et al. 1988). Terms that include 
plankton are incorrect because they imply a water column 
existence and, while some of the ice organisms originate in 
or return to the water column following their release from 
the ice, this is not always the case. Life in the ice is, in fact, 
more similar to that in the benthos. A number of other 
words, including cryophilic, cryophyton, cryobiont, and 
cryon, that imply association with ice or cold temper- 
atures have been suggested, but have not been widely used 
(Table 2) (Horner et al. 1988). Sea ice microbial commu- 
nity (SIMCO) was first used by Sullivan and Palmisano 
(1981). The term was not specifically defined in this paper, 
but through frequent usage has come to include viruses, 
bacteria, algae, fungi, and protozoans living in the ice 
(Sullivan, personal communication 1990). Microbial, how- 
ever, often refers to bacteria or heterotrophs and may be 
misinterpreted. Underice (under-ice) has been used in 
place of bottom ice and is misleading because it could 
mean organisms living in the water column beneath the 
ice. 

Epontic, meaning "being on", (but sometimes defined 
as "out of the sea", e.g., Whitaker 1977) has been used in 
much of the literature since it was first suggested by Bunt 
and Wood (1963) for attached or nonattached diatoms 
found in Antarctic sea ice. However, it has also been used 
for organisms attached to substrates other than ice 
(Crosby and Wood 1959). Further, it is not a suitable term 
to describe motile organisms, such as foraminiferans, 
ciliates, copepods, and amphipods. Because organisms 
from both the benthos and the plankton live in the ice, 
descriptive terminology should be very broad (Carey 
1985). We therefore strongly suggest that epontic no 
longer be used for ice organisms. Instead, we propose that 
sympagic, meaning "with ice", be used in the same context 
as pelagic or benthic. Sympagic has been used previously 
for both plants (Whitaker 1977) and animals (Carey 1985) 
living in or associated with sea ice and, at present, is the 
most appropriate term to include all these organisms 
(Garrison 1991). Alternatively, the addition of "ice" to 
taxonomical or ecological categories, e.g., ice algae, ice 
fauna, is also acceptable. 
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Table 2. Terms used in the literature to 
describe sympagic biota (modified from 
Horner et al. 1988) 

Term Definition Reference 

Ice plankton Organisms peculiar to sea ice that Zubov 1945 
Cryoplankton develop and form communities in and around 

ice in summer 
Defined by color and algal content (diatoms 
some chrysophytes) 
Brown color caused by diatoms 
Formed when seawater freezes; brown color 
caused by growth of some plankton in 
sea ice 

Brown ice 

Colored ice 
Plankton ice 

Epontic 

Psychrophilic 

Cryophilic 

Epicryotic 
Endocryotic 
Cryophyton 

Cryobiont 

Cryon 
Sympagic 

Surface 
Interior 
Bottom 
SIMCO 

Underice 
(under-ice) 
Interfacial 

Attached and non-attached species especially 
adapted for life in sea ice 
Organisms having an optimum temperature 
for growth below 15~ 
Implies association with temporary or 
permanent ice 
Refers to cells living attached to ice crystals 
Refers to cells living within ice crystals 
Algae living in snowfields (snow algae) and 
ice floes 
Refers to organisms inhabiting snow and ice 
or algae initially found on the surface of sea ice 
Sea ice communities 
Refers to organisms living with sea ice 

Algal communities defined by their location 
in the ice 

Sea ice microbial communities; includes 
viruses, bacteria, diatoms, fungi, and 
protozoa 
Refers to organisms living in the bottom of 
the ice 
Free-floating algae at the ice-water interface 

Fukushima 1961 

Fukushima 1965 
Matsuda 1961; 
Meguro 1962; 
Meguro et al. 1966, 
1967 
Bunt and Wood 
1963 
Bunt et al. 1966 
Round 1971 
Usachev 1949; 
Round 1971 
Round 1971 
Round 1971 
Round 1981 

Kol 1942; Bursa 
1963 
Melnikov 1989 
Whitaker 1977; 
Carey 1985 
Ackley et al. 1979; 
Homer et al. 1988 

Sullivan and 
Palmisano 1981 

Cross 1982 

Tremblay et al. 1989 

Groups of organisms living in the ice often have been 
referred to as communities. Horner  et al. (1988) suggested 
assemblage would be a better word because they con- 
sidered the ice biota to be a group of more or less unre- 
lated organisms and assemblage does not imply interac- 
tions either between organisms or between the organisms 
and their environment. There may be occasional visitors, 
i.e., those not present as more or less permanent members 
of the ice biota (allochthonous sympagic organisms), but 
we now believe that complex interactions do occur be- 
tween organisms and suggest that community is a better 
term (also see Garrison 1991). Biocoenosis also has been 
used for ice biota (Melnikov 1989) and is sometimes used 
interchangeably with both assemblage and community, 
but has not been as widely used in other sciences related to 
ice. The concepts of community and biocoenosis in marine 
ecology have been reviewed by Mills (1969). 

The habitats 

The organisms occur in special habitats within the ice and 
the individual communities generally take the habitat 

name. The primary ice habitats and communities are at 
the surface, interior, and bot tom of the ice (Ackley et al. 
1979; Horner  et al. 1988) (Fig. 3), each of which can be 
further divided (Table 3), and a sub-ice habitat /commu- 
nity immediately beneath the ice, but still attached or 
closely associated with the bot tom ice. 

Surface 

There are three kinds of surface communities. The first is 
the infiltration community that occurs at the snow-ice 
interface. It was originally described from pack ice in the 
Antarctic, as a yellow to brown layer, 15-20cm thick 
(Meguro 1962). One suggested mechanism for its forma- 
tion is that the weight of the snow depresses the ice and 
seawater containing organisms can then infiltrate the 
snow (Meguro 1962). Burkholder and Mandelli (1965) 
reported a mixed diatom-flagellate community in layers 
from 15-100 cm thick. Daily productivity was calculated 
to be 0.19 g C m -  2 d a y -  1 (Burkholder and Mandelli 1965) 
and chlorophyll a levels may reach > 50 pg 1-1. It  is often 
dominated by Nitzschia cylindrus (Grun.) Hasle and N. 
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Fig. 3. Scbematic representation of biological 
communities found in sea ice (modified from 
McConville and Wetherbee 1983; Horner et al. 
1988; Kottmeier and Sullivan 1990) 

Table 3. Proposed terms for sea ice biota communities and their 
occurrence in polar regions (+ = present; - = not yet reported) 

Terms Arctic Antarctic 

Surface 
Infiltration - + 
Deformation ponds + + 

Pressure ridge + + 
Surface saline ponds - + 

Melt pools + + 
Interior 

Freeboard - + 
Brine channels + + 

Diffuse + + 
Bands + + 

Bottom 
Interstitial + + 
Platelet ? + 

Sub-ice + + 

closterium (Ehrb.) W. Smith with densities > 10 7 cells 1-1 
and Phaeocystis pouchetii (Har.) Lagerheim with densities 
up to 5 x 107 cells 1-1 (Garrison and Buck 1989). Navicula 
glaciei Van Heurck, other microalgae, and microorgan- 
isms not specifically identified were found in infiltration 
ice-slush on the fast ice sheet near the South Orkney 
Islands (Whittaker 1977). The infiltration community was 
not found in the Barents Sea during PRO MARE cruises 
(Syvertsen 1990). To our knowledge, it has not been re- 
ported in the Arctic. 

Often there are few organisms in the water column 
when infiltration occurs. Therefore, another possible 
mechanism for the formation of the infiltration commu- 
nity is that only seawater invades the snow-ice interface, 
creating a favorable environment for organisms already in 
the ice. The organisms grow because conditions for 
growth, e.g., higher temperatures and nutrient availability, 
improve. The fact that concentrations of cells sometimes 
increase toward the periphery of ice floes can also reflect 
the gradient of seawater infiltration. 

The second kind of surface community is associated 
with ice deformation processes, most often pressure ridges. 
The deformation communities include the pressure ridge 
infiltration community, formed during initial pressure 
ridge formation and the surface saline pond community, 
formed when the ice surface is deflected below sea level 
and flooded. These communities consist of a variety of 
both autotrophs and heterotrophs, often with similar 
groups of organisms (D.L. Garrison, personal communi- 
cation 1991). Cell concentrations may be 10-100 times 
those found in the underlying seawater because of the high 
irradiance characteristics of the ponds. 

The third surface community occurs in melt pools. 
These are formed by thawing of surface ice (McConville 
and Wetherbee 1983), flooding, or a combination of flood- 
ing and thawing. Melt pool communities are known from 
both the Arctic and Antarctic. In the Arctic, they may 
cover 50-60% of the sea ice; they are observed less often 
in the Antarctic (Maykut 1985). Some pools formed by 
surface thawing are above sea level, contain freshwater, 
and, if organisms are present, they originate in freshwater, 
possibly being brought to the sea ice by wind or birds. In 
the Arctic, freshwater, brackish, and saltwater ponds con- 
taining a variety of organisms, including freshwater and 
brackish water species of diatoms, flagellates, and ciliates 
have been reported (Gran 1904; Nansen 1906). Bursa 
(1963) found freshwater green algae, chrysophyte flagel- 
lates, diatoms, and ciliates in melt pools near Barrow, 
Alaska. Both freshwater pools containing freshwater 
green algae and saltwater splash pools containing marine 
diatoms have been found in the Barents Sea, but few melt 
pools in that area contained algae (Syvertsen 1990). 

In the Antarctic, melt pools, up to 15 cm deep, formed 
in late spring just below the surface of consolidated snow 
(McConville and Wetherbee 1983). The community was 
dominated by small diatoms (especially Nitzschia section 
Fragilariopsis), flagellates, and Phaeocystis colonies. 
Large aggregations (2.8 • 10 6 cells ml-  1) with high pro- 
duction rates (363 #g C 1-1) formed on the bottom of the 
pools by mid-January. In the South Orkney Islands, 
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Whittaker (1977) reported terrestrial and snow algal as- 
semblages in snow-melt pools after meltwater flooding in 
the coastal tide-crack zone, but no microalgae in snow- 
melt puddles on the fast ice. 

Interior 

Interior habitats depend on air temperatures at or slightly 
below the freezing point to initiate, but not complete, 
brine drainage (Ackley et al. 1979). The one closest to the 
upper surface of the ice in the freeboard habitat. It appar- 
ently occurs when brine drains from the upper layers due 
to surface warming, algal growth increases, heat is trap- 
ped, and the ice melts. The freeboard community occurs 
10-30 cm below the upper surface of the ice where the ice 
is rotting (Kottmeier and Sullivan 1990). Solid ice layers 
occur above and below the rotten ice and there is an intact 
snow layer on top of the ice. Chlorophyll a levels up to 
425 #g 1-1 have been reported (Kristiansen and Syvertsen 
1990); krill also occur in these cavities, grazing on the 
algae (Bergstrom et al. 1990). 

The most common interior habitat occurs between ice 
crystals throughout the interior of the ice (Ackley et al. 
1979; Garrison et al. 1983) and is part of the brine channel 
system (J. Weissenberger, personal communication 1991). 
The organisms that inhabit it may be scattered between 
ice crystals throughout the ice with no definite pattern to 
their vertical distribution (Garrison and Buck 1989) or be 
concentrated in brine channels or bands. Brine channels, 
formed in response to temperature changes and internal 
stresses, are long vertical tubes that allow vertical move- 
ment of brine through the ice (Maykut 1985). This hap- 
pens in spring when some melting occurs and the channels 
become connected to form a network within the ice 
(Horner et al. 1988). As the channels enlarge, either 
through growth or melting, there is communication with 
the underlying water column and the community devel- 
ops. The brine channel community occurs in brine chan- 
nels, but also in cracks, and cavities in the ice (Homer et 
al. 1988). They may contain microalgae common to both 
the bottom ice and water column communities as ob- 
served in east Antarctica (McConville and Wetherbee 
1983). Krill are also found grazing in brine channels (Daly 
1990; Bergstrom et al. 1990). In the Arctic, the amphipod, 
Gammarus wilkitzkii adapts to a wide range of salinities 
and is commonly found in brine channels (Aarset and 
Aunaas 1987). 

The diffuse community is common in pack ice in the 
Antarctic where chlorophyll a concentrations average 
< 10 #g 1-1 (Ackley et al. 1979; Clarke and Ackley 1984; 
Garrison and Buck 1989). Organisms present in this 
community include bacteria, diatoms, dinoftagellates, 
autotrophic and heterotrophic flagellates, ciliates, forami- 
niferans, and micrometazoans including copepods. Bio- 
mass ranges from <0.01 to >0.4 g C m -1, with highest 
concentrations occurring in spring (Garrison and Buck 
1989). In the Arctic, diatoms and heterotrophic flagellates 
are found throughout the ice thickness from the time it 
forms (Horner 1976), but the diffuse interior community 

has been little studied and there is only meager informa- 
tion on biomass or cell densities (Poulin et al. 1983; 
Legendre et al. 1991). 

Band communities are formed either by the accretion 
of new ice under a previously formed bottom ice layer of 
organisms (Hoshiai 1977; Ackley et al. 1979) or by incor- 
poration of cells at the time of first freezing of surface 
waters (R. Gersonde, personal communication 1986). 
They were first described from Syowa Station, Antarctica, 
(Hoshiai 1969, 1977) and may be remnants of the autum- 
nal ice algal bloom (Ackley et al. 1979) or of the previous 
year's spring bottom ice bloom (Grossi and Sullivan 
1985); they may be a successional stage of a bottom ice 
community or a senescent or otherwise inactive bottom 
ice community (D.L. Garrison, personal communication 
1991). Diatoms and dinoflagellates are the most abundant 
organisms in the fall-winter bands (Hoshiai 1977). Band 
communities apparently occur frequently in the Antarctic, 
but are infrequent in the Arctic. Bands have been de- 
scribed in Hudson Bay (Poulin et al. 1983) and there is one 
anecdotal report from the northern Bering Sea in the 
spring of 1970 (J. Burns, personal communication 1970). 

Bottom 

The interstitial community occurs in the bottom of the ice 
where ice crystals are generally small. It is usually only 
a few centimeters thick, consists of a solid, hard layer of 
congelation ice (Palmisano and Sullivan 1983; Grossi et 
al. 1987), and is the community most frequently studied. 
In the Arctic, pennate diatoms usually dominate the fast 
ice interstitial community, but other organisms, including 
dinoflagellates, autotrophic and heterotrophic flagellates, 
ciliates, heliozoans, rotifers, nematodes, harpacticoid and 
cyclopoid copepods, turbellarians, and polychaete larvae 
may also be present in varying numbers (Horner 1976; 
Cross 1982; Carey 1985; Grainger and Hsiao 1990). In 
pack ice areas, centric diatoms may be more numerous 
(Booth 1984; Irwin 1990; De Sbve and Dunbar 1990). In 
the Antarctic, pennate diatoms and bacteria are abundant 
(Grossi et al. 1984; Grossi and Sullivan 1985) in fast ice, 
and centric diatoms may be abundant in some areas 
(Watanabe 1982; C.W. Sullivan, personal communication 
1990). There is little information on the occurrence of 
flagellates, protozoans, and other micro- and meiofauna 
in fast ice except at Syowa Station where a ciliate, calanoid 
and harpacticoid copepods, and invertebrate larvae were 
found (Hoshiai and Tanimura 1986; Hoshiai et al. 1987, 
1989). 

Another bottom ice community is found in platelet ice 
that forms under the congelation ice (Bunt 1963; Bunt and 
Lee 1970; Palmisano and Sullivan 1985b; Grossi et al. 
1987). Platelets accumulate only in close proximity to ice 
shelves, although in the Weddell Sea, they may be formed 
at depth and harvest cells as they rise through the water 
column (Dieckmann et al. 1986). The platelet layer be- 
comes established because of decreased currents and shear 
near the ice front. The platelet habitat is quite different 
from the interstitial habitat above it in terms of biospace, 
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such as crystal structure and orientation, and amount of 
space between crystals; nutrient exchange potential, i.e., 
being able to deplete nutrients before they reach the 
interstitial habitat; and shading where the interstitial 
community will always shade the platelet community 
(D.L. Garrison, personal communication 1991). There are 
strong similarities between platelet layer communities in 
McMurdo Sound and the Weddell Sea, the two locations 
where they are best known. Loosely consolidated platelets 
are areas of high primary production (e.g., Bunt 1964, 
1968; Palmisano and Sullivan 1985b) and are also in- 
habited by other sympagic organisms ranging from proto- 
zoans to fish (Andriashev 1968; Tanimura et al. 1984). 

Sub-ice 

The sub-ice habitat is in the seawater immediately under 
the ice, although organisms, e.g., algal filaments, may be 
loosely attached to the undersurface of the ice. In the 
Arctic, this may be a mat of algal cells floating just under 
the bottom surface of the ice (Cross 1982; Runge and 
Ingram 1988; Barlow et al. 1988; Michel et al. 1988; 
Tremblay et al. 1989; Syvertsen 1990; Gosselin et al. 1990; 
Johnsen and Hegseth 1991) or filaments loosely attached 
to the bottom surface of the ice (Melnikov and Bondar- 
chuk 1987; Syvertsen 1990). In the Canadian Arctic, 
Nitzschia spp. were dominant in the sub-ice community 
(Cross 1982; Rochet et al. 1985; Michel et al. 1989; Tremb- 
lay et al. 1989), while in both the Barents Sea and the 
central Arctic Ocean, Melosira arctica (Ehr.) Dickie form- 
ed huge mats and long strands, especially under multi- 
layer ice (Hasle and Syvertsen 1985; Melnikov and Bon- 
darchuk 1987; Syvertsen 1990). 

In the Antarctic, the sub-ice community was called the 
mat-strand community and consisted of a mat that was 
suspended under the ice in clumps and strands (McCon- 
ville and Wetherbee 1983). The dominant species were 
Berkeleya sp., Entomoneis spp., and Nitzschiafrigida (cor- 
rect identification is N. stellata Manguin [Medlin and 
Hasle 1990]). Cell densities in the strands w a s  10 6 10 7 

cells m1-1 (McConville and Wetherbee 1983). At Syowa 
Station, where the strands begin growing in the hard 
congelation ice (interstitial habitat), their development 
depends on calm conditions to keep the colonies from 
fragmenting. The community consisted of a number of 
pennate diatoms, including Amphiprora kufferathii 
Mangin, Berkeleya rutilans (Trent.) Grunow, Nitzschia 
lecointei Van Heurck, N. stellata, N. turgiduloides Hasle, 
Nitzschia, spp., and Navicula 9laciei (Watanabe 1988). 

Allochthonous sympagic fauna are also members of 
the sub-ice community. In the Arctic, these include 
Pseudocalanus sp. and harpacticoid copepods (Runge and 
Ingrain 1988); the amphipods, Parathemisto libelIula (Gul- 
liksen 1984), Weyprechtia pinguis, Onisimus litoralis, 
Onisimus spp. juveniles, and Gammarus setosus (Pike and 
Welch 1989); and the polar cod, Boreogadus saida (Lonne 
and Gulliksen 1989). In the Antarctic, the amphipod Para- 
moera walkeri (Gulliksen and Lonne 1989) and the fish 
Pagothenia borchorevinki (Eastman and DeVries 1985) are 
common.  

Routine sampling strategy 

Many methods have been used to sample sea ice for 
biological investigations (e.g., Horner 1990). There is 
a lack of consistency both in collection and experimental 
methods, partly because of differences in ice structure and 
communities in the Arctic and Antarctic and between fast 
and pack ice. Comparing results from different investiga- 
tors is often difficult because of differences in experimental 
approach. Further, biological studies often have not in- 
cluded investigations of the physical and chemical envi- 
ronment of the sea ice biota. It is now known, however, 
that the physical and chemical processes associated with 
ice formation as well as the history of the ice are important 
for the development of sympagic communities (e.g., 
Legendre et al. 1991). 

When not specifically required for experimental pur- 
poses, sea ice samples are usually collected from ice floes 
that have been selected randomly, but are accessible by 
ship or helicopter. When working from shore-based 
stations, sites must be accessible by surface vehicles or 
helicopter. Before sampling, snow depth and density and 
other features of the immediate vicinity must be recorded. 
Cores are obtained with a 10 cm diameter corer (various 
manufacturers) operated either by hand or a small gaso- 
line engine (Horner 1990). The number of cores collected 
depends on individual experimental design. One core may 
be taken for archiving if facilities are available. A second 
core is placed in an insulated PVC tube and a temperature 
profile determined by inserting a digital thermometer 
probe through holes in the PVC tube and holes drilled at 
5 cm intervals in the ice (G.S. Dieckmann, personal com- 
munication 1990). The core is then placed in an insulated 
container for transport to the laboratory. 

In the cold lab, the core length (ice depth) is measured 
and the core is placed on a light table so stratigraphy can 
be discerned. The core may be cut in half lengthwise to 
facilitate stratigraphic observations. Zones of different 
structure are determined and the core sectioned horizon- 
tally according to the zones. Vertical sections, ca 1 cm 
thick, are cut for each piece and stored for later, more 
detailed analysis of the ice structure. 

The remainder of each section is carefully melted in the 
dark at ca 4~ and used to obtain bulk parameters such as 
salinity, nutrient concentrations, chlorophyll a, and large 
protozoan (foraminiferans) and metazoan numbers. Al- 
ternatively, the sections may be melted in large volumes of 
filtered (0.2 #m) seawater to prevent destruction of deli- 
cate organisms, e.g., ciliates and flagellates, through osmo- 
tic stress (Garrison and Buck 1986). This method could 
also be used for determining chlorophyll a, but care must 
be taken to exclude all cells from the filtered seawater and 
to measure volumes accurately. Nutrient and salinity 
values could be calculated from these samples, but it is 
better to use another core. It must be remembered, how- 
ever, that when ice melts, both salinity and nutrient con- 
centrations are diluted, leading to underestimates of their 
in situ concentrations. 

Another, though more time-consuming, method to 
obtain brine and sea ice biota is by centrifuging intact core 
sections in a refrigerated centrifuge. The brine retains the 
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salinity corresponding to the in situ temperature or the 
temperature during centrifuging, although some ions may 
remain with the ice because of surface charges (D.L. Garri- 
son, personal communication 1991). This method is not 
appropriate for quantitative studies. Core squeezers also 
have been suggested as a quick way to obtain brine from 
ice cores with minimum change in composition, however, 
little is apparently known about their use for this purpose. 
Further, the in situ temperature of the ice would need to 
be maintained during manipulation to ensure the actual 
brine composition. 

A major source of error in determining salinity, nutri- 
ent concentrations, and chlorophyll a is introduced when 
brine is extracted from cores collected using ice corers. 
The problem is to retain brine and interstitial organisms 
associated with the bottom of the ice during extraction. 
No surface sampling technique circumvents this problem, 
so what is often the most important part of the ice is not 
sampled adequately. Coring from the bottom of the ice by 
divers may overcome this problem, but appropriate in- 
strumentation is also needed. 

Reporting units 

Another problem area with regard to sea ice biota con- 
cerns the units used to report biological, chemical, and 
physical data (Palmisano and Sullivan 1985a; Horner et 
al. 1988; Irwin 1990). Biological data may be reported per 
unit volume of ice meltwater or integrated over the depth 
of the ice column and reported on an areal basis. Unfortu- 
nately, the thickness of the ice or algal layer and the 
diameter of the ice core are often not reported. Production 
rates may be reported on an hourly, daily, or annual basis. 
In addition, assimilation numbers (photosynthesis per 
unit chlorophyll a at light saturation) have not been 
determined for many ice communities or individual spe- 
cies, thus making comparisons of production with other 
ecosystems difficult. As a result it is nearly impossible to 
compare values reported in the literature to a common 
unit. 

Unfortunately, there is no general rule for reporting 
substances in the ice matrix. Sometimes it is better to use 
the volume, e.g., for dissolved nutrients and for comparing 
algae to nutrients, while in other instances it may be better 
to use an areal measurement, e.g., when comparing ice 
biota populations from different locations, or ice biota 
densities with water column densities (Table 4). The best 
solution is always to include information on the thickness 
of the ice layer or water column. Then others can calculate 
either volume or areal concentrations for the data. 

For sub-ice fauna, the best unit is number (or other 
measurement) per m 2 or number per volume of ice 
meltwater or seawater. Units commonly used include 
number per m 3 or 1000 m 3 (Daly 1990). 

Table 4. Variables and suggested units for reporting ice biota data 

Variable Units 

Primary productivity mg C m-2 
Chlorophyll mg chl a m-2 
Nutrients /~mol 1-1, mmol m-3 
Ice algae number m-2 
Ice fauna number m-2 
Ice bacteria number m -  ~ 
Irradiance #E m -  2 s -  1 

Grunow. We suggest this for several reasons. First, for 
algae at least, Article 46 of the Botanical Code of Nomen- 
clature states that authors' names be cited the first time 
a genus and species name is used in a paper (Greuter 
1988). Another way to do this is to include a table of 
species that includes authors' names. Second, it makes it 
easier for other investigators to know exactly what organ- 
ism is being discussed and the name can be verified more 
easily. Third, lists of species of ice biota sometimes con- 
tain synonyms. Moreover, if an organism cannot be iden- 
tified to species, but is given a provisional name, e.g., 
Nitzschia sp. A or Nitzschia cf. frigida, that designation 
should be used for the organism in subsequent investiga- 
tions and papers until it is correctly identified; a statement 
should then be made that recognizes the previous provi- 
sional identifications. Fourth, algal taxonomy is in a state 
of flux and names are changed as more information be- 
comes available from new methods and additional study, 
e.g., Medlin and Round 1986; Medlin 1990; Medlin and 
Hasle 1990. 

Finally, we would encourage all investigators to pro- 
vide better descriptions of their methods, especially if they 
are new or modifications of previously used ones. If new 
instruments are developed, these must be either com- 
pletely described or a published reference cited. Figures 
make it easier for others to judge new equipment. A foot- 
note or note added to the references to tell where in- 
struments or other material may be obtained would also 
be useful. New methods must be developed, but methods 
must also be compared, both between polar regions and 
among different ice types and habitats (e.g., McConville et 
al. 1985; Palmisano and Sullivan 1985a). 
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Further recommendations 

We recommend that all papers including names of organ- 
isms also cite the authors' names, e.g., Nitzschia frigida 
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