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Abstract

Data Science for Materials Science

by

Benjamin Bruce Bales

Data analysis in materials science is of increased interest due to the rate at which

large datasets can be generated. This thesis covers micrograph analysis, mechanistic

modeling, and inference techniques for materials problems.

Segmentation based image analysis techniques are routinely employed for quantita-

tive analysis of complex microstructures containing multiple phases. The downside is

that computing reliable segmentations is challenging and, if no special care is taken,

segmentation artifacts will make subsequent analysis difficult. Using a two phase nickel-

base superalloy microstructure as a model system, we demonstrate a new methodology for

analysis of precipitate shapes using a segmentation-free approach based on the histogram

of oriented gradients feature descriptor (HOG), a classic tool in image analysis. The ben-

efits of this methodology for analysis of microstructure in two and three dimensions are

demonstrated.

Bayesian modeling and Hamiltonian Monte Carlo (HMC) are utilized to formulate a

robust algorithm capable of simultaneously estimating anisotropic elastic properties and

crystallographic orientation of a specimen from a list of measured resonance frequencies

collected via Resonance Ultrasound Spectroscopy (RUS). Unlike typical optimization

procedures which yield point estimates of the unknown parameters, computing a Bayesian

posterior yields probability distributions for the unknown parameters. The algorithms

described are demonstrated on RUS data collected from two parallelepiped specimens

of structural metal alloys, a specimen of fine-grained polycrystalling Ti-6Al-4V (Ti-64)
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with random crystallographic texture and isotropic elastic symmetry and a single crystal

Ni-based superalloy CMSX-4 specimen. Our unique contributions are: the application of

HMC for sampling the Bayesian posterior of a probabilistic RUS model, and the procedure

for simultaneous estimation of elastic constants and lattice-specimen misorientation.

Finally, we present a selection criterion for the Euclidean metric adapted during

warmup in an HMC sampler. This makes it possible for a sampler to automatically pick

the metric based on the model and the availability of warmup draws. Additionally, we

present a new adaptation inspired by the selection criterion that requires significantly

fewer warmup draws to be effective. The effectiveness of the selection criterion and

adaptation are demonstrated on a number of applied problems.
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Chapter 1

Introduction

In this thesis we show how data science can be used to advance research in Materials

Science and present a method for making it easier to use Hamiltonian Monte Carlo

(HMC) as a black-box Bayesian inference method.

To be more specific, the types of materials studied were single crystal superalloys used

in the manufacture of gas turbines. The data analyzed were micrographs collected for

the purpose of characterizing different superalloy microstructures, and resonance data

collected for the purpose of making precise estimates of the elastic constants of novel

superalloy compositions.

In terms of contributions, Chapter 2 discusses a technique for extracting informa-

tion from micrographs without performing an image segmentation, a notoriously difficult

piece of most existing analysis pipelines. Chapter 3 describes an approach to estimating

elastic constants (with uncertainty estimates) from resonance data, a probabilistic vari-

ant of the resonance ultrasound spectroscopy technique (RUS). Chapter 4 introduces an

improvement in the statistical techniques used for the inferences in Chapter 3.

The work in Chapter 2 was motivated by the need to automate micrograph anal-

ysis, a large driving force in superalloy development. It is difficult to perfect turbine
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Introduction Chapter 1

manufacturing technologies because the components being built and deployed are so ex-

pensive. Gas turbines are built to last – a blade in a turbine may be expected to last

tens of thousands of hours. How, then, is it possible to understand how choices about

the composition of the blade, or treatments of the blade, determine this lifetime?

The answers mostly come from pictures. Scientists take components at various points

in their lifetime and cut them open. The question of how might a change in a design

variable influence the performance of a component reduces to two constituent questions:

how might a change in design variable change a microstructure, and how might that

microstructure change influence performance. In this way, micrograph collection provides

a window into the life of gas turbines.

Rafting is prototypical of the types of information a micrograph can provide. An

example of this phenomenon is given in Figure 1.1. Once this change is quantified nu-

merically, it can provide a proxy for the connection between the design variables and

component performance. This can be done in a number of different ways. In Chapter

2 we demonstrate a technique that does not require an image segmentation operation,

which can be quite difficult to compute even with high quality micrographs.

A downside of the analysis of Chapter 2 is that it requires cutting up a part. This

is not always appropriate. For instance, if a component is to be checked before instal-

lation, then a useful check cannot destroy the component. The work in Chapter 3 is

motivated largely by this need and falls into the category of non-destructive evaluation

(NDE) of materials. The technique in Chapter 3 does not directly answer the question

of whether components are ready for use, but it does look at the related question of how

to non-destructively evaluate material properties. The technique explored is resonance

ultrasound spectroscopy (RUS), the process by which the resonance modes of a linear

elastic material are measured and then used to compute the elastic constants of that

material.

2



Introduction Chapter 1

Figure 1.1: Unrafted microstructure on left and rafted microstructure on right.
Micrographs are courtesy Luke Rettenberg.

RUS is a relatively well known technique. What makes the work in Chapter 3 unique

is that, along with elastic constants, the method provides, for single crystal materials,

an estimate of the misorientation between the crystal and the sample itself. Previously

this misorientation would need to be estimated using X-ray diffraction, requiring addi-

tional time and special equipment. We use a Bayesian formulation of the problem, which

provides uncertainty estimates on all of the model parameters. This is useful because it

makes it much easier to evaluate the precision of the experiments. The Bayesian approach

to RUS using Markov Chain Monte Carlo (MCMC) is not unique to us [1], however, the

use of Hamiltonian Monte Carlo (HMC, an MCMC variant) is. Our follow-up work in [2]

ported the code to Stan [3], a well established Bayesian inference package. This increased

the flexibility of the probabilistic model and made it possible to more easily switch be-

tween different types of RUS models and to explore a larger collection of data more easily.

As a comparison, the original work described in Chapter 3 studies two materials, whereas

the follow up work [2] studies about fifteen different material/treatment combinations.

Chapter 4 is inspired by the work involved in making the Bayesian approach to

3



Introduction Chapter 1

RUS (Chapter 3) possible. The HMC code developed in Chapter 3 is tricky to use

because there are a fair number of tuning parameters that must be set for sampling to

be efficient. Porting the RUS model to Stan, a software package for Bayesian inference,

removed this difficulty and made it possible to scale up the analysis [2] because Stan uses

more advanced HMC algorithms and an automated warmup procedure to configure itself

automatically.

The work in Chapter 4 contributes directly to the warmup procedure that MCMC

packages like Stan depend upon, and in this way impacts more than just Materials Sci-

ence. MCMC warmup procedures are used to adjust the algorithms automatically to

different problems, making it possible to develop black-box inference packages. The par-

ticular element of warmup that Chapter 4 targets is the robust estimation of a linear co-

ordinate transform that improves HMC sampling efficiency. A variety of different choices

can be made for this coordinate transformation, which presents a selection problem. In

some cases, one is better. In another case, another is better. The main observation in this

Chapter is that the effectiveness of this coordinate transform can be understood in terms

of the stability limit of the leapfrog integrator used internally in HMC. This leads to a

technique for picking between the different coordinate transformations, and an alternate

method for building the transformation that can work with shorter warmups than the

others.

4



Chapter 2

Segmentation-Free Image

Processing1

2.1 Introduction

The strong driving force for development of rigorous property models for structural

materials motivates quantitative analysis of microstructure across a spectrum of alloy

systems [4]. Since most engineering materials are multiphase in character, it is usually

essential to isolate individual phases for analysis of size, shape and/or distribution in

order to input this information into property models. The process for quantifying mi-

crostructure typically involves collection of 2D or 3D data on a pixel by pixel basis,

followed by a segmentation operation to isolate individual phases within the microstruc-

ture. Shape metrics such as volumes, surface areas, or statistical moments [5, 6]) of the

resulting precipitates are used to quantify the analysis. These metrics are chosen in part

1 c©IOP Publishing. Reproduced with permission. All rights reserved. From: Ben Bales, Tresa
Pollock, and Linda Petzold. “Segmentation-free imageprocessing and analysis of precipitate shapes in
2D and 3D”. In: Modelling and Simulation in Materials Science and Engineering 25.4 (Apr.2017), p.
045009.
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because of their similarity with quantitative microstructure analysis that has been per-

formed manually [7, 8]. The conjecture is that if enough micrographs can be captured

and enough precipitates can be characterized, the shape statistics will yield good feature

descriptors that can then be used in whatever classification or regression tasks that need

to be addressed.

The examples in this chapter are of nickel-based superalloys. For these alloys, it is

desirable to develop heat treatment cycles to adjust precipitate shapes for optimization of

mechanical properties [7]. A unique feature of this class of alloys is the tendency for the

precipitates to undergo directional coarsening during the application of external stresses

at elevated temperatures [9], a process known as ”rafting”. In both cases, measuring the

shape of the microstructural precipitates can provide important insights on alloy design

and mechanical properties.

The problem with this measurement is that the segmentations are rarely trivial. Es-

pecially across data sets, but even within datasets, it can be very difficult to parameterize

a segmentation algorithm to produce consistent results. Because the segmentation pa-

rameterization can strongly influence the shape statistics and because producing high

quality segmentation often requires extensive fine tuning of segmentation parameters, it

is difficult to argue that the resultant shape statistics are unbiased (with regards to the

segmentation). The artifacts an automated segmentation of a γ - γ′ microstructure might

produce depend on the imaging modality, but typically include:

1. A large number of single pixel γ or γ′ precipitates appear due to detector noise in

the scanning electron microscope used to generate the image.

2. Individual precipitates are merged into one large precipitate because the original

image does not have high enough resolution for them to be segmented without high

level material-specific knowledge.

6
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Figure 2.1: An example backscattered electron micrograph showing γ matrix (light)
and γ′ precipitates (dark). A, B, and B′ highlight regions where the presence of a
precipitate is uncertain. A shows four precipitates that have been incorrectly merged
by the segmentation algorithm. B and B′ highlight areas where maybe there is a
precipitate and maybe there isn’t. In both cases the segmentation algorithm must
make a decision between these two extremes.

Figure 2.1 shows an example image with the first two types of defects. These issues

are not unique to superalloy microstructures, and techniques can be developed to address

them [10, 11, 12, 13], though it is still very difficult to make them robust, particularly

across data sets. The simpler solution, if the information needed and the associated

analysis allows, is to employ image analysis approaches that do not rely on segmentation.

The goal of this chapter is to highlight how a tool from computer vision, the Histogram

of Oriented Gradients (HOG) feature detector, can be used to solve a wide variety of

relevant classification and measurement problems robustly with respect to the difficulties

enumerated above. HOG feature detectors have a long, rich history of application in

computer vision [14, 15, 16], but to the best of our knowledge have not been used in the

study of microstructure.

This chapter is organized as follows. In Section 2.2 we describe related work and

in Section 2.3 we outline computation of a HOG feature descriptor. In Section 2.4 we

demonstrate the effectiveness of the HOG feature descriptor on a number of relevant

7
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microstructure characterization problems, where microstructural information is available

in both 2D and 3D.

2.2 Related Work

There is an extensive existing literature on microstructure analysis including under-

standing how composition affects microstructure [9] [17], understanding how processing

steps affect microstructure [18], and understanding how precipitate shape properties af-

fect strength and other material properties [7], etc. Most of these papers use segmen-

tation based characterization techniques, be they measuring simple areas, aspect ratios,

and perimeters [8] or more complicated metrics [5, 6].

There are many similarities between microstructure analysis and the classic problem

of shape analysis [19] [20]. Shape analysis in general involves taking outlines of objects

and using this information, for example in simple object recognition [20] or pose estima-

tion [19]. A frequent limitation in this process was, much like for the microstructures,

obtaining the outlines of the objects. Outlining is simply a segmentation, albeit the im-

ages are usually much more complicated than a superalloy microstructure micrograph.

This field took a leap forward as techniques were developed to solve the motivating

problems directly (pose estimation, object recognition, etc.), without first doing a seg-

mentation. Even though the idea of a segmentation as a blackbox step in shape analysis

seemed reasonable, it was limiting. These changes were fueled by the introduction of

the Scale-Invariant Feature Transforms (SIFT) [21] for sparse keypoint identification,

the repopularization of HOG descriptors by Dalal and Triggs [15], and, more currently,

work in neural networks [22]. The inspiration to our current work was the success that

shape analysis enjoyed with these segmentation-free feature descriptors. There are, how-

ever, reconstruction-based imaging techniques that can directly lead to easier to segment

8



Segmentation-Free Image Processing Chapter 2

datasets [23] [24] as compared to the simple micrographs used here.

Several other microstructure characterization techniques that do not involve segmen-

tation have recently been employed, including N-point statistics [25, 26] and SIFT [27].

What, given the established application of N-point statistics and SIFT in microstructure

analysis do HOG descriptors provide? Basically, while a quantitative, segmentation-free

feature vector is desired, it is also desirable that the feature vectors be easily interpretable

by lab scientists. The strength of a segmentation is that the data it produces (the out-

lines of the precipitates) is easy to directly interpret and understand. Our goal has been

to develop a technique that makes both of these scenarios possible: quantitative analysis

similar to the N-point statistics and SIFT features, and qualitative analysis similar to

that done with segmentations. HOG descriptors, as used here, fill that gap.

2.3 Methods

Computation of the HOG feature descriptor itself is straightforward. This technique

is suitable for either standard scanning or transmission electron microscope micrographs.

First, an approximate gradient at every point in the image is computed. This is most

easily done by applying a light Gaussian blur (just a few pixel radii) to the image and

taking finite differences to obtain the gradients. The Gaussian kernel should be large

enough to remove the largest detector noise, but not so large that it blurs any important

features. Finally, the values of the gradient are summed into a histogram of gradient

angles weighted by gradient magnitudes.

For image F with Gaussian kernel G, the gradient at each point, fij, is given by

∇ (G ∗ F )ij. fij is a vector with magnitude |fij| and angle ∠fij. To build the histogram

over angles, if each bin center is denoted as θk with radius δ, then the value of the

9
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histogram W at that bin center is given by

W (θk) =
∑

|∠fij−θk|<δ

|fij| (2.1)

2.4 Results

2.4.1 Comparison of Microstructures

As stated before, a valuable feature of HOGs is the relative ease of their computa-

tion as compared to segmentations. Figure 2.2 shows the comparison of two superalloy

microstructures from Fährmann[17].

As shown in Figure 2.2, the HOG feature descriptor has peaks pointing in the normal

directions of the facets in the top sample of Figure 2.2. This is because the histogram

accumulates the magnitudes of gradients, so that where the gradient is large, large values

are accumulated. In these superalloy micrographs, the gradients are large at the edges

of precipitates. The precipitates in the bottom sample are more spherical, and the HOG

feature descriptor reflects this.

The simplest way to use the HOG as a quantitative descriptor instead of qualitative

descriptor is to look at the magnitude of the FFT of the HOG feature descriptor and

compare the relative amount of energy in different harmonics of the microstructure. The

first nine bins of the absolute value of the FFTs of the HOG feature descriptors from

Figure 2.2 are shown in Table 2.1.

We can compare how circular the precipitates in the two microstructures are by

comparing the amount of energy in bin zero of the magnitude of the FFT to all of

the other non-zero bins, and we can compare how square the precipitates in the two

microstructures are by comparing the energy in every fourth non-zero frequency bin

10
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Figure 2.2: Plot of the HOG feature descriptors (on the left) of transmission electron
microscope micrographs of two superalloy samples [17]. As can be seen, the precip-
itates in the top micrograph are more square than the precipitates in the bottom
micrograph. A two pixel blur was used in computing the gradients here.

|FFT| of HOG feature descriptors for Figure 2.2
Square (top) 59 0.46 0.70 0.65 13 1.3 0.70 0.19 2.7

Circle (bottom) 88 1.4 2.9 0.29 2.2 0.32 0.29 0.57 0.18
Index 0 1 2 3 4 5 6 7 8

Table 2.1: Magnitudes of the energies in the bins of the normalized HOG feature
vector. As can be seen, the circular microstructure has more energy allocated in its
zero bin (highlighted in dark grey), and the square microstructure has more energy
in the fourth and eighth bin (highlighted in light grey).

HOG Scores for Figure 2.2

Circle
(0Hz signal)

Square
(4Hz harmonics)

Layering
(2Hz harmonics)

Square (top) 20 0.95 0.97
Circle (bottom) 460 0.29 0.80

Table 2.2: These are the HOG scores for Figure 2.2. As can be seen, the Circle score
is much higher for the circular microstructure, and the Square score is much higher
for the square microstructure.

(four and eight highlighted in cyan) to the energy in every other non-zero frequency

bin. A similar calculation can be performed for 2Hz energies and all the harmonics.

11
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This can detect rafting in microstructures. These three numbers are a quick way to

distill microstructure information and compare images in a rotation invariant way. The

calculations for the materials from Figure 2.2 are shown in Table 2.2.

It is conceivable that the HOG feature descriptor could be employed to assess elastic

anisotropy in a single sample as well, though this is not investigated in this thesis.

There are limits to what information the HOG feature descriptor can extract from

a microstructure. For instance, if the cuboidal precipitates in the top sample of Figure

2.2 were not globally aligned with each other, then the HOG feature descriptor for that

would appear more uniform like that of the bottom sample. This could happen, for

example, if the microstructure is from a polycrystalline sample.

The HOG feature descriptor also does not directly reveal information about scale.

For instance, it does not say that precipitates in the top sample are on average larger or

smaller than the ones in the bottom sample.

Taking a step back, even though the microstructures in Figure 2.2 appear to be simple

squares and circles, the microstructure samples themselves are 3D objects. It is possible,

for instance, that if the top sample was cut on an angle the HOG plot would have more

or less peaks due to symmetry and the sectioning plane.

2.4.2 Detection of Rafting

The merits of HOG feature descriptors are easily demonstrated in the context of

nickel-based superalloys for rafting, a unique tendency in this class of alloys for the pre-

cipitates to directionally coarsen during application of stresses at elevated temperatures

[9]. Figure 2.3 shows two samples of Rene N5, one unrafted (top) and one rafted (bot-

tom) along with plots of their HOG feature vectors. Table 2.3 shows the FFT-based

scores for the rafted microstructure. The biggest change in score from the top (unrafted)

12
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microstructure to the bottom (rafted) one is the amount of energy in 4hz harmonics. The

top microstructure has a large fraction of energy there, and the bottom microstructure

has basically none.

Figure 2.3: Plot of the HOG feature descriptors of BSE micrographs of a microstruc-
ture before (top) and after (bottom) rafting. The rafting is very clear in the HOG
feature vector plots. A one pixel blur was used in computing the gradients.

Simple HOG Scores for Figure 2.3

Circle
(0Hz signal)

Square
(4Hz harmonics)

Layering
(2Hz harmonics)

Base (top) 4.4 0.69 0.91
Rafted (bottom) 9.4 0.044 0.98

Table 2.3: These are the simple HOG scores for Figure 2.3. In these two samples, the
biggest difference is that the Square score is much higher for the unrafted sample. For
the rafted sample, the Square score is lowered but the Layering score remains high.

13
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2.4.3 Analysis of 3D Transformations

HOG descriptors easily transfer to 3D datasets as well. While not as extensively de-

ployed as their 2D counterparts, these feature detectors have found practical use in video

datasets for action recognition (two spatial dimensions and one time dimension) [28].

Again, in this application, they enable microstructure analysis without segmentation.

Segmentation in 3D datasets can be quite difficult. All of the same problems with

2D data remain, except now visually verifying segmentations is more involved (requiring

either volume rendering or a careful use of contour plots).

A 3D HOG is simply a histogram across two dimensions. For visualization, it is

usually desirable to adjust the values in the histogram to account for some bins covering

a larger area on the sphere than others so that the values in the histogram are given

per-area rather than just as a total sum. This adjustment is used in Figure 2.4 to show

a 3D microstructure along with its Histogram of Oriented Gradients plot. As shown in

Figure 2.4, there are six distinct peaks corresponding to the 6 faces of the cube-shaped

precipitates. Importantly, unlike the 2-D analysis, which would return a different shape

based on the sectioning plane, the 3-D analysis would identify a cube shape regardless

of sectioning plane. The clarity of the 3D HOG plot in Figure 2.4 demonstrates the

robustness of these feature detectors to noise.

In analogy to the FFTs, it is possible to use rotation invariant spherical harmonics [30]

as feature vectors for analysis of 3D microstructures. Figure 2.5 along with Table 2.4 show

the results on a simulated coarsening experiment done by Wang [31]. The first descriptor

in Table 2.4 (“Cube”) comes from looking at every fourth non-zero frequency bin of

the rotation invarient spherical harmonics, and second descriptor (“Sphere”) comes from

looking at the energy in the zeroth bin compared to everything else. The “Cube“ score

remains relatively stable compared to the “Sphere“ score which drops precipitously. This
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Figure 2.4: On the left is the 3D HOG descriptor for a 3D BSE dataset (volume
rendered on the right) of Rene N4 dataset collected with the Tribeam system [29]. It
is the full 3D dataset associated with the image in Figure 2.1, which provides evidence
that the HOG descriptor produces easily interpretable results even in the face of large
amounts of noise (considerable effort was made to smooth the dataset for the volume
rendering).

can be explained by thinking about the precipitate edge curvature remaining constant

while the edge lengths increase. The precipitates are cuboids through the whole process,

they are just becoming less and less spherical as the microstructure coarsens.

Another simpler way to quantify 3D microstructure is to look at the mass moments of

inertia of the HOG feature descriptor itself (computed as if the HOG were a thin-shelled

spherical object with mass given by the value at each histogram point).

For a cubic microstructure, there are six peaks in the HOG feature descriptor and

three equivalent primary axis of rotation in the spherical HOG object. For a microstruc-

ture rafted into a columnar structure, there are only four strong peaks in the HOG feature

detector, and likewise two equivalent axes of rotation with large moments of inertia and a

third with a smaller moment. For a microstructure rafted into a layer by layer structure,

the HOG feature detector has only two strong peaks and there is a single large moment

of inertia and two smaller ones for the spherical HOG object. Figure 2.6 shows volume

renderings of these two types of rafting that come from simulations done by Wang [31].
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Figure 2.5: A is the base microstructure, B is timestep two in the rafting process,
and C is timestep eight. The data is from the simulations of Wang et al., [31].

Coarsening experiment
Timestep Cube Sphere

1 0.71 21.2
2 0.85 7.4
3 0.87 4.0
4 0.87 2.7
5 0.86 2.0
6 0.84 1.6
7 0.83 1.3
8 0.82 1.1
9 0.82 1.0
10 0.81 0.9

Table 2.4: The Cube and Sphere scores for these microstructures are computed
similarly to the Circle and Square scores from Table 2.2 and Table 2.3.

Table 2.5 shows the moment analysis of these experiments which reflects the behavior

described above (data also from Wang [31]).

2.4.4 Effects of Sample Drift

Other than shot noise, sample drift is another important source of error in scan

based imaging techniques. These distortions are most significant with analysis techniques

that depend on feature correlations between images, long microscope exposure times,

and high magnifications. For a detailed discussion of distortions in scanning electron
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Figure 2.6: A is the base microstructure, B is the result of rafting to columns, and
C is the result of rafting to layers. The data is from the simulations of Wang et al.,
[31].

Moments for HOGs of rafted microstructures
Columnar rafting (P-Type) Layered-by-layer rafting (N-Type)

Time m1 m2 m3 m1 m2 m3

1 0.743 0.745 0.800 0.723 0.784 0.787
2 0.731 0.733 0.823 0.688 0.802 0.804
3 0.721 0.724 0.841 0.656 0.818 0.820
...
t 0.669 0.671 0.928 0.325 0.949 0.952

t + 1 0.661 0.664 0.939 0.308 0.954 0.956
t + 2 0.657 0.659 0.945 0.297 0.957 0.959
t + 3 0.654 0.655 0.950 0.288 0.969 0.961
t + 4 0.651 0.653 0.953 0.282 0.960 0.962
t + 5 0.650 0.651 0.955 0.277 0.962 0.963

Table 2.5: Moments of the 3D HOG feature descriptor treated as a thin-shell object
with density given by the value of the HOG (at each step the total mass of this object
is scaled to one). In the columnar rafting experiment, the moments slowly transform
from all being equal to two smaller moments (m1 and m2) and one large one (m3).
In the layered rafting experiment, the moments slowly transform from being similar
to one smaller moment (m1) and two larger ones (m2 and m3).

microscopy, see [32] [33]. For the HOG descriptors used in this chapter though, it is hoped

that these issues can be largely avoided. First, the descriptors here are not useful for

spatially correlating images. Secondly, if image acquisition can be done rapidly relative

to the scale of the images acquired, then drift should be minimal. Images collected with

faster acquisition times have more shot noise, but the scale of the Gaussian filter in the
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derivative approximation of the HOG can be adjusted to accommodate for this noise.

If drift cannot be avoided, naturally the HOGs will be affected. To study the types

of error that would appear in the HOG descriptors in the presence of drift, the TEM

micrographs in Figure 2.2, the BSE micrographs in Figure 2.3, and the simulated data

set in Figure 2.5 were all subjected to artificial drift. In the case of the TEM and BSE

micrographs, this corresponds directly with sample drift in the microscope. In the case of

the 3D simulated data, which is nothing but a stack of 2D slices, this corresponds more

closely with errors in registering a 3D stack of images.

For the micrographs in Figure 2.2 and Figure 2.3, a sequence of shearing distortions

were applied that shifted the bottom of the micrograph horizontally some distance with

respect to the top. This was done for a range of distortions between zero and five

percent of the total width of the images. These experiments were repeated for a vertical

shearing distortion of the same length in pixels as the horizontal distortion. For each

distortion, the feature descriptors given in Table 2.2 and Table 2.3 were recomputed.

The maximum relative error in each of the three feature descriptors with respect to the

features computed with the undistorted data was 35% for the Square feature, 9.0% for

the Layering feature, and 23% for the Circle feature. We would expect that classifiers

based on HOG descriptors should be able to handle these errors, as the values of the

feature descriptors that discriminate between images are frequently a factor of five or

more different (as is indeed the case in Table 2.2 and Table 2.3).

For the 3D simulated data set in Figure 2.5, a similar set of shear distortions (up to

five percent) were tested. For the columnar microstructure, the distortion direction was

chosen to be perpendicular to the length of the columns (so the columns leaned to one

side) and for the layered microstructure the distortion direction was chosen in the normal

direction of the layers (so the layers were no longer level). For each level of distortion,

the moments given in Table 2.5 were recomputed. The maximum relative error in each
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of the three moments with respect to the moments of the undistorted data was 8.2% for

the smallest moment, 2.5% for the middle moment, and 1.6% for the largest moment.

Similarly to the 2D case, these errors do not change the conclusions of the analysis of

Table 2.5 (the errors in the largest moments are most important, and they are smallest).

2.5 Conclusions

This chapter demonstrates that in many types of basic microstructure analysis it is

possible to employ an histogram of oriented gradients feature vector in place of difficult to

compute segmentation statistics. While the HOG has limitations, it is easy to compute

and is more robust to common noise sources in electron microscopy techniques and can

be applied in a number of interesting applications in both 2D and 3D datasets.
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Chapter 3

Resonant Ultrasound Spectroscopy 1

3.1 Introduction

Ultrasonic techniques such as Resonant Ultrasound Spectroscopy (RUS) provide the

most accurate characterization of elastic properties [34, 35], as well as superior precision

and repeatability compared to static methods [36]. Pulse-echo ultrasonic methods assess

characteristic elastic wave propagation velocities of a material via time-of-flight mea-

surements, and with a plane-wave assumption, provide simply-defined relationships for

elastically isotropic media [34, 37]. However, when the material is elastically anisotropic,

pulse-echo experimental methods are complicated and often require multiple specimens,

with parallel faces coincident to planes of elastic symmetry, and numerous independent

velocity measurements along particular crystallographic directions [34, 37]. RUS methods

do not require a plane-wave assumption [34], nor do they require alternative experimental

procedures when characterizing elastically anisotropic materials.

Modern experimental procedures for RUS are discussed in great detail by Migliori

1Reproduced from: Ben Bales, Brent R. Goodlet, William C. Lenthe, Linda Petzold, and Tresa M.
Pollock. “Bayesian inference of elastic properties with resonant ultrasound spectroscopy”. In: The Jour-
nal of the Acoustical Society ofAmerica 143.1 (2018), pp. 7183, with the permission of AIP Publishing.
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et al. [35, 38, 39], but generally involve excitation of a specimen with vibrations from a

piezoelectric element that is in physical contact with the specimen. When the drive fre-

quency of the piezoelectric element approaches a natural vibrational mode frequency of

the specimen, a resonance condition develops from constructive interference of opposite-

traveling elastic waves to generate a standing wave throughout the specimen [35]. This

standing wave leads to deflections of the specimen surface that are magnified in ampli-

tude, potentially thousands of times greater than the drive amplitude, and are easily

recorded by a second contacting piezoelectric element [34, 35]. When collecting a broad-

band RUS measurement the lowest-frequency mode is first identified, then the specimen

is excited through a continuous range of greater frequencies until a desired quantity of

modes are collected. These characteristic resonance frequencies are then provided to an

inversion algorithm for estimating elastic properties. Today, the greatest impediments to

broad application of resonance methods for elastic property evaluation are computational

in nature.

Beyond inverting elastic properties with RUS data, crystallographic orientation can

also be determined, as briefly detailed by Sarrao et al. [40]. The techniques developed

here incorporate the ability to simultaneously estimate elastic properties and crystal

orientations when the crystal reference frame is misaligned with the specimen reference

frame. Simply machining a single crystal specimen along the crystal growth direction

is insufficient, as only a few degrees of misalignment can lead to unacceptably large

uncertainty in modulus estimates. X-ray diffraction methods are most often employed

to measure the crystallographic orientation of an RUS specimen [35, 40], but this adds

considerable complexity and cost to experimental methods as well as an additional source

of measurement error. Sarrao et al. [40] were first to report inverting crystal orientation

and elastic moduli simultaneously, and rightly note the added value provided by such a

capability. However, little guidance is offered towards reproducing their results beyond
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instructing the reader to proceed with “proper caution” by performing the inversion

with “slower convergence steps”. The present research details an alternative and robust

approach for simultaneously estimating crystal orientation and elastic properties.

3.1.1 Computational Considerations for Inversion

While straightforward theoretically, there is considerable difficulty in the practical

implementation of a RUS inversion framework. First, no general analytical solution exists

for the computation of resonance frequencies for a 3D volume of material. Therefore,

approximate (numerical) methods must be employed [35]. Meaningful contributions of

numerous researchers over many decades including Holland (1968) [41], Demarest (1971)

[42], Ohno (1976) [43], and Visscher et al. (1991) [44] have culminated in a generalized

numerical approach for solving the forward problem based on variational methods. The

xyz method of Visscher et al. is applicable to most simple specimen geometries and

requires minimal computational resources [44], given that all of the requisite information

about the specimen geometry and material properties are provided. Ultimately, the

viability of any inverse method for evaluating elastic properties from RUS measurements

depends on an efficient and accurate forward calculation method [35].

As the resonance frequencies of a specimen are dependent on its shape, elastic con-

stants, density, external forces, and the orientation of the elastic body, the deconvolution

of unknown parameters from resonance frequencies is far from a trivial task. In fact,

no closed form solution to this problem exists whereby unknown attributes of the spec-

imen geometry or material properties are computed directly from a measured list of

resonance frequencies [35]. Therefore, inverse methods are employed to find values for

the unknown parameters that bring a forward calculation of resonance frequencies into

sufficient agreement with the resonance frequencies measured via RUS. Historically, elas-
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tic property inversion of RUS data has been accomplished via nonlinear least square

optimization algorithms [35, 45, 46]. For this task, the Levenberg-Marquardt (LM) algo-

rithm popularized by Migliori et al. [35, 38] combines a modified Newton method with

the steepest descent algorithm [38, 40, 45] to perform the inversion.

The least squares approach for overdetermined systems is popular due to its compu-

tational simplicity, but often suffers from a lack of robustness to outliers in the data set

[47]. Another unfortunate characteristic of optimization-based inversion methods is that

different initial parameterizations (i.e. “best guess” elastic moduli and optimizer-specific

parameters) can lead the optimization algorithm to alternative solutions, while “poor”

initial guess values may preclude convergence entirely [48, 49]. This problem is not unique

to the LM algorithm, as similar concerns exist for genetic algorithms [48, 50, 51].

An ideal inversion framework would be robust to uncertainty in the initial parameter-

ization, noise in the measured data, misidentified modes, as well as missing or spurious

modes; and would consistently converge to the correct solution. Ogi et al. [52] demon-

strate an optimizer-based inversion framework capable of reliable convergence without

the benefit of quality initial guess moduli. But their framework first requires proper mode

identification via laser Doppler interferometry mapping of resonance mode shapes [52].

Indeed collecting additional data may simplify the inversion procedure, as would prepar-

ing a specimen with its crystal axes aligned with the specimen axes. But these methods

only complicate experimental procedures while adding considerable cost. Ogi et al. go on

to conclude that “correct mode identification is essential for successful, optimum deter-

mination of material coefficients” [52]. However, as this research will demonstrate, mode

identification, quality initial guess moduli, and x-ray measurements of crystal orientation

are by no means essential elements of a robust RUS inversion framework.
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3.1.2 Implications of a Bayesian Approach to Inversion

A considerable downside to Bayesian techniques is the increased computation time, as

the number of forward calculations necessary for HMC sampling of the posterior distribu-

tions is significantly greater than optimizer-based methods. However, thanks to advances

in computing, Bayesian estimates of elastic constants and orientation parameters from

measured resonance frequencies is now possible.

Most classic RUS computations provide only point estimates of elastic constants;

that is, single number estimates for each parameter in the RUS model regardless of the

amount or precision of data. Point estimates are unsatisfactory in many inverse problems

because they do not give information about how well a fit worked or how well a parameter

is known. Bayesian techniques can be used to avoid these problems by systematically

estimating uncertainty. It is very reasonable that a point estimate produces answers that

are “good enough” in controlled experiments, but it is difficult to develop confidence in

the methods for experiments where prior knowledge is sparse.

In a manner similar to that of Bernard et al. [1], the approach developed here improves

upon classical RUS inversion by reformulating the problem as a Bayesian inference and

characterizing the unknown parameters through sampling the resultant posterior distri-

bution. The capability to simultaneously estimate the orientation and elastic properties of

elastically anisotropic bodies offers further improvement to classical RUS inversion tech-

niques, simplifying specimen preparation procedures and eliminating a potential source

of measurement error. Key advantages and disadvantages of a Bayesian formulation will

be highlighted, along with experimental and computational considerations helpful for

replication. Ultimately this work intends to demonstrate robust convergence behavior ir-

respective of initial parameterization and easy-to-interpret uncertainties for all parameter

estimates.
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3.2 Experimental Methods

3.2.1 Specimen Preparation

Regular parallelepiped specimens of fine-grained polycrystalline Ti-6Al-4V (Ti-64)

and single crystal Ni-based superalloy CMSX-4 were machined via wire EDM (electri-

cal discharge machining) then carefully ground with 800-grit sandpaper to remove the

superficial EDM damage layer. The Ti-64 specimen measured 7.753 x 9.057 x 13.199

mm, with a mass of 4.0795 g and a calculated density of 4402 kg/m3. The CMSX-4

parallelepiped dimensions were 11.959 x 13.953 x 19.976 mm with a mass of 29.0041 g

and a calculated density of 8701.4 kg/m3. With randomly oriented grains, the Ti-64

specimen exhibits isotropic elastic symmetry while the single crystal CMSX-4 material

possesses cubic symmetry. Minimizing geometric defects during specimen fabrication

and precise measurement of the geometry and mass are important for minimizing the

uncertainty in the HMC parameter estimates; with a “good” parallelepiped geometry,

according to Migliori et al., exhibiting dimensional errors less than 0.1% [38]. The only

notable divergence between this work and the typical specimen fabrication procedures

outlined by Migliori and Sarrao [35] is that no attempt was made to align the axes of

the parallelepiped to the crystallographic axes of the CMSX-4 material. As orientation

and elastic constants will be determined simultaneously through inversion, any arbitrary

misorientation between the crystal and specimen axes is allowed.

3.2.2 Resonant Ultrasound Spectroscopy

RUS Experimental Setup

RUS data were collected using commercially-available RUS equipment developed by

the Vibrant Corporation consisting of three primary components: a transceiver, a piezo-
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electric transducer (PT) cradle, and a computer control unit. Figure 3.1 shows the con-

figuration of the PT cradle, comprised of three custom-built omnidirectional piezoelectric

transducers held in a tripod configuration with adjustable optical table fixtures affixed

to a vibration-damped breadboard. The PTs were custom built and consist of a cylindri-

cal brass housing encasing a piezoelectric element, electrical leads, and a wear-resistant

hemispherical silicon carbide tip. The parallelepiped specimens freely rest upon the sili-

con carbide-tipped transducers, with no couplant necessary to facilitate the transmission

of vibrations between the transducers and the specimen [34, 35].

Figure 3.1: Piezoelectric transducers configured into a cradle supporting the CMSX-4
parallelepiped specimen.

The “drive PT” in Figure 3.1 is driven with a swept sinusoidal signal from the

transceiver to excite the specimen to resonate, while two “receive PTs” convert vibra-
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tions from the specimen back to an electrical signal that is returned to the transceiver

and computer control unit for analysis. As a principle of mechanical resonance, a stand-

ing elastic wave develops throughout the specimen when the drive frequency approaches

a resonance frequency of the specimen. With the magnitude of the vibrations ampli-

fied by hundreds to thousands of times the driving force amplitude, depending on the

ultrasonic attenuation (i.e. damping characteristics) of the material [34, 35]. Plotting

the signal registered by the two receive PTs as a function of the drive frequency yields

a broadband RUS spectrum plot, with each peak indicating the frequency of a unique

resonance mode. Figure 3.2 shows a broadband resonance spectrum plot collected from

the CMSX-4 specimen, with 53 resonance modes across the 200 kHz broadband.

Figure 3.2: RUS broadband spectrum plot collected from the CMSX-4 specimen.
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RUS Measurement Considerations

It is important to minimize the magnitude and the variability of any external forces on

the specimen while collecting RUS data because these external forces can interfere with

the free vibrations of the specimen and affect the frequencies that are measured [38, 53].

Configuring the piezoelectric transducers into a fixed cradle as detailed by Figure 3.1

serves to minimize contact force variability between the specimen and the transducers

across multiple measurements and specimen sizes. However, as the specimen is free to

deflect away from the PT cradle during resonance the signal amplitude information is

generally unreliable. For this reason the broadband RUS data plotted in Figure 3.2 are

given with arbitrary units (a.u.). When amplitude information is necessary, to measure

acoustic attenuation for instance, parallelepiped specimens are often pinched between

two (often planar) PTs [53]. Note that the corners of a parallelepiped are the optimal

location for excitation and measurement of resonance frequencies [38]; but for the purpose

of determining elastic constants the cradle configuration has proven itself simple and

effective.

RUS Data Collection

Broadband RUS spectra were collected at room temperature and at standard atmo-

spheric pressure in accordance with ASTM standard practice 2534-15 [54]. The broad-

band scans ranged from 60–260 kHz for the CMSX-4 specimen and from 100–375 kHz

for the Ti-64 specimen. Distillation of the broadband resonance spectrum into a list of

resonance frequencies was automated for consistency and verified through inspection as

the data were collected. Missing or spuriously identifying a mode can greatly confound

the process of determining elastic constants [35], therefore considerable attention was

directed towards ensuring that measured lists of resonance frequencies accurately reflect
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the specimen from which they were collected. Occasionally a resonance peak will be

obscured by a higher-amplitude peak in close proximity, but rarely are modes completely

missed by both receive PTs of the cradle configured as shown in Figure 3.1. Neverthe-

less, each broadband measurement was repeated five times, with the specimen removed

and replaced on the PT cradle after each measurement to ensure that any unintentional

specimen-transducer interactions related to specimen placement would not be repeated.

From the multiple broadband measurements a single average list of resonance frequencies

was created, from which all computations and property estimates were based.

3.2.3 Crystallographic Orientation Measurements

To measure the orientation of the CMSX-4 crystal reference frame, a series of x-ray

diffraction (XRD) measurements were collected using a Rigaku Smartlab High-Resolution

Diffractometer with motorized RX-RY stage. First, the broad face of the specimen

was prepared in accordance with standard metallographic techniques: wet grinding with

1200-grit paper, mechanical polishing via diamond suspension to 0.25 micron, and a final

electrochemical etch. Then the specimen was affixed to the RX-RY stage of the diffrac-

tometer, which tilted in two orthogonal directions while Bragg peaks were recorded for

{100}, {110}, and {111} crystallographic planes. A least squares fit of the stage position,

corresponding to the crystal plane normal vectors, determined the crystal orientation:

(0.987, -0.00526, -0.158, 0.0164) as a passive unit quaternion (ordered as wxyz) and an

uncertainty of approximately one degree.

3.3 Computations

The following sections discuss the development of a statistical model for characterizing

elastic constants via RUS. Section 3.3.1 reviews the basic mechanics of the system, which
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are very similar to previous RUS works [38, 44, 1]. Section 3.3.2 introduces the Bayesian

RUS model, and Section 3.3.3 describes how the Bayesian computations are carried out.

3.3.1 Forward Model

Data in this experiment is modeled as:

X1, X2, . . . , XN = f(c11, c12, ...) + ξ (3.1)

where X1, X2, ..., XN are the measured measured resonance modes, f is the forward

model which computes the resonance modes of the specimen given the necessary elastic

constants, and ξ is a noise term that represents the combined uncertainty in fabrication

and measurement of the specimen. Following [44] and [1], the specimen in the forward

model is approximated as an undamped linear harmonic oscillator with free boundary

conditions:

Ku = M
∂2u

∂t2
(3.2)

where K is the stiffness matrix, M is the mass matrix, and u is a vector of displacements

in three dimensions. K and M are computed from either a Rayleigh-Ritz or finite element

(FEM) approximation to the problem. Taking the Fourier transform in time (to find the

steady state solution) yields:

Ku = ω2Mu (3.3)

with square roots of the eigenvalues (ω) of this generalized eigenvalue problem being the

measured resonance modes.

Herein, a Rayleigh-Ritz solver with polynomial basis is used to compute these eigen-

values (again following the derivations in [44] and [1]). An FEM solver was tested as

well, though it was significantly slower than the Rayleigh-Ritz method for the simple
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geometry (parallelepiped) used here. The equations for the basis polynomials, stiffness

matrix (K) and mass matrix (M) from [1] are reproduced in Eqs. 3.4-3.7 (using Einstein

notation for tensors):

φλ (x, y, z) = xnymzl , (3.4)

{
λ = (n,m, l) |n,m, l ∈ N0, n+m+ l 6 N

}
, (3.5)

Kiλ,kλ′ =
3∑

j,i=1

Cijkl

∫
V

εij (φλ) εkl (φλ′) dV , (3.6)

Miλ,kλ′ = ρδik

∫
V

φλφλ′ dV . (3.7)

In Eqs. 3.4-3.7 above, N is the maximum order of polynomials used in the resonance

approximation (usually 10-14), where Cijkl is the stiffness tensor.

If the crystal lattice is not aligned with the specimen axes, then Cijkl must be ad-

justed. If the rotation from the specimen axes to the crystal axes is represented as a

passive unit quaternion with elements wxyz, and C ′pqrs are the elastic constants of an

aligned specimen, then the effective elastic constants of the rotated specimen, Cijkl can

be computed as follows:

q =


w2 + x2 − y2 − z2 2(xy − wz) 2(xz + wy)

2(yx+ wz) w2 − x2 + y2 − z2 2(yz − wx)

2(zx− wy) 2(zy + wx) w2 − x2 − y2 + z2

 (3.8)

Cijkl = qipqjqC
′
pqrsqkrqls . (3.9)

For more information, see Section 3.2.11 in Bower [55].
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3.3.2 Building a Statistical RUS Model

Since the noise (ξ) in Eq. 3.1 was modeled as a random variable, the outputs

(X1, X2, . . . , XN) are also random variables. Assuming the noise of each mode is nor-

mally distributed with mean zero and variance σ2, the probability of measuring a set

of resonance modes (X0, X1, . . . , XN) given the elastic constants (c11, c12, etc.) can be

written using the forward model, f , as:

P (X0, X1, . . . , XN |c11, c12, . . .) ∼ N (f(c11, c12, . . .), σ
2) . (3.10)

This equation, usually written in shorthand as P (X|θ), is known as the likelihood, and

is the probability of measuring a set of data given some fixed parameters. For an inverse

problem, it is the opposite relation, P (θ|X), or the probability that parameters take

certain values given the measured data. P (θ|X) is known as the posterior distribution,

and in a Bayesian interpretation represents the uncertainty in a set of parameters given

the data. The posterior can be computed from the likelihood and any prior knowledge

about the parameters by using Bayes’ rule:

P (θ|X)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P (X|θ)

Prior︷︸︸︷
P (θ)

P (X)︸ ︷︷ ︸
PriorPredictive

. (3.11)

The P (θ) term is called the prior because it is specified to contain the prior beliefs

about the probabilities of certain parameters (which could be as simple as requiring a

parameter to be positive, or something much more complicated). P (X) is the prior

predictive distribution. It can be computed from the likelihood and the prior (P (X) =∫
P (X|θ)P (θ)dθ), but for the Monte Carlo computations here can be regarded as a

normalization constant and ignored.
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If the model and data match well, the posterior distributions on the parameters will

be tight, and it will be easy to extract estimates for the parameters. However, from the

outset, it is unclear how informative the posterior will actually be. It is possible, for

instance, to have higher confidence in one parameter than another, or to have multiple

values of a parameter that give equally likely explanations for the data. Because of

this uncertainty, it is important to compute the full posterior P (θ|X) and work with

confidence intervals rather than just returning a single estimate.

Returning to Eq. 3.1, this chapter assumes that the noise (ξ) is distributed nor-

mally about every resonance mode with a single variance (i.e. the scale of the noise does

not change for each mode). The primary justification for picking this model comes a-

posteriori by checking that the model explains the data well with few outliers. Of course

such a check is not always so simple, as the standards for “explaining the data well” and

the definition of an outlier are very application specific. In this work the RUS measure-

ment noise (presumably from inconsistent placement of the specimen on the transducer

cradle or specimen transducer interactions) was much smaller than the noise inherent

to the specimen itself (presumably from specimen fabrication). Unfortunately, specimen

fabrication is not easily repeatable in a manner that would allow for multiple independent

samples, making it difficult to ever fully justify these assumptions. A seemingly unavoid-

able feature of RUS measurements is that a few of the lowest-frequency resonance modes

are more difficult to measure consistently [35] which could also cause problems with the

mode-invariant noise assumption.

Following the assumptions stated above, given that one set of resonance modes is

available, every measurement goes towards estimating the lumped variance parameter.
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Thus the complete likelihood can be stated as:

P (X|θ) =
∏
i

1√
2πσ2

i

e
(fi(θ)−Xi)

2

2σ2
i (3.12)

where fi(θ) is the ith computed resonance mode. By collecting many independent reso-

nance mode measurements, the estimates for θ can be tightened to suitable levels.

The prior term (P (θ)) can be used to specify prior information about a parameter.

For instance, it makes sense to assume that the c11 elastic constant is positive, somewhere

between zero and a few hundred gigapascals. This can be expressed by a uniform prior

distribution P (c11) = U(0 GPa, 500 GPa). Likewise, perhaps a parameter is known

to some precision, in which case a normal prior like P (c11) = N (200 GPa, 10 GPa)

is reasonable. For this work, the prior on the variance parameter was set to σ2 =

U(0 kHz,∞ kHz).

3.3.3 Computing the Posterior (Hamiltonian Monte Carlo)

Given a likelihood and prior, it is trivial to use Bayes’ theorem to write out an

expression for the posterior. However, evaluating this expression is difficult because the

dimension of θ can be large and the cost of evaluating the likelihood high. It is possible,

though, to approximate the posterior by drawing samples from it using Monte Carlo

techniques.

The Monte Carlo technique used in this chapter is Hamiltonian Monte Carlo (HMC).

To understand the results it will be useful to quickly review the characteristics of HMC

and Markov Chain Monte Carlo (MCMC) methods in general. Perhaps the most common

MCMC method is Metropolis Monte Carlo (Metropolis MC). In physics terms, Metropo-

lis MC generates a sequence of samples s0, s1, . . . , sN that represent states drawn from

a thermodynamic equilibrium. The Metropolis algorithm, like all MCMC methods, pro-
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ceeds sequentially. That is, state si−1 is used to generate si. The jump from si−1 to si is

chosen randomly, and the decision to keep or reject the new state si is made based on the

difference in an energy function ∆Φ = Φ(si)−Φ(si−1), representing the transition energy

from state si−1 to state si. If the Metropolis algorithm accepts and rejects are handled

properly in accordance with the energy function Φ, then the sequence of states generated

by the process will have physical meaning with regards to the thermal equilibrium of the

simulated system.

In statistical applications, the sequence of states, s0, s1, . . . , sN , is replaced with a

sequence of parameterizations, θ0, θ1, . . . , θN , and Φ is set equal to logP (X|θ)P (θ), the

log of the joint distribution. A common pitfall for newcomers is wondering what role∫
X plays in this. X is the measured data. It is fixed, and does not change. Sampling

only happens over the parameters (
∫
θ) in the joint distribution. With this choice of Φ,

the Metropolis Monte Carlo method will generate a sequence of parameterizations where

each parameterization, θ, is drawn from a distribution proportional to the true posterior.

These samples can then be used to approximate the true posterior.

Application of Metropolis MC is mostly limited for computational reasons. In prac-

tice, Metropolis MC does not efficiently explore parameter space due to how it randomly

selects new parameterizations with very little regard to the problem at hand. Hamiltonian

Monte Carlo addresses this issue where possible by using the gradient of logP (X|θ)P (θ)

to select new states more intelligently. Compared to Metropolis MC (and many other

MCMC methods), HMC generates posterior samples much more efficiently. The need for

the derivatives of logP (X|θ)P (θ) limits HMC’s applicability in general, but the necessary

derivatives are available in the forward model used here. A key parameter for HMC is

the time step, which will determine how efficiently the chain can move around parameter

space. The time step cannot be too large though, or the HMC chain will go unstable and

always reject new states.
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Without going into too much detail, the Hamiltonian Monte Carlo algorithm used in

this chapter was taken from [56]. The orientation parameters are handled by the special

integrator in [57]. This is necessary because, while quaternions are expessed as vectors

with four elements, the lengths of these vectors are constrained to be one. The method

outline in [57] allows for efficient sampling of parameters like these. The technique in

[56] for using multiple steps sizes was critical for achieving efficient sampling.

Necessary Derivatives

The gradient of logP (X|θ)P (θ) is derived here. All derivatives are computed with

the chain rule. P (θ) is assumed equal to one to simplify the math (the non-negativity

constraint on σ2 is controlled with a parameter transformation [58]).

Elastic Constants

With P (θ) equal to one, the logP (X|θ)P (θ) term is simplified to logP (X|θ). Using

the chain rule to write the partial derivative of the log-likelihood with respect to the

parameter c11 gives the sum:

∂logP (X|θ)
∂c11

=
∑
i

∂logP (X|θ)
∂ωi

∂ωi
∂c11

(3.13)

where ωi is the ith resonance mode, or the ith index of f(θ). The partial derivative with

respect to ωi is easy to compute (given the likelihood in Eq. 3.12):

∂logP (X|θ)
∂ωi

=
−(ωi −Xi)

σ2
. (3.14)

The partial derivative of ωi with respect to c11 (or any elastic constant) requires deriva-

tives of the eigenvalues (the ω2
i s) of Eq. 3.3. Given a number of distinct eigenvalues (ω2

i )
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and orthonormal eigenvectors (νi), the derivative of the ith eigenvalue can be computed

as in [59]:

∂ω2
i

∂c11

= νTi
∂K

∂c11

νi (3.15)

∂ωi
∂c11

=
1

2ωi

∂ω2
i

∂c11

=
1

2ωi
νTi

∂K

∂c11

νi . (3.16)

The partial derivatives of the eigenvalues requires derivatives of the stiffness matrix from

Eq. 3.3. These can be obtained from the construction in Eq. 3.6:

∂Kiλ,kλ′

∂c11

=
3∑

j,i=1

∂Cijkl
∂c11

∫
V

εij (φλ) εkl (φλ′) dV , (3.17)

while
∂Cijkl
∂c11

arises from the specific symmetry of the system. For a cubic crystal specimen,

Cijkl and
∂Cijkl
∂c11

are given by:

Cijkl =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


(3.18)

and
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∂Cijkl
∂c11

=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (3.19)

Combining Eqs. 3.14, 3.16, 3.17, and 3.19 give the necessary expression for logP (X|θ)
∂c11

.

This can be repeated for the other elastic constants as well.

Finally, instead of estimating the three cubic stiffness parameters: c11, c12, and c44

directly, a simple parameter transformation was employed for improved mobility and

HMC sampling. The transformed parameter space: c11, A, and c44 was used herein, with

A being the cubic anisotropy ratio:

A =
2C44

C11 − C12

(3.20)

as defined by Zener [60].

Noise term (σ)

The partial derivative of the log-likelihood with respect to the standard deviation

term σ is given by:

∂logP (X|θ)
∂σ

= −N
σ

+
N∑
i

(ωi −Xi)
2

σ3
. (3.21)
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Lattice-Specimen Orientations

As stated in Section 3.3.1, the lattice-specimen orientation is parameterized as a pas-

sive unit quaternion. Though Euler angles are commonly used in electron backscatter

diffraction experiments to characterize the lattice-specimen orientation, this parameter-

ization is not trivial to work with in Bayesian inference. In particular, an adjustment

must be applied to the posterior density to achieve a uniform prior on the orientation

parameter and allowances must be made for the fact that the basic HMC sampler de-

scribed in [56] operates in an unconstrained coordinate space instead of the constrained

space of Euler angles [61]. Quaternions were used instead.

Quaternions, though expressed in four dimensions (w, x, y, z), live on a three dimen-

sional manifold characterized by:

w2 + x2 + y2 + z2 = 1 . (3.22)

In other words, not all combinations of four real numbers make a valid quaternion.

In order to sample correctly on this manifold, the Geodesic HMC algorithm in [57] is

used. Without going into detail, Byrne [57] adjusts random momentum generation and

timestepping in HMC to keep the quaternion parameters on the manifold (Eq. 3.22).

These quaternions can be converted back to Euler angles as needed.

Computing the partial derivatives of the log-likelihood with respect to an orientation

parameter, for instance w, is the same as for an elastic constant up to the term
∂Cijkl
∂w

(simply replace c11 with w in Eqs. 3.14, 3.16, and 3.17). These require partial derivatives
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of Eq. 3.6 and Eq. 3.8:

∂Cijkl
∂w

=
∂qip
∂w

qjqC
′
pqrsqkrqls+

qip
∂qjq
∂w

C ′pqrsqkrqls+

qipqjqC
′
pqrs

∂qkr
∂w

qls+

qipqjqC
′
pqrsqkr

∂qls
∂w

(3.23)

∂q

∂w
= 2


w −z y

z w −x

−y x w

 . (3.24)

3.4 Results

3.4.1 Polycrystalline Ti-64

Polycrystalline Ti-64 elastic constants were inverted using the geometries given in

Section 3.2.1 along with the first thirty measured resonance modes. The Ti-64 material

was produced in a large-scale billet via an isothermal multi-step ”abc” forging process,

with the material upset forged along three orthogonal (abc) axes until a cumulative strain

of three was achieved. As Zherebtsov et al. [62] report, the result was a homogeneous

(texture free) microstructure of globular alpha and alpha-beta subgrains, with an average

grain size of approximately 0.4 microns. With such a refined microstructure, smaller than

the resonance mode wavelengths by over an order of magnitude, the abc forged Ti-64

behaves as a homogeneous elastic body with isotropic elastic symmetry. This isotropy

assumption, however, was not enforced. The standard deviation σ of the noise was

constrained to be positive. The initial conditions for the sampler were chosen as c11 = 2.0,

40



Resonant Ultrasound Spectroscopy Chapter 3

A = 1.0, c44 = 1.0, and σ = 5.0 (c11 and c44 are specified in units of 1011 Pa, and σ is

specified in units of kHz). The final inverted parameters are given in Table 3.1 along

with reference values from Fisher and Renken [63]. Note that Fisher and Renken [63]

provide single crystal stiffness values for pure titanium, which are commonly accepted as

sufficient for Ti-64. These elastic constants were then converted to isotropic moduli using

a Voigt-Reuss-Hill average scheme [64]. Clearly the inverted value of A = 1.000± 0.002

demonstrates the Ti-64 material is effectively isotropic.

Table 3.1: Summary of estimated parameters for Ti-64 specimen alongside reference values.
Parameter Reference[63] Bayesian estimate (µ± σ)

c11 1.651× 1011 Pa (1.703± 0.015)× 1011 Pa
c44 4.330× 1010 Pa (4.492± 0.001)× 1010 Pa
σ — (0.414± 0.058)× 103 Hz
A 1.0001 1.0002 ± 0.002

The full estimated posterior distributions for the four parameters (two elastic con-

stants, the anisotropy ratio, and the error term, σ) are shown in Figure 3.3. All the

parameters (c11, A, c44, and σ) are well approximated by the superimposed normal dis-

tributions. This (visually estimated) quality of the fits justifies the use of mean and

standard deviation, summarized in Table 3.1.

In Bayesian modeling, the two basic tools for validating an inversion are traceplots,

which are plots of the sequence of states sampled by the MCMC sampler, and posterior

predictive distribution plots. The traceplots for the last four thousand posterior samples

for the Ti-64 specimen are plotted in Figure 3.4. Extracting information from a traceplot

is fairly straightforward. If the distribution of samples in the traceplot is stationary for

a long period of time, the chain is assumed (but not guaranteed) to be sampling from

the true posterior. Traceplots are usually the easiest place to detect modeling problems.

If, for instance, a parameter enters an invalid range or shows a bimodal tendency, it is

usually easy to spot in the traceplots. The traceplots in Figure 3.4 show nothing unusual,
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Figure 3.3: Approximate posterior distributions (normalized to a PDF scale) for
c11, A, c44, and σ computed from four thousand HMC samples. Normal PDF fits are
superimposed to justify the use of mean and standard deviation to characterize the
posteriors. c11 and c44 are given in units of 1011 Pa, and σ is given in units of kHz.
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suggesting that the samples themselves come from the true posterior of the model.

Figure 3.4: Traceplots (last four thousand samples) for the estimated parameters for
the polycrystalline Ti specimen. c11 and c44 are given in units of 1011 Pa, and σ is
given in units of kHz.

The second tool for validating a Bayesian modeling process are the posterior predic-

tive distributions. The posterior predictive distributions are the distributions generated

if samples from the approximated posterior distribution are used to generate new reso-

nance modes. The quality of fit can be evaluated by comparing the posterior predictive

distributions to the measured resonance modes. In the context of RUS measurements,

evaluating the “quality of fit” means making sure there are not many outliers in the
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Table 3.2: Ti-64 specimen measured and posterior predictive modes, (µ± σ).
Mode Measured (kHz) Q Ave.1 Posterior2 (kHz)

1 109.076± 0.027 3,832 108.86± 0.43
2 136.503± 0.083 3,209 135.97± 0.43
3 144.899± 0.051 3,157 144.42± 0.41
4 184.926± 0.046 6,482 184.60± 0.44
5 188.476± 0.029 4,781 187.99± 0.43
6 195.562± 0.032 6,828 195.56± 0.44
7 199.246± 0.029 7,016 199.19± 0.44
8 208.460± 0.078 6,162 208.08± 0.43
9 231.220± 0.030 7,241 231.63± 0.44
10 232.630± 0.042 6,759 232.47± 0.44
11 239.057± 0.033 2,874 239.09± 0.45
12 241.684± 0.077 7,148 242.24± 0.44
13 242.159± 0.030 7,367 242.53± 0.44
14 249.891± 0.079 7,436 249.89± 0.42
15 266.285± 0.097 7,771 267.20± 0.46
16 272.672± 0.069 8,376 272.49± 0.44
17 285.217± 0.037 7,984 285.04± 0.45
18 285.670± 0.095 8,008 285.65± 0.43
19 288.796± 0.023 10,400 289.23± 0.45
20 296.976± 0.060 7,651 296.77± 0.42
21 301.101± 0.030 8,687 301.60± 0.46
22 303.024± 0.053 8,854 303.03± 0.43
23 305.115± 0.058 9,296 305.02± 0.44
24 305.827± 0.067 9,509 305.26± 0.47
25 306.939± 0.034 10,706 306.39± 0.45
26 310.428± 0.024 6,946 310.15± 0.44
27 318.000± 0.042 11,199 317.51± 0.45
28 319.457± 0.040 7,600 319.88± 0.47
29 322.249± 0.053 10,011 322.17± 0.42
30 323.464± 0.027 9,986 322.93± 0.44

44



Resonant Ultrasound Spectroscopy Chapter 3

data (for instance, by making sure 95% of the data is within the 95% posterior predic-

tive intervals) and identifying any systematic biases in the posterior predictive means.

One example of this would be if the first ten posterior predictive resonance modes were

all estimated with mean frequencies less than their respective measured modes. Errors

should appear random. Any structure suggests a problem in the model or the data. For

RUS, this could include missing or spurious resonance modes as part of the measured

frequency list that will be readily identifiable when compared to the posterior predictive

distributions. If a missing mode is identified, the term in the likelihood in Eq. 3.12

corresponding to the missing mode is removed (since that data is not available), and the

inference rerun for improved results.

The posterior predictive distributions for the Ti specimen are shown in Table 3.2,

along with the first 30 measured resonance modes for comparison. As can be seen, all

but one measured mode is in the 95% posterior interval and the estimated noise level is

on par with what could be expected by measuring other specimens produced with the

same specifications. The average quality factor (Q Ave.) and the standard deviation

of the measured modes is provided for context about the repeatability and quality of

the RUS measurements. As the specimen was removed, rotated, and then replaced on

the transducer cradle between each broadband measurement, the standard deviation of

the measured frequencies varied more significantly than they would have if the specimen

was not removed between measurements. But having successfully identified each of the

first 30 modes with an average standard deviation of 0.05 kHz, the procedure is deemed

acceptable. While the measurement uncertainty is approximately one-quarter of the noise

estimate, itself representing a combination of (measured and modeled) sources.

Given the combined evidence from the traceplots, the posterior predictive distribu-

tions, and the posterior distributions themselves, it is reasonable to conclude that the

model describes the data well and that statements based on the computed posterior
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distributions should represent the physical system.

3.4.2 Single Crystal CMSX-4

The single crystal CMSX-4 elastic constants and orientation were inverted using the

geometries given in Section 3.2.1 and the first thirty measured resonance modes. Instead

of running a single, long HMC chain, the inference was broken into warmup and post-

warmup stages (as described in [65, Chapter 12]). In the warmup stage, four chains are

run from a fixed initial condition c11 = 2.0, A = 1.0, c44 = 1.0, and σ = 5.0 to find

reasonable parameter estimates (c11 and c44 are specified in units of 1011 Pa, and σ is

specified in units of kHz). In the warmup stage the sampler needs to move around very-

low probability areas of parameter space, and for stability the HMC timestep must be

kept relatively small. After running the chains long enough to reach the high probability

region of parameter space, new chains were initialized with larger HMC timesteps to more

efficiently explore the posterior. In both stages, multiple chains are run to verify that the

HMC is converging to the same solution. While only the samples from the post-warmup

stage are used for the inferences.

The warmup traceplots are shown in Figure 3.5, while the post-warmup traceplots

are shown in Figure 3.6. As can be seen in these figures, all the chains in both warmup

and post-warmup stages are sampling the same region of parameter space. While a key

difference between the plots is that the post-warmup chains more aggressively explore

the c11 and σ parameter spaces (due to the larger HMC timestep). Table 3.3 summarizes

the material parameter estimates from each of the four 1000-sample HMC chains, as well

as the sum total of the four chains presented in Figure 3.6. The consistency between the

mean values of the four chains is a testament to the reliability of the inference, while

the standard deviation associated with each mean demonstrates the precision of the
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Table 3.3: Summary of CMSX-4 parameter estimates and 95% posterior interval from
each of the four HMC chains of 1000 samples each.

Parameter
(units)

Chain Mean ± std
(µ± σ)

Posterior int.
2.5% 97.5%

c11

(1011 Pa)

1 2.492 ± 0.040 2.418 2.574
2 2.492 ± 0.041 2.415 2.580
3 2.493 ± 0.041 2.418 2.578
4 2.489 ± 0.040 2.417 2.569

1-4 2.492 ± 0.040 2.417 2.576

c44

(1011 Pa)

1 1.3145 ± 0.0025 1.3099 1.3196
2 1.3144 ± 0.0027 1.3089 1.3203
3 1.3145 ± 0.0026 1.3092 1.3198
4 1.3143 ± 0.0026 1.3094 1.3194

1-4 1.3144 ± 0.0026 1.3093 1.3197

A

1 2.8652 ± 0.0075 2.8509 2.8801
2 2.8651 ± 0.0089 2.8483 2.8831
3 2.8652 ± 0.0079 2.8493 2.8804
4 2.8650 ± 0.0078 2.8492 2.8805

1-4 2.8651 ± 0.0081 2.8493 2.8811

w

1 0.9885 ± 0.0003 0.9879 0.9891
2 0.9884 ± 0.0003 0.9879 0.9891
3 0.9884 ± 0.0003 0.9879 0.9891
4 0.9884 ± 0.0003 0.9879 0.9891

1-4 0.9884 ± 0.0003 0.9878 0.9891

x

1 0.0000 ± 0.0062 -0.0117 0.0119
2 0.0002 ± 0.0063 -0.0121 0.0130
3 -0.0002 ± 0.0061 -0.0114 0.0116
4 0.0000 ± 0.0063 -0.0124 0.0128

1-4 0.0000 ± 0.0062 -0.0118 0.0124

y

1 -0.1510 ± 0.0025 -0.1549 -0.1461
2 -0.1512 ± 0.0025 -0.1552 -0.1460
3 -0.1511 ± 0.0024 -0.1550 -0.1464
4 -0.1514 ± 0.0024 -0.1549 -0.1462

1-4 -0.1512 ± 0.0024 -0.1550 -0.1461

z

1 0.001 ± 0.010 -0.018 0.019
2 0.000 ± 0.010 -0.018 0.019
3 0.001 ± 0.010 -0.018 0.019
4 0.001 ± 0.010 -0.018 0.019

1-4 0.001 ± 0.010 -0.018 0.019
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Figure 3.5: Warmup traceplots (four different chains of one thousand samples each)
for the estimated parameters in the single crystal CMSX-4 specimen. The rough
means of the parameters in these chains were used to initialize four chains with larger
time steps to more efficiently explore the posterior. c11 and c44 are given in units of
1011 Pa, and σ is given in units of kHz.
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parameter estimate. For example, the standard deviations of the c11 and c44 parameters

are 4.0 GPa and 0.26 GPa respectively. This demonstrates the superior precision of

the c44 estimate as compared to c11 estimate, and is consistent with RUS-based elastic

property inversions reported previously by Migliori et al. [38].

Figure 3.6: Sampling traceplots (four different chains of one thousand samples each)
for the estimated parameters of the single crystal CMSX-4 specimen. The elastic
constants appear to be unimodal, but the orientation parameters are multimodal. c11

and c44 are given in units of 1011 Pa, and σ is given in units of kHz.

As stated in Section 3.4.1, the posterior predictive distributions elucidate the quality

of the fit and are provided for the CMSX-4 specimen in Table 3.4. Alongside these

data are the measured frequencies and their standard deviation, as well as the quality
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Table 3.4: CMSX-4 measured and posterior predictive modes (µ± σ).
Mode Measured (kHz) Q Ave.1 Posterior2 (kHz)

1 71.259± 0.044 2,279 71.22± 0.24
2 75.759± 0.025 2,864 75.69± 0.23
3 86.478± 0.030 3,524 86.46± 0.26
4 89.947± 0.048 3,077 90.00± 0.24
5 111.150± 0.033 4,155 111.06± 0.26
6 112.164± 0.027 4,492 112.01± 0.29
7 120.172± 0.033 5,048 120.32± 0.26
8 127.810± 0.042 4,462 127.98± 0.25
9 128.676± 0.040 4,747 128.64± 0.24
10 130.740± 0.034 5,342 130.75± 0.24
11 141.700± 0.037 5,299 141.79± 0.25
12 144.504± 0.065 5,603 144.36± 0.23
13 149.401± 0.025 5,918 149.52± 0.26
14 154.351± 0.026 5,942 154.42± 0.25
15 156.782± 0.028 6,761 156.97± 0.25
16 157.555± 0.041 6,123 157.57± 0.25
17 161.088± 0.063 6,284 160.97± 0.24
18 165.103± 0.022 6,756 165.21± 0.28
19 169.762± 0.044 6,995 169.77± 0.27
20 173.449± 0.050 7,212 173.28± 0.26
21 174.117± 0.024 6,437 174.13± 0.26
22 174.906± 0.054 6,916 174.68± 0.26
23 181.120± 0.042 6,632 181.54± 0.25
24 182.459± 0.037 7,475 181.87± 0.25
25 183.986± 0.042 7,837 183.81± 0.28
26 192.681± 0.032 7,197 192.83± 0.24
27 193.436± 0.021 7,113 193.71± 0.27
28 198.794± 0.034 7,249 198.95± 0.25
29 201.902± 0.032 8,529 201.89± 0.27
30 205.015± 0.031 8,808 204.85± 0.33
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factor for the first 30 resonance modes. As before, the one measured value outside the

95% posterior predictive interval (mode 24) is highlighted in gray, while the average

measured standard deviation of 0.03 kHz is approximately one-eighth the value of the

noise estimate. Given the relatively small standard deviation associated with each mode,

having one of 30 modes outside the 95% posterior predictive interval is not an issue.

Table 3.5: Summary of estimated parameters for the CMSX-4 specimen alongside
reference values.

Parameter Reference[66] Bayesian estimate (µ± σ)
c11 2.52× 1011 Pa (2.492± 0.040)× 1011 Pa
c44 1.31× 1011 Pa (1.314± 0.003)× 1011 Pa
σ — (0.229± 0.037)× 103 Hz
A 2.88 2.865± 0.008

Estimated posterior distributions of the elastic constants (c11, A, and c44) and the

noise parameter (σ) are shown in Figure 3.7. As each parameter exhibits a normal

distribution, it makes sense to summarize the parameter estimates by their mean and

standard deviation as provided in Table 3.5. Reference CMSX-4 elastic constants from

[66] are provided for context, and agree well with the estimates of this work.

Due to the symmetry inherent to crystals, in particular cubic crystals, there are

numerous symmetrical representations for a given crystal orientation. Therefore it is

possible, indeed common, for two orientation quaternions with substantially different

component values to represent crystal orientations that are physically very close to each

other. In order to visualize the posterior of the crystallographic orientation and produce

two dimensional plots, orientation quaternion were transformed into cubochoric coordi-

nates [67] before plotting in Figure 3.8. These plots detail the location of the measured

orientation in orange with respect to each of the 4000 HMC sample orientations plotted

in black. Although it is not particularly good that the measured crystallographic ori-

entation is away from the bulk of the posterior, uncertainty in the XRD measurement
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Figure 3.7: Approximate CMSX-4 posterior distributions for c11, A, c44, and noise (σ)
parameters, computed from four chains of one thousand HMC samples each. Normal
PDF fits are superimposed to justify the use of mean and standard deviation to
characterize the posteriors. c11 and c44 are given in units of 1011 Pa, and σ is given in
units of kHz.
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of approximately one degree as noted in Section 3.2.3 could easily place the measured

orientation within a higher-likelihood region of the posterior; given that a rotation of one

degree corresponds roughly to a distance of 0.01 in cubochoric coordinates. Furthermore,

the total misorientation angle (in degrees) between the measured orientation and each

of the inverted orientations is detailed by the histogram in the bottom right of Figure

3.8. Given the overwhelming majority of misorientation angles were calculated as be-

tween 1.0 and 2.5 degrees, our confidence in estimating crystallographic orientation from

RUS-measured resonance frequencies is high, with results summarized in Table 3.6

Table 3.6: Summary of CMSX-4 specimen crystal orientation from XRD measure-
ment and Bayesian estimate.

Parameter XRD measurement Bayesian estimate (µ± σ)
w 0.987 0.9884± 0.0003
x −0.005 26 0.000± 0.0062
y −0.158 −0.1512± 0.0024
z 0.0164 0.001± 0.010

To demonstrate that inferring the crystallographic orientation was necessary, an in-

version was run without these degrees of freedom. Figure 3.9 shows the results. As can

be seen, c11 is not converging to a steady state distribution, and the inversion fails. The

scale of σ indicates the fit is not good compared to the inversion with the orientation

parameters included.

Given that all four warmup and post-warmup chains converge to similar physically

realistic solutions and that the posterior predictive distributions align well with the mea-

sured data, it is reasonable to conclude that this model describes the data well and that

statements based on the computed posterior distributions should represent the physical

system. This is confirmed with the reference elastic constants and measured crystallo-

graphic orientations.
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Figure 3.8: Crystallographic orientation posterior plotted in cubochoric coordinates.
The distribution of minimum misorientation angle (in degrees) between the measured
and estimated orientations is at the bottom. Note that a difference of one hundredth
on any cubochoric axis corresponds roughly to one degree of rotation.
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Figure 3.9: Traceplots for the estimated parameters in the single crystal CMSX-4
specimen without including misorientation estimation. c11 and c44 are given in units
of 1011 Pa, and σ is given in units of kHz.
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3.4.3 Computation Efficiency

The Ti-64 inversion ran for approximately eight hours on a quad core Intel i7-2600k

desktop computer, while the CMSX-4 inversion took a few days. Each HMC sample

takes fifty forward evaluations of the RUS model (so one hundred thousand total for

the examples presented here). Since the eigensolve in the forward model evaluation

constitutes a large majority of the total evaluation time, it is simple to estimate how

long an inversion might take if the forward model is available. If the forward model takes

a second to evaluate, the sampler converges to a steady posterior distribution within a

thousand HMC samples, and two thousand samples from the posterior are computed,

the calculation should take a little under two days.

3.4.4 Avenues for Future Work

It should be possible to parameterize certain aspects of the specimen geometry in

the same way as the elastic constants and estimate them on the fly, though there are

known identifiability problems with the eigenvalue problem [38]. It also might make

sense to replace the forward model with an approximate model to decrease computation

time, particularly as the number of unknown parameters is increased. Various techniques

could be employed for this such as Gaussian processes (a frequently used technique in

Statistics for interpolation), or generalized polynomial chaos (a common method for

uncertainty quantification in engineering). While there is the issue that these methods

require fairly good priors to be usable, inference on approximate models is much faster

and could be used to quickly evaluate specimen characteristics without running a full

Bayesian inversion. The noise models could be improved to account for outliers or greater

variability in certain modes—as is often reported for the first few lowest-frequency modes

[35]. Finally, accounting for missing or spurious modes as described in [1] may facilitate
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inversions from RUS spectra that are complicated by a variety of factors including low

stiffness or high damping.

3.5 Conclusions

A novel and robust RUS inversion framework for characterizing elastic properties

and crystal orientation of parallelepiped specimens using a Bayesian modeling approach

and Hamiltonian Monte Carlo sampling has been developed. The inversion framework

was tested with two experimental datasets for validation: a fine-grained Ti-64 specimen

and a single crystal specimen of Ni-based superalloy CMSX-4 with misaligned specimen-

crystal reference frames. The Ti-64 specimen exhibited elastic isotropy with c11 and c44

stiffness constants in agreement with literature values for a Voigt-Reuss-Hill average of

randomly-oriented grains. Inversion of the CMSX-4 data yielded accurate estimates of

the three independent elastic moduli in strong agreement with literature values, while the

crystallographic orientation was determined to within approximately 2 degrees of XRD

measured values. While the current version of the code requires substantially greater

computation time as compared to conventional RUS inversion schemes, it also provides

the following advantages:

1. Built-in uncertainty estimates on all parameters.

2. Simultaneous estimation of elastic constants and crystal orientation.

3. Simplified requirements for specimen preparation.

4. Robustness to common RUS inversion problems like misidentified resonance modes

and initial parameterization uncertainty.
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Chapter 4

Selecting the Metric in Hamiltonian

Monte Carlo

4.1 Introduction

Hamiltonian Monte Carlo (HMC) methods [68, 56, 69] have proven to be very effective

for use in high level Bayesian inference packages like Stan [3] and PyMC3 [70]. The

usefulness of HMC is limited by how well it can be adapted to a problem’s posterior

geometry. Ideally this is done dynamically, but this introduces additional complexity in

the form of higher order derivatives and non-linear solves that make it difficult to scale

the approaches to large numbers of parameters [71, 72].

For problems where posterior curvature varies little, this dynamic adaptation is also

unnecessary. The simpler approach is to build a fixed, linear coordinate transformation

during the Monte Carlo warmup phase and use that for sampling. This can be formalized

as choosing a Euclidean metric for the sample space [69]. This method would be expected

to work on models with unimodal, approximately normal, possibly correlated posteriors.

The basic metric comes from the observation that, when sampling a multivariate
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normal posterior, if the metric is set equal to the posterior covariance, sampling becomes

much easier. Thus, the metric normally chosen is a variant of the sample covariance

[56, 69].

Estimating a full covariance matrix can be just as hard as sampling the desired poste-

rior distribution, thus estimating the full covariance so that the posterior can be sampled

is a chicken and egg problem. If the estimate is made badly, it will not improve sampler

efficiency. In light of this difficulty, the inverse of a diagonal covariance approximation is

often used as the metric because of the ease with which it can be constructed [3]. This is

useful for some problems, but highly correlated posteriors, even in low dimensions, will

render this ineffective.

The properties of the leapfrog integrator inside HMC can be used as a proxy to

understand the effectiveness of HMC on different problems, in terms of the number

of effective sample size per second (ESS/s). This line of reasoning leads to the two

contributions of this paper: a selection criterion for predicting the effectiveness of a

metric on a problem, and a new metric based on the Hessian of the log density that

requires fewer warmup draws than the sample covariance to be effective.

This paper is organized as follows. Section 4.2 provides the motivation behind the

selection criterion and the adaptation, and Section 4.3 covers the implementation details.

Section 4.4 demonstrates the utility of the selection criterion and the robustness of the

adaptation on a variety of problems.
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4.2 Preliminaries

4.2.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo methods begin by defining a Hamiltonian

H(q, p) = − logP (X|q)P (q) +
1

2
pTM−1p (4.1)

with N position variables, q, and N momentum variables, p, [68, 56, 69]. The posi-

tion variables correspond to parameters in the distribution that is to be sampled, and

transitions in the Markov chain are generated from simulations of trajectories on the

Hamiltonian.

In basic HMC, the Hamiltonian is simulated via the leapfrog method [73, 74]. The

length of the integrals can either be fixed or adapted dynamically [75, 69]. The Euclidean

metric, M , is the degree of freedom that can be adapted in a problem specific way to

make sampling efficient.

4.2.2 Linearized Dynamics

The simplest way to analyze the characteristics of a Hamiltonian system is by exam-

ining a linearization of the dynamics around a fixed point [76]. In the context of Bayesian

inference and HMC, looking at center fixed points correspond to looking at a multivariate

normal (Laplace) approximation of the posterior, or a quadratic approximation of the

potential energy of the Hamiltonian around the maximum a-posteriori estimate [77].

The dynamics of the Hamiltonian in Eq. 4.1 are [76, 78]

q
p


′

=

M−1p

−∇qH

 =

 M−1p

∇ logP (X|q)P (q)

 . (4.2)
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The linearization of this Hamiltonian around a fixed point (q0, p0) is

∆q

∆p


′

=

 0 M−1

−∇2
qqH(q0) 0


∆p

∆q

 , (4.3)

where ∆q = q− q0, and ∆p = p− p0. The eigenvalues of the matrix in Eq. 4.3 are given

by the zeros of

det(M−1∇2
qqH(q0) + ω2I) (4.4)

and describe the dynamics of the linearized system.

To compute the zeros of this determinant, we can look at the eigenvalues of the

simplified system

M−1∇2
qqH(q0)xi = λixi. (4.5)

The eigenvalues of Eq. 4.3 are given by the pairs ±
√
λii. Because the metric must be

positive definite, it can be decomposed as LLT = M−1. The substitution x = Ly gives

LT∇2
qqH(q0)Lyi = λiyi. (4.6)

This transformed space has the same eigenvalues as the original (Eq. 4.5). Because

LT∇2
qqH(q0)L is symmetric, the eigenvalues of Eqs. 4.5 and 4.6 are real.

The dynamics in Eq. 4.3 govern the efficiency of integration in the original Hamil-

tonian problem and hence the performance of HMC, and can be characterized by the

eigenvalue problem in Eq. 4.6.
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4.2.3 Leapfrog Stability

Assuming the posterior being sampled is a multivariate normal distribution with fixed

covariance, Σ, the Hamiltonian will be

H(q, p) =
1

2
qTΣ−1q +

1

2
pTM−1p. (4.7)

Given the eigendecomposition ∇2
qqH = Σ−1 = V ΛV T , the metric M = V V T will

diagonalize the Hessian in Eq. 4.6. For N parameters (and assuming Σ is strictly

positive definite), this reduces the N dimensional dynamical system to N one-dimensional

oscillators.

Each of these oscillators can be run separately. From [73], the leapfrog stability limit

for each of the n oscillators is

∆t =
2√
|λ|n

, (4.8)

where λn is the square of the angular frequency.

When integrating the complete system, the overall timestep is limited by the smallest

single timestep, the size of which is limited by the largest eigenvalue, |λ|max. Thus,

when integrating in the direction of least curvature, the timestep is too small by a factor

inversely proportional to the square root of the ratio of the eigenvalues, compared to an

ideal case

∆tfast

∆tslow

∝

√
|λ|max

|λ|min

. (4.9)

This is the square root of the condition number of Eqs. 4.5 and 4.6. In this way, the

problem of selecting the metric can be recast in terms of selecting a good preconditioner

for the Hessian of the log density. For this example, the metric M = Σ−1 would result

in a condition number of one.
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This makes it possible to ask, for two metrics, M1 and M2, which is better to use?

A practical issue is that the derivation of Eq. 4.9 is based on a linearization around

a fixed point. During sampling, there is little chance that the sampler will land exactly

on a fixed point. The assumption needed then is that local curvature in the typical set

will extrapolate well around the posterior.

4.2.4 Approximate Hessian

We are assuming that the largest eigenvalues and eigenvectors of the Hessian of the

log density change very little across the posterior. A low rank approximation to the

Hessian can be built by picking out the largest K eigenvalue-eigenvectors pairs of the

Hessian

∇2
qqH(q0) ≈

K∑
i

viλiv
T
i . (4.10)

Each of these eigenvalues correspond to the curvature of the posterior in the direction

given by the eigenvector. Scaling each of the largest directions by the inverse of the

corresponding eigenvalues will make it possible to pick larger and larger timesteps without

violating the stability condition in Eq. 4.8.

The largest eigenvalue-eigenvector pairs of the Hessian can be computed via the Lanc-

zos algorithm. The Lanczos algorithm converges most quickly for extreme eigenvalues

and those with the most separation from their neighboring eigenvalues [79]. This means

that the scales and directions in parameter space that are most limiting to the perfor-

mance of HMC can be identified with relative ease. Conveniently, the Lanczos algorithm

only requires Hessian vector products, which can be approximated with gradients from
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reverse mode automatic differentiation and finite differences:

∇2
qqH(q) · v ≈

∇qH(q + ∆x
2
v)−∇qH(q − ∆x

2
v)

∆x
. (4.11)

A diagonal matrix can be used to extend the approximation in Eq. 4.10 to full rank

so that it can be used directly as a preconditioner for ∇2
qqH(q). Take λK+1 to be the

K + 1th smallest eigenvalue, and call the approximation A(∇2
qqH(q)):

A(∇2
qqH(q)) =

K∑
i

vi(λi − λK+1)vTi + λK+1I. (4.12)

The inverse of this approximation scales the eigenvector directions by their respective

eigenvalues and every other direction by the eigenvalue λK+1.

4.3 Implementation Details

4.3.1 Selection Criterion

An issue with Eq. 4.9 is that the local curvature of the Hessian, especially around the

smaller eigenvalues like (λmin), often does not accurately represent the posterior. Figure

4.1 shows a slice from a log density where local curvature is not representative of the

whole posterior.

The trick is to replace λmin with the inverse of the largest eigenvalue of the covariance

rescaled under the chosen metric. That is, use the selection criterion

√
|λ|max(LT∇2

qqH(q)L)λmax(L−1ΣL−T ) (4.13)

instead of Eq. 4.9. For a normal posterior, Eq. 4.9 and Eq. 4.13 are equivalent and

the smallest Hessian eigenvalue, λmin, corresponds to the largest covariance eigenvalue.
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Figure 4.1: Slice of a log density plotted along the direction of an eigenvector of the
Hessian, centered at a posterior draw (indicated with the dashed line). x is the distance
from the posterior draw. The local curvature is positive and not representative of the
scale of the log density in this direction.

For non-normal posteriors, the covariance can capture long scale behavior even when the

local curvature does not.

The usefulness of Eq. 4.13 is predicated on the assumption that computing the largest

eigenvalue of the rescaled covariance is easier than estimating the rescaled covariance

(L−1ΣL−T ) itself. The applicability of this type of assumption is explored in [80].

4.3.2 Low Rank Hessian Approximation

Because of differing parameter scales, computing a useful low rank approximation to

the Hessian through an eigendecomposition is difficult even for simple posteriors. Instead

of computing the approximation as in Eq. 4.12, a diagonal covariance estimate can be

used to rescale the problem that makes it much easier to work with

D−
1
2A(D

1
2∇2

qqH(q)D
1
2 )D−

1
2 . (4.14)

Figure 4.2 shows the eigenvalues of the Hessian, ∇2
qqH(q), and the rescaled Hessian,

D
1
2∇2

qqH(q)D
1
2 , to give a sense of what this rescaling does to make the approximation in

Eq. 4.12 work better.
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Figure 4.2: The eigenvalues of the Hessian of the negative log density evaluated at a
point q, ∇2

qqH(q), are denoted by circles, and the eigenvalues of the rescaled version

of that Hessian, D
1
2∇2

qqH(q)D
1
2 , are denoted by plus signs.

4.3.3 Limiting to the Sample Covariance

The inverse of the sample covariance is a good metric as long as enough posterior

draws are available. A metric based on local curvature information will require fewer

draws to estimate but will be limited by how well that local curvature information extends

to the full posterior.

The inverse of the approximation in Eq. 4.14 can be used as an initial estimate of

the posterior covariance (Σ0). Take as a prior

P (Σ) =W−1((ν0 − d− 1)Σ0, ν0), (4.15)

where W−1 is an inverse-Wishart distribution and there are d parameters in the problem.

Assuming the posterior draws come from a multivariate normal distribution, the posterior

on Σ can be computed in closed form. Given n draws Y , we have

P (Σ|Y ) =W−1((ν0 − d− 1)Σ0 + (n− 1)S, ν0 + n), (4.16)

where S is the sample covariance of Y . As the number of warmup draws increases, Σ
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will be more and more weighted toward the sample covariance.

4.4 Benchmarks

A version of Stan [3] was modified to incorporate the selection criterion and adaptation

for benchmarking. Unless otherwise noted, warmup is carried out over one thousand

draws in the following sequence of steps. First, seventy five draws are used to move the

sampler near to the typical set. Next, the metric is iteratively refined over five increasingly

sized adaptation windows. The first window lasts for twenty-five draws, the second for

fifty draws, the third for one hundred draws, the fourth for two hundred draws, and

the last for five hundred draws. The final stage uses fifty draws to finalize the timestep

selection.

At the end of each of the five metric adaptation windows, the draws from that window

are divided into train (80%) and test (20%) splits. The train split is used to compute

the different metrics and the test split is used to evaluate the selection criterion for each.

The L variables in Eq. 4.13 come from the training split and W and Σ come from the

test split. The selection criterion for each metric is computed at five different random

draws from the test set and the maximum of these values is used as the final selection

criterion. The chosen metric is recomputed using all of the draws in the given window.

4.4.1 Example Problems

The full the source and data for the example models are available in the Supplemen-

tary Material.

The Kilpisjärvi model is a three parameter linear regression. Yearly summer tem-

peratures in Kilpisjärvi, Finland are fit as a function of year. The year covariate is not

centered, and there is a very high correlation between the slope and intercept parameters
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which makes the model difficult to sample [81].

The Diamonds model is a twenty-six parameter regression with highly correlated

covariates based on the ggplot2 diamonds dataset [82] and the model generated with the

softare package brms [83]. The correlated covariates lead to posterior correlations. This

can be avoided with a reparameterization of the problem [84], or with an appropriate

adaptation.

Radon is a three hundred and eighty-nine parameter hierarchical model of radon

levels in three hundred eighty-six different counties [81] adapted from [85]. This model

is interesting because of the large number of parameters.

The Accel GP model is a sixty-six parameter fit to time series data from the mcycle

dataset of [86]. The mean and standard deviations of the acceleration were modeled with

Gaussian processes using a basis function expansion [87, 88] in brms [83].

The Accel Splines model is an eighty-two parameter spline model generated with

brms [83] and fit to the same dataset as Accel GP with varying mean and standard

deviation.

The Prophet [89] model used here is a sixty-two parameter time series model of RStan

downloads over a few year period. Prophet implements structural time series model with

different time resolutions (daily, weekly, etc.).

4.4.2 Results

The results of running thirty-two independent chains of four different adaptations on

the example models are given in Table 4.1. The minimum and maximum of the selection

criteria (lower is better) computed at the end of the last stage of warmup over all thirty-

two chains is given for every model. The minimum and maximum of effective sample

size per second (ESS/s) over eight different groups of four chains each was given as a
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proxy for the performance. This assumes that the utility of the posterior is limited by

the parameter with lowest effective sample size. The maximum four chain R̂ computed

over all eight groups of chains of the parameter with the lowest effective sample size is

reported as a diagnostic. To keep the R̂ values low, four thousand post-warmup draws

were collected for the Accel GP and Accel Splines models. In all other cases one thousand

post-warmup draws were collected. R̂ and the (bulk) effective sample sizes were computed

following [90]. All benchmarks were run on an AMD Ryzen 7 2700X desktop.

The switching adaptation, described in the caption of Table 4.1, is competitive in all

examples, with two exceptions. First, one of the eight four-chain Accel GP inferences done

with switching adaptation performed unusually poorly in terms of ESS/s, and secondly

another had an alarming number of divergences, one hundred and forty over thirty-two

thousand post-warmup draws on the same model. For the Accel GP and Accel Splines

models, all the other non-diagonal adaptation calculations had less than fifty divergences

for the same number of post-warmup draws. The diagonal adaptations in comparison

had at worst one (for Accel GP) and four (for Accel Splines) divergences.

Even without introducing the new Hessian-based adaptation scheme, the selection

criteria can pick between the established methods (Diagonal and Dense). If enough

draws are available such that the full sample covariance is an effective adaptation, the

adaptation will pick Dense over Diagonal. Knowing if there were enough draws has been

a simple but significant impediment in the deployment of Dense adaptation. All of the

adaptations discussed assume posterior curvature is not varying greatly.

The Radon model is large enough that the dense matrix-vector products affect sampler

performance. Table 4.2 shows the results of enforcing a diagonal sparsity pattern on the

metrics, enabling efficient matrix-vector products.

One of the advantages of the low rank adaptation is that it can work with fewer

warmup draws than a full sample covariance. To highlight this, the results of running a
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Model Adaptation Crit. [min, max] Min ESS/s [min, max] Max R̂

Kilpisjärvi

Diagonal [350, 600] [110, 150] 1.01
Dense [95, 130] [390, 6100] 1.00
Rank-1 [1.3, 1.9] [22000, 33000] 1.00

Switching [1.2, 1.7] [23000, 33000] 1.00

Diamonds

Diagonal [490, 670] [0.61, 0.90] 1.01
Dense [4.7, 5.7] [160, 190] 1.01
Rank-1 [2.0, 2.4] [510, 620] 1.00

Switching [1.9, 2.4] [510, 590] 1.00

Accel GP

Diagonal [210, 570] [2.5, 5.2] 1.00
Dense [41, 240] [1.1, 6.4] 1.01
Rank-1 [46, 240] [3.4, 8.1] 1.00

Switching [45, 460] [3.7, 9.8] 1.00

Accel Splines

Diagonal [680, 1800] [0.17, 0.45] 1.02
Dense [90, 420] [2.3, 5.3] 1.00
Rank-1 [83, 330] [1.5, 4.7] 1.00

Switching [92, 320] [0.38, 5.0] 1.02

Prophet

Diagonal [390, 470] [1.3, 1.7] 1.00
Dense [13, 15] [22, 28] 1.00
Rank-1 [2.8, 3.3] [24, 29] 1.00

Switching [2.8, 3.3] [15, 28] 1.00

Radon

Diagonal [5.3, 7.2] [170, 210] 1.00
Dense [67, 93] [33, 42] 1.00
Rank-1 [7.4, 9.2] [120, 140] 1.00

Switching [4.3, 6.0] [180, 210] 1.00

Table 4.1: Four different metrics were benchmarked on six different models. Diagonal
and Dense are Stan default metrics. Dense is a full covariance estimate and Diagonal
is a diagonal covariance approximation that is much easier to compute. Both are reg-
ularized a small mount towards an identity matrix. Rank-1 is an metric from Section
4.3.3 using a rank-1 Hessian approximation, and Switching is a metric that switches
between dense, diagonal, rank-1, 2, 4, and 8 Hessian approximation adaptations with
and without the modifications described in Section 4.3.3 by choosing the metric with
the lowest maximum selection criterion at the end of each warmup window. Only
the post-warmup draws are timed. The range of maximum selection criteria (lower is
better) from all thirty-two chains are given in the “Crit. [min, max]” column. The
ESS/s column characterizes efficiency as effective sample size per second computed
over eight groups of four chains each. The maximum four chain R̂ computed over
eight different groups of four chains is given as a diagnostic.
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Model Adaptation Crit. [min, max] Min Neff/s Max R̂

Radon
Diagonal [5.1, 6.1] [390, 520] 1.00
Switching [4.6, 5.8] [370, 490] 1.00

Table 4.2: The Radon experiments from Table 4.1 are repeated here if the metric
is forced to be a diagonal (to take advantage of the efficient matrix-vector multiplies
this allows). The Switching adaptation switches between diagonal, and diagonalized
rank-1, 2, 4, and 8 Hessian adaptations without the modifications in Section 4.3.3.
Only the post-warmup draws are timed.

number of extremely short adaptations on the Diamonds and Prophet example models

are displayed in Figure 4.3. For these experiments, adaptation was limited to the initial

seventy-five draws used to get near the typical set, one metric adaptation window, and

a final fifty draws to adjust the timestep.

Figure 4.3: Effectiveness of adaptations with short warmup. The Switching adap-
tation chooses automatically between dense, diagonal, and rank 1, 2, 4, and 8 adap-
tations from Eq. 4.12 with and without the inverse-Wishart update from Section
4.3.3. Only the post-warmup draws are timed. The maximum and minimum four
chain ESS/s across eight groups are plotted as ranges. For more warmup samples, the
advantages of switching adaptation go away (as can be seen in Table 4.1.

The short warmup experiments are also useful for understanding the effect of the

rank approximation from Eq. 4.12 as well as the inverse-Wishart update in Section 4.3.3.

For the most part, these are useful modifications, but neither guarantees a performance

increase. Results are plotted in 4.4.
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Figure 4.4: Effectiveness of adaptations with short warmup. The rank 1, 2, 4, and 8
adaptations are from Eq. 4.12. The top row includes the inverse-Wishart update from
Section 4.3.3 and the bottom does not. Only the post-warmup draws are timed. The
maximum and minimum four chain ESS/s across eight groups are plotted as ranges.

4.5 Conclusions

Adapting an effective metric is important for the performance of HMC. This paper

outlines a criterion that can be used to automate the selection of an efficient metric

from an array of options. In addition, we present a new low-rank adaptation scheme

that makes it possible to sample effectively from highly correlated posteriors, even when

few warmup draws are available. The selection criterion and the new adaptation are

demonstrated to be effective on a number of different models.

All of the necessary eigenvalues and eigenvectors needed to evaluate the selection

criterion and build the new adaptation can be computed efficiently with the Lanczos

algorithm, making this method suitable for models with large numbers of parameters.
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Chapter 5

Conclusions

We have described several novel applications of data science covering micrograph analysis,

mechanistic modeling, and Bayesian inference. We described the context in which this

research arose, and how the results are applicable in materials science.

First we described the advantages of the histogram of oriented gradients feature de-

scriptor, and how this circumvents the problem in micrograph analysis of producing

reliable image segmentations. The effectiveness of this technique was demonstrated on

2D and 3D datasets.

Secondly, we demonstrated the use of Hamiltonian Monte Carlo for characterizing

elastic properties and crystal misorientation of superalloy parallelpiped specimens. This

algorithm was demonstrated first by estimating the elastic constants for a specimen

of fine-grain polycrystalline Ti-6Al-4V (Ti-64) with random crystallographic texture and

isotropic elastic symmetry. Secondly, it was tested by estimating the elastic constants and

crystallographic orientation for a single crystal Ni-based superalloy CMSX-4 specimen

are are accurately determined. In both cases, the only data used were measurements

of the specimen geometry, mass, and resonance frequencies, substantially simplifying

experimental procedures.
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Finally, we demonstrated how consideration of the stability limit of the leapfrog

integrator used inside HMC leads to the development of a selection criterion for picking

the HMC metric, allowing it to run efficiently. Additionally, we presented a new low-rank

adaptation scheme inspired by this observation and demonstrated the effectiveness of the

selection criterion and adaptation scheme on a number of different applied models. It

was shown that all of the necessary calculations can be carried out efficiently through use

of the Lanczos algorithm, making this method suitable for models with large numbers of

parameters.
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21 Independent Elastic Coefficients of Generally Anisotropic Solids by Resonant
Ultrasound Spectroscopy: Benchmark Examples, Exp. Mech. 54 (2014), no. 6
1073–1085.

[50] J. Vishnuvardhan, C. V. Krishnamurthy, and K. Balasubramaniam, Genetic
algorithm reconstruction of orthotropic composite plate elastic constants from a
single non-symmetric plane ultrasonic velocity data, Compos. Part B Eng. 38
(2007), no. 2 216–227.

[51] Y. Zhang, L. O. Hall, D. B. Goldgof, and S. Sarkar, A constrained genetic approach
for computing material property of elastic objects, IEEE Trans. Evol. Comput. 10
(2006), no. 3 341–357.

[52] H. Ogi, K. Sato, T. Asada, and M. Hirao, Complete mode identification for
resonance ultrasound spectroscopy, Journal of the Acoustical Society of America
112 (2002), no. 6 2553.

[53] M. Landa, H. Seiner, P. Sedlak, L. Bicanova, J. Zidek, and L. Heller, Resonant
Ultrasound Spectroscopy Close to Its Applicability Limits, in Horizons World
Physics, Vol. 268 (M. Everett and L. Pedroza, eds.), ch. 3, pp. 97–136. Nova
Science Publishers, Hauppauge, NY, 2009.

[54] E2534-15: Standard practice for Process Compensated Resonance Testing via swept
sine input for metallic and non-metallic parts, vol. 03.03. American Society for
Testing and Materials (ASTM), West Conshohocken, PA, 2015.

[55] A. F. Bower, Applied Mechanics of Solids. CRC press, Boca Raton, FL, 2009.

[56] R. M. Neal, MCMC using Hamiltonian dynamics, Handbook of Markov Chain
Monte Carlo 2 (2011), no. 11 2.

[57] S. Byrne and M. Girolami, Geodesic Monte Carlo on embedded manifolds,
Scandinavian Journal of Statistics 40 (2013), no. 4 825–845.

79



[58] Stan Development Team, Stan Modeling Language Users Guide and Reference
Manual, Version 2.14.0, 2016.

[59] J. de Leeuw, Derivatives of generalized eigen systems with applications,
Department of Statistics UCLA (2007).

[60] C. Zener, Contributions to the Theory of Beta-Phase Alloys, Physical Review 71
(June, 1947) 846–851.

[61] A. A. Pourzanjani, R. M. Jiang, B. Mitchell, P. J. Atzberger, and L. R. Petzold,
General Bayesian Inference over the Stiefel Manifold via the Givens
Representation, arXiv e-prints (Oct, 2017) arXiv:1710.09443, [arXiv:1710.0944].

[62] S. V. Zherebtsov, G. A. Salishchev, R. M. Galeyev, O. R. Valiakhmetov, S. Yu.
Mironov, and S. L. Semiatin, Production of submicrocrystalline structure in
large-scale Ti-6Al-4V billet by warm severe deformation processing, Scripta
Materialia 51 (2004), no. 12 1147–1151.

[63] E. S. Fisher and C. J. Renken, Single-Crystal Elastic Moduli and the hcp bcc
Transformation in Ti, Zr, and Hf, Physical Review 135 (July, 1964) A482–A494.

[64] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Sect. A
65 (1952), no. 5 349–354.

[65] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin,
Bayesian Data Analysis, 3rd Edition. CRC Press, Boca Raton, FL, 2014.

[66] D. Siebörger, H. Knake, and U. Glatzel, Temperature dependence of the elastic
moduli of the nickel-base superalloy CMSX-4 and its isolated phases, Material
Science and Engineering: A 298 (January, 2001) 26–33.

[67] D. Rosca, A. Morawiec, and M. De Graef, A new method of constructing a grid in
the space of 3d rotations and its applications to texture analysis, Modeling and
Simulation in Materials Science and Engineering 22 (2014), no. 7 075013.

[68] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo,
Physics letters B 195 (1987), no. 2 216–222.

[69] M. Betancourt, A conceptual introduction to Hamiltonian Monte Carlo, arXiv
preprint arXiv:1701.02434 (2017).

[70] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, Probabilistic programming in
Python using PyMC3, PeerJ Computer Science 2 (2016) e55.

80

http://xxx.lanl.gov/abs/1710.0944


[71] M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian
Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 73 (2011), no. 2 123–214,
[https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2010.00765.x].

[72] M. Betancourt, A general metric for Riemannian manifold Hamiltonian Monte
Carlo, in Geometric Science of Information, pp. 327–334. Springer, 2013.

[73] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, vol. 14.
Cambridge University Press, 2004.

[74] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31.
Springer Science & Business Media, 2006.

[75] M. D. Hoffman and A. Gelman, The No-U-turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo, Journal of Machine Learning Research 15
(2014), no. 1 1593–1623.

[76] L. Perko, Differential equations and dynamical systems, vol. 7. Springer Science &
Business Media, 2013.

[77] A. Gelman, H. S. Stern, J. B. Carlin, D. B. Dunson, A. Vehtari, and D. B. Rubin,
Bayesian Data Analysis. Chapman and Hall/CRC, 2013.
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