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Abstract

Exascale computing platforms with millions of compute units and with thousands of
nodes are predicted to experience frequent faults which interrupt applications’ execution.
In this context resilience against faults becomes important. We examine user and software
level fault mitigation strategies in a distributed LOBPCG algorithm targeting nuclear CI
calculations. In particular, we present and evaluate one strategy that keeps the total number
of fault-tolerant LOBPCG iterations close to that of the standard LOBPCG algorithm ran
on a fault-free machine.

Keywords. Fault-tolerance, sparse symmetric eigensolver, LOBPCG, nuclear configuration
interaction

1 Introduction

The highest number of cores based on current top 10 supercomputers from the June 2022 list of
top500.org is about 10.7 million cores. At this scale and beyond the occurrence of faults will
be a norm [3], and not be treated as an exception. The study performed by [4] shows that as
the number of components of these large-scale systems increases the reliability and Mean Time
Between Failures (MTBF) of HPC systems decreases.

According to [3], fault resilience techniques can be broadly classified into three categories—
Hardware Resilience, Resilient Systems Software, and Application-Based Resilience. The tech-
nique we present in this work falls under the Application-Based Resilience category. In particular,
here, we present a fault resilient application level algorithmic technique in the context of a dis-
tributed locally optimal block preconditioned conjugate gradient (LOBPCG) implementation,
which in case of a single MPI process failure allows for dynamic recovery of the execution pro-
cess of the application and converge in approximately the same number of iterations as if no
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fault has occurred. Moreover, if the program runs without any fault, our technique does not
consume additional resources for storage or computations. The technique is validated on real
world matrices generated in nuclear physics configuration interaction (CI) calculations [5, 10, 12],
but are not restricted for these specific types of matrices.

The rest of the paper is organized as follows. In Section 2, we briefly review nuclear CI
calculations and the LOBPCG algorithm. In Section 3, we make assumption on the fault model
that we will handle. Then we discuss strategies for recovery from a fault in the LOBPCG
algorithm in Section 4. Finally, in Section 5 we use simulated examples to verify the effectiveness
of our fault-tolerant LOBPCG algorithm.

2 LOBPCG for Nuclear CI

2.1 Nuclear CI

For a nuclei with P protons and N neutrons, the nuclear structure is described by the Schrödinger
equation

HΨ(r1, . . . , rP+N ) = Ψ(r1, . . . , rP+N )λ, (1)

where H is the Hamiltonian, Ψ(r1, . . . , rP+N ) is the wavefunction, and λ is the corresponding
energy. In order to numerically compute a few lowest energy levels of (1), the wavefunction is
expanded as a linear combination of products of proton and neutron Slater determinants:

Ψ(r1, . . . , rP+N ) =
∑
s

αsΦ
proton
s (r1, . . . , rP )Φ

neutron
s (rP+1, . . . , rP+N ), (2)

where

Φproton(r1, . . . , rP ) =
1√
P !

det


ϕp1(r1) ϕp2(r1) · · · ϕpP

(r1)
ϕp1

(r2) ϕp2
(r2) · · · ϕpP

(r2)
...

...
. . .

...
ϕp1

(rP ) ϕp2
(rP ) · · · ϕpP

(rP )


is the proton Slater determinant of P protons, and the neutron Slater determinant Φneutron is
defined similarly.

In many nuclear structure software (e.g., MFDn [8, 12] and Bigstick [5]), the single-particle
wavefunctions ϕa(r)’s are chosen to be eigenfunctions of a 3D harmonic oscillator. Then each
single-particle wavefunction is indexed by four quantum numbers (n, l, j,mj), i.e.,

a ↔ (n, l, j,mj).

where j and mj satisfy the constraints

j =
∣∣∣l ± 1

2

∣∣∣, mj ∈ {−j, ..., j}.

In practice, an energy truncation scheme that keeps many-body states (i.e., basis functions in (2))
with

P+N∑
i=1

(2ni + li) ∈
{
N0, N0 + 2, . . . , N0 +Nmax

}
,

is often used as a criterion to truncate the series expansion (2), where N0 is the smallest total
oscillator quanta, and Nmax is an even number specified by the user. In addition, many-body

2



states are further filtered by the so-called M -scheme so that

P+N∑
i=1

(mj)i =

{
0, if P +N is even,

1/2, if P +N is odd.

Once the many-body states are determined, there are different ways to organize them into
smaller groups so that the discretized Hamiltonian admits certain block structures [2, 5]. For
instance, we can partition many-body states according to total oscillator quanta and total mj

values for protons and neutrons. Many-body states within the same group are ordered contigu-
ously in the discretized Hamiltonian. It has been observed that certain block structures are
beneficial for numerical computation, especially for constructing effective preconditioners in the
eigensolver [10].

2.2 The LOBPCG algorithm

The locally block optimal preconditioned conjugate gradient (LOBPCG) algorithm [6] is an
iterative eigensolver that computes a few smallest eigenvalues and corresponding eigenvectors of
a real symmetric matrix A by solving the trace minimization problem

min
X⊤X=Ik

tr(X⊤AX).

It performs Rayleigh–Ritz procedure iteratively over the subspace span
{
X(i), T−1R(i), X(i−1)

}
,

where R(i) = (I −X(i)X(i)⊤)AX(i) and T , respectively, are the residual and the preconditioner
at ith iteration. This method has been used in a number of applications [7], including nuclear
configuration interaction calculations implemented in the software package MFDn [10].

For many applications, the matrix A is often large and sparse. Both A and approximations to
X and other intermediate quantities are partitioned and distributed among many MPI processes.
A distributed version of the LOBPCG algorithm has been implemented in large-scale nuclear
configuration interaction (CI) software MFDn [10, 12]. This work mainly concerns fault-tolerant
strategies of LOBPCG targeting nuclear CI calculation, though the strategies are applicable for
a much wider range of problems.

When one of the MPI processes fails temporarily due to hardware or system software issues,
the matrix and vector data kept on that MPI process is lost. Rather than restarting the com-
putation from scratch, after the failed MPI process is recovered, we would like to make use of
information available on other MPI processes to achieve fast recovery in time to solution. We
shall discuss recovery strategies in Section 4. Our strategies require no checkpointing and can
recover on the fly in case when MPI process failure is only temporary.

2.3 Localized eigenvectors

For nuclear CI calculations, additional localization properties of the eigenvectors can be exploited
to accelerate the convergence of the LOBPCG algorithm. Since the series expansion (2) con-
verges, the coefficients αs’s usually decay reasonably rapidly. This fact holds for a wide range of
discretization if the basis involved in the series expansion is a Schauder basis. In addition, the
basis is ordered with asymptotically increasing numerical values (i.e., Rayleigh quotients). As a
consequence, typically the eigenvectors correspond to the lowest eigenvalues are nearly localized,
in the sense that most entries have small magnitudes except for a few leading entries. Figure 1
illustrates a typical distribution on the magnitudes of the eigenvectors in nuclear CI calculations.

Since most trailing entries of the desired eigenvectors have small magnitudes, dropping these
entries naturally yields approximate eigenvectors that can be used as a good initial guess for the

3



100 101 102 103 104 105

index
1.0

0.5

0.0

0.5

1.0

va
lu

e

Nmax = 0 Nmax = 2 Nmax = 4 Nmax = 6

1st eigenvector

100 101 102 103 104 105

index
1.0

0.5

0.0

0.5

1.0

va
lu

e

Nmax = 0 Nmax = 2 Nmax = 4 Nmax = 6

2nd eigenvector

100 101 102 103 104 105

index
1.0

0.5

0.0

0.5

1.0

va
lu

e

Nmax = 0 Nmax = 2 Nmax = 4 Nmax = 6

3rd eigenvector

100 101 102 103 104 105

index
1.0

0.5

0.0

0.5

1.0

va
lu

e

Nmax = 0 Nmax = 2 Nmax = 4 Nmax = 6

4th eigenvector

Figure 1: The eigenvectors correspond to four lowest eigenvalues for 6Li with Nmax = 6. The
sizes of the Hamiltonian for Nmax = 0, Nmax = 2, Nmax = 4, and Nmax = 6 are 10×10, 800×800,
17,040× 17,040, and 197,822× 197,822, respectively.
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LOBPCG algorithm. Based on this idea, a multi-level LOBPCG algorithm has been proposed
in [10] to accelerate nuclear CI calculations. We shall further exploit the localization property
in the context of fault-tolerant computation in Section 4.

3 Fault Model

In nuclear CI calculations large-scale parallel computing is usually required due to the enormous
problem size. Both the eigenvectors and the Hamiltonian, if ever explicitly constructed, need to
be stored in a distributed manner. In this work we assume that the eigenvectors, as well as other
auxiliary vectors in the LOBPCG algorithm, admit a 1-D distribution. More precisely, each MPI
process stores a block row of the vectors.

In order to handle possible faults in large-scale parallel computing, we make the following
assumptions. The fault model we consider in this work assumes that a fault occurs on one
particular node during the execution of the LOBPCG algorithm. When the fault occurs, all data
residing on the faulty compute node is lost, and all remaining nodes are notified about the fault.
The compute node is then quickly rebooted, or we are provided with a new one by the underlying
system. New MPI processes are restored on the node, and connection with all remaining MPI
processes in the network is re-established. We shall make use of data stored on remaining nodes
to resume the computation.

4 Algorithmic-Based Fault-Tolerant Strategy

To recover from a fault, it is necessary to reconstruct the matrix elements of A, along with the
components in the (approximate) eigenvectors. In many applications [5], most matrix elements
are not explicitly stored—they are generated on the fly when performing matrix–vector multi-
plications. In this case, only a small amount of information that describes the matrix needs to
be restored. In some other applications [8, 12], the faulty compute node has to regenerate the
matrix elements assigned to it. Fortunately, in nuclear CI calculations matrix elements can usu-
ally be generated locally and independently, i.e., without involving other MPI processes, though
sometimes to accelerate the recovery process distributing the work among other MPI processes
is a possibility as well. Therefore, recovering matrix elements is in general a relatively easy task.
As such we shall focus on how to recover computed eigenvectors within the LOBPCG algorithm.

4.1 A strategy by filling zeros

Convergence of the LOBPCG algorithm partially depends on how close the initial guess is to
the desired eigenvector solution. When a good approximation is available, the algorithm may
converge in a few iterations. If a node or a processor failure occurs shortly before LOBPCG
converges, we would like to recover the approximate solution produced right before the fault,
and use that as the starting guess of a new run initiated after the failing node is recovered.

Suppose X(i) is the approximate eigenvector obtained at the ith LOBPCG iteration. Without
loss of generality, let us assume that X(i) is partitioned as[

X
(i)
1

X
(i)
2

]
, (3)

where X
(i)
2 is assumed to have been lost on some MPI ranks, and X

(i)
1 still remains on other

working MPI ranks.
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As we have mentioned in Section 2.3, it is natural that most entries of the eigenvector have
relatively small magnitudes in the CI calculation. If the lost data corresponds to these small
entries, it is possible to ignore these entries and replace them by zeros. That is, when the failed

MPI processes are recovered, we can simply replace the X
(i)
2 block of (3) by zero, and use[

X
(i)
1

0

]
as the approximate eigenvectors. Then we restart the LOBPCG algorithm with this approxima-
tion. A similar idea has been adopted in [10] to construct a good initial guess in the multi-level
LOBPCG algorithm for nuclear CI calculations. We remark that in order to adopt this strat-
egy, the LOBPCG algorithm needs to be carefully implemented so that it can properly handle
non-orthogonal vectors. Otherwise explicit orthogonalization would be required.

However, it is unlikely for such a simple strategy to always produce a good approximation.
If the faulty compute node contains dominant entries of an eigenvector, filling zeros introduces
large approximation errors. This sort of recovery strategy will generate a bad approximation and
hence cause slow convergence of the LOBPCG algorithm. Surprisingly, even if the faulty node
only contains tiny entries of the eigenvectors, in practice we often observe limited advantage of
this strategy compared to a new run of LOBPCG with the original initial guess.

4.2 A shift-and-invert strategy

Another strategy is to treat X
(i)
2 as an unknown in the following eigenvalue equation[

A11 A12

A21 A22

][
X

(i)
1

X
(i)
2

]
=

[
X

(i)
1

X
(i)
2

]
diag

{
λ
(i)
1 , . . . , λ

(i)
k

}
. (4)

When LOBPCG is close to convergence, equation (4) holds approximately (with a small residual

norm). Therefore, the X
(i)
2 block is expected to be restored with good quality by solving this

linear system. The second block row of (4) is a Sylvester equation of X
(i)
2 that can be solved

column-wise through

(A22 − λ
(i)
j I)X

(i)
2 (:, j) = −A21X

(i)
1 (:, j), (5)

where the notation (:, j) denotes the jth column. This strategy has been discussed in [1, 10],
though the discussion in [10] was not tailored to fault-tolerance.

We remark that the right-hand side of (5) can be easily computed even if the operation
x 7→ A21x is not directly applicable, as we can always perform the matrix–vector multiplication[

A11 A12

A21 A22

][
X

(i)
1

0

]
=

[
A11X

(i)
1

A21X
(i)
1

]
(6)

and extract the lower block from the output. The matrix–vector multiplication (6), which requires
MPI communications, is not really expensive because it is cheaper compared to one step of the
LOBPCG algorithm. Compared to the entire eigenvalue problem, equation (5) is a small linear
system and hence is relatively cheap to solve. Since (4) and (5) only hold approximately, there
is no need to solve (5) very accurately. Once the right-hand side of (5) has been computed,

X
(i)
2,j can be solved by an iterative algorithm (e.g., MINRES [9]). If only one MPI process

encounters a fault, and A22 and X
(i)
2 reside on the same MPI process, equation (5) can be solved

locally without MPI communications. Similar to the strategy that sets X
(i)
2 to zero, recovered

eigenvectors need to be orthogonalized unless the LOBPCG implementation can properly handle
non-orthogonal vectors.
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Table 1: List of test cases. The column ‘iterfree’ contains the number of iterations required by
a fault-free LOBPCG algorithm.
Nuclei Nmax Matrix Dimension Nonzero Elements iterfree
5He 8 271,023 114,566,624 81
7He 6 347,157 95,016,100 60
6Li 6 197,822 53,577,955 61
7Li 6 663,527 211,712,541 83
8Li 4 103,364 17,693,519 71
9Li 4 152,791 27,261,582 62

4.3 Ordering

In large-scale calculations, natural ordering of many-body states is not a good choice since the
work load is often not balanced among MPI processes. For instance, the MFDn software used
to use a cyclic distribution of groups of many-body states to achieve balanced work load [11].
A zigzag ordering was later introduced in MFDn to slightly improve the load balance compared
to the cyclic ordering. The Bigstick software also uses a similar idea to distribute groups of
many-body states [5]. While these ordering strategies were proposed mainly for load balance,
they are also beneficial when fault-tolerance is taken into account.

In natural ordering, many-body states with the smallest indices, which are the most domi-
nant ones, are all located on the same MPI process. If this process encounters a fault, entries
correspond to the most dominant states, which typically have large magnitudes, are lost. Since
the eigenvectors are often localized as discussed in Section 2.3, we can only restore the missing
information using entries with small magnitudes. The linear system (5) is very ill-conditioned
because the inverse of the underlying linear operator has a large norm. Consequently, it can be
expected that the quality of recovered entries is not satisfactory.

The situation becomes different if cyclic or zigzag ordering is adopted. In cyclic or zigzag
ordering, consecutive groups of many-body states are distributed over different MPI processes so
that they are not lost all together according to our fault model. Therefore, when encountering
faults, cyclic and zigzag orderings have better chances for quicker recovery compared to the
natural ordering. Based on these ordering strategies one can expect better results compared to
natural ordering even in case of utilizing a random ordering. We shall see this from results of
numerical experiments presented in Section 5.

5 Numerical Experiments

In the following, we use simulated experiments to illustrate the effectiveness of our fault-tolerant
LOBPCG algorithm. The experiments were performed on the Linux cluster Andes at Oak Ridge
Leadership Computing Facility (OLCF).1

We choose six test cases as listed in Table 1 with two-body interaction. Five smallest eigen-
values are computed with a relative residual 10−5 for each test case. When the shift-and-invert
strategy is used, we solve (5) with a relative residual 10−6 using MINRES with up to 20 iterations.
The number of iterations required by a fault-free LOBPCG algorithm, denoted by iterfree, is
also listed in Table 1 for each test case.

The program is run with 15 processes and one of them encounters a fault so that about 6.7% of
the data is lost. Then we artificially introduce exactly one fault on a certain process (by default,

1https://docs.olcf.ornl.gov/systems/andes_user_guide.html
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the 0th process unless otherwise specified) at jth iteration (for 1 ≤ j ≤ iterfree) and record
the total number of iterations for the fault-tolerant LOBPCG algorithm to converge. If a new
LOBPCG run from scratch is performed after the occurrence of a fault, the remaining number of
iterations is expected to be iterfree so that the total number of iterations is iterfree + j, which
grows linearly with the recovery point j.

We first use 5He with Nmax = 8 as a concrete example. Figure 2 shows the number of itera-
tions of the fault-tolerant LOBPCG algorithm in different settings. Our fault-tolerant strategies
are helpful in the sense that they require fewer iterations compared to a new LOBPCG run from
scratch which takes iterfree + j iterations, where j is the recovery point. The easiest situation
for recovery is that trailing entries under natural ordering are lost because the missing entries are
the least important ones. Even in this simplest case, Figure 2(a) demonstrates that the strategy
of filling zeros is not satisfactory because the total number of iterations eventually grows with
the recovery point j. The shift-and-invert strategy works perfectly in this case according to
Figure 2(c) because the total number of iterations is always close to that from a fault-free run.

Figures 2(b)–(f) illustrate the influence of the ordering. For cyclic, zigzag, or even a random
ordering, the shift-and-invert strategy behaves similarly compared to the simplest case—the
total number of iterations is close to that from a fault-free run. However, if the leading entries
from natural ordering are lost, the total number of iterations grows with the recovery point j,
indicating that the recovery is not much better compared to a new run of LOBPCG from scratch.
Hence, natural ordering is risky in practice, if the process with leading entries encounters a fault.

An interesting observation is that when j is around 20 ∼ 30 in this example, the total
number of iterations for a fault-tolerant LOBPCG can even be lower than iterfree. Though
detailed analysis of this behavior is beyond the scope of this paper.

Test results for more nuclei are shown in Figure 3. All strategies behave consistently among
these nuclei. The strategy of filling zeros is always problematic even if only trailing entries are
lost. When the shift-and-invert strategy with appropriate ordering is used, the total number of
iterations for a fault-tolerant LOBPCG algorithm is close to that of a fault-free one.

Finally, we demonstrate that the quality of our fault-tolerant strategies also depends on
the portion of lost data. To this end, we run the largest test case, 7Li with Nmax = 6, using p
processes with p0 faulty ones for (p0, p) ∈

{
(8, 15), (1, 15), (8, 120), (1, 120)

}
. Intuitively, the total

number of iterations increases when the portion of lost data increases. This is confirmed by the
test results shown in Figure 4. Even in the extremely difficult case with (p0, p) = (8, 15), where
more than half of the data is lost, our recovery strategies are still able to show reasonably good
results, in the sense that they are cheaper compared to a new run of LOBPCG from scratch.
Though the total number of iterations eventually grows with the recovery point in this case,
the shift-and-invert strategy with appropriate ordering is still helpful, and is always better than
the strategy of filling zeros. This suggests that our shift-and-invert strategy is quite robust for
recovery. When the portion of lost data becomes smaller, the shift-and-invert strategy with
appropriate ordering works much better. For large-scale computations in practice, we expect
these strategies to work even better since the portion of lost data becomes much smaller.

6 Conclusions

In nuclear CI calculations eigenvectors corresponding to a few lowest eigenvalues are usually
highly localized. By taking into account this property, we develop a fault-tolerant LOBPCG
algorithm on distributed-memory architectures. When an appropriate ordering is adopted, using
carefully recovered approximate eigenvectors to restart the LOBPCG iteration can significantly
reduce the number of iterations required to reach convergence compared to restarting the whole
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Figure 2: Number of iterations required by the fault-tolerant LOBPCG algorithm for 5He with
Nmax = 8 under different ordering.
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Figure 3: Number of iterations required by the fault-tolerant LOBPCG algorithm for nuclei
listed in Table 1.
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Figure 4: Number of iterations required by the fault-tolerant LOBPCG algorithm for
7Li with Nmax = 6 running on p processes, with p0 faulty processes for (p0, p) ∈{
(8, 15), (1, 15), (8, 120), (1, 120)

}
.
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calculation from the scratch. The recovery procedure is relatively cheap, and most computations
do not involve inter-node communication. Unlike check-pointing, our algorithm does not perform
additional work unless a fault has actually been encountered. Though our algorithm is proposed
for nuclear CI calculations, the technique can be applied to a wider range of problems discretized
using Schauder bases—as long as an appropriate ordering is used. The technique is also applicable
to alternative eigensolvers that can take advantage of good initial guesses.

The numerical experiments in this work are proof-of-concept. We use several small-scale test
cases with a relatively large lost rate to validate the effectiveness of our proposed algorithm.
We expect that our strategies will remain effective for large-scale problems of practical interests,
because the portion of lost data decreases as the number of processes grows. Incorporating the
fault-tolerant LOBPCG algorithm into a production code of nuclear CI calculations is planned
as our future work.
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