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EPIGRAPH

It is essential to understand our brains in some detail if we are to assess correctly our place in
this vast and complicated universe we see all around us.

Francis Crick, What Mad Pursuit
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ABSTRACT OF THE DISSERTATION

DNA methylation landscape of the mouse and human brain at single-cell resolution
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Mammalian brain cells show a remarkable diversity, yet the regulatory DNA landscape
underlying this extensive heterogeneity is poorly understood. Cytosine DNA methylation, a
covalent modification in the genome, is a critical player in brain cell gene regulation. Recent
advances in single-cell technologies allow studying this epigenomic modification at an
unprecedented resolution. During my Ph.D., I have developed and used single-cell methylome
and multi-omic technologies to profile mouse and human brains to establish the brain cell atlas.
In chapter 1, I access the epigenomes of mouse brain cell types by applying single-nucleus

DNA methylation sequencing to profile 103,982 nuclei from the mouse cerebrum. I constructed
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cell taxonomies containing 161 epigenetic clusters and annotated each cluster with signature
genes, regulatory elements, and transcription factors. The DNA methylation landscape of
excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients.
By combining multi-omic datasets from single nuclei and annotating the regulatory genome of
these cell types, the DNA methylation atlas establishes the epigenetic basis for neuronal
diversity and spatial organization throughout the mouse cerebrum. In chapter 2, colleagues and
I devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing
(snmCAT-seq) and applied it to postmortem human frontal cortex tissue. We developed a cross-
validation approach using multi-modal information to validate fine-grained cell types. We
reconstructed regulatory lineages for cortical cell populations and found specific enrichment of
genetic risk for neuropsychiatric traits, enabling the prediction of cell types associated with
diseases. In chapter 3, I developed a comprehensive computational package called ALLCools
to solve the computational challenges brought up by the single-cell methylome and multi-omic
dataset. This package includes data formats specialized for the single-cell DNA methylation
data and various functions covering cellular and genomic analysis. As a result, my Ph.D. study
has produced high-resolution single-cell DNA methylome datasets in the mouse brain,
developed new multi-omic technologies applicable to the human brain, and established
comprehensive analysis frameworks to analyze the extensive data. Together, these works create
concrete deliverables that extend the understanding of brain epigenome diversity and enable
future studies to understand the molecular source of brain cellular diversity and link the

psychological diseases to their molecular basis.
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CHAPTER 1

INTRODUCTION

Epigenomic dynamics are associated with cell differentiation and maturation in the
mammalian brain and have an essential role in regulating neuronal functions and animal
behaviour'. Cytosine DNA methylation (5mC) is a stable covalent modification that persists in
post-mitotic cells throughout their lifetime and is critical for proper gene regulation®. In
mammalian genomes, SmC occurs predominantly at CpG sites (mCG), showing dynamic patterns
at regulatory elements with tissue and cell-type specificity?, modulating binding affinity of
transcription factors® and controlling gene transcription'. Non-CpG cytosines are also abundantly
methylated (mCH, H denotes A, C, or T)—uniquely in neurons—in the mouse and human brain®’,
which can directly affect DNA binding of methyl CpG binding protein 2 (MeCP2)*!°, causing
Rett Syndrome!!. Levels of mCH at gene bodies are anti-correlated with gene expression and show
high heterogeneity across neuronal cell types*.

Recently, we and others have developed single-cell technologies to study DNA

3,12-14

methylation in individual cells at single-base resolution , which greatly extended our

3,15,16

knowledge of DNA methylation dynamics between different cells in heterogeneous tissue or

17,18

across developmental trajectories'-'®. Besides, we and others also developed methylation-based

multi-omic technologies, profiling DNA methylome together with RNA expression!® 22,

20,21,23 24,25

chromatin accessibility , and conformation“*=> within the same cell. The direct association of

different molecular modalities allows linking the regulatory effect of single cytosine methylation

to chromatin status and gene expression at a cell-specific level, revealing the regulatory role of

17,21 26,27

DNA methylation in an unprecedented resolution' ", Detail technology reviews are available



During my Ph. D. study, I focused on three aspects to extend the understanding of DNA
methylation diversity of the mammalian brain. In the first project (chapter 2), I will describe using
the single-nucleus methylome sequencing (snmC-seq?2) technology to establish a mouse brain cell
atlas with base-resolution epigenomic profiles. In the second project (chapter 3), I will describe a
novel single-nucleus multi-omic technology snmCAT-seq that is applicable to frozen human brain
tissue and the human brain multi-modality dataset we generated with this technology. In the third
project (chapter 4), I will describe a comprehensive analysis package that I developed to cover the

analysis of single-cell methylome dataset with high scalability and reproducibility.
1.1 Building A Mouse Brain Cell Atlas with Single-nucleus Methylome Sequencing

A deeper understanding of epigenomic diversity in the mouse brain provides a
complementary approach to transcriptome-based profiling methods for identifying brain cell types
and allows genome-wide prediction of the regulatory elements and transcriptional networks
underlying this diversity. Previous studies have demonstrated the utility of studying brain cell
types and regulatory diversity using single-nucleus methylome sequencing (snmC-seq)®. This
study uses snmC-seq2?® to perform thorough methylome profiling with detailed spatial dissection
in the adult postnatal day 56 (P56) male mouse brain. In Li et al.?’, the same tissue samples were
profiled using single-nucleus assay for transposase-accessible chromatin using sequencing
(SnATAC-seq) to identify genome-wide accessible chromatin®’, providing complementary
epigenomic information to aid in cell-type-specific regulatory genome annotation. Moreover, to
further study cis-regulatory elements and their potential target genes across the genome, we
applied single-nucleus methylation and chromosome conformation capture sequencing (sn-m3C-

seq)** to profile the methylome and chromatin conformation in the same cells.



These epigenomic datasets provide a detailed and comprehensive census of the diversity
of cell types across mouse brain regions, allowing identification of cell-type-specific regulatory
elements and their candidate target genes and upstream transcription factors. Here we construct a
single-cell base-resolution DNA methylation dataset containing 103,982 methylomes from 45
dissected brain regions and use an iterative analysis framework to identify 161 predicted mouse
brain subtypes. Comparing subtype-level methylomes enables us to identify 3.9 million genomic
regions showing cell-type-specific mCG variation, covering approximately 50% (1,240 Mb) of the
mouse genome. We show that differentially methylated transcription factor genes and binding
motifs can be associated with subtype taxonomy branches, allowing the prediction of cell-type
gene regulatory programs specific for each developmental lineage. Integration of these data with
cell clusters identified on the basis of chromatin accessibility validates most methylome-derived
subtypes, enabling the prediction of 1.6 million enhancer-like genomic regions. We identify cis-
regulatory interactions between enhancers and genes using computational prediction and single-
cell chromatin conformation profiling (in the hippocampus (HIP)). We also identify spatial
methylation gradients in cortical excitatory neurons and dentate gyrus granule cells and associated
transcription factors and motifs. We apply an artificial neural network (ANN) model to precisely

predict single-neuron cell-type identity and brain area spatial location using its methylome profile

as input and develop the brain cell methylation viewer (http://neomorph.salk.edu/omb) as a portal

for querying and visualization of cell- and cluster-level methylation data.

1.2 Multi-omic Profiling in the Human Brain
Single-cell transcriptome, cytosine DNA methylation (mC) and chromatin profiling
techniques have been successfully applied for cell-type classification and studies of gene

expression and regulatory diversity in complex tissues®'-*2, The broad range of targeted molecular



signatures, as well as technical differences between measurement platforms, presents a challenge
for integrative analysis. For example, mouse cortical neurons have been studied using single-cell

assays that profile RNA, mC or chromatin accessibility3-%33-33

, with each study reporting its own
classification of cell types. Although it is possible to correlate the major cortical cell types
identified by transcriptomic and epigenomic approaches, it remains unclear whether fine subtypes
can effectively be integrated across different datasets and fused between modalities. Recently,
computational methods based on Canonical Correlation Analysis®, mutual nearest neighbors®’ or
matrix factorization®® have been developed to fuse molecular data types. However, validating the
results of computational data fusion requires multi-omic reference data comprising different types
of molecular measurements made in the same cell.

Single-cell multi-omics profiling provides a unique opportunity to evaluate cell type
classification using multiple molecular signatures®!. Most single-cell studies rely on clustering
analysis to identify cell types. However, it is challenging to objectively determine whether the
criteria used to distinguish cell clusters are statistically appropriate and whether the resulting
clusters reflect biologically distinct cell types®®. We reasoned that genuine cell types should be
distinguished by concordant molecular signatures of cell regulation at multiple levels, including
RNA, mC and open chromatin, in individual cells. Moreover, multi-omic data can uncover subtle
interactions among transcriptomic and epigenomic levels of cellular regulation.

Existing methods for joint profiling of transcriptome and mC, such as scM&T-seq and
scMT-seq, rely on the physical separation of RNA and DNA followed by parallel sequencing
library preparation!®-24°, Generating separate transcriptome and mC sequencing libraries leads to

a complex workflow and increases cost. Moreover, it is unclear if these methods can be applied to

single nuclei, which contain much less polyadenylated RNA than whole cells. Since the cell



membrane is ruptured in frozen tissues, the ability to produce robust transcriptome profiles from
single nuclei is critical for applying a multi-omic assay for cell-type classification in frozen human
tissue specimens.

Here we describe a single nucleus multi-omic method snmCAT-seq (single-nucleus
methylCytosine, chromatin Accessibility and Transcriptome sequencing) that simultaneously
interrogates transcriptome, mC and chromatin accessibility without requiring the physical
separation of RNA and DNA. We applied snmCAT-seq to cultured human cells and postmortem
human frontal cortex tissues. We further generated an additional 23,005 single-nucleus, droplet-
based RNA-seq profiles (snRNA-seq) and 12,557 single-nucleus, snATAC-seq-based open
chromatin profiles using frozen human frontal cortex tissue*®. Using this comprehensive
multimodal dataset, we developed computational strategies to tackle two challenges in single-cell
biology: 1) how to assess the statistical and biological validity of clustering analyses, and 2) how
to validate computational approaches to fuse multiple single-cell data types. We then performed
integrated analyses of single-cell methylomes for the human frontal cortex comprised of 15,030
cells, including two multi-omic data sets generated by snmCAT-seq and the previously published
sn-m3C-seq, a method to simultaneously profile chromatin conformation and mC?*. These large
datasets enabled the identification of gene regulatory diversity for 63 finely defined brain cell types
at an unprecedented level of data fusion using four levels of molecular signatures (i.e.,
transcriptome, methylome, chromatin accessibility, and conformation) to define their unique

regulatory genomes with cell-type specificity and link them to genetic disease risk variants.

1.3 Analysis Framework for Single-Cell Methylome and Multi-omic Datasets
Despite the tremendous advancement in technology development, computational

challenges raised by single-cell methylome and multiomic technologies haven’t been fully solved.



First, single-cell methylome technologies have scaled the size of the samples by orders of

15,17,42

magnitudes, from dozens>*' to hundreds of thousands of methylomes in a single study.

Noteworthy, the single-cell RNA-seq (scRNA) and single-cell ATAC-seq (scATAC) also create a
vast amount of samples, which are well handled by corresponding analysis packages3®436,
However, packages developed for these read-count-based sequencing assays are not suitable for
the read-fraction-based mC data due to fundamental differences in the data quantification and
analysis goals. Therefore, algorithmic and engineering innovations are needed to store and process
single-cell mC data before incorporating existing single-cell computational tools. Besides, many
single-cell data analysis packages have been mainly focused on cellular analysis, for example,

4748 differential gene analysis between cells*, cell-cell

dimension reduction, clustering
integration®, and trajectory analysis®. Although all these analyses are also essential for the mC
data, the additional goal of studying single-cell DNA methylation is to characterize regulatory
elements in the genome at single cytosine resolution. Therefore, a comprehensive analysis package
bringing the cellular and genomic analysis together will maximize the utility of the informative
single-cell genome-wide DNA methylation assays.

My colleagues and I describe ALLCools (ALL Cytosine tools), a versatile python package
designed for single-cell mC and mC-based multi-omic assays. ALLCools defines one tab-
separated text format (ALLC format) to handle raw unprocessed methylation count tables. From
the ALLC table, ALLCools then generates two data structures for storing huge cell-by-region
(MCDS) and region-by-annotation (RegionDS) matrices generated by recent single-cell
technologies, with a scalable capacity of more than one million cells or ten million genomic regions.

Besides, both data structures natively support handling quantification from multiple molecular

modalities, making it suitable for storing all kinds of mC or mC-based multi-omic technology data.



For cell clustering analysis, we developed two methods tailored for different types of methylation
data and feature sets, providing comprehensive support to datasets generated from a wide range of
tissue sources (See below). Furthermore, ALLCools provides an analysis framework for cellular
analysis and genomic analysis, including functions from cell clustering to post-clustering
regulatory element analysis. ALLCools’s Python-based implementation is convenient to interface

with other existing single-cell packages such as Scanpy** or those with more specific purposes like

48,51 37,52

performing multiomic analysis*>!, cell-cell integration3”->2, enhancer prediction®?, and enhancer
gene interaction™.

To demonstrate the utilities of ALLCools, I used an integrated mouse hippocampus dataset
to demonstrate the integrative pipeline of identifying cell-type-specific Cis-Regulatory Elements
(CRE) using the combination of DNA methylation and chromatin accessibility data, and then
further link them to potential target genes with the chromatin conformation. This example
showcases the power of single-cell methylome and multiome datasets in characterizing the
complex cell-type-specific gene regulation in adult neurons. Together, the ALLCools package is
a full-stack solution for single-cell DNA methylation and multi-omic data analysis. Detailed

documentation of the ALLCools package is available in

https://lhging.github.io/ALLCools/intro.html.




CHAPTER 2
DNA Methylation Atlas of the Mouse Brain at Single-Cell

Resolution

2.1 Abstract

Mammalian brain cells show remarkable diversity in gene expression, anatomy and
function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly
understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell
types by applying single-nucleus DNA methylation sequencing®?® to profile 103,982 nuclei
(including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex,
hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct
spatial locations and projection targets. We constructed taxonomies of these epigenetic types,
annotated with signature genes, regulatory elements and transcription factors. These features
indicate the potential regulatory landscape supporting the assignment of putative cell types and
reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes.
The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied
continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural
network model that precisely predicts single neuron cell-type identity and brain area spatial
location. Integration of high-resolution DNA methylomes with single-nucleus chromatin
accessibility data?® enabled prediction of high-confidence enhancer—gene interactions for all
identified cell types, which were subsequently validated by cell-type-specific chromatin
conformation capture experiments**. By combining multi-omic datasets (DNA methylation,

chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome



of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic

basis for neuronal diversity and spatial organization throughout the mouse cerebrum.
2.2 Single-cell DNA methylome atlas

We used snmC-seq2?® to profile genome-wide 5mC at single-cell resolution (Fig. 2.1a)
across the cortex, HIP, striatum and pallidum (or cerebral nuclei, CNU), and olfactory areas (OLF)
(Fig. 2.2.1b—¢) using adult male C57BL/6 mice’”. In total, we analysed 45 dissected regions in two
replicates (Supplementary Fig. 2.1, Supplementary Table 2.2). Fluorescence-activated nuclei
sorting (FANS) of antibody-labelled nuclei was applied to capture NeuN-positive neurons (NeuN",
92% of neurons), while also sampling a smaller number of NeuN-negative (NeuN~, 8% of neurons)
non-neuronal cells (Fig. 2.1a). In total, we profiled the DNA methylomes of 103,982 single nuclei,
yielding, on average, 1.5 million stringently filtered reads per cell (1.5 x 10°+0.58 x 109,
mean =+ s.d.) covering 6.2 £ 2.6% of the cytosines in the mouse genome in each cell. These enabled
reliable quantification of the DNA methylation fraction for 25,905 + 1,090 (95 + 4%) 100-kb bins
and 44,944 + 4,438 (81 + 8%) gene bodies (Supplementary Fig. 2.2a). The global methylation
levels range from 0.2% to 7.6% in non-CpG sites and 61.6% to 88.8% in CpG sites (Supplementary

Fig. 2.2b, c).

On the basis of the mCH and mCG profiles in 100-kb bins throughout the genome, we
performed a three-level iterative clustering analysis to categorize the epigenomic cell populations
(Fig. 2.11, g). After quality control and preprocessing (Methods), in the first level (cell class), we
clustered 103,982 cells as 67,472 (65%) excitatory neurons, 28,343 (27%) inhibitory neurons, and
8,167 (8%) non-neurons (Supplementary Table 2.3). The second round of iterative analysis of each
cell class identified 41 cell major types in total (cluster size range 95—11,919), and the third round

separated these major types further into 161 cell subtypes (cluster size range 12-6,551). All



subtypes are highly conserved across replicates, and replicates from the same brain region are co-

clustered compared with samples from other brain regions (Supplementary Fig. 2.2d—g).

The spatial distribution of each cell type is assessed based on where the cells were dissected
(Supplementary Table 2.5). Here we used uniform manifold approximation and projection
(UMAP)*® to visualize cell spatial locations (Fig. 2.1f, Supplementary Fig. 2.3) and major cell
types (Supplementary Fig. 2.2h). Major non-neuronal cell types have a similar distribution across
brain regions (Supplementary Fig. 2.1g), except adult neuron progenitors (ANP). We found two
subtypes of ANPs, presumably corresponding to neuronal precursors in the subgranular zone of
the dentate gyrus (DG)*’ (ANP anp-dg) and the rostral migratory stream®’ in CNU and OLF (ANP
anp-olf-cnu). Excitatory neurons from isocortex, OLF and HIP formed different major types, with
some exceptions, potentially owing to overlaps in dissected regions (Supplementary Table 2.2).
Cells from the isocortex were further separated on the basis of their projection types*3>-%. The
intratelencephalic (IT) neurons from all cortical regions contain four major types corresponding to
the laminar layers (L2/3, L4, L5 and L6), each of which includes cells from all cortical regions,
except L4, which lack cells from the prefrontal cortex (PFC) and anterior cingulate area (ACA).
Excitatory neurons from the HIP were further partitioned into major types corresponding to DG
granule cells and different subfields of cornus ammonis (CA). We also identified major types from
cortical subplate structures, including the claustrum (CLA) and endopiriform nucleus (EP) from
isocortex and OLF dissections. GABAergic inhibitory neurons from isocortex and HIP cluster

together into five major types, whereas interneurons from CNU and OLF group into nine major
types.

In total, we identified 68 excitatory and 77 inhibitory subtypes (Fig. 2.2a, b, Supplementary

Table 2.7). Although there is no one-to-one correspondence between subtypes and brain regions,

10



individual subtypes show differential regional enrichment (Fig. 2.2a, b, top right) and distinct
global mCH levels, ranging from 0.98% (DG dg-all) to 4.64% (PAL-Inh Chat, an inhibitory
subtype in pallidum (PAL)PAL-Inh Chat) (Fig. 2.2a, b, bottom right). Specifically, isocortical
excitatory subtypes usually consist of cells majorly derived from either the sensorimotor (primary
motor (MOp), secondary motor (MOs), primary somatosensory (SSp), and secondary
somatosensory (SSs) cortex), medial (PFC and ACA), or frontal areas (orbital (ORB) and
agranular insular (AI) area (Al)). In the OLF, excitatory cells from the anterior olfactory nucleus
(AON) and main olfactory bulb (MOB) are enriched in the subtype OLF-Exc Bmprib, whereas
cells from the piriform area (PIR) are relatively enriched in the other OLF-Exc subtypes. Similarly,
some inhibitory subtypes in CNU and OLF also correspond to different substructures in these two
regions (Supplementary Note 2.1), indicating substantial spatial-related methylation diversity
among CNU and OLF interneurons. By contrast, most caudal (CGE) or medial (MGE) ganglionic
eminence-derived inhibitory subtypes contain cells derived predominantly from all cortical or
hippocampal regions. To better demonstrate the unprecedented level of neuronal subtype and
spatial diversity in their DNA methylomes, we provide a web application to interactively display

this information at different granularity (http://neomorph.salk.edu/omb). We also provide a

detailed discussion of how exemplified subtypes correspond to cell types with known functional

and spatial features (Supplementary Fig. 2.4) in Supplementary Note 2.1.
2.3 Consensus epigenomic profiles

Integrating single-cell datasets collected using different molecular profiling modalities can

3938 By integrating the methylome data with the

help to establish a consensus cell-type atlas
chromatin accessibility data profiled using snATAC-seq on the same brain samples from a parallel

study?’, the two modalities validated each other at the subtype level (Fig. 2.2¢, d, Supplementary

11



Fig. 2.5a—f, Supplementary Table 2.10). We then calculated overlap scores between the original
methylation subtypes (m-types) and the chromatin accessibility subtypes (a-types), which further
quantified the matching of subtypes between the two modalities (Fig. 2.2e, Supplementary Fig.
2.5e, Methods). Moreover, the mCG DMRs (see below) highly overlap with open chromatin peaks
in the hippocampal subtypes (Fig. 2.2f). Their mCG fractions and chromatin accessibility levels
show similar cell-type-specificity across hippocampal subtypes, confirming the correct match of

cell-type identities (Supplementary Fig. 2.5f).
2.4 Projection specificity of ET-LS neurons

To further infer the projection targets of cell subtypes, we integrated our extra-
telencephalic (ET) L5 neurons with Epi-Retro-Seq data*?. Epi-Retro-Seq uses retrograde viral
labelling to select neurons projecting to specific brain regions, followed by methylome analysis of
their epigenetic subtypes. Cells from the same brain region of the two datasets are colocalized on
t-distributed stochastic neighbour embedding (#~-SNE) analysis, validating the subtypes’ spatial
distribution (Fig. 2.2g—i, Supplementary Fig. 2.5g—i). The overlap scores between unbiased
(snmC-seq2) and targeted (Epi-Retro-Seq) profiling experiments (Supplementary Fig. 2.5j)
indicate that some subtypes identified from the same cortical area show different projection
specificity. For example, SSp and MOp neurons were mainly enriched in three subtypes marked
by Kcnhl, Tmtc2 and Nectinl, respectively. However, neurons projecting to the medulla in the
MOp and SSp only integrate with the subtype marked with Kcnhl (Fig. 2.2j), suggesting that the

subtypes identified in unbiased methylome profiling have distinct projection specificities.
2.5 Regulatory taxonomy of neuronal subtypes

Having developed a consensus map of cell types based on their DNA methylomes, we

identified 16,451 differentially CH-methylated (where H correspond to A, T or C) genes (CH-
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DMGs) and 3.9 million CG-differentially methylated regions (CG-DMRs, 624 + 176 base pairs
(bp) mean + s.d.) between the subtypes (Supplementary Fig. 2.6, Methods, Supplementary Note
2.2). snmC-seq2 captures both cell-type-specific gene expression and predicted regulatory
events>28, Specifically, both gene body mCH and mCG negatively correlate with gene expression
in neurons, with mCH showing a stronger correlation than mCG?**!°. CG-DMRs provide
predictions about cell-type-specific regulatory elements and transcription factors whose motifs

enriched in these CG-DMRs predict the crucial regulators of the cell type~>.

To further explore the gene regulatory relationship between neuronal subtypes, we
constructed taxonomy trees for excitatory and inhibitory subtypes, based on gene body mCH of
CH-DMGs (Supplementary Fig. 2.7a, b, Methods). The dendrogram structures represent the
similarities between these discrete subtypes and may reflect the developmental history of neuronal
type specification®>-°, Next, we used both CH-DMGs and CG-DMRs to annotate the tree and
explore the features specifying cell subtypes (excitatory in Fig. 2.3a—c and inhibitory in
Supplementary Fig. 2.7¢c, d). Specifically, we calculated a branch-specific methylation impact
score for each gene or transcription factor motif that summarizes all of the pairwise comparisons
related to that branch (Supplementary Fig. 2.7e; Methods). The impact score ranges from O to 1,
with a higher score predicting stronger functional relevance to the branch. We assign 6,038 unique
genes to branches within the excitatory taxonomy (5,975 in inhibitory taxonomy), including 406
transcription factor genes (412 in inhibitory taxonomy) using genes with impact scores greater
than 0.3. For example, motifs from the ROR (also known as NR1F) family were assigned to the
branch that separates superficial layer IT neurons from deeper layer IT neurons (Fig. 2.3d—f, node
9), whereas motifs from the CUX family were assigned to the IT-L2/3 branch, separating it from

IT-L4/5 neurons (Fig. 2.3d—f, node 11). Both of these families contain members, such as Cux/,
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Cux2 and Rorb, that show laminar expression in the corresponding layers and regulate cortical

layer differentiation during development®,

After impact score assignment, each branch of this taxonomy was associated with multiple
transcription factor genes and motifs, which potentially function in combination to shape cell-type
identities® (Fig. 2.3e, f). For example, we focused on two brain structures of interest: the CLA and
the EPS162, At the major-cell-type level, distinct clusters are marked by Npsr/ (EP) and B3gar2
(CLA). The known EP and CLA marker transcription factor Nr4a2°! also shows hypomethylation
in both clusters compared to other clusters. Accordingly, the NR4A2 motif is also associated with
a branch that splits CLA neurons from IT-L6 neurons (Fig. 2.3d—f, node 6). On another branch
separating EP from CLA and IT-L6 neurons, genes for several transcription factors, including NF-
1 family members Nfia and Nfib and the RFX family member Rfx3, together with corresponding
motifs (Fig. 2.3d—f, node 5) rank near the top. Our findings suggest that these transcription factors
may function together with Nr4a2, potentially separating EP neurons from CLA and IT-L6

neurons.

Beyond identifying specific cell-subtype characteristics, we derived total impact (TI)
scores to summarize the methylation variation of genes and motifs to understand their relative
importance in cell type diversification and function (Supplementary Fig. 2.7f-k, Supplementary
Note 2.3). By comparing the TI scores of genes and motifs calculated from the inhibitory and
excitatory taxonomies, we found that there were more transcription factor genes and motifs having
large TI scores in both cell classes than in either one or the other (Supplementary Fig. 2.7f, 1). For
instance, Bcl/l1b distinguishes OLF-Exc and IT neurons in the excitatory lineage and distinguishes
CGE-Lamp5 and CGE-Vip in the inhibitory lineage. Similarly, Satb! separates IT-L4 from IT-

L2/3 and MGE from CGE in excitatory and inhibitory cells. These findings indicate broad
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repurposing of transcription factors for cell-type specification among distinct developmental

lineages.
2.6 Enhancer—gene Interactions

To systematically identify enhancer-like regions in specific cell types, we predicted
enhancer-DMRs (eDMR) by integrating matched DNA methylome and chromatin accessibility
profiles? of 161 subtypes (Fig. 2.4a, Methods). We identified 1,612,198 eDMR (34% of CG-
DMRs), 73% of which overlapped with separately identified snATAC-seq peaks (Fig. 2.4b). Fetal-
enhancer DMRs (feDMR) (that is, eDMRs between development time points) of forebrain bulk
tissues® show high (88%) overlap with eDMRs. Surprisingly, the eDMRs also cover 74% of the
feDMRs from other fetal tissues’, indicating extensive reuse of enhancer-like regulatory elements

across mammalian tissue types (Fig. 2.4b).

Next, we examined the relationship between the cell-type-signature genes and their
potential regulatory elements. We calculated the partial correlation between all DMG-DMR pairs
within 1 Mb distance using methylation levels across 145 neuronal subtypes (Methods). We
identified a total of 1,038,853 (64%) eDMRs that correlated with at least one gene (correlation
>0.3 with empirical P <0.005, two-sided permutation test, Supplementary Fig. 2.8a). Notably, for
those strongly positive-correlated DMR-DMG pairs (correlation >0.5), the DMRs are largely
(63%) within 100 kb of the transcription start sites (TSSs) of the corresponding genes but are
depleted from £1 kb (Fig. 2.4c, Supplementary Fig. 2.8b), whereas for the negatively correlated
DMR-DMG pairs, only 11% of DMRs are found within 100 kb of the TSS (Supplementary Fig.

2.8¢).

Using the gene—enhancer interactions predicted by this correlation analysis, we assigned

eDMRs to their target genes. The percentages of feDMR-overlapping eDMRs vary markedly
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among genes (Fig. 2.4d, Supplementary Fig. 2.8d, e). Of note, DMRs assigned to the same gene
show different mCG specificity among subtypes. For example, 7T/e4-correlated eDMR could be
partitioned into three groups (Supplementary Fig. 2.8e—g). One group (G2) of elements that
displayed little diversity in bulk data showed highly specific mCG and open-chromatin signals in
MSN-D1/D2 neurons, whereas another group (G3) was specific to CT-L6 neurons. These two
groups of DMRs suggest that possible alternative regulatory elements are used to regulate the same

gene in different cell types, although further experiments are required to validate this hypothesis.

Together, these analyses allow us to carefully chart the specificity of regulatory elements
identified in bulk tissues to the subtype level. Besides, we identified many regulatory elements that
show more restricted specificity (for example, eDMRs correlated with 7/e4 in MSN-D1/D2),
providing abundant candidates for further pursuing enhancer-driven adeno-associated viruses

(AAVs) that target highly specific cell types®.
2.7 3D genome structure of hippocampus

Distal enhancers typically regulate gene expression through physical interaction with
promoters®*. Therefore, to examine whether physical chromatin contacts support our correlation-
based predictions of enhancer—gene associations, we generated sn-m3C-seq?* data for 5,142 single
nuclei from the HIP (152,000 contacts per cell on average). We assigned these cells, on the basis
of the sn-m3C-seq data, to eight major cell types based on integration with the snmC-seq2 HIP
data. In total, 19,151 chromosome loops were identified in at least one of the cell types at 25-kb

resolution (range from 1,173 to 12,614 chromosome loops per cell type).

Using DG and CAl as examples, a notably higher correlation was observed between
enhancers and genes at loop anchors than between random enhancer—gene pairs (Supplementary

Fig. 2.8h). Reciprocally, the enhancer—gene pairs showing stronger correlation with methylation
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were more likely to be found linked by chromosome loops or within the same looping region
(Supplementary Fig. 2.81). We also compared the concordance of methylation patterns between
genes and enhancers linked by different methods and found the pairs linked by loop anchors or
closest genes had the highest correlation of methylation (Supplementary Fig. 2.8j). Together, these
analyses validate the physical proximity of enhancer—gene pairs predicted by our correlation-based

method in specific cell types.

Additionally, we observed significant cell-type-specific 3D genome structures. The major
cell types could be distinguished on UMAP embedding on the basis of chromosome interaction
(Fig. 2.4e), indicating the dynamic nature of genome architecture across cell types. Among the
19,151 chromosome loops, 48.7% showed significantly different contact frequency between cell
types (Fig. 2.4f). eDMRs were highly enriched at these differential loop anchors (Supplementary
Fig. 2.8k). mCG levels at distal cis-elements are typically anti-correlated with enhancer activity”.
Thus, we hypothesized that enhancers at differential loop anchors might also be hypomethylated
in the corresponding cell type. Indeed, using the loops identified in DG and CA1 as examples, we
observed that enhancers at the anchor of cell-type-specific loops show corresponding

hypomethylation in the same cell type that the loop is specific to (Supplementary Fig. 2.8I).

Many differential loops were observed near marker genes of the corresponding cell type.
For example, Foxpl, a gene for a CAl-specific transcription factor®®, has chromosome loops
surrounding its gene body in CA1 but not DG (Fig. 2.4g, h). eDMRs and open chromatin were
observed at these loop anchors. Notably, three loops in CA1 anchored at the TSS of the same
transcript of Foxp! (Fig. 2.4h). Stronger demethylation and chromatin accessibility were also
observed at the same transcript than in other transcripts (Fig. 2.4h, box E). These epigenetic

patterns might suggest a specific transcript of Foxp! (Foxp1-225) is selectively activated in CA1.
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by contrast, Lrrtm4, encoding a DG specific presynaptic protein that mediates excitatory synapse
development®®, shows extensive looping to distal elements in DG but not CA1 (Supplementary
Fig. 2.8n). Notably, among 34 genes showing alternative loop usage, 20 genes expressed in both
DG and CA1%7; for example, the TSS of Grm?7 interacts with an upstream enhancer in DG and

gene body enhancers in CA1 (Supplementary Fig. 2.80).
2.8 mC Gradients in IT neurons

Cortical excitatory IT neurons are classified into major types corresponding to their laminar
layers: L2/3, L4, L5 and L6 (Fig. 2.5a). In agreement with the anti-correlation between transcript
levels and DNA methylation, we found hypomethylation in IT neurons of the layer marker genes??
(Supplementary Fig. 2.9a). Furthermore, UMAP embedding (Fig. 2.5a) reveals a continuous
gradient of I'T neurons resembling the medial-lateral distribution of the cortical regions (Fig. 2.5b),

strongly suggesting that the arealization information is well preserved in the DNA methylome.

To systematically explore the spatial gradient of DNA methylation, we merged the cells
into spatial groups on the basis of their cortical layer and region and generated a taxonomy between
them (Methods). The taxonomy split the cells into four layer groups, followed by cortical-region
separation within each layer (Supplementary Fig. 2.9¢), providing a clear structure for
investigating layer-related or region-related methylation variation. Specifically, the layer-related
transcription factors included many known laminar marker genes and their DNA-binding motifs
(Supplementary Fig. 2.9d), whereas some also show regional specific methylation differences. For
example, Cux/, encoding a homeobox transcription factor specific to L2/3 and L4 neurons, is
hypomethylated in motor (MO) and somatosensory (SS) cortex, but is hypermethylated in L2/3 of
other regions, in agreement with patterns from in situ hybridization®®. Cux2, which encodes

another homeobox transcription factor, does not show the same regional specificity
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(Supplementary Fig. 2.9a). We also identified genes for many additional transcription factors that
showed cortical region specificity (Fig. 2.5¢, Supplementary Fig. 2.9¢). For example, E#v6 is only
hypomethylated in medial dissection regions across layers, whereas Zic4 is hypermethylated in
those regions. By contrast, Rora shows an anterior—posterior methylation gradient within the L4
and L5 cells. Together, these observed methylome spatial gradients demonstrated the value of our

dataset for further exploring the cortical arealization with cell-type resolution.
2.9 mC gradients in DG granule cells

Global methylation gradients are observed within large cell types. For example, DG
granule cells were continuously distributed in the UMAP embedding from low to high global mCH
and mCG (Fig. 2.5d, global mCH fraction 0.5-1.9%, mCG fraction 69-79%). This gradient
correlated with the anterior—posterior position of brain sections. Granule cells from the most

posterior DG regions had higher global methylation than cells from anterior regions (Fig. 2.5d).

mCH accumulates throughout the genome during postnatal brain development®>. We
reasoned that DG granule cells, which are continuously replenished by ongoing neurogenesis
throughout the lifespan, may accumulate mCH during their post-mitotic maturation. If so, global
mCH should correlate with the age and maturity of granule cells. To investigate this, we divided
DG granule cells into four groups on the basis of their global mCH levels and investigated regions
of differential methylation between the groups. We identified 219,498 gradient CG-DMRs
between the four groups, among which 139,387 showed a positive correlation with global mCH
(+DMR), and 80,111 were negatively correlated (—DMR) (Fig. 2.5¢). Notably, genes overlapping
+DMRs or —-DMRs have different annotated functions: genes enriched in +DMRs (+DMRgenes,
n=328) were associated with developmental processes, whereas those enriched in —DMRs

(—DMRgenes, n = 112) were related to synaptic function (Supplementary Fig. 2.10a, b).
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To further test the relationship between the +DMRgenes, —DMRgenes and DG
development, we examined the expression patterns of these genes across time using a single-cell
RNA-seq dataset that grouped DG cells into eight cell types, along their developmental trajectory
from radial glia to mature granule cells®. The +DMRgenes were more highly expressed in
immature cell types than in mature cell types (for example, 7cf4; Fig. 2.5, Supplementary Fig.
2.10c), whereas the —DMRgenes showed the reverse trend (for example, Rfx3; Fig. 2.5g,
Supplementary Fig. 2.10d). These results are consistent with the hypothesis that young DG granule
cells have low global mCH and low methylation at genes associated with neural precursors.
Conversely, older DG granule cells accumulate greater global mCH and have low methylation at
genes associated with mature neurons. Notably, the global mCH levels also correlate with the brain
dissections (Fig. 2.5d), indicating that the spatial axis can partially explain the methylation gradient

(Supplementary Note 2.4).

Next, we investigated whether the global methylation level is correlated with 3D genome
architecture. By plotting the chromatin interaction strength against the anchors’ genomic distance,
we observed a higher proportion of short-range contacts and a smaller proportion of long-range
contacts in the groups with higher global mCH (Supplementary Fig. 2.10f). Although compartment
strengths were not correlated with the global methylation changes (Supplementary Fig. 2.10g), the
number of intra-domain contacts was positively correlated with global mCH across single cells
(Supplementary Fig. 2.10h). After normalizing for the effect of decay, we found that insulation
scores at domain boundaries were significantly lower in the groups with high global mCH levels
(Supplementary Fig. 2.10i; all P < 1 x 1071, two-sided Wilcoxon signed-rank test). Together these
suggest that local structures may be more condensed over flanking regions in the high-mCH cell

groups.
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2.10 Cell type and spatial prediction model

To further quantify the spatial and cell-type information encoded in a single cell’s DNA
methylome, we built a multi-task deep ANN using cell-level methylome profiles from this study
(Fig. 2.6a). Specifically, mCH levels of 100-kb bins were used to train and test the network with
fivefold cross-validation (Method). The ANN predicted neuronal subtype identity and spatial
location simultaneously for each testing cell with 95% and 89% accuracy, respectively (Fig. 2.6b—
d). Notably, the location prediction accuracy of the ANN was higher than using only the spatial
distribution information of subtypes (overall increased by 38%, Supplementary Fig. 2.11c),
suggesting that spatial diversity is well-preserved in the neuronal DNA methylome. We also notice
higher levels of errors in location prediction of some cell types, especially in the cortical MGE and
CGE inhibitory neurons (Fig. 2.6¢c, Supplementary Fig. 2.11c). This finding is consistent with

previous transcriptome-based studies>-¢”

, suggesting these neurons do not display strong cortical
region specificity. Many cell-type marker genes are also enriched in features that capture most
spatial information (Fig. 2.6e, f). For example, besides distinguishing CT-L6 neurons from other
cell types, Foxp2 shows notable mCH differences among dissected regions within CT-L6 (Fig.
2.6f). Notably, we also observed the moderate spatial specificity of astrocytes and

oligodendrocytes using a separate model trained with methylomes of non-neuronal cells

(Supplementary Note 2.5).
2.11 Discussion

In this Article, we present a single-cell DNA methylomic atlas of the mouse brain with
detailed spatial dissection encompassing a large methylation dataset. This comprehensive dataset
enables high-throughput cell-type classification, marker gene prediction and identification of

regulatory elements. The three-level iterative clustering defined 161 subtypes representing
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excitatory (68), inhibitory (77) and non-neuronal cells (16). The development of a hierarchical
taxonomic architecture for cell subtypes on the basis of CH-DMGs allowed us to assign specific
genes and transcription factor binding motifs to taxonomy branches using the methylation impact
score. These assignments describe cell-type specificity at different levels, potentially relating to
different developmental stages of each neuronal lineage. Notably, we found that transcription
factor genes and their corresponding DNA-binding motifs were co-associated with the same

branch in the taxonomy, providing a rich source of candidate transcription factors for future study.

Through integration with snATAC-seq®’, we matched subtypes classified in both
epigenomic modalities and used the combined information to predict 1.6 million active-enhancer-
like eDMRs, including 72% of cell-type-specific elements missed from previous tissue-level bulk
studies®. To examine the associations of eDMRs and their targeting genes, we applied multi-omic
methods to establish an eDMR—gene landscape using correlation-based prediction and chromatin
conformation profiling using sn-m3C-seq, resulting in the identification of chromatin loops

between eDMRs and their potential targeting genes in specific cell types.

Our brain-wide epigenomic dataset reveals extraordinary spatial diversity encoded in the
DNA methylomes of neurons. The ANN trained on the single-cell methylome profiles accurately
reproduced the detailed brain-dissection information within most subtypes, indicating the
existence of large spatial methylation gradients throughout the brain. Echoing cortex development
studies’, glutamatergic neurons are regionalized by a protomap formed from an early
developmental gradient of transcription factor expression. Similarly, we observed that many
transcription factor genes and their corresponding DNA-binding motifs showed gradients of DNA
methylation in adult IT neurons from distinct cortical regions. Additionally, we also found intra-

subtype methylation gradients in DG granule cells that correlate with the spatial axis in the DG.
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These gradient-related CG-DMRs are enriched in essential neurodevelopmental and synaptic

genes®’!

, suggesting that these spatially resolved DNA methylation gradients reflect past
regulatory events occurring during brain maturation. We qualify our findings by noting that snmC-
seq?2 is a sodium bisulfite-based method and cannot distinguish between 5-methylcytosine and 5-
hydroxymethylcytosine, which has been shown to accumulate in some brain regions’?. New

methods will be needed to simultaneously measure the full complement of cytosine base

modifications at the single-cell level.

Overall, our analysis highlights the power of this dataset power for characterizing cell types
using gene activity information from both coding regions and the regulatory elements in the non-
coding regions of the genome. This comprehensive epigenomic dataset provides a valuable
resource for answering fundamental questions about gene regulation in specifying cell-type spatial
diversity and provides the raw material to develop new genetic tools for targeting specific cell

types and functional testing.

2.12 METHODS

2.12.1 Mouse brain tissues

All experimental procedures using live animals were approved by the Salk Institute Animal
Care and Use Committee under protocol number 18-00006. Adult (P56) C57BL/6J male mice were
purchased from Jackson Laboratories and maintained in the Salk animal barrier facility on 12 h
dark-light cycles with food ad libitum for a maximum of 10 days. Brains were extracted and sliced
coronally at 600 um from the frontal pole across the whole brain (for a total of 18 slices) in an ice-
cold dissection buffer containing 2.5 mM KCI, 0.5 mM CaCl,, 7 mM MgCl,, 1.25 mM NaH;POs,

110 mM sucrose, 10 mM glucose and 25 mM NaHCOs. The solution was kept ice-cold and
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bubbled with 95% O2, 5% CO: for at least 15 min before starting the slicing procedure. Slices were
kept in 12-well plates containing ice-cold dissection buffers (for a maximum of 20 min) until
dissection aided by an SZX16 Olympus microscope equipped with an SDF PLAPO 1XPF
objective. Olympus cellSens Dimension 1.8 was used for image acquisition. Each brain region was
dissected from slices along the anterior-posterior axis according to the Allen Brain reference Atlas
CCFv3> (see Supplementary Fig. 2.1 for the depiction of a posterior view of each coronal slice).
Slices were kept in ice-cold dissection media during dissection and immediately frozen in dry ice
for posterior pooling and nuclei production. For nuclei isolation, each dissected region was pooled

from 6-30 animals, and two biological replicas were processed for each slice.

2.12.2 Fluorescence-activated nuclei sorting

Nuclei were isolated as previously described??. Isolated nuclei were labelled by incubation
with 1:1,000 dilution of Alexa Fluor 488-conjugated anti-NeuN antibody (MAB377X, Millipore)
and a 1:1,000 dilution of Hoechst 33342 at 4 °C for 1 h with continuous shaking. FANS of single
nuclei was performed using a BD Influx sorter with an 85-pum nozzle at 22.5 PSI sheath pressure.
Single nuclei were sorted into each well of a 384-well plate preloaded with 2 pul of proteinase K
digestion buffer (1 pul M-Digestion Buffer (Zymo-Cat#D5021-9), 0.1 ul of 20 ug ul™! proteinase
K and 0.9 pl H>0O). The alignment of the receiving 384-well plate was performed by sorting sheath
flow into wells of an empty plate and making adjustments based on the liquid drop position. Single-
cell (one-drop single) mode was selected to ensure the stringency of sorting. For each 384-well
plate, columns 1-22 were sorted with NeuN+ (488+) gate, and column 23-24 with NeuN— (488-)
gate, reaching an 11:1 ratio of NeuN+ to NeuN- nuclei. BD Influx Software v1.2.0.142 was used

to select cell populations.
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2.12.3 Library preparation and Illumina sequencing

Detailed methods for bisulfite conversion and library preparation were previously
described for snmC-seq2*?%. The snmC-seq2 and sn-m3C-seq (see below) libraries generated from
mouse brain tissues were sequenced using an [llumina Novaseq 6000 instrument with S4 flow cells
using the 150-bp paired-end mode. Freedom EVOware v2.7 was used for library preparation, and
[llumina MiSeq control software v3.1.0.13 and NovaSeq 6000 control software v1.6.0/Real-Time

Analysis (RTA) v3.4.4 were used for sequencing.

2.12.4 The sn-m3C-seq specific steps of library preparation

Single-nucleus methyl-3C sequencing (sn-m3C-seq) was performed as previously
described?*. In brief, the same batch of dissected tissue samples from the dorsal dentate gyrus (DG-
1 and DG-2, Supplementary Table 2.2), ventral dentate gyrus (DG-3 and DG-4), dorsal HIP (CA-
1 and CA-2), and ventral HIP (CA-3 and CA-4), were frozen in liquid nitrogen. The samples were
then pulverized while frozen using a mortar and pestle, and then immediately fixed with 2%
formaldehyde in DPBS for 10 min. The samples were quenched with 0.2 M glycine and stored at
—80 °C until ready for further processing. After isolating nuclei as previously described?*, nuclei
were digested overnight with Nlalll and ligated for 4 h. Nuclei were then stained with Hoechst
33342 (but not stained with NeuN antibody) and filtered through a 0.2-um filter, and sorted

similarly to the snmC-seq2 samples. Libraries were generated using the snmC-seq2 method.
2.12.5 Mouse brain region nomenclature

The mouse brain dissection and naming of anatomical structures in this study followed the
Allen Mouse Brain common coordinate framework (CCF)*®. On the basis of the hierarchical

structure of the Allen CCF, we used a three-level spatial region organization to facilitate

description: (1) the major region, for example, isocortex, HIP; (2) the sub-region, for example,
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MOp, SSp, within isocortex; (3) the dissection region, for example, MOp-1 and MOp-2, within
MOp. Supplementary Table 2.1 contains the full names of all abbreviations used in this study. All
brain atlas images were created based on Wang et al.® and ©2017 Allen Institute for Brain

Science. Allen Brain Reference Atlas. Available from: http://atlas.brain-map.org/.

2.12.6 Analysis stages

The following method sections were divided into three stages. The first stage, ‘Mapping
and feature generation’, describes mapping and generating files in the single-cell methylation-
specific data format. The second stage, ‘Clustering related’, describes clustering, identifying
DMGs, or integrating other datasets, which all happened at the single-cell level. The third stage,
‘Cell-type-specific regulatory elements’, describes the identification of putative cell-type-specific
regulatory elements using cluster-merged methylomes. Other figure-specific analysis topics may

combine results from more than one stage.

2.12.7 Mapping and feature generation

2.12.7.1 Mapping and feature-count pipeline

We implemented a versatile mapping pipeline, YAP (https://hg-1.gitbook.io/mc/), for all

the single-cell-methylome-based technologies developed by our group?2!-?

. The main steps of this
pipeline include: (1) demultiplexing FASTQ files into single cells; (2) reads level quality control
(QC); (3) mapping; (4) BAM file processing and QC; and (5) final molecular profile generation.
The details of the five steps for snmC-seq2 were previously described?®. We mapped all of the
reads to the mouse mm10 genome. We calculated the methylcytosine counts and total cytosine

counts for two sets of genomic regions in each cell after mapping. Non-overlapping chromosome

100-kb bins of the mm10 genome (generated by “bedtools makewindows -w 100000”) were used
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for clustering analysis and ANN model training, and the gene body regions £2 kb defined by the

mouse GENCODE vm22 were used for cluster annotation and integration with other modalities.

2.12.7.2 sn-m3C-seq-specific steps or read mapping and chromatin contact analysis

Methylome sequencing reads were mapped following the TAURUS-MH pipeline, as
previously described?*. Specifically, reads were trimmed for Illumina adaptors, and then an
additional 10 bp was trimmed on both sides. Then R1 and R2 reads were mapped separately to the
mml0 genome using Bismark with Bowtie. The unmapped reads were collected and split into
shorter reads representing the first 40 bp, the last 40 bp, and the middle part of the original reads
(if read length >80 bp after trimming). The split reads were mapped again using Bismark with
Bowtie. The reads with MAPQ <10 were removed. The filtered bam files from split and unsplit
R1 and R2 reads were deduplicated with Picard and merged into a single bam file to generate the
methylation data. Methylpy (v1.4.2)*! was used to generate an ALLC file (base-level methylation
counts) from the bam file for every single cell. We paired the R1 and R2 bam files where each
read-pair represents a potential contact to generate the Hi-C contact map. For generating contact

files, read pairs where the two ends mapped within 1 kbp of each other, were removed.

2.12.8 Clustering-related methods

2.12.8.1 Single-cell methylome data quality control and preprocessing

Cell filtering. We filtered the cells on the basis of these main mapping metrics: (1) mCCC
level <0.03; (2) overall mCG level >0.5; (3) overall mCH level <0.2; (4) total final reads >500,000;
and (5) Bismark mapping rate >0.5. Other metrics such as genome coverage, PCR duplicates rate

and index ratio were also generated and evaluated during filtering. However, after removing
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outliers with the main metrics 1-5, few additional outliers were found. Note the mCCC level is

used as the estimation of the upper bound of bisulfite non-conversion rate’.

Feature filtering. 100 kb genomic bin features were filtered by removing bins with mean
total cytosine base calls <250 (low coverage) or >3,000 (unusually high-coverage regions).

Regions that overlap with the ENCODE blacklist’® were also excluded from further analysis.

Computation and normalization of the methylation level. For CG and CH methylation, the
methylation level computation from the methylcytosine and total cytosine matrices contains two
steps: (1) prior estimation for the beta-binomial distribution, and (2) posterior level calculation and

normalization per cell.

M and variance YV of the raw

Step 1: for each cell, we calculated the sample mean
methylcytosine (mc) level (mc/cov), where cov is the total cytosine base coverage and mc is the

methylcytosine base coveragecoefficient of variance, for each sequence context (CG or CH). The

shape parameters (a, ) of the beta distribution were then estimated using the method of moments:

o =m(m(1—m)/v—l)

B :(l—m)(m(l—m)/v—l)

This approach used different priors for different methylation types for each cell and used

weaker beforepriors to cells with more information (higher raw variance).

[o__otme
o+ B +cov

Step 2: we then calculated the posterior: for all bins in each cell.

Like the counts per million bases reads (CPM) normalization in the single-cell RNA-seq analysis,
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we normalized this posterior methylation ratio by the cell’s global mean methylation,

m = a/(a + ). Thus, all the posterior QC values with 0 cov will have a constant value of 1 after
normalization. The resulting normalized mc level matrix contains no NA (not available) value, and

features with lower cov tend to have a mean value close to 1.

Selection of highly variable features. Highly variable methylation features were selected
with a modified approach using the scanpy.pp.highly variable genes function from the scanpy
1.4.3 package**. In brief, the scanpy.pp.highly variable genes function normalized the dispersion
of a gene by scaling with the mean and standard deviation of the dispersions for genes falling into
a given bin for mean expression of genes. In our modified approach, we reasoned that both the
mean methylation level and the mean cov of a feature (100 kb bin or gene) could impact mc level
dispersion. We grouped features that fall into a combined bin of mean and cov. We then normalized
the dispersion within each mean—cov group. After dispersion normalization, we selected the top

3,000 features based on normalized dispersion for clustering analysis.

Dimension reduction and combination of different mC types. For each selected feature,
mc levels were scaled to unit variance and zero mean. We then performed principal component
analysis (PCA) on the scaled mc level matrix. The number of principal components (PCs) was
selected by inspecting the variance ratio of each PC using the elbow method. The CH and CG PCs
were then concatenated together for further analysis in clustering and manifold learning

(Supplementary Table 2.6 for parameters of PCA and clustering analysis).

2.12.8.2 Consensus clustering

Consensus clustering on concatenated PCs. We used a consensus clustering approach

based on multiple Leiden clustering’* over k-nearest neighbour (KNN) graph to account for the
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randomness of the Leiden clustering algorithms. After selecting dominant PCs from PCA in both
mCH and mCG matrices, we concatenated the PCs together to construct a KNN graph using
scanpy.pp.neighbours with Euclidean distance. Given fixed resolution parameters, we repeated the
Leiden clustering 300 times on the KNN graph with different random starts and combined these
cluster assignments as a new feature matrix, where each single Leiden result is a feature. We then
used the outlier-aware DBSCAN algorithm from the scikit-learn package to perform consensus
clustering over the Leiden feature matrix using the hamming distance. Different epsilon parameters
of DBSCAN are traversed to generate consensus cluster versions with the number of clusters that
range from the minimum to the maximum number of clusters observed in the multiple Leiden runs.
Each version contained a few outliers; these usually fall into three categories: (1) cells located
between two clusters had gradient differences instead of clear borders, for example, border of IT
layers; (2) cells with a low number of reads potentially lack information in essential features to
determine the specific cluster; and (3) cells with a high number of reads that were potential
doublets. The number of type 1 and 2 outliers depends on the resolution parameter and is discussed
in the choice of the resolution parameter section. The type 3 outliers were very rare after cell
filtering. The supervised model evaluation below then determined the final consensus cluster

version.

Supervised model evaluation on the clustering assignment. We performed a recursive
feature elimination with cross-validation (RFECV)’> process from the scikit-learn package to
evaluate clustering reproducibility for each consensus clustering version. We first removed the
outliers from this process, and then we held out 10% of the cells as the final testing dataset. For
the remaining 90% of the cells, we used tenfold cross-validation to train a multiclass prediction

model using the input PCs as features and sklearn.metrics.balanced accuracy score’® as an
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evaluation score. The multiclass prediction model is based on BalancedRandomForestClassifier
from the imblearn package, which accounts for imbalanced classification problems’. After
training, we used the 10% testing dataset to test the model performance using the score from
balanced accuracy score. We kept the best model and corresponding clustering assignments as
the final clustering version. Finally, we used this prediction model to predict outliers’ cluster
assignments. We rescued the outlier with prediction probability >0.3, otherwise labelling them as

outliers.

Manifold learning for visualization. In each round of clustering analysis, the --SNE’%7°

and UMAP>® embedding were run on the PC matrix the same as the clustering input using the
implementation from the scanpy** package. The coordinates from both algorithms were in

Supplementary Table 2.5.

Choice of resolution parameter. Choosing the resolution parameter of the Leiden
algorithm is critical for determining the final number of clusters. We selected the resolution
parameter by three criteria: (1). the portion of outliers <0.05 in the final consensus clustering
version; (2) the ultimate prediction model accuracy >0.9; and (3) the average cell per cluster > 30,
which controls the cluster size to reach the minimum coverage required for further epigenome
analysis such as DMR calls. All three criteria prevented the over-splitting of the clusters; thus, we

selected the maximum resolution parameter under meeting the criteria using a grid search.

Cell class (level 1 clustering) annotation. We annotated non-neuron cells based on both
the NeuN- gate origin and low global mCH fraction. Given the strong anti-correlation between CH
methylation and gene expression, we used hypo-CH-methylation at gene bodies +2 kb of pan-
excitatory markers such as Slc/7a7 and Sv2b, and pan-inhibitory markers such as Gadl and Gad?2

to annotate excitatory and inhibitory cell classes, respectively.
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Major type (level 2) and subtypes (level 3) annotations. We used both gene body +2 kb
hypo-CH-methylation (or hypo-CG-methylation for non-neurons) of well-known marker genes
and the dissection information to annotate neuron and non-neuron clusters. All cluster marker
genes are listed in Supplementary Table 2.7, together with the description of the cluster names,
references to the marker gene information, and the URL to the data browser. The major cell types
were annotated based on well-known marker genes reported in the previous studies33:67-80-82,
Whenever possible, we name these clusters with canonical names (for example, IT-L23, L6b) or
using descriptive names that reflect the specific spatial location of the cluster (for example, EP,

CLA, IG-CA2). For subtypes, we named the clusters via its parent major type name followed by a

subtype marker gene name.

2.12.8.3 Pairwise DMG identification

We used a pairwise strategy to calculate DMGs for each pair of clusters within the same
round of analysis. We used the gene body +2 kb regions of all the protein-coding and long non-
coding RNA genes with evidence level 1 or 2 from the mouse GENCODE vm22. We used the
single-cell level mCH fraction normalized by the global mCH level (as in ‘Computation and
normalization of the methylation level’ in the clustering step above) to calculate markers between
all neuronal clusters. We compared non-neuron clusters separately using the mCG fraction
normalized by the global mCG level. For each pairwise comparison, we used the Wilcoxon rank-
sum test to select genes with a significant decrease (hypo-methylation). Marker genes were chosen
based on adjusted P < 10~ with multitest correction using the Benjamini—-Hochberg procedure,
delta-normalized methylation level change <—0.5 (hypo-methylation) and area under the receiver-
operating curve (AUROC) >0.8. We required each cluster to have >5 DMGs compared to any

other cluster. Otherwise, the smallest cluster that did not meet this criterion was merged to the
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closest cluster based on Euclidean distance between cluster centroids in the PC matrix used for
clustering. Then the marker identification process was repeated until all clusters found enough

marker genes.

2.12.8.4 Three levels of iterative clustering analysis

On the basis of the consensus clustering steps described above, we used an iterative
approach to cluster the data into three levels of categories. In the first level, termed CellClass,
clustering analysis is done using all cells and then manually merged into three canonical classes:
excitatory neurons, inhibitory neurons, and non-neurons based on marker genes. Within each
CellClass, we performed all the preprocessing and clustering steps again to obtain clusters for the
MajorType level using the same stop criteria. Furthermore, within each MajorType, we obtained
clusters for the SubType level. All clusters’ annotations and relationships are presented in

Supplementary Table 2.7.

2.12.8.5 Subtype taxonomy tree

To build the taxonomy tree of subtypes, we selected the top 50 genes that showed the most
significant changes for each subtypes’ pairwise comparisons. We then used the union of these
genes from all subtypes and obtained 2,503 unique genes. We calculated the median mCH level
of these genes in each subtype and applied bootstrap resampling-based hierarchical clustering with

average linkage and the correlation metric using the R package pvclust (v.2.2)3.

2.12.8.6 Impact score and total impact score

We defined the impact score (IS) to summarize pairwise comparisons for two subtype
groups, where one group, A, contains M clusters and the other group, B, contains N clusters. For

each gene or motif, the number of total related pairwise comparisons is M x N, the number of
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significant comparisons with desired change (hypo-methylation for gene or enrichment for motif)

IS, _a-b
M xN

is a in group A and b in group B. The IS is then calculated as and

b—a
MxN for the two directions. For either group, IS ranges from —1 to 1, and 0 means no

impact, 1 means full impact and —1 means full impact in the other group (Supplementary Fig.

2.7e).

We explored two scenarios using the IS to describe cluster characteristics (Supplementary
Fig. 2.7e). The first scenario is considering each pair of branches in the subtype taxonomy tree as
comprising group A and group B. Thus, the IS can quantify and rank genes or motifs to the upper
nodes based on the leaves’ pairwise comparisons (Fig. 2.3d—f). The second scenario summarizes
the total impact for specific genes or motifs regarding the taxonomy tree based on the calculation
in the first scenario (Supplementary Fig. 2.7f—k). In a subtype taxonomy tree with n subtypes, the
total non-singleton node was n — 1, and each node i had a height /; and associated ISa for one of

the branches (ISg = —IS4). The node-height-weighted total IS (ISwtai) was then calculated as:

n—1

IStotal - Zhl X ’ISA‘
i=1

The larger total IS indicated that a gene or motif shows more cell-type-taxonomy-related
significant changes. The total IS can also be calculated in a sub-tree or any combination of interests
to rank genes and motifs most related to that combination (See ‘Figure-specific methods’ for Fig.

2.5 regarding calculating layer and region total IS from the same tree).
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2.12.8.7 Integration with snATAC-seq data

A portion of the same brain tissue sample used in this study for methylome profiling was
also processed using snATAC-seq in a parallel study of chromatin accessibility?®. The final high-
quality snATAC-seq cells were assigned to 160 chromatin accessibility clusters (a-types). The
snATAC-seq-specific data analysis steps are described in Li et al.?. Here, we performed cross-
modality data integration and label-transferring to assign the 160 a-types to the 161 methylome
subtypes in the following steps:

(1) We manually grouped both modalities into five integration groups (for example, all IT
neurons as a group) and only performed the integration of cells within the same group to decrease
computation time. These groups were distinct in the clustering steps of both modalities and can be
matched with great confidence using known marker genes. Steps 2—6 were repeated for each group.
See Supplementary Fig. 2.5 for the group design.

(2) We used a similar approach as described above to identify pairwise differential
accessible genes (DAGs) between all pairs of a-types. The cut-off for DAG is adjusted P <1073,
fold change >2 and AUROC >0.8.

(3) We then gathered DMGs from comparisons of related subtypes in the same group. Both
DAGs and DMGs were filtered according to whether they recurred in >5 pairwise comparisons.
The intersection of the remaining genes was used as the feature set of integration.

(4) After identifying DAGs using cell-level snATAC-seq data, we merged the snATAC-
seq cells into pseudo-cells to increase snATAC-seq data coverage. Within each a-type, we did a .-
means clustering (k=no. of cells in that cluster/50) on the same PCs used in snATAC-seq

clustering. We discarded small k-means clusters with less than 10 cells (about 5% of the cells) and
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merged each remaining k-means cluster into a pseudo-cell. On average, a pseudo-cell had about
50 times more fragments than a single cell.

(5) We then used the MNN based Scanorama®’ method with default parameters to integrate
the snmC-seq cells and snATAC-seq pseudo-cells using genes from step 3. After Scanorama
integration, we did co-clustering on the integrated PC matrix using the clustering approaches
described above.

(6) We used the intermediate clustering assignment from step 5 to calculate the overlap
score (below) between the original methylome subtypes and the a-types. We used overlap score
>0.3 to assign a-types to each methylome subtype. For those subtypes that have no match under
this threshold, we assigned the top a-type ranked by the overlap score (Supplementary Tables 2.10,

2.11).

2.12.8.8 Overlap score

We used the overlap score to match a-type and methylome subtypes. The overlap score,
range from 0 to 1, was defined as the sum of the minimum proportion of samples in each cluster
overlapped within each co-cluster®®. A higher score between one methylome subtype and one a-
cluster indicates they consistently co-clustered within one or more co-clusters. Besides matching
clusters in integration analysis, the overlap score (OS) was also used in two other cases: (1) to
quantify replicates and region overlaps over methylome subtypes (Supplementary Fig. 2.2e—g);
and (2) to quantify the overlap of each L5-ET subtype overlapping with ‘soma location’ and
‘projection target’ labels from epi-retro-seq cells (Supplementary Fig. 2.5j) through integration

with the epi-retro-seq dataset.
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2.12.9 Cell-type-specific regulatory elements

2.12.9.1 DMR analysis

After clustering analysis, we used the subtype cluster assignments to merge single-cell
ALLC files into the pseudo-bulk level and then used methylpy (v1.4.2)* DMRfind function to
calculate mCG DMRs across all subtypes. The base calls of each pair of CpG sites were added
before analysis. In brief, the methylpy function used a permutation-based root mean square test of
goodness of fit to identify differentially methylated sites (DMS) simultaneously across all samples
(subtypes in this case), and then merge the DMS within 250 bp into the DMR. We further excluded
DMS calls that have low absolute mCG level differences by using a robust-mean-based approach.
For each DMR merged from the DMS, we ordered all the samples by their mCG fraction and
calculated the robust mean m using the samples between 25th and 75th percentiles. We then
reassigned hypo-DMR and hyper-DMR to each sample when a region met two criteria: (1) the
sample mCG fraction of this DMR is lower than (m — 0.3) for hypo-DMR or (m + 0.3) for hyper-
DMR, and (2) the DMR is originally a significant hypo- or hyper-DMR in that sample judged by
methylpy. DMRs without any hypo- or hyper-DMR assignment were excluded from further
analyses. On the basis of these filtering criteria, we estimate the false discovery rate of calling

DMRs is 2.7% (Supplementary Note 2.2, Supplementary Fig. 2.6).

2.12.9.2 Enhancer prediction using DNA methylation and chromatin accessibility

We performed enhancer prediction using the REPTILE?? algorithm. REPTILE is a random-
forest-based supervised method that incorporates different epigenomic profiles with base-level
DNA methylation data to learn and then distinguish the epigenomic signatures of enhancers and

genomic background. We trained the model in a similar way as in the previous studies®>3, using
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CG methylation, chromatin accessibility of each subtype and mouse embryonic stem cells (mouse
ES cells). The model was first trained on mouse ES cell data and then predicted a quantitative
score that we termed enhancer score for each subtype’s DMRs. The positives were 2 kb regions
centred at the summits of the top 5,000 EP300 peaks in mouse ES cells. Negatives include
randomly chosen 5,000 promoters and 30,000 2-kb genomic bins. The bins have no overlap with

any positive region or gene promoter”.

Methylation and chromatin accessibility profiles in bigwig format for mouse ES cells were
from the GEO database (GSM723018). The mCG fraction bigwig file was generated from subtype-

merged ALLC files using the ALLCools package (https://github.com/lhqing/ALLCools). For

chromatin accessibility of each subtype, we merged all fragments from snATAC-seq cells that
were assigned to this subtype in the integration analysis and used deeptools bamcoverage to

generate CPM normalized bigwig files. All bigwig file bin sizes were 50 bp.

2.12.9.3 Motif-enrichment analysis

We used 719 motif PWMs from the JASPAR 2020 CORE vertebrates database®’, where
each motif was able to assign corresponding mouse transcription factor genes. The specific DMR
sets used in each motif-enrichment analysis are described in figure specific methods below. For
each set of DMRs, we standardized the region length to the centre £250bp and used the FIMO tool
from the MEME suite®® to scan the motifs in each enhancer with the log-odds score P <1076 as the
threshold. To calculate motif enrichment, we use the adult non-neuronal mouse tissue DMRs’ as
background regions unless expressly noted. We subtracted enhancers in the region set from the
background and then scanned the motifs in background regions using the same approach. We then

used Fisher’s exact test to find motifs enriched in the region set and the Benjamini—Hochberg
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procedure to correct multiple tests. We used the TFClass®’ classification to group transcription

factors with similar motifs.

2.12.9.4 DMR-DMG partial correlation

To calculate DMR-DMG partial correlation, we used the mCG fraction of DMRs and the
mCH fraction of DMGs in each neuronal subtype. We first used linear regression to regress out
variance due to global methylation difference (using scanpy.pp.regress_out function), then use the
residual matrix to calculate the Pearson correlation between DMR and DMG pairs where the DMR
centre is within 1 Mb of the TSSs of the DMG. We shuffled the subtype orders in both matrices

and recalculated all pairs 100 times to generate the null distribution.

2.12.9.5 Identification of loops and differential loops from sn-m3C-seq data

After merging the chromatin contacts from cells belonging to the same type, we generated
a .hic file of the cell-type with Juicer tools pre. HICCUPS®® was used to identify loops in each cell
type. The loops from eight major cell types were concatenated and deduplicated and used as the
total samples for differential loop calling. A loop-by-cell matrix was generated, in which each
element represents the number of contacts supporting each loop in each cell. The matrix was used
as input of EdgeR to identify differential interactions with ANOVA tests. Loops with FDR <1073
and minimum-maximum fold change >2 were used as differential loops. Note that the abundance
of cell types is highly variable, leading to different coverages of contact maps after merging all the
cells from each cell type. Since HICCUPS loop calling is sensitive to the coverage, more loops
were identified in the abundant cell types (for example, 12,614 loops were called in DG, containing

1,933 cells) compared to the less abundant ones (for example, 1,173 loops were called in MGE,
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containing 145 cells). Therefore, we do not compare the feature counts related to the loops across

cell types directly in our analyses.

2.12.10 Figure-specific methods

3D model of dissection regions (Fig. 2.1b—e). We created in silico dissection regions
based on the Allen CCF>® 3D model using Blender 2.8 that precisely follow our dissection plan.
To ease visualization of all different regions, we modified the layout and removed some of the
symmetric structures, but all the actual dissections were applied symmetrically to both

hemispheres.

Calculating the genome feature detected ratio (Supplementary Fig. 2.2a). The detected
ratio of chromosome 100-kb bins and gene bodies is calculated as the percentage of bins with >20
total cytosine coverage. Non-overlapping chromosome 100-kb bins were generated by bedtools

makewindows -w 100000; gene bodies were defined by GENCODE vm22.

Integration with epi-retro-seq L5-ET cells (Fig. 2.2g—j, Supplementary Fig. 2.5g—j).
Epi-retro-seq is an snmC-seq2-based method that combines retrograde AAV labelling*?. The L5-
ET cells’ non-overlapping chromosome 100-kb bin matrix gathered by the epi-retro-seq dataset
was concatenated with all the L5-ET cells from this study for co-clustering and embedding as
described in ‘Clustering-related methods’. We then calculated the OS between subtypes in this
study and the ‘soma location’ or ‘projection target’ labels of epi-retro-seq cells. The first OS helped
quantify how consistent the spatial location is between the two studies; the second OS allowed us

to impute the projection targets of subtypes in this study.

Pairwise DMR and motif-enrichment analysis (Fig. 2.3¢, f). The total subtype DMRs
were identified as described in ‘Cell-type-specific regulatory elements’ by comparing all subtypes.

We then assigned DMRs to each subtype pair if the DMRs were: (1) significantly hypomethylated
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in only one of the subtypes; and (2) the mCG fraction difference between the two subtypes is >0.4.
Each subtype pair was associated with two exclusive sets of pairwise DMRs. We carried out motif-
enrichment analysis described in ‘Cell-type-specific regulatory elements’ on each DMR set using
the other set as background. Motifs enriched in either direction were then used to calculate the

impact score and were associated with upper nodes of the taxonomy.

Overlapping eDMR with genome regions (Fig. 2.4b). The cluster-specific snATAC-seq
peaks were identified in Li et al.?’. We used bedtools merge to aggregate the total non-overlap
peak regions and bedtools intersect to calculate the overlap between peaks and eDMRs. The
developing forebrain and other tissue feDMRs were identified in He et al.’ using methylC-seq®
for bulk whole-genome bisulfite sequencing. All of the genome features used in Fig. 2.4b were
defined as in He et al.”, except using an updated mm10 CGI region and RepeatMaster transposable

elements lists (UCSC table browser downloaded on 9 October 2019).

Heat maps of the gene—enhancer landscape (Supplementary Fig. 2.8e). The eDMRs for
each gene were selected by eDMR—gene correlation of >0.3. Sections of the heat maps in were
gathered by (1) mCG fraction of each eDMR in 161 subtypes from this study; (2) snATAC-seq
subtype-level fragments per kilobase of transcript per million mapped reads (FPKM) of each
eDMR in the same subtype orders. The subtype snATAC profiles were merged from integration
results as described in ‘Clustering-related methods’; (3) mCG fraction of each eDMR in forebrain
tissue during ten developing time points from embryonic day 10.5 (E10.5) to PO (data from He et
al.®); (4) H3K27ac FPKM of each eDMR in 7 developing time points from E11.5 to PO (data from
Gorkin et al.”?); (5) H3K27ac FPKM of each eDMR in P56 frontal brain tissue (data from Lister

et al.?); and (6) eDMR is overlapped with forebrain feDMR using bedtools intersect.
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Embedding of cells with chromosome interactions (Fig. 2.4e). scHiCluster’! was used
to generate the +~-SNE embedding of the sn-m3C-seq cells. Specifically, a contact matrix at 1-Mb
resolution was generated for each chromosome of each cell. The matrices were then smoothed by
linear convolution with pad =1 and random walk with restart probability = 0.5. The top 20th
percentile of strongest interactions on the smoothed map was extracted, binarized and used for

PCA. The first 20 PCs were used for -SNE.

IT layer dissection region group DMG and DMR analysis (Fig. 2.5a—c). To collect
enough cells for dissection region analysis, we used only the major types (corresponding to L2/3,
L4, L5 and L6) of IT neurons. We grouped cells into groups according to layer dissection region
and kept groups with >50 cells for further analysis (Supplementary Fig. 2.9b). We performed
pairwise DMG, DMR and motif-enrichment analysis, the same as the subtype analysis in Fig. 2.3,
but using the layer dissection region group labels. We then built a spatial taxonomy for these
groups and used it to calculate impact scores. To rank layer-related or dissection-region-related
genes and motifs separately, we used two sets of the branches (Supplementary Fig. 2.9¢, top set
for layers, bottom set for regions) in the taxonomy and calculated two total impact scores using

the equations above.

DG cell group and gradient DMR analysis (Fig. 2.5¢). DG cells were grouped into four
evenly sized groups according to the cells’ global mCH levels, with cut-off thresholds at 0.45%,
0.55% and 0.69%. We then randomly chose 400 cells from each group to call gradient-DMRs
using methods described in ‘Clustering-related methods’. To ensure the DMRs identified between
intra-DG groups were not due to stochasticity, we also randomly sampled 15 groups of 400 cells
from all DG cells regardless of their global mCH and called DMRs among them as control-DMRs

(2,003 using the same filtering condition). Only 0.04% of gradient DMRs overlapped with the
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control DMRs; these were removed from further analysis. Pearson correlations (p) of mCG
fractions of each gradient DMR was calculated against a linear sequence (1, 2, 3, 4) to quantify
the gradient trend. DMRs with p <—0.75 or p >0.75 were considered to be significantly correlated.

Weakly correlated DMRs (10% of DMRs) were not included in further analysis.

DMR- and DMS-enriched genes (Fig. 2.5f, g). To investigate the correlated DMR or
DMS enrichment in specific gene bodies, we compared the number of DMS and cytosine inside
the gene body with the number of DMS and cytosine in the +£1 Mb regions using Fisher’s exact
test. We chose genes passing two criteria: (1) adjusted P <0.01 with multitest correction using the
Benjamini—Hochberg procedure, and (2) overlap with >20 DMSs. Gene ontology analysis of DMR
and DMS enriched genes was carried out using GOATOOLS??. All protein-coding genes with

gene body length >5 kb were used as background to prevent gene-length bias.

Compartment strength analysis (Supplementary Fig. 2.10g). We normalized the total
chromosome contacts by z-score in each 1-Mb bin of the DG contact matrix, and the bins with
normalized coverage between —1 and 2 were kept for the analysis. After filtering, the PC1 of the
genome-wide Knight-RuizKR-normalized contact matrix was used as the compartment score. The
score was divided into 50 categories with equal sizes from low to high, and bins were assigned to
the categories. The intra-chromosomal observation/expectation (ove) matrices of each group were
used to quantify the compartment strength. We computed the average ove values within each pair
of categories to generate the 50 x 50 saddle matrices. The compartment strength was computed
with the average of the upper left and lower right 10 x 10 matrices divided by the average of the

upper right and lower left 10 x 10 matrices®*.
Domain analysis (Supplementary Fig. 2.10i). We identified 4,580 contact domains at 10-

kb resolution in DG using Arrowhead®®. For bin !, the insulation score I is computed by
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where 4 is the ove of Knight-RuizKR-normalized matrices. For each group, insulation scores of
domain boundaries and 100-kb flanking regions were computed and averaged across all

boundaries.

2.12.11 Prediction model description

Related to Fig. 2.6. To reduce the computing complexity, we applied PCA on the dataset
of 100-kb bin mCH features to obtain the first 3,000 PCs, which retain 61% of the variance of the
original data. These 3,000 PCs were then used to train and test the predicting model. We used an
ANN with two hidden layers to simultaneously predict cell subtypes and their dissection regions.
The input layer contains 3,000 nodes, followed by a shared layer with 1,000 nodes. The shared
layer is further connected simultaneously to two branch hidden layers of the subsection region's
subtype, each containing 200 nodes. The corresponding one-hot encoding output layers follow
branch hidden layers. We used fivefold cross-validation to access the model performance. We
applied the dropout technique® with a dropout rate P=0.5 on each hidden layer to prevent
overfitting during the training. Adam optimization®> was used to train the network with a cross-
entropy loss function. The training epoch number and batch size are 10 and 100, respectively. The

training and testing processes were conducted via TensorFlow 2.0%.

Model performance. The two output layers generate two probabilistic vectors for each
single cell input as the prediction results for cell subtypes and dissection regions, respectively. The
subtype and dissection region label with the highest probabilities were used as the prediction

results for each cell to calculate accuracy. When calculating the cell dissection region accuracy
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(Fig. 2.6¢c), we defined two kinds of accuracy with different stringency: (1) the exact accuracy
using the predicted label, and (2) the fuzzy accuracy using predicted labels or its potential overlap
neighbours. The potential overlap neighbours curated based on Allen CCF (Supplementary Fig.
2.11a, Supplementary Table 2.2) stood for adjacent regions of a particular dissection region. The
exact accuracy of the ANN model is 69% and the fuzzy accuracy is 89%. To evaluate how much
of the dissection region accuracy was improved via ANN, we calculated fuzzy accuracy based
only on naive guesses in each subtype based on the dissection region composition (grey dots in
Supplementary Fig. 2.11c). We also trained additional models using logistic regression and
random forest for benchmarks. The performance of ANN on subtype prediction is comparable with
logistic regression and random forest. By contrast, the performance in location prediction is
substantially improved against the other two models (Supplementary Fig. 2.11b), suggesting that
distinguishing the cells from different dissected regions may require nonlinear relationships
between genomic regions. We used scikit-learn (v0.23) for logistic regression and random forest
implementation and the multinomial objective function for multi-class classification. N_estimators
were set to 1,000 for the random forest.

Biological feature importance for dissection region prediction (Fig. 2.6e). To assess
which DNA regions store information of cell spatial origins that is distinguishable using our model,
we evaluated the importance of PC features by examining how permutation of each PC feature
across cells affects prediction accuracy. We tested five permutations for each feature and used
decreasing average accuracy to indicate PC feature importance. We examined genes contained in
the 100-kb bins with the top 1% PCA factor loadings for the most important PC feature for a given

cell type.
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2.13 Data availability

Single-cell raw and processed data included in this study were deposited to NCBI Gene
Expression Omnibus and Sequence Read Archive with accession number GSE132489 (each
experiment has a separate accession number recorded in GSE132489; see Supplementary Table

2.13), and to the NeMO archive: https://assets.nemoarchive.org/dat-vmivrSx. Single-cell

methylation data can be visualized at the Brain Cell Methylation Viewer:

http://neomorph.salk.edu/omb/home. Cluster merged methylome profiles can be visualized at

http://neomorph.salk.edu/mouse_brain.php. Other datasets used in the paper include single-nuclei

ATAC-seq data® from http:/catlas.org, mouse embryo forebrain development data® from the

ENCODE portal (https://www.encodeproject.org/), the developing hippocampal single-cell RNA-

seq data from GSE104323, DNA methylation and chromatin accessibility profiles for mouse ES
cells from GSM723018 and the JASPAR 2020 CORE vertebrates database from

http://jaspar.genereg.net/.

2.14 Code availability

The mapping pipeline for snmC-seq2 data is available at https://hg-1.gitbook.io/mc/; the

ALLCools package for post-mapping analysis and snmC-seq2 related data structure are available

at https://github.com/lhqing/ALLCools; the jupyter notebooks for reproducing specific analysis

are at https://github.com/lhqing/mouse_brain_2020; and the source code of the Brain Cell

Methylation Viewer is at https://github.com/lhqing/omb.
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Figure 2.1 A survey of single-cell DNA methylomes in the mouse brain.

a, The workflow of dissection, FANS and snmC-seq2 sequencing. b—e, Dissected regions of
isocortex (b), OLF (c), HIP (d) and CNU (e). f, Three-level UMAP from iterative analysis, colour
coded as in b—e, panels show an example in which MSN-D1 neurons are separated into subtypes.
g, Proportions of cells in clusters defined in the three-level iterative analysis. Brain atlas images in
a—d were created based on Wang et al.>® and © 2017 Allen Institute for Brain Science. Allen Brain
Reference Atlas. Available from: atlas.brain-map.org.
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a, b, Level 2 UMAP of excitatory (a) and inhibitory (b) neurons, coloured by subtype, dissection
region and global mCH fraction. ¢, d, Integration UMAP of the HIP excitatory neurons profiled
by snmC-seq2 (c¢) and snATAC-seq (d; shows pseudo-cells). e, Overlap score of a-types and m-
types. f, Overlap of CG-DMR and ATAC peaks in matched subtypes. g, i, j, Integration ~-SNE of
ET-L5 neurons profiled by snmC-seq2 (g) and Epi-Retro-Seq (i, j), coloured by dissection region.
Three SSp- and MOp-enriched subtypes are labelled by their marker gene. j, Medulla projecting
neurons from SSp or MOp only. h, Spatial composition of ET-L5 subtypes.
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Figure 2.3. Relating genes and regulatory elements to cell subtype taxonomy.

a, Schematic of the two characteristics contained in the methylome profiles. b, ¢, Pairwise CH-
DMG (b) and CG-DMR (c¢) counts between 68 excitatory subtypes. ¢, In each CG-DMR set, we
further identify differentially enriched motifs (left). TF, transcription factor. d, Excitatory subtype
taxonomy tree. e, Top impact scores of ranked genes for the left and right branches of nodes 1-7
in d. The top four genes are transcription factor genes (bold); these are followed by other protein-
coding genes. The scatter plots below show cells involved in each branch. f, Branch-specific
transcription factor motif families. The zoomed UMAPs show individual transcription factor genes
in those families, whose differential mCH fractions are concordant with their motif enrichment.

50



Diff. Loo
a 6McDMR  7S% (6DMR) € snm3C-seq of HIP 9, | car : Sy
snmC-  snATAC- 85% (peak) 72% (éDMR) g
seq2 seq ‘ ) * DG § :
15% 88/ o 74% ) e Cﬁé °
5 G) © .7 it | Mac 5
R T (e 53
feDMR: = g -
MAIDMR W eDMR MISnATAC Peak M Forebrain [l Other 3 e |2 oo g
R ; = g & >
% of region overlap with: 363137 34 > o Inh. 8 0 2 .
mCG Chromatin il (5,142 colls)| -~ Others & L, 3 o) (o
Fraction Accessibility 1014 12 5101012 d - C—— ——
4 47 l.ll.l 7 Chré'97.22 A B g C D 101.22 (Mb)
REPTILE CGI & Promoter  Exon Intron  Intergenic Transposable — s (Genome Details)
CG- Model CGI Shore Elements f h I ) — = a4
DMR c Norm. interactions 5 A ss.wgue ss,ssc 98.95 99,00D99.50 9954 9958 (M)
2 TTITTYIT TV | (T TV T T T
enhancerDMR 095 71 | ey . Aé g ot mfmlm ’\ AL ] mCG
CH- (eDMR) 3 Density « % €| pa Viauabmnyey ¥ m Tkt e s fLdf mcG
. . = g0 - - 7 > g =
DMG  [com. £ 08 3 Swlcatl T [ 0 Wi ' [ {|atAc
g = = Jpal_~ B [ i ~_|atAac
Gesﬁ::;n:er Z 07 i E 99,00 99,10 99,20 99,30 99,40 (Mb)
0 )
o g © = == — ~ o ~ s
Bos 3 22| oa WMIIW'"GG
© O
‘ €2loat| il A ] ||ATAC
0.5 .,.:_ % 2| oe | |aTAC
& TSS <& -500K TSS +500K
N N -
T #of +Corr. eDMR Forpt ST Foxp1-225 Foxp1-226 Foxpt-221

Figure 2.4 Gene—enhancer landscapes in neuronal subtypes.

a, Schematic of enhancer calling using matched DNA methylome and chromatin accessibility
subtype profiles. Corr., correlation. b, Overlap of regulatory elements identified in this study and
other epigenomic studies (ATAC peaks®® and feDMRs®). ¢, DMR-DMG correlation and the
distance between DMR centre and gene TSS; each point is a DMR-DMG pair coloured by kernel
density. d, Percentage of positively correlated eDMRs that overlap with forebrain feDMRs in each
gene. e, -SNE of cells analysed by sn-m3C-seq coloured by assigned major cell types. f,
Interaction level (z-score across rows and columns) of differential loops in eight clusters at 25-kb
resolution. g, h, Epigenomic signatures surrounding Foxp!. g, Triangle heat maps showing CA1
and DG chromatin contacts and differential loops. h, Genome browser sections showing detailed
mCG and ATAC profiles near anchors of four CAl-specific loops. Red rectangles indicate loop
anchors and red arrows indicate notable regulatory elements.
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Figure 2.5 Brain-wide spatial gradients of DNA methylation.

a, UMAP for cortex IT neurons coloured by dissection regions. b, The 21 cortical dissection
regions organized by spatial axis. ¢, Normalized mCH fraction of spatial CH-DMGs, with the same
layout as b. d, UMAPs for DG granule cells coloured by their cell global mCH fractions and
dissection regions. A, anterior; P, posterior; D, dorsal; V, ventral. e, Compound figure showing
four cells groups organized according to DG gradient and the two gradient DMR groups separated
according to the sign of the correlation to the cell’s global mCH level. f, g, Bottom, expression (z-
score across rows) of genes positively (f) or negatively (g) correlated with DMRs across cell types
along the granule cell maturation pathway®. Top, genome browser views of representative genes.
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Figure 2.6 A methylome-based predictive model captures both cellular and spatial
characteristics of neurons.

a, Schematic of the model that predicts both cell-type identity and spatial origin. b, ¢, Model
performance on the prediction of cell subtypes (b), and dissection regions (¢). Per cent accuracy is
shown. d, Examples of using the model to predict cell spatial origin (maximum prediction
probability in parentheses). e, Evaluation of importance of features (principal components) for
spatial origin prediction. f, The Foxp2 gene body mCH fraction in each cortical dissection region

group.
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2.18 Supplementary Figures

Supplementary Figure 2.1 Brain dissection regions.

a, Schematic of brain dissection steps. Each male C57BL/6 mouse brain (age P56) was dissected
into 600-pm slices. We then dissected brain regions from both hemispheres within a specific slice.
b—e, 3D mouse brain schematic adapted from Allen CCFv3 to display the four major brain regions
and 45 dissection regions. Each colour represents a dissection region. f, 2D mouse brain atlas
adapted from Allen Mouse Brain Reference Atlas, the first sagittal image showing the location of
each coronal slice, followed by 11 posterior view images of all coronal slices, the same 45
dissection regions are labelled on the corresponding slice. All coronal images follow the same
scale as the sagittal image. The posterior view of each slice is the anterior view of the next slice.
g, An integrated overview of brain region composition, subtype and cell numbers of the major
types. All brain atlas images were created based on Wang et al.>> and © 2017 Allen Institute for
Brain Science. Allen Brain Reference Atlas. Available from: http://www.atlas.brain-map.org.
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Supplementary Figure 2.2 Major Type labelling and basic mapping metrics of snmC-seq?2.

a, The number of final pass QC reads, the percentage of non-overlapping chromosome 100-kb bins
detected, and the percentage of GENCODE vm22 genes detected per cell. b, Violin plots for all of
the key metrics, group by major types. ¢, L1 UMAP coloured by NeuN antibody FACS gates and
other snmC-seq2 key read mapping metrics. d, Heat map of Pearson correlation between the
average methylome profiles (mean mCH and mCG fraction of all chromosome 100-kb bins across
all cells belong to a replicate sample) of the 92 replicates from 45 brain regions. The violin plot
below summarizes the value between replicates within the same brain region or between different
brain regions. e—g, Pairwise overlap score (measuring co-clustering of two replicates) of excitatory
subtypes (e), inhibitory subtypes (f), and non-neuronal subtypes (g). The violin plots summarize
the subtype overlap score between replicates within the same brain region or between different
brain regions. h, L1 UMAP coloured and labelled by major cell types.
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Supplementary Figure 2.3 Cell-type composition of dissection regions.

a-d, L1 UMAP labelled by major types and partially coloured by dissection regions for cells from
isocortex (a), OLF (b), HIP (c¢) and cerebral nucleus (d). Other cells are shown in grey as
background. e, Similar compound bar plot as Supplementary Fig. 2.1g, arranged top to bottom,
showing the organization of dissection regions and the major type composition of each dissection
region.
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Supplementary Figure 2.4 Supporting details of cellular and spatial diversity of neurons at
the subtype level.

a, Level 3 UMAP of IG-CA2 neurons coloured by subtypes. Bar plot showing sub-region
composition of the subtypes: (1) Xprl, (2) Chrm3, and (3) Peakl. b, The 3D model illustrates the
spatial relationships between related anatomical structures. ¢, mCH fraction of marker genes in
IG-CAZ2 cells. d, Methylome, and chromatin accessibility genome browser view of Ntf3 genes and
its upstream regions. ATAC and eDMR information are from Fig. 2.4 analysis. e, Three different
views of the in situ hybridization experiment (source: https://mouse.brain-
map.org/gene/show/17972; the same patterns were shown in three biological replicates) from
Allen Brain Atlas®!, showing the N#f3 gene expressed in both IG and CA2. f, Level 3 UMAP of
MSN-DI1 neurons coloured by subtype. Numbers indicate four subtypes: (1) Khdrbs3, (2) Hrhl
(3) Plxncl, and (4) Ntnl. g, The 3D model of related striatum dissection regions. h, i, mCH fraction
(h), and an in situ hybridization experiment (source:  https://mouse.brain-
map.org/gene/show/13769; the same patterns were shown in two biological replicates) from Allen
Brain Atlas®! (i) of the Khdrbs3 gene, red arrows indicate patch regions in CP. j, Genome browser
view of Khdrbs3 genes similar to d. k, Level 3 UMAP of MSN-D1 neurons coloured by dissection
regions. I, The region composition of each subtype of MSN-D1 and MSN-D2. m, MSN-D2
subtypes: (1) Nrp2, (2) Caszl, (3) Coll4al, and (4) Slc24a2. n, o, mCH fraction of MSN-DI1 (n)
and MSN-D2 (o) subtype marker genes. All brain atlas images (b, g) were created based on Wang
etal.>> and © 2017 Allen Institute for Brain Science. Allen Brain Reference Atlas. Available from:
http://atlas.brain-map.org.
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Supplementary Figure 2.5 Integration with snATAC-seq and epi-retro-seq.

a—d, Integration UMAP for snmC-seq?2 cells and snATAC-seq pseudo-cells from each cell group:
excitatory IT neurons (a), other excitatory neurons (b), inhibitory neurons (¢) and non-neuronal
cells (d). Each panel is coloured by subtypes from the corresponding study, the other dataset is
shown in grey in the background. e, Overlap score matrix matching the 160 a-types to the 161 m-
types. f, mCG fraction (left), and chromatin accessibility (right) of cluster-specific CG-DMRs
(columns) in HIP subtypes (rows). g, h, Same integration ~-SNE as Fig. 2.2g, i coloured by the
dissection regions but using all cells profiled by Epi-Retro-Seq (g) or snmC-seq2 (h), cells from
brain regions that have only been profiled via one of the methods are circled out. i, Same -SNE
as (h) coloured by snmC-seq2 subtypes. j, Overlap score matrix matching the subtypes to the
‘Soma Location (source)’ and ‘Projection target’ information labels of Epi-Retro-Seq cells.
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Supplementary Figure 2.6 Controlling the FDR of CG-DMRs.

a, b, The proportion of subtype (a) or shuffled DMRs (b) in each block of specific effect size and
number of DMSs. ¢, The empirical FDR of each block, calculated by (no. of shuffle-DMRs/no. of
subtype-DMRs) in each block. DMRs with effect size <0.3 were excluded in further analyses. d,
The odds ratio of transcription factor motif enrichment in single-DMS DMRs (sDMRs) and multi-
DMS DMRs (mDMRs). Each dot represents a transcription factor. Transcription factors whose
motifs are significantly enriched in both sDMRs and mDMRs are coloured in green, and
transcription factors that are significant only in SDMR or mDMRs are coloured in red or blue,
respectively. Non-significant transcription factors are shown in grey.
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Supplementary Figure 2.7 Subtype taxonomy with related genes and motifs.

a, b, Subtype taxonomy of excitatory (a) and inhibitory (b) neurons. Leaf nodes are coloured by
subtypes, and the bar plot shows subregion composition. ¢, d, Counts heat map of pairwise CH-
DMG (¢) and CG-DMR (d) between 77 inhibitory subtypes. e, Schematic of impact score
calculation (left), and two scenarios of discussing impact scores (right). f~h, Top transcription
factors (f), other genes (g) and enriched motifs (h) ranked by total impact score based on the
excitatory subtype taxonomy. i—k, Top transcription factors (i), other genes (j) and enriched motifs
(k) ranked by total impact score based on the inhibitory subtype taxonomy. 1, An example gene
Tshzl only shows subtype diversity in inhibitory subtypes but not in excitatory subtypes. m,
Comparison of the total impact scores calculated from either excitatory subtype taxonomy (x-axis)
or inhibitory subtype taxonomy (y-axis) for transcription factors, other genes and enriched motifs.
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Supplementary Figure 2.8 Gene-Enhancer landscape related.

a, Distribution of actual DMR—-DMG partial correlation compared to the shuffled null distribution.
b, ¢, DMR-DMG correlation (y-axis), and the distance between DMR centre and gene TSS (x-
axis), each point is a DMR-DMG pair, colour represents points kernel density. The positively (b)
and negatively (¢) correlated DMRs are shown separately, owing to very different genome location
distributions that are plotted on the top histograms. d, The gene body mCH fraction of Bc/l1b
(top) and Tle4 (bottom) gene. e, The predicted enhancer landscape of Bcl/l1b (top) and Tle4
(bottom). Each row is a correlated eDMR to the gene, columns from left to right are: (1) mCG
fraction and (2) ATAC FPKM in 161 subtypes; (3) bulk developing forebrain tissue mCG fraction
and (4) H3K27ac FPKM; (5) adult frontal cortex H3K27ac FPKM; and (6) feDMR or not. f,
detailed view of surrounding eDMRs that are correlated with 7/e4 gene body mCH. Alternative
eDMRs appear only in either CT-L6 or MSN-D1/D2 can be seen both upstream and downstream
of the gene. g, Level 1 UMAP coloured by corresponding cell major types shown in f. h, Partial
correlation between mCG of enhancers and mCH of genes on separated loop anchors of DG (left)
and CA1 (right) compared to random anchors with comparable distance (n = 4,171, 4,036, 4,326,
5,133 (left to right)), P =5.9 x 10774 for DG and 3.0 x 107! for CA1, two-sided Wilcoxon rank-
sum tests. i, Proportion of loop supported enhancer-gene pairs among the pairs linked by
correlation analyses surpassing different correlation thresholds in DG (left) and CA1 (right). The
proportion of pairs that the gene and enhancer located on separated anchors of the same loop (blue,
left y-axis) or within the same loop (orange, right y-axis) is shown. j, Proportion of loop supported
enhancer-gene pairs among those linked by correlation analyses surpassing different correlation
thresholds at each specific distance. k, Number of enhancers per loop anchor (blue) or per
differential loop anchor (orange) compared to randomly selected 25-kb regions across the
genome.; P <0.005, two-sided permutation test with 2,000 times repeats. I, mCG of enhancers
linking to DG specific loops (blue, n = 13,854) and CA1-specific loops (orange, n = 14,373) in
DG (left, P =2.9x 107®) or CAl (right, P =3.5 x 1075). P values were computed with two-sided
Wilcoxon rank-sum tests. m, Partial correlation between mCG of enhancers and mCH of genes
linked by different methods (n =4,171, 127,730, 28,203, 10,058 (left to right)). The elements of
box plots are defined as: centre line, median; box limits, first and third quartiles; whiskers,
1.5 x interquartile range. n, o, Interaction maps, mCH, mCG, ATAC and differential loops tracks
surrounding Lrrtm4 (n) and Grm?7 (0). Circles on the interaction maps represent differential loops
between DG and CA1, where green represents DG loops, and cyan represents CA1 loops.
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Supplementary Figure 2.9 DNA methylation gradient of IT neurons.
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Supplementary Figure 2.10 DNA methylation gradient of DG granule cells.

a, b, Top enriched Gene Ontology (GO) terms for +DMRgenes (a) and —DMRgenes (b).
Significant +DMRgenes and ~-DMRgenes are coloured in red and blue, respectively. ¢, d, For the
+DMRgene Tcf4 (¢) or the ~-DMRgene Rfx3 (d), the browser view of +DMRs or —-DMRs, mCG
or mCH in each DG cells groups and adult neural progenitors (ANP), L3 UMAP coloured by gene
body mCG, and scRNA-Seq UMAP coloured by gene expression are shown. e, The proportion of
dorsal or ventral DMRs that overlap with +DMRs and —DMRs. f, Interaction frequency decays
with increasing genome distances in different groups. g, Saddle plots for different groups of DG
cells separated by global mCH. Values in the title represent the compartment’s strengths. h,
Correlation between global mCH and proportion of intra-domain contacts across 1,904 DG cells.
i, Insulation scores of 9,160 domain boundaries and flanking 100-kb regions.
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Supplementary Figure 2.11 Evaluation of the predictive model.

a, The neighbour relation among the potential overlapping dissection regions. The network is
constructed based on information of the dissection scheme and the ‘Potential overlap’ column in
Supplementary Table 2 and is used to compute the fuzzy accuracy. b, The exact accuracy of
subtype prediction (top), dissected region prediction (middle), and fuzzy accuracy of dissected
region prediction (bottom) of neural network (NN, blue), logistic regression (LR, orange) and
random forest (RF, green). ¢, d, Prediction accuracy of dissection region at cell subtype level of
neurons (¢) and non-neuronal cells (d). Coloured points denote the prediction accuracy of the
model, whereas grey points denote the random guess accuracy when cell subtypes and
corresponding spatial distributions are given. g, h, GO-term enrichment of top-loading genes of
features that are important for predicting the spatial location of CT-L6 (g) and L6b (h).
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2.19 Supplementary Notes

2.19.1 Neuronal Subtype Vignettes
2.19.1.1 Methylome similarity between Indusium Griseum (IG) and Hippocampal region
CA2 neuron subtypes

Nearly all hippocampal excitatory neurons formed their own clusters separately from cells
in other brain regions (Extended Data Fig. 1g), except the IG-CA2 neurons (745 cells, three
subtypes) (Extended Data Fig. 4a). Several markers of the hippocampal region CA2%7 (e.g., Pcp4°8,
Cacng5®®, Ntf3'%) were marked by low gene body mCH (Extended Data Fig. 4c¢) in IG-CA2
subtypes. However, one subtype “IG-CA2 Xprl” (subtype 1 in Extended Data Fig. 2a, 152 cells)
was located in ACA (72 cells) and Lateral Septal Complex (LSX, 71 cells), which are anatomically
distinct from the hippocampus (Extended Data Fig. 1). In-situ hybridization (ISH) data from the
Allen Brain Atlas (ABA) of Ntf3 (Extended Data Fig. 4e) indicates that those cells potentially
come from the IG region!?!, which is a thin layer of gray matter lying dorsal to the corpus callosum
at the base of the anterior half of the cingulate cortex, included in the ACA and LSX dissection
regions (Extended Data Fig. 4b). With the power of single-cell epigenomic profiling, we are able
to classify cells from this region without additional dissection. Moreover, the similarity of their
DNA methylomes indicates the possible functional and/or developmental relationship between the
CA2 and IG excitatory neurons. Finally, the hypo-mCG regions surrounding the marker genes like
Ntf3 (Extended Data Fig. 4d) identify candidate cell-type-specific enhancers which may further
our understanding of how specific gene expression programs are regulated in these structures.
2.19.1.2 Methylation signatures of striatal medium spiny neurons located in patch

compartments
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A major GABAergic inhibitory cell type in the striatum, the Drd/+ medium spiny neuron
(MSN-D1) from the caudoputamen (CP, dorsal), and nucleus accumbens (ACB, ventral), is further
separated into four subtypes (Extended Data Fig. 4f, k, n). Two subtypes “MSN-D1 Plxncl”
(subtype 3 in Extended Data Fig. 4f) and “MSN-D1 Ntnl” (subtype 4 in Extended Data Fig. 4f),
mainly (79%) from the ACB, are further separated by location along the anterior-posterior axis
(Extended Data Fig. 4g, 1, based on dissection), indicating spatial diversity may exist in addition
to the canonical dorsal-ventral gradient of the striatum!?%193, “MSN-D1 Khdrbs3” and “MSN-D1
Hrh1” subtypes are mostly (94%) from CP dissections, one of them marked by gene Khdrbs3 and
its potential regulatory elements (Extended Data Fig. 4h-j) corresponds to the neurochemically
defined patch!® compartments in CP. Here the methylome profiling data provides evidence of
previously unseen spatial epigenetic diversity in the striatum D1 neurons, which is also observed

in the other major type MSN-D2 (Drd2*, Extended Data Fig. 4m, o) of the striatum.

2.19.2 Estimate subtype CG-DMR false discovery rate

To estimate the FDR for DMRs, we randomly partitioned the cells into the same number
of groups as the number of clusters. We used methylpy DMRfind*! (Methods) and the same filter
as above to identify the DMRs between these random groups (shuffle-DMRs). 105,310 shuffle-
DMRs were identified, compared to 3,947,795 subtype-DMRs, so the average FDR is about 2.7%.
For each DMR, the effect size was calculated by subtracting the minimum mCG fraction across
samples from the samples’ robust mean. We then divided the DMRs into different groups based
on the number of DMSs and the effect size of the DMR and computed the FDR within each group
(Extended Data Fig. 6a, b). Most (93%) of the shuffle-DMRs only have a single DMS (no other

DMS within + 250 bp), while this proportion decreases to 35% for subtype-DMRs. When the effect
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size is greater than 0.3, the FDR for DMS = 1 bins range from 0.071 to 0.093. The FDR for
remaining bins having DMS > 1 is close to or well below 0.01 (Extended Data Fig. 6c).

To test whether the 1,645,355 (35%) single-DMS subtype-DMRs (sDMRs) are
biologically meaningful, we used the shuffle-DMR as background regions and performed motif
enrichment analysis on SDMRs and multi-DMS subtype-DMRs (mDMRs) respectively. We found
108 / 174 motifs enriched in mDMRs are also enriched in SDMRs, and the odds ratio of all mDMR-
enriched motifs are highly correlated (Extended Data Fig. 6d, Pearson’s r=0.86, P = 1e-53). These
results indicate that although single-DMS DMRs are noisier than multi-DMS DMRs, they are
likely biologically relevant. Removing single-DMS DMRs would improve the overall FDR from
3.0% to 0.3%, with the cost of reducing the power to identify true positives. We provided the

number of DMRs or each subtype using different filtering criteria in Supplementary Table 12.

2.19.3 Total Impact score summarizes variation of each gene or motif

Beyond identifying specific cell subtype characteristics, we hypothesized that ranking of
genes or motifs by methylation variation may provide a route toward understanding their relative
importance in cell type diversification and/or function. Thus, for each gene or motif, we calculated
a total impact (TI) score to summarize their variation among the subtypes, using all the branch-
specific impact scores (Extended Data Fig. 7e bottom right, Methods). Genes (Excitatory:
Extended Data Fig. 7f, g; Inhibitory: Extended Data Fig. 71, j) or motifs (Excitatory: Extended
Data Fig. 7h; Inhibitory: Extended Data Fig. 7k) with higher TI scores impact more branches of
the phylogeny, thus are predicted to have a higher importance in distinguishing multiple subtypes.
Intriguingly, by comparing the TI scores of genes and motifs calculated from the inhibitory and
excitatory phylogenies, we found more TF genes and motifs having large TI scores in both cell

classes than specific to either one (Extended Data Fig. 71). For instance, Bcl/l1b distinguishes

76



“OLF-Exc” and Isocortex IT neurons in the excitatory lineage and distinguishes “CGE-Lamp5”
and “CGE-Vip” in the inhibitory lineage. Similarly, Sath] separates IT-L4 from IT-L2/3, and
MGE from CGE in excitatory and inhibitory cells, respectively. These findings indicate broad
repurposing of TFs for cell-type specification among distinct developmental lineages.

In contrast, we also find TF genes and motifs only having large TI scores in one cell class
(Extended Data Fig. 71, left panel). For example, the 7shz! gene body mCH shows a striking
difference of diversity between excitatory and inhibitory cells (Extended Data Fig. 7m), suggesting
that it may function in shaping inhibitory subtypes, but not excitatory subtypes. Similarly, bHLH
DNA binding motifs show much higher TI scores for excitatory subtypes compared with inhibitory
(Extended Data Fig. 61, right panel). While genes in this TF family such as Neurodi/2 have long
been known to participate in excitatory neuron development, they have not been reported to
regulate GABAergic neuron differentiation!%.

2.19.4 Spatial axis of DG granule cells
Neurogenesis is differentially distributed across the dorsal-ventral axis of the DG, with

newborn neurons enriched in the dorsal pole of the DG!%6:107

. Bulk tissue samples dissected from
the dorsal DG had ~2-fold lower global mCH compared to the ventral DG, suggesting that the
gradient in global mCH we observed could be related to their dorsal-ventral location’!. Consistent
with this, dorsal-hypo-DMRs from the bulk tissue samples’! overlapped more with +DMRs (15%
overlap, P < 0.001, two-sided permutation test) than -DMRs (4%, P < 0.001) (Extended Data Fig.
10e). Similarly, ventral-hypo-DMRs overlapped more with -DMRs (13%, P <0.001) than +DMRs

(1.7%, P = 0.004). These moderate overlaps suggest that the axis of the global mCH gradient can

be partially explained by the traditionally defined dorsal-ventral axis. Further understanding of the
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relationship between these two axes will require spatially resolved transcriptome/epigenome data

from cells with defined birthdates®2.

2.19.5 Artificial Neuron Network trained for predicting non-neuronal cells.

Using the same network structure and features, we achieved 42% accuracy to predict the
cell body location of non-neuronal cells. The accuracy of the model was highly cell types
dependent, with stronger predictability in astrocytes (ASC, 62%) and oligodendrocytes (ODC,
52%) that are comparable to cortical inhibitory neurons (Extended Data Fig. 11d). These findings

108 "while

are supported by evidence that astrocytes are derived from regionally patterned radial glia
the signature of oligodendrocytes depends on the local environment!'?”. It is worth noting that
unsupervised clustering did not separate non-neuronal cells from different regions into different

clusters, which further emphasizes the utility of supervised analyses to study the regional

specificity of these cell types.
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CHAPTER3

SINGLE NUCLEUS MULTI-OMICS IDENTIFIES HUMAN CORTICAL

CELL REGULATORY GENOME DIVERSITY

3.1 Abstract

Single-cell technologies measure unique cellular signatures but are typically limited to a
single modality. Computational approaches allow the fusion of diverse single-cell data types, but
their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To
comprehensively assess the molecular phenotypes of single cells, we devised single-nucleus
methylCytosine, chromatin Accessibility and Transcriptome sequencing (snmCAT-seq) and
applied it to post-mortem human frontal cortex tissue. We developed a cross-validation approach
using multi-modal information to validate fine-grained cell types and assessed the effectiveness of
computational data fusion methods. Correlation analysis in individual cells revealed distinct
relations between methylation and gene expression. Our integrative approach enabled joint
analyses of the methylome, transcriptome, chromatin accessibility and conformation for 63 human
cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found
specific enrichment of genetic risk for neuropsychiatric traits, enabling the prediction of cell types

that are associated with diseases.

3.2 Design

Simultaneous DNA methylcytosine and transcriptome sequencing using snmCAT-seq
allows RNA and DNA molecules to be molecularly partitioned by incorporating 5’-methyl-dCTP
instead of dCTP during reverse transcription of RNA (Fig. 3.1A). We treated single cells/nuclei

with Smart-seq or Smart-seq2 reactions for in situ cDNA synthesis and amplification of full-length
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cDNA (Table 3.1)!1%!! Replacing dCTP by 5’-methyl-dCTP results in fully cytosine-methylated
double-stranded ¢cDNA amplicons. Following bisulfite treatment converting unmethylated
cytosine to uracil, sequencing libraries containing both ¢cDNA- and genomic DNA-derived
molecules were generated using snmC-seq2 (Table 3.1)*2%, With this strategy, all sequencing reads
initially derived from RNA are completely cytosine methylated and do not show C to U sequence
changes during bisulfite conversion. By contrast, more than 95% of cytosines in mammalian
genomic DNA are unmethylated and converted by sodium bisulfite to uracils that are read during
sequencing as thymine!!2. In this way, sequencing reads originating from RNA and genomic DNA
can be distinguished by their total mC density. Since 70-80% of CpG dinucleotides are methylated
in mammalian genomes, we used the read-level non-CG methylation (mCH) to uniquely partition
sequencing reads into RNA or DNA bins. Specifically, we expect the level of mCH for all RNA-
derived reads to be greater than 90%, while for DNA-derived reads the level is no more than 50%
even considering the enrichment of mCH in adult neurons?. Using this threshold, only 0.02% =+
0.01% of single-cell methylome reads (n=100 cells profiled with snmC-seq2!’) were misclassified
as transcriptome reads and only 0.23% + 0.17% of single-cell RNA-seq reads (n=100 cells profiled
with Smart-seq**) were misclassified as methylome reads (Supplementary Fig. 3.1A). For a
snmCAT-seq profile containing 90% of methylome reads and 10% of transcriptome reads, the
estimated specificity for classifying methylome and transcriptome reads is 99.997% and 99.97%,
respectively. These results show that RNA- and DNA-derived snmCAT-seq reads can be
effectively separated. We extended the multi-omic profiling to include a measure of chromatin
accessibility by incorporating the Nucleosome Occupancy and Methylome-sequencing assay

(NOMe-seq, Fig. 3.1A, Table 3.1)?023!13:114 Tn the snmCAT-seq assay, regions of accessible
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chromatin are marked by treating bulk nuclei with the GpC methyltransferase M.CviPI prior to
fluorescence-activated sorting of single nuclei into the reverse transcription reaction (Fig. 3.1A).
A detailed bench protocol for snmCAT-seq and future updates to the method can be found

at https://www.protocols.io/view/snmcat-v1-bwubpesn.

3.3 Joint analysis of RNA and DNA methylome in cultured human cells.

We first tested the efficacy of the joint profiling of RNA and DNA methylome by applying
snmCAT-seq to either single whole cells or single nuclei of cultured human H1 embryonic stem
cells and HEK293 cells (Supplementary Table 3.1-3.2), without the labeling of accessible
chromatin using GpC methyltransferase. snmCAT-seq transcriptome profiling detected 4,220 +
1,251 genes from single whole cells using exonic reads while detected 4,531 + 1,888 genes using
both exonic and intronic reads (Supplementary Fig. 3.1B). Similar to previously reported single-
nuclei RNA-seq datasets, a minor fraction (17.3 = 6.1%) of snmCAT-seq transcriptome reads
generated from single nuclei were mapped to exons, whereas 68.1 £ 15.2% of snmCAT-seq reads
generated from single cells were mapped to exons (Supplementary Fig. 3.1C). Transcriptome reads
accounted for 22.2 + 13.6% and 9.2 + 6.5% of all mapped reads for somCAT-seq data generated
from single cells or nuclei, respectively (Supplementary Fig. 3.1D). The snmCAT-seq profiles
could clearly separate H1 and HEK293 cells by their transcriptomic signatures’® (Supplementary
Fig. 3.1E-F) and recapitulate specific gene expression signatures (Supplementary Fig. 3.1G).

To assess whether the two cell types could be distinguished using mC signatures derived
from snmCAT-seq, tSNE was performed using the average CG methylation (mCG) level of 100
kb non-overlapping genomic bins (Supplementary Fig. 3.1H-I). As exemplified by the NANOG
and CRNDE loci (Supplementary Fig. 3.1J), snmCAT-seq produced mC profiles highly consistent

with data generated from bulk methylomes!!>. snmCAT-seq data generated from both single cells
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and single nuclei identified global mC differences between H1 and HEK293T cells, showing that
HI cells are more methylated in both CG (83.6%) and non-CG (1.3%) contexts compared with
HEK293T cells (mCG: 60.1%, no significant mCH detected, Supplementary Fig. 3.1K-N)!!2. To
examine whether local mC signatures can be recapitulated in snmCAT-seq, we identified
differentially methylated regions (DMRs) from bulk H1 and HEK293 methylomes. Plotting mCG
levels measured using snmCAT-seq profiles across DMRs showed highly consistent patterns

compared to bulk cell methylomes (Supplementary Fig. 3.10-P).

3.4 Multi-omic profiling of postmortem human brain tissue with snmCAT-seq

We generated snmCAT-seq profiles from 4,358 single nuclei isolated from postmortem
human frontal cortex tissue from two young male donors (21 and 29 years old, Supplementary
Table 3.3-3.4). The data quality was similar to datasets generated from nuclei isolated from
cultured human cells with respect to the fraction of sequencing reads mapped to the transcriptome
(Supplementary Fig. 3.2A), the fraction of transcriptome reads mapped to introns and exons
(Supplementary Fig. 3.2B) and the number of genes detected (Fig. 3.1B). Compared with snmC-
seq and snmC-seq2 data generated from human single nuclei*?®, the DNA methylome component
of snmCAT-seq had comparable genomic coverage (Fig. 3.1C), mapping efficiency (Fig. 3.1D),
and showed only moderately reduced library complexity (Fig. 3.1E) with similar coverage
uniformity (Fig. 3.1F-G).

To compare each data modality profiled by snmCAT-seq with their corresponding single
modality assays, we first identified 20 cell types by multi-modal clustering analysis using
transcriptome, methylome and chromatin accessibility. We used RNA abundance across the gene
body for the transcriptome, mCH and mCG level of chromosome non-overlapping 100kb-bins,

and binarized NOMe-seq signal of 5kb bins for chromatin accessibility (See methods). For
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snmCAT-seq, the HCH context was counted for CH methylation and HCG is counted for CG
methylation to exclude GCH and GCG sites that can be methylated by M.CviPl. We identified
highly variable features and calculated principal components separately for each modality. We
observed substantial differences across data modalities in their ability to resolve cell populations
using the top 10 principal components (Supplementary Fig. 3.2G). Therefore, only informative
principal components from each data modality were concatenated as the input features for multi-
modal clustering and visualization using Uniform Manifold Approximation and Projection
(UMAP) ¢ of the three data types (Fig. 3.1H-I). The selection of informative principal components
for multi-modal clustering is agnostic to the type of molecular profile being analyzed and could be
generalized to other multi-omic approaches. We found non-CG methylation as the most
distinguishing measurement explaining 63.7% of the total variance, while CG methylation, RNA
abundance and NOMe-seq signal each explained 15.8%, 20.2% and 0.4% of the variance,
respectively (Supplementary Fig. 3.2C). These cell types were effectively separated by performing
dimensionality reduction using each data type (Supplementary Fig. 3.2D-F). The comparison of
homologous clusters between snmCAT-seq transcriptome and snRNA-seq (Supplementary Table
3.5) shows a robust global correlation: Pearson r = 0.82 for both PV-expressing inhibitory neurons
(MGE_PVALB, p = 1x10°'%) and superficial layer excitatory neurons (L1-3 CUX2, p = 3x1073%")
(Supplementary Fig. 3.2H-I). Moreover, highly consistent expression patterns of cell-type
signature genes were observed (Fig. 3.1J).

To test whether snmCAT-seq transcriptome data can be integrated with snRNA-seq (Table
3.1), we integrated snRNA-seq and the transcriptome component of snmCAT-seq using a mutual
nearest neighbor approach!!® (Fig. 3.1K-L). The integration confirmed that the cell types identified

using the snmCAT-seq transcriptome are strongly correlated with the cell types found using
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snRNA-seq. Similar to the transcriptome, both mCH and mCG profiles correlate strongly between
methylomes generated with snmCAT-seq and snmC-seq2 either globally (Supplementary Fig.
3.2J-K) or at cell-type-specific signature genes (Fig. 3.1M).

The presence of high levels of mCH in the human brain confounds the analysis of
chromatin accessibility using methylation at GpC sites (GmC). However, we found that in GCT
and GCC sequence contexts, GmC introduced by M.CviPI greatly surpasses the levels of native
methylation by 6.4 and 16-fold, respectively (Supplementary Fig. 3.2L). Thus for snmCAT-seq,
we focused our analyses of chromatin accessibility on GmC at GCY (Y=C or T) sites in the
genome. We further developed a computational strategy to first identify significantly methylated
GCY (GmCY) sites using a Hidden Markov Model approach!!”, followed by the calling of open
chromatin regions using the frequency of GmCY sites. Chromatin accessibility measured by the
frequency of GmCY sites correlates closely with snATAC-seq signal at cell-type-specific open
chromatin sites both globally (Fig. 3.1N and Supplementary Fig. 3.2M-N, p-value < 2.2 x 103%)
and at cell-population specific genes such as BDNF, POU3F2, DLX2/3 and SOXII
(Supplementary Fig. 3.20). In addition, open chromatin regions identified with GmCY frequency
overlapped substantially with regions found using snATAC-seq (Supplementary Fig. 3.2P-Q). In
summary, snmCAT-seq can simultaneously profile transcriptome, methylome and chromatin

accessibility in single nuclei, accurately recapitulating cell-type signatures for each data type.

3.5 Paired RNA and mC profiling enables cross-validation and quantification of over-/under-
splitting for single-cell clusters

A fundamental challenge for single-cell genomics is to objectively determine the number
of biologically meaningful clusters in a dataset®”. Cross-dataset integration of the same data type,

or fusion of distinct data types can be used to assess cluster robustness, but it may be limited by
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systematic differences between the datasets or modalities used!!'®. To address this, we devised a
novel cross-validation procedure using matched transcriptome and DNA methylation information
to estimate the number of reliable clusters supported by both modalities in snmCAT-seq data
(3,898 neurons, Fig. 3.2A). We first clustered the cells with different resolutions using mC
information, then tested how well each clustering is supported by the matched transcriptome
profiles. We used the cross-validated mean squared error between the RNA expression profile of
individual cells and the cluster centroid as a measure of cluster fidelity (Fig. 3.2B-C). Mean
squared error for cells in the training set decreased monotonically with the number of clusters,
whereas over-clustering leads to an increase in mean squared error for the test set. The U-shaped
mean squared error curve shows that aggressively splitting cells into fine-scale clusters based on
mC signatures is not supported by corresponding RNA signatures. The cluster resolution with the
minimum mean squared error represents the finest subdivision of cells that is well supported across
both modalities. In addition to directly evaluating error on a test set, the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) of the training set were also applied
to estimate test error (see methods, Fig. 3.2B-C and Supplementary Fig. 3.3A). Indeed, AIC curves
largely overlapped with test errors and gave similar estimates of the optimum cluster numbers;
BICs consistently reach smaller optimums than the other two metrics as they penalize model
complexity more stringently. Using these approaches, we found a range of 20-50 clusters with
strong multimodal support in the current snmCAT-seq dataset (Fig. 3.2B-C). The same approach
can also be applied to each individual modality separately, to identify the number of clusters
supported by DNA methylation features and by RNA features, respectively (Supplementary Fig.
3.3A).

The above approach objectively identified a range of appropriate cluster resolutions for the
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whole dataset. To assess the quality of individual clusters, we further developed metrics to quantify
over-splitting and under-splitting (Methods; Fig. 3.2D, Supplementary Fig. 3.3B). After jointly
embedding mC and RNA data in a common low-dimensional space!'’, we define a graph
connecting each cell to k cells with the greatest cross-modality similarity (called k-partners). An
over-splitting score was calculated as the fraction of each cell’s k-partners that are not in the same
cluster (Methods; Fig. 3.2D, E). We assessed the over-splitting of 17 major neuronal clusters and
52 neuronal sub-clusters (Fig. 3.4 and Supplementary Table 3.6) identified by single-cell
methylomes and found major clusters resemble ideal, homogeneous clusters (simulated by
shuffling gene features) with low over-splitting scores (Fig. 3.2E, Supplementary Fig. 3.3C, E),
with only 1/17 major clusters have an over-splitting score >0.6. Most sub-clusters also had
relatively little over-splitting; only 10/52 sub-clusters had an over-splitting score >0.6
(Supplementary Fig. 3.3C, E).

To assess under-splitting, we reasoned that if a cluster cannot be further split (no under-
splitting) all its cells should be statistically equivalent. Therefore, each cell’s mC profile should be
no more correlated with its own RNA profile than with the RNA profile of any other cell of the
same type. By contrast, an under-split cluster will contain some residual discrete or continuous
variation that is correlated between modalities. We tested this by defining the self-radius (the
distance between mC and RNA profiles of the same cell, see Methods) for each cell and comparing
the distribution of self-radii for each cluster with that expected for homogeneous clusters using a
permutation procedure. We found that major neuronal clusters had substantial within-cluster
variation across cells, indicating that they are under-split (Fig. 3.2F, Supplementary Fig. 3.3D, F).
By contrast, subtypes resembled ideal (shuffled) clusters to a greater degree. Combining both

scores, we quantitatively mapped the lumper-splitter tradeoff in terms of the degree of over- and
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under-splitting for each major type or subtype (Fig. 3.2G).

The fusion of single-cell genomic data across multiple data types has been a focus of recent
computational studies, yet existing methods lack validation on ground truth from experimental
single-cell multi-omic datasets!?’. By treating snmCAT-seq transcriptome and mC profiles as if
they were generated from different single cells, we could test the performance of computational
data fusion using Seurat’®, Harmony>2, Scanorama®’, LIGER?® and Single Cell Fusion (Methods;
Fig. 3.2H, Supplementary Fig. 3.3G-K, first row). To evaluate the fusion at the cell-level, we
calculated the self-radius as mentioned above and determined mis-fused events by normalized self-
radius > 0.3 (Supplementary Fig. 3.3G-K, second row). We also quantified the cluster level
accuracy as the fraction of cells whose transcriptome and mC profiles were assigned to the same
cluster (Fig. 3.2, Supplementary Fig. 3.3G-K, third row). Overall, the Single Cell Fusion and
Seurat outperform the other tools, with the Single Cell Fusion achieving the lowest mis-fusion
ratio (5.7%) and highest overall major cell-type level accuracy (87.3%) (Fig. 3.2I-J,
Supplementary Fig. 3.3G). We also tested the Single Cell Fusion accuracy at the subtype level. As
expected, computational fusion of fine-grain clusters was less accurate (62.6%) and more variable

across clusters (Fig. 3.2I), potentially because of the greater degree of over-clustering (Fig. 3.2E).

3.6 Diverse correlation between gene body mCH and gene expression

Using the paired profiling of transcriptome and mC by snmCAT-seq, we found diverse
patterns of correlation between mCH and gene expression across thousands of single cells. Fig.
3.3A shows examples of three distinct types of correlations between gene body mCH and gene
expression. KCNIP4 shows an inverse correlation between mCH and RNA across a broad range
of cell types. ADARB?2 is a marker gene for CGE-derived inhibitory cells and showed a strong

inter-cluster correlation, but no intra-cluster correlation between mCH and RNA. Finally, GPC5
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has a gradient of mCH across clusters (low in CGE VIP, high in L1-3 CUX2), but no corresponding
pattern of differential gene expression across cell types. Applying this correlation analysis to all
13,637 sufficiently covered genes, we found that 38% (n=5,145) have a significant negative
correlation between mCH and RNA (mCH-RNA coupled, FDR < 5%). The majority of genes
(62%) had no apparent correlation that could be distinguished from noise (mCH-RNA uncoupled,
Fig. 3.3B). The pattern of correlation was highly consistent between the specimens we profiled
and robust with respect to normalization and data smoothing (Supplementary Fig. 3.4A-H). We
found mCH-RNA correlation is correlated (r=0.63) with mCG-RNA correlation, consistent with
previous findings** (Supplementary Fig. 3.41). Genes with a significant correlation between mCH
and gene expression are longer, more highly expressed, show greater chromatin accessibility, and
are enriched in neuronal functions (Supplementary Fig. 3.4J-M).

We further investigated the factors that determine the degree of correlation between mCH
and RNA for each gene. We reasoned that housekeeping genes with a strong expression and little
variation across cell types would show weak mCH-RNA correlation, whereas mCH-RNA coupling
is enriched in genes with cell-type-specific expression. We quantified the cell-type specificity of
gene expression and DNA methylation by calculating the fraction of variance in gene expression
explained by cell type (RNAn? and mCH n?, Fig. 3.3C-E and Supplementary Fig. 3.4N).
Consistent with our hypothesis, genes with greater RNA n? had a stronger inverse-correlation
between mCH and RNA (Fig. 3.3D-E). Notably, we found a large number of genes (n=1,243) with
strong gene body mCH diversity across cell types (mCH n?> 0.25) but no apparent correlation
between mCH and RNA (r < -0.03) (box in Fig. 3.3C). This suggests that the lack of correlation
between mCH and gene expression is driven by variability in gene expression within cell types

despite conserved DNA methylation signatures.
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The accumulation of mCH in the frontal cortex starts from the second trimester of
embryonic development and continues into adolescence®!?!. The developmental dynamics of
mCH motivated us to compare the developmental expression of mCH-RNA coupled and
uncoupled genes. We found that mCH-RNA uncoupled genes, on average, are highly expressed
during early fetal brain development (PCW 8-9) and are later repressed, whereas the expression of
mCH-RNA coupled genes is moderately increased during development (Fig. 3.3F). Consistently,
developmentally down-regulated genes are significantly enriched in the mCH-RNA uncoupled
group (Fig. 3.3G). We speculated that the developmentally down-regulated genes may be
repressive by alternative epigenomic marks such as histone H3K27 trimethylation (H3K27me3),
which leads to the uncoupling of RNA and gene body mCH. By binning all the genes by their
expression dynamics during brain development, we indeed found the promoter of both down- and
up-regulated genes are enriched in H3K27me3 and depleted in active histone marks (Fig. 3.3H
and Supplementary Fig. 3.40). We directly compared mCH-RNA correlation and H3K27me3 in
purified human cortical glutamatergic and GABAergic neurons'??, and found genes with strong
H3K27me3 signal clearly show weak correlations between gene body mCH and gene expression
(e.g. CDC27 Fig. 3.31-K). In summary, although mCH and gene expression are clearly inversely
correlated at a global scale, substantial variations can be observed from genes to genes at a single-
cell level and can be partially explained by the presence of alternative epigenetic pathways such

as polycomb repression.

3.7 Multi-omic integration of chromatin conformation, transcriptome, methylome and
chromatin accessibility
The snmCAT-seq dataset for the human frontal cortex was combined with previously

published human frontal cortex datasets (Supplementary Table 3.3): sn-m3C-seq which
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simultaneously profiles mC and chromatin conformation** and snmC-seq methylomes for single
neurons®. We additionally generated new snmC-seq and snmC-seq2 data for the frontal cortex
from two independent donors (Supplementary Table 3.3). These datasets can be readily integrated
using single-nucleus methylomes as the common modality (Fig. 3.4A). To identify both major cell
types and subtypes of frontal cortex, we integrated 15,030 single-cell methylomes generated by
snmC-seq (n=5,131), snmC-seq2 (n=1,304), snmCAT-seq (n=4,358) and sn-m3C-seq (n=4,238)
prior to the clustering analysis (Supplementary Table 3.6). We used an iterative clustering
approach to identify 20 major cell populations including 9 excitatory neuron types, 8 inhibitory
neuron types and 3 non-neuronal cell types in the first round of clustering (Fig. 3.4B-C). A second
round of iterative clustering of each major cell type identified 63 cell subtypes, including 19
excitatory neuronal subtypes, 33 inhibitory neuronal subtypes and 11 non-neuronal cell subtypes
(Fig. 3.4B-C). Each fine-grained cell subtype can be distinguished from any other cell type by at
least 10 mCH signature genes for neuronal clusters, or 10 mCG signature genes for non-neuronal
clusters. Consistent with our previous results® as well as transcriptomic studies®*, we found greater
diversity among human cortical inhibitory neurons than excitatory cells (Fig. 3.4C). The
methylome data generated by these diverse multi-omic methods and from multiple donors were
uniformly represented in major cell type and subtype clusters (Fig. 3.4D).

We next performed fusion of single-cell methylome and snATAC-seq (Fig. 3.4E,
Supplementary Table 3.7) profiles by transferring the cluster labels defined by mC into ATAC-
seq cells using a nearest neighbor approach!'!® that was adapted for epigenomic data and

implemented in a new software package (https://github.com/mukamel-lab/SingleCellFusion, see

methods). For each cell population, we reconstructed four types of molecular profiles:

transcriptome (from snmCAT-seq), methylome (from snmC-seql/2 and sn-m3C-seq), chromatin
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accessibility (from snmCAT-seq mGCY frequency or snATAC-seq) and chromatin conformation
sn-m3C-seq’*1?* (Fig. 3.4F). This integrative analysis revealed extensive correlations across
epigenomic marks at cell-type signature genes. For example, ADARB2 is a signature gene of
inhibitory neurons derived from the caudal ganglionic eminence (CGE). In CGE-derived VIP
neurons, ADARBZ2 was associated with abundant transcripts, reduced mCG and mCH, and distinct
chromatin interactions compared with other neuron types (Fig. 3.4F). In contrast, in VIP neurons
the MEF2C locus showed lower transcript abundance (TPM - L1-3 CUX2: 75.8, L4-5 FOXP2:
80.2, MGE PVALB: 77.5, CGE VIP: 49.0), reduced chromatin interaction, and more abundant
gene body mCG (Fig. 3.4F). Although nearly identical open chromatin sites were identified at the
promoter regions of ADARB2 and MEF2C using snmCAT-seq GpC methylation and snATAC-
seq, the two methods revealed distinct cell-type specificity of chromatin accessibility. At the
ADARB?2 promoter, snATAC-seq but not the snmCAT-seq GpC methylation profile showed
enriched chromatin accessibility in VIP neurons. However, at the MEF2C promoter, snmCAT-seq
GpC methylation indicated a depletion of open chromatin in VIP neurons which is more consistent
with the reduced gene expression and increased gene body mCG in this inhibitory cell population.
The cause of these differences in measures of chromatin accessibility is not clear, and further work

is needed to clarify their respective sensitivities and biases'!”.

3.8 snmCAT-seq identifies RNA and mC signatures of neuronal subtypes.

The integration of 15,030 single-cell methylomes allowed the determination of fine-
grained brain cell subtypes with a sensitivity comparable to snRNA-seq (Fig. 3.4B-C). For
example, we identified 15 subtypes of CGE-derived inhibitory neurons using single-cell
methylomes, whereas 26 subtypes were identified by snRNA-seq®*. To ask whether snmCAT-seq

can recapitulate the molecular signatures of neuronal subtypes, we integrated snmCAT-seq
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transcriptome with snRNA-seq datasets for inhibitory neurons followed by joint clustering (Fig.
3.5A-B, S5A). Individual nuclei profiled with snmCAT-seq transcriptome and snRNA-seq were
uniformly distributed across joint clusters except for cluster 13 (Fig. 3.5B-C), suggesting that in
general, the snmCAT-seq transcriptome recapitulates the full range of inhibitory neuron diversity.
Cluster 13 contained snmCAT-seq data with lower numbers of transcriptome reads
(Supplementary Fig. 3.5B), but the methylome profiles of the same cells showed acceptable quality
and were robustly co-clustered with other inhibitory neurons (Supplementary Fig. 3.5B-C).
Similarly, integration of snmCAT-seq transcriptomes and snRNA-seq for excitatory neurons and
non-neuronal cells showed that brain cell type diversity across all cell classes can be recapitulated
from the snmCAT-seq transcriptome profiles (Supplementary Fig. 3.5D-K). We further compared
the expression of a panel of signature genes for inhibitory neuron subpopulations and found that
snmCAT-seq transcriptome and snRNA-seq identified highly consistent expression patterns (Fig.
3.5D). Lastly, we identified cell-type marker genes across inhibitory neuronal populations using
transcriptome profiles generated with either snmCAT-seq or snRNA-seq (Supplementary Table
3.8). Analysis of the marker genes using a database curated for neuronal functions - SynGO!?*
revealed consistent enrichment in ontological categories associated with synaptic signaling and
synapse organization for inhibitory neuron marker genes identified with both snmCAT-seq

transcriptome and snRNA-seq data (Fig. 3.5E-F).

3.9 DNA methylation signatures of hierarchical transcription factor regulation in neural
lineages

Temporally regulated expression of transcription factors (TF) during specific
developmental stages is critical for neuronal differentiation!?>!2, We hypothesized that the cell-

type hierarchy reconstructed from mC information reflects the developmental lineage of human
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cortical neurons. If so, then key transcription factors that specify neuronal lineage can be identified
for each branch of the hierarchy. We separately constructed hierarchies for inhibitory and
excitatory neurons based on the concatenated principal components of mCH and mCG (Fig. 3.6A
and S6A). The inhibitory neuron hierarchy comprises two major branches corresponding to medial
ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) derived cells (Fig. 3.6A).
These major populations contain intermediate neuronal populations such as PVALB-expressing
Basket Cell (BC) and Chandelier Cell (ChC), or the recently reported LAMP5-expressing Rosehip
neurons (Fig. 3.6A)!%7. At the finest level, the hierarchy contains 33 neuronal subtypes (Fig. 3.6A).
To identify TFs involved in the specification of neuronal lineages, we compared three levels of
molecular information for each of 1639 human TFs!?8 between the daughter branches (Fig. 3.6B).
To assess the genome-wide DNA binding activity of the TF at regulatory elements, we used
enrichment of DNA binding sequence binding motifs in differentially methylated regions (DMRs).
To assess TF gene expression, we used both mRNA expression and TF gene body mCH level.
Our integrated strategy taking advantage of matched information for TF motif enrichment,
transcript abundance and TF gene body mCH level allowed us to distinguish the relative
importance of closely related TFs sharing a common binding motif based on their cell-type-
specific expression'?” (Fig. 3.6C). For example, we predicted that NFIB and NFIX contribute to
CGE lineage specification since they show greater RNA abundance and stronger gene body mCH
depletion than closely related TFs NFIA and NFIC. We systematically applied this approach across
the inhibitory neuron hierarchy, using 579 curated motifs from the JASPAR 2018 CORE
vertebrates database (Supplementary Fig. 3.6E-H)%. Many predicted lineage regulators were
homologous to cell-type lineage regulators in mouse cortical development, such as NFIX, NFIB

for CGE-derived neurons (Supplementary Fig. 3.6E), or LHX6, SOX6 and SATBI1 for MGE-
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derived neurons (Supplementary Fig. 3.6E)!2%130, The motifs of some TFs were also recurrently
enriched in multiple lineages. For example, the NFIB gene'®! is not only specific to CGE neurons
but also highly expressed and hypo-methylated in PV-expressing chandelier cells (ChC) but not
basket cells (BC) (Fig. 3.6D). The same expression pattern of NFIB was found in a comparison of
mouse ChC - BC', These findings provide cogent evidence that the conserved major cell types
of human and mouse®* also have shared basic rules of TF regulation. The same TF gene may
perform multiple roles in different cell type lineages.

Previous studies including ours have found that discrete genomic regions with reduced
mCG (hypomethylated DMRs) mark active regulatory elements**!:132:133 We expected that TF
binding motifs would be enriched in hypomethylated DMRs for cell types where the TF gene is
actively expressed and has low gene-body mCH. However, we identified several TFs with an
opposite pattern: their binding motif was enriched in the hypomethylated DMRs of the alternative
lineage showing low TF expression and high gene body mCH. For example, the motifs of NR2F1
and PBX1 were enriched in the hypomethylated DMRs of ChC, but both TFs were actively
expressed in BC and not ChC (Fig. 3.6D). Similarly, the PKNOX2 motif was enriched in
hypomethylated DMRs of VIP cells, yet PKNOX? is preferentially expressed in NDNF neurons
(Fig. 3.6E). These data suggest that certain TFs can preferentially bind to hypermethylated regions
(i.e. hypomethylated regions in the alternative lineage). This non-classical preference for
methylated binding sites has been extensively demonstrated in in vitro studies®!**. In particular,
Yin et al. used an in vitro assay to bind each recombinant TF protein to a pool of synthetic DNA
(methyl-SELEX). They identified hundreds of TFs whose binding is inhibited (MethylMinus) or
promoted (MethylPlus) by the presence of methylated CpG sites in their binding motifs. We

analyzed the in vivo binding of MethylPlus TFs to hypermethylated DNA by analyzing chromatin
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accessibility measured by the snmCAT-seq NOMe-seq profile (Fig. 3.6F) as well as snATAC-seq
(Supplementary Fig. 3.61). We quantified the average chromatin accessibility at TF binding motifs
that are lowly methylated (overlapping with hypomethylated DMRs) or highly methylated
(overlapping with hypermethylated DMRs) (Fig. 3.6F and Supplementary Fig. 3.6I), and used the
difference in chromatin accessibility to determine the in vivo sensitivity of each TF to cytosine
methylation. Using both chromatin accessibility assays (NOMe-seq and ATAC-seq), we found a
general agreement between our in vivo approach and the in vitro methyl-SELEX results with
MethylMinus TFs showing enrichment in the upper part of Fig. 3.6F and Sé6I (e.g. ETV1 in Fig.
3.6J), which showed a greater difference in chromatin accessibility between lowly and highly
methylated TF motifs (Fig. 3.6H and Supplementary Fig. 3.6K). Consistently, MethylPlus TFs are
strongly depleted in the upper part of Fig. 3.6F and Supplementary Fig. 3.61 (Fig. 3.6G and
Supplementary Fig. 3.6J). Therefore, our joint analysis of mC and chromatin accessibility using
snmCAT-seq provided in vivo evidence for the modulation of TF binding by cytosine methylation.

Lastly, we examined the correlation between chromatin accessibility and the presence of
CA dinucleotide in the TF binding motifs, since CA is the predominant sequence context of mCH
in the human brain?. Intriguingly, we found a significant enrichment of TF binding motifs
containing CA dinucleotides in the lower part of Fig. 3.6F and Supplementary Fig. 3.61, using
either NOME-seq and ATAC-seq to quantify chromatin accessibility (Fig. 3.61 and Supplementary
Fig. 3.6L), suggesting the accessibility of TF binding motifs containing CA is less affected by mC.
Across all TF binding motifs examined, the accessibility of motifs containing both CA and CG
dinucleotides (CA+ CG+, p-value = 1 x 10, e.g. ATF4, Fig. 3.6L) or only CA (CA+ CG-, p-value
=5.7x10°, e.g. RARB, Fig. 3.6K) show significantly less sensitivity to mC than motifs containing

CG dinucleotides only (CA- CG+) (Fig. 3.6M). The results suggest certain TFs may be able to
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bind hypermethylated regions through the interaction with mCA sites. The modulation of TF
binding by mCA has not been systematically explored since previous studies have focused on the

effect of mCG sites®!34,

3.10 Cortical cell regulatory genomes predict developmental and adult cell types associated
with neuropsychiatric diseases

The strong enrichment of disease heritability in gene regulatory elements has allowed the
prediction of disease-associated cell types using epigenomic signatures'®®, including
neuropsychiatric disorders'?2. By reconstructing mC and open chromatin maps from single-cell
profiles, we used LD score regression partitioned heritability to infer the relevant cell types for a
set of neuropsychiatric traits using DMRs and ATAC-seq peaks (Supplementary Table 3.9-3.10)!3.
To capture regulatory elements active during early development which may be implicated in
psychiatric disease, we further included lowly methylated regions identified from bulk fetal (PCW
19) human cortex methylome!?! and DNase-seq peaks identified from fetal brain samples!36, We
first compared the set of DMRs in each brain cell type individually to a baseline containing DMRs
identified across non-brain human tissues*'. Using a statistical threshold of FDR < 1x107, we
identified 72 disease-cell type associations across 21 cortical cell types or bulk samples for 16
neuropsychiatric traits (Supplementary Fig. 3.7A). Each association corresponds to a significant
enrichment of disease heritability within the corresponding cell type’s active regulatory regions.
By contrast, no association was found in DMRs identified from 18 bulk non-brain tissues
(Supplementary Fig. 3.7A)*. This result strongly suggests our partitioned heritability analysis has
correctly identified the brain as the relevant tissue types for neuropsychiatric traits.

To discern the relative enrichment of disease risk between brain cell types, we further

constructed multiple regression models including all adult brain cell types and the fetal brain (Fig.
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3.7A-D). In most cases, our partitioned heritability analyses enhanced the cell-type resolution
compared to previous efforts. For example, using single-cell RNA-seq datasets, the genetic risk of
schizophrenia was previously mapped to broad cortical neuronal populations including neocortical
somatosensory pyramidal cells, and cortical interneurons!'?>!3”. Our analysis further identified the
enrichment of schizophrenia heritability in multiple types of intratelencephalic (IT) neuron types
(L1-3 CUX2, L4-5 FOXP2 and L5-6 PDZEN4), in addition to a medial ganglionic eminence
derived inhibitory cell type (MGE CALB1) (Fig. 3.7A). Intriguingly, the heritability of bipolar
disorder was specifically enriched in a deep layer neuron type L5-6 PDZEN4 (Fig. 3.7B). We also
found a specific enrichment of autism spectrum disorder risk in a deep-layer thalamic-projecting
neuronal population L6 TLE4 (Fig. 3.7C). By contrast, the heritability of educational attainment
was broadly distributed across multiple types of neurons including excitatory cells (L1-3 CUX2,
L4 PLCHI1 and L6 TLE4) and inhibitory neurons derived from both caudal (CGE LAMPS) and
medial ganglionic eminence (MGE CALBI) (Fig. 3.7D). Consistent with the neurodevelopmental
hypothesis that gene misregulation during brain development underlies certain psychiatric
disorders!*®, lowly methylated regions in fetal cortex DMRs are enriched in the heritability for
schizophrenia and educational attainment (Supplementary Fig. 3.7A). However, the partitioned
heritability analysis using the fetal cortex sample is likely underpowered due to the cell-type
heterogeneity. To corroborate our results generated using LD score regression partitioned
heritability, we applied RolyPoly!3? to prioritize trait-relevant cell types using GWAS SNP effect
sizes and cell-type-specific mCG levels at DMRs (Supplementary Fig. 3.7E-F). The analysis using
RolyPoly recapitulated a number of predictions, such as the association between schizophrenia

and L5-6 PDZRN4 cells and MGE derived inhibitory cells; bipolar disorder with L5-6 PDZRN4
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cells; autism spectrum disorder with L6 TLE4 cells, as well as educational attainment with the L1-
3 CUX2 population (Supplementary Fig. 3.7E-F).

We performed partitioned heritability analyses using three complementary types of
molecular signatures (Supplementary Fig. 3.7B-D): genes with cell-type-specific expression
(Supplementary Fig. 3.7B,D), DMRs and open chromatin regions identified with both snATAC-
seq and NOMe-seq (Supplementary Fig. 3.7B,C) (or DNase-seq peaks for the prenatal brain
sample). To our surprise, the results obtained using DMRs and ATAC-seq peaks were substantially
different. For example, the partition of schizophrenia heritability across DMRs identified
enrichment in four adult cell types in addition to the fetal cortex (Fig. 3.7A), whereas the analysis
using open chromatin regions only found enrichment in L1-3 CUX2 cells and the fetal brain (Fig.
3.7E). To understand this discrepancy, we stratified DMR regions into two groups [DMR (ATAC-
pos) and DMR (ATAC-neg)] by their overlap with open chromatin regions. Partitioned heritability
across the stratified DMR regions revealed that in adult cells, DMR regions without open
chromatin signature are more strongly enriched in heritability for the neuropsychiatric traits (Fig.
3.71-L). In the fetal cortex, however, a stronger enrichment of schizophrenia and educational
attainment heritability was found in DMRs associated with open chromatin.

We speculate that DMRs without open chromatin contain vestigial enhancers’, which
contribute to the enrichment of disease heritability. Vestigial enhancers are active regulatory
elements during embryonic development but become dormant in adult tissues’. However, vestigial
enhancers remain lowly methylated in adult tissues and can be identified as DMRs. Thus, vestigial
enhancers can be strongly enriched in the genetic risk of neuropsychiatric traits since these regions
are active regulatory elements during brain development. We identified the fraction of adult brain

DMRs that correspond to vestigial enhancers, i.e. overlapping with open chromatin regions in the
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embryonic, but not the adult brain (Supplementary Fig. 3.7G-J). Consistent with our speculation,
in many cases, vestigial enhancers show stronger enrichment of disease heritability
(Supplementary Fig. 3.7K-N). In particular, the enrichment of autism spectrum disorder genetic
risk in L4 PLCHI1 and L6 TLE4 cells can only be identified in vestigial enhancers (Supplementary
Fig. 3.7M). In summary, we found that single cell-type DMRs integrate regulatory information
during brain development and in the adult brain and can be used to predict cell types involved in
neuropsychiatric disorders. However, our predictions should be considered in light of important

135 and

limitations. Statistical approaches such as LD score regression partitioned heritability
RolyPoly'*® have been validated for the prioritization of trait-associated tissues, but their
application to fine-grained cell types remain preliminary. In addition, experimental validation of
the association between disease and cell types is challenging due to the difficulty in accurately
recapitulating disease phenotypes and modeling diverse cell populations in cell cultures!*.

Together, the investigation of disease-associated cell types is still in its infancy and will require

further methodological breakthroughs in cell culture and gene editing approaches.

3.11 Discussion

Epigenomic studies often incorporate multiple molecular profiles from the same sample to
explore possible correlations between gene regulatory elements and expression. The need for
multi-omic comparison poses a challenge for single-cell analysis, since most existing single-cell
techniques terminally consume the cell, precluding multi-dimensional analysis. To address this
challenge, we have developed a single-nucleus multi-omic assay snmCAT-seq to jointly profile
the transcriptome, DNA methylome and chromatin accessibility and can be applied to either single
cells or nuclei isolated from frozen human tissues. snmCAT-seq requires no physical separation

of DNA and RNA and is designed to be a “single-tube” reaction for steps before bisulfite
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conversion to minimize material loss. snmCAT-seq is fully compatible with high-throughput
single-cell methylome techniques such as snmC-seq2?® and can be readily scaled to analyze
thousands of cells/nuclei.

The continuous development of multi-omic profiling techniques such as scNMT-seq?’ and
snmCAT-seq, and several methods for joint RNA and chromatin accessibility profiling sci-CAR!!,
SNARE-seq!4, Paired-seq'** and SHARE-seq'** provide the opportunity to classify cell types with
multiple molecular signatures. Our study developed computational methods to cross-validate
clustering-based cell-type classifications using multi-modal data. Through cross-validation
between matched single-cell mC and RNA profiles, we found that between 20-50 human cortical
cell types can be identified from our moderate size snmCAT-seq dataset (4,358 cells) with sound
cluster robustness. This is consistent with the number of human frontal cortex cell types we
reported in our previous (21 major types®) and current (20 major types and 63 subtypes) studies.
Determining the optimal number of clusters for any dataset should consider statistical robustness,
the need of the biological questions, and the cell-type resolution of companion data modalities.
Practical factors could also impact the choice of clusters, such as the requirement of certain
minimum coverage for the pseudobulk methylome for DMR analysis. Together, although
statistical robustness is essential for any cell type classification using clustering methods, the
optimal number of clusters is to some extent an investigator-driven choice depending on the
context of the study. Using snmCAT-seq as a “ground-truth”, we determined that computational
multi-modal data fusion tools perform well at the major cell-type level but show variable accuracy
for the fusion of fine-grain subtypes. The computational strategies developed in this study can be
applied to other types of multi-omic profiling including methods involving physiological

measurement such as Patch-seq!'4>146.
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Epigenomic studies at both bulk and single-cell levels have established both mC and open
chromatin as reliable markers for regulatory elements®!. However, the difference between the
information provided by the two epigenomic marks has been less clear in the context of normal
development and diseases. Our study found that DMRs contain disease-related regulatory

information of both adult and embryonic tissues, with vestigial enhancers ’

as a possible
mechanism that informs developmental gene regulation. The strong enrichment of genetic risks
for neuropsychiatric disorders in vestigial enhancers enabled the prediction of cellular lineages
associated with diseases using DMRs for partitioned heritability analyses and identified more
diverse disease-associated brain cell populations than similar analyses using open chromatin
regions. The abundance of developmental information in DNA methylome suggests the possibility
to study developmental processes and gene regulation in cell lineages using methylome profiling

of adult tissues, especially given the practical and ethical challenges for obtaining primary human

tissues from developmental stages.

3.12 Limitations of the Study
The transcriptome assay of snmCAT-seq was based on the Smart-seq2 method!!! published
more than 7 years ago. The incorporation of further optimized single-cell RNA approaches such

as Smart-seq3'¥’

may enhance the performance of transcriptome profiling for snmCAT-seq.
Similar to other bisulfite sequencing-based approaches, the relatively high cost of resequencing
the bisulfite-converted genome limits the number of cells that can be profiled with snmCAT-seq.
However, with the continuous reduction of sequencing cost, it will become feasible to routinely
profile hundreds of thousands of snmCAT-seq libraries. Although the current plate-based library

preparation method of snmCAT-seq has a maximum throughput of approximately 10,000 cells per

week?®, the molecular partitioning design of snmCAT-seq is a simple “single-tube” reaction and
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can be readily combined with combinatorial indexing based methylome preparation methods such
as sci-MET™". In snmCAT-seq, the ratio between transcriptome and methylome reads is
determined by the absolute quantity of mRNA and pre-mRNA in a single nucleus, since the amount
of genomic DNA is a constant ~5pg per nucleus in diploid human cells. Therefore, the application
of snmCAT-seq to a new tissue type requires testing of the number of cycles of cDNA
amplification necessary to achieve an optimized representation of transcriptome reads in the
sequencing library.

Although we have successfully incorporated NOMe-seq in snmCAT-seq for the profiling
of chromatin accessibility, the single-nucleus NOMe-seq profiles have moderate signal-to-noise
ratio and may be better suited for identifying open chromatin regions using pseudo bulk profiles,
rather than for the de novo clustering of single-cell using chromatin accessibility information
(Supplementary Fig. 3.2H, K). This could be due to our use of frozen tissue providing an
intrinsically lower signal-to-noise ratio than experiments using freshly harvested cells!’.
Nevertheless, we have demonstrated that following the robust identification of cell types using the
methylome and transcriptome components of snmCAT-seq, the quantitative analysis of pseudo
bulk NOMe-seq profiles has generated insights about the modulation of TF binding by
methylcytosines (Fig. 3.6F-I), suggesting the unique applications of single-cell multi-modal

datasets.

3.13 Methods

3.13.1 Cell cultures
HEK293T cells were cultured in DMEM with 15% FBS and 1% Penicillin-Streptomycin

and dissociated with 1X TrypLE. H1 human ESCs (WAOI, WiCell Research Institute) were
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maintained in a feeder-free mTesR1 medium (Stemcell Technologies). hESCs (passage 26) were
dispersed with 1U/ml Dispase and collected for single-cell sorting or nuclei isolation. For the
sorting of single H1 and HEK293T cells, equal amounts of H1 and HEK293T cells were mixed
and stained with anti-TRA-1-60 (Biolegend, Cat#330610) antibody.
3.13.2 Human brain tissues

Postmortem human brain biospecimens GUID: NDARKD326LNK and NDARKJ183CYT
were obtained from NIH NeuroBioBank at the University of Miami Brain Endowment Bank.
Postmortem human brain biospecimens UMB4540, UMB5577 and UMB5580 were obtained from
NIH NeuroBioBank at the University of Maryland Brain and Tissue Bank. Published snmC-seq
was generated from frontal cortex (medial frontal gyrus) tissue obtained from a 25-year-old
Caucasian male (UMB4540, labeled as M_25yr 1 in this study) with a postmortem interval (PMI)
=23 h. The snATAC-seq dataset was generated from specimen UMB4540. Additional snmC-seq
data was generated in frontal cortex (superior frontal gyrus, Brodmann area 10) tissues obtained
from a 58-year-old Caucasian male (GUID: NDARKD326LNK, labeled as M_58yr in this study)
with a postmortem interval (PMI) = 23.4 h. snmC-seq2 data was generated from frontal cortex
(Brodmann area 10) tissue from a 25-year-old Caucasian male (GUID: NDARKJ183CYT, labeled
as M_25yr 2 inthis study) with a PMI=20.8 h. snmCAT-seq and sn-m3C-seq data were generated
from a 21-year-old Caucasian male (UMBS5577, labeled as M_21yr in this study) with a PMI =
19h, and a 29-year-old Caucasian male (UMBS5580, labeled as M_29yr in this study) with a PMI
= 8h. The samples were taken from unaffected control subjects who died from accidental causes.
The snRNA-seq dataset was generated from postmortem brain specimen H18.30.002 from the

Allen Institute for Brain Science. The frontal cortex (BA44-45, 46) from this donor was used for
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the generation of single nucleus RNA-seq data. The donor was a 50 year old male with a PMI =

12 h.

3.13.3 Nuclei isolation from cultured cells for snmCAT-seq

Cell pellets containing 1 million cells were resuspended in 600 ul NIBT [250 mM Sucrose,
10 mM Tris-Cl pH=8, 25 mM KCI, 5mM MgCl,, 0.1% Triton X-100, ImM DTT, 1:100 Proteinase
inhibitor (Sigma-Aldrich P8340), 1:1000 SUPERaseln RNase Inhibitor (ThermoFisher Scientific
AM?2694), 1:1000 RNaseOUT RNase Inhibitor (ThermoFisher Scientific 10777019)]. The lysate
was transferred to a pre-chilled 2 ml Dounce homogenizer (Sigma-Aldrich D8938) and Dounced
using loose and tight pestles for 20 times each. The lysate was then mixed with 400 pl of 50%
Iodixanol (Sigma-Aldrich D1556) and gently pipetted on top of 500 ul 25% Iodixanol cushion.
Nuclei were pelleted by centrifugation at 10,000 x g at 4°C for 20 min using a swing rotor. The
pellet was resuspended in 2 ml of DPBS supplemented with 1:1000 SUPERaseln RNase Inhibitor
and 1:1000 RNaseOUT RNase Inhibitor. Hoechst 33342 was added to the sample to a final
concentration of 1.25 nM and incubated on ice for 5 min for nuclei staining. Nuclei were pelleted
by 1,000 x g at 4°C for 10 min and resuspended in 1 ml of DPBS supplemented with RNase
inhibitors.
3.13.4 Nuclei isolation from human brain tissues and GpC methyltransferase treatment for
snmCAT-seq

Brain tissue samples were ground in liquid nitrogen with cold mortar and pestle, and then
aliquoted and store at -80°C. Approximately 100mg of ground tissue was resuspended in 3 ml
NIBT (250 mM Sucrose, 10 mM Tris-Cl pH=8, 25 mM KCI, 5SmM MgCl, 0.2% IGEPAL CA-
630, ImM DTT, 1:100 Proteinase inhibitor (Sigma-Aldrich P8340), 1:1000 SUPERaseln RNase

Inhibitor (ThermoFisher Scientific AM2694), 1:1000 RNaseOUT RNase Inhibitor (ThermoFisher
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Scientific 10777019)). The lysate was transferred to a pre-chilled 7 ml Dounce homogenizer
(Sigma-Aldrich D9063) and Dounced using loose and tight pestles for 40 times each. The lysate
was then mixed with 2 ml of 50% Ilodixanol (Sigma-Aldrich D1556) to generate a nuclei
suspension with 20% lodixanol. Gently pipet 1 ml of the nuclei suspension on top of 500 pul 25%
Iodixanol cushion in each of the 5 freshly prepared 2ml microcentrifuge tubes. Nuclei were
pelleted by centrifugation at 10,000 x g at 4°C for 20 min using a swing rotor. The pellet was
resuspended in 1ml of DPBS supplemented with 1:1000 SUPERaseln RNase Inhibitor and 1:1000
RNaseOUT RNase Inhibitor. A 10 pl aliquot of the suspension was taken for nuclei counting using
a Biorad TC20 Automated Cell Counter. One million nuclei aliquots were pelleted by 1,000 x g at
4°C for 10 min and resuspended in 200 pul of GpC methyltransferase M.CviPI (NEB M0227L)
reaction containing 1X GC Reaction Buffer, 0.32 nM S-Adenoslylmethionime, 80U 4U/ul
M.CviPI, 1:100 SUPERaseln RNase Inhibitor and 1:100 RNaseOUT RNase Inhibitor and
incubated at 37°C for 8 min. The reaction was stopped by adding 800 pul of ice-cold DPBS with
1:1000 RNase inhibitors and mixing. Hoechst 33342 was added to the sample to a final
concentration of 1.25 nM and incubated on ice for 5 min for nuclei staining. Nuclei were pelleted
by 1,000 x g at 4°C for 10 min, resuspended in 900 pl of DPBS supplemented with 1:1000 RNase
inhibitors and 100 pl of 50mg/ml Ultrapure™ BSA (Ambion AM2618) and incubated on ice for
5 min for blocking. Neuronal nuclei were labeled by adding 1 pul of AlexaFluor488-conjugated

anti-NeuN antibody (clone A60, MilliporeSigma MAB377XMI) for 20 min.

3.13.5 Reverse transcription for snmCAT-seq
Single cells or single nuclei were sorted into 384-well PCR plates (ThermoFisher 4483285)
containing 1 pl snmCAT-seq reverse transcription reaction per well. The snmCAT-seq reverse

transcription reaction contained 1X Superscript II First-Strand Buffer, SmM DTT, 0.1% Triton X-
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100, 2.5 mM MgCl,, 500 uM each of 5’-methyl-dCTP (NEB NO0356S), dATP, dTTP and dGTP,
1.2 uM dT30VN 4 oligo-dT primer (5’-
AAGCAGUGGUAUCAACGCAGAGUACUTTTTTUTTTTTUTTTTTUTTTTTUTTTTTVN-
3 was used the cultured cell snmCAT-seq experiments; 5’-
/5SpC3/AAGCAGUGGUAUCAACGCAGAGUACUTTTTTUTTTTTUTTTTTUTTTTTUTTT
TTVN-3" was used for human brain snmCAT-seq experiments), 2.4 uM TSO 3 template
switching oligo (5°-/5SpC3/AAGCAGUGGUAUCAACGCAGAGUGAAUrGrG+G-3’), 1U
RNaseOUT RNase inhibitor, 0.5 U SUPERaseln RNase inhibitor, 10U Superscript II Reverse
Transcriptase (ThermoFisher 18064-071). For snmCAT-seq performed with nuclei samples, the
reaction further included 2 uM N6 2 random primer (5-
/5SpC3/AAGCAGUGGUAUCAACGCAGAGUACNNNNNN-3’). After sorting, the PCR plates
were vortexed and centrifuged at 2000 x g. The plates were placed in a thermocycler and incubated
using the following program: 25°C for 5 min, 42°C for 90min, 70°C 15min followed by 4°C.
3.13.6 cDNA amplification for snmCAT-seq

3 pul of cDNA amplification mix was added into each snmCAT-seq reverse transcription
reaction. Each ¢cDNA amplification reaction containing 1X KAPA 2G Buffer A, 600 nM
ISPCR23 2 PCR primer (5°-/5SpC3/AAGCAGUGGUAUCAACGCAGAGU-3’), 0.08U
KAPA2G Robust HotStart DNA Polymerase (5 U/uL, Roche KK5517). PCR reactions were
performed using a thermocycler with the following conditions: 95°C 3min -> [95°C 15 sec -> 60°C
30 sec -> 72°C 2min] -> 72°C 5min -> 4°C. The cycling steps were repeated for 12 cycles for
snmCAT-seq using H1 or HEK293 whole cells, 15 cycles for samCAT-seq using H1 or HEK293

nuclei and 14 cycles for snmCAT-seq using human brain tissue nuclei.
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3.13.7 Digestion of unincorporated DNA oligos for snmCAT-seq

For snmCAT-seq using H1 and HEK?293 cells, 1 ul uracil cleavage mix was added into
cDNA amplification reaction. Each 1 pl uracil cleavage mix contains 0.25 pl Uracil DNA
Glycosylase (Enzymatics G5010) and 0.25 pl Endonuclease VIII (Enzymatics Y9080) and 0.5 pl
Elution Buffer (Qiagen 19086). Unincorporated DNA oligos were digested at 37°C for 30 min
using a thermocycler. We have found that Endonuclease VIII is dispensable for the digestion of
unincorporated DNA oligos since the alkaline condition during the desulfonation step of bisulfite

148 Therefore

conversion can effectively cleave abasic sites created by Uracil DNA Glycosylase
for snmCAT-seq using human brain tissues, each cDNA amplification reaction was treated with

1 ul uracil cleavage mix containing 0.5 pl Uracil DNA Glycosylase (Enzymatics G5010-1140) and
0.5 ul Elution Buffer (Qiagen 19086).
3.13.8 Bisulfite conversion and library preparation

Detailed methods for bisulfite conversion and library preparation are previously described

for snmC-seq?2 328

. The following modifications were made to accommodate the increased reaction
volume of snmCAT-seq: Following the digestion of unused DNA oligos, 25 ul instead of 15 pl of
CT conversion reagent was added to each well of a 384-well plate. 90 ul instead of 80 ul M-
binding buffer was added to each well of 384-well DNA binding plates. snmCAT-seq libraries
performed using whole H1 or HEK293 cells were generated using the snmC-seq method as
described in Luo et al., 2017 3. The rest of the snmCAT-seq libraries were generated using the
snmC-seq2 method as described in Luo et al., 2018 8. The snmCAT-seq libraries generated from
H1 and HEK293 cells were sequenced using an Illumina HiSeq 4000 instrument with 150 bp

paired-end reads. The snmCAT-seq libraries generated from human brain specimens were

sequenced using an [llumina Novaseq 6000 instrument with S4 flowcells and 150 bp paired-end
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mode.

3.13.9 The mapping pipeline for snmC-seq, snmC-seq2, and snmCAT-seq

We implemented a versatile mapping pipeline (cemba-data.rtfd.io) for all the methylome

328 The main steps of this pipeline include: 1)

based technologies developed by our group
Demultiplexing FASTQ files into single-cell; 2) Reads level QC; 3) Mapping; 4) BAM file
processing and QC; 5) final molecular profile generation.

For snmC-seq and snmC-seq2, the details of the five steps are described previously 328,
For snmCAT-seq, steps 1 and 2 are identical as snmC-seq2, steps 3 to 5 are split into “a” for
methylome and “b” for transcriptome as following:

Step 3a (methylome). To map methylome reads, reads from step 2 were mapped onto the
human hg19 genome using Bismark ' with the same setting as snmC-seq2.

Step 3b (transcriptome). To map transcriptome reads, reads from step 2 were mapped to
GENCODE human v28 indexed hgl9 genome using STAR 2.7.2b ' with the following
parameters: --alignEndsType EndToEnd --outSAMstrandField intronMotif --outSAMtype BAM
Unsorted --outSAMunmapped Within --outSAMattributes NH HI AS NM MD --sjdbOverhang 100
--outFilterType  BySJout --outFilterMultimapNmax 20  --alignSJoverhangMin § --
alignSIDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.04 --
alignlntronMin 20  --alignlntronMax 1000000  --alignMatesGapMax 1000000  --
outSAMattrRGline ID:4 PL:Illumina.

Step 4a (methylome). PCR duplicates were removed from mapped reads using Picard
MarkDuplicates. The non-redundant reads were then filtered by MAPQ > 10. To select genomic

reads from the filtered BAM, we used the “XM-tag” generated by Bismark to calculate reads

methylation level and keep reads with mCH ratio < 0.5 and the number of cytosines > 3.
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Step 4b (transcriptome), the STAR mapped reads were first filtered by MAPQ > 10. To
select RNA reads from the filtered BAM, we used the “MD” tag to calculate reads methylation
level and keep reads with mCH ratio > 0.9 and the number of cytosines > 3. The stringency of read
partitioning was determined by applying the criteria for identifying snmCAT-seq transcriptome
reads to snmC-seq2 data (SRR6911760, SRR6911772, SRR6911776) 2%, which contains no
transcriptomic reads. Similarly, the criteria for identifying snmCAT-seq methylome reads were
applied to Smart-seq data (SRR944317, SRR944318, SRR944319, SRR944320) '!!, which
contains no methylome reads.

Step 5a (methylome), Tab-delimited (ALLC) files containing methylation level for every
cytosine position was generated using methylpy call methylated_sites function *! on the BAM file
from the step 4a. For snmCAT-seq, an additional base was added before the cytosine in the context
column of the ALLC file using the parameter “--num_upstr_bases 17, to distinguish GpC sites
from HpC sites for the NOMe-seq modality.

Step 5b (transcriptome), BAM file from step 4b were counted across gene annotations
using featureCount 1.6.4 ! with the default parameters. Gene expression was quantified using
either only exonic reads with “-t exon” or both exonic and intronic reads with “-t gene”.

3.13.10 Methylome feature generation

After allc files were generated, the methylcytosine (mc) and total cytosine basecalls (cov)
were summed up for each 100kb bin across the hgl9 genome. For snmC-seq and snmC-seq2,
cytosine and methylcytosine basecalls in CH (H=A, T, C) and CG context were counted separately.
For snmCAT-seq, the HCH context was counted for CH methylation and HCG is counted for CG
methylation. The GCY (Y=T, C) context was counted as the chromatin accessibility signal

(NOMe-seq in snmCAT-seq) and the HCY context was counted as the endogenous mCH
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background. In addition to the 100kb feature set, we also counted gene body methylation levels
using gene annotation from GENCODE v28. The 100kb feature set was used in methylation-based
clustering analysis and data integration; the gene body feature set was used in methyl-marker

identification, cluster annotation and data fusion between methylome and transcriptome.

3.13.11 Preprocessing of snmC-seq and snmC-seq2 data for clustering analyses

Cell filtering. We filtered the cells based on these main mapping metrics: 1) mCCC rate <
0.03. mCCC rate reliably estimates the upper bound of bisulfite non-conversion rate 3, 2) overall
mCG rate > 0.5, 3) overall mCH rate < 0.2, 4) total final reads > 500,000, 5) Bismark mapping
rate > 0.5. Other metrics such as genome coverage, PCR duplicates rate, index ratio were also
generated and evaluated during filtering. However, after removing outliers with the main metrics
1-5, few additional outliers can be found.

Feature filtering. 100kb genomic bin features were filtered by removing bins with mean
total cytosine base calls <300 or > 3000. Regions that overlap with the ENCODE blacklist 7 were
also removed from further analysis.

Computation and normalization of the methylation rate. For CG and CH methylation,
the computation of methylation rate from the methylcytosine and total cytosine matrices contains
two steps: 1) prior estimation for the beta-binomial distribution and 2) posterior rate calculation
and normalization per cell.

Step 1, for each cell we calculated the sample mean, m, and variance, v, of the raw mc rate
(mc / cov) for each sequence context (CG, CH). The shape parameters (a, ) of the beta
distribution were then estimated using the method of moments:

a=m(m(l—-m)/v—1)

p=>0-m@md-m)/v-1)
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This approach used different priors for different methylation types for each cell, and used

weaker prior to cells with more information (higher raw variance).

a+mc
a+f+cov

Step 2, We then calculated the posterior: mc = ., We normalized this rate by the

cell’s global mean methylation, m = a/(a + ). Thus, all the posterior mc¢ with 0 cov will be
constant 1 after normalization. The resulting normalized mc rate matrix contains no NA (not
available) value and features with less cov tend to have a mean value close to 1.

Selection of highly variable features. Highly variable methylation features were selected
based on a modified approach using the scanpy package scanpy.pp.highly variable genes
function #*. In brief, the scanpy.pp.highly variable genes function normalized the dispersion of a
gene by scaling with the mean and standard deviation of the dispersions for genes falling into a
given bin for mean expression of genes. In our modified approach, we reasoned that both the mean
methylation level and the mean cov of a feature (100kb bin or gene) can impact mc rate dispersion.
We grouped features that fall into a combined bin of mean and cov, and then normalized the
dispersion within each mean-cov group. After dispersion normalization, we selected the top 3000
features based on normalized dispersion for clustering analysis.

Dimension reduction and combination of different mC types. For each selected feature,
mc rates were scaled to unit variance and zero mean. PCA was then performed on the scaled mc
rate matrix. The number of significant PCs was selected by inspecting the variance ratio of each
PC using the elbow method. The CH and CG PCs were then concatenated together for further
analysis in clustering and manifold learning.

3.13.12 Preprocessing of snmCAT-seq data for clustering analysis
Methylome preprocessing. The methylome modality preprocessing is similar to snmC-

seq2 with one major modification: non-CG methylation is quantified using the HCH context; CG
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methylation is quantified using the HCG context. Chromosome 100kb bin features with mean total
cytosine base calls between 250 and 2500 were included in downstream analyses.
Transcriptome preprocessing. The whole gene RNA read count matrix is used for
snmCAT-seq transcriptome analysis. Cells are filtered by the number of genes expressed > 200
and genes are filtered by the number of cells expressed > 10. The count matrix X is then normalized
per cell and transformed by In(X + 1). After log transformation, we wuse the
scanpy.pp.highly variable genes to select the top 3000 genes based on normalized dispersion,
using a process similar to the selection of highly variable methylation features. The selected feature
matrix is scaled to unit variance and zero mean per feature followed by PCA calculation.
Chromatin accessibility (NOMe-seq) preprocessing. For clustering analysis, cytosine
methylation in the GCY context (GmCY) is counted as the open chromatin signal from NOMe-
seq. For each 5 kb bin, we modeled its GmCY basecall in a single cell using a binomial distribution
Bi(cov, global), where cov represents the total GCY basecall of the bin in the cell, and global
represents the global GmCY level of the cell. We then computed the probability of observing equal
or greater GmCY basecall than observed as the survival function of the binomial distribution. The
bins with this probability smaller than 0.05 were marked as 1, and otherwise 0, by which we
generated a #cell X #bin binarized matrix as the open chromatin signals. Latent semantic analysis
with log term frequency was used to compute the embedding. Specifically, we selected the bins
that are open in > 10 cells, then computed the column sum of the matrix and kept only the bins

with Z-scored column sum < 2. The filtered matrix A was row normalized to B by dividing the

#cells . . .
ees——) was used for dimension reduction by
Z#cells Aurj

ir=1

row sum, and C;; = log(B;; + 1) X log(1 +

singular value decomposition. We used the first 15 dimensions of the left singular vector matrix

as the input of UMAP for visualization.
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3.13.13 General strategies for clustering and manifold learning

Consensus clustering on concatenated PCs. We used a consensus clustering approach
based on multiple Leiden-clustering ’* over K-Nearest Neighbor (KNN) graph to account for the
randomness of the Leiden clustering algorithms. After selecting dominant PCs from PCA in all
available modalities of different technologies (mCH, mCG for snmC-seq and snmC-seq2; mCH,
mCG, RNA, NOMe-seq for snmCAT-seq, etc.), we concatenated the PCs together to construct
KNN graph using scanpy.pp.neighbors. Given fixed resolution parameters, we repeated the
Leiden clustering 200 times on the KNN graph with different random starts and combined these
cluster assignments as a new feature matrix, where each single Leiden result is a feature. We then
used the outlier-aware DBSCAN algorithm from the scikit-learn package to perform consensus
clustering over the Leiden feature matrix using the hamming distance. Different epsilon parameters
of DBSCAN are traversed to generate consensus cluster versions with the number of clusters that
range from minimum to the maximum number of clusters observed in the 200x Leiden runs. Each
version contains a few outliers that usually fall into three categories: 1. Cells located between two
clusters that have gradient differences instead of clear borders, e.g. L2-3 IT to L4 IT; 2. Cells with
a low number of reads that potentially lack information in important features to determine the exact
cluster. 3. Cells with a high number of reads that are potential doublets. The number of type 1 and
2 outliers depends on the resolution parameter and is discussed in the choice of the resolution
parameter section, the type 3 outliers are very rare after cell filtering. The final consensus cluster
version is then determined by the supervised model evaluation.

Supervised model evaluation on the clustering assignment. For each consensus
clustering version, we performed a Recursive Feature Elimination with Cross-Validation (RFECV)

75 process from the scikit-learn package to evaluate clustering reproducibility. We first removed
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the outliers from this process, then we held out 10% of the cells as the final testing dataset. For the
remaining 90% of the cells, we used tenfold cross-validation to train a multiclass prediction model
using the input PCs as features and sklearn.metrics.balanced accuracy score ’° as an evaluation
score. The multiclass prediction model is based on BalancedRandomForestClassifier from the
imblearn package that accounts for imbalanced classification problems 77. After training, we used
the 10% testing dataset to test the model performance using the balanced accuracy score score.
We kept the best model and corresponding clustering assignments as the final clustering version.
Finally, we used this prediction model to predict outliers’ cluster assignments, we rescued the
outlier with prediction probability > 0.5, otherwise labeling them as outliers.

Choice of resolution parameter. Choosing the resolution parameter of the Leiden
algorithm is critical for determining the final number of clusters. We selected the resolution
parameter by three criteria: 1. The portion of outliers < 0.05 in the final consensus clustering
version. 2. The final prediction model performance > 0.95. 3. The average cell per cluster > 30,
which controls the cluster size in order to reach the minimum coverage required for further
epigenome analysis such as DMR calling. All three criteria prevent the over-splitting of clusters
thus we selected the maximum resolution parameter under meeting the criteria using grid search
in each specific clustering analysis below.

Cluster marker gene identification and cluster trimming. After clustering, we used a
one-vs-rest strategy to calculate methylation (methyl-marker) and RNA (rna-marker, for ssamCAT-
seq only) marker genes for each cluster. We used all the protein-coding and long non-coding RNA
genes with evidence level 1 or 2 from gencode v28. For the rna-marker, we used the
scanpy.tl.rank genes group function with the Wilcoxon test and Benjamini-Hochberg multi-test

correction, and filtered the resulting marker gene by adjusted P-value < 0.01 and log2(fold-
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change) > 1, we also used AUROC score as a measure of marker gene’s predictability of
corresponding cluster, and filtered genes by AUROC > 0.8. For the methyl-marker, we used the
normalized gene body mCH rate matrix to calculate markers for neuronal clusters and the
normalized gene body mCG rate matrix for non-neuronal clusters, and we modified the original
Wilcoxon test function to used a reverse score to select genes that have significant decrease
(hypomethylation). Marker gene is chosen based on adjusted P-value < 0.01, delta methylation
level change < -0.3 (hypo-methylation), AUROC > 0.8. The delta methylation level is calculated
as the normalized methylation rate change between the cluster and the mean value of the rest
clusters. For the ensemble methylome clustering, if a cluster with the number of methyl-markers
<10 is detected, the cluster with the minimum total marker genes are merged to the closest clusters
based on cluster centroids euclidean distance in the PC space, then the marker identification
process is repeated until all clusters found enough marker genes.

Manifold learning. The T-SNE and UMAP embedding are run on the PC matrix the same
as the clustering input using the scanpy package.
3.13.14 Identification of open chromatin regions using snmCAT-seq GCY methylation
profiles

Methylated GCY sites were identified using a Hidden Markov Model (HMM) method
gNOMePeaks 7, with the methylation level of GCY sites modeled using binomial distribution.
The accessibility state of each GCY site was modeled with a three-state HMM model with state 3
indicating accessible chromatin. To tune the HMM model for the different background mCH levels
between neuronal and non-neuronal cell types, we skipped the expectation—maximization (EM)
algorithm for estimating the p parameter of binomial distribution. Instead, for neuronal cell types,

p parameters were specified as 0.1, 0.2 and 0.5 for states 1-3, respectively; for non-neuronal cell
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types, p parameters were specified as 0.1, 0.25 and 0.4 for states 1-3, respectively. The density of
methylated GCY sites across the genome was modeled using Poisson distribution by MACS2 !52
and regions with a significant enrichment of methylated GCY sites were identified with MACS2
callpeak with a p-value < 0.01. Peaks with g-value < 0.01 were selected for downstream analyses.
3.13.15 snATAC-seq data generation

Combinatorial barcoding single nucleus ATAC-seq was performed as described previously
in Fang et al. '3, Isolated brain nuclei were pelleted with a swinging bucket centrifuge (500 x g, 5
min, 4°C; 5920R, Eppendorf). Nuclei pellets were resuspended in 1 ml nuclei permeabilization
buffer (5 % BSA, 0.2 % IGEPAL-CA630, ImM DTT and ¢cOmplete™, EDTA-free protease
inhibitor cocktail (Roche) in PBS) and pelleted again (500 x g, 5 min, 4°C; 5920R, Eppendorf).
Nuclei were resuspended in 500 pL high salt tagmentation buffer (36.3 mM Tris-acetate (pH =
7.8), 72.6 mM potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted using a
hemocytometer. Concentration was adjusted to 4500 nuclei/9 pl, and 4,500 nuclei were dispensed
into each well of a 96-well plate. For tagmentation, 1 uL barcoded Tn5 transposomes '** added
using a BenchSmart™ 96 (Mettler Toledo), mixed five times and incubated for 60 min at 37 °C
with shaking (500 rpm). To inhibit the Tn5 reaction, 10 uL of 40 mM EDTA was added to each
well with a BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C for 15 min
with shaking (500 rpm). Next, 20 pL 2 x sort buffer (2 % BSA, 2 mM EDTA in PBS) was added
using a BenchSmart™ 96 (Mettler Toledo). All wells were combined into a FACS tube and stained
with 3 uM Draq7 (Cell Signaling). Using a SH800 Fluorescence-activated cell sorter (Sony), 40
nuclei were sorted per well into eight 96-well plates (total of 768 wells) containing 10.5 uL. EB
(25 pmol primer 17, 25 pmol primer i5, 200 ng BSA (Sigma). Preparation of sort plates and all

downstream pipetting steps were performed on a Biomek 17 Automated Workstation (Beckman
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Coulter). After the addition of 1 pL 0.2% SDS, samples were incubated at 55 °C for 7 min with
shaking (500 rpm). 1 pL 12.5% Triton-X was added to each well to quench the SDS. Next, 12.5
pL NEBNext High-Fidelity 2x PCR Master Mix (NEB) were added and samples were PCR-
amplified (72 °C 5 min, 98 °C 30's, (98 °C 10's, 63 °C 30's, 72°C 60 s) x 12 cycles, held at 12 °C).
After PCR, all wells were combined. Libraries were purified according to the MinElute PCR
Purification Kit manual (Qiagen) using a vacuum manifold (QIAvac 24 plus, Qiagen) and size
selection was performed with SPRI beads (Beckman Coulter, 0.55x and 1.5x). Libraries were
purified one more time with SPRI beads (Beckman Coulter, 1.5x). Libraries were quantified using
a Qubit fluorometer (Life technologies) and the nucleosomal pattern was verified using a
Tapestation (High Sensitivity D1000, Agilent). The library was sequenced on a HiSeq2500
sequencer (Illumina) using custom sequencing primers, 25% spike-in library and following read
lengths: 50 + 43 + 37 + 50 (Readl + Index1 + Index2 + Read2) °.
3.13.16 snATAC-seq data processing

Using a custom python script, we first demulticomplexed FASTQ files by integrating the
cell barcode (concatenate reads pair in 11.fastq and 12.fastq) into the read name (R1.fastq and R2
fastq) in the following format: "@"+"barcode"+":"+"original read name". Demulticomplexed
reads were aligned to the corresponding reference genome (hgl9) using bwa (0.7.13-r1126) '**in
pair-end mode with default parameter settings. Alignments were then sorted based on the read
name using samtools (v1.9) 1°°, Pair-end reads were converted into fragments and only those that
are 1) properly paired (according to SMA flag value); 2) uniquely mapped (MAPQ > 30); 3) with
length less than 1000bp were kept. Since fragments were sorted by barcode (integrated into the
read name), fragments belonging to the same cell (or barcode) were automatically grouped

together which allowed for removing PCR duplicates for each cell separately. Using the remaining
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fragments, a snap-format (Single-Nucleus Accessibility Profiles) file was generated. snap file is
hierarchically structured hdf5 file that contains the following sessions: header (HD), cell-by-bin
matrix (BM), cell-by-peak matrix (PM), cell-by-gene matrix (GM), barcode (BD) and fragment
(FM). HD session contains snap-file version, date, alignment and reference genome information.
BD session contains all unique barcodes and corresponding metadata. BM session contains cell-
by-bin matrices of different resolutions (or bin sizes). PM session contains a cell-by-peak count
matrix. PM session contains a cell-by-gene count matrix. FM session contains all usable fragments
for each cell. Fragments are indexed for fast search. A detailed documentation of snap file can be

found here (https://docs.google.com/document/d/1AGyn_WITr0A1SKcfrEgum-

jvAJjWd84;jZ6Dwbwisencing Fragments (>1,000); 2) Mapping Ratio (>0.8); 3) Properly Paired

Ratio (>0.9); 4) Duplicate Ratio (<0.5); 5) Mitochondrial Ratio (<0.1). 3.
3.13.17 Clustering analysis of snATAC-seq data
We used the snapATAC package for the clustering analysis of snATAC-seq data, the detail

steps were described in 53

. Briefly, we used the binarized cell-by-bin matrix of the whole genome
5kb non-overlapping bins as input (I means open, 0 means close or missing data). We first
determined the coverage of each bin and converted the coverage distribution to log-normal
distribution and converted the bin coverage to z-score. Bins with extremely high (zscore > 1.5) or
low coverage (zscore < -1.5), or overlap with ENCODE blacklist 7> are removed. We then
converted the cell-by-bin matrix into a cell-by-cell similarity matrix by calculating the Jaccard
index between cells. To normalize the cell coverage impact on the Jaccard index, we used the
observed over expected (OVE) method from snapATAC, which calculates the residual of the linear

regression model between the expected Jaccard matrix given cell coverage and the overserved

matrix. We then performed PCA on a standardized residual matrix and used the top 25 PCs for

118



Leiden clustering (resolution = 1) and UMAP visualization.
3.13.18 Open chromatin peak calling using snATAC-seq data

Open chromatin peaks were identified using snATAC-seq reads combined for each cell
type using MACS callpeak with the following parameters -f BED --nomodel --shift 37 --ext 73 --

pvalue le-2. Peaks with g-value < 0.01 were further selected for downstream analyses.

3.13.19 snRNA-seq data generation

Nuclei were isolated from human postmortem brain tissues and sorted based on NeuN
fluorescence as previously described . Each sample contained approximately 80% NeuN-positive
and 20% NeuN-negative nuclei. snRNA-seq data was generated using 10x Genomics v3 single-
cell chemistry per the manufacturer’s protocol. RNA-seq reads were aligned with Cell Ranger v3
using the human GRCh38.p2 reference genome, and intronic and exonic mapped reads were
included in gene expression quantification.
3.13.20 snRNA-seq clustering and annotation

Nuclei were included in downstream analysis if they passed the following QC thresholds: >
500 genes detected (UMI > 0) in non-neuronal nuclei or > 1000 genes detected (UMI > 0) in
neuronal nuclei; and doublet score < 0.3. Cells were grouped into transcriptomic cell types using
the iterative clustering procedure described in 3°. Briefly, genes from the mitochondrial and sex
chromosomes were excluded, and expression was normalized to UMI per million and log2-
transformed. Nuclei were clustered using the following steps: high variance gene selection,
dimensionality reduction, dimension filtering, Jaccard—Louvain or hierarchical (Ward) clustering,
and cluster merging. Differential gene expression (DGE) was computed for every pair of clusters,
and pairs that did not meet the DGE criteria were merged. Differentially expressed genes were

defined using two criteria: 1) significant differential expression (> 2-fold; Benjamini-Hochberg
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false discovery rate < 0.01) using the R package limma and 2) binary expression (CPM > 1 in more
than half of the cells in one cluster and < 30% of this proportion in the other cluster). We define
the deScore as the sum of the —log10(false discovery rate) of all differentially expressed genes
(each gene contributes to no more than 20), and pairs of clusters with deScore < 150 were merged.
This process was repeated within each resulting cluster until no more child clusters met DGE or
cluster size criteria (minimum of 10 cells). The entire clustering procedure was repeated 100 times
using 80% of all cells sampled at random, and the frequency with which nuclei co-cluster was used
to generate a final set of clusters, again subject to differential gene expression and cluster size
termination criteria. Clusters were identified as outliers if more than 40% of nuclei co-expressed
markers of inhibitory (GAD1, GAD2) and excitatory (SLC17A7) neurons or were NeuN+ but did
not express the pan-neuronal marker SNAP25. Median values of total UMI counts and gene counts
were calculated for each cluster and used to compute the median and inter-quartile range (IQR) of
all cluster medians. Clusters were also identified as outliers if the cluster median QC metrics
deviated by more than three times the IQRs from the median of all clusters. In total, 23,379 nuclei
passed QC criteria and were split into three broad classes of cells (13,997 excitatory neurons, 7,094
inhibitory neurons, and 1,914 non-neuronal cells) based on NeuN staining and cell class marker-
gene expression. A final merge step required at least 4 marker genes to be more highly expressed
in each pair of clusters. The clustering pipeline is implemented in an R package publicly available
at github (https://github.com/Allenlnstitute/scrattch.hicat). The clustering method is provided by

the run_consensus_clust function.

120



3.14 FIGURE-SPECIFIC METHODS

3.14.1 Cell line dataset analysis (Supplementary Fig. 3.1)

Clustering. For snmCAT-seq dataset generated from the whole cell and nucleus of HI and
HEK?293 cells, PCA was used for the dimension reduction of the mCG and RNA matrices. Since
only two cell types (H1 and HEK293T) need to be separated, only the first 5 PCs from each matrix
were selected to construct K-Nearest Neighbor (KNN) graphs (K=25). On each KNN graph for
mCG and RNA, Leiden clustering (r=0.5) is used to determine the two clusters and tSNE was used
to visualize the PCs. Clusters were annotated by examining the genome-wide methylation levels
and marker gene expression. Data acquired from single cells or nuclei were then merged for each
cluster for comparisons with bulk methylome and transcriptome data.

Comparison to bulk H1 and HEK293 Methylome. The bulk HEK293 cell whole-
genome bisulfite sequencing (WGBS-seq) data were downloaded from Libertini et. al.
(GSM1254259) 156, The bulk WGBS-seq data of the H1 cell was downloaded from Schultz et al
(GSE16256) #!. Methylpy was used to call CG-DMRs between these two cell lines*!. DMRs were
filtered by DMS (differentially methylated sites) > 5 and methylation level difference > 0.6.

Bulk H1 and HEK293 RNA Data Analysis. The bulk HEK293 cell RNA-seq data was
downloaded from Aktas et. al. (GSE85161) !, the bulk HI cell RNA-seq data was downloaded
from encodeproject.org (ENCLB271KFE, generated by Roadmap Epigenome). Gene count tables
and bigwig tracks were generated using human GENCODE v19 gene annotation.

3.14.2 snmCAT-seq baseline clustering (Fig. 3.1)

To perform clustering analysis on the human frontal cortex snmCAT-seq dataset only, we

first preprocessed three modalities separately as described in the preprocessing section above. We

then concatenate all the dominant PCs together to run the consensus clustering identification
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(resolution = 1). We annotated the clusters based on marker genes reported in the previous studies
384 'We also calculated the UMAP coordinates based on concatenated PCs (Fig. 3.1D) and PCs
from every single modality separately (Supplementary Fig. 3.21-K).

3.14.3 Methylome ensemble clustering (Fig. 3.4)

To generate an ensemble cell type taxonomy for the human frontal cortex, we combine
four methylome-based technologies (Fig. 3.4A, snmCAT-seq, snmC-seq, snmC-seq2, sn-m3C-seq)
in this study. Due to the high cell-type diversity, we performed a two-level iterative clustering
analysis.

Level 1 clustering to identify major cell types. We first preprocessed the methylation
matrix as described above for each technology separately to obtain the corresponding highly
variable feature matrix. We then used Scanorama to integrate all cells using the union of highly
variable features from all technologies, with K=25 and default values for other parameters. After
the integration, we performed PCA on the integrated matrix and used the dominant PCs for the
subsequent consensus clustering analysis (resolution = 0.5) as described above. We also calculated
UMAP coordinates using the ensemble PCs (Fig. 3.4C).

Level 2 clustering to identify subtypes for each major cell type. After level 1 clustering,
we selected cells from each major cell type and repeated all the steps from highly variable feature
selection to final clustering (K=20, resolution = 0.8) including Scanorama integration. The highly
variable features selected in this step are more specific to the intracluster diversity of each major
type, which helps to better separate the subtype. The subcluster UMAP coordinates are calculated
from PCs in each subtype analysis (Fig. 3.4C insets).

3.14.4 Cross-validation of cell clusters (Fig. 3.2)

The analysis starts with 2 cell-by-gene data matrices: one for gene-body non-CG DNA
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methylation (mCH) and the other for RNA expression. We first filter out low-quality cells and
low-coverage genes. After removing glia and outliers in the snmCAT-seq dataset, we get 3,898
high-quality neuronal cells. By selecting genes expressed in >1% of cells and with >20 cytosines
coverage at gene body in >95% of cells, we get 13,637 sufficiently covered genes. Then we
normalize the mCH matrix by dividing the raw mCH level by the global mean mCH level of each
cell; and we normalize the RNA matrix by (logio(TPM+1)).

The goal of cluster cross-validation is to cluster cells with one part of the features, and to
validate clustering results with the other part of features. We first generate clusterings with
different granularity, ranging from coarse to very fine, using DNA methylation features.
Clusterings are generated by the Leiden method applied to the top 20 principal components with
different settings of the resolution parameter controlling granularity. Following clustering, we
randomly split cells into training and test sets. Using the training set, we estimate the cluster
centroids of RNA expression. Using the test set, we calculated the mean squared error between the
RNA expression profile of individual cells and that of cluster centroids. This procedure can be
reversed by clustering with RNA features and evaluation with DNA methylation features.

To summarize the results, we plotted a curve of the number of clusters versus the mean
squared error. To ensure robustness, clustering is repeated with five different random seeds, with
each of the 5 clusters followed by 5 repetitions of 5-fold cross-validation on different random splits
of training and test sets.

3.14.5 AIC and BIC metrics in the cluster cross-validation analysis (Fig. 3.2)

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are metrics

to estimate (in-sample) prediction error without a test set. The general definition of the two metrics

are as follows,
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AIC = =2 -loglik + 2d
BIC = -2 - loglik + (log N) d

where loglikis the log-likelihood of the model trained on a specific data set, d is the model
dimension, Nis the sample size. For both metrics, the first term evaluates the quality of fitting,
whereas the second term penalizes model complexity.

In our case, we assume gene features of a single cell follows a Gaussian distribution around
its cluster centroid:

Yeeu = f(x) + € = Yeentroia + € with € ~ N(0, al)
and with obeing the standard deviation in the gaussian distribution that is the same across all

dimensions (genes). Combining the model with the definitions of AIC and BIC, we get

1 " o?
AIC ~ N(ycell - ycentroid) + 2d - W

1 o’
BIC ~ N(ycell - ycentroid)2 + (log N) d- W

where the first term is the mean squared error of the model fit, i.e., the training error, Nis the
number of cells, d is the number of cell clusters, and a2 is the variance of the dataset (assuming
all cells are from the same cell clusters).

We applied this to 3,898 neuronal cells from the snmCAT-seq dataset. As for gene features,
we include genes that have at least I RNA count in >1% cells, and with at least 20 methylation
coverage in 95% of cells. This leaves 13,651 genes with both DNA methylation and RNA features.
The DNA methylation features are calculated as the gene body non-CG methylation level (mHCH)
normalized by the global mCHC level of each cell. The RNA features are logio(CPM+1)
normalized. Using Leiden clustering with different resolutions, we generated clusters with

different granularities. As a result, we report AIC, BIC, train and test error as functions of the
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number of clusters. Errorbars are estimated from running the same settings repeatedly: [clustering

with 10 different random seeds] x [10-time, 3-fold cross validations].

3.14.6 Quantification of over-splitting and under-splitting of cell clusters (Fig. 3.2)
Clustering of cell types requires a balance between over-splitting and under-splitting; this

138 Over-

is the perennial tension between so-called lumpers and splitters as described by Darwin
splitting occurs when the noise in the data, for example due to random sampling of RNA or DNA
molecules, drives the separation of cells which are not distinct. Under-splitting occurs when
coarse-grained clusters fail to capture a meaningful biological distinction among subpopulations.
The previous section described a cross-validation method to objectively pick a good clustering
granularity for a given dataset. Here, we extend this to provide more detailed metrics of the degree
of potential over- or under-splitting for particular cell clusters.

Our approach proceeds from the assumption that an ideal cluster should satisfy two
requirements. First, all the cells within a cluster should be similar, with no clear discrete
subdivisions that would indicate under-splitting. Second, the cells in one cluster should not
resemble too closely the cells in any other cluster, which would indicate over-splitting.
Unfortunately, no general methods for quantifying over- and under-splitting are available .
Taking advantage of the multimodal (RNA + DNA methylation) data, we defined metrics for over-
splitting (Sover) and under-splitting (Sunder), based on cross-validation analysis of the two data
modalities. We have also added a supplementary tutorial
(https://github.com/FangmingXie/mctseq over under splitting/blob/master/over-under-splitting-

analysis.ipynb) of the over- and under-splitting analysis to allow users to reproduce our results.

Cross-modality k-partner graph

First, we treat the two data modalities (mC and RNA) as independent measurements, as if
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they came from separate DNA methylation and transcriptome assays performed on independent
groups of cells. We embed cells from the two modalities into the same low-dimensional space
using canonical correlation analysis !!°:

X YT = USVT,
where X and Yare cell-by-gene feature matrices for mC and RNA, respectively. For mC, the gene
features are normalized mCH levels at the gene bodies; For RNA, the gene features are normalized
RNA expression levels (logio(TPM+1)). U and Vare cell-by-component matrices (number of
components = 20). Mathematically this procedure is equivalent to a singular value decomposition
of XYT, where Uand V are orthogonal and S is diagonal. One can interpret Uand V as the
coordinates of cells from the 2 data modalities in the shared low dimensional space.

After co-embedding, we calculated cell-cell distances between cells in the two modalities
and defined k-nearest neighbors between cells. If we denote all the cells in the mC modality as I,

and all the cells in the RN A modality as J, the distance betweenacell i € I andacell j € ] is given

by their Euclidean distance in the shared low dimensional space:

dij = \/(ui - vj)T(ui - Vj) >
where u;and vjare the i’th column of U and the j’th column of V, respectively. We build a
bipartite graph, connecting each cell’s profile in one modality with its k-nearest neighbors in the
other modality. We refer to the these cross-modality neighbors as “k-partners”, P; () = { | d;; are
the k smallest distances for j € ] }.

Over-splitting score

The over-splitting score for a cluster is the fraction of the k-partners of cells in that cluster
that are not from the same cluster. This metric captures the intuition that clusters should include

all of the cells with a similar molecular profile, and not divide cells with similar profiles into
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distinct clusters. the over-splitting score is:

1 C;
Sover(C;) =1 — WZLl ZjEPi(k) IG = Cj]’

where i, j are indices of individual cells, C; is the cluster containing cell i, and |C;| to represent the
cluster size, I[] is the indicator function, and Pi(k) are the k-partners of cell i (with k = |C;| =
cluster size). In other words, the over-splitting score is one minus the mean fraction of a cell’s k-
partners (with k = |C;| = cluster size) that are also from the same cluster (C;). Therefore, the over-
splitting score is bounded between zero and one. S,,.,- = 0 indicates no over-splitting, while larger
values of S, ., indicate less cross-modality stability for a cluster (i.e. more over-splitting).

Under-splitting score

If a cluster cannot be further split, its cells should be biologically equivalent to each other
and differ only in terms of measurement noise. Otherwise, the cluster may be under-split. To
quantify the equivalence of the cells within a cluster, we define the self~radius of a cell as the
number of cells which appear equivalent to it in terms of consistent multimodal features. We first

measured the distance,d;;, between the mC and RNA profiles of all cell pairs (i,j) after

ij>
embedding in the common CCA space (see above). We reasoned that any cell pair whose distance
is smaller than the distance between the mC and RNA profiles of cell i (i.e. d;; < d;) can be
considered equivalent; these cells are as similar to each other as they are to themselves. We thus
define a cell’s self-radius, r;, as the number of equivalent cells; in terms of k-partners, this can be
expressed as:

1, =arg m,?x{dij < d;vjep®

The distribution of the self-radii for cells in a cluster will inform us the extent to which the
cluster under-split (Fig. 3.2F). For example, if a cluster is not under-split at all, its cells’ self-radii

should be uniformly distributed between zero and the cluster size. We verified this empirically
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with simulation: if we take a group of cells and randomly shuffle their gene-level profiles, we
create a homogeneous cluster with no under-splitting. When we do this to all 17 major neuronal
clusters, they all behave like ideal clusters without under-splitting (pink line in Fig. 3.2F).
Compared to the uniform distribution in the ideal case, an under-split cluster should have an overall
much smaller self-radii, indicating it can be potentially further split into several sub-clusters
(yellow line in Fig. 3.2F). Therefore the slope of the cumulative distribution of self-radius informs
us to what extent a cluster under-split. For an ideal cluster, its cumulative distribution of self-radii
is a straight-line, therefore its slope is one. For an under-split cluster, the slope should be greater
than one (Fig. 3.2F). We, therefore, defined as the slope of the cumulative distribution of self-

radius:

Cumulative fraction of cells with r<=|C;|/4
ICil/4

Sunder(Ci) =

where the slope is evaluated at r = |C;|/4, as indicated in the above equation. For an ideal cluster,
this score should be one; for an under-split cluster, it should be greater than one.
3.14.7 Computational data fusion with SingleCellFusion (Fig. 3.2)

Several computational methods have been proposed for integrating multiple single-cell
sequencing datasets across batches, sequencing technologies, and modalities 373852116119 Many
of these methods share a basic strategy of identifying neighbor cells across datasets. However,
existing methods have not been optimized to integrate single cells from multiple transcriptomic
and epigenomic data modalities, with potentially large systematic differences in the features
measured for each dataset. Here, we fused the transcriptomes and DNA methylomes of the
snmCAT-Seq dataset, treating the two data modalities as if they were acquired by two independent
single-modality experiments in different cells. We developed a new data fusion method,

SingleCellFusion, for this task (available at: https://github.com/mukamel-lab/SingleCellFusion),
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which is based on finding k-partners, i.e. nearest neighbors across data modalities (see the previous

section). Nearest neighbor based data integration has been successfully applied to combine

multiple RNA-Seq datasets 3”16, while other approaches including canonical correlation analysis

(CCA) and non-negative matrix factorization (NMF) have previously been used for the fusion of

transcriptomic and epigenomic data 3!, Single Cell Fusion is designed to robustly fuse DNA

methylation, ATAC-Seq and/or RNA-Seq data. The procedure comprises 4 major steps:

preprocessing: within-modality smoothing, cross-modality imputation, and -clustering and

visualization.

1.

Preprocessing. We defined a gene-by-cell feature matrix for both transcriptomes and
epigenomes. Transcriptomic features are logio(TPM+1) normalized. DNA methylation
data is represented by the mean gene body mCH level, normalized by the global (genome-
wide) mean mCH level for each cell. We selected genes with significantly correlated gene
body mCH and RNA expression (FDR < 0.05) across neuronal cells as features (n=5,107
genes).

Within-modality smoothing. To reduce the sparsity and noise of feature matrices, we
share information among cells with similar profiles using data diffusion '%°, First, we
generate a KNN graph of cells based on Euclidean distances in PC space [ndim = 50, k=30].
We next construct a sparse weighted adjacency matrix A. We first apply a Gaussian kernel

on the distance between cell i and cell j: AD);; cexp (—d; jz /0;?), where o; is the distance

to the k,-th [k,=5] nearest neighbor of cell i. We set diagonal elements to zero, A®;; =

0, and also set all elements to zero if they are not part of the kKNN. We then symmetrize the
matrix, A® =AM + AT , and normalize each row: A®);; = A® /a;, where a; =

2 AP, ;- Finally, we reweight the adjacency matrix with a parameter, p, that explicitly
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controls the relative contribution of diagonal and non-diagonal elements: A =pI +

(1 —p) A® | where I is the identity matrix. We chose p=0.9 for DNA methylation; p=0.7
for RNA. Finally, we smooth the raw feature matrix by matrix multiplication with the
adjacency matrix.

Cross-modality imputation by Restricted k-Partners (RKP). Each cell has a set of
measured features in one data modality (RNA or mC), which we call the “source modality.”
The goal of this step of the analysis is to impute the missing features from the other data
type, called the “target modality.” For each cell in the source modality, we select a set of
k-partners in the target modality and use the average of the k-partners’ features to estimate
the missing modality for the original cell. However, care must be taken to avoid hub cells
in the target modality which form k-partner relationships with a large fraction of all cells
in the source modality. One way to avoid hub cells is by including only mutual nearest
neighbors (MNN) 16, We developed an alternative approach, restricted k-partners (RKP),
that efficiently finds a set of k-partners for every source modality cell, while ensuring that
every target-modality cell is connected with a roughly equal number of source modality
cells.

As above, we first reduce the dimensionality of both source and target data matrices
by canonical correlation analysis, retaining the top 50 canonical components. We then
iterate over all cells in the source modality (in random order) k times, connecting each with
its most similar partner cell in the target modality. Whenever a target modality cell is
partnered with more than k" source modality cells, we remove it from the pool of eligible
target cells so that it will not be the partner of additional source cells. We set k' =

[ Z k Nsource/Ntarget 1+, where and z = 1 is a relaxation parameter that determines how
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much variability in the number of partners is allowed across target modality cells and []
is the ceiling function. If z = 1 then every target cell will be connected to exactly k' or
k' — 1 cells. We set z = 3, meaning that any individual target modality cell can have at
most 3 times as many partners as the average. This algorithm is efficient and, in our
analyses, provides robust k-partner graphs for cross-modality data imputation.
Having determined each source cell’s restricted k-partners, we next impute the
target features by averaging over the smoothed feature vectors of each cell’s k-partners.
Clustering and visualization. After imputation, we cluster and visualize cells from the 2
data modalities as if they are from the same dataset. We reduce dimensionality for all cells
by performing PCA, keeping the top 50 PCs of the (measured and imputed) DNA
methylation features. This cell-by-PCs matrix is further used for downstream embedding
and clustering. Next, we perform UMAP embedding !'® on the PC matrix [n_neighbors=30,
min_dist=0.5]. Finally, we perform Leiden clustering (Traag ''® on the kNN graph
(symmetrized, unweighted) generated from the final PC matrix [Euclidean distance, k=30,

resolution=0.3, 1, 2, 4].

3.14.8 Evaluation of Computational Data Fusion Methods (Supplementary Fig. 3.3)

We tested five data fusion tools: 1) Scanorama 37; 2) Harmony >2; 3) Seurat *%; 4) LIGER

and 5) SingleCellFusion (the present study). For tools 1 to 3, we used the same set of highly

variable genes (HVG, Top 2000 genes identified by Seurat FindVariableGenes function) identified

from the transcriptome matrix as starting features; for algorithms 4 and 5, we used top 5000 genes

having the highest correlation between their RNA and mCH level. These genes were chosen based

on their overall accuracy (see below). We reversed the methylation values (i.e. max(X) - X, where

X denotes the cell-by-gene mCH fraction matrix) before data fusion to account for the negative
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correlation of mCH fraction and RNA expression.

Below we describe the data fusion process of each tool, starting from the per cell
normalized RNA-HVG matrix and reversed mCH-HVG matrix. After obtaining the decomposed
matrix (PCs from 1,2,3,5 or H matrix from 4), we then evaluate the data fusion performance using
metrics described below. For reproducibility, we uploaded all the steps and input files here:
https://github.com/lhqing/snmCAT-seq_integration

1) For Scanorama, we used these parameters (sigma=100, alpha=0.1, knn=30) to perform
the data fusion and dimension reduction using Scanorama V1.7 on the scaled (via scanpy.pp.scale)
mC and RNA matrix. We used the top 20 fused PCs (n_components = 20) for data fusion
evaluation.

2) Unlike Scanorama, Harmony directly takes dimension reduction matrices as input.
Therefore, we first run PCA separately (n_components = 20) on the scaled mCH and RNA matrix
first, and run Harmony (pyharmony from https://github.com/jterrace/pyharmony) with default
parameters on the concatenated PCs. Fused PCs generated by Harmony were then used for
evaluation.

3) For Seurat, we followed the Seurat (v4.0.0) vignette steps to perform data fusion
(https://satijalab.org/seurat/articles/integration_introduction.html). When calculating anchors for
data fusion (FindTransferAnchors), we use the RNA matrix as the reference matrix and mCH
matrix as the query matrix and using CCA as the dimension reduction method. We then transfer
the mCH matrix to the RNA space using the anchors and run PCA (n_components = 20) on the
concatenated (mCH and RNA) matrix after the transfer.

4) For LIGER, we followed the tutorial from developers

(http://htmlpreview.github.io/?https://github.com/welch-
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lab/liger/blob/master/vignettes/online iNMF tutorial.html) and used the online iNMF algorithm
(Gao et al., 2020) with default parameters to perform data fusion and used the normalized matrix
H (the cells’ decomposed matrix from the online iNMF algorithm) for fusion evaluation.

Finally, the SingleCellFusion analysis was described in the manuscript, we used the fused PCs for

evaluation.

3.14.9 Metrics for evaluation of data fusion

We used three different approaches to evaluate the single-cell data fusion results. First, We
ran UMAP on the decomposed matrix from each tool to provide an overview of the fused dataset.

Second, We utilize the ground-truth information from the snmCAT-seq to calculate a self-
radius at the single-cell level. Specifically, we first construct a nearest-neighbor index using Annoy
(v1.17.0) on the decomposed matrix (euclidean distance). For the same cell, if its RNA vector is
the mCH vector's Kth neighbor, we then use d=K as the self-radius. The quality of the data fusion
can be normalized by d/2N, where N is the total number of snmCAT-seq cells involved in the
analysis. The value of d/2N ranges from 0 to 1, with smaller values indicating good fusion and
larger values indicating inadequate fusion of mC and RNA profiles of the same cell.

Finally, we performed Leiden co-clustering on the decomposed matrix (with different
resolution parameters to obtain 17 co-clusters in all tools, which is the number of major neuronal
cell types) and calculated the co-cluster accuracy as the fraction of cells whose RNA and mC
profiles were assigned to the same cluster. This accuracy can be calculated for each co-cluster or
the whole dataset. Higher accuracy means good fusion, and a low accuracy indicates inadequate
fusion.

3.14.10 Correlation analysis of RNA expression and gene body DNA methylation (Fig. 3.3)

For each gene, we compute the Spearman correlation coefficient between RNA expression
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(logio(TPM+1)) and gene body mCH (normalized to global mCH of each cell). To determine if a
correlation is statistically significant, we randomly shuffled cell labels to generate an empirical
null distribution. Significantly correlated genes are defined with empirical FDR < 0.05. Applying
this method to 3,898 neurons in the snmCAT-seq dataset, we get 5,145 genes with a significant

negative correlation between RNA and mCH (RNA-mCH coupled).

3.14.11 Eta Squared of Genes Across Clusters (Fig. 3.3)

For each gene used for correlation analysis we compute the 2 across neuronal sub clusters
(n=52) generated from ensemble methylomes (Fig. 3.4) for both RNA (logio(TPM+1)) and gene
body mCH (normalized by global mCH of each cell) signals. We also compute 12 across 10X
RNA-seq clusters for the same genes.

3.14.12 H3K27me3 ChIP-Seq data processing (Fig. 3.3)

We downloaded published H3K27me3 ChIP-Seq data of purified excitatory and inhibitory
neurons from the human prefrontal cortex 122, We calculated the average ChIP-Seq signal intensity
(RPKM) across the gene body for excitatory and inhibitory neurons.

3.14.13 Fusion of DNA methylome and snATAC-Seq data (Fig. 3.4)

Ensemble methylomes and snATAC-seq data from neurons and glia were fused separately
using our recently developed Single Cell Fusion method (see section Computational data fusion
with SingleCellFusion). The top 4000 variable genes across clusters in the snmCAT-seq and
snATAC-seq data were identified using a Kruskal-Wallis test; 1,652 genes were identified as being
variable in both datasets and were used for the subsequent data fusion. For snATAC-seq the gene
body was extended to include the promoter region (2kb upstream TSS). Prior to the fusion of mCH
and open chromatin levels at gene bodies were smoothed to reduce sparseness (k = 20, ka = 4,

epsilon =1, p = 0.9; see section Within-modality smoothing) using a diffusion-based smoothing
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method adapted from MAGIC (1%°). A constrained k-nearest neighbors graph was generated among
cells across 2 datasets (k=20, z=10; see section Cross-modality imputation by Restricted k-
Partners). Instead of calculating Euclidean distance in reduced dimensions, here we simply used
Spearman correlation across 1,652 genes as the distance measure between cells. We used the kNN
graph to impute the gene body mCH profile for each ATAC-Seq nucleus. The observed (ensemble
methylomes) and imputed (snATAC-Seq nuclei) gene body mCH levels were then jointly used for
Leiden clustering and UMAP embedding. Each snATAC-seq nucleus was assigned to a major cell
type if at least half of its restricted k-Partners belonged to that cell type, the remaining cells were
removed from subsequent analysis (n=499, 3.98%).

3.14.14 snmCAT-seq - snRNA-seq integration (Fig. 3.5, excitatory, inhibitory, non-neuron
separately)

To perform the integration analysis of snmCAT-seq transcriptome and snRNA-seq, we
separate the cells into three broad classes: excitatory neurons, inhibitory neurons, and non-
neuronal cells. The RNA features used for the integration by Scanorama come from two sources
for each cell class: 1) highly variable genes across individual cells; 2) cluster level RNA marker
genes. To validate that the cluster level RNA marker genes are relevant for neuronal processes, we
performed a synapse-specific GO enrichment test using the SynGO terms and all brain expressed
genes as background '?*. The -log(adjusted P-value) of SynGO biological process enrichment in
each selected gene set is color-coded on the sunburst chart of the hierarchical SynGO terms (Fig.
3.5E-F).

We then used the union of RNA features found in snmCAT-seq transcriptome and snRNA-
seq for Scanorama integration and PCA calculation. The dominant PCs were then used to perform

a co-clustering analysis on the cells profiled by snmCAT-seq cell or snRNA-seq. Instead of
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directly using the co-clustering results, we used this intermediate clustering assignment to calculate
the overlap score between the original methylome ensemble clusters and the snRNA-seq clusters.
The overlap score range from 0 to 1 is defined as the sum of the minimum proportion of samples
in each cluster that overlapped within each co-cluster ®, a higher score between one methylome

cluster and one snRNA-seq cluster indicate they consistently co-clustered.

3.14.15 Cell type dendrogram and sub-cluster merge along the lineage (Fig. 3.6)

The cell-type hierarchy of inhibitory and excitatory cells was calculated separately using
the concatenated PCs from mCG and mCH as the features used for computing cluster centroids.
We used scipy.cluster.hierarchy.linkage function to calculate the ward linkage. Based on the
linkage results, we merged the CpG sites from single-cell ALLC files in 2 steps: 1) we merged the
single-cell ALLC files into each of the sub-clusters, 2) we then merge the sub-clusters into all
nodes that appeared in the dendrograms. The merged CpG ALLC files are then used in the lineage-
DMR analysis.

3.14.16 Neural lineage-specific DMR calling and motif enrichment analysis (Fig. 3.6)

We used the methylpy findDMR function *! to identify mCG lineage-DMRs for each pair
of lineages using merged ALLC files. The DMRs identified by methylpy in each branch
comparison are further filtered by mCG rate difference > 0.3 and the number of differentially
methylated sites (DMS) >= 2. Lineage pairs with >10* DMRs identified were used for motif
enrichment analysis and TF marker identification. For each of these DMR sets, we use AME !62
to perform motif enrichment (fisher’s exact test) analysis with the motifs’ Position Weight Matrix
(PWM) from the JASPAR database (JASPAR2018 CORE Vertebrates) !%°. The DMRs are length

standardized into +250bp of region center before motif scanning. Tissue-specific DMRs (without
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brain tissue, and standardized in the same way) from the Roadmap Epigenomics project #1136 were
used as the background.
3.14.17 TF binding preference to methylated motifs (Fig. 3.6)

To further investigate the methylation level impact on the potential TF binding sites, we
selected all the mCG DMSs £25bp regions from the branch-DMRs and ran motif enrichment using
motifs identified from the methyl-SELEX experiment °. In each branch pair, we used the left-
DMSs as the background of right-DMS to find the right-branch-specific motif and vice versa. The
significantly enriched “TF motif - branch” combinations were then intersected with the
corresponding branch pair’s DEG and DMG list to infer their gene mCH or RNA specificity.
3.14.18 Chromatin accessibility analysis of TF binding motifs (Fig. 3.6F-M and
Supplementary Fig. 3.61-L)

Genome-wide sites matching TF binding motifs (motif matches) identified by methyl-
SELEX ¢ were identified using FIMO 4.11.4 8 with the following parameters --max-stored-scores
500000 --max-strand --thresh 1e-5. Methyl-SELEX only quantified the effect of CpG methylation
on TF binding. Therefore only genomics sites containing CG dinucleotides were selected for
further analyses. For each major cell type, the density of methylated GCY sites or ATAC-seq reads
was quantified for motif matches that overlap with hypomethylated or hypermethylated DMRs.
Fig. 3.6F and Supplementary Fig. 3.61 show the average chromatin accessibility at motif matches
across major cell types. TF binding motifs were ranked by the difference of chromatin accessibility
between motif matches located in hypomethylated and hypermethylated DMRs. To test the
enrichment of MethylPlus and MethylMinus TFs, the ranked motif list was divided into 5 bins and

the enrichment or depletion in each bin was tested using Matlab hygecdf function.
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3.14.19 Partitioned heritability analysis (Fig. 3.7 and Supplementary Fig. 3.7)

Bulk human fetal frontal cortex methylomes from a PCW 20 donor 2 and a PCW 19
donor!?! were previously published. Fetal frontal cortex DMRs were identified using methylpy
findDMR function*! by comparing to adult bulk neuronal (NeuN+) and non-neuronal (NeuN-)
methylomes?. Fetal brain Dnase-seq samples included fetal day 85d (GSM595922, GSM595923),
96d (GSM595926, GSMS595928), 101d (GSMS878650), 104d (GSM878651), 105d
(GSM1027328), 109d (GSM878652), 112d (GSM665804), 117d (GSM595920) and 142d
(GSM665819)!3¢, Mapped reads files (BED format) were downloaded followed by DNase-seq
peak calling using MACS2 2.0.10 with g-value < 0.01. Fetal brain DNase-seq peaks were defined
as the union DNase-seq peaks of fetal brain DNase-seq datasets and were supported by at least two
samples.

Summary statistics were downloaded from the Psychiatric Genomics Consortium portal

(https://www.med.unc.edu/pgc/) for neuropsychiatric trait GWAS - ADHD!*, Aggression!®,

Anorexia nervosa'®, Anxiety'®’, ASD!%® Bipolar'®, Cognitive Performance!”’, Educational
Attainment!”?, Alzheimer’s!”!, Internalizing, Loneliness!”?, Major Depression'’3, Neuroticism'"#,
OCD!7, Schizophrenia (PGC2)!'7® and Schizophrenia (PGC1)!"7.

The partitioned heritability analysis was performed using LD Score Regression (LDSC)
Partitioned Heritability!*>. The partitioned heritability analysis was performed by constructing
joint linear models by providing multiple regulatory element annotations in addition to the
“baseline” annotation. Alternatively, we performed analyses by constructing individual models by
comparing each annotation of regulatory elements individually against the “baseline”. We built a
“baseline” annotation using tissue-specific DMRs from non-brain human tissues*! to control for

generic gene regulation characteristics. Partitioned heritability analyses using cell-type specifically
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expressed genes were performed as described in'*’. The reported g-values were derived from the

“Coefficient z.score” values reported by LDSC Partitioned Heritability.

3.14.20 Prioritization of trait-associated cell types using RolyPoly (Supplementary Fig. 3.7)
Although RolyPoly was originally developed to associate GWAS summary statistics with
transcriptome data, we adapted the method to analyze epigenomic features such as DMRs and
ATAC-seq peaks. RolyPoly analysis was performed using summary statistics for schizophrenia!’®,
bipolar disorder'®, ASD'®® and educational attainment!’’. DMRs or ATAC-seq peaks identified
for each cell type that overlapped with the top 10,000 variants with the smallest p-value were
provided as the feature list. As recommended by the RolyPoly tutorial (https://cran.r-

project.org/web/packages/rolypoly/vignettes/intro.html), the absolute value of Z-scores computed

for CG methylation level or ATAC-seq signal across samples were provided as in place of

expression data. The analysis was performed with 100 times bootstrapping.

3.15 Data and Code Availability

Raw and processed data included in this study were deposited to NCBI GEO/SRA with
accession number GSE140493. Methylome and transcriptomic profiles generated by snmCAT-seq
from H1 and HEK293T cells can be visualized at
[http://neomorph.salk.edu/Human_cells snmCT-seq.php]. snmCAT-seq generated from brain

tissues can be visualized at [http:/neomorph.salk.edu/human_frontal cortex ensemble.php].

snRNA-seq data is available for download from the Neuroscience Multi-omics Archive

(https://assets.nemoarchive.org/dat-s3creyz). The code for SingleCellFusion is available from

https://github.com/mukamel-lab/SingleCellFusion. A detailed bench protocol for snmCAT-seq

and future updates to the method can be found at https://www.protocols.io/view/snmcat-v1-

bwubpesn.
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3.18 Tables

Table 3.1. Genomic profiling methods discussed in chapter 3.

assay for transposase-accessible chromatin

Method Description Reference

snmC-seq Multiplexed single-nucleus DNA methylome | 3
profiling

snmC-seq2 Improved single-nucleus DNA methylome | 28
profiling methods with increased read
mapping and enhanced throughput

snmCAT-seq Single-nucleus joint profiling of DNA | This Study
methylome, chromatin accessibility (based on
NOMe-seq) and transcriptome

sn-m3C-seq Single-nucleus joint profiling of chromatin | 2*
conformation and DNA methylome

NOMe-seq Profiling of nucleosome footprint and | !4
chromatin accessibility using in vitro GpC
methyltransferase labeling

Smart-seq?2 The generation and amplification of full-| !!!
length cDNA and sequencing libraries

snRNA-seq Single-nucleus RNA-seq. The human brain | This Study
snRNA-seq in this study was generated using
the 10x Genomics Chromium platform.

ATAC-seq Assay for chromatin accessibility using Tn5 | 178
transposon

snATAC-seq Combinatorial indexing-assisted single-cell | 3
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Table 3.2 Key resources table for chapter 3.

California Berkeley

REAGENT or RESOURCE | SOURCE IDENTIFIER
Experimental Models: Cell Lines
HEK293T cells Salk Institute Stem Cell Core | N/A
H1 hESC cells WiCell WAOI
Experimental Models: Human Brain Tissue
Brodmann area 10 (M_21yr) |NIH  NeuroBioBank  at | UMB5577
University of Maryland Brain
and Tissue Bank
Brodmann area 10 (M_29yr) |NIH  NeuroBioBank  at | UMB5580
University of Maryland Brain
and Tissue Bank
Medial Frontal Gyrus | NIH  NeuroBioBank  at | UMB4540
(M _25yr 1) University of Maryland Brain
and Tissue Bank
Brodmann area 10 (M_58yr) |NIH  NeuroBioBank  at | NDARKD326LNK
University of Miami Brain
Endowment Bank
Brodmann area 10| NIH  NeuroBioBank at | NDARKJI83CYT
(M_25yr 2) University of Miami Brain
Endowment Bank
Brodmann area 44-45, | Allen Institute for Brain | H18.30.002
Brodmann area 46 Science
Recombinant Proteins
Custom Tn5 Transposase MacroLab, University of | Custom Protein Purification

Deposited Data

snmCAT-seq data generated
from HEK293T and H1 hESC
cells

This Study

GSE140493
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Table 3.2 Key resources table for chapter 3 continued.

snmCAT-seq data generated | This Study GSE140493

from UMBS5577 and

UMBS5580

snmC-seq and snmC-seq2 | This Study GSE140493

data generated  from

NDARKD326LNK and

NDARKIJ183CYT

snATAC-seq data generated | This Study GSE140493

from UMB4540

scRNA-seq data generated | This Study

from H18.30.002

sn-m3C-seq data generated | * GSE130711

from UMBS5577 and

UMBS5580

snmC-seq data generated from | ° GSE97179

UMBA4540

H3K27me3 ChIP-seq 122 Synapse (syn12034263)

Oligonucleotides

dT30VN 4 Integrated DNA Technologies | 5°-
/5SpC3/AAGCAGUGGUAU
CAACGCAGAGUACUTTT
TTUTTTTTUTTTTTUTTTT
TUTTTTTVN-3’ (HPLC
purified)

N6 2 Integrated DNA Technologies | 5°-
/5SpC3/AAGCAGUGGUAU
CAACGCAGAGUACNNNN
NN-3’ (HPLC purified)

TSO 3 Exiqon (now Qiagen) 5’-
/5SpC3/AAGCAGUGGUAU
CAACGCAGAGUGAAUrGr
G+G-3’ (HPLC purified)

ISPCR23 2 Integrated DNA Technologies | 5°-
/5SpC3/AAGCAGUGGUAU

CAACGCAGAGU-3’ (HPLC
purified)
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Table 3.2 Key resources table for chapter 3 continued.

Software and Algorithms

SingleCellFusion This Study https://github.com/mukamel-
lab/SingleCellFusion

LIGER 38 https://github.com/welch-
lab/liger

Bismark v0.14.4 149 http://www.bioinformatics.ba

braham.ac.uk/projects/bismar
k/; RRID:SCR_005604

STAR 2.5.2b 150 https://github.com/alexdobin/
STAR; RRID:SCR 015899
YAP 15 https://hq-1.gitbook.io/mc/
ALLCools 15 https://github.com/lhqing/AL
LCools
methyl 4l https://github.com/yupenghe/
yipy
methylpy
Seurat v4.0.0 36 https://satijalab.org/seurat/;

RRID:SCR_ 016341

37 https://github.com/brianhie/sc

anorama

Scanorama v1.7

32 https://github.com/iandday/py

harmony

Harmony (pyharmony)
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3.19 Figures

Figure 3.1. snmCAT-seq generates single-nucleus multi-omic profiles of the human brain.
(A) Schematic diagram of snmCAT-seq. (B) Boxplot comparing the number of genes detected in
each cell/nucleus by different single-cell or single-nucleus RNA-seq technologies. (C) Boxplot
comparing the genome coverage of single-nucleus methylome between snmCAT-seq and snmC-
seq. (D-G) snmCAT-seq methylome was compared to other single-cell methylome methods with
respect to mapping rate (D), library complexity (E), enrichment of CpG islands (F) and coverage
uniformity (G). (H) UMAP embedding of human frontal cortex snmCAT-seq profiles. (I) UMAP
embedding of transcriptome, methylome and chromatin accessibility profiled by snmCAT-seq for
ADARB2. The cells are colored by gene expression (CPM, counts per million), chromatin
accessibility (MAGIC imputed GmCY ratio, see methods), non-CG DNA methylation (HmCH
ratio normalized per cell) and CG DNA methylation (HmCG ratio normalized per cell). (J)
Comparison of marker gene expression between clusters identified using snmCAT-seq and
matching clusters identified using snRNA-seq. The matching clusters were merged from original
snRNA-seq clusters based on cell integration and label transfer (see methods). Dot sizes represent
the fraction of cells with detected gene expression. Dot colors represent the mean expression level
across the cells with detected gene expression. (K) UMAP embedding of snmCAT-seq
transcriptome and snRNA-seq cells after integration. (L) Confusion matrix comparing snmCAT-
seq clusters to snRNA-seq clusters. The plot is colored by overlapping scores between clusters.
(M) Comparison of marker gene non-CG methylation (HmCH) between clusters identified using
snmCAT-seq and matching clusters identified using snmC-seq. Dot sizes represent the mean
cytosine coverage per cell. Dot colors represent the mean HmCH ratio. *For non-neuronal cell
markers, gene body CG methylation (HmCG) levels were compared between snmCAT-seq and
snmC-seq. (N) Comparison of chromatin accessibility profiled by snmCAT-seq and snATAC-seq
at cell-type-specific open chromatin sites. The left and right heatmaps show the density of
methylated GCY sites and the density of ATAC-seq reads, respectively.
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Figure 3.2. Integrative analysis of RNA and mC features cross-validates neuronal cell
clusters.

(A) Schematic diagram of the cluster cross-validation strategy using matched single-cell
methylome and transcriptome profiles. (B-C) Mean squared error, Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) between RNA expression profile (B) or mCH
(C) of individual cells and cluster centroids were plotted as a function of the number of clusters.
The shaded region in each plot highlights the range between the minimum and the minimum +
standard error for the curve of test-set error. Cross-validation analysis was performed in reciprocal
directions by performing Leiden clustering using mC (B) or RNA (C) profiles followed by cross-
validation using the matched RNA (B) and mC (C) data, respectively. (D) Schematic diagram of
the over- and under-splitting analysis using matched single-cell methylome and transcriptome
profiles. (E) Over-splitting of mC-defined clusters was quantified by the fraction of cross-modal
k-partners found in the same cluster defined by RNA. Shades indicate confidence intervals of the
mean. (F) Under-splitting of clusters was quantified as the cumulative distribution function of
normalized self-radius. (G) Scatter plot of over-splitting (Sover) and under-splitting (Sunder) scores
for all neuronal clusters. Dot sizes represent cluster size. The actual data trend shows a linearly
regressed line on both major clusters and sub-clusters. (H) Joint UMAP visualization of snmCAT-
seq transcriptome and methylome by computational fusion using the SingleCellFusion method,
assuming snmCAT-seq transcriptomes and methylome were derived from independent datasets.
(I) Accuracy of computational fusion determined by the fraction of cells with matched
transcriptome and epigenome profile grouped in the same cluster. (J) Confusion matrix normalized
by each row. Each row shows the fraction of cells from each joint cluster that are from each cluster
defined in Fig. 3.4. Transcriptomes and DNA methylomes are quantified separately.
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Figure 3.3. Single-cell correlation analysis of RNA expression and gene body non-CG
methylation.

(A) Scatter plots of gene body mCH (normalized by the global mean mCH of each cell) and gene
expression (logio(TPM+1)) of example genes (KCNIP4, ADARB2, GPC5) across all neuronal
cells. Cells are colored by major cell types defined in Fig. 3.4. The Spearman correlation
coefficient (r) is shown for each example gene. (B) Distribution of Spearman correlation
coefficient between gene expression and gene body mCH. Blue represents the actual distribution;
Gray represents the distribution with randomly shuffled cell labels. (C-E) Scatter plot of
correlation coefficient of gene body mCH and RNA versus the fraction of variance explained by
cell type (n?) from 3 different datasets/features: snmCAT-seq mCH, snmCAT-seq RNA, and
snRNA-Seq. (F) Line plot of mean relative expression over developmental time points with 2
different gene groups (mCH-RNA coupled in blue; mCH-RNA uncoupled in orange). Relative
expression level is defined as the log2(RPKM) minus mean log2(RPKM) over all time points for
each gene. (G) Barplot of the number of protein coding genes in each of the 4 categories according
to whether it’s developmentally up- or down-regulated, and whether its mCH-RNA is coupled or
not. (H) Left: Line plots of mean relative expression level over developmental time points for 5
gene bins. Genes are binned by gene expression ratio between early fetal (PCW 8-9) and adult (>2
yrs). Right: boxplot of TSS H3K27me3 signals at each of the 5 gene bins. (I) Scatter plot of
Spearman correlation of gene body mCH and gene expression versus the mean H3K27me3 signal
in neurons at gene body level. The H3K27me3 ChIP-seq data is from purified Glutamatergic and
GABAergic neurons from human frontal cortex (Kozlenkov et al, 2018). (J) Genome browser
track visualization of CBLN2 (mCH-RNA coupled) and CDC27 (uncoupled). (K) Gene level
signal of CBLN2 and CDC27: scatter plot of normalized gene body mCH versus gene expression
for all neuronal cells. Raw mCH level is normalized by the global mean mCH level of each cell.
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Figure 3.4. Integrated epigenomic atlas of the human frontal cortex.

(A) Methylome-based technologies and datasets included in the integrative analysis. (B) Sunburst
visualization of the two-level methylome ensemble clustering analysis. The 4 cell classes (inmost
ring) and 20 major cell types (middle ring and outer annotation) are identified in level 1 analysis,
the 63 subtypes are identified in level 2 analysis. (C) UMAP embedding of 15,030 cells colored
and labeled by major cell types from level 1 analysis. Several examples of level 2 analysis are
shown in insets with UMAP colored and labeled by subtypes. (D) Donor (left) and technology
(middle) composition and cell count (right) of each major cell type. (E) UMAP embedding of the
cross-modality fusion of snmCAT-seq methylome and snATAC-seq profiles. The left panel is
colored and labeled by level 1 major cell types; the right panel is color and labeled by the
technologies. (F) Browser views of multi-modal data integration for ADARB2 and MEF2C gene
in four major cell types.
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Integration of snmCAT-seq and snRNA-seq
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Figure 3.5. snmCAT-seq identifies RNA and mC signatures of neuronal subtypes.

(A-B) UMAP embedding of snmCAT-seq transcriptome and snRNA-seq for all the inhibitory
neurons after MNN-based integration with the cells colored by technology (A) and joint clusters
(B). (C) The composition of cells profiled by snmCAT-seq and snRNA-seq in inhibitory neurons
joint clusters (same cluster IDs as shown in (B)). The upper and lower bar plots show the counts
and portion of cells profiled by the two technologies in each joint cluster, respectively. (D)
Normalized expression and gene body mCH rate of inhibitory neuron subtype marker genes
quantified using snmCAT-seq and snRNA-seq. (E-F) Sunburst visualization of inhibitory cell type
marker genes enrichment in SynGO biological process terms. Each sector is a SynGO term colored
by -loglO(adjusted P-value) of snmCAT-seq transcriptome marker genes (E) or snRNA-seq
marker genes (F) enrichment.
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Figure 3.6. DMR phylogeny and transcription factor hierarchy in the human cortex.

(A) Inhibitory neuron subtype dendrogram. The node size represents the number of DMRs
detected between the left and right branches. Nodes corresponding to known inhibitory cell type
groups are annotated in the dendrogram. (B) Schematics of the three levels of molecular
information we use to identify candidate TF related to the specific lineage. (C) The workflow of
TF analysis using the NFI family as an example. Three types of information are gathered for each
of the TF genes: 1. RNA expression; 2. Gene body mCH level; 3. TF motif enrichment in the
branch-specific DMR. We create a combined dot plot view for all three kinds of information, the
genes show lineage specificity in both 1 and 2 are circled by black boxes. (D-E) The dot plot view
for TFs showing ChC vs. BC (D) or VIP vs. NDNF (E) specificity in motif enrichment, RNA or
mCH levels. Colors for every two rows from top to bottom: TF motif enrichment log2(fold change),
branch mean expression log(1 + CPM), lineage mean gene body mCH level. Sizes for every two
rows from top to bottom: E-value of the motif enrichment test, relative fold change of expression
level, relative fold change of mCH level between the two branches. Colors for the motif names:
TF motif methylation preference annotated by methyl-SELEX experiment 6, orange indicate
MethylPlus, green indicate MethylMinus. (F) The binding of TFs to hypermethylated regions
validated by chromatin accessibility measurement using the snmCAT-seq NOMe-seq profile. (G-
I) Enrichment or depletion of MethylPlus TFs (G), MethyMinus TFs (H) and TFs whose binding
motif contains CA dinucleotides (I). (J-L) Examples of chromatin accessibility profiles at the
binding motifs of ETV1 (MethylMinus) (J), RARB (motif contains CA) (K) and ATF4 (motif
contains CA and CG) (L). (M) Comparison of the chromatin accessibility at the binding motifs
containing CA or CG dinucleotides.
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Figure 3.7. Identification of brain cell types involved in neuropsychiatric traits.

(A-H) Multiple regression partitioned heritability analysis using cell-type-specific DMRs (A-D)
or ATAC-seq peaks (E-H). (I-L)) Multiple regression partitioned heritability analysis using DMRs
stratified for the overlap with open chromatin regions. Heritability enrichment with a p-value <
1E-5 compared to the baseline was indicated by asterisks.
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3.20 Supplementary Figures

Supplementary Figure 3.1 snmCAT-seq captures transcriptome and DNA methylation
signatures of H1 & HEK293 cells.

(A) The specificity for classifying methylation (snmC-seq2) and transcriptome (snRNA-seq) reads
plotted as a function of the number of CpH cytosine in the reads. (B-D) The number of detected
genes (B), percentage of mapped reads that are located in exons (C) and mapping rates of
methylation and RNA reads (D) for snmCAT-seq (Whole Cell) and snmCAT-seq (Nucleus). (E-
F) Separation of Hl and HEK293T cells by tSNE using transcriptome reads extracted from
snmCAT-seq (Whole Cell) (E) or snmCAT-seq (Nucleus) (F) datasets. (G) snmCAT-seq (Whole
Cell) and snmCAT-seq (Nucleus) detect genes specifically expressed in H1 or HEK293T cells.
(H-I) Separation of H1 and HEK293T cells by tSNE using DNA methylation information extracted
from snmCAT-seq (Whole Cell) (H) or snmCAT-seq (Nucleus) (I) datasets. (J) Browser view of
NANOG and CRNDE loci. (K-N) Distribution of mCG and mCH levels for single Hl and
HEK293 cells/nuclei as determined by snmCAT-seq (Whole Cell) and snmCAT-seq (Nucleus).
(O-P) snmCAT-seq (Whole Cell) and snmCAT-seq (Nucleus) recapitulate bulk mCG patterns at
CG-DMRs showing greater mCG levels in HEK293T (O) or H1 (P) cells.
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Supplementary Figure 3.2 snmCAT-seq generates single-nucleus multi-omic profiles from
human brain tissues.

(A) The fraction of total snmCAT-seq reads derived from methylome and transcriptome. (B) The
fraction of snmCAT-seq transcriptome reads mapped to exons, introns or gene bodies. (C) The
portion of variance explained by each data modality. (D-F) UMAP embedding of 4253 snmCAT-
seq cells using single modality information: transcriptome (D), methylome (mCH and mCG, E)
and chromatin accessibility (F). (G) The separation of cell types by the top 10 principal
components (PCs) of each data type. (H-I) Pearson correlation of gene expression quantified by
snmCAT-seq transcriptome and snRNA-seq in MGE PVALB (H) and L1-3 CUX2 (I) cells. (J)
Pearson correlation of gene body non-CG methylation quantified with snmCAT-seq methylome
and snmC-seq for MGE PVALB cells. (K) Pearson correlation of CG methylation at DMRs
quantified with snmCAT-seq methylome and snmC-seq for MGE PVALB cells. (L) Genome-wide
methylation level for all tri-nucleotide context (-1 to +2 position) surrounding cytosines shows the
sequence specificity of GpC methyltransferase M.CviPl. (M-N) Spearman correlation between
GCY methylation level and ATAC-seq signal at open chromatin sites in L1-3 CUX2 (M) and
Oligodendrocyte (N) cells. (Q) Browser views of chromatin accessibility profiles generated by
snmCAT-seq and snATAC-seq at cell-type-specific genes. (P-Q) Overlap of open chromatin peaks
identified by snmCAT-seq and snATAC-seq in L1-3 CUX2 (P) and oligodendrocyte (Q) cells.
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Supplementary Figure 3.3 Evaluation of cluster quality with paired transcriptome and
methylome profiles.

(A) Intra-modality cross-validation of mCH- or RNA- defined clusters. Line plots show mean
squared error between the single-cell profiles and cluster centroid, Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) as a function of the number of clusters. The
shaded region in each sub-plot highlights the range between the minimum and the minimum +
standard error for the curve of test-set error. For the analysis using snmCAT-seq mC information
(left panels), gene body mCH profiles of odd (even) chromosomes were used for clustering
whereas even (odd) chromosomes were used for testing. A similar analysis was performed using
snmCAT-seq transcriptome information (right panels). (B) Schematic diagram of the over- and
under-splitting analysis using matched single-cell methylome and transcriptome profiles,
complementing Fig. 3.2D. (C) The over-splitting quantification of mC-defined major clusters
(n=17) and subclusters (n=52) was quantified by the fraction of cross-modal neighbors found in
the same cluster defined by RNA. (D) The under-splitting of clusters was quantified as the
cumulative distribution function of normalized self-radius for mC-define major clusters and
subclusters. For (C-D), gray lines represent individual clusters while colored lines represent means
and confidence intervals. (E) Over-splitting score for each major cluster (in green) and associated
sub-clusters (in yellow). Dot size of sub-clusters represents cluster size normalized by the size of
their “mother” major cluster. (F) Under-splitting score for each major cluster (in green) and
associated sub-clusters (in yellow). (G-K) Fusion of snmCAT-seq transcriptome and mC profiles
using the Single Cell Fusion (G), Seurat (H), Harmony (I), LIGER (J), and Scanorama (K). For
each computational data fusion method, from top to bottom the first panel shows mC and RNA
modalities on the joint UMAP embedding after data fusion. The second panel shows the
normalized self-radius. The third and fourth panels show the co-cluster level cell composition and
clustering accuracy.
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Supplementary Figure 3.4 Diverse correlations between gene expression and gene body mCH.
(A) Schematic diagram of 3 types of genes with different correlations between gene expression
and DNA methylation. (B) Scatter plots of gene body mCH (unnormalized) and gene expression
of example genes (KCNIP4, ADARB2, GPC5) across all neuronal cells. Cells are colored by major
cell types defined in Fig. 3.4. (C) Contour density plot of gene body mCH rank versus gene
expression rank for 3 example genes: GPC5, KCNIP4, and ADARB2. (D) Contour density plot of
delta gene body mCH rank (rank of gene body mCH - cluster mean gene body mCH) versus delta
gene expression rank (rank of gene expression - cluster mean gene expression) for 3 example genes:
GPCS5, KCNIP4, and ADARB2. (E) Venn diagram showing a strong overlap of mCH-RNA
coupled genes identified using cells from subject UMBS5580, subject UMBS5577, and from both
subjects. (F) Distribution of Spearman correlation coefficient between gene expression and gene-
level mCH quantified at gene body (red), gene body + 1 kilo-base upstream (blue), + 2 kilo-base
upstream (orange) and + 4 kilo-base upstream (green). (G) Distribution of Spearman correlation
coefficient between gene expression and gene-level mCH quantified at gene body with or without
data smoothing before correlation analysis. (H) Scatter plot comparing the effect of data smoothing
on Spearman correlation coefficients computed between gene expression and gene-level mCH. (I)
Scatter plot comparing gene body mCH-RNA correlation versus gene body mCG-RNA correlation.
(J-L) Boxplot of gene length (J), mean gene expression level (K) and mean open chromatin level
(L) for mCH-RNA uncoupled and coupled genes. (M) Gene ontology enrichment of mCH-RNA
coupled genes. (N) Scatter plots comparing the fraction of variance explained by cell type (n?) for
each gene from different datasets or data modalities: RNA (from snmCAT-seq), mCH (from
snmCAT-seq) and 10X (snRNA-Seq from 10X protocols). (O) The distribution of different histone
marks at TSS over 5 gene bins grouped according to gene expression ratio of early fetal (PCW 8-
9) to adult (>2 yrs).
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Supplementary Figure 3.5 snmCAT-seq recapitulates transcriptome and methylome
signatures of neuronal subtypes.

(A) Confusion matrix showing the overlap scores between inhibitory subtypes identified by
ensemble methylome analysis and snRNA-seq. Known inhibitory cell type groups are annotated
by boxes. The upper bar plot indicates the snRNA-seq cell counts per cluster; the right bar plot
indicates the snmCAT-seq cell counts per cluster. (B) Cluster 13 in Fig. 3.5A-C includes snmCAT-
seq transcriptome profiles with lower RNA read counts. (C) snmCAT-seq methylome profiles of
single nuclei in cluster 13 (colored in blue) can be readily integrated with other inhibitory cells.
(D-E) Confusion matrix showing the overlap scores between methylome ensemble subtypes and
the snRNA-seq clusters for excitatory neuron clusters (D) and non-neuron clusters (E). Known
cell type groups are annotated by boxes. The upper bar plot annotates the snRNA-seq cell counts
per cluster, the right bar plot annotates the snmCAT-seq cell counts per cluster. (F-G) UMAP
embedding of all excitatory neurons profiled by snmCAT-seq and snRNA-seq after MNN-based
integration, colored by technology (F) and joint clusters (G). Known cluster groups are also circled
and annotated on UMAP. (H) The composition of cells profiled by snmCAT-seq and snATAC-
seq in excitatory neuron joint clusters. The upper and lower bar plots show the counts and portion
of cells profiled by the two technologies in each joint cluster, respectively. (I-J) UMAP embedding
of all non-neuronal cells from snmCAT-seq and snRNA-seq after integration, colored by
technology (I) and joint clusters (J). (K) The composition of cells profiled by snmCAT-seq and
snATAC-seq in non-neuronal cell joint clusters.
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Supplementary Figure 3.6 TF binding motif enrichment across the human cortical neuronal
hierarchy.

(A) Excitatory neuron subtype dendrogram. The node size represents the number of DMRs
detected between the left and right branches. (B-D) Dot plots view for TFs showing lineage-
specific motif enrichment, expression and gene body mCH between lineages: intratelencephalic
(IT)-Deep-LRRK1 vs IT-Deep-MIX (B); IT-Deep-PDZRN4 vs IT-Sup (C); Cortico-Thalamic
projection (CT) vs. layer 5/6 near-projecting neurons (NP) (D). Colors for every two rows from
top to top: lineage mean gene body mCH level, lineage mean expression log(1 + CPM), TF motif
enrichment log2(fold change). Sizes for every two rows from bottom to top: relative fold change
of mCH level from this branch to the other, relative fold change of expression level, E-value of
the motif enrichment test. Colors for the motif names: TF motif methylation preference annotated
by methyl-SELEX experiment 6, orange indicate MethylPlus, green indicate MethylMinus. (E-H)
Dot plot view for TFs showing lineage-specific motif enrichment, expression and gene body mCH
between CGE vs. MGE (E), CALBI vs. B3GAT2 (F), VIP/NDNF vs. LAMPS (G) and Rosehip
vs LAMP5-LHX6 (H). (I) The binding of TFs to hypermethylated regions validated by chromatin
accessibility measurement using the snATAC-seq profile. (J-L) Enrichment or depletion of
MethylPlus TFs (J), MethyMinus TFs (K) and TFs whose binding motif containing CA
dinucleotides (L).
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Supplementary Figure 3.7 Prediction of causal cell types for neuropsychiatric traits using
partitioned heritability analysis.

(A) Partitioned heritability analysis individually comparing (individual models) adult brain cell-
type-specific DMRs, fetal cortex lowly methylated regions, and non-brain tissues to the baseline
(B) Partitioned heritability analysis (individual models) using adult brain RNA signature genes,
ATAC-seq peaks, and NOMe-seq peaks. (C-D) Multiple regression partitioned heritability
analysis using NOMe-seq peaks (C) and gene expression signatures (D). (E-F) Prioritization of
neuropsychiatric traits-associated brain cell types using RolyPoly. (G-J) CG methylation and
chromatin accessibility profiles at adult brain regulatory elements [DMR (ATAC-pos)] and
vestigial enhancers. (K-N) Multiple regression partitioned heritability analysis comparing adult
regulatory elements and [DMR (ATAC-pos)] and vestigial enhancers.
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CHAPTER 4
ALLCools: a comprehensive and scalable single-cell DNA

methylation analysis framework

4.1 Abstract

ALLCools is a python package designed explicitly for single-cell DNA methylome and
methylome-based multi-omic datasets. ALLCools includes data formats and associated functions
to process, store, analyze, and visualize this unique epigenomic modality with high efficiency and
scalability. Its core matrix formats, MCDS and RegionDS, support storing DNA methylome data
with various features and methylation types, providing cellular and genomic analysis
infrastructures. With ALLCools, we established two methods for cell clustering and tested them
in DNA methylome datasets from various tissue sources. Besides, ALLCools' python-based
implementation allows seamless integration with other established packages for more specific
analysis purposes. After cellular analysis, we also demonstrated the integration of multiple single-
cell epigenomic technologies to predict cell-type-specific enhancers and linked enhancers to

potential targeting genes in mouse brain hippocampus.

4.2 ALLCools Analysis Overview

We design ALLCools as a comprehensive and scalable framework for single-cell DNA
methylation analysis. The schematic overview (Fig. 4.1) shows that the ALLCools stores single-
cell cytosine base counts in the ALLC format (Fig. 4.1A). The analysis starts from aggregating
methylation information into N-dimensional labeled arrays corresponding to different feature sets
(such as gene, genomic bins, promoter, CGI), molecular modalities (methylation, accessibility,

expression), methylation contexts (CpG, CpH, GpC), and quantification types (count, fraction,
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hypo- or hyper-score) via a single command (“allcools generate-dataset”). These arrays are stored
in a dataset named MCDS or RegionDS (Fig. 4.1B, C). The MCDS and RegionDS share the same
data structure but have different analysis functions: the MCDS serves as the basis of cellular
analysis, while the RegionDS is associated with genomic analysis. Both dataset formats are based

on the Xarray package!”

in memory and serialized on disk using the Zarr package'*°. Both
packages natively support handling N-dimensional dense arrays and are highly scalable to large
data through chunk access and on-disk computation.

For cellular analysis with the MCDS, we provide a methylation-specific version of
canonical functions for quantification, cell and feature preprocessing, dimension reduction, graph-
based clustering, and embedding. Importantly, we developed two methods for methylation
clustering, one with methylation fractions of large genomic features, the other with methylation
scores of small genomic features. These two methods cover different feature sizes, from cis-
regulatory elements and promoters to large gene bodies (Supplementary Table 4.2). Besides, the
python basis of MCDS provides interoperability with the popular single-cell data structure,
AnnData*, allowing to adapt of existing algorithms or packages for specific analysis purposes,
such as the harmony>? and scanorama®’ for batch correction and data integration; the Scrublet!®!
for doublets detection; the MOFA+* and Seurat v3 WNN!#2 for multi-omic factor analysis
(through the MUON package?).

In genomic analysis, we usually create the RegionDS with Differentially Methylated
Regions (DMR) analysis by the methylpy algorithm®*'. However, RegionDS can also be created
from any genomic region (such as genes, promoters, CGls, or DMRs from other packages). In
addition to quantifying the methylation level of these regions, the RegionDS provides functions

for annotation by BigWig and BED files, scanning DNA motifs, performing motif enrichment
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analysis, and calculating region-to-region correlation. Furthermore, the rich annotated datasets
provide a basis for applying machine learning models to predict epigenomic activities or features™.
For example, we demonstrated an enhancer prediction analysis with the REPTILE model.
Furthermore, by involving an snm3C-seq** dataset from the same type of tissue!®, we predicted

the potential targeting genes of these enhancers via the chromatin contact loops!33.

4.3 ALLCools Data Structures

The ALLCools data processing starts with base-level cytosine count information saved in
the ALLC file, a tab-separated table compressed and indexed by bgzip and tabix'®* to allow
querying with genomic coordinates. In addition, the ALLCools package provides functions to
generate ALLC files after mapping (allcools bam-to-allc) or transfer from other methylation count
formats (allcools table-to-allc). Additional functions in ALLCools can also help extract, merge
and convert ALLC files throughout the analysis pipeline. Notably, one ALLC file only stores
methylome information for one sample (a cell or a pseudo-bulk profile).

Next, we aggregate multiple ALLC files into a cell-by-feature format called MCDS to
collectively analyze hundreds of thousands of cells from a single-cell assay. Unlike existing cell-
by-feature formats designed for single-cell RNA data*->!:185 the MCDS has several features to
support large-scale DNA methylation and multi-omic technology specifically. First, the DNA
methylation dynamics occur at a wide range of scales (10"2-10"7 bp) in the genome
(Supplementary Table. 4.2), studying multiple features in the same dataset is a common task for
methylome analysis®!>!7. The MCDS, generated in a single step (allcools generate-dataset),
natively supports storing and aligning multiple sets of features together. Second, most single-cell
mC technologies are based on bisulfite conversion, which chemically converts unmethylated C to

T!8¢ and quantifies DNA methylation fraction based on the total base count and mutated base count.
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Besides, the native or artificially introduced difference between methylation context (CpG, CpH,
CpA, or GpC) also requires counting cytosines in multiple categories. The MCDS supports all
these requirements by using N-dimensional labeled arrays to store data. Noteworthy, this strategy
also supports storing quantifications from additional modalities in MCDS. The underline
implementations are adapted from the xarray package, originally designed to handle geographical

and meteorological data!”

, whose N-dimensional structure is analogous to single-cell mC and
multi-omic datasets. Finally, besides handling the above complexities, MCDS has high scalability
in both the cell dimension and feature dimensions (See below for scalability discussion).

While MCDS is cellular analysis centric, the same infrastructure is also suitable for
genomic analysis, where the focus becomes genome regions, and cells or cell clusters can be
treated as features to annotate these regions. Therefore, we provide another in-memory
representation of the data structure called RegionDS, which provides functions performing
analysis on genome regions, but shares the same underlying data structure with MCDS. The

MCDS and RegionDS provide the foundations for all the cellular and genomic analysis in

ALLCools.

4.4 Cellular Analysis with ALLCools MCDS

We first demonstrate the core functions of ALLCools for dimension reduction, which is
the essential step for single-cell data visualization and cell-type identification. Using 16,985 snmC-
seq2 cells from mouse hippocampus (HIP)!®, we demonstrated the basic clustering process using
the MCDS file with 100kb genomic bins as features. After quality control to filter out low-quality
cells (low read number, high non-conversion rate) and features (low read coverage, overlap
ENCODE blacklist’®), ALLCools compute posterior methylation level and normalize within each

cell and select highly variable features to feed into PCA for dimension reduction. These steps were
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applied to both mCH and mCG, and the principal components were combined for further UMAP
visualization and consensus cluster analysis. We identify 28 clusters and annotate them by
checking the gene body mCH (for neurons) or mCG (for non-neuronal cells) level of known
marker genes for major cell types (Fig. 4.3A).

Neuronal cells have highly diverse methylation patterns, including the mCH signatures
across the whole gene bodies and the large super-enhancer-like regions with differentially CG
methylation across cell types!®’. Together, these make it possible to use methylation levels at
100kb resolution to resolve cell types at high granularity®!°. Contrarily in other tissues where fewer
long and specific features were explicitly observed, classifying cell types using DNA methylation
data only remains challenging. Existing methods often focus on the methylation level of promoters
or predefined enhancers'”!8, However, recent studies have also revealed limited methylation
diversity near TSSs across cell types, while relying on annotated enhancers limits the
generalizability of the analysis in the samples without histone data. To develop a universally
adaptable framework, we use 5kb genomic bins as features to perform dimension reduction, with
the rationale to capture methylation dynamics at shorter regulatory elements. Given the coverage
of single-cell DNA methylation assays, the majority of 5kb bins across the mammalian genome
are not covered, making it challenging to save the full cell-by-5k bin matrices either in memory or
on disk. To alleviate this issue, ALLCools compute a hypo-methylation score in each 5kb bin for
every single cell, assuming regulatory elements are usually hypo-methylated. The score accounts
for the methylation level and coverage with a binomial model. Only the bins with a score > 0.9 are
stored, while all other bins are saved as 0. This resulting cell-by-bin matrix is a sparse matrix with

~2% non-zero values, considerably reducing computation cost and memory and disk usage. After
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generating a hypo-methylation score matrix, we binarize the matrix with a threshold and perform
latent semantic indexing (LSI) for dimension reduction, similar to scATAC data analysis**!88,
We first benchmarked this method on the mouse HPF dataset and observed comparable, if
not better, capability to separate the annotated cell types (Fig. 4.3B). To further test the
generalizability of this method, we used FACS to select eight specific cell populations from
peripheral blood mononuclear cells (PBMC) and profiled them with snmC-seq2%®. This dataset
collects Naive helper T cells (CD3+, CD4+, CCR7+, CD45RA+), Memory helper T cells (CD3+,
CD4+, CD45RA-), Naive cytotoxic T cells (CD3+, CD8+, CCR7+, CD45RA+), Memory
cytotoxic T cells (CD3+, CD8+, CD45RA-), B cells (CD3-, CD19+), Monocytes (CD3-, CD19-,
CD14+), NK cells (CD3-, CD19-, CD14-, CD16+, CD56+), and other cells (CD3-, CD19-, CD14-,
CD16-, CD56-), with the FACS providing a standard for cell-type annotation. The 5kb LSI
framework in ALLCools can separate the above cell types and resolve more rare cell types (Fig.
4.3C), including CD16+ monocytes, Dendritic cells (DC), and Plasmacytoid DC (pDC). The cell
type annotation is corroborated by integrating published scATAC-seq data using 5kb bins as
features. The naive PCA-based framework failed to distinguish between helper and cytotoxic cells
with either 100kb bins, gene bodies, or promoters as features (Fig. 4.3D). To obtain a more
intuitive interpretation of why 5kb bins could work better, we identified DMRs between Memory
and Naive T cells and between helper and cytotoxic T cells. Indeed, we find the differences
between Memory and Naive cells are at a whole-genome scale, with a 10% global methylation
level change, resulting in widespread DMRs across large bins. On the contrary, most of the
differences between helper and cytotoxic cells are localized near the marker genes and expand

to >10 kb regions less frequently (Fig. 4.3E).
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We also noted that specific methods or features could outperform these general frameworks
on certain datasets. For example, MOFA* can separate embryonic cell states better than PCA
when using predefined H3K27Ac peaks as features (Fig. 4.3G), potentially due to its model
handling missing values in the matrix. Since ALLCools features its scalability on large datasets
(discussed below), we did not use MOFA as a default embedding approach. Nevertheless, the
ALLCools can seamlessly include MOFA into the analysis with the recently developed MUON
package’!. The flexibility allows users to choose any dimension reduction methods they prefer in

the large Python community.

4.5 Genomic Analysis with ALLCools RegionDS

Next, we use ten major cell types (Fig. 4.3A) from the mouse HIP dataset to demonstrate
the genomic analysis using ALLCools RegionDS (Fig. 4.4A). First, based on the cell type labels
from clustering analysis, we merged the relatively shallow single-cell ALLC files into pseudo-
bulk ALLC files with the “allcools merge” command to increase the genome coverage per cluster.
We then use the methylpy algorithm >*! to identify Differentially Methylated Regions (DMR).
The methylpy algorithm implemented in ALLCools will produce a RegionDS containing the mCG
counts of DMRs directly. ALLCools also support creating RegionDS from ALLC files and a set
of regions in a BED file, such as DMRs from other tools like DSS'® or DMRseq!*?. After storing
the DMR information into the RegionDS, we can annotate the regions with BigWig and BED files
with one function call. This annotation process facilitates further analysis of DMR, such as motif
analysis, DMR-gene correlation, and enhancer prediction.

In this example, we identified a total of 732,544 DMRs from the 10 HIP cell types (Fig.
4.4B, Supplementary Fig. 4.1). We then used the pseudo-bulk profile of snATAC-seq data®® from

matched cell types to annotate HIP DMRs with chromatin accessibility information. As expected,
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the hypo-DMRs for a cell type are more accessible in the same cell type than the others (Fig. 4.4C,
Supplementary Fig. 4.2), indicating the correct match of cell types from both datasets. The
combination of two modalities allows us to train a REPTILE model*? to predict candidate enhancer
regions. After prediction, we get 102,888 candidate enhancers for each cell type (Fig. 4.4D,
Supplementary Fig. 4.3). Interestingly, the chromatin contact (from snm3C-seq) between the
enhancers and the promoters of DMGs is stronger in matched cell types than in unmatched cell
types, indicating the genome 3D conformation is also involved in forming the cell-type-specific
gene regulation (Fig. 4.4E, Supplementary Fig. 4.4).

As suggested by this differential interaction between enhancers and gene promoters, we
further identified chromatin contact loops to predict the potential target genes of the enhancers.
For example, Celf2, an RNA alternative splicing regulatory protein related to axon extension!®!,
contains hypo-methylated, enhancer-overlapping DMRs in the CA1 cells but not astrocytes. These
potential cis-regulatory elements (CRE) are located inside the gene body and up to 1.2 Mb of the
transcription start site (TSS) of Celf2. The chromatin conformation map indicates that both the
gene and CRE:s are inside a topologically associating domain (TAD), with chromatin loops further
linking some enhancer elements to the TSS of Celf2 (Fig. 4.5A, Supplementary Fig. 4.5). Likewise,
the gene Slcla3 is a glial high-affinity glutamate transporter highly expressed in astrocytes!®2. The
CREs identified 200 Kbs upstream of the gene body are linked to TSS via an ASC specific
chromatin loop (Fig. 4.5B, Supplementary Fig. 4.6). In another gene, neurodevelopmental
transcription factor Bcl11b'3, the furthest loop-linked CA1-specific CRE is 1.5 Mbs downstream
to the TSS (Fig. 4.5C), which also has CAl specific hypo-mCG and high accessibility
(Supplementary Fig. 4.7), provides an example of ultra-long-range enhancer-promoter interaction

associated by the chromatin loops.
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As a deliverable resource of this pipeline, we systematically annotated the DMRs of these
10 clusters in a RegionDS, with annotation and labeling on whether the DMR is overlapping with
predicted enhancers or whether a chromatin loop in the corresponding cell type link this DMR to
the TSS to the DMG of this cell type (Fig. 4.5D, E, Supplementary Fig. 4.8). Together, the linkage
between DMGs and DMRs with the chromatin contact information prioritizes the candidate

enhancer validation for future studies.

4.6 Discussion

The booming of single-cell methylome and multi-omic technologies brings remarkable
opportunities to study DNA methylation in diverse cell types and link it with other molecular
modalities. The ALLCools package is specifically designed to meet the unique computational
challenges arising from these new technologies. Based on the python environment, ALLCools
contains core data structures, MCDS and RegionDS, modeling multi-dimensional labeled data
arrays, which is vital for the DNA methylome analysis under multiple sets of features, different
methylation contexts, and various ways of quantification. In addition, ALLCools also provides all
essential functions for single-cell analysis, inspired by the popular single-cell analysis

44,182

packages , with essential adaptations for the methylation dataset. Internally, ALLCools utilize
mature packages in the python ecosystem, such as Xarray'”®, Zarr!®® and Dask!®, to efficiently
handle vast datasets, providing massive scalability for future atlas-scale studies.

The ALLCools analysis workflow contains two main parts. First, the cellular analysis is
based on the MCDS and its associated functions, covering data preprocessing, filtering, dimension
reduction, embedding, clustering, differentially methylated gene analysis, and more. Notably, we

established two complementary methods for different sizes of DNA methylation features,

providing great generalizability on datasets from various tissues and species. Second, the genomic
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analysis is based on RegionDS and other functions, covering differentially methylated region
analysis, annotating genomic regions, motif analysis, enhancer prediction, and linking regions to
target genes.

Together, ALLCools aims to provide a comprehensive and scalable platform for handling
the single-cell DNA methylome dataset in the python ecosystem. Other single-cell or genomic
packages focusing on various downstream analysis topics can quickly utilize and combine with
the ALLCools workflow to complete more general analysis goals. In addition to DNA methylome,
more assays covering additional epigenomic modalities, such as snhmC-seq for 5hmC!'®,
CLEVER-seq for 5fC!%, are ready to be analyzed by the ALLCools framework. Besides, future
development of ALLCools will focus on providing more seamless integration with other multi-
omic assays containing diverse molecular information, such as the multiome assay from 10X

198,199 and

genomics, Paired-Tag!®’ or similar assay, or more recently, the spatial transcriptome
epigenome technologies?®®?°!, Bringing all the multi-omic information together will enable a

deeper investigation of the functional impact of DNA methylation, providing opportunities to

understand the gene regulation mechanisms in complex biological systems.

4.7 Methods

4.7.1 Implementation of ALLCools

ALLCools has been implemented in the Python programming languages and based on a
number of scientific and bioinformatic open-source libraries. In particular, NumPy?%%, Scipy2®,
Pandas?®*, Xarray'”®, Zarr'®, Numba?®® and Dask!%* is used to establish the MCDS and RegionDS
data structure; htslib>*®, biopython?’’, Bedtools?®®, Samtools!>®, pyBigWig?® is used to handle

185

genomic file formats; scikit-learn?!, anndata!®®, scanpy**, pynndescent?!!, matplotlib®*'?, and

seaborn?!? were used to build analysis functions.
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4.7.2 Implementation of ALLC, MCDS and RegionDS format

The ALLC (ALL Cytosine) format is a tab-separated table containing base level
methylation and coverage counts. Each row in an ALLC file corresponds to one cytosine in the
genome. An ALLC file contains 7 mandatory columns describing the position, coverage, context,
and level of methylation (Supplementary Table 4.3). ALLCools always compress and index ALLC
files by bgzip and tabix!84 to allow access to the compressed files via genomic regions. There are
three ways to generate an ALLC file:

1) Generate from a single-cell BAM file after mapping via “allcools bam-to-allc”

(https://Ihging.github.io/ALLCools/command _line/allcools_allc.html);

2) Merge multiple ALLC files into an pseudo-bulk ALLC file via “allcools merge”

(https://Ihging.github.io/ALLCools/command _line/allcools_merge.html);

3) Convert from other form of methylation count table via “allcools table-to-allc”

(https://lhqing.github.io/ALLCools/command line/allcools_table to_allc.html).

Both the MCDS and RegionDS format represent a collection of labeled multi-dimensional
arrays. The in-memory representation of MCDS and RegionDS builds on the Dataset class in the
Xarray package!”®, which associates raw multi-dimensional data arrays with labeled dimensions,
coordinates and attributes. This labeling system is a key feature to allow accessing the data
consistently and associating them with the cell or gene metadata. The on-disk serialization of
MCDS and RegionDS builds on the zarr package'®®, which is a storage format for chunked,
compressed, multi-dimensional arrays. MCDS is generated from a set of ALLC files and multiple
genome region sets (gene, chromosome bins, promoter, CGI, etc.), via “allcools generate-dataset”

(https://lhqing.github.io/ALLCools/command line/allcools_dataset.html). RegionDS is created

from DMR analysis
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(https://lhqing.github.io/ALLCools/cluster level/RegionDS/01a.call dmr.html) or form a set of
genomic regions identified by other tools

(https://lhqing.github.io/ALLCools/cluster level/RegionDS/01b.other option_to_init region_ds.

html), and further annotated by BigWig or BED files

(https://lhging.github.io/ALLCools/cluster level/RegionDS/02.annotation.html).

4.7.3 Fraction-based clustering using genome 100kb bins

We use mc;; and cov;; to denote the total cytosine basecalls in a specific sequence content

in cell i and feature j. For each cell, we calculated the mean (m) and variance (v) of the mCH (or
mCG) level across the features. A beta distribution was then fit for each cell i, where the

parameters were estimated by

m;(1 —m;
a; = m&%— 1)
l

m(1—my)

Bi = (1 —my)( 1)

Vi
We next calculated the posterior mC level of each bin j by

a; + mCl'j
a; + B; + covy;

ratio;; =

We normalized this rate by the cell’s global mean methylation by

The values greater than 10 in M were set to 10. After normalization, M;; is close to 1 when
cov;; is close to 0. PCA was perform on M to generate embeddings for UMAP visualization and

cluster analysis.
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4.7.4 LSI-based clustering using genome Skb bins

In a single cell i, we modeled its mCG base call M;; for a Skb bin j using a binomial
distribution M;; ~ Bi(cov;j, p;), where p represents the global mCG level of the cell. We then
computed P(M;; > mc;;) as the hypomethylation score of cell i at bin j. The less likely to observe
smaller or equal methylated basecalls, the more hypomethylated the bin is. We next binarized the
hypomethylation score matrix M by setting the values greater than 0.95 as 1, otherwise 0, to
generate a sparse binary matrix A. Latent semantic analysis with log term frequency was applied
to A to compute the embedding. Specifically, we selected the columns having 1 in more than 5

rows, then computed the column sum of the matrix (colsum; = Y{<5"  A;;) and kept only the

bins with Z-scored log,colsum between -2 and 2. The filtered matrix was normalized by dividing

the row sum of the matrix to generate TF, and further converted to X used for singular value

#cell
colsum]-

decomposition X = USV” , where X;; = log(TF;; x 100000 + 1) x log(1 +

) . Top

dimensions of U were then used for UMAP visualization and cluster analysis.

4.7.5 Multi-omic analysis
For the mouse gastrulation sScNMT-seq dataset!’, we generated mCG count matrix of E7.5

H3K27Ac peaks with ALLCools generate-mcds. The peaks having zero coverage in all cells were

removed from analysis. The methylation fraction matrix was computed by % The peaks not
ij

sequenced in a cell were assigned with nan in the matrix. MOFA+ implemented in muon was used
for dimension reduction of the fraction matrix with 10 factors, followed by UMAP for visualization.
4.7.7 Enhancer prediction workflow

The enhancer prediction workflow has been previously described in Liu et al.!> A brief

description of the main steps are as follow:
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1) Merge ALLC and Call DMR: after cell clustering and integration, we merged single cell
ALLC files via "allcools merge" into ten pseudo-bulk ALLC files. Then we used the "call dmr"
function in ALLCools package to identify DMRs and generate the initial RegionDS
(https://Ihqing.github.io/ALLCools/cluster level/RegionDS/01a.call_dmr.html#call-
differentially-methylated-sites). This function is a reimplementation of the "methylpy callDMR"
method based on the code in (70). The algorithm is formally described in Schultz et al (26).

2) Filter DMRs: We calculated DMRs for both snmC and snm3C pseudo-bulk profiles (20
samples in total). We filtered the DMRs by requiring each DMR has >= 2 differentially methylated
CpG pairs (DMS), and have the same trend (hypo- or hyper-methylated) in both the snmC and
snm3C samples. Other parameters are as the default of the "call dmr" function.

3) We then annotated the RegionDS by cluster matched snATAC-seq pseudo-bulk profiles.
We then used the REPTILE model in ALLCools to predict active enhancers using both the mCG
fraction and chromatin accessibility information

(https://Ihging.github.io/ALLCools/cluster level/REPTILE/02.run_reptile.html). The REPTILE

model is implemented as described in He et al.>3 and adapted into the RegionDS framework.

4) Call final enhancers: The enhancer is called by the REPTILE with default parameters
(prediction score > 0.3). The REPTILE model predicts enhancers both on DMR and genome bin
coordinates (2Kb-long and 100bp-step moving windows). However, the final enhancer call from
the REPTILE model is neither DMR nor genome bins, but called from the combination of them
whenever a higher prediction score is seen®. We followed this framework but annotated the
enhancer-overlapping DMR using the enhancer identified from REPTILE as well. Both

coordinates are provided.
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4.7.8 Chromatin conformation analysis workflow
Processing of the 3D genome conformation modality from the snm3C-seq is based on the

214 package as previously described!>. We first save single cell contact

schicluster’! and cooler
matrices into SCOOL format defined in the cooler package?'4, then use schicluster's random walk
with restart (RWWR) algorithm to impute the chromatin matrix at 10Kb resolution for identifying
chromatin loops. The loop calling is based on a recent package designed for single-cell HiC dataset,
SnapHiC'#3. This package leverages the cell-level normalization and statistical test, reaching

higher sensitivity than bulk HiC loop calling methods, therefore identifying more chromatin loops

given the same coverage!®?.

4.8 Data and Code Availability
The published single cell methylome and multiomic data set is downloaded from GEO, all
accession numbers are listed in Supplementary Table 1. All analysis was done in ALLCools v1.0.0.

The ALLCools documentation is available at https://lhging.github.io/ALLCools/intro.html, and

the source code is available at https://github.com/lhging/ALLCools.
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Figure 4.1 ALLCools analysis overview

(A) ALLC format is the input of ALLCools data analysis, it contains all the raw methyl-cytosine
base count across genome. (B) ALLCools defines two N-dimensional labeled array data structure
for cellular and genomic analysis. (C) Example of cellular analysis supported by ALLCools MCDS
and associated functions. (D) Example of genomic analysis supported by ALLCools RegionDS
and associated functions.
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Figure 4.2 ALLCools Data Model

(A) ALLC uses ALLC files as input to generate cell-by-feature datasets and saved in MCDS. After
cellular analysis, single-cell ALLC files can be merged into pseudo-bulk ALLC files, then, after
calling DMR or given any regions of interest, a RegionDS can be generated to perform following
genomic analysis. (B) The implementation detail of ALLCools MCDS and RegionDS. The in-
memory representation is mainly based on Xarray package!”. The on-disk serialization uses Zarr
package!'®?.
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Figure 4.3 Cellular Analysis of ALLCools

(A) UMAP embedding of mouse HIP cells using 100kb mCH and mCG fractions as features and
PCA as dimension reduction method. (B) UMAP embedding of mouse HIP cells using Skb mCG
hypo-methylation score as features and LSI as dimension reduction method. (C) UMAP
embedding of human PBMC cells using 100kb mCH and mCG fractions as features and PCA as
dimension reduction method. (D) UMAP embedding of human PBMC cells using Skb mCG hypo-
methylation score as features and LSI as dimension reduction method. (E) Genome browser view
of the mCG fractions and DMRs (small tracks below each large ones) of human PBMC Th Naive,
Tc Naive, Th Memory 1, Th memory 2, and Tc Memory cells. (F) UMAP embedding of mouse
gastrulation data using enhancer regions as features and MOFA+ as dimension reduction method.
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Figure 4.4 Enhancer Prediction in mouse HIP dataset
(A) The enhancer prediction workflow. (B) DMR mCG fraction profile plot, x-axis is centralized
at DMR center with 10Kb flanking. The red box indicates the DMR is hypo-methylated in the
corresponding cell type of that row. (C) Enhancer-overlapping DMR accessibility profile plots,
similar to (B). (D) Enhancer-overlapping DMR REPTILE prediction score violin plot. The red box
indicates the DMR overlap with enhancers in the corresponding cell type of that row. (E)
Normalized contact strength between Enhancer-overlapping DMRs and DMG TSS regions. The
red box indicates the DMR and DMG are selected from the corresponding cell type of that row.
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Figure 4.5 Chromatin contact loops link enhancer to gene TSS

(A-C) The normalized chromatin contact matrix at the Celf2 (A), Slcla3 (B), and Bcl11b (C) locus.
The top part shows chromatin conformation of astrocytes (ASC), the bottom part shows CAl
neurons. The cyan dots on heatmaps indicates SnapHiC-identified chromatin loops. (D) The
number of CA1 DMRs dissected by different criteria. From top to bottom, the five criteria are: 1)
Whether the DMR is overlapping with REPTILE enhancers from CA1; 2) Whether the DMR is
linked to TSS by a chromatin loop; 3) Whether the DMR is link to TSS of a DMG by a chromatin
loop; 4) Whether the DMR is link to any gene body region by a chromatin loop; 5) Whether the
DMR is link to the gene body region of a DMG by a chromatin loop. (E) The number of ASC
DMRs dissected by different criteria, similar to (D).
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4.11 Supplementary Figures
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Supplementary Figure 4.1 DMR mCG fraction profiles in mouse HIP cell types.

The x-axis is centralized at DMR center with 10Kb flanking. The red box indicates the DMR is
hypo-methylated in the corresponding cell type of that row.
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Supplementary Figure 4.2 Enhancer-overlapping DMR accessibility profiles in mouse HIP

cell types.

The x-axis is centralized at DMR center with 10Kb flanking. The red box indicates the DMR is
hypo-methylated in the corresponding cell type of that row.

193



CA1 CA23 DG MGE CGE ASC oDC OPC MGC NonN

CA1

|
|

CA23

MGE

= =] }= =] [

|
|-

CGE

oDC

|
l

==

>
|
1]

i
nn

OPC

| =
. 5| BN|ENENES

Supplementary Figure 4.3 REPTILE prediction scores of the enhancer-overlapping DMRs
in mouse HIP cell types.

The x-axis is centralized at DMR center with 10Kb flanking. The red box indicates the DMR is
hypo-methylated in the corresponding cell type of that row.
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Supplementary Figure 4.4 Normalized chromatin contact strength of the enhancer-
overlapping DMRs and DMGs in mouse HIP cell types.

The x-axis is centralized at DMR center with 10Kb flanking. The red box indicates the DMR and
DMG is hypo-methylated in the corresponding cell type of that row.

195



6.0 6.5 7.0 75 8.0 8.5 Mbp 9.0
chr2
0.008
0.007
0.006
0.005 ASC Loop
0.004 ASCQ
0.003
0.002
0.001
00
0.008
0.007
0.006
0.005 CA1 Loop
0.004 3 CA1Q
0.003 & v ”
0.002 '
0.001
0.0
. CA1 Loop
0] ASC mCG Frac
3] DA A sics s o s CA1 mCG Frac
04] . L ASC mCH Frac
04] Mktaindhe, it CA1 mCH Frac
087 i wdboh ML Lokl o andhe oo L B, L g ) a L N ASC ATAC
067 bkt ok Mokt chbbondot B Aba hsctblbi LALAMUAALAAL oL b lika i d s b b bkl kbl e . . CA1ATAC

vt

Lttt

a7t
o

e errrrrerr rrrrrerrrr e (I | [ F et

—iGelf2 > -

et

e
R
o
-
-

Celf2

Celf2

Supplementary Figure 4.5 Genome browser tracks at the Celf2 locus.
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Supplementary Figure 4.8 Subset cell type enhancers with chromatin contact loops

Each panel shows the number of a cell type’s DMRs dissected by different criteria. From top to
bottom, the five criteria are: 1) Whether the DMR is overlapping with REPTILE enhancers from
CATl; 2) Whether the DMR is linked to TSS by a chromatin loop; 3) Whether the DMR is link to
TSS of a DMG by a chromatin loop; 4) Whether the DMR is link to any gene body region by a
chromatin loop; 5) Whether the DMR is link to the gene body region of a DMG by a chromatin
loop.
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