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Uni-layer magnets: a new concept for LTS and HTS based
superconducting magnets

José Luis Rudeiros Fernández and Paolo Ferracin
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: jrudeirosfernandez@lbl.gov

December 2022

Abstract. A novel geometrical configuration to form a magnetic field
perpendicular to an aperture, created by an asymmetric current distribution,
within a single layer, and using a continuous ideal current line, named
the uni-layer magnet, is here presented. The idea is compared to
existing concepts in superconducting magnets, namely, the cosθ sector
magnet, stress managed cosθ and canted cosθ . The uni-layer magnet
allows for a design with a continuous unit length (no layer jump), and
an increased minimum bending radius of the conductor in relation to
traditional cosθ and canted cosθ designs. The specific characteristics of
the uni-layer design are especially advantageous for strain-sensitive and
prone to winding degradation high-temperature superconductors, in very
high field accelerator magnet applications, in which, high efficiency in the
use of conductor, and a small aperture are required. The advantages with
regard to the design and fabrication of uni-layer magnets in relation to other
concepts are also discussed.
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1. Introduction

There are multiple spatial configurations in which to
arrange a set of current lines (or current density) to
form a desired magnetic field that is perpendicular to
the longitudinal direction of a free region of space, i.e.
aperture. This condition of perpendicularity is required in
accelerator magnets, for which the magnetic field shall be
perpendicular to the beam direction, i.e. moving along the
aperture.

From idealized current distribution cases, real world
approximations are normally derived due to the constraints
imposed by conductors with finite and constant cross
sections. This is the case for the most extended coil
layouts used for accelerator magnets, such as the cosθ

sector coil magnet (CT) [1–5] (related to the idea of a cosθ

current distribution), the block type [6–9] and common coil
magnets [10–12] (related to the idea of an infinite slab
dipole), and canted cosθ (CCT) [13–15] (related to the idea
of a solenoid).

In the case of very high field magnets [16–18] using
strain sensitive conductors, the electromagnetic forces
acting in the conductor lead to the need for stress-managed
concepts, in which part of the force is captured by a
structural element of the magnet, reducing the overall
accumulated force over the coil’s cross-section area, and
therefore limiting the stress and strain applied to the
conductor during energization of the magnet. For this
reason, not only is the efficiency of how a magnetic field
is formed by certain current distribution relevant, but also
the ability of the magnet design to create the framework for
the conductor to operate under extreme conditions. In this
regard, the CCT as conceived in [14, 15], is intrinsically
a stress-managed concept, where the structure, formed by
the spar and ribs, intercept part of the Lorentz force of
each turn. In the case of CT magnets, various designs
for stress-managed CT (SMCT) [17–20] have also been
proposed. Although SMCT magnets can accommodate the
interception of block segments, it seems that within the
inner layers of very high field magnets, such as the 20T
magnet discussed in [18], where the use of high temperature
superconductors (HTS) is necessary, the support of each
individual turn is required in order to maintain the strain-
stress of the conductor to acceptable levels.

In addition to the very high forces imposed in the
conductor, when using HTS such as REBCO, and derived
wires such as CORC® [21, 22], one of the main difficulties
is their susceptibility to degradation when wound around
relatively small apertures [23, 24]. As the use of HTS
is normally more advantageous in the high field region
of the magnet, the minimum radius of curvature required
by the winding is relatively low. This issue leads to the
impossibility of using this type of conductor in a traditional
CT configuration, and leading to the use of less efficient
designs options (e.g. CCT with relatively high inclination
[23]), that can lead a significantly higher overall cost.

In the spirit of addressing the previous issues, this
paper presents a new concept to form a magnetic field
that is perpendicular to an aperture: the uni-layer magnet
(UL). The idea is derived from the harmonic expansion
of the magnetic field, and the concept of creating quasi-
perfect fields even in partially asymmetric geometrical
configurations. In this regard, we will demonstrate the
existence of asymmetric configurations that satisfy the
field quality specifications normally required in accelerator
magnets. We will also demonstrate that the partial
asymmetry allows for a new spatial configuration of
the conductor around the aperture, in which a single
layer with no internal layer jump is possible, facilitating
therefore magnet layer grading. Furthermore, we will
also demonstrate that these asymmetric solutions lead to
a significant increase in the minimum radius required to
wind a conductor around a specific aperture in relation to
CT and CCT magnets. The UL concept is then discussed in
relation to the CT/SMCT and CCT, showing how it presents
several advantages in terms of design, manufacturing, and
performance for low temperature superconductor (LTS),
and especially HTS applications in very high field magnets
for high energy accelerators.

2. Uni-layer magnets

An idealized uni-layer magnet can be defined as a magnet
that generates a B field within a straight region of space,
by a system of ideal current lines, all parallel to the z-axis
(along the straight section of the magnet) of a Cartesian
coordinate system (i.e. perpendicular to the xy-plane), that
lay within a single continuous surface (i.e. within a single
layer), and that are connected by a single continuous path
that does not cross itself. In this regard, a magnet could also
be constituted by a set of individual uni-layers.

Let’s also define two main categories of UL magnets:
symmetric and asymmetric. A symmetric UL magnet will
contain the same number of current lines when angularly
circulating between poles. An asymmetric uni-layer magnet
will contain a non-equal number of current lines when
circulating between poles. A special case of an asymmetric
UL, which will be examined in the next section, will lead
to the possibility of a winding configuration within a single
layer of zero Gaussian curvature.

The search for the position and current magnitude of
the idealized current lines to form a specific Bob jective within
the straight section of the magnet can be treated as a global
optimization problem. For a number of m current lines, we
can define an array containing the argument

θ = {θ1,θ2, . . .θm}
and modulus

ρ = {ρ1,ρ2, . . .ρm}
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of the current lines in the complex plane, as well as the
current

I = {I1, I2, . . . Im}
leading to a general set of equations that can be expressed
as

minimize‖Bob jective−B(θ ,ρ, I)‖
subject to:
f j(θ ,ρ, I)≤ 0, j = 1, . . . , p

gk(θ ,ρ, I) = 0, k = 1, . . . ,q

(1)

where f j(θ ,ρ, I) are a set of p inequality constraints
(e.g. inequality equations defining the boundaries of
the geometrical configuration of the current lines), and
gk(θ ,ρ, I) are a set of q equality constraints (e.g. equations
to cancel specific Cn,total coefficients of the harmonic
expansion).

2.1. Asymmetric cross section

In the first place, we will search for solutions of the
asymmetric configuration. For this purpose, we will
consider a dipole, and we will explore a subset of the
asymmetric UL magnets based on the following constraints:

• All current lines are perpendicular to the Cartesian xy-
plane along the straight section of the magnet.

• The magnitude of the current is the same for all
conductors, where only its sign changes. The current
can therefore be expressed as

I j = s jI with s j ∈ {−1,1}
In this regard, the current sign, s j, is chosen to create
a positive By, and therefore s j is negative on the right
(i.e. x > 0) and positive on the left (i.e. x < 0).

• All current lines are equidistant to the origin z = 0, at
a distance ρ , i.e. radius of the magnet aperture.

• The multipole expansion will be considered within a
circular domain D centered at z = 0, and with a radius
Rre f , related to the magnet aperture ρ as Rre f = 2/3ρ .

• An odd number of current lines, mr, are considered on
the right (i.e. x > 0), while an even number of current
lines, mr +1, is considered on the left (i.e. x < 0), with
a total of current lines m = 2mr +1.

• A top-bottom symmetry is considered, therefore
cancelling all skew components of the harmonic
coefficients.

• From C2 all harmonic coefficients must be 0 up to Cn0 :

Cn,total = 0 with n ∈ {2,3, . . . ,n0}
• The minimum angular distance between adjacent

current lines is θmin.

From the general multipole expansion (Appendix A)

B(z) =
∞

∑
n=1

Cn,total

(
z

Rre f

)n−1

(2)

and the expression of the coefficients considering the
previous constraints

Cn,total =−
µ0I
2π

Rn−1
re f

ρn

m

∑
j=1

s je−inθ j (3)

one can see that the global optimization can be expressed in
terms of the argument and sign of the current lines

m

∑
j=1

s je−inθ j

First, let’s find the expression to minimize, which
would lead to the maximization of the required C1,total and
therefore B. In this case, given the symmetry conditions
previously defined, the number of components of θ is
significantly reduced. For an odd number of current lines on
the right, the only form to maintain a top-bottom symmetry
is to place a conductor in the mid-plane (i.e. y = 0).
Therefore, for a total of m current lines to form the magnet,
where m = 2mr +1, the total number of argument variables,
θi, to characterize the full position of all conductors is mr,
for a given ρ .

Let’s then define an array θ of size mr where the
argument of the conductors will be stored

θ = {θ1,θ2, . . .θmr}
where the first (mr−1)/2 components will be designating
the current lines on the right, while the rest will be
designating the position of the current lines on the left side.
Following these indications, and for simplicity of notation,
we will designate a number mopt = (mr−1)/2. We can
now write an example of a general equation fmin to be
minimized

fmin =−1+2

(
−

mopt

∑
j=1

cosθ j +
mr

∑
j=mopt+1

cosθ j

)
(4)

In an analogous form, one can find the set of equality
constraints to cancel specific harmonic coefficients. Fur-
thermore, with regard to the geometrical constraints, differ-
ent forms could be established depending of the specific ob-
jectives relating to field, conductor limitations, cost, manu-
facturability, etc. In this example, a minimum angular spac-
ing between conductors was included as

min
{
‖θ j−θ j+1‖

}
−θmin ≥ 0, j = 1, . . . ,mr−1 (5)
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The overall optimization equations can therefore be
written as

minimize

(
−

mopt

∑
j=1

cosθ j +
mr

∑
j=mopt+1

cosθ j

)
subject to:

min
{
‖θ j−θ j+1‖

}
−θmin ≥ 0, j = 1, . . . ,mr−1

θmin ≤ θ j ≤
π

2
, j = 1, . . . ,mopt

π

2
≤ θ j ≤ π, j = mopt +1, . . . ,mr

−1+2

(
−

mopt

∑
j=1

cosnθ j +
mr

∑
j=mopt+1

cosnθ j

)
= 0,

with n = 2, . . . ,n0

(6)

This problem can be solved numerically taking
into consideration the constraints and bounds. An
example of a solution to (6) is illustrated in Figure 1(a).
Analogous equations can be formulated to create higher-
order asymmetric magnets, e.g. quadrupoles, sextupoles,
etc. The results in Figure 1(a) demonstrate that there are
solutions to create an asymmetric UL magnet with excellent
harmonics, where the normalized harmonic coefficients
‖cn‖ ≤ 5 ·10−8 units for n = 2, . . . ,14.

2.2. Surfaces and spatial winding configuration of a single
layer

In the case of a real magnet, the current lines forming the
straight section have to be linked together, i.e. a continuous
conductor is normally used to wind the magnet. In most of
the magnet configurations (e.g. racetrack coils, CT, block-
type coils, solenoids, and CCT) the space curves describing
the path of the conductor are based on relatively simple
transformations of a spiral geometry that is then wrapped
around a certain surface, as illustrated in Figure 2.

In the case of traditional racetrack coil layers (laying
on a plane) or CT coil layers (laying on surfaces with zero
Gaussian curvature), it is required to depart from this base
surface in order to access the beginning and end of the
curve simultaneously. It is for this reason that the majority
of these types of coils are created with two layers, where
an internal layer jump (i.e. change of winding surface) is
required.

If we try to create a UL symmetric winding
configuration, we can see that there are solutions for a
space curve γsym that lies in a surface of zero Gaussian
curvature along the straight section, but then it is necessary
to transition on the lead end through a negative Gaussian
curvature so the conductor can exit the surface. A schematic
of a γsym solution is illustrated in Figure 3, where the
conductor enters and exits the winding surface at the pole
region.

On the other hand, now considering asymmetric UL,
if one departs from the simple transformations illustrated

in Figure 2 and considers more complex options, one can
find that there are solutions for space curves γasy, describing
the path of a single continuous conductor in R3, that could
lie in surfaces of zero Gaussian curvature (e.g. cylindrical
surfaces such as cylindrical shells or elliptical cylinders,
or most of the surfaces generated by extruding closed
two-dimensional profiles), entering and exiting the surface
through its boundaries with γasy never crossing itself.

A schematic example of a solution of an asymmetric
UL magnet and its space curve γasy is illustrated in Figure 4.
As one can see from this schematic solution, some of the
advantages of UL magnets are:

• Reduction by a factor 2 of the number of tight bends
described by the conductor around the poles in relation
to CT magnets.

• The angular transition δθ , which determines the
minimum radius of curvature, is at least doubled. If we
consider δθ ,P as the angular space for a CT or SMCT,
and δθ ,U the angular distance in a uni-layer magnet, we
can see that a winding with δθ ,U ≥ 2δθ ,P is possible,
Figure 4(b).

It should be noticed that in the UL configuration, one
can create a specific magnetic field with a single continuous
conductor. This is not only true for the dipole configuration
but also for higher order fields, since there are also solutions
for space curves γasy that satisfy this premise, such as the
example illustrated in Figure 5 for a quadrupole magnet.
Moreover, the winding configurations are also compatible
with other surfaces with non-circular apertures.

2.3. Geometry of the magnet’s ends and conductor’s
bending radius

In the case of the mathematical representation of the
space curves γasy that satisfy the required conditions
schematically illustrated in the previous section, and that
are formed by a set of curves that can be defined with
parametric continuity C2 (i.e. with continuous zeroth,
first and second derivative), one can find solutions using
the generalized superelliptical curves wrapped around R3

surfaces with zero Gaussian curvature. If one considers a
cylindrical surface, with its axis oriented along the z-axis of
a Cartesian coordinate system, the expression of a wrapped
generalized superellipse can be written as

γgse(Φ) =ρ cos
(

θh−δi sin
2
χ (Φ)

)
î

+ρ sin
(

θh−δi sin
2
χ (Φ)

)
ĵ

+

(
z0− lt cos

2
ζ (Φ)

)
k̂ with Φ ∈ (0,π/2)

(7)

where ρ is the radius of the cylinder where γgse lies, ζ and χ

are the parameters defining the order of the superellipse, θh
and z0 position the curve within the surface, δi and lt define
the size of the curve, and Φ is the parametrization variable.
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a b
Asymmetric UL Symmetric UL

Figure 1. Possible solutions for asymmetric and symmetric configurations with mr = 17, n0 = 14 and θmin = 3◦. All the normalized harmonic coefficients
‖cn‖ ≤ 5 ·10−8 units for n = 2, . . . ,14 for both numerical solutions: (a) Asymmetric configuration. (b) Symmetric configuration, Appendix B.

a
b c

Figure 2. Basic transformations of a spiral geometry to create various
winding configurations. (a) Basic spiral curve (b) By stretching and
wrapping one could create the CT winding. If we wrap the space curve
around a surface with zero Gaussian curvature (e.g. cylindrical surface),
once Ω is located at an internal position, the only way out without the
conductor crossing itself (e.g. layer jump) is by moving away from the
surface where the main curve lies. (c) Transformation into a helix can lead
to a solenoid or, by further transformations, to a CCT magnet.

We can also consider a simplified case of the
generalized form, in which ζ = χ and where the center of
the superellipse is at x = 0 within the Cartesian coordinate
system. In this case the mathematical expression can be
simplified as

γse(ϕ) =ρ sin

acos
2
ζ (ϕ)

ρ

î

+ρ cos

acos
2
ζ (ϕ)

ρ

ĵ

+bsin
2
ζ (ϕ)k̂ with ϕ ∈ (0,π/2)

(8)

where

a = ρ
δθ

2
Similar curves to γse are also used as base in traditional

CT coils to minimize the strain energy of the winding block
in the head of the coils [25].

The curves γgse and γse can be used to describe the
curvature of the conductor in the UL’s head as schematically
represented in Figure 4. Furthermore, as it was described
in the previous section, the spatial configuration of UL
magnets allows for a significant increase of δθ , which
ultimately leads to a higher radius of curvature induced in
the conductor.

If we consider a set of γse curves to describe the
magnet’s end, we can find the optimal parameters of the
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Figure 3. Schematic example of a winding configuration for a symmetric uni-layer dipole magnet. (a) Polar location of the conductor on the straight
section of the magnet. (b) Winding configuration in its developed surface. (c) Winding configuration in space lying onto a surface with zero Gaussian
curvature.
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Figure 4. Schematic example of a winding configuration for an asymmetric uni-layer dipole magnet. (a) Polar location of the conductor on the straight
section of the magnet. (b) Winding configuration in its developed surface. In a traditional CT, on each head, there are two pole tight turns where a δθ ,P is
required at θ = π/2 and 3π/2. In a UL configuration, only one tight turn is required, and therefore the angular space can be expanded from δθ ,P to δθ ,U ,
where δθ ,U ≥ 2δθ ,P. (c) Winding configuration in space. (d) Winding configuration in space lying onto a surface with zero Gaussian curvature.



Uni-layer magnets: a new concept for LTS and HTS based superconducting magnets 7

a

b c

st
ra

ig
ht

 s
ec

ti
on

d

Figure 5. Schematic example of a winding configuration for an asymmetric uni-layer quadrupole magnet. (a) Polar location of the conductor on the
straight section of the magnet. (b) Winding configuration in its developed surface. (c) Winding configuration in space. (d) Winding configuration in space
lying onto a surface with zero Gaussian curvature.

curve (i.e. b and ζ ) that will maximize the radius of
curvature in the conductor (Appendix C). In this regard,
when optimizing the conductor’s curvature at the magnet’s
end, algorithms normally rely on the minimization of
the strain energy [25] of the conductor. In the case
here explored, as we are considering a simplification
of an idealized conductor, we will follow a strategy
to numerically determine the optimal value of variables
defining the space curves that maximize the minimum
radius of curvature along the end of the magnet, Rmin, for
a given ρ and δθ . Considering the previous parameters and
ϕ as the parametrization variable of γse (Appendix C), we
can write the optimization problem to determine the optimal
parameters as

max
b∈R|b>0,ζ∈R|ζ≥2

min
ϕ∈(0,π/2)

{Rmin} (9)

Figure 6a illustrates the superelliptical optimal curves
γse for different example cases of δθ , i.e. curves with
the maximum radius of curvature that can be achieved
by a superellipse for a given set of ρ and δθ . The
optimal solution, as previously described, can be expressed
as the dimensionless parameter Rmin/ρ as a function of
the available δθ , as illustrated in Figure 6(b). This
dimensionless parameter relates the ratio between the radius
of the cylinder (i.e. radius of the aperture) and the minimum
radius of curvature required in the conductor along the pole

turn, for a given value of δθ . In this regard, the value of δθ

in the innermost layer of traditional dipole CT magnets is
between 30 to 40◦ [26] (about 30◦ for both the LHC main
dipole [4], and the new D1 beam separation dipole [5]).

If we consider that a higher δθ is possible in UL
magnets (i.e. δθ ,U ≥ 2δθ ,P, Figure 3 and Figure 4) than
in traditional CT magnets, from Figure 6b we could see
that a higher value of the ratio could also be achieved.
Moreover, if we consider that a conductor has a minimum
radius of curvature Rmin,c, after which we start degrading it,
we can see that a higher ratio translates into the possibility
of winding a much smaller coil in a UL configuration in
relation to what it would be possible in a CT coil.

In the UL configuration, in order to maximize the
radius of curvature within the conductor, it is necessary to
maximize the available δθ for the most critical turn. For
this purpose, we could create a set of transitions from the
straight section to the end-section described by a set of
γse curves. This is possible through a set of γgse curves.
Therefore, the complete geometry of the space curves γasy
(i.e. asymmetric UL), can be described by joining together
three types of curves:

(i) A straight line along the straight section of the UL.
(ii) A superelliptical curve γse describing the turn around

the pole region, i.e. end section.
(iii) A generalized superelliptical curve γgse describing the
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a

b

C
T

Figure 6. Superelliptical curves wrapped around a cylindrical surface in
the pole region. (a) Magnet end section for example cases of various δθ .
(b) Ratio between the highest minimum radius of curvature Rmin and the
radius of curvature of the supporting surface ρ that is possible during the
end transition between two straight section lines, as a function of δθ . The
typical range of δθ for traditional CT magnets is 30 to 40◦ [26].

transition between the straight section to the pole
curve, i.e. transition section.

A detailed view of an example of how the curves are
linked together is illustrated in Figure 7. Depending on
the optimization objectives (e.g. field and field quality in
the ends, minimization of curvature, or minimization of
layer overall length), the end’s curvature can be design
accordingly.

2.4. Multi-layer uni-layer magnets

Creating multi-layer UL magnets is also possible. In
this regard, one could optimize the conductor’s position
independently for each layer or as a whole assembly. One
could also take advantage of alternating the position of the

odd number of conductors from left to right, also optimizing
the field at the ends of the magnet, Figure 8. UL magnets
also allow for the creation of combined function magnets
by assembling multiple layers of various types, e.g. a dipole
layer 1 within a quadrupole layer 2.

3. Comparison of magnet concepts

In this section, we will try to establish a fair comparison of
the various dipole magnet concepts based on how efficiently
an ideal conductor can be used to form a magnetic field, the
minimum radius of curvature and the ability to create coils
for very high field magnets. We will also investigate the
main advantages of the UL concept in terms of developing
and fabricating magnets in relation to the other mentioned
concepts.

First, if we look at the magnet design process, when
aiming at a particular aperture ρ , we can maximize the
efficiency of the use of conductor by placing it as close
as possible to the domain in which we plan to create the
field. In this regard, and considering the geometry of the
CT, CCT, and UL configurations, there are limitations on
our potential design, since there is a limit on the minimum
radius of curvature Rmin,c at which we can bend a conductor
before we degrade it. Consequently, only designs where the
winding minimum radius of curvature (Rmin) is higher than
the conductor minimum radius (Rmin,c) are possible. This is
especially relevant for HTS conductors such as CORC®.

In the CT concept, the minimum radius that is achieved
while winding is related to the radius of the aperture ρ

and the angular space in the innermost turns of the pole
region δθ ,P. In the case of the UL concept, the same is
true, but as we have shown before, a significantly higher
value of δθ ,U ≥ 2δθ ,P can be achieved, Figure 4(b). If we
examined the solution illustrated Figure 7(a) we can see this
difference is even greater. If we take as a reference for
the CT magnet a value of θ ≈ 70◦, leading to a value of
δθ ,P ≈ 40◦ (2(90−70)) = 40), for the solution illustrated
in Figure 7a we have δθ ,U ≈ 5.6δθ ,P.

In the case of the CCT (Appendix D), it is possible
to achieve a relatively high Rmin/ρ ratio by increasing the
inclination of the conductor α . However, by increasing α ,
the value of the dipole field By,CCT rapidly decreases.

The ratio Rmin/ρ as a function of the main driving
parameters for the discussed magnet concepts is illustrated
in Figure 9.

It can be seen how the ratio for CT is about 0.34
(for most of UL designs the ratio should be considerably
higher), and considering a CCT with α = 15◦ (the optimal
α is normally considered between 10 to 20◦ [15]) we can
see that the ratio is about 0.26. Assuming the same aperture
and conductor, these ratios indicate that it will be easier to
wind a UL coil than a CT coil, and significantly easier than
a CCT coil since the required curvature of the conductor is
minimized in the UL concept. If we consider the example
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Straight line

Figure 7. Two potential 3D solutions (i.e. sets of straight, γgs and γgse curves) to the asymmetric UL illustrated in Figure 1a, with mr = 17, n0 = 14
and θmin = 3◦. The minimum θmin = 3◦ is conserved at the straight section and beginning and end of the transition section. (a) Solution representing the
optimized curves that maximize the radius of curvature of the conductor. (b) Another example of a solution for the same straight section configuration,
in which a lower radius of curvature in the conductor is permitted.

b ca

Figure 8. Multi-layer UL magnet. (a) Layer 1 with an odd number of
current lines in the region x > 0. (b) Layer 2 with an odd number of current
lines in the region x < 0. (c) Assembled Layer 1 and 2.

illustrated in Figure 7a, the value of the ratio Rmin/ρ was
approximately 0.97. If we are to design a magnet with a
conductor with an intrinsic minimum radius of curvature
Rmin,c, the minimum aperture of the coil that we can create
is about 2.85 times higher in the case of a CT (or SCMT)
and 3.73 higher in the case of a CCT with α = 15◦, all in
relation to the illustrated UL.

This geometrical effect is of even more profound
importance when examining potential real applications
using HTS in very high field magnets, where its use
is normally considered within the high field region, i.e.
innermost layers. In the case of accelerator magnets, the
expectation is to be able to wind coils at an aperture of about
50 mm, i.e. ρ = 25mm. This is especially challenging
for HTS conductors that easily degrade with a tight radius
of curvature, such as REBCO, and derived wires such as
CORC®.

If we take the CORC® wire as an example, where the
reported Rmin,c is about 20 to 25 mm [21–24], we can then
compute the smallest aperture that we can wind with the
wire without inducing any degradation, for every different
magnet concept. The results are summarized in Table 1.

We can see that the CT design, and CCT options with
low inclination, can only be wound around a much larger
aperture in comparison to UL. Moreover, although the CCT
design allows for an aperture that is relatively close to what
is possible by the UL design, this is achieved at the expense
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Table 1. Smallest possible aperture diameter (i.e. 2ρ) that can be wound without degrading the conductor assuming a minimum bending radius of
Rmin,c = 25mm (i.e. similar to CORC® wire). In order to compare the dipole field transfer function between the various coil designs, the same length of
ideal line conductor is used to create 1 m of straight section, Appendix F. The dipole field transfer function for the CT design is computed assuming an
equivalent cross section to the UL configuration.

Coil design Smallest possible
aperture (mm)

Dipole field transfer function
for the same constant length
of conductor across all coil
designs (T/kA)

Central field ratio
(Bm/Bm,UL17)

UL (UL17 from Figure 7(a)) 51 0.218 1
CT (δθ = 40◦) 147 0.075 0.34
CCT (α = 15◦) 192 0.051 0.23
CCT (α = 45◦) 71 0.081 0.37
CCT (α = 60◦) 58 0.064 0.29

Table 2. Minimum radius of curvature Rmin required in the conductor to wind a coil with an aperture of 50 mm. The dipole field transfer function for the
CT design is computed assuming an equivalent cross section to the UL arrangement.

Coil design Minimum radius
of curvature (mm)

Dipole field transfer function
for the same constant length
of conductor across all coil
designs (T/kA)

Central field ratio
(Bm/Bm,UL17)

UL (UL17 from Figure 7(a)) 24 0.222 1
CT (δθ = 40◦) 8.5 0.222 1
CCT (α = 15◦) 6.5 0.197 0.89
CCT (α = 45◦) 17 0.115 0.52
CCT (α = 60◦) 21 0.075 0.34

of significantly increasing the inclination angle α , which
results in a very inefficient design (Appendix G), as it can be
seen from the dipole field transfer function. In this regard,
the UL design could allow for a significant increase in the
field generated in relation to CCT magnets with relatively
high α (using the same amount of conductor).

If one considers the inner layer of very high field
magnets, the high geometrical constraints discussed above
might make UL magnets, not only the optimal option but
perhaps one of the only viable solutions to wind a small
coil with REBCO-based wire around the small aperture.

The geometrical advantage of UL is also translated
into the significant increase in the minimum radius of
curvature required to wind a coil for a specific aperture.
This is relevant for HTS and LTS conductors, reducing
the probability of mechanical instabilities in the cable due
to winding tight turns. The relative minimum radius of
curvature for winding a 50 mm diameter aperture for the
various concepts is summarized in Table 2, illustrating the
significant improvement in the case of UL magnets.

3.1. Discussion

The UL concept presents some considerable advantages
with respect to other concepts in terms of available design
options, magnet development time, simplicity of assembly,
and mass production.

3.1.1. Design As previously discussed, the UL magnet
can be designed as a sector-type coil (as in a SMCT), or
as an individual turn type (as in the CCT concept), or as
a combination of both, therefore providing full flexibility
to address a particular set of constraints. In particular, the
UL magnet allows for creating high order magnetic fields
within a single layer (and a single conductor length), also
leading to the possibility of creating UL magnets with an
odd number of layers.

In relation to CT or SMCT coils, the number and
degree of tight turns around the pole region in the magnet’s
ends is significantly reduced, as well as eliminating the hard
bend required for the layer-jump in the high field region,
which might lead to a reduction of potential issues in these
regions.

3.1.2. Fabrication The main advantage in relation to
other designs is the potential of simplification of the
manufacturing of the mandrel. Some of the various
options when manufacturing the mandrel are schematically
represented in Figure 10. The UL mandrel can be
manufactured as a single piece or split between the straight
section and the magnet’s ends. This option opens a
significant reduction of the overall cost of the mandrel,
since its straight section is simply an extruded volume.
This represents a significant advantage over CCT magnets,
where producing long mandrels is a challenge. The type of
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Figure 9. Ratio between the minimum radius of curvature along the
curve, Rmin, and the radius of curvature of the cylinder, ρ , for the
superellipse as a function of δθ , and for a canted cosine theta as a function
of the inclination α . The points represent some representative cases:
CT represents a typical cosθ magnet with δθ = 40◦, CCT15, CCT45
and CCT60 represent CCT magnets with a corresponding inclination of
α = 15,45 and 60◦ respectively, while UL17 represents the 3D solution
illustrated in Figure 7a, with mr = 17, n0 = 14 and θmin = 3◦.

simple straight structure required for the UL concept could
be produced either by longitudinal machining of tubes,
metal extrusion, or even as a laminated structure joined by
longitudinal elements, leading to an overall reduction of
cost, especially with regard to very long magnets.

4. Conclusion

The novel concept of Uni-layer magnets has been pre-
sented. The asymmetric Uni-layer magnet shows signif-
icant advantages over other concepts, merging together
some of the benefits of the CT and CCT, providing a high
quality field in terms of harmonics, within a single-layer
(eliminating the need of internal layer jumps), using a sin-
gle continuous conductor, and with a higher minimum ra-
dius of curvature required in the conductor during winding.
This transformative new concept has the potential to enable
and accelerate the adoption of HTS in very high field super-
conducting magnets for high energy accelerator and other
applications.

c
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Figure 10. Schematic representation of the UL concept support structure.
(a) The winding mandrel can be manufactured in a single piece or split into
different sections. (b) If one considers the split between the straight section
and the magnet’s ends, one could see that the straight section should have
a much lower production cost than a CCT magnet. (c) The UL concept
can accommodate a large variety of design options, including grooves for
individual turns or for sector-type winding.
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Appendix A. Harmonics of the magnetic field

From Maxwell’s equations in differential form

∇ ·E =
ρ

ε0

∇×E =−∂B
∂ t

∇ ·B = 0

∇×B = µ0

(
J+ ε0

∂E
∂ t

)
and considering a region of space free of charges, the
magnetic field B can be described as

∇ ·B = 0 and ∇×B = 0 (A.1)

In addition, if we consider that the magnetic field B
is within a cylindrical aperture centred at the origin, i.e.
x = y = 0, and that it is created through a series of idealized
infinite current lines circulating parallel to the z-axis of a
Cartesian coordinate system (i.e. perpendicular to the xy-
plane), we also have

∂Bx

∂ z
=

∂By

∂ z
=

∂Bz

∂ z
= 0 (A.2)

Considering (A.1) and (A.2) one can prove that
Bx(x,y) and By(x,y) satisfy the Cauchy-Riemann equations

∂Bx

∂y
+

∂By

∂x
= 0

∂Bx

∂x
− ∂By

∂y
= 0

and therefore B can be written as a function of complex
variable z in the complex plane

B(z) = By(x,y)+ iBx(x,y) where z = x+ iy

that can also be expressed as a power series

B(z) =
∞

∑
n=0

Cnzn with z ∈ D

over a circular domain D defined with a radius equal to
the minimum distance between any current line and the
center of the expansion, i.e. z = 0. The coefficients Cn are
known as the multipolar expansion coefficients or harmonic
coefficients,

Cn = Bn + iAn

where their real (Bn) and imaginary (An) parts are normally
referred to as the normal and skew coefficients respectively.
In magnets, the multipole expansion series is usually
expressed as

B(z) =
∞

∑
n=1

Cn

(
z

Rre f

)n−1

with z ∈ D (A.3)

where Rre f is the reference radius, normally considered as
2/3 of the aperture radius (ρ) of the magnet. The harmonic
coefficients can also be normalized as

cn = bn + ian = 104 Cn

Bm

where Bm is normally considered as the main field.

Appendix A.1. Magnetic field and harmonics of an
infinitely long current line

Let’s imagine an idealized infinitely long current line
perpendicular to the xy-plane, which is considered as the
complex plane with z= x+ iy. From the Biot-Savart law, the
magnetic field B created at a point z by a current I located
at point zs is given by

B(z) =
µ0I
2π

1
z− zs

(A.4)

This equation can be developed into an expression that
includes the complex power series

B(z) =
µ0I
2π

1
z− zs

=−µ0I
2π

1
zs− z

=− µ0I
2πzs

1
1− z

zs

=− µ0I
2πzs

∞

∑
n=0

(
z
zs

)n

=− µ0I
2πzs

∞

∑
n=1

(
z
zs

)n−1

One can further manipulate the equation in order to
reach an equivalent expression to (A.3)

B(z) =
∞

∑
n=1
− µ0I

2πzs

(
z
zs

)n−1

=
∞

∑
n=1
−µ0I

2π

1
zn

s

(
Rre f

Rre f

)n−1

(z)n−1

=
∞

∑
n=1
−µ0I

2π

Rn−1
re f

zn
s

(
z

Rre f

)n−1

leading to the general expression of the harmonic coeffi-
cients, that can be expressed in the polar complex plane,
with z = ρseiθs , as

Cn =−
µ0I
2π

Rn−1
re f

zn
s

=−µ0I
2π

Rn−1
re f

ρn
s

e−inθs (A.5)

Appendix B. Symmetric cross section

As it has been shown for the asymmetric configuration,
we will first check if there are solutions for the symmetric
configuration by considering the following constraints:

• All current lines are perpendicular to the Cartesian xy-
plane along the straight section of the magnet.

• The magnitude of the current is the same for all
conductors, where only its sign changes. The current
can be therefore expressed as

I j = s jI with s j ∈ {−1,1}
In this regard, the current sign, s j, is considered as to
create a positive By and therefore I is negative on the
right (i.e. x > 0) and positive on the left (i.e. x < 0).

• All current lines are equidistant to the origin z = 0, at
a distance ρ .
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• The multipole expansion will be considered within a
circular domain D centered at z = 0, and with a radius
Rre f , related to the magnet apeture ρ as Rre f = 2/3ρ .

• An odd number of current lines, mr are considered on
the right (i.e. x > 0) and the left (i.e. x < 0), with a
total of current lines m = 2mr.

• Top-bottom and left-right symmetries are considered,
therefore cancelling all skew components of the
harmonic coefficients.

• From C2 all harmonic coefficients must be 0 up to Cn0 :

Cn,total = 0 with n ∈ {2,3, . . . ,n0}
In this case, due to the geometrical configuration, all
even coefficients are automatically canceled.

• The minimum angular distance between adjacent
current lines is θmin.

In the symmetric case, given the higher degree of
symmetry, the number of components of θ is further
reduced. For an odd number of current lines on each side
(i.e. left and right), the only way to maintain a top-bottom
symmetry is to place a conductor in the mid-plane (i.e.
y = 0). Therefore, for a total of m current lines to form
the magnet, where m = 2mr, the total number, mopt , of
argument variables, θi, to characterize the full position of
all conductors is mopt = (m−2)/4, for a given ρ .

The array θ of size mopt where the argument of the
conductors will be stored can be expressed as

θ =
{

θ1,θ2, . . .θmopt

}
We can now write an example of a general equation fmin to
be minimized

fmin =−2−4
mopt

∑
j=1

cosθ j (B.1)

In an analogous form, one can find the set of equality
constraints to cancel specific harmonic coefficients. The
general expression to cancel harmonic coefficients for a
symmetric configuration is(
−1+ einπ

)(
1+2

mopt

∑
j=1

cosnθ j

)
= 0 (B.2)

In this example, as for the asymmetric case explored
before, a minimum angular spacing between conductors
was included as

min
{
‖θ j−θ j+1‖

}
−θmin ≥ 0, j = 1, . . . ,mopt −1 (B.3)

The overall optimization equations can therefore be

written for the symmetric form as

minimize

(
−

mopt

∑
j=1

cosθ j

)
subject to:

min
{
‖θ j−θ j+1‖

}
−θmin ≥ 0, j = 1, . . . ,mopt −1

θmin ≤ θ j ≤
π

2
, j = 1, . . . ,mopt/2

π

2
≤ θ j ≤ π, j = mopt/2+1, . . . ,mopt

(
−1+ einπ

)(
1+2

mopt

∑
j=1

cosnθ j

)
= 0, n = 3,5, . . . ,n0

(B.4)

An example of a solution to (B.4) is illustrated in
Figure 1(b). Analogous equations can also be formulated to
create higher order symmetric magnets, e.g. quadrupoles,
sextupoles.

Appendix C. Uni-layer magnet’s ends geometry

Appendix C.1. Radius of curvature of the magnet’s ends

From the generalized superelliptical space curve wrapped
around a cylindrical surface γgse, equation (7), one can
derive its radius of curvature a Rgse from its curvature κgse
as

Rgse =
1

κgse
=

‖γgse
′‖3

‖γgse′× γgse′′‖
(C.1)

where the prime symbol designates differentiation with
respect to the parametrization variable, Φ in the case of γgse.
The solution to equation (C.1) can be expressed as

Rgse =(
χ2l2

t cos
4
ζ (Φ) tan2 (Φ)+

δ 2
i ρ2ζ 2 sin

4
χ (Φ)

tan2 (Φ)

) 3
2

δiρζ sin−2
Φ

·
[

χ
2l2

t

(
χ

2
ζ

2−2χ
2
ζ sin2 (Φ)+χ

2 sin4 (Φ)

+2χζ
2 sin2 (Φ)−2χζ

2−2χζ sin4 (Φ)

+2χζ sin2 (Φ)+δ
2
i ζ

2 sin
4
χ (Φ)

−2δ
2
i ζ

2 sin2+ 4
χ (Φ)

+δ
2
i ζ

2 sin4+ 4
χ (Φ)+ζ

2 sin4 (Φ)

−2ζ
2 sin2 (Φ)+ζ

2
)

sin2+ 4
χ (Φ)cos−2+ 4

ζ (Φ)

+δ
4
i ρ

2
ζ

4 sin−2+ 12
χ (Φ)cos6 (Φ)

]− 1
2

(C.2)

In an analogous form, we can also derive the radius of
curvature of the superelliptical space curve γse, equation (8),
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where the solution can be expressed as

Rse =
1

κse
=

‖γse
′‖3

‖γse′× γse′′‖

=

(
4b2 sin

4
ζ (ϕ)

tan2 (ϕ)
+δ 2

θ
ρ2 cos

4
ζ (ϕ) tan2 (ϕ)

) 3
2

δθ ρ cos−2 (ϕ)

·
[

4b2
(

δ
2
θ sin4 (ϕ)cos

4
ζ (ϕ)+4ζ

2

−8ζ +4
)

sin−2+ 4
ζ (ϕ)cos2+ 4

ζ (ϕ)

+δ
4
θ ρ

2 sin6 (ϕ)cos−2+ 12
ζ (ϕ)

]− 1
2

(C.3)

Appendix C.2. Length of the curves

The differential element ds of the space curve γgse can be
expressed as

ds =
√

dx2 +dy2 +dz2 = ‖γgse
′‖

= 2

√√√√ l2
t cos

4
ζ (Φ) tan2 (Φ)

ζ 2 +
δ 2

i ρ2 sin
4
χ (Φ)

χ2 tan2 (Φ)

(C.4)

The length of the curve lgse can be therefore expressed
as
lgse =

2
∫ π

2

0

√√√√ l2
t cos

4
ζ (Φ) tan2 (Φ)

ζ 2 +
δ 2

i ρ2 sin
4
χ (Φ)

χ2 tan2 (Φ)
dΦ

(C.5)

which is an integral that can be evaluated numerically.
The analogous differential element ds of the space

curve γse can be expressed as

ds =
√

dx2 +dy2 +dz2 = ‖γse
′‖

=

√
4b2 sin

4
ζ (ϕ)

tan2 (ϕ)
+δ 2

θ
ρ2 cos

4
ζ (ϕ) tan2 (ϕ)

ζ

(C.6)

The length of the curve lse can be therefore expressed
as

lge =
∫ π

2

0

√
4b2 sin

4
ζ (ϕ)

tan2 (ϕ)
+δ 2

θ
ρ2 cos

4
ζ (ϕ) tan2 (ϕ)

ζ
dϕ (C.7)

which is also an integral that can be evaluated numerically.

Appendix D. Canted cosine theta dipole magnets

The general equation of the space curve γCCT describing
a canted cosine theta (CCT) dipole lying in a cylindrical

surface of radius ρ , can be expressed in Cartesian
coordinates as

γCCT(φ) = ρ cos(φ)î+ρ sin(φ)ĵ

+

(
ωφ

2π
+

ρ sin(φ)
tan(α)

)
k̂

(D.1)

where φ is the parametrization variable, ω is axial distance
between adjacent turns, and α is the inclination.

The radius of curvature RCCT of the space curve γCCT
can also be derived as it has been done in (C.1) and (C.3) as

RCCT =
1

κCCT

=
‖γCCT

′‖3

‖γCCT
′× γCCT

′′‖
=
(
4π

2
ρ tan2 (α)

)−1

·
(

4π
2
ρ

2 tan2 (α)

+(ω tan(α)+2πρ cos(φ))2
) 3

2

·
(
−ω

2 +
ω2

cos2 (α)

+4πωρ cos(φ) tan(α)+
4π2ρ2

cos2 (α)

)− 1
2

(D.2)

The minimum radius of curvature of γCCT can be
found periodically at φ = π/2+ n2π and 3π/2+ n2π . We
can therefore simplify (D.2), leading to the equation for the
minimum radius of curvature along γCCT

RCCT,min =

(
ω2 +4π2ρ2

) 3
2 sin(α)

4π2ρ

√
ω2 sin2 (α)+4π2ρ2

with α ∈ (0,π/2)

(D.3)

The maximum of the minimum radius of curvature can
be found as we get closer to the limit of the boundary of the
interval of α

lim
α→π/2

RCCT,min = ρ +
ω2

4π2ρ

The value of RCCT,min is mainly determined by the
angle α , since for real CCT magnets ρ is at least an order
of magnitude higher than ω .

The length of the conductor used for a given straight
section can be calculated based on the length of an
individual turn [15]. The differential element ds of the
space curve γCCT can be expressed as

ds =
√

dx2 +dy2 +dz2 = ‖γCCT
′‖

= ρ

√
1+
(

ω

2πρ
+

cos(φ)
tan(α)

)2 (D.4)
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The length of the turn lCCT can be therefore expressed
as

lCCT =
∫ 2π

0
ρ

√
1+
(

ω

2πρ
+

cos(φ)
tan(α)

)2

dφ (D.5)

which can be computed numerically.
In the case of a real magnet, and considering a cable

with a thickness tCCT , the thickness of the rib trib separating
consecutive turns at the mid-plane is

trib = ω sinα− tCCT (D.6)

The total length of conductor used in the CCT magnet
along certain straight section Lss can be computed [15] as

LCCT,T =
Lss

ω
lCCT (D.7)

where lCCT is defined in (D.5). One can then compute the
total volume of conductor by assuming certain dimensions
for the cross section of the conductor.

The Bm,CCT bore dipole field created by a single layer
[15], considering ρ � ω , can be expressed as

By,CCT =
−µ0I

2ω tanα
(D.8)

Appendix E. CT sector coil

Let’s consider the simplest form of a cosθ type dipole
magnet, where we will analyze a sector coil constructed
with a conductor that carries a uniform current density jeng,
where dI = jengρdρdθ , we can derive the main dipole field
By from (A.4)

By = Re{B(z)}= Re
{
−µ0I

2π

1
zs

}
=−µ0I

2π

cosθ

‖zs‖
(E.1)

leading to the differential expression of By based on a
uniform current density

dBy =−
µ0 jeng cosθ

2π
dρdθ (E.2)

The overall field can be found by integrating (E.2) for
sector coils defined by its angle β , width wc, and inner
radius ri [27] as

By =−
µ0 jeng

π

∫
β

−β

∫ ri+wc

ri

cosθdρdθ

=−2µ0 jeng

π
wc sinβ

(E.3)

The area of a sector coil of angle β can be written as

Asector = 2βwc (2ρ +wc)

Appendix F. Comparison between UL and CCT
concepts for equal amount of conductor

The field generated along the straight section of a UL
magnet can be computed based on the principle of
superposition and equation A.4. The total length of
conductor required per unit of length of straight section of
the magnet is proportional to the total number of current
lines in its cross section m, and is independent of the radius
of the aperture of the magnet ρ .

If we rearrange the same length of conductor into a
CCT, given the parameters α and ρ , one could compute
the parameter ω that will be required. This problem can
be numerically solved based on equation D.7. The field
generated by a single layer with the computed ω and given
α and ρ can be computed based on equation D.8.

Appendix G. Approximation for a comparison between
magnet concepts using the CT sector coil

The field generated along the straight section is compared
between CT, SMCT and UL (considered equivalent in this
approximation) in relation to the field generated by the
CCT. The following points are considered:

• Structural elements within SMCT, CCT and UL are
disregarded.

• The field generated by CT, SMCT and UL is
considered equivalent since a very similar cable layout
within the straight section is possible.

• A constant current density jeng is considered for all
magnets.

• An equal volume of conductor Vcond is considered for
all magnets.

• In the case of CT, SMCT and UL concepts, the
generated dipole field can be approximated by a 60◦

CT sector coil [27] , equation E.3.

The assumptions for the geometrical parameters of the
CCT are summarized as:

• The diameter of the aperture of the CCT layer is 2ρ

• The thickness of the cable: tcable = ρ/20
• The thickness of the rib: trib = ρ/200
• The width of the cable: wcable = ρ/2

From the above assumptions, one can compute Bm,CCT
(from equation D.8) and the volume of conductor Vcond used
for a given straight section length (based on equation D.7).
At the same time, one can compute an equivalent volume of
conductor for a CT sector coil, that will result in a given coil
width, wc, and that will generate a specific Bm,CT (based on
equation E.3). The ratio between the two fields as a function
of the inclination angle α is illustrated in Figure G1.



REFERENCES 16

0 15 30 45 60 75 90
α (◦)

0.0

0.2

0.4

0.6

0.8

1.0
B

m
,C

C
T
/B

m
,C

T

60◦ sector approx. CT
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