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Disorders of the Nervous System

Cortico-Subthalamic Field Potentials Support
Classification of the Natural Gait Cycle in
Parkinson’s Disease and Reveal Individualized
Spectral Signatures
Kenneth H. Louie,1 Ro’ee Gilron,1 Maria S. Yaroshinsky,1 Melanie A. Morrison,2 Julia Choi,3

Coralie de Hemptinne,4 Simon Little,5 Philip A. Starr,1 and Doris D. Wang1

https://doi.org/10.1523/ENEURO.0325-22.2022

1Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143,
2Department of Radiology, University of California, San Francisco, San Francisco, California 94143, 3Department of
Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, 4Department of Neurology,
University of Florida, Gainesville, Florida 32608, and 5Department of Neurology, University of California, San
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Abstract

The ability of humans to coordinate stereotyped, alternating movements between the two legs during bipedal walking
is a complex motor behavior that requires precisely timed activities across multiple nodes of the supraspinal network.
Understanding of the neural network dynamics that underlie natural walking in humans is limited. We investigated
cortical and subthalamic neural activities during overground walking and evaluated spectral biomarkers to decode
the gait cycle in three patients with Parkinson’s disease without gait disturbances. Patients were implanted with
chronic bilateral deep brain stimulation (DBS) leads in the subthalamic nucleus (STN) and electrocorticography pad-
dles overlaying the primary motor and somatosensory cortices. Local field potentials were recorded from these areas
while the participants performed overground walking and synchronized to external gait kinematic sensors. We found
that the STN displays increased low-frequency (4–12Hz) spectral power during the period before contralateral leg
swing. Furthermore, STN shows increased theta frequency (4–8Hz) coherence with the primary motor through the in-
itiation and early phase of contralateral leg swing. Additional analysis revealed that each patient had specific fre-
quency bands that could detect a significant difference between left and right initial leg swing. Our findings indicate
that there are alternating spectral changes between the two hemispheres in accordance with the gait cycle. In addi-
tion, we identified patient-specific, gait-related biomarkers in both the STN and cortical areas at discrete frequency
bands that may be used to drive adaptive DBS to improve gait dysfunction in patients with Parkinson’s disease.

Key words: basal ganglia; deep brain stimulation; gait; Parkinson’s disease; sensorimotor cortex

Significance Statement

By recording from chronically implanted electrodes in the subthalamic nucleus and sensorimotor cortex in
patients with Parkinson’s disease, we found power modulations across multiple frequency bands (4–30Hz)
during specific phases of the gait cycle. The coherence between subthalamic and cortical areas of each
brain hemisphere also increases before contralateral leg swing. The data support the hypothesis that the
basal ganglia and cortex coordinate alternating power and coherence fluctuations between hemispheres,
which may indicate a mechanism to regulate continuous bipedal locomotion in humans. Last, we show that
these putative biomarkers for gait can decode left and right gait events, implicating a potential use to drive
future adaptive DBS algorithms.
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Introduction
Human walking is a complex motor task that requires

the flexible coordination of reciprocal left and right leg
movements. Natural upright walking consists of each leg
alternating between the stance phase, when the foot is in
contact with the ground, and the swing phase, when the
foot is in the air; these two phases make up the “gait
cycle,” comprised of a series of stereotyped events such
as left and right heel-strikes and toe-offs.
The subthalamic nucleus (STN) and primary motor cor-

tex are likely key nodes of the supraspinal network that
regulates human gait, given the projection of the STN to
the locomotor regions in the brainstem (Takakusaki, 2017)
and its direct connections to the motor cortex via the hy-
perdirect pathway (Nambu et al., 2002). Understanding of
the cortico-subthalamic network activities that underlie
natural walking in humans is, however, limited because of
methodological constraints. Scalp electroencephalogra-
phy (EEG) studies have shown that natural overground
walking is associated with fluctuations in the alpha (8–
12Hz), beta (13–30Hz), and gamma (70–90Hz) frequency
ranges from the sensorimotor regions of healthy subjects
(Gwin et al., 2011; Wagner et al., 2012; Seeber et al.,
2015). Although EEG lacks the spatial resolution to dis-
cern whether these rhythms originate from the motor cor-
tex or represent sensory feedback during walking, and
are prone to movement artifacts. Basal ganglia field po-
tentials recorded from implanted deep brain stimulation
(DBS) leads of patients with Parkinson’s disease (PD)
have also revealed modulation of beta oscillations (13–30
Hz) from the STN while stepping in place (Fischer et al.,
2018; Hell et al., 2018; Tan et al., 2018) and during over-
ground walking throughout the gait cycle (Arnulfo et al.,
2018; Hell et al., 2018; Canessa et al., 2020). However,
because aberrant beta oscillatory synchrony in the STN is
a hallmark of akinesia in PD (Hammond et al., 2007; Little
and Brown, 2014), and beta oscillations decrease with
movement planning and execution in general, including
those of the upper extremity (Kühn et al., 2004; Wingeier
et al., 2006; Eisinger et al., 2020), whether these

subthalamic beta modulations represent a biomarker of
specific gait events is unclear. Finally, little is known
about cortical–subthalamic interactions during the natural
gait cycle.
Our hypothesis is that the STN interacts with the motor

cortex in a temporal-specific manner to coordinate recip-
rocal leg movements to generate effective bipedal loco-
motion. We investigated the cortical–subthalamic circuit
dynamics of natural walking from three patients with PD
without major gait disturbances in the on-mediation state
to capture the most physiological gait possible. Patients
were implanted with chronic bilateral STN DBS leads
and sensorimotor cortex electrocorticography paddles.
Neural oscillatory activities were simultaneously and
wirelessly streamed from the bilateral primary motor cor-
tex (M1) and somatosensory cortex (S1) as well as the
STN during overground walking, and were synchronized to
external gait kinematic sensors. Our aims were as follows: (1)
to characterize the oscillatory signatures of natural walking
from the STN and sensorimotor cortices; (2) to identify corti-
co–subthalamic circuit coherence changes throughout the
gait cycle; and (3) to determine the accuracy of gait event de-
coding (i.e., heel-strike or toe-off) based on these cortical and
subthalamic oscillatory signatures.

Materials and Methods
Subjects and electrode reconstruction
Three male subjects with idiopathic PD undergoing

evaluation for DBS surgery were enrolled at the University
of California, San Francisco. Subjects did not exhibit
major gait impairments, with Movement Disorder Society
Unified Parkinson’s Disease Rating Scale III (UPDRS III) pos-
tural instability and gait subscores on medication between 1
(slight) to 2 (mild; Table 1). All subjects provided written in-
formed consent (ClinicalTrials.gov ID: NCT-03582891).
All subjects underwent bilateral implantation of quadri-

polar DBS leads into the STN (model 3389, Medtronic),
quadripolar cortical paddle overlying the sensorimotor
cortices (model 0913025, Medtronic), connected to bilat-
eral investigational sensing pulse generators (Summit
RC1S model B35300R, Medtronic) as previously de-
scribed (Fig. 1; Gilron et al., 2021a). Each RC1S device
was connected to an STN DBS electrode and a cortical
paddle from the same brain hemisphere.
DBS and cortical electrode localization were performed

using 2-month postoperative computed tomography (CT)
images fused with preoperative T1-weighted MRI images.
STN DBS lead reconstruction was performed using the
DISTAL atlas and TRAC/CORE algorithm available within
LEAD-DBS, an open-source MATLAB toolbox (Horn and
Kühn, 2015; Ewert et al., 2018). Intracranial EEG Anatomical
Processing and Electrode Reconstruction Pipeline (https://
edden-gerber.github.io/ecog_recon/) was used for cortical
paddle reconstruction. T1 images were parcellated and con-
verted into a standardized cortical surface mesh using
FreeSurfer (Dale et al., 1999) and AFNI SUMA (Saad et al.,
2004). Cortical contacts were then manually identified on
the CT images in BioImage Suite (Section of Bioimaging
Sciences, Department of Diagnostic Radiology, Yale School
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of Medicine; http://www.bioimagesuite.org), and the elec-
trode coordinates were projected onto the standardized
mesh using a gradient descent algorithm in MATLAB.

Neural recordings and gait kinematic measurements
during natural walking
Subjects walked overground at their preferred speed

for 2min in a straight path of at least 15 feet before turning
around. All subjects were receiving their typical dose of
parkinsonian medication during the task. In all subjects,
local field potentials (LFPs) were recorded from the fol-
lowing two STN electrode pairs: ventral STN (contacts 2
and 0) and dorsal STN (contacts 3 and 1), where contact 0
is in the ventral STN, contact 3 is just above the dorsal
border, and contacts 1 and 2 are in the motor territory
based on microelectrode mapping (Fig. 1A). The two cort-
ical electrodes recording configuration were contacts 9
and 8 (S1) and contacts 10 and 11 (M1), based on an
imaging reconstruction. LFPs were sampled at 500Hz
and passed through a preamplifier high-pass filter of
0.85Hz and a low-pass filter of 450Hz. Accelerometry
data from the Summit RC1S system was sampled at
64Hz. All data from the RC1S system were extracted and
analyzed using open-source code (https://github.com/
openmind-consortium/Analysis-rcs-data).

Gait kinematic data were collected using two wireless
sensor systems: Trigno system (Delsys) and MVN Analyze
(Xsens). The Delsys sensors included two Avanti force-sen-
sitive resistor (FSR) adapters, two Avanti goniometer
adapters, and two Trigno surface electromyography (EMG)
sensors with a built-in accelerometer. The Avanti adapters
were placed bilaterally on the shank of the leg, and the
EMG sensors were placed on top of both RC1S and used
for synchronization (see below). Each FSR adapter was at-
tached to four FSRs (model DC:F01, Delsys) placed under
the calcaneus, hallux, first metatarsal (1MT), and fifth meta-
tarsal (5MT). A digital goniometer (SG110/A) was placed
next to the lateral malleolus. The Xsens system is com-
posed of 14 inertial measurement unit sensors placed over
the entire body and limbs for wireless motion tracking.

Data analysis
LFP and gait kinematic data were synchronized by

aligning the acceleration peaks captured by the RC1S
Trigno sensors (Delsys) over the RC1S and Xsens accel-
erometry. Four signal-processing methods were applied
to the LFP signals using built-in MATLAB functions, as fol-
lows: continuous wavelet transform (CWT; “cwt” func-
tion), wavelet coherence (“wcoherence” function), short-
time Fourier transform (“spectrogram” function), and
power spectral density (PSD; “spectrogram” function with

Figure 1. DBS and cortical lead localization. A, 3D reconstructions of all DBS lead locations in the STN (orange). Individual subject’s
leads are shown in by different colors. B, 3D reconstructions of cortical electrode paddle location. The two most anterior contacts
overlie the M1, while the two most posterior contacts overlie the S1.

Table 1: Subject demographics

ID Age/sex Disease duration DBS target UPDRS III total off-meds UPDRS III total on-meds UPDRS III PIGD* on-meds
Subject 1 42/M 06 STN 41 14 2
Subject 2 58/M 09 STN 34 09 1
Subject 3 61/M 05 STN 35 12 1

M, Male.
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1 s window, 90% window overlap, and a transform length
of 512 data points). We used wavelet transformation be-
cause it has greater low-frequency resolution. We also
used the Fourier transform because this is the on-board
spectral decomposition method used by the RC1S sys-
tem (Sellers et al., 2021).
Gait kinematic data were used to determine left and

right toe-off and heel-strike events using a custom
MATLAB script (Fig. 2). Heel-strike was defined as the
time when the calcaneus or 5MT FSR crosses over a 5%
threshold in the positive direction. Toe-off was defined
as the time when the hallux or 1MT FSR crosses over the
5% threshold in the negative direction. For the Xsens sys-
tem, toe-off was defined as the time of peak ankle plantar-
flexion velocity, while heel-strike was defined as the time
of ankle velocity impulse. All gait events were visually in-
spected, and erroneous events were manually corrected.
Turns were excluded from analysis. Forty gait cycles were
included for analysis from subject 1, 67 for subject 2, and
106 for subject 3.
Individual gait cycle epochs were extracted from the

CWT and wavelet coherence data and were divided into
time bins representing 1% of the gait cycle. Power and
magnitude-square coherence values for each gait cycle
were normalized to the average value during the entire
walking period by z score. The z-cored values for gait
cycles were then averaged across subjects to obtain the
grand average spectrogram and coherogram.
To identify frequency bands where power differed be-

tween gait events, instantaneous power at each gait event
(left and right toe-off and heel-strike) were extracted. All
possible frequency bands were created between 0 and
50Hz, and a Kruskal–Wallis test was used to identify fre-
quency bands where power differed among the gait events.
A Kruskal–Wallis test was used because the datasets were
not normally distributed (Shapiro–Wilk test), but the varian-
ces of the different gait events were equal (Levene’s test).
The p-values were adjusted using Tukey’s honestly sig-
nificant difference method. Frequency bands where the
multiple-comparisons test reached p-values, 0.05 were
designated as gait event-modulated frequency bands.

Gait event classification
A classification model was built to predict gait events

from LFP power and the STN–cortical coherence. The
classification model used an ensemble learning approach
to enhance the stability and accuracy (Wolpert, 1992;
Polikar, 2006) and consisted of a random forest (RF) fea-
ture selection model and a linear discriminant analysis
(LDA) model. RF has been shown to achieve better per-
formance than other feature selection methods (Chen et
al., 2020) and is robust to collinearity (Genuer et al., 2010).
The LDA model matched the on-board hardware classifier
of the RC1S. The classifier models were built in R with
the “Tidymodel” framework (https://www.tidymodels.org/
) and trained for each subject, brain hemisphere, and re-
cording area.
Features used in the RF model were instantaneous

power or magnitude-squared coherence during toe-off
events in all possible frequency bands between 2.5 and

50Hz. All features were normalized to a mean of 0 and an
standard deviation of 1. Before feature selection, RF hy-
perparameters, the number of decision tress and the
number of features a tree considers during node splitting,
were optimized using 10-fold cross-validation with each
dataset stratified by toe-off classes. Once optimized, the
RF feature selection model was trained on all normalized
features using the “ranger” (Wright and Ziegler, 2017)
package in RStudio (www.rstudio.com).
The top 10 features with the largest variable importance

value based on “permutation importance” (Altmann et al.,
2010) were used to generate new datasets for each sub-
ject and brain hemisphere. Next, the new datasets were
split into 75% for training and 25% for testing. The accu-
racy and receiver operator characteristic area under the
curve (AUC) were calculated.

Statistical analysis
A linear repeated-measures mixed model was used to de-

termine power or coherence values that differed from the
average during the gait cycle. A single fixed effect was used,
and subjects were added to the model as a random to ac-
count for individual baseline neural power differences.
Significance was tested using F-tests with the Satterthwaite
degrees of freedom method. Statistical analysis of classifi-
cation models was performed only on models that achieved
greater than chance accuracy (�50%). Significance was
tested by permuting the toe-off class labels 1000 times and
by calculating the class accuracy on the permuted data.
Models were determined to be significant if it correctly clas-
sified the event in,5% of the total number of permutations
(Herrojo Ruiz et al., 2014).

Results
STN shows coordinated low-frequency power
modulation during walking
To investigate STN and sensorimotor cortical neural dy-

namics during the gait cycle, we extracted and averaged
spectral power across all gait cycle epochs and tested
whether the power significantly changes during the gait
cycle. We found that the two hemispheres showed coordi-
nated and reciprocal changes in spectral power within the
ventral and dorsal STN during the gait cycle. Significant
changes in power were seen in the alpha to low-gamma fre-
quency (10–50Hz) band power in the ventral STN and in
low-frequency (5–15Hz) band power in the dorsal STN.
Increased power occurred during the double support
phase, the period from ipsilateral heel-strike to contralateral
toe-off (0–10% for the left leg; 50–60% for the right leg; Fig.
3A,B, top). The left STN also demonstrated significant
alpha-beta (8–30Hz) power decrease during right leg swing
period, and beta band (13–30Hz) decrease during right
heel-strike (Fig. 3A,B, top). These changes in LFP power
were also seen in individual gait cycles across all subjects
(Extended Data Fig. 3-2A,B).
M1 and S1 also demonstrated power changes through-

out the gait cycle, though the frequency-specific changes
between the left and right hemispheres were not recipro-
cal. The left M1 showed decreased beta activity during
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Figure 2. Synchronized gait kinematic data with raw local field potential recordings during natural walking. A, Illustration of gait
events and phases during a single gait cycle, aligned to left heel-strike (0% gait cycle). B, Heel-strike (squares) and toe-off (circles)
gait events were detected from the left (black) and right (gray) force-sensitive resistor data. Heel-strikes were detected when the
heel force (solid line) exceeded a threshold (dotted line), and toe-offs were detected when toe force (dashed line) fell below the
threshold. C, Example local field potential recordings from both STN and M1 synchronized to a gait cycle. Left heel-strike (LHS),
Right toe-off (RTO), Right heel-strike (RHS), Left toe-off (LTO).
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Figure 3. STN local field potentials show spectral power modulations during the gait cycle. Grand average z score spectrograms
from the dorsal and ventral STNs normalized to a gait cycle. A, B, Significant power increases are seen during weight acceptance
of the left leg in the left hemisphere (;0–10% gait cycle) and right leg in the right hemisphere (;50–60% gait cycle). Power in-
creases were observed in a wide frequency band (10–50Hz) in the ventral STN and in the low-frequency band (5–15Hz) in the dorsal
STN. Significant beta (13–30Hz) desynchronization was also seen during contralateral leg swing and heel-strikes. A, B, Gait cycle
percentages and frequencies where power was significantly different compared with the average power during the entire walking
task is outlined by the dashed white lines. A linear mixed-effect model was used to determine significance with p-value, 0.05.
(Extended Data Fig. 3-1 shows grand average gait cycles from cortical recorded contacts. Extended Data Fig. 3-2 shows a single
gait cycle from all recorded areas from all subjects in the study and shows alternating left–right power changes throughout the gait
cycle.)
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right leg swing (10–30% of gait cycle) and increased beta
power during right leg stance (60–80% of gait cycle;
Extended Data Fig. 3-1A, top). While the right M1 does
not show significant beta power modulation, it showed
theta power changes during the end of right leg swing
and the beginning of left leg swing (Extended Data Fig. 3-
1A, bottom). The right S1 shows a similar pattern of theta
modulation during transition from right leg swing to left
leg swing (Extended Data Fig. 3-1B, bottom).

STN interacts with motor and sensory cortices during
different phases of the gait cycle
Because the STN has direct connections with sensori-

motor cortices and plays important functions in motor
control, we examined whether the STN interacts with the
cortex during specific phases of the gait cycle. To deter-
mine the nature and degree of this interaction, we com-
pared the averaged magnitude-squared coherence value

between the STN and M1/S1 for each brain hemisphere
during the gait cycle. We found increased STN–M1 theta
band coherence during contralateral toe-off and initial
contralateral leg swing, similar to the power modulations
seen in the STN (Fig. 4A). Interesting, STN–S1 showed
greater theta and alpha band coherence during ipsilateral
heel-strike (Fig. 4B). The two brain hemispheres showed
reciprocal coherence modulations.

Patient-specific oscillatory biomarkers of gait
Because our data showed several distinct gait-related

frequency bands of modulation during the gait cycle,
we used a data-driven approach to determine patient-
specific frequency bands that are putative biomarkers for
heel-strike and toe-off events. We created frequency
bands of varying lengths ranging from 0 to 50Hz, ex-
tracted power spectral density values at each gait event,
and performed an Kruskal-Wallis for each band (Extended

Figure 4. Low-frequency STN/cortical coherence increase during the initiation of contralateral leg swing. Grand average z score co-
herogram from STN–M1 and STN–S1 normalized to a gait cycle. Reciprocal coherence modulation was seen in both hemispheres.
A, STN–M1 coherence showed significant increases in the theta band (5–8Hz) during the initiation of contralateral leg swing through
mid-swing. Additionally, the left hemisphere showed beta band coherence increases during initial ipsilateral weight acceptance. B,
STN–S1 coherence modulation was seen theta/alpha band across both hemispheres during ipsilateral heel-strike. A, B, Gait cycle
percentages and frequencies where coherence was significantly different from the average coherence during the entire walking task
are outlined by the dashed white lines. A linear mixed-effect model was used to determine significance with a p-value, 0.05.
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Data Fig. 5-1). We found that each patient had unique fre-
quency bands where power values differentiated gait events
(Fig. 5). Significant gait event-modulated frequency bands
were found within all canonical frequency bands, with a ma-
jority in the theta and beta bands (Fig. 5A). Frequency
ranges of the gait event-modulated bands varied by elec-
trode location but were typically a subrange of the canonical
bands. By comparing the instantaneous power spectral
density during each of the four gait events, we found power
differences between gait events that are temporally distinct
(Fig. 5A, inset plots), whereas gait events occurring in tem-
poral proximity have a more similar power spectra profile
(Fig. 5A).
To evaluate how the amplitudes of these gait-specific

biomarkers change over the gait cycle, we the averaged
their power over a 1 s period around each gait event and
found them to fluctuate for the duration of the gait cycle
(Fig. 5B). Power averages for the left heel-strike and right
toe-off events are offset by half a gait cycle to the right
heel-strike and left toe-off events. In all subjects, the left
and right hemispheres showed reciprocal power modula-
tions across different contacts.
To investigate whether the instantaneous powers of

each gait event are distinct from each other, a multiple-
comparisons test was performed between all possible
pairs of gait events. Significant power differences were
found between left and right heel-strikes in subjects 1 and
2 in both hemispheres (Fig. 5C). Other significant differen-
ces occurred between toe-off events (Fig. 5C). Gait
events temporally close to each other did not differ in
power.

Decoding gait events based on cortical and
subcortical LFPs
Based on finding spectral signatures for specific gait

events of the gait cycle, we wanted to decode gait events
using these personalized “gait biomarkers.” Using the
LDA model, we were able to classify toe-off events with
�61% accuracy (Table 2) in all subjects from at least one
of the recorded contacts (Fig. 6). Significant above-chance
accuracy was achieved from models built using left and
right hemisphere data in subjects 2 and 3, but only from left
hemisphere-trained models in subject 1. No electrode loca-
tion outperformed others consistently but was subject spe-
cific. Overall, the median model accuracies were greater
than chance and ranged from 54.4% to 60.3%. Further
analysis of the models showed the maximum discriminatory
value achieved, evaluated by calculating the AUC, ranged
between 0.585 and 0.763.
We also explored whether coherence between STN and

M1/S1 could classify toe-off events. The subcortical–cort-
ical coherence pair that achieved the highest accuracy
was subject specific, and only subjects 2 and 3 had mod-
els reach significant above-chance accuracy (accuracy,
58.9–68.3%; AUC, 0.602–0.786; Extended Data Fig. 6-1).

Discussion
We used chronic invasive recordings in PD patients to

advance our understanding of dynamic subthalamic and
sensorimotor oscillatory changes that underlie natural

overground walking. First, we demonstrate the novel find-
ing that STN displays increased low-frequency (4–12Hz) ac-
tivity during the double support period before contralateral
leg swing. Furthermore, STN shows increased theta fre-
quency coherence with the primary motor during initiation of
contralateral leg swing, implicating a potential mechanism
for the supraspinal network to scale and fine-tune leg mus-
cle activation during stepping. Our findings support the hy-
pothesis that oscillations from the basal ganglia and cortex
direct alternating power fluctuations between the two hemi-
spheres, in that power is offset by half a gait cycle, which
may indicate a mechanism to coordinate and maintain con-
tinuous bipedal locomotion in humans. In addition, we iden-
tified patient-specific, gait-related biomarkers in both
subcortical and cortical areas at discrete frequency bands.
Exploratory ensemble classification models showed above-
chance accuracy in classifying left and right gait events
using oscillatory power features.

Alternatingmultifrequency modulations from bilateral
STNs during gait
Several groups have described beta power modulations

within the STN during the gait cycle between the left and
right hemispheres during seated stepping (Fischer et al.,
2018) and overground walking (Arnulfo et al., 2018; Hell et
al., 2018; Canessa et al., 2020) in Parkinson’s disease pa-
tients. Because elevated beta synchrony within the STN is
associated with the akinetic state in Parkinson’s disease,
it is logical that beta desynchronization is required for
movement, including gait. We found that these gait-event
related alternating power modulations between the left
and right STNs are not limited to the high beta-frequency
range but also involve other low-frequency bands.
What are the roles of subthalamic lower frequency

(theta and alpha) modulation during gait? Previous stud-
ies on upper extremity movement tasks have shown
event-related theta/alpha frequency synchronization with-
in the STN at the onset and throughout the duration of a
sustained voluntary muscle contraction task (Tan et al.,
2013; Kato et al., 2016). In some cases, the amplitude of
these theta/alpha oscillations correlate with the force gen-
erated during hand movement (Anzak et al., 2012). STN
theta activity has also been shown to have a role in the
cognitive control of movement, such as during sensori-
motor conflict (Aron et al., 2016; Zavala et al., 2017) and
response inhibition (Alegre et al., 2013). We posit that
these low-frequency oscillations emerge from the STN
during periods of gait that require greater cortical engage-
ment. Based on increases in STN theta/alpha power we
found during the transition from double support (both feet
on the ground) to single support (ipsilateral leg on the
ground) period, we postulate that these low-frequency
modulations engage multiple motor cortical areas to gen-
erate the appropriate scale and force required during con-
tralateral leg swing to maintain stable single limb support
and bipedal locomotion.
While some suggest that low-frequency modulations dur-

ing gait may be secondary to movement-related artifacts
(Hell et al., 2018), we believe that these low-frequency oscil-
lations reflect physiological signals for several reasons. First,
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Figure 5. Unique frequency bands within each subject can differentiate gait events. A, Average heel-strike and toe-off PSDs from
the STN and M1. Each subject had unique frequency bands where power during heel-strikes (green, left heel-strike (LHS); orange
right heel-strike (RHS)) and toe-off (blue, left toe-off (LTO), pink right toe-off (RTO)) gait events were significantly different (p,0.05).
The unique frequency bands were mainly found within the canonical frequency ranges (color of shaded area), but rarely spanned
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spectral activities that change during the gait cycle are focal
in frequency range and are not broadband in nature (Fig. 3).
Second, the spectral power changes in left and right STNs
are offset by half a gait cycle, unlike in a previous study
where both STNs showed concurrent spectral power in-
creases during the gait cycle regardless of laterality (Hell et
al., 2018). Finally, the dorsal and ventral STN, as well as M1
and S1 contacts connected to the same RC1S, show differ-
ent time–frequency changes from each other during the gait
cycle and, hence, are less likely to reflect artifacts.
One key question is whether these gait-related oscilla-

tory modulations reflect physiological or pathologic gait
patterns. While our patients did not have overt gait abnor-
malities such as shuffling gait or freezing of gait, they per-
formed the walking task on dopaminergic medication,
which can affect oscillatory activity (Foffani et al., 2006;
Ray et al., 2008). Pallidal LFP recorded from patients with
segmental dystonia without gait disorders has shown
power modulations in the theta, alpha, and beta frequen-
cies during gait (Singh et al., 2011), and demonstrated
similar theta/alpha frequency power modulations during
early stance and swing phase of the contralateral leg.
While we cannot rule out the presence of compensatory
signals in the disease state, we speculate that our results
are an indicator of physiological gait, rather than patho-
logic. The dynamic changes of oscillations across differ-
ent frequency bands may provide a mechanism to
coordinate and recruit different cortical and subcortical
areas in response to changes in posture, balance, and for-
ward momentum during walking.

Cortical–subthalamic interactions during gait
In a study involving simultaneous recording of STN

LFPs and scalp EEG during walking in Parkinson’s dis-
ease patients with freezing of gait, the authors found ele-
vated cortical–STN synchrony of 4–13Hz during effective
gait (Pozzi et al., 2019). The spatiotemporal specificity of
field potentials captured by the permanently implanted corti-
cal electrodes indicate distinct interactions between the
STN and different cortical areas during gait. We demon-
strated increased STN–S1 coherence in the low-frequency
ranges (theta–alpha) during the double-support period be-
tween ipsilateral heel-strike and contralateral toe-off. We

also found increased STN–M1 theta frequency coherence
during contralateral toe-off and early contralateral leg swing.
These alternations in coherence are offset by half a gait
cycle between the left and right hemispheres. To our knowl-
edge, this is the first report of distinct patterns of STN–S1
and STN–M1 synchrony during human gait. We speculate
that increased STN–S1 coherence during ipsilateral heel-
strike to contralateral toe-off may represent sensory integra-
tion during the double support period as one prepares for
leg swing. Increases in STN–M1 theta coherence then fol-
lows during the initiation of contralateral leg swing, which
may allow the motor cortex to regulate the force of leg mus-
cle activation required to drive forward stepping during gait.
While these M1–STN interactions may represent nor-
mal recruitment of leg muscles during weight accep-
tance and transfer phase of the gait cycle, they may
also represent compensatory mechanisms by which
greater cortical activity is required to drive and main-
tain locomotion in Parkinson’s disease.

Gait event decoding and potential clinical significance
A key finding from our study was that, for each patient,

a unique range of frequencies was significantly differen-
tially modulated corresponding to the various gait events.
While these frequency bands often overlap canonical
bands, they are usually narrower and span many different
canonical frequencies. The variations among patients
may be because of slight differences in electrode place-
ment. While our results show greater than chance median
accuracy and acceptable to medium discriminatory abil-
ity, the models may be underoptimized for each subject.
By constraining the set of possible hyperparameter
values, possible values that would result in better ac-
curacy and discriminatory ability for different subjects
may have been missed. Additionally, the ratio of fea-
tures (1770 total) compared with observations during
feature selection can overfit the model, leading to poor
feature selection. Nonetheless, our study demon-
strates the feasibility of distinguishing gait events
based on cortical or STN LFP power.
One of the reasons to identify gait-specific biomarkers

is to use them as control signals for closed-loop, also
known as adaptive DBS (aDBS). The Summit RC1S

continued
the entire range (width of shaded area). Inset plots show power differences between gait events temporally distinct from each other
in relation to the gait cycle. B, Average power and standard error6 1 s around the gait event. Reciprocal power modulation, offset
by half a gait cycle, is seen between temporally distinct gait events in all subjects. Furthermore, all left hemisphere data show higher
power during left heel-strike/right toe-off, and most of the right hemisphere data show higher power during right heel-strike/left toe-
off. C, Boxplot of gait event power within the frequency bands from B. Individual gait event powers are shown as transparent col-
ored dots with outliers shown on the dotted line. Multiple-comparison tests were performed against each pair of gait event within
the same hemisphere. Level of significance is indicated as follows: *p, 0.05, **p, 0.005. (Extended Data Fig. 5-1 shows a visual-
ization of the arbitrary length frequency bands created an Kruskal-Wallis p-value heat-map.)

Table 2: Classification summary

ID Median accuracy Maximum accuracy Median AUC Maximum AUC
Subject 1 55.8% 69.2% 0.592 0.763
Subject 2 60.3% 68.0% 0.635 0.733
Subject 3 54.4% 61.1% 0.574 0.585
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Figure 6. Gait event decoding using oscillatory features achieves greater than chance accuracy. LDA ensemble classifiers were
trained on left and right toe-off events for each contact and hemisphere across all subjects. All subjects had at least one contact
where the classification accuracy of at least one model was �61.1%. Maximum accuracy achieved across all subjects were be-
tween 61.1% and 69.2%. Maximum discriminatory ability was calculated using the area under the receiver operator characteristic
curve and ranged between 0.585 and 0.763. Each subject’s models are shown on each row. The recorded area the LDA model was
built from is indicated in color and follows this order (left to right): red, ventral STN; green, dorsal STN; blue, S1; purple, M1. The bar
pattern indicates the brain hemisphere the model was built from: solid, left hemisphere; striped, right hemisphere. *p, 0.05, **p ,
0.005, ***p , 0.0005. (Extended Data Fig. 6-1 shows results from classifier models built using coherence values between the STN
and M1.)

Research Article: New Research 11 of 13

November/December 2022, 9(6) ENEURO.0325-22.2022 eNeuro.org

https://doi.org/10.1523/ENEURO.0325-22.2022.f6-1


system implanted in our subjects allows for aDBS in real
time and uses LDA to detect different brain states using
Fourier transform power within a frequency band (Sellers
et al., 2021; Ansó et al., 2022). The aDBS feature of the
Summit RC1S device has been successfully tested in PD
patients (Gilron et al., 2021a, b) and a cervical dystonia
patient (Johnson et al., 2021), with a varying timescale for
stimulation changes (from hundreds of milliseconds to mi-
nutes). Therefore, it is feasible to implement real-time
aDBS to rapidly change stimulation parameters to im-
prove gait function in Parkinson’s disease patients.

Limitations
Our sample size is small because of invasive nature of

these studies with investigational devices. Patients per-
formed all tasks while receiving medication, which may af-
fect beta power modulation. Because of variations in
patient anatomy and electrode placement, M1 and S1
electrodes may capture different parts of the homunculus.
Our event-related power modulation from the cortex may
be related to arm movement rather than leg movement.
However, in another study, we have observed that the
motor cortex is attuned to different limb movements in dif-
ferent frequency ranges (i.e., greater beta modulation
during arm swing vs greater theta modulation during leg
movement; C.K. Starkweather, M.A. Morrison, M.S.
Yaroshinsky, K.H. Louie, J. Balakid, K. Presbrey, P.A.
Starr, D.D. Wang, unpublished data). Additionally, there is
increasing evidence pointing to the existence of inter-
mixed neural tuning of the whole body, including leg and
foot movement, in the “hand knob” area of the precentral
gyrus in humans (Zeharia et al., 2012; Willett et al., 2020).

Conclusion
This study provides new insights on the role that sub-

thalamic and sensorimotor oscillations play in human gait.
Our data also support the notion that the STN and senso-
rimotor cortices contain patient-specific, gait-related fre-
quency modulations that can be used to distinguish
between left and right gait events. This knowledge has
the potential to be integrated into adaptive neuromo-
dulation therapies to improve gait functions in patients
with Parkinson’s disease.
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